bfd/
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI.  It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 //   Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops.  If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked.  The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only.  That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class.  This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140  public:
141   // Types of instruction templates.
142   enum Type
143     {
144       THUMB16_TYPE = 1,
145       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146       // templates with class-specific semantics.  Currently this is used
147       // only by the Cortex_a8_stub class for handling condition codes in
148       // conditional branches.
149       THUMB16_SPECIAL_TYPE,
150       THUMB32_TYPE,
151       ARM_TYPE,
152       DATA_TYPE
153     };
154
155   // Factory methods to create instruction templates in different formats.
156
157   static const Insn_template
158   thumb16_insn(uint32_t data)
159   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161   // A Thumb conditional branch, in which the proper condition is inserted
162   // when we build the stub.
163   static const Insn_template
164   thumb16_bcond_insn(uint32_t data)
165   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167   static const Insn_template
168   thumb32_insn(uint32_t data)
169   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171   static const Insn_template
172   thumb32_b_insn(uint32_t data, int reloc_addend)
173   {
174     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175                          reloc_addend);
176   }
177
178   static const Insn_template
179   arm_insn(uint32_t data)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182   static const Insn_template
183   arm_rel_insn(unsigned data, int reloc_addend)
184   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186   static const Insn_template
187   data_word(unsigned data, unsigned int r_type, int reloc_addend)
188   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190   // Accessors.  This class is used for read-only objects so no modifiers
191   // are provided.
192
193   uint32_t
194   data() const
195   { return this->data_; }
196
197   // Return the instruction sequence type of this.
198   Type
199   type() const
200   { return this->type_; }
201
202   // Return the ARM relocation type of this.
203   unsigned int
204   r_type() const
205   { return this->r_type_; }
206
207   int32_t
208   reloc_addend() const
209   { return this->reloc_addend_; }
210
211   // Return size of instruction template in bytes.
212   size_t
213   size() const;
214
215   // Return byte-alignment of instruction template.
216   unsigned
217   alignment() const;
218
219  private:
220   // We make the constructor private to ensure that only the factory
221   // methods are used.
222   inline
223   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225   { }
226
227   // Instruction specific data.  This is used to store information like
228   // some of the instruction bits.
229   uint32_t data_;
230   // Instruction template type.
231   Type type_;
232   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233   unsigned int r_type_;
234   // Relocation addend.
235   int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242   DEF_STUB(long_branch_any_any) \
243   DEF_STUB(long_branch_v4t_arm_thumb) \
244   DEF_STUB(long_branch_thumb_only) \
245   DEF_STUB(long_branch_v4t_thumb_thumb) \
246   DEF_STUB(long_branch_v4t_thumb_arm) \
247   DEF_STUB(short_branch_v4t_thumb_arm) \
248   DEF_STUB(long_branch_any_arm_pic) \
249   DEF_STUB(long_branch_any_thumb_pic) \
250   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253   DEF_STUB(long_branch_thumb_only_pic) \
254   DEF_STUB(a8_veneer_b_cond) \
255   DEF_STUB(a8_veneer_b) \
256   DEF_STUB(a8_veneer_bl) \
257   DEF_STUB(a8_veneer_blx) \
258   DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264   {
265     arm_stub_none,
266     DEF_STUBS
267
268     // First reloc stub type.
269     arm_stub_reloc_first = arm_stub_long_branch_any_any,
270     // Last  reloc stub type.
271     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273     // First Cortex-A8 stub type.
274     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275     // Last Cortex-A8 stub type.
276     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278     // Last stub type.
279     arm_stub_type_last = arm_stub_v4_veneer_bx
280   } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class.  Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289  public:
290   Stub_template(Stub_type, const Insn_template*, size_t);
291
292   ~Stub_template()
293   { }
294
295   // Return stub type.
296   Stub_type
297   type() const
298   { return this->type_; }
299
300   // Return an array of instruction templates.
301   const Insn_template*
302   insns() const
303   { return this->insns_; }
304
305   // Return size of template in number of instructions.
306   size_t
307   insn_count() const
308   { return this->insn_count_; }
309
310   // Return size of template in bytes.
311   size_t
312   size() const
313   { return this->size_; }
314
315   // Return alignment of the stub template.
316   unsigned
317   alignment() const
318   { return this->alignment_; }
319
320   // Return whether entry point is in thumb mode.
321   bool
322   entry_in_thumb_mode() const
323   { return this->entry_in_thumb_mode_; }
324
325   // Return number of relocations in this template.
326   size_t
327   reloc_count() const
328   { return this->relocs_.size(); }
329
330   // Return index of the I-th instruction with relocation.
331   size_t
332   reloc_insn_index(size_t i) const
333   {
334     gold_assert(i < this->relocs_.size());
335     return this->relocs_[i].first;
336   }
337
338   // Return the offset of the I-th instruction with relocation from the
339   // beginning of the stub.
340   section_size_type
341   reloc_offset(size_t i) const
342   {
343     gold_assert(i < this->relocs_.size());
344     return this->relocs_[i].second;
345   }
346
347  private:
348   // This contains information about an instruction template with a relocation
349   // and its offset from start of stub.
350   typedef std::pair<size_t, section_size_type> Reloc;
351
352   // A Stub_template may not be copied.  We want to share templates as much
353   // as possible.
354   Stub_template(const Stub_template&);
355   Stub_template& operator=(const Stub_template&);
356
357   // Stub type.
358   Stub_type type_;
359   // Points to an array of Insn_templates.
360   const Insn_template* insns_;
361   // Number of Insn_templates in insns_[].
362   size_t insn_count_;
363   // Size of templated instructions in bytes.
364   size_t size_;
365   // Alignment of templated instructions.
366   unsigned alignment_;
367   // Flag to indicate if entry is in thumb mode.
368   bool entry_in_thumb_mode_;
369   // A table of reloc instruction indices and offsets.  We can find these by
370   // looking at the instruction templates but we pre-compute and then stash
371   // them here for speed.
372   std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs.  This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382  private:
383   static const section_offset_type invalid_offset =
384     static_cast<section_offset_type>(-1);
385
386  public:
387   Stub(const Stub_template* stub_template)
388     : stub_template_(stub_template), offset_(invalid_offset)
389   { }
390
391   virtual
392    ~Stub()
393   { }
394
395   // Return the stub template.
396   const Stub_template*
397   stub_template() const
398   { return this->stub_template_; }
399
400   // Return offset of code stub from beginning of its containing stub table.
401   section_offset_type
402   offset() const
403   {
404     gold_assert(this->offset_ != invalid_offset);
405     return this->offset_;
406   }
407
408   // Set offset of code stub from beginning of its containing stub table.
409   void
410   set_offset(section_offset_type offset)
411   { this->offset_ = offset; }
412
413   // Return the relocation target address of the i-th relocation in the
414   // stub.  This must be defined in a child class.
415   Arm_address
416   reloc_target(size_t i)
417   { return this->do_reloc_target(i); }
418
419   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
420   void
421   write(unsigned char* view, section_size_type view_size, bool big_endian)
422   { this->do_write(view, view_size, big_endian); }
423
424   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425   // for the i-th instruction.
426   uint16_t
427   thumb16_special(size_t i)
428   { return this->do_thumb16_special(i); }
429
430  protected:
431   // This must be defined in the child class.
432   virtual Arm_address
433   do_reloc_target(size_t) = 0;
434
435   // This may be overridden in the child class.
436   virtual void
437   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438   {
439     if (big_endian)
440       this->do_fixed_endian_write<true>(view, view_size);
441     else
442       this->do_fixed_endian_write<false>(view, view_size);
443   }
444
445   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446   // instruction template.
447   virtual uint16_t
448   do_thumb16_special(size_t)
449   { gold_unreachable(); }
450
451  private:
452   // A template to implement do_write.
453   template<bool big_endian>
454   void inline
455   do_fixed_endian_write(unsigned char*, section_size_type);
456
457   // Its template.
458   const Stub_template* stub_template_;
459   // Offset within the section of containing this stub.
460   section_offset_type offset_;
461 };
462
463 // Reloc stub class.  These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468  public:
469   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470   // We assume we never jump to this address.
471   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473   // Return destination address.
474   Arm_address
475   destination_address() const
476   {
477     gold_assert(this->destination_address_ != this->invalid_address);
478     return this->destination_address_;
479   }
480
481   // Set destination address.
482   void
483   set_destination_address(Arm_address address)
484   {
485     gold_assert(address != this->invalid_address);
486     this->destination_address_ = address;
487   }
488
489   // Reset destination address.
490   void
491   reset_destination_address()
492   { this->destination_address_ = this->invalid_address; }
493
494   // Determine stub type for a branch of a relocation of R_TYPE going
495   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
496   // the branch target is a thumb instruction.  TARGET is used for look
497   // up ARM-specific linker settings.
498   static Stub_type
499   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500                       Arm_address branch_target, bool target_is_thumb);
501
502   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
503   // and an addend.  Since we treat global and local symbol differently, we
504   // use a Symbol object for a global symbol and a object-index pair for
505   // a local symbol.
506   class Key
507   {
508    public:
509     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
511     // and R_SYM must not be invalid_index.
512     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513         unsigned int r_sym, int32_t addend)
514       : stub_type_(stub_type), addend_(addend)
515     {
516       if (symbol != NULL)
517         {
518           this->r_sym_ = Reloc_stub::invalid_index;
519           this->u_.symbol = symbol;
520         }
521       else
522         {
523           gold_assert(relobj != NULL && r_sym != invalid_index);
524           this->r_sym_ = r_sym;
525           this->u_.relobj = relobj;
526         }
527     }
528
529     ~Key()
530     { }
531
532     // Accessors: Keys are meant to be read-only object so no modifiers are
533     // provided.
534
535     // Return stub type.
536     Stub_type
537     stub_type() const
538     { return this->stub_type_; }
539
540     // Return the local symbol index or invalid_index.
541     unsigned int
542     r_sym() const
543     { return this->r_sym_; }
544
545     // Return the symbol if there is one.
546     const Symbol*
547     symbol() const
548     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550     // Return the relobj if there is one.
551     const Relobj*
552     relobj() const
553     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555     // Whether this equals to another key k.
556     bool
557     eq(const Key& k) const
558     {
559       return ((this->stub_type_ == k.stub_type_)
560               && (this->r_sym_ == k.r_sym_)
561               && ((this->r_sym_ != Reloc_stub::invalid_index)
562                   ? (this->u_.relobj == k.u_.relobj)
563                   : (this->u_.symbol == k.u_.symbol))
564               && (this->addend_ == k.addend_));
565     }
566
567     // Return a hash value.
568     size_t
569     hash_value() const
570     {
571       return (this->stub_type_
572               ^ this->r_sym_
573               ^ gold::string_hash<char>(
574                     (this->r_sym_ != Reloc_stub::invalid_index)
575                     ? this->u_.relobj->name().c_str()
576                     : this->u_.symbol->name())
577               ^ this->addend_);
578     }
579
580     // Functors for STL associative containers.
581     struct hash
582     {
583       size_t
584       operator()(const Key& k) const
585       { return k.hash_value(); }
586     };
587
588     struct equal_to
589     {
590       bool
591       operator()(const Key& k1, const Key& k2) const
592       { return k1.eq(k2); }
593     };
594
595     // Name of key.  This is mainly for debugging.
596     std::string
597     name() const;
598
599    private:
600     // Stub type.
601     Stub_type stub_type_;
602     // If this is a local symbol, this is the index in the defining object.
603     // Otherwise, it is invalid_index for a global symbol.
604     unsigned int r_sym_;
605     // If r_sym_ is an invalid index, this points to a global symbol.
606     // Otherwise, it points to a relobj.  We used the unsized and target
607     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608     // Arm_relobj, in order to avoid making the stub class a template
609     // as most of the stub machinery is endianness-neutral.  However, it
610     // may require a bit of casting done by users of this class.
611     union
612     {
613       const Symbol* symbol;
614       const Relobj* relobj;
615     } u_;
616     // Addend associated with a reloc.
617     int32_t addend_;
618   };
619
620  protected:
621   // Reloc_stubs are created via a stub factory.  So these are protected.
622   Reloc_stub(const Stub_template* stub_template)
623     : Stub(stub_template), destination_address_(invalid_address)
624   { }
625
626   ~Reloc_stub()
627   { }
628
629   friend class Stub_factory;
630
631   // Return the relocation target address of the i-th relocation in the
632   // stub.
633   Arm_address
634   do_reloc_target(size_t i)
635   {
636     // All reloc stub have only one relocation.
637     gold_assert(i == 0);
638     return this->destination_address_;
639   }
640
641  private:
642   // Address of destination.
643   Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 //    branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 //    branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least.  We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch.  The
658 // condition code is used in a special instruction template.  We also want
659 // to identify input sections needing Cortex-A8 workaround quickly.  We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up.  The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667  public:
668   ~Cortex_a8_stub()
669   { }
670
671   // Return the object of the code section containing the branch being fixed
672   // up.
673   Relobj*
674   relobj() const
675   { return this->relobj_; }
676
677   // Return the section index of the code section containing the branch being
678   // fixed up.
679   unsigned int
680   shndx() const
681   { return this->shndx_; }
682
683   // Return the source address of stub.  This is the address of the original
684   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
685   // instruction.
686   Arm_address
687   source_address() const
688   { return this->source_address_; }
689
690   // Return the destination address of the stub.  This is the branch taken
691   // address of the original branch instruction.  LSB is 1 if it is a THUMB
692   // instruction address.
693   Arm_address
694   destination_address() const
695   { return this->destination_address_; }
696
697   // Return the instruction being fixed up.
698   uint32_t
699   original_insn() const
700   { return this->original_insn_; }
701
702  protected:
703   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
704   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705                  unsigned int shndx, Arm_address source_address,
706                  Arm_address destination_address, uint32_t original_insn)
707     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708       source_address_(source_address | 1U),
709       destination_address_(destination_address),
710       original_insn_(original_insn)
711   { }
712
713   friend class Stub_factory;
714
715   // Return the relocation target address of the i-th relocation in the
716   // stub.
717   Arm_address
718   do_reloc_target(size_t i)
719   {
720     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721       {
722         // The conditional branch veneer has two relocations.
723         gold_assert(i < 2);
724         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725       }
726     else
727       {
728         // All other Cortex-A8 stubs have only one relocation.
729         gold_assert(i == 0);
730         return this->destination_address_;
731       }
732   }
733
734   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735   uint16_t
736   do_thumb16_special(size_t);
737
738  private:
739   // Object of the code section containing the branch being fixed up.
740   Relobj* relobj_;
741   // Section index of the code section containing the branch begin fixed up.
742   unsigned int shndx_;
743   // Source address of original branch.
744   Arm_address source_address_;
745   // Destination address of the original branch.
746   Arm_address destination_address_;
747   // Original branch instruction.  This is needed for copying the condition
748   // code from a condition branch to its stub.
749   uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755  public:
756   ~Arm_v4bx_stub()
757   { }
758
759   // Return the associated register.
760   uint32_t
761   reg() const
762   { return this->reg_; }
763
764  protected:
765   // Arm V4BX stubs are created via a stub factory.  So these are protected.
766   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767     : Stub(stub_template), reg_(reg)
768   { }
769
770   friend class Stub_factory;
771
772   // Return the relocation target address of the i-th relocation in the
773   // stub.
774   Arm_address
775   do_reloc_target(size_t)
776   { gold_unreachable(); }
777
778   // This may be overridden in the child class.
779   virtual void
780   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781   {
782     if (big_endian)
783       this->do_fixed_endian_v4bx_write<true>(view, view_size);
784     else
785       this->do_fixed_endian_v4bx_write<false>(view, view_size);
786   }
787
788  private:
789   // A template to implement do_write.
790   template<bool big_endian>
791   void inline
792   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793   {
794     const Insn_template* insns = this->stub_template()->insns();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[0].data()
797                                            + (this->reg_ << 16)));
798     view += insns[0].size();
799     elfcpp::Swap<32, big_endian>::writeval(view,
800                                            (insns[1].data() + this->reg_));
801     view += insns[1].size();
802     elfcpp::Swap<32, big_endian>::writeval(view,
803                                            (insns[2].data() + this->reg_));
804   }
805
806   // A register index (r0-r14), which is associated with the stub.
807   uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814  public:
815   // Return the unique instance of this class.
816   static const Stub_factory&
817   get_instance()
818   {
819     static Stub_factory singleton;
820     return singleton;
821   }
822
823   // Make a relocation stub.
824   Reloc_stub*
825   make_reloc_stub(Stub_type stub_type) const
826   {
827     gold_assert(stub_type >= arm_stub_reloc_first
828                 && stub_type <= arm_stub_reloc_last);
829     return new Reloc_stub(this->stub_templates_[stub_type]);
830   }
831
832   // Make a Cortex-A8 stub.
833   Cortex_a8_stub*
834   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835                       Arm_address source, Arm_address destination,
836                       uint32_t original_insn) const
837   {
838     gold_assert(stub_type >= arm_stub_cortex_a8_first
839                 && stub_type <= arm_stub_cortex_a8_last);
840     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841                               source, destination, original_insn);
842   }
843
844   // Make an ARM V4BX relocation stub.
845   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846   Arm_v4bx_stub*
847   make_arm_v4bx_stub(uint32_t reg) const
848   {
849     gold_assert(reg < 0xf);
850     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851                              reg);
852   }
853
854  private:
855   // Constructor and destructor are protected since we only return a single
856   // instance created in Stub_factory::get_instance().
857
858   Stub_factory();
859
860   // A Stub_factory may not be copied since it is a singleton.
861   Stub_factory(const Stub_factory&);
862   Stub_factory& operator=(Stub_factory&);
863
864   // Stub templates.  These are initialized in the constructor.
865   const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873  public:
874   Stub_table(Arm_input_section<big_endian>* owner)
875     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877       prev_data_size_(0), prev_addralign_(1)
878   { }
879
880   ~Stub_table()
881   { }
882
883   // Owner of this stub table.
884   Arm_input_section<big_endian>*
885   owner() const
886   { return this->owner_; }
887
888   // Whether this stub table is empty.
889   bool
890   empty() const
891   {
892     return (this->reloc_stubs_.empty()
893             && this->cortex_a8_stubs_.empty()
894             && this->arm_v4bx_stubs_.empty());
895   }
896
897   // Return the current data size.
898   off_t
899   current_data_size() const
900   { return this->current_data_size_for_child(); }
901
902   // Add a STUB using KEY.  The caller is responsible for avoiding addition
903   // if a STUB with the same key has already been added.
904   void
905   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906   {
907     const Stub_template* stub_template = stub->stub_template();
908     gold_assert(stub_template->type() == key.stub_type());
909     this->reloc_stubs_[key] = stub;
910
911     // Assign stub offset early.  We can do this because we never remove
912     // reloc stubs and they are in the beginning of the stub table.
913     uint64_t align = stub_template->alignment();
914     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915     stub->set_offset(this->reloc_stubs_size_);
916     this->reloc_stubs_size_ += stub_template->size();
917     this->reloc_stubs_addralign_ =
918       std::max(this->reloc_stubs_addralign_, align);
919   }
920
921   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922   // The caller is responsible for avoiding addition if a STUB with the same
923   // address has already been added.
924   void
925   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926   {
927     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928     this->cortex_a8_stubs_.insert(value);
929   }
930
931   // Add an ARM V4BX relocation stub. A register index will be retrieved
932   // from the stub.
933   void
934   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935   {
936     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937     this->arm_v4bx_stubs_[stub->reg()] = stub;
938   }
939
940   // Remove all Cortex-A8 stubs.
941   void
942   remove_all_cortex_a8_stubs();
943
944   // Look up a relocation stub using KEY.  Return NULL if there is none.
945   Reloc_stub*
946   find_reloc_stub(const Reloc_stub::Key& key) const
947   {
948     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950   }
951
952   // Look up an arm v4bx relocation stub using the register index.
953   // Return NULL if there is none.
954   Arm_v4bx_stub*
955   find_arm_v4bx_stub(const uint32_t reg) const
956   {
957     gold_assert(reg < 0xf);
958     return this->arm_v4bx_stubs_[reg];
959   }
960
961   // Relocate stubs in this stub table.
962   void
963   relocate_stubs(const Relocate_info<32, big_endian>*,
964                  Target_arm<big_endian>*, Output_section*,
965                  unsigned char*, Arm_address, section_size_type);
966
967   // Update data size and alignment at the end of a relaxation pass.  Return
968   // true if either data size or alignment is different from that of the
969   // previous relaxation pass.
970   bool
971   update_data_size_and_addralign();
972
973   // Finalize stubs.  Set the offsets of all stubs and mark input sections
974   // needing the Cortex-A8 workaround.
975   void
976   finalize_stubs();
977
978   // Apply Cortex-A8 workaround to an address range.
979   void
980   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981                                               unsigned char*, Arm_address,
982                                               section_size_type);
983
984  protected:
985   // Write out section contents.
986   void
987   do_write(Output_file*);
988
989   // Return the required alignment.
990   uint64_t
991   do_addralign() const
992   { return this->prev_addralign_; }
993
994   // Reset address and file offset.
995   void
996   do_reset_address_and_file_offset()
997   { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999   // Set final data size.
1000   void
1001   set_final_data_size()
1002   { this->set_data_size(this->current_data_size()); }
1003
1004  private:
1005   // Relocate one stub.
1006   void
1007   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008                 Target_arm<big_endian>*, Output_section*,
1009                 unsigned char*, Arm_address, section_size_type);
1010
1011   // Unordered map of relocation stubs.
1012   typedef
1013     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014                   Reloc_stub::Key::equal_to>
1015     Reloc_stub_map;
1016
1017   // List of Cortex-A8 stubs ordered by addresses of branches being
1018   // fixed up in output.
1019   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020   // List of Arm V4BX relocation stubs ordered by associated registers.
1021   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023   // Owner of this stub table.
1024   Arm_input_section<big_endian>* owner_;
1025   // The relocation stubs.
1026   Reloc_stub_map reloc_stubs_;
1027   // Size of reloc stubs.
1028   off_t reloc_stubs_size_;
1029   // Maximum address alignment of reloc stubs.
1030   uint64_t reloc_stubs_addralign_;
1031   // The cortex_a8_stubs.
1032   Cortex_a8_stub_list cortex_a8_stubs_;
1033   // The Arm V4BX relocation stubs.
1034   Arm_v4bx_stub_list arm_v4bx_stubs_;
1035   // data size of this in the previous pass.
1036   off_t prev_data_size_;
1037   // address alignment of this in the previous pass.
1038   uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046  public:
1047   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049   { }
1050
1051   // Return the object containing the section pointed by this.
1052   Relobj*
1053   relobj() const
1054   { return this->relobj_; }
1055
1056   // Return the section index of the section pointed by this.
1057   unsigned int
1058   shndx() const
1059   { return this->shndx_; }
1060
1061  protected:
1062   void
1063   do_write(Output_file* of)
1064   {
1065     if (parameters->target().is_big_endian())
1066       this->do_fixed_endian_write<true>(of);
1067     else
1068       this->do_fixed_endian_write<false>(of);
1069   }
1070
1071   // Write to a map file.
1072   void
1073   do_print_to_mapfile(Mapfile* mapfile) const
1074   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076  private:
1077   // Implement do_write for a given endianness.
1078   template<bool big_endian>
1079   void inline
1080   do_fixed_endian_write(Output_file*);
1081
1082   // The object containing the section pointed by this.
1083   Relobj* relobj_;
1084   // The section index of the section pointed by this.
1085   unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093         Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100  public:
1101   // Constructor for Arm_exidx_merged_section.
1102   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103   // SECTION_OFFSET_MAP points to a section offset map describing how
1104   // parts of the input section are mapped to output.  DELETED_BYTES is
1105   // the number of bytes deleted from the EXIDX input section.
1106   Arm_exidx_merged_section(
1107       const Arm_exidx_input_section& exidx_input_section,
1108       const Arm_exidx_section_offset_map& section_offset_map,
1109       uint32_t deleted_bytes);
1110
1111   // Build output contents.
1112   void
1113   build_contents(const unsigned char*, section_size_type);
1114
1115   // Return the original EXIDX input section.
1116   const Arm_exidx_input_section&
1117   exidx_input_section() const
1118   { return this->exidx_input_section_; }
1119
1120   // Return the section offset map.
1121   const Arm_exidx_section_offset_map&
1122   section_offset_map() const
1123   { return this->section_offset_map_; }
1124
1125  protected:
1126   // Write merged section into file OF.
1127   void
1128   do_write(Output_file* of);
1129
1130   bool
1131   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132                   section_offset_type*) const;
1133
1134  private:
1135   // Original EXIDX input section.
1136   const Arm_exidx_input_section& exidx_input_section_;
1137   // Section offset map.
1138   const Arm_exidx_section_offset_map& section_offset_map_;
1139   // Merged section contents.  We need to keep build the merged section
1140   // and save it here to avoid accessing the original EXIDX section when
1141   // we cannot lock the sections' object.
1142   unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150  public:
1151   Arm_input_section(Relobj* relobj, unsigned int shndx)
1152     : Output_relaxed_input_section(relobj, shndx, 1),
1153       original_addralign_(1), original_size_(0), stub_table_(NULL),
1154       original_contents_(NULL)
1155   { }
1156
1157   ~Arm_input_section()
1158   { delete[] this->original_contents_; }
1159
1160   // Initialize.
1161   void
1162   init();
1163
1164   // Whether this is a stub table owner.
1165   bool
1166   is_stub_table_owner() const
1167   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169   // Return the stub table.
1170   Stub_table<big_endian>*
1171   stub_table() const
1172   { return this->stub_table_; }
1173
1174   // Set the stub_table.
1175   void
1176   set_stub_table(Stub_table<big_endian>* stub_table)
1177   { this->stub_table_ = stub_table; }
1178
1179   // Downcast a base pointer to an Arm_input_section pointer.  This is
1180   // not type-safe but we only use Arm_input_section not the base class.
1181   static Arm_input_section<big_endian>*
1182   as_arm_input_section(Output_relaxed_input_section* poris)
1183   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185   // Return the original size of the section.
1186   uint32_t
1187   original_size() const
1188   { return this->original_size_; }
1189
1190  protected:
1191   // Write data to output file.
1192   void
1193   do_write(Output_file*);
1194
1195   // Return required alignment of this.
1196   uint64_t
1197   do_addralign() const
1198   {
1199     if (this->is_stub_table_owner())
1200       return std::max(this->stub_table_->addralign(),
1201                       static_cast<uint64_t>(this->original_addralign_));
1202     else
1203       return this->original_addralign_;
1204   }
1205
1206   // Finalize data size.
1207   void
1208   set_final_data_size();
1209
1210   // Reset address and file offset.
1211   void
1212   do_reset_address_and_file_offset();
1213
1214   // Output offset.
1215   bool
1216   do_output_offset(const Relobj* object, unsigned int shndx,
1217                    section_offset_type offset,
1218                    section_offset_type* poutput) const
1219   {
1220     if ((object == this->relobj())
1221         && (shndx == this->shndx())
1222         && (offset >= 0)
1223         && (offset <=
1224             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225       {
1226         *poutput = offset;
1227         return true;
1228       }
1229     else
1230       return false;
1231   }
1232
1233  private:
1234   // Copying is not allowed.
1235   Arm_input_section(const Arm_input_section&);
1236   Arm_input_section& operator=(const Arm_input_section&);
1237
1238   // Address alignment of the original input section.
1239   uint32_t original_addralign_;
1240   // Section size of the original input section.
1241   uint32_t original_size_;
1242   // Stub table.
1243   Stub_table<big_endian>* stub_table_;
1244   // Original section contents.  We have to make a copy here since the file
1245   // containing the original section may not be locked when we need to access
1246   // the contents.
1247   unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class.  This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255  public:
1256   Arm_exidx_fixup(Output_section* exidx_output_section,
1257                   bool merge_exidx_entries = true)
1258     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259       last_inlined_entry_(0), last_input_section_(NULL),
1260       section_offset_map_(NULL), first_output_text_section_(NULL),
1261       merge_exidx_entries_(merge_exidx_entries)
1262   { }
1263
1264   ~Arm_exidx_fixup()
1265   { delete this->section_offset_map_; }
1266
1267   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1268   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269   // number of bytes to be deleted in output.  If parts of the input EXIDX
1270   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1272   // responsible for releasing it.
1273   template<bool big_endian>
1274   uint32_t
1275   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276                         const unsigned char* section_contents,
1277                         section_size_type section_size,
1278                         Arm_exidx_section_offset_map** psection_offset_map);
1279
1280   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281   // input section, if there is not one already.
1282   void
1283   add_exidx_cantunwind_as_needed();
1284
1285   // Return the output section for the text section which is linked to the
1286   // first exidx input in output.
1287   Output_section*
1288   first_output_text_section() const
1289   { return this->first_output_text_section_; }
1290
1291  private:
1292   // Copying is not allowed.
1293   Arm_exidx_fixup(const Arm_exidx_fixup&);
1294   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296   // Type of EXIDX unwind entry.
1297   enum Unwind_type
1298   {
1299     // No type.
1300     UT_NONE,
1301     // EXIDX_CANTUNWIND.
1302     UT_EXIDX_CANTUNWIND,
1303     // Inlined entry.
1304     UT_INLINED_ENTRY,
1305     // Normal entry.
1306     UT_NORMAL_ENTRY,
1307   };
1308
1309   // Process an EXIDX entry.  We only care about the second word of the
1310   // entry.  Return true if the entry can be deleted.
1311   bool
1312   process_exidx_entry(uint32_t second_word);
1313
1314   // Update the current section offset map during EXIDX section fix-up.
1315   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1316   // reference point, DELETED_BYTES is the number of deleted by in the
1317   // section so far.  If DELETE_ENTRY is true, the reference point and
1318   // all offsets after the previous reference point are discarded.
1319   void
1320   update_offset_map(section_offset_type input_offset,
1321                     section_size_type deleted_bytes, bool delete_entry);
1322
1323   // EXIDX output section.
1324   Output_section* exidx_output_section_;
1325   // Unwind type of the last EXIDX entry processed.
1326   Unwind_type last_unwind_type_;
1327   // Last seen inlined EXIDX entry.
1328   uint32_t last_inlined_entry_;
1329   // Last processed EXIDX input section.
1330   const Arm_exidx_input_section* last_input_section_;
1331   // Section offset map created in process_exidx_section.
1332   Arm_exidx_section_offset_map* section_offset_map_;
1333   // Output section for the text section which is linked to the first exidx
1334   // input in output.
1335   Output_section* first_output_text_section_;
1336
1337   bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class.  This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346  public:
1347   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351                      elfcpp::Elf_Xword flags)
1352     : Output_section(name, type,
1353                      (type == elfcpp::SHT_ARM_EXIDX
1354                       ? flags | elfcpp::SHF_LINK_ORDER
1355                       : flags))
1356   {
1357     if (type == elfcpp::SHT_ARM_EXIDX)
1358       this->set_always_keeps_input_sections();
1359   }
1360
1361   ~Arm_output_section()
1362   { }
1363
1364   // Group input sections for stub generation.
1365   void
1366   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368   // Downcast a base pointer to an Arm_output_section pointer.  This is
1369   // not type-safe but we only use Arm_output_section not the base class.
1370   static Arm_output_section<big_endian>*
1371   as_arm_output_section(Output_section* os)
1372   { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374   // Append all input text sections in this into LIST.
1375   void
1376   append_text_sections_to_list(Text_section_list* list);
1377
1378   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1379   // is a list of text input sections sorted in ascending order of their
1380   // output addresses.
1381   void
1382   fix_exidx_coverage(Layout* layout,
1383                      const Text_section_list& sorted_text_section,
1384                      Symbol_table* symtab,
1385                      bool merge_exidx_entries,
1386                      const Task* task);
1387
1388   // Link an EXIDX section into its corresponding text section.
1389   void
1390   set_exidx_section_link();
1391
1392  private:
1393   // For convenience.
1394   typedef Output_section::Input_section Input_section;
1395   typedef Output_section::Input_section_list Input_section_list;
1396
1397   // Create a stub group.
1398   void create_stub_group(Input_section_list::const_iterator,
1399                          Input_section_list::const_iterator,
1400                          Input_section_list::const_iterator,
1401                          Target_arm<big_endian>*,
1402                          std::vector<Output_relaxed_input_section*>*,
1403                          const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410  public:
1411   static const section_offset_type invalid_offset =
1412     static_cast<section_offset_type>(-1);
1413
1414   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415                           unsigned int link, uint32_t size,
1416                           uint32_t addralign, uint32_t text_size)
1417     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418       addralign_(addralign), text_size_(text_size), has_errors_(false)
1419   { }
1420
1421   ~Arm_exidx_input_section()
1422   { }
1423
1424   // Accessors:  This is a read-only class.
1425
1426   // Return the object containing this EXIDX input section.
1427   Relobj*
1428   relobj() const
1429   { return this->relobj_; }
1430
1431   // Return the section index of this EXIDX input section.
1432   unsigned int
1433   shndx() const
1434   { return this->shndx_; }
1435
1436   // Return the section index of linked text section in the same object.
1437   unsigned int
1438   link() const
1439   { return this->link_; }
1440
1441   // Return size of the EXIDX input section.
1442   uint32_t
1443   size() const
1444   { return this->size_; }
1445
1446   // Return address alignment of EXIDX input section.
1447   uint32_t
1448   addralign() const
1449   { return this->addralign_; }
1450
1451   // Return size of the associated text input section.
1452   uint32_t
1453   text_size() const
1454   { return this->text_size_; }
1455
1456   // Whether there are any errors in the EXIDX input section.
1457   bool
1458   has_errors() const
1459   { return this->has_errors_; }
1460
1461   // Set has-errors flag.
1462   void
1463   set_has_errors()
1464   { this->has_errors_ = true; }
1465
1466  private:
1467   // Object containing this.
1468   Relobj* relobj_;
1469   // Section index of this.
1470   unsigned int shndx_;
1471   // text section linked to this in the same object.
1472   unsigned int link_;
1473   // Size of this.  For ARM 32-bit is sufficient.
1474   uint32_t size_;
1475   // Address alignment of this.  For ARM 32-bit is sufficient.
1476   uint32_t addralign_;
1477   // Size of associated text section.
1478   uint32_t text_size_;
1479   // Whether this has any errors.
1480   bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488  public:
1489   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494       stub_tables_(), local_symbol_is_thumb_function_(),
1495       attributes_section_data_(NULL), mapping_symbols_info_(),
1496       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497       output_local_symbol_count_needs_update_(false),
1498       merge_flags_and_attributes_(true)
1499   { }
1500
1501   ~Arm_relobj()
1502   { delete this->attributes_section_data_; }
1503
1504   // Return the stub table of the SHNDX-th section if there is one.
1505   Stub_table<big_endian>*
1506   stub_table(unsigned int shndx) const
1507   {
1508     gold_assert(shndx < this->stub_tables_.size());
1509     return this->stub_tables_[shndx];
1510   }
1511
1512   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513   void
1514   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515   {
1516     gold_assert(shndx < this->stub_tables_.size());
1517     this->stub_tables_[shndx] = stub_table;
1518   }
1519
1520   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1521   // index.  This is only valid after do_count_local_symbol is called.
1522   bool
1523   local_symbol_is_thumb_function(unsigned int r_sym) const
1524   {
1525     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526     return this->local_symbol_is_thumb_function_[r_sym];
1527   }
1528
1529   // Scan all relocation sections for stub generation.
1530   void
1531   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532                           const Layout*);
1533
1534   // Convert regular input section with index SHNDX to a relaxed section.
1535   void
1536   convert_input_section_to_relaxed_section(unsigned shndx)
1537   {
1538     // The stubs have relocations and we need to process them after writing
1539     // out the stubs.  So relocation now must follow section write.
1540     this->set_section_offset(shndx, -1ULL);
1541     this->set_relocs_must_follow_section_writes();
1542   }
1543
1544   // Downcast a base pointer to an Arm_relobj pointer.  This is
1545   // not type-safe but we only use Arm_relobj not the base class.
1546   static Arm_relobj<big_endian>*
1547   as_arm_relobj(Relobj* relobj)
1548   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550   // Processor-specific flags in ELF file header.  This is valid only after
1551   // reading symbols.
1552   elfcpp::Elf_Word
1553   processor_specific_flags() const
1554   { return this->processor_specific_flags_; }
1555
1556   // Attribute section data  This is the contents of the .ARM.attribute section
1557   // if there is one.
1558   const Attributes_section_data*
1559   attributes_section_data() const
1560   { return this->attributes_section_data_; }
1561
1562   // Mapping symbol location.
1563   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565   // Functor for STL container.
1566   struct Mapping_symbol_position_less
1567   {
1568     bool
1569     operator()(const Mapping_symbol_position& p1,
1570                const Mapping_symbol_position& p2) const
1571     {
1572       return (p1.first < p2.first
1573               || (p1.first == p2.first && p1.second < p2.second));
1574     }
1575   };
1576
1577   // We only care about the first character of a mapping symbol, so
1578   // we only store that instead of the whole symbol name.
1579   typedef std::map<Mapping_symbol_position, char,
1580                    Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582   // Whether a section contains any Cortex-A8 workaround.
1583   bool
1584   section_has_cortex_a8_workaround(unsigned int shndx) const
1585   {
1586     return (this->section_has_cortex_a8_workaround_ != NULL
1587             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588   }
1589
1590   // Mark a section that has Cortex-A8 workaround.
1591   void
1592   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593   {
1594     if (this->section_has_cortex_a8_workaround_ == NULL)
1595       this->section_has_cortex_a8_workaround_ =
1596         new std::vector<bool>(this->shnum(), false);
1597     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598   }
1599
1600   // Return the EXIDX section of an text section with index SHNDX or NULL
1601   // if the text section has no associated EXIDX section.
1602   const Arm_exidx_input_section*
1603   exidx_input_section_by_link(unsigned int shndx) const
1604   {
1605     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606     return ((p != this->exidx_section_map_.end()
1607              && p->second->link() == shndx)
1608             ? p->second
1609             : NULL);
1610   }
1611
1612   // Return the EXIDX section with index SHNDX or NULL if there is none.
1613   const Arm_exidx_input_section*
1614   exidx_input_section_by_shndx(unsigned shndx) const
1615   {
1616     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617     return ((p != this->exidx_section_map_.end()
1618              && p->second->shndx() == shndx)
1619             ? p->second
1620             : NULL);
1621   }
1622
1623   // Whether output local symbol count needs updating.
1624   bool
1625   output_local_symbol_count_needs_update() const
1626   { return this->output_local_symbol_count_needs_update_; }
1627
1628   // Set output_local_symbol_count_needs_update flag to be true.
1629   void
1630   set_output_local_symbol_count_needs_update()
1631   { this->output_local_symbol_count_needs_update_ = true; }
1632
1633   // Update output local symbol count at the end of relaxation.
1634   void
1635   update_output_local_symbol_count();
1636
1637   // Whether we want to merge processor-specific flags and attributes.
1638   bool
1639   merge_flags_and_attributes() const
1640   { return this->merge_flags_and_attributes_; }
1641
1642   // Export list of EXIDX section indices.
1643   void
1644   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645   {
1646     list->clear();
1647     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648          p != this->exidx_section_map_.end();
1649          ++p)
1650       {
1651         if (p->second->shndx() == p->first)
1652           list->push_back(p->first);
1653       }
1654     // Sort list to make result independent of implementation of map.
1655     std::sort(list->begin(), list->end());
1656   }
1657
1658  protected:
1659   // Post constructor setup.
1660   void
1661   do_setup()
1662   {
1663     // Call parent's setup method.
1664     Sized_relobj_file<32, big_endian>::do_setup();
1665
1666     // Initialize look-up tables.
1667     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668     this->stub_tables_.swap(empty_stub_table_list);
1669   }
1670
1671   // Count the local symbols.
1672   void
1673   do_count_local_symbols(Stringpool_template<char>*,
1674                          Stringpool_template<char>*);
1675
1676   void
1677   do_relocate_sections(
1678       const Symbol_table* symtab, const Layout* layout,
1679       const unsigned char* pshdrs, Output_file* of,
1680       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682   // Read the symbol information.
1683   void
1684   do_read_symbols(Read_symbols_data* sd);
1685
1686   // Process relocs for garbage collection.
1687   void
1688   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690  private:
1691
1692   // Whether a section needs to be scanned for relocation stubs.
1693   bool
1694   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695                                     const Relobj::Output_sections&,
1696                                     const Symbol_table*, const unsigned char*);
1697
1698   // Whether a section is a scannable text section.
1699   bool
1700   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701                        const Output_section*, const Symbol_table*);
1702
1703   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704   bool
1705   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706                                         unsigned int, Output_section*,
1707                                         const Symbol_table*);
1708
1709   // Scan a section for the Cortex-A8 erratum.
1710   void
1711   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712                                      unsigned int, Output_section*,
1713                                      Target_arm<big_endian>*);
1714
1715   // Find the linked text section of an EXIDX section by looking at the
1716   // first relocation of the EXIDX section.  PSHDR points to the section
1717   // headers of a relocation section and PSYMS points to the local symbols.
1718   // PSHNDX points to a location storing the text section index if found.
1719   // Return whether we can find the linked section.
1720   bool
1721   find_linked_text_section(const unsigned char* pshdr,
1722                            const unsigned char* psyms, unsigned int* pshndx);
1723
1724   //
1725   // Make a new Arm_exidx_input_section object for EXIDX section with
1726   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1727   // index of the linked text section.
1728   void
1729   make_exidx_input_section(unsigned int shndx,
1730                            const elfcpp::Shdr<32, big_endian>& shdr,
1731                            unsigned int text_shndx,
1732                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734   // Return the output address of either a plain input section or a
1735   // relaxed input section.  SHNDX is the section index.
1736   Arm_address
1737   simple_input_section_output_address(unsigned int, Output_section*);
1738
1739   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741     Exidx_section_map;
1742
1743   // List of stub tables.
1744   Stub_table_list stub_tables_;
1745   // Bit vector to tell if a local symbol is a thumb function or not.
1746   // This is only valid after do_count_local_symbol is called.
1747   std::vector<bool> local_symbol_is_thumb_function_;
1748   // processor-specific flags in ELF file header.
1749   elfcpp::Elf_Word processor_specific_flags_;
1750   // Object attributes if there is an .ARM.attributes section or NULL.
1751   Attributes_section_data* attributes_section_data_;
1752   // Mapping symbols information.
1753   Mapping_symbols_info mapping_symbols_info_;
1754   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755   std::vector<bool>* section_has_cortex_a8_workaround_;
1756   // Map a text section to its associated .ARM.exidx section, if there is one.
1757   Exidx_section_map exidx_section_map_;
1758   // Whether output local symbol count needs updating.
1759   bool output_local_symbol_count_needs_update_;
1760   // Whether we merge processor flags and attributes of this object to
1761   // output.
1762   bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770  public:
1771   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772              const elfcpp::Ehdr<32, big_endian>& ehdr)
1773     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774       processor_specific_flags_(0), attributes_section_data_(NULL)
1775   { }
1776
1777   ~Arm_dynobj()
1778   { delete this->attributes_section_data_; }
1779
1780   // Downcast a base pointer to an Arm_relobj pointer.  This is
1781   // not type-safe but we only use Arm_relobj not the base class.
1782   static Arm_dynobj<big_endian>*
1783   as_arm_dynobj(Dynobj* dynobj)
1784   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786   // Processor-specific flags in ELF file header.  This is valid only after
1787   // reading symbols.
1788   elfcpp::Elf_Word
1789   processor_specific_flags() const
1790   { return this->processor_specific_flags_; }
1791
1792   // Attributes section data.
1793   const Attributes_section_data*
1794   attributes_section_data() const
1795   { return this->attributes_section_data_; }
1796
1797  protected:
1798   // Read the symbol information.
1799   void
1800   do_read_symbols(Read_symbols_data* sd);
1801
1802  private:
1803   // processor-specific flags in ELF file header.
1804   elfcpp::Elf_Word processor_specific_flags_;
1805   // Object attributes if there is an .ARM.attributes section or NULL.
1806   Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814   // Return the addend for a relocation of a particular type.  Depending
1815   // on whether this is a REL or RELA relocation, read the addend from a
1816   // view or from a Reloc object.
1817   elfcpp::Elf_types<32>::Elf_Swxword
1818   operator()(
1819     unsigned int /* r_type */,
1820     const unsigned char* /* view */,
1821     const typename Reloc_types<sh_type,
1822                                32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830   elfcpp::Elf_types<32>::Elf_Swxword
1831   operator()(
1832     unsigned int,
1833     const unsigned char*,
1834     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader.  This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845   elfcpp::Elf_types<32>::Elf_Swxword
1846   operator()(
1847     unsigned int,
1848     const unsigned char*,
1849     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850                                big_endian>::Reloc& reloc) const
1851   { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class.  We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859  public:
1860   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861                   Arm_address destination)
1862     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863   { }
1864
1865   ~Cortex_a8_reloc()
1866   { }
1867
1868   // Accessors:  This is a read-only class.
1869
1870   // Return the relocation stub associated with this relocation if there is
1871   // one.
1872   const Reloc_stub*
1873   reloc_stub() const
1874   { return this->reloc_stub_; }
1875
1876   // Return the relocation type.
1877   unsigned int
1878   r_type() const
1879   { return this->r_type_; }
1880
1881   // Return the destination address of the relocation.  LSB stores the THUMB
1882   // bit.
1883   Arm_address
1884   destination() const
1885   { return this->destination_; }
1886
1887  private:
1888   // Associated relocation stub if there is one, or NULL.
1889   const Reloc_stub* reloc_stub_;
1890   // Relocation type.
1891   unsigned int r_type_;
1892   // Destination address of this relocation.  LSB is used to distinguish
1893   // ARM/THUMB mode.
1894   Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class.  We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903  public:
1904   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906   { }
1907
1908   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1909   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910   // applied in a static link.
1911   void
1912   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1916   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1917   // relocation that needs to be applied in a static link.
1918   void
1919   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920                    Sized_relobj_file<32, big_endian>* relobj,
1921                    unsigned int index)
1922   {
1923     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924                                                 index));
1925   }
1926
1927   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1928   // The first one is initialized to be 1, which is the module index for
1929   // the main executable and the second one 0.  A reloc of the type
1930   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931   // be applied by gold.  GSYM is a global symbol.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935   // Same as the above but for a local symbol in OBJECT with INDEX.
1936   void
1937   add_tls_gd32_with_static_reloc(unsigned int got_type,
1938                                  Sized_relobj_file<32, big_endian>* object,
1939                                  unsigned int index);
1940
1941  protected:
1942   // Write out the GOT table.
1943   void
1944   do_write(Output_file*);
1945
1946  private:
1947   // This class represent dynamic relocations that need to be applied by
1948   // gold because we are using TLS relocations in a static link.
1949   class Static_reloc
1950   {
1951    public:
1952     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954     { this->u_.global.symbol = gsym; }
1955
1956     Static_reloc(unsigned int got_offset, unsigned int r_type,
1957           Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959     {
1960       this->u_.local.relobj = relobj;
1961       this->u_.local.index = index;
1962     }
1963
1964     // Return the GOT offset.
1965     unsigned int
1966     got_offset() const
1967     { return this->got_offset_; }
1968
1969     // Relocation type.
1970     unsigned int
1971     r_type() const
1972     { return this->r_type_; }
1973
1974     // Whether the symbol is global or not.
1975     bool
1976     symbol_is_global() const
1977     { return this->symbol_is_global_; }
1978
1979     // For a relocation against a global symbol, the global symbol.
1980     Symbol*
1981     symbol() const
1982     {
1983       gold_assert(this->symbol_is_global_);
1984       return this->u_.global.symbol;
1985     }
1986
1987     // For a relocation against a local symbol, the defining object.
1988     Sized_relobj_file<32, big_endian>*
1989     relobj() const
1990     {
1991       gold_assert(!this->symbol_is_global_);
1992       return this->u_.local.relobj;
1993     }
1994
1995     // For a relocation against a local symbol, the local symbol index.
1996     unsigned int
1997     index() const
1998     {
1999       gold_assert(!this->symbol_is_global_);
2000       return this->u_.local.index;
2001     }
2002
2003    private:
2004     // GOT offset of the entry to which this relocation is applied.
2005     unsigned int got_offset_;
2006     // Type of relocation.
2007     unsigned int r_type_;
2008     // Whether this relocation is against a global symbol.
2009     bool symbol_is_global_;
2010     // A global or local symbol.
2011     union
2012     {
2013       struct
2014       {
2015         // For a global symbol, the symbol itself.
2016         Symbol* symbol;
2017       } global;
2018       struct
2019       {
2020         // For a local symbol, the object defining object.
2021         Sized_relobj_file<32, big_endian>* relobj;
2022         // For a local symbol, the symbol index.
2023         unsigned int index;
2024       } local;
2025     } u_;
2026   };
2027
2028   // Symbol table of the output object.
2029   Symbol_table* symbol_table_;
2030   // Layout of the output object.
2031   Layout* layout_;
2032   // Static relocs to be applied to the GOT.
2033   std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits.  The default handling of relocatable relocation cannot process these
2038 // relocations.  So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044  public:
2045   // Return the strategy to use for a local symbol which is a section
2046   // symbol, given the relocation type.
2047   inline Relocatable_relocs::Reloc_strategy
2048   local_section_strategy(unsigned int r_type, Relobj*)
2049   {
2050     if (sh_type == elfcpp::SHT_RELA)
2051       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052     else
2053       {
2054         if (r_type == elfcpp::R_ARM_TARGET1
2055             || r_type == elfcpp::R_ARM_TARGET2)
2056           {
2057             const Target_arm<big_endian>* arm_target =
2058               Target_arm<big_endian>::default_target();
2059             r_type = arm_target->get_real_reloc_type(r_type);
2060           }
2061
2062         switch(r_type)
2063           {
2064           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2065           // and R_ARM_TARGET2.
2066           case elfcpp::R_ARM_NONE:
2067           case elfcpp::R_ARM_V4BX:
2068           case elfcpp::R_ARM_TLS_GOTDESC:
2069           case elfcpp::R_ARM_TLS_CALL:
2070           case elfcpp::R_ARM_TLS_DESCSEQ:
2071           case elfcpp::R_ARM_THM_TLS_CALL:
2072           case elfcpp::R_ARM_GOTRELAX:
2073           case elfcpp::R_ARM_GNU_VTENTRY:
2074           case elfcpp::R_ARM_GNU_VTINHERIT:
2075           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078           // These should have been converted to something else above.
2079           case elfcpp::R_ARM_TARGET1:
2080           case elfcpp::R_ARM_TARGET2:
2081             gold_unreachable();
2082           // Relocations that write full 32 bits and
2083           // have alignment of 1.
2084           case elfcpp::R_ARM_ABS32:
2085           case elfcpp::R_ARM_REL32:
2086           case elfcpp::R_ARM_SBREL32:
2087           case elfcpp::R_ARM_GOTOFF32:
2088           case elfcpp::R_ARM_BASE_PREL:
2089           case elfcpp::R_ARM_GOT_BREL:
2090           case elfcpp::R_ARM_BASE_ABS:
2091           case elfcpp::R_ARM_ABS32_NOI:
2092           case elfcpp::R_ARM_REL32_NOI:
2093           case elfcpp::R_ARM_PLT32_ABS:
2094           case elfcpp::R_ARM_GOT_ABS:
2095           case elfcpp::R_ARM_GOT_PREL:
2096           case elfcpp::R_ARM_TLS_GD32:
2097           case elfcpp::R_ARM_TLS_LDM32:
2098           case elfcpp::R_ARM_TLS_LDO32:
2099           case elfcpp::R_ARM_TLS_IE32:
2100           case elfcpp::R_ARM_TLS_LE32:
2101             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102           default:
2103             // For all other static relocations, return RELOC_SPECIAL.
2104             return Relocatable_relocs::RELOC_SPECIAL;
2105           }
2106       }
2107   }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113  public:
2114   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115     Reloc_section;
2116
2117   // When were are relocating a stub, we pass this as the relocation number.
2118   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120   Target_arm(const Target::Target_info* info = &arm_info)
2121     : Sized_target<32, big_endian>(info),
2122       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126       should_force_pic_veneer_(false),
2127       arm_input_section_map_(), attributes_section_data_(NULL),
2128       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129   { }
2130
2131   // Whether we force PCI branch veneers.
2132   bool
2133   should_force_pic_veneer() const
2134   { return this->should_force_pic_veneer_; }
2135
2136   // Set PIC veneer flag.
2137   void
2138   set_should_force_pic_veneer(bool value)
2139   { this->should_force_pic_veneer_ = value; }
2140
2141   // Whether we use THUMB-2 instructions.
2142   bool
2143   using_thumb2() const
2144   {
2145     Object_attribute* attr =
2146       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147     int arch = attr->int_value();
2148     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149   }
2150
2151   // Whether we use THUMB/THUMB-2 instructions only.
2152   bool
2153   using_thumb_only() const
2154   {
2155     Object_attribute* attr =
2156       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160       return true;
2161     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163       return false;
2164     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165     return attr->int_value() == 'M';
2166   }
2167
2168   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2169   bool
2170   may_use_arm_nop() const
2171   {
2172     Object_attribute* attr =
2173       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174     int arch = attr->int_value();
2175     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176             || arch == elfcpp::TAG_CPU_ARCH_V6K
2177             || arch == elfcpp::TAG_CPU_ARCH_V7
2178             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179   }
2180
2181   // Whether we have THUMB-2 NOP.W instruction.
2182   bool
2183   may_use_thumb2_nop() const
2184   {
2185     Object_attribute* attr =
2186       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187     int arch = attr->int_value();
2188     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189             || arch == elfcpp::TAG_CPU_ARCH_V7
2190             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191   }
2192
2193   // Whether we have v4T interworking instructions available.
2194   bool
2195   may_use_v4t_interworking() const
2196   {
2197     Object_attribute* attr =
2198       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199     int arch = attr->int_value();
2200     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201             && arch != elfcpp::TAG_CPU_ARCH_V4);
2202   }
2203
2204   // Whether we have v5T interworking instructions available.
2205   bool
2206   may_use_v5t_interworking() const
2207   {
2208     Object_attribute* attr =
2209       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210     int arch = attr->int_value();
2211     if (parameters->options().fix_arm1176())
2212       return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213               || arch == elfcpp::TAG_CPU_ARCH_V7
2214               || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215               || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216               || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217     else
2218       return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219               && arch != elfcpp::TAG_CPU_ARCH_V4
2220               && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221   }
2222
2223   // Process the relocations to determine unreferenced sections for
2224   // garbage collection.
2225   void
2226   gc_process_relocs(Symbol_table* symtab,
2227                     Layout* layout,
2228                     Sized_relobj_file<32, big_endian>* object,
2229                     unsigned int data_shndx,
2230                     unsigned int sh_type,
2231                     const unsigned char* prelocs,
2232                     size_t reloc_count,
2233                     Output_section* output_section,
2234                     bool needs_special_offset_handling,
2235                     size_t local_symbol_count,
2236                     const unsigned char* plocal_symbols);
2237
2238   // Scan the relocations to look for symbol adjustments.
2239   void
2240   scan_relocs(Symbol_table* symtab,
2241               Layout* layout,
2242               Sized_relobj_file<32, big_endian>* object,
2243               unsigned int data_shndx,
2244               unsigned int sh_type,
2245               const unsigned char* prelocs,
2246               size_t reloc_count,
2247               Output_section* output_section,
2248               bool needs_special_offset_handling,
2249               size_t local_symbol_count,
2250               const unsigned char* plocal_symbols);
2251
2252   // Finalize the sections.
2253   void
2254   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256   // Return the value to use for a dynamic symbol which requires special
2257   // treatment.
2258   uint64_t
2259   do_dynsym_value(const Symbol*) const;
2260
2261   // Relocate a section.
2262   void
2263   relocate_section(const Relocate_info<32, big_endian>*,
2264                    unsigned int sh_type,
2265                    const unsigned char* prelocs,
2266                    size_t reloc_count,
2267                    Output_section* output_section,
2268                    bool needs_special_offset_handling,
2269                    unsigned char* view,
2270                    Arm_address view_address,
2271                    section_size_type view_size,
2272                    const Reloc_symbol_changes*);
2273
2274   // Scan the relocs during a relocatable link.
2275   void
2276   scan_relocatable_relocs(Symbol_table* symtab,
2277                           Layout* layout,
2278                           Sized_relobj_file<32, big_endian>* object,
2279                           unsigned int data_shndx,
2280                           unsigned int sh_type,
2281                           const unsigned char* prelocs,
2282                           size_t reloc_count,
2283                           Output_section* output_section,
2284                           bool needs_special_offset_handling,
2285                           size_t local_symbol_count,
2286                           const unsigned char* plocal_symbols,
2287                           Relocatable_relocs*);
2288
2289   // Emit relocations for a section.
2290   void
2291   relocate_relocs(const Relocate_info<32, big_endian>*,
2292                   unsigned int sh_type,
2293                   const unsigned char* prelocs,
2294                   size_t reloc_count,
2295                   Output_section* output_section,
2296                   typename elfcpp::Elf_types<32>::Elf_Off
2297                     offset_in_output_section,
2298                   const Relocatable_relocs*,
2299                   unsigned char* view,
2300                   Arm_address view_address,
2301                   section_size_type view_size,
2302                   unsigned char* reloc_view,
2303                   section_size_type reloc_view_size);
2304
2305   // Perform target-specific processing in a relocatable link.  This is
2306   // only used if we use the relocation strategy RELOC_SPECIAL.
2307   void
2308   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309                                unsigned int sh_type,
2310                                const unsigned char* preloc_in,
2311                                size_t relnum,
2312                                Output_section* output_section,
2313                                typename elfcpp::Elf_types<32>::Elf_Off
2314                                  offset_in_output_section,
2315                                unsigned char* view,
2316                                typename elfcpp::Elf_types<32>::Elf_Addr
2317                                  view_address,
2318                                section_size_type view_size,
2319                                unsigned char* preloc_out);
2320
2321   // Return whether SYM is defined by the ABI.
2322   bool
2323   do_is_defined_by_abi(const Symbol* sym) const
2324   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2325
2326   // Return whether there is a GOT section.
2327   bool
2328   has_got_section() const
2329   { return this->got_ != NULL; }
2330
2331   // Return the size of the GOT section.
2332   section_size_type
2333   got_size() const
2334   {
2335     gold_assert(this->got_ != NULL);
2336     return this->got_->data_size();
2337   }
2338
2339   // Return the number of entries in the GOT.
2340   unsigned int
2341   got_entry_count() const
2342   {
2343     if (!this->has_got_section())
2344       return 0;
2345     return this->got_size() / 4;
2346   }
2347
2348   // Return the number of entries in the PLT.
2349   unsigned int
2350   plt_entry_count() const;
2351
2352   // Return the offset of the first non-reserved PLT entry.
2353   unsigned int
2354   first_plt_entry_offset() const;
2355
2356   // Return the size of each PLT entry.
2357   unsigned int
2358   plt_entry_size() const;
2359
2360   // Map platform-specific reloc types
2361   static unsigned int
2362   get_real_reloc_type(unsigned int r_type);
2363
2364   //
2365   // Methods to support stub-generations.
2366   //
2367
2368   // Return the stub factory
2369   const Stub_factory&
2370   stub_factory() const
2371   { return this->stub_factory_; }
2372
2373   // Make a new Arm_input_section object.
2374   Arm_input_section<big_endian>*
2375   new_arm_input_section(Relobj*, unsigned int);
2376
2377   // Find the Arm_input_section object corresponding to the SHNDX-th input
2378   // section of RELOBJ.
2379   Arm_input_section<big_endian>*
2380   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2381
2382   // Make a new Stub_table
2383   Stub_table<big_endian>*
2384   new_stub_table(Arm_input_section<big_endian>*);
2385
2386   // Scan a section for stub generation.
2387   void
2388   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389                          const unsigned char*, size_t, Output_section*,
2390                          bool, const unsigned char*, Arm_address,
2391                          section_size_type);
2392
2393   // Relocate a stub.
2394   void
2395   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2396                 Output_section*, unsigned char*, Arm_address,
2397                 section_size_type);
2398
2399   // Get the default ARM target.
2400   static Target_arm<big_endian>*
2401   default_target()
2402   {
2403     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404                 && parameters->target().is_big_endian() == big_endian);
2405     return static_cast<Target_arm<big_endian>*>(
2406              parameters->sized_target<32, big_endian>());
2407   }
2408
2409   // Whether NAME belongs to a mapping symbol.
2410   static bool
2411   is_mapping_symbol_name(const char* name)
2412   {
2413     return (name
2414             && name[0] == '$'
2415             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416             && (name[2] == '\0' || name[2] == '.'));
2417   }
2418
2419   // Whether we work around the Cortex-A8 erratum.
2420   bool
2421   fix_cortex_a8() const
2422   { return this->fix_cortex_a8_; }
2423
2424   // Whether we merge exidx entries in debuginfo.
2425   bool
2426   merge_exidx_entries() const
2427   { return parameters->options().merge_exidx_entries(); }
2428
2429   // Whether we fix R_ARM_V4BX relocation.
2430   // 0 - do not fix
2431   // 1 - replace with MOV instruction (armv4 target)
2432   // 2 - make interworking veneer (>= armv4t targets only)
2433   General_options::Fix_v4bx
2434   fix_v4bx() const
2435   { return parameters->options().fix_v4bx(); }
2436
2437   // Scan a span of THUMB code section for Cortex-A8 erratum.
2438   void
2439   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440                                   section_size_type, section_size_type,
2441                                   const unsigned char*, Arm_address);
2442
2443   // Apply Cortex-A8 workaround to a branch.
2444   void
2445   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446                              unsigned char*, Arm_address);
2447
2448  protected:
2449   // Make the PLT-generator object.
2450   Output_data_plt_arm<big_endian>*
2451   make_data_plt(Layout* layout, Output_data_space* got_plt)
2452   { return this->do_make_data_plt(layout, got_plt); }
2453
2454   // Make an ELF object.
2455   Object*
2456   do_make_elf_object(const std::string&, Input_file*, off_t,
2457                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2458
2459   Object*
2460   do_make_elf_object(const std::string&, Input_file*, off_t,
2461                      const elfcpp::Ehdr<32, !big_endian>&)
2462   { gold_unreachable(); }
2463
2464   Object*
2465   do_make_elf_object(const std::string&, Input_file*, off_t,
2466                       const elfcpp::Ehdr<64, false>&)
2467   { gold_unreachable(); }
2468
2469   Object*
2470   do_make_elf_object(const std::string&, Input_file*, off_t,
2471                      const elfcpp::Ehdr<64, true>&)
2472   { gold_unreachable(); }
2473
2474   // Make an output section.
2475   Output_section*
2476   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477                          elfcpp::Elf_Xword flags)
2478   { return new Arm_output_section<big_endian>(name, type, flags); }
2479
2480   void
2481   do_adjust_elf_header(unsigned char* view, int len);
2482
2483   // We only need to generate stubs, and hence perform relaxation if we are
2484   // not doing relocatable linking.
2485   bool
2486   do_may_relax() const
2487   { return !parameters->options().relocatable(); }
2488
2489   bool
2490   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2491
2492   // Determine whether an object attribute tag takes an integer, a
2493   // string or both.
2494   int
2495   do_attribute_arg_type(int tag) const;
2496
2497   // Reorder tags during output.
2498   int
2499   do_attributes_order(int num) const;
2500
2501   // This is called when the target is selected as the default.
2502   void
2503   do_select_as_default_target()
2504   {
2505     // No locking is required since there should only be one default target.
2506     // We cannot have both the big-endian and little-endian ARM targets
2507     // as the default.
2508     gold_assert(arm_reloc_property_table == NULL);
2509     arm_reloc_property_table = new Arm_reloc_property_table();
2510   }
2511
2512   // Virtual function which is set to return true by a target if
2513   // it can use relocation types to determine if a function's
2514   // pointer is taken.
2515   virtual bool
2516   do_can_check_for_function_pointers() const
2517   { return true; }
2518
2519   // Whether a section called SECTION_NAME may have function pointers to
2520   // sections not eligible for safe ICF folding.
2521   virtual bool
2522   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2523   {
2524     return (!is_prefix_of(".ARM.exidx", section_name)
2525             && !is_prefix_of(".ARM.extab", section_name)
2526             && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2527   }
2528
2529   virtual void
2530   do_define_standard_symbols(Symbol_table*, Layout*);
2531
2532   virtual Output_data_plt_arm<big_endian>*
2533   do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2534   {
2535     return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2536   }
2537
2538  private:
2539   // The class which scans relocations.
2540   class Scan
2541   {
2542    public:
2543     Scan()
2544       : issued_non_pic_error_(false)
2545     { }
2546
2547     static inline int
2548     get_reference_flags(unsigned int r_type);
2549
2550     inline void
2551     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2552           Sized_relobj_file<32, big_endian>* object,
2553           unsigned int data_shndx,
2554           Output_section* output_section,
2555           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2556           const elfcpp::Sym<32, big_endian>& lsym,
2557           bool is_discarded);
2558
2559     inline void
2560     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2561            Sized_relobj_file<32, big_endian>* object,
2562            unsigned int data_shndx,
2563            Output_section* output_section,
2564            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2565            Symbol* gsym);
2566
2567     inline bool
2568     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2569                                         Sized_relobj_file<32, big_endian>* ,
2570                                         unsigned int ,
2571                                         Output_section* ,
2572                                         const elfcpp::Rel<32, big_endian>& ,
2573                                         unsigned int ,
2574                                         const elfcpp::Sym<32, big_endian>&);
2575
2576     inline bool
2577     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2578                                          Sized_relobj_file<32, big_endian>* ,
2579                                          unsigned int ,
2580                                          Output_section* ,
2581                                          const elfcpp::Rel<32, big_endian>& ,
2582                                          unsigned int , Symbol*);
2583
2584    private:
2585     static void
2586     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2587                             unsigned int r_type);
2588
2589     static void
2590     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2591                              unsigned int r_type, Symbol*);
2592
2593     void
2594     check_non_pic(Relobj*, unsigned int r_type);
2595
2596     // Almost identical to Symbol::needs_plt_entry except that it also
2597     // handles STT_ARM_TFUNC.
2598     static bool
2599     symbol_needs_plt_entry(const Symbol* sym)
2600     {
2601       // An undefined symbol from an executable does not need a PLT entry.
2602       if (sym->is_undefined() && !parameters->options().shared())
2603         return false;
2604
2605       return (!parameters->doing_static_link()
2606               && (sym->type() == elfcpp::STT_FUNC
2607                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2608               && (sym->is_from_dynobj()
2609                   || sym->is_undefined()
2610                   || sym->is_preemptible()));
2611     }
2612
2613     inline bool
2614     possible_function_pointer_reloc(unsigned int r_type);
2615
2616     // Whether we have issued an error about a non-PIC compilation.
2617     bool issued_non_pic_error_;
2618   };
2619
2620   // The class which implements relocation.
2621   class Relocate
2622   {
2623    public:
2624     Relocate()
2625     { }
2626
2627     ~Relocate()
2628     { }
2629
2630     // Return whether the static relocation needs to be applied.
2631     inline bool
2632     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2633                               unsigned int r_type,
2634                               bool is_32bit,
2635                               Output_section* output_section);
2636
2637     // Do a relocation.  Return false if the caller should not issue
2638     // any warnings about this relocation.
2639     inline bool
2640     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641              Output_section*,  size_t relnum,
2642              const elfcpp::Rel<32, big_endian>&,
2643              unsigned int r_type, const Sized_symbol<32>*,
2644              const Symbol_value<32>*,
2645              unsigned char*, Arm_address,
2646              section_size_type);
2647
2648     // Return whether we want to pass flag NON_PIC_REF for this
2649     // reloc.  This means the relocation type accesses a symbol not via
2650     // GOT or PLT.
2651     static inline bool
2652     reloc_is_non_pic(unsigned int r_type)
2653     {
2654       switch (r_type)
2655         {
2656         // These relocation types reference GOT or PLT entries explicitly.
2657         case elfcpp::R_ARM_GOT_BREL:
2658         case elfcpp::R_ARM_GOT_ABS:
2659         case elfcpp::R_ARM_GOT_PREL:
2660         case elfcpp::R_ARM_GOT_BREL12:
2661         case elfcpp::R_ARM_PLT32_ABS:
2662         case elfcpp::R_ARM_TLS_GD32:
2663         case elfcpp::R_ARM_TLS_LDM32:
2664         case elfcpp::R_ARM_TLS_IE32:
2665         case elfcpp::R_ARM_TLS_IE12GP:
2666
2667         // These relocate types may use PLT entries.
2668         case elfcpp::R_ARM_CALL:
2669         case elfcpp::R_ARM_THM_CALL:
2670         case elfcpp::R_ARM_JUMP24:
2671         case elfcpp::R_ARM_THM_JUMP24:
2672         case elfcpp::R_ARM_THM_JUMP19:
2673         case elfcpp::R_ARM_PLT32:
2674         case elfcpp::R_ARM_THM_XPC22:
2675         case elfcpp::R_ARM_PREL31:
2676         case elfcpp::R_ARM_SBREL31:
2677           return false;
2678
2679         default:
2680           return true;
2681         }
2682     }
2683
2684    private:
2685     // Do a TLS relocation.
2686     inline typename Arm_relocate_functions<big_endian>::Status
2687     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2688                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2689                  const Sized_symbol<32>*, const Symbol_value<32>*,
2690                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2691                  section_size_type);
2692
2693   };
2694
2695   // A class which returns the size required for a relocation type,
2696   // used while scanning relocs during a relocatable link.
2697   class Relocatable_size_for_reloc
2698   {
2699    public:
2700     unsigned int
2701     get_size_for_reloc(unsigned int, Relobj*);
2702   };
2703
2704   // Adjust TLS relocation type based on the options and whether this
2705   // is a local symbol.
2706   static tls::Tls_optimization
2707   optimize_tls_reloc(bool is_final, int r_type);
2708
2709   // Get the GOT section, creating it if necessary.
2710   Arm_output_data_got<big_endian>*
2711   got_section(Symbol_table*, Layout*);
2712
2713   // Get the GOT PLT section.
2714   Output_data_space*
2715   got_plt_section() const
2716   {
2717     gold_assert(this->got_plt_ != NULL);
2718     return this->got_plt_;
2719   }
2720
2721   // Create a PLT entry for a global symbol.
2722   void
2723   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2724
2725   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2726   void
2727   define_tls_base_symbol(Symbol_table*, Layout*);
2728
2729   // Create a GOT entry for the TLS module index.
2730   unsigned int
2731   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2732                       Sized_relobj_file<32, big_endian>* object);
2733
2734   // Get the PLT section.
2735   const Output_data_plt_arm<big_endian>*
2736   plt_section() const
2737   {
2738     gold_assert(this->plt_ != NULL);
2739     return this->plt_;
2740   }
2741
2742   // Get the dynamic reloc section, creating it if necessary.
2743   Reloc_section*
2744   rel_dyn_section(Layout*);
2745
2746   // Get the section to use for TLS_DESC relocations.
2747   Reloc_section*
2748   rel_tls_desc_section(Layout*) const;
2749
2750   // Return true if the symbol may need a COPY relocation.
2751   // References from an executable object to non-function symbols
2752   // defined in a dynamic object may need a COPY relocation.
2753   bool
2754   may_need_copy_reloc(Symbol* gsym)
2755   {
2756     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757             && gsym->may_need_copy_reloc());
2758   }
2759
2760   // Add a potential copy relocation.
2761   void
2762   copy_reloc(Symbol_table* symtab, Layout* layout,
2763              Sized_relobj_file<32, big_endian>* object,
2764              unsigned int shndx, Output_section* output_section,
2765              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2766   {
2767     this->copy_relocs_.copy_reloc(symtab, layout,
2768                                   symtab->get_sized_symbol<32>(sym),
2769                                   object, shndx, output_section, reloc,
2770                                   this->rel_dyn_section(layout));
2771   }
2772
2773   // Whether two EABI versions are compatible.
2774   static bool
2775   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2776
2777   // Merge processor-specific flags from input object and those in the ELF
2778   // header of the output.
2779   void
2780   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2781
2782   // Get the secondary compatible architecture.
2783   static int
2784   get_secondary_compatible_arch(const Attributes_section_data*);
2785
2786   // Set the secondary compatible architecture.
2787   static void
2788   set_secondary_compatible_arch(Attributes_section_data*, int);
2789
2790   static int
2791   tag_cpu_arch_combine(const char*, int, int*, int, int);
2792
2793   // Helper to print AEABI enum tag value.
2794   static std::string
2795   aeabi_enum_name(unsigned int);
2796
2797   // Return string value for TAG_CPU_name.
2798   static std::string
2799   tag_cpu_name_value(unsigned int);
2800
2801   // Merge object attributes from input object and those in the output.
2802   void
2803   merge_object_attributes(const char*, const Attributes_section_data*);
2804
2805   // Helper to get an AEABI object attribute
2806   Object_attribute*
2807   get_aeabi_object_attribute(int tag) const
2808   {
2809     Attributes_section_data* pasd = this->attributes_section_data_;
2810     gold_assert(pasd != NULL);
2811     Object_attribute* attr =
2812       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2813     gold_assert(attr != NULL);
2814     return attr;
2815   }
2816
2817   //
2818   // Methods to support stub-generations.
2819   //
2820
2821   // Group input sections for stub generation.
2822   void
2823   group_sections(Layout*, section_size_type, bool, const Task*);
2824
2825   // Scan a relocation for stub generation.
2826   void
2827   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2828                       const Sized_symbol<32>*, unsigned int,
2829                       const Symbol_value<32>*,
2830                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2831
2832   // Scan a relocation section for stub.
2833   template<int sh_type>
2834   void
2835   scan_reloc_section_for_stubs(
2836       const Relocate_info<32, big_endian>* relinfo,
2837       const unsigned char* prelocs,
2838       size_t reloc_count,
2839       Output_section* output_section,
2840       bool needs_special_offset_handling,
2841       const unsigned char* view,
2842       elfcpp::Elf_types<32>::Elf_Addr view_address,
2843       section_size_type);
2844
2845   // Fix .ARM.exidx section coverage.
2846   void
2847   fix_exidx_coverage(Layout*, const Input_objects*,
2848                      Arm_output_section<big_endian>*, Symbol_table*,
2849                      const Task*);
2850
2851   // Functors for STL set.
2852   struct output_section_address_less_than
2853   {
2854     bool
2855     operator()(const Output_section* s1, const Output_section* s2) const
2856     { return s1->address() < s2->address(); }
2857   };
2858
2859   // Information about this specific target which we pass to the
2860   // general Target structure.
2861   static const Target::Target_info arm_info;
2862
2863   // The types of GOT entries needed for this platform.
2864   // These values are exposed to the ABI in an incremental link.
2865   // Do not renumber existing values without changing the version
2866   // number of the .gnu_incremental_inputs section.
2867   enum Got_type
2868   {
2869     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2870     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2871     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2872     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2873     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2874   };
2875
2876   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2877
2878   // Map input section to Arm_input_section.
2879   typedef Unordered_map<Section_id,
2880                         Arm_input_section<big_endian>*,
2881                         Section_id_hash>
2882           Arm_input_section_map;
2883
2884   // Map output addresses to relocs for Cortex-A8 erratum.
2885   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2886           Cortex_a8_relocs_info;
2887
2888   // The GOT section.
2889   Arm_output_data_got<big_endian>* got_;
2890   // The PLT section.
2891   Output_data_plt_arm<big_endian>* plt_;
2892   // The GOT PLT section.
2893   Output_data_space* got_plt_;
2894   // The dynamic reloc section.
2895   Reloc_section* rel_dyn_;
2896   // Relocs saved to avoid a COPY reloc.
2897   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2898   // Space for variables copied with a COPY reloc.
2899   Output_data_space* dynbss_;
2900   // Offset of the GOT entry for the TLS module index.
2901   unsigned int got_mod_index_offset_;
2902   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2903   bool tls_base_symbol_defined_;
2904   // Vector of Stub_tables created.
2905   Stub_table_list stub_tables_;
2906   // Stub factory.
2907   const Stub_factory &stub_factory_;
2908   // Whether we force PIC branch veneers.
2909   bool should_force_pic_veneer_;
2910   // Map for locating Arm_input_sections.
2911   Arm_input_section_map arm_input_section_map_;
2912   // Attributes section data in output.
2913   Attributes_section_data* attributes_section_data_;
2914   // Whether we want to fix code for Cortex-A8 erratum.
2915   bool fix_cortex_a8_;
2916   // Map addresses to relocs for Cortex-A8 erratum.
2917   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2918 };
2919
2920 template<bool big_endian>
2921 const Target::Target_info Target_arm<big_endian>::arm_info =
2922 {
2923   32,                   // size
2924   big_endian,           // is_big_endian
2925   elfcpp::EM_ARM,       // machine_code
2926   false,                // has_make_symbol
2927   false,                // has_resolve
2928   false,                // has_code_fill
2929   true,                 // is_default_stack_executable
2930   false,                // can_icf_inline_merge_sections
2931   '\0',                 // wrap_char
2932   "/usr/lib/libc.so.1", // dynamic_linker
2933   0x8000,               // default_text_segment_address
2934   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2935   0x1000,               // common_pagesize (overridable by -z common-page-size)
2936   false,                // isolate_execinstr
2937   0,                    // rosegment_gap
2938   elfcpp::SHN_UNDEF,    // small_common_shndx
2939   elfcpp::SHN_UNDEF,    // large_common_shndx
2940   0,                    // small_common_section_flags
2941   0,                    // large_common_section_flags
2942   ".ARM.attributes",    // attributes_section
2943   "aeabi"               // attributes_vendor
2944 };
2945
2946 // Arm relocate functions class
2947 //
2948
2949 template<bool big_endian>
2950 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2951 {
2952  public:
2953   typedef enum
2954   {
2955     STATUS_OKAY,        // No error during relocation.
2956     STATUS_OVERFLOW,    // Relocation overflow.
2957     STATUS_BAD_RELOC    // Relocation cannot be applied.
2958   } Status;
2959
2960  private:
2961   typedef Relocate_functions<32, big_endian> Base;
2962   typedef Arm_relocate_functions<big_endian> This;
2963
2964   // Encoding of imm16 argument for movt and movw ARM instructions
2965   // from ARM ARM:
2966   //
2967   //     imm16 := imm4 | imm12
2968   //
2969   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2970   // +-------+---------------+-------+-------+-----------------------+
2971   // |       |               |imm4   |       |imm12                  |
2972   // +-------+---------------+-------+-------+-----------------------+
2973
2974   // Extract the relocation addend from VAL based on the ARM
2975   // instruction encoding described above.
2976   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2977   extract_arm_movw_movt_addend(
2978       typename elfcpp::Swap<32, big_endian>::Valtype val)
2979   {
2980     // According to the Elf ABI for ARM Architecture the immediate
2981     // field is sign-extended to form the addend.
2982     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2983   }
2984
2985   // Insert X into VAL based on the ARM instruction encoding described
2986   // above.
2987   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988   insert_val_arm_movw_movt(
2989       typename elfcpp::Swap<32, big_endian>::Valtype val,
2990       typename elfcpp::Swap<32, big_endian>::Valtype x)
2991   {
2992     val &= 0xfff0f000;
2993     val |= x & 0x0fff;
2994     val |= (x & 0xf000) << 4;
2995     return val;
2996   }
2997
2998   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2999   // from ARM ARM:
3000   //
3001   //     imm16 := imm4 | i | imm3 | imm8
3002   //
3003   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0
3004   // +---------+-+-----------+-------++-+-----+-------+---------------+
3005   // |         |i|           |imm4   || |imm3 |       |imm8           |
3006   // +---------+-+-----------+-------++-+-----+-------+---------------+
3007
3008   // Extract the relocation addend from VAL based on the Thumb2
3009   // instruction encoding described above.
3010   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3011   extract_thumb_movw_movt_addend(
3012       typename elfcpp::Swap<32, big_endian>::Valtype val)
3013   {
3014     // According to the Elf ABI for ARM Architecture the immediate
3015     // field is sign-extended to form the addend.
3016     return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3017                                    | ((val >> 15) & 0x0800)
3018                                    | ((val >> 4) & 0x0700)
3019                                    | (val & 0x00ff));
3020   }
3021
3022   // Insert X into VAL based on the Thumb2 instruction encoding
3023   // described above.
3024   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3025   insert_val_thumb_movw_movt(
3026       typename elfcpp::Swap<32, big_endian>::Valtype val,
3027       typename elfcpp::Swap<32, big_endian>::Valtype x)
3028   {
3029     val &= 0xfbf08f00;
3030     val |= (x & 0xf000) << 4;
3031     val |= (x & 0x0800) << 15;
3032     val |= (x & 0x0700) << 4;
3033     val |= (x & 0x00ff);
3034     return val;
3035   }
3036
3037   // Calculate the smallest constant Kn for the specified residual.
3038   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3039   static uint32_t
3040   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3041   {
3042     int32_t msb;
3043
3044     if (residual == 0)
3045       return 0;
3046     // Determine the most significant bit in the residual and
3047     // align the resulting value to a 2-bit boundary.
3048     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3049       ;
3050     // The desired shift is now (msb - 6), or zero, whichever
3051     // is the greater.
3052     return (((msb - 6) < 0) ? 0 : (msb - 6));
3053   }
3054
3055   // Calculate the final residual for the specified group index.
3056   // If the passed group index is less than zero, the method will return
3057   // the value of the specified residual without any change.
3058   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3059   static typename elfcpp::Swap<32, big_endian>::Valtype
3060   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3061                     const int group)
3062   {
3063     for (int n = 0; n <= group; n++)
3064       {
3065         // Calculate which part of the value to mask.
3066         uint32_t shift = calc_grp_kn(residual);
3067         // Calculate the residual for the next time around.
3068         residual &= ~(residual & (0xff << shift));
3069       }
3070
3071     return residual;
3072   }
3073
3074   // Calculate the value of Gn for the specified group index.
3075   // We return it in the form of an encoded constant-and-rotation.
3076   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3077   static typename elfcpp::Swap<32, big_endian>::Valtype
3078   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3079               const int group)
3080   {
3081     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3082     uint32_t shift = 0;
3083
3084     for (int n = 0; n <= group; n++)
3085       {
3086         // Calculate which part of the value to mask.
3087         shift = calc_grp_kn(residual);
3088         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3089         gn = residual & (0xff << shift);
3090         // Calculate the residual for the next time around.
3091         residual &= ~gn;
3092       }
3093     // Return Gn in the form of an encoded constant-and-rotation.
3094     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3095   }
3096
3097  public:
3098   // Handle ARM long branches.
3099   static typename This::Status
3100   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3101                     unsigned char*, const Sized_symbol<32>*,
3102                     const Arm_relobj<big_endian>*, unsigned int,
3103                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3104
3105   // Handle THUMB long branches.
3106   static typename This::Status
3107   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3108                       unsigned char*, const Sized_symbol<32>*,
3109                       const Arm_relobj<big_endian>*, unsigned int,
3110                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3111
3112
3113   // Return the branch offset of a 32-bit THUMB branch.
3114   static inline int32_t
3115   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3116   {
3117     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3118     // involving the J1 and J2 bits.
3119     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3120     uint32_t upper = upper_insn & 0x3ffU;
3121     uint32_t lower = lower_insn & 0x7ffU;
3122     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3123     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3124     uint32_t i1 = j1 ^ s ? 0 : 1;
3125     uint32_t i2 = j2 ^ s ? 0 : 1;
3126
3127     return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3128                                    | (upper << 12) | (lower << 1));
3129   }
3130
3131   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3132   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3133   // responsible for overflow checking and BLX offset adjustment.
3134   static inline uint16_t
3135   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3136   {
3137     uint32_t s = offset < 0 ? 1 : 0;
3138     uint32_t bits = static_cast<uint32_t>(offset);
3139     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3140   }
3141
3142   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3143   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3144   // responsible for overflow checking and BLX offset adjustment.
3145   static inline uint16_t
3146   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3147   {
3148     uint32_t s = offset < 0 ? 1 : 0;
3149     uint32_t bits = static_cast<uint32_t>(offset);
3150     return ((lower_insn & ~0x2fffU)
3151             | ((((bits >> 23) & 1) ^ !s) << 13)
3152             | ((((bits >> 22) & 1) ^ !s) << 11)
3153             | ((bits >> 1) & 0x7ffU));
3154   }
3155
3156   // Return the branch offset of a 32-bit THUMB conditional branch.
3157   static inline int32_t
3158   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3159   {
3160     uint32_t s = (upper_insn & 0x0400U) >> 10;
3161     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3162     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3163     uint32_t lower = (lower_insn & 0x07ffU);
3164     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3165
3166     return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3167   }
3168
3169   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3170   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3171   // Caller is responsible for overflow checking.
3172   static inline uint16_t
3173   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3174   {
3175     uint32_t s = offset < 0 ? 1 : 0;
3176     uint32_t bits = static_cast<uint32_t>(offset);
3177     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3178   }
3179
3180   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3181   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3182   // The caller is responsible for overflow checking.
3183   static inline uint16_t
3184   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3185   {
3186     uint32_t bits = static_cast<uint32_t>(offset);
3187     uint32_t j2 = (bits & 0x00080000U) >> 19;
3188     uint32_t j1 = (bits & 0x00040000U) >> 18;
3189     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3190
3191     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3192   }
3193
3194   // R_ARM_ABS8: S + A
3195   static inline typename This::Status
3196   abs8(unsigned char* view,
3197        const Sized_relobj_file<32, big_endian>* object,
3198        const Symbol_value<32>* psymval)
3199   {
3200     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3201     Valtype* wv = reinterpret_cast<Valtype*>(view);
3202     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3203     int32_t addend = Bits<8>::sign_extend32(val);
3204     Arm_address x = psymval->value(object, addend);
3205     val = Bits<32>::bit_select32(val, x, 0xffU);
3206     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3207
3208     // R_ARM_ABS8 permits signed or unsigned results.
3209     return (Bits<8>::has_signed_unsigned_overflow32(x)
3210             ? This::STATUS_OVERFLOW
3211             : This::STATUS_OKAY);
3212   }
3213
3214   // R_ARM_THM_ABS5: S + A
3215   static inline typename This::Status
3216   thm_abs5(unsigned char* view,
3217        const Sized_relobj_file<32, big_endian>* object,
3218        const Symbol_value<32>* psymval)
3219   {
3220     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3221     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3222     Valtype* wv = reinterpret_cast<Valtype*>(view);
3223     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3224     Reltype addend = (val & 0x7e0U) >> 6;
3225     Reltype x = psymval->value(object, addend);
3226     val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3227     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3228     return (Bits<5>::has_overflow32(x)
3229             ? This::STATUS_OVERFLOW
3230             : This::STATUS_OKAY);
3231   }
3232
3233   // R_ARM_ABS12: S + A
3234   static inline typename This::Status
3235   abs12(unsigned char* view,
3236         const Sized_relobj_file<32, big_endian>* object,
3237         const Symbol_value<32>* psymval)
3238   {
3239     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3240     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3241     Valtype* wv = reinterpret_cast<Valtype*>(view);
3242     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3243     Reltype addend = val & 0x0fffU;
3244     Reltype x = psymval->value(object, addend);
3245     val = Bits<32>::bit_select32(val, x, 0x0fffU);
3246     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3247     return (Bits<12>::has_overflow32(x)
3248             ? This::STATUS_OVERFLOW
3249             : This::STATUS_OKAY);
3250   }
3251
3252   // R_ARM_ABS16: S + A
3253   static inline typename This::Status
3254   abs16(unsigned char* view,
3255         const Sized_relobj_file<32, big_endian>* object,
3256         const Symbol_value<32>* psymval)
3257   {
3258     typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3259     Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3260     int32_t addend = Bits<16>::sign_extend32(val);
3261     Arm_address x = psymval->value(object, addend);
3262     val = Bits<32>::bit_select32(val, x, 0xffffU);
3263     elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3264
3265     // R_ARM_ABS16 permits signed or unsigned results.
3266     return (Bits<16>::has_signed_unsigned_overflow32(x)
3267             ? This::STATUS_OVERFLOW
3268             : This::STATUS_OKAY);
3269   }
3270
3271   // R_ARM_ABS32: (S + A) | T
3272   static inline typename This::Status
3273   abs32(unsigned char* view,
3274         const Sized_relobj_file<32, big_endian>* object,
3275         const Symbol_value<32>* psymval,
3276         Arm_address thumb_bit)
3277   {
3278     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3279     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3280     Valtype x = psymval->value(object, addend) | thumb_bit;
3281     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3282     return This::STATUS_OKAY;
3283   }
3284
3285   // R_ARM_REL32: (S + A) | T - P
3286   static inline typename This::Status
3287   rel32(unsigned char* view,
3288         const Sized_relobj_file<32, big_endian>* object,
3289         const Symbol_value<32>* psymval,
3290         Arm_address address,
3291         Arm_address thumb_bit)
3292   {
3293     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3294     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3295     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3296     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3297     return This::STATUS_OKAY;
3298   }
3299
3300   // R_ARM_THM_JUMP24: (S + A) | T - P
3301   static typename This::Status
3302   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3303              const Symbol_value<32>* psymval, Arm_address address,
3304              Arm_address thumb_bit);
3305
3306   // R_ARM_THM_JUMP6: S + A â€“ P
3307   static inline typename This::Status
3308   thm_jump6(unsigned char* view,
3309             const Sized_relobj_file<32, big_endian>* object,
3310             const Symbol_value<32>* psymval,
3311             Arm_address address)
3312   {
3313     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3314     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3315     Valtype* wv = reinterpret_cast<Valtype*>(view);
3316     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3317     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3318     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3319     Reltype x = (psymval->value(object, addend) - address);
3320     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3321     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3322     // CZB does only forward jumps.
3323     return ((x > 0x007e)
3324             ? This::STATUS_OVERFLOW
3325             : This::STATUS_OKAY);
3326   }
3327
3328   // R_ARM_THM_JUMP8: S + A â€“ P
3329   static inline typename This::Status
3330   thm_jump8(unsigned char* view,
3331             const Sized_relobj_file<32, big_endian>* object,
3332             const Symbol_value<32>* psymval,
3333             Arm_address address)
3334   {
3335     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3336     Valtype* wv = reinterpret_cast<Valtype*>(view);
3337     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3338     int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3339     int32_t x = (psymval->value(object, addend) - address);
3340     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3341                                                 | ((x & 0x01fe) >> 1)));
3342     // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3343     return (Bits<9>::has_overflow32(x)
3344             ? This::STATUS_OVERFLOW
3345             : This::STATUS_OKAY);
3346   }
3347
3348   // R_ARM_THM_JUMP11: S + A â€“ P
3349   static inline typename This::Status
3350   thm_jump11(unsigned char* view,
3351             const Sized_relobj_file<32, big_endian>* object,
3352             const Symbol_value<32>* psymval,
3353             Arm_address address)
3354   {
3355     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3356     Valtype* wv = reinterpret_cast<Valtype*>(view);
3357     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3358     int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3359     int32_t x = (psymval->value(object, addend) - address);
3360     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3361                                                 | ((x & 0x0ffe) >> 1)));
3362     // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3363     return (Bits<12>::has_overflow32(x)
3364             ? This::STATUS_OVERFLOW
3365             : This::STATUS_OKAY);
3366   }
3367
3368   // R_ARM_BASE_PREL: B(S) + A - P
3369   static inline typename This::Status
3370   base_prel(unsigned char* view,
3371             Arm_address origin,
3372             Arm_address address)
3373   {
3374     Base::rel32(view, origin - address);
3375     return STATUS_OKAY;
3376   }
3377
3378   // R_ARM_BASE_ABS: B(S) + A
3379   static inline typename This::Status
3380   base_abs(unsigned char* view,
3381            Arm_address origin)
3382   {
3383     Base::rel32(view, origin);
3384     return STATUS_OKAY;
3385   }
3386
3387   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3388   static inline typename This::Status
3389   got_brel(unsigned char* view,
3390            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3391   {
3392     Base::rel32(view, got_offset);
3393     return This::STATUS_OKAY;
3394   }
3395
3396   // R_ARM_GOT_PREL: GOT(S) + A - P
3397   static inline typename This::Status
3398   got_prel(unsigned char* view,
3399            Arm_address got_entry,
3400            Arm_address address)
3401   {
3402     Base::rel32(view, got_entry - address);
3403     return This::STATUS_OKAY;
3404   }
3405
3406   // R_ARM_PREL: (S + A) | T - P
3407   static inline typename This::Status
3408   prel31(unsigned char* view,
3409          const Sized_relobj_file<32, big_endian>* object,
3410          const Symbol_value<32>* psymval,
3411          Arm_address address,
3412          Arm_address thumb_bit)
3413   {
3414     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3415     Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3416     Valtype addend = Bits<31>::sign_extend32(val);
3417     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3418     val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3419     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3420     return (Bits<31>::has_overflow32(x)
3421             ? This::STATUS_OVERFLOW
3422             : This::STATUS_OKAY);
3423   }
3424
3425   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3426   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3427   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3428   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3429   static inline typename This::Status
3430   movw(unsigned char* view,
3431        const Sized_relobj_file<32, big_endian>* object,
3432        const Symbol_value<32>* psymval,
3433        Arm_address relative_address_base,
3434        Arm_address thumb_bit,
3435        bool check_overflow)
3436   {
3437     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3438     Valtype* wv = reinterpret_cast<Valtype*>(view);
3439     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3440     Valtype addend = This::extract_arm_movw_movt_addend(val);
3441     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3442                  - relative_address_base);
3443     val = This::insert_val_arm_movw_movt(val, x);
3444     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3445     return ((check_overflow && Bits<16>::has_overflow32(x))
3446             ? This::STATUS_OVERFLOW
3447             : This::STATUS_OKAY);
3448   }
3449
3450   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3451   // R_ARM_MOVT_PREL: S + A - P
3452   // R_ARM_MOVT_BREL: S + A - B(S)
3453   static inline typename This::Status
3454   movt(unsigned char* view,
3455        const Sized_relobj_file<32, big_endian>* object,
3456        const Symbol_value<32>* psymval,
3457        Arm_address relative_address_base)
3458   {
3459     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3460     Valtype* wv = reinterpret_cast<Valtype*>(view);
3461     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3462     Valtype addend = This::extract_arm_movw_movt_addend(val);
3463     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3464     val = This::insert_val_arm_movw_movt(val, x);
3465     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3466     // FIXME: IHI0044D says that we should check for overflow.
3467     return This::STATUS_OKAY;
3468   }
3469
3470   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3471   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3472   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3473   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3474   static inline typename This::Status
3475   thm_movw(unsigned char* view,
3476            const Sized_relobj_file<32, big_endian>* object,
3477            const Symbol_value<32>* psymval,
3478            Arm_address relative_address_base,
3479            Arm_address thumb_bit,
3480            bool check_overflow)
3481   {
3482     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3483     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3484     Valtype* wv = reinterpret_cast<Valtype*>(view);
3485     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3486                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3487     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3488     Reltype x =
3489       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3490     val = This::insert_val_thumb_movw_movt(val, x);
3491     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3492     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3493     return ((check_overflow && Bits<16>::has_overflow32(x))
3494             ? This::STATUS_OVERFLOW
3495             : This::STATUS_OKAY);
3496   }
3497
3498   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3499   // R_ARM_THM_MOVT_PREL: S + A - P
3500   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3501   static inline typename This::Status
3502   thm_movt(unsigned char* view,
3503            const Sized_relobj_file<32, big_endian>* object,
3504            const Symbol_value<32>* psymval,
3505            Arm_address relative_address_base)
3506   {
3507     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3508     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3509     Valtype* wv = reinterpret_cast<Valtype*>(view);
3510     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3511                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3512     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3513     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3514     val = This::insert_val_thumb_movw_movt(val, x);
3515     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3516     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3517     return This::STATUS_OKAY;
3518   }
3519
3520   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3521   static inline typename This::Status
3522   thm_alu11(unsigned char* view,
3523             const Sized_relobj_file<32, big_endian>* object,
3524             const Symbol_value<32>* psymval,
3525             Arm_address address,
3526             Arm_address thumb_bit)
3527   {
3528     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3529     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3530     Valtype* wv = reinterpret_cast<Valtype*>(view);
3531     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3532                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3533
3534     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3535     // -----------------------------------------------------------------------
3536     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3537     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3538     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3539     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3540     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3541     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3542
3543     // Determine a sign for the addend.
3544     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3545                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3546     // Thumb2 addend encoding:
3547     // imm12 := i | imm3 | imm8
3548     int32_t addend = (insn & 0xff)
3549                      | ((insn & 0x00007000) >> 4)
3550                      | ((insn & 0x04000000) >> 15);
3551     // Apply a sign to the added.
3552     addend *= sign;
3553
3554     int32_t x = (psymval->value(object, addend) | thumb_bit)
3555                 - (address & 0xfffffffc);
3556     Reltype val = abs(x);
3557     // Mask out the value and a distinct part of the ADD/SUB opcode
3558     // (bits 7:5 of opword).
3559     insn = (insn & 0xfb0f8f00)
3560            | (val & 0xff)
3561            | ((val & 0x700) << 4)
3562            | ((val & 0x800) << 15);
3563     // Set the opcode according to whether the value to go in the
3564     // place is negative.
3565     if (x < 0)
3566       insn |= 0x00a00000;
3567
3568     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3569     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3570     return ((val > 0xfff) ?
3571             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3572   }
3573
3574   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3575   static inline typename This::Status
3576   thm_pc8(unsigned char* view,
3577           const Sized_relobj_file<32, big_endian>* object,
3578           const Symbol_value<32>* psymval,
3579           Arm_address address)
3580   {
3581     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3582     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3583     Valtype* wv = reinterpret_cast<Valtype*>(view);
3584     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3585     Reltype addend = ((insn & 0x00ff) << 2);
3586     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3587     Reltype val = abs(x);
3588     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3589
3590     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3591     return ((val > 0x03fc)
3592             ? This::STATUS_OVERFLOW
3593             : This::STATUS_OKAY);
3594   }
3595
3596   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3597   static inline typename This::Status
3598   thm_pc12(unsigned char* view,
3599            const Sized_relobj_file<32, big_endian>* object,
3600            const Symbol_value<32>* psymval,
3601            Arm_address address)
3602   {
3603     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3604     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3605     Valtype* wv = reinterpret_cast<Valtype*>(view);
3606     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3607                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3608     // Determine a sign for the addend (positive if the U bit is 1).
3609     const int sign = (insn & 0x00800000) ? 1 : -1;
3610     int32_t addend = (insn & 0xfff);
3611     // Apply a sign to the added.
3612     addend *= sign;
3613
3614     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3615     Reltype val = abs(x);
3616     // Mask out and apply the value and the U bit.
3617     insn = (insn & 0xff7ff000) | (val & 0xfff);
3618     // Set the U bit according to whether the value to go in the
3619     // place is positive.
3620     if (x >= 0)
3621       insn |= 0x00800000;
3622
3623     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3624     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3625     return ((val > 0xfff) ?
3626             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3627   }
3628
3629   // R_ARM_V4BX
3630   static inline typename This::Status
3631   v4bx(const Relocate_info<32, big_endian>* relinfo,
3632        unsigned char* view,
3633        const Arm_relobj<big_endian>* object,
3634        const Arm_address address,
3635        const bool is_interworking)
3636   {
3637
3638     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3639     Valtype* wv = reinterpret_cast<Valtype*>(view);
3640     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3641
3642     // Ensure that we have a BX instruction.
3643     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3644     const uint32_t reg = (val & 0xf);
3645     if (is_interworking && reg != 0xf)
3646       {
3647         Stub_table<big_endian>* stub_table =
3648             object->stub_table(relinfo->data_shndx);
3649         gold_assert(stub_table != NULL);
3650
3651         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3652         gold_assert(stub != NULL);
3653
3654         int32_t veneer_address =
3655             stub_table->address() + stub->offset() - 8 - address;
3656         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3657                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3658         // Replace with a branch to veneer (B <addr>)
3659         val = (val & 0xf0000000) | 0x0a000000
3660               | ((veneer_address >> 2) & 0x00ffffff);
3661       }
3662     else
3663       {
3664         // Preserve Rm (lowest four bits) and the condition code
3665         // (highest four bits). Other bits encode MOV PC,Rm.
3666         val = (val & 0xf000000f) | 0x01a0f000;
3667       }
3668     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3669     return This::STATUS_OKAY;
3670   }
3671
3672   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3673   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3674   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3675   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3676   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3677   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3678   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3679   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3680   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3681   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3682   static inline typename This::Status
3683   arm_grp_alu(unsigned char* view,
3684         const Sized_relobj_file<32, big_endian>* object,
3685         const Symbol_value<32>* psymval,
3686         const int group,
3687         Arm_address address,
3688         Arm_address thumb_bit,
3689         bool check_overflow)
3690   {
3691     gold_assert(group >= 0 && group < 3);
3692     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3693     Valtype* wv = reinterpret_cast<Valtype*>(view);
3694     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3695
3696     // ALU group relocations are allowed only for the ADD/SUB instructions.
3697     // (0x00800000 - ADD, 0x00400000 - SUB)
3698     const Valtype opcode = insn & 0x01e00000;
3699     if (opcode != 0x00800000 && opcode != 0x00400000)
3700       return This::STATUS_BAD_RELOC;
3701
3702     // Determine a sign for the addend.
3703     const int sign = (opcode == 0x00800000) ? 1 : -1;
3704     // shifter = rotate_imm * 2
3705     const uint32_t shifter = (insn & 0xf00) >> 7;
3706     // Initial addend value.
3707     int32_t addend = insn & 0xff;
3708     // Rotate addend right by shifter.
3709     addend = (addend >> shifter) | (addend << (32 - shifter));
3710     // Apply a sign to the added.
3711     addend *= sign;
3712
3713     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3714     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3715     // Check for overflow if required
3716     if (check_overflow
3717         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3718       return This::STATUS_OVERFLOW;
3719
3720     // Mask out the value and the ADD/SUB part of the opcode; take care
3721     // not to destroy the S bit.
3722     insn &= 0xff1ff000;
3723     // Set the opcode according to whether the value to go in the
3724     // place is negative.
3725     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3726     // Encode the offset (encoded Gn).
3727     insn |= gn;
3728
3729     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3730     return This::STATUS_OKAY;
3731   }
3732
3733   // R_ARM_LDR_PC_G0: S + A - P
3734   // R_ARM_LDR_PC_G1: S + A - P
3735   // R_ARM_LDR_PC_G2: S + A - P
3736   // R_ARM_LDR_SB_G0: S + A - B(S)
3737   // R_ARM_LDR_SB_G1: S + A - B(S)
3738   // R_ARM_LDR_SB_G2: S + A - B(S)
3739   static inline typename This::Status
3740   arm_grp_ldr(unsigned char* view,
3741         const Sized_relobj_file<32, big_endian>* object,
3742         const Symbol_value<32>* psymval,
3743         const int group,
3744         Arm_address address)
3745   {
3746     gold_assert(group >= 0 && group < 3);
3747     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3748     Valtype* wv = reinterpret_cast<Valtype*>(view);
3749     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3750
3751     const int sign = (insn & 0x00800000) ? 1 : -1;
3752     int32_t addend = (insn & 0xfff) * sign;
3753     int32_t x = (psymval->value(object, addend) - address);
3754     // Calculate the relevant G(n-1) value to obtain this stage residual.
3755     Valtype residual =
3756         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3757     if (residual >= 0x1000)
3758       return This::STATUS_OVERFLOW;
3759
3760     // Mask out the value and U bit.
3761     insn &= 0xff7ff000;
3762     // Set the U bit for non-negative values.
3763     if (x >= 0)
3764       insn |= 0x00800000;
3765     insn |= residual;
3766
3767     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3768     return This::STATUS_OKAY;
3769   }
3770
3771   // R_ARM_LDRS_PC_G0: S + A - P
3772   // R_ARM_LDRS_PC_G1: S + A - P
3773   // R_ARM_LDRS_PC_G2: S + A - P
3774   // R_ARM_LDRS_SB_G0: S + A - B(S)
3775   // R_ARM_LDRS_SB_G1: S + A - B(S)
3776   // R_ARM_LDRS_SB_G2: S + A - B(S)
3777   static inline typename This::Status
3778   arm_grp_ldrs(unsigned char* view,
3779         const Sized_relobj_file<32, big_endian>* object,
3780         const Symbol_value<32>* psymval,
3781         const int group,
3782         Arm_address address)
3783   {
3784     gold_assert(group >= 0 && group < 3);
3785     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3786     Valtype* wv = reinterpret_cast<Valtype*>(view);
3787     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3788
3789     const int sign = (insn & 0x00800000) ? 1 : -1;
3790     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3791     int32_t x = (psymval->value(object, addend) - address);
3792     // Calculate the relevant G(n-1) value to obtain this stage residual.
3793     Valtype residual =
3794         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3795    if (residual >= 0x100)
3796       return This::STATUS_OVERFLOW;
3797
3798     // Mask out the value and U bit.
3799     insn &= 0xff7ff0f0;
3800     // Set the U bit for non-negative values.
3801     if (x >= 0)
3802       insn |= 0x00800000;
3803     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3804
3805     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3806     return This::STATUS_OKAY;
3807   }
3808
3809   // R_ARM_LDC_PC_G0: S + A - P
3810   // R_ARM_LDC_PC_G1: S + A - P
3811   // R_ARM_LDC_PC_G2: S + A - P
3812   // R_ARM_LDC_SB_G0: S + A - B(S)
3813   // R_ARM_LDC_SB_G1: S + A - B(S)
3814   // R_ARM_LDC_SB_G2: S + A - B(S)
3815   static inline typename This::Status
3816   arm_grp_ldc(unsigned char* view,
3817       const Sized_relobj_file<32, big_endian>* object,
3818       const Symbol_value<32>* psymval,
3819       const int group,
3820       Arm_address address)
3821   {
3822     gold_assert(group >= 0 && group < 3);
3823     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3824     Valtype* wv = reinterpret_cast<Valtype*>(view);
3825     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3826
3827     const int sign = (insn & 0x00800000) ? 1 : -1;
3828     int32_t addend = ((insn & 0xff) << 2) * sign;
3829     int32_t x = (psymval->value(object, addend) - address);
3830     // Calculate the relevant G(n-1) value to obtain this stage residual.
3831     Valtype residual =
3832       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3833     if ((residual & 0x3) != 0 || residual >= 0x400)
3834       return This::STATUS_OVERFLOW;
3835
3836     // Mask out the value and U bit.
3837     insn &= 0xff7fff00;
3838     // Set the U bit for non-negative values.
3839     if (x >= 0)
3840       insn |= 0x00800000;
3841     insn |= (residual >> 2);
3842
3843     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3844     return This::STATUS_OKAY;
3845   }
3846 };
3847
3848 // Relocate ARM long branches.  This handles relocation types
3849 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3850 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3851 // undefined and we do not use PLT in this relocation.  In such a case,
3852 // the branch is converted into an NOP.
3853
3854 template<bool big_endian>
3855 typename Arm_relocate_functions<big_endian>::Status
3856 Arm_relocate_functions<big_endian>::arm_branch_common(
3857     unsigned int r_type,
3858     const Relocate_info<32, big_endian>* relinfo,
3859     unsigned char* view,
3860     const Sized_symbol<32>* gsym,
3861     const Arm_relobj<big_endian>* object,
3862     unsigned int r_sym,
3863     const Symbol_value<32>* psymval,
3864     Arm_address address,
3865     Arm_address thumb_bit,
3866     bool is_weakly_undefined_without_plt)
3867 {
3868   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3869   Valtype* wv = reinterpret_cast<Valtype*>(view);
3870   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3871
3872   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3873                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3874   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3875   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3876                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3877   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3878   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3879
3880   // Check that the instruction is valid.
3881   if (r_type == elfcpp::R_ARM_CALL)
3882     {
3883       if (!insn_is_uncond_bl && !insn_is_blx)
3884         return This::STATUS_BAD_RELOC;
3885     }
3886   else if (r_type == elfcpp::R_ARM_JUMP24)
3887     {
3888       if (!insn_is_b && !insn_is_cond_bl)
3889         return This::STATUS_BAD_RELOC;
3890     }
3891   else if (r_type == elfcpp::R_ARM_PLT32)
3892     {
3893       if (!insn_is_any_branch)
3894         return This::STATUS_BAD_RELOC;
3895     }
3896   else if (r_type == elfcpp::R_ARM_XPC25)
3897     {
3898       // FIXME: AAELF document IH0044C does not say much about it other
3899       // than it being obsolete.
3900       if (!insn_is_any_branch)
3901         return This::STATUS_BAD_RELOC;
3902     }
3903   else
3904     gold_unreachable();
3905
3906   // A branch to an undefined weak symbol is turned into a jump to
3907   // the next instruction unless a PLT entry will be created.
3908   // Do the same for local undefined symbols.
3909   // The jump to the next instruction is optimized as a NOP depending
3910   // on the architecture.
3911   const Target_arm<big_endian>* arm_target =
3912     Target_arm<big_endian>::default_target();
3913   if (is_weakly_undefined_without_plt)
3914     {
3915       gold_assert(!parameters->options().relocatable());
3916       Valtype cond = val & 0xf0000000U;
3917       if (arm_target->may_use_arm_nop())
3918         val = cond | 0x0320f000;
3919       else
3920         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3921       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3922       return This::STATUS_OKAY;
3923     }
3924
3925   Valtype addend = Bits<26>::sign_extend32(val << 2);
3926   Valtype branch_target = psymval->value(object, addend);
3927   int32_t branch_offset = branch_target - address;
3928
3929   // We need a stub if the branch offset is too large or if we need
3930   // to switch mode.
3931   bool may_use_blx = arm_target->may_use_v5t_interworking();
3932   Reloc_stub* stub = NULL;
3933
3934   if (!parameters->options().relocatable()
3935       && (Bits<26>::has_overflow32(branch_offset)
3936           || ((thumb_bit != 0)
3937               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3938     {
3939       Valtype unadjusted_branch_target = psymval->value(object, 0);
3940
3941       Stub_type stub_type =
3942         Reloc_stub::stub_type_for_reloc(r_type, address,
3943                                         unadjusted_branch_target,
3944                                         (thumb_bit != 0));
3945       if (stub_type != arm_stub_none)
3946         {
3947           Stub_table<big_endian>* stub_table =
3948             object->stub_table(relinfo->data_shndx);
3949           gold_assert(stub_table != NULL);
3950
3951           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3952           stub = stub_table->find_reloc_stub(stub_key);
3953           gold_assert(stub != NULL);
3954           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3955           branch_target = stub_table->address() + stub->offset() + addend;
3956           branch_offset = branch_target - address;
3957           gold_assert(!Bits<26>::has_overflow32(branch_offset));
3958         }
3959     }
3960
3961   // At this point, if we still need to switch mode, the instruction
3962   // must either be a BLX or a BL that can be converted to a BLX.
3963   if (thumb_bit != 0)
3964     {
3965       // Turn BL to BLX.
3966       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3967       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3968     }
3969
3970   val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3971   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3972   return (Bits<26>::has_overflow32(branch_offset)
3973           ? This::STATUS_OVERFLOW
3974           : This::STATUS_OKAY);
3975 }
3976
3977 // Relocate THUMB long branches.  This handles relocation types
3978 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3979 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3980 // undefined and we do not use PLT in this relocation.  In such a case,
3981 // the branch is converted into an NOP.
3982
3983 template<bool big_endian>
3984 typename Arm_relocate_functions<big_endian>::Status
3985 Arm_relocate_functions<big_endian>::thumb_branch_common(
3986     unsigned int r_type,
3987     const Relocate_info<32, big_endian>* relinfo,
3988     unsigned char* view,
3989     const Sized_symbol<32>* gsym,
3990     const Arm_relobj<big_endian>* object,
3991     unsigned int r_sym,
3992     const Symbol_value<32>* psymval,
3993     Arm_address address,
3994     Arm_address thumb_bit,
3995     bool is_weakly_undefined_without_plt)
3996 {
3997   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3998   Valtype* wv = reinterpret_cast<Valtype*>(view);
3999   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4000   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4001
4002   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4003   // into account.
4004   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4005   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4006
4007   // Check that the instruction is valid.
4008   if (r_type == elfcpp::R_ARM_THM_CALL)
4009     {
4010       if (!is_bl_insn && !is_blx_insn)
4011         return This::STATUS_BAD_RELOC;
4012     }
4013   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4014     {
4015       // This cannot be a BLX.
4016       if (!is_bl_insn)
4017         return This::STATUS_BAD_RELOC;
4018     }
4019   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4020     {
4021       // Check for Thumb to Thumb call.
4022       if (!is_blx_insn)
4023         return This::STATUS_BAD_RELOC;
4024       if (thumb_bit != 0)
4025         {
4026           gold_warning(_("%s: Thumb BLX instruction targets "
4027                          "thumb function '%s'."),
4028                          object->name().c_str(),
4029                          (gsym ? gsym->name() : "(local)"));
4030           // Convert BLX to BL.
4031           lower_insn |= 0x1000U;
4032         }
4033     }
4034   else
4035     gold_unreachable();
4036
4037   // A branch to an undefined weak symbol is turned into a jump to
4038   // the next instruction unless a PLT entry will be created.
4039   // The jump to the next instruction is optimized as a NOP.W for
4040   // Thumb-2 enabled architectures.
4041   const Target_arm<big_endian>* arm_target =
4042     Target_arm<big_endian>::default_target();
4043   if (is_weakly_undefined_without_plt)
4044     {
4045       gold_assert(!parameters->options().relocatable());
4046       if (arm_target->may_use_thumb2_nop())
4047         {
4048           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4049           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4050         }
4051       else
4052         {
4053           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4054           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4055         }
4056       return This::STATUS_OKAY;
4057     }
4058
4059   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4060   Arm_address branch_target = psymval->value(object, addend);
4061
4062   // For BLX, bit 1 of target address comes from bit 1 of base address.
4063   bool may_use_blx = arm_target->may_use_v5t_interworking();
4064   if (thumb_bit == 0 && may_use_blx)
4065     branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4066
4067   int32_t branch_offset = branch_target - address;
4068
4069   // We need a stub if the branch offset is too large or if we need
4070   // to switch mode.
4071   bool thumb2 = arm_target->using_thumb2();
4072   if (!parameters->options().relocatable()
4073       && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4074           || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4075           || ((thumb_bit == 0)
4076               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4077                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4078     {
4079       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4080
4081       Stub_type stub_type =
4082         Reloc_stub::stub_type_for_reloc(r_type, address,
4083                                         unadjusted_branch_target,
4084                                         (thumb_bit != 0));
4085
4086       if (stub_type != arm_stub_none)
4087         {
4088           Stub_table<big_endian>* stub_table =
4089             object->stub_table(relinfo->data_shndx);
4090           gold_assert(stub_table != NULL);
4091
4092           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4093           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4094           gold_assert(stub != NULL);
4095           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4096           branch_target = stub_table->address() + stub->offset() + addend;
4097           if (thumb_bit == 0 && may_use_blx)
4098             branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4099           branch_offset = branch_target - address;
4100         }
4101     }
4102
4103   // At this point, if we still need to switch mode, the instruction
4104   // must either be a BLX or a BL that can be converted to a BLX.
4105   if (thumb_bit == 0)
4106     {
4107       gold_assert(may_use_blx
4108                   && (r_type == elfcpp::R_ARM_THM_CALL
4109                       || r_type == elfcpp::R_ARM_THM_XPC22));
4110       // Make sure this is a BLX.
4111       lower_insn &= ~0x1000U;
4112     }
4113   else
4114     {
4115       // Make sure this is a BL.
4116       lower_insn |= 0x1000U;
4117     }
4118
4119   // For a BLX instruction, make sure that the relocation is rounded up
4120   // to a word boundary.  This follows the semantics of the instruction
4121   // which specifies that bit 1 of the target address will come from bit
4122   // 1 of the base address.
4123   if ((lower_insn & 0x5000U) == 0x4000U)
4124     gold_assert((branch_offset & 3) == 0);
4125
4126   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4127   // We use the Thumb-2 encoding, which is safe even if dealing with
4128   // a Thumb-1 instruction by virtue of our overflow check above.  */
4129   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4130   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4131
4132   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4133   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4134
4135   gold_assert(!Bits<25>::has_overflow32(branch_offset));
4136
4137   return ((thumb2
4138            ? Bits<25>::has_overflow32(branch_offset)
4139            : Bits<23>::has_overflow32(branch_offset))
4140           ? This::STATUS_OVERFLOW
4141           : This::STATUS_OKAY);
4142 }
4143
4144 // Relocate THUMB-2 long conditional branches.
4145 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4146 // undefined and we do not use PLT in this relocation.  In such a case,
4147 // the branch is converted into an NOP.
4148
4149 template<bool big_endian>
4150 typename Arm_relocate_functions<big_endian>::Status
4151 Arm_relocate_functions<big_endian>::thm_jump19(
4152     unsigned char* view,
4153     const Arm_relobj<big_endian>* object,
4154     const Symbol_value<32>* psymval,
4155     Arm_address address,
4156     Arm_address thumb_bit)
4157 {
4158   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4159   Valtype* wv = reinterpret_cast<Valtype*>(view);
4160   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4161   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4162   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4163
4164   Arm_address branch_target = psymval->value(object, addend);
4165   int32_t branch_offset = branch_target - address;
4166
4167   // ??? Should handle interworking?  GCC might someday try to
4168   // use this for tail calls.
4169   // FIXME: We do support thumb entry to PLT yet.
4170   if (thumb_bit == 0)
4171     {
4172       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4173       return This::STATUS_BAD_RELOC;
4174     }
4175
4176   // Put RELOCATION back into the insn.
4177   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4178   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4179
4180   // Put the relocated value back in the object file:
4181   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4182   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4183
4184   return (Bits<21>::has_overflow32(branch_offset)
4185           ? This::STATUS_OVERFLOW
4186           : This::STATUS_OKAY);
4187 }
4188
4189 // Get the GOT section, creating it if necessary.
4190
4191 template<bool big_endian>
4192 Arm_output_data_got<big_endian>*
4193 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4194 {
4195   if (this->got_ == NULL)
4196     {
4197       gold_assert(symtab != NULL && layout != NULL);
4198
4199       // When using -z now, we can treat .got as a relro section.
4200       // Without -z now, it is modified after program startup by lazy
4201       // PLT relocations.
4202       bool is_got_relro = parameters->options().now();
4203       Output_section_order got_order = (is_got_relro
4204                                         ? ORDER_RELRO_LAST
4205                                         : ORDER_DATA);
4206
4207       // Unlike some targets (.e.g x86), ARM does not use separate .got and
4208       // .got.plt sections in output.  The output .got section contains both
4209       // PLT and non-PLT GOT entries.
4210       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4211
4212       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4213                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4214                                       this->got_, got_order, is_got_relro);
4215
4216       // The old GNU linker creates a .got.plt section.  We just
4217       // create another set of data in the .got section.  Note that we
4218       // always create a PLT if we create a GOT, although the PLT
4219       // might be empty.
4220       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4221       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4222                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4223                                       this->got_plt_, got_order, is_got_relro);
4224
4225       // The first three entries are reserved.
4226       this->got_plt_->set_current_data_size(3 * 4);
4227
4228       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4229       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4230                                     Symbol_table::PREDEFINED,
4231                                     this->got_plt_,
4232                                     0, 0, elfcpp::STT_OBJECT,
4233                                     elfcpp::STB_LOCAL,
4234                                     elfcpp::STV_HIDDEN, 0,
4235                                     false, false);
4236     }
4237   return this->got_;
4238 }
4239
4240 // Get the dynamic reloc section, creating it if necessary.
4241
4242 template<bool big_endian>
4243 typename Target_arm<big_endian>::Reloc_section*
4244 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4245 {
4246   if (this->rel_dyn_ == NULL)
4247     {
4248       gold_assert(layout != NULL);
4249       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4250       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4251                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4252                                       ORDER_DYNAMIC_RELOCS, false);
4253     }
4254   return this->rel_dyn_;
4255 }
4256
4257 // Insn_template methods.
4258
4259 // Return byte size of an instruction template.
4260
4261 size_t
4262 Insn_template::size() const
4263 {
4264   switch (this->type())
4265     {
4266     case THUMB16_TYPE:
4267     case THUMB16_SPECIAL_TYPE:
4268       return 2;
4269     case ARM_TYPE:
4270     case THUMB32_TYPE:
4271     case DATA_TYPE:
4272       return 4;
4273     default:
4274       gold_unreachable();
4275     }
4276 }
4277
4278 // Return alignment of an instruction template.
4279
4280 unsigned
4281 Insn_template::alignment() const
4282 {
4283   switch (this->type())
4284     {
4285     case THUMB16_TYPE:
4286     case THUMB16_SPECIAL_TYPE:
4287     case THUMB32_TYPE:
4288       return 2;
4289     case ARM_TYPE:
4290     case DATA_TYPE:
4291       return 4;
4292     default:
4293       gold_unreachable();
4294     }
4295 }
4296
4297 // Stub_template methods.
4298
4299 Stub_template::Stub_template(
4300     Stub_type type, const Insn_template* insns,
4301      size_t insn_count)
4302   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4303     entry_in_thumb_mode_(false), relocs_()
4304 {
4305   off_t offset = 0;
4306
4307   // Compute byte size and alignment of stub template.
4308   for (size_t i = 0; i < insn_count; i++)
4309     {
4310       unsigned insn_alignment = insns[i].alignment();
4311       size_t insn_size = insns[i].size();
4312       gold_assert((offset & (insn_alignment - 1)) == 0);
4313       this->alignment_ = std::max(this->alignment_, insn_alignment);
4314       switch (insns[i].type())
4315         {
4316         case Insn_template::THUMB16_TYPE:
4317         case Insn_template::THUMB16_SPECIAL_TYPE:
4318           if (i == 0)
4319             this->entry_in_thumb_mode_ = true;
4320           break;
4321
4322         case Insn_template::THUMB32_TYPE:
4323           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4324             this->relocs_.push_back(Reloc(i, offset));
4325           if (i == 0)
4326             this->entry_in_thumb_mode_ = true;
4327           break;
4328
4329         case Insn_template::ARM_TYPE:
4330           // Handle cases where the target is encoded within the
4331           // instruction.
4332           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4333             this->relocs_.push_back(Reloc(i, offset));
4334           break;
4335
4336         case Insn_template::DATA_TYPE:
4337           // Entry point cannot be data.
4338           gold_assert(i != 0);
4339           this->relocs_.push_back(Reloc(i, offset));
4340           break;
4341
4342         default:
4343           gold_unreachable();
4344         }
4345       offset += insn_size;
4346     }
4347   this->size_ = offset;
4348 }
4349
4350 // Stub methods.
4351
4352 // Template to implement do_write for a specific target endianness.
4353
4354 template<bool big_endian>
4355 void inline
4356 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4357 {
4358   const Stub_template* stub_template = this->stub_template();
4359   const Insn_template* insns = stub_template->insns();
4360
4361   // FIXME:  We do not handle BE8 encoding yet.
4362   unsigned char* pov = view;
4363   for (size_t i = 0; i < stub_template->insn_count(); i++)
4364     {
4365       switch (insns[i].type())
4366         {
4367         case Insn_template::THUMB16_TYPE:
4368           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4369           break;
4370         case Insn_template::THUMB16_SPECIAL_TYPE:
4371           elfcpp::Swap<16, big_endian>::writeval(
4372               pov,
4373               this->thumb16_special(i));
4374           break;
4375         case Insn_template::THUMB32_TYPE:
4376           {
4377             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4378             uint32_t lo = insns[i].data() & 0xffff;
4379             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4380             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4381           }
4382           break;
4383         case Insn_template::ARM_TYPE:
4384         case Insn_template::DATA_TYPE:
4385           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4386           break;
4387         default:
4388           gold_unreachable();
4389         }
4390       pov += insns[i].size();
4391     }
4392   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4393 }
4394
4395 // Reloc_stub::Key methods.
4396
4397 // Dump a Key as a string for debugging.
4398
4399 std::string
4400 Reloc_stub::Key::name() const
4401 {
4402   if (this->r_sym_ == invalid_index)
4403     {
4404       // Global symbol key name
4405       // <stub-type>:<symbol name>:<addend>.
4406       const std::string sym_name = this->u_.symbol->name();
4407       // We need to print two hex number and two colons.  So just add 100 bytes
4408       // to the symbol name size.
4409       size_t len = sym_name.size() + 100;
4410       char* buffer = new char[len];
4411       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4412                        sym_name.c_str(), this->addend_);
4413       gold_assert(c > 0 && c < static_cast<int>(len));
4414       delete[] buffer;
4415       return std::string(buffer);
4416     }
4417   else
4418     {
4419       // local symbol key name
4420       // <stub-type>:<object>:<r_sym>:<addend>.
4421       const size_t len = 200;
4422       char buffer[len];
4423       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4424                        this->u_.relobj, this->r_sym_, this->addend_);
4425       gold_assert(c > 0 && c < static_cast<int>(len));
4426       return std::string(buffer);
4427     }
4428 }
4429
4430 // Reloc_stub methods.
4431
4432 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4433 // LOCATION to DESTINATION.
4434 // This code is based on the arm_type_of_stub function in
4435 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4436 // class simple.
4437
4438 Stub_type
4439 Reloc_stub::stub_type_for_reloc(
4440    unsigned int r_type,
4441    Arm_address location,
4442    Arm_address destination,
4443    bool target_is_thumb)
4444 {
4445   Stub_type stub_type = arm_stub_none;
4446
4447   // This is a bit ugly but we want to avoid using a templated class for
4448   // big and little endianities.
4449   bool may_use_blx;
4450   bool should_force_pic_veneer;
4451   bool thumb2;
4452   bool thumb_only;
4453   if (parameters->target().is_big_endian())
4454     {
4455       const Target_arm<true>* big_endian_target =
4456         Target_arm<true>::default_target();
4457       may_use_blx = big_endian_target->may_use_v5t_interworking();
4458       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4459       thumb2 = big_endian_target->using_thumb2();
4460       thumb_only = big_endian_target->using_thumb_only();
4461     }
4462   else
4463     {
4464       const Target_arm<false>* little_endian_target =
4465         Target_arm<false>::default_target();
4466       may_use_blx = little_endian_target->may_use_v5t_interworking();
4467       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4468       thumb2 = little_endian_target->using_thumb2();
4469       thumb_only = little_endian_target->using_thumb_only();
4470     }
4471
4472   int64_t branch_offset;
4473   bool output_is_position_independent =
4474       parameters->options().output_is_position_independent();
4475   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4476     {
4477       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4478       // base address (instruction address + 4).
4479       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4480         destination = Bits<32>::bit_select32(destination, location, 0x2);
4481       branch_offset = static_cast<int64_t>(destination) - location;
4482
4483       // Handle cases where:
4484       // - this call goes too far (different Thumb/Thumb2 max
4485       //   distance)
4486       // - it's a Thumb->Arm call and blx is not available, or it's a
4487       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4488       if ((!thumb2
4489             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4490                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4491           || (thumb2
4492               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4493                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4494           || ((!target_is_thumb)
4495               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4496                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4497         {
4498           if (target_is_thumb)
4499             {
4500               // Thumb to thumb.
4501               if (!thumb_only)
4502                 {
4503                   stub_type = (output_is_position_independent
4504                                || should_force_pic_veneer)
4505                     // PIC stubs.
4506                     ? ((may_use_blx
4507                         && (r_type == elfcpp::R_ARM_THM_CALL))
4508                        // V5T and above. Stub starts with ARM code, so
4509                        // we must be able to switch mode before
4510                        // reaching it, which is only possible for 'bl'
4511                        // (ie R_ARM_THM_CALL relocation).
4512                        ? arm_stub_long_branch_any_thumb_pic
4513                        // On V4T, use Thumb code only.
4514                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4515
4516                     // non-PIC stubs.
4517                     : ((may_use_blx
4518                         && (r_type == elfcpp::R_ARM_THM_CALL))
4519                        ? arm_stub_long_branch_any_any // V5T and above.
4520                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4521                 }
4522               else
4523                 {
4524                   stub_type = (output_is_position_independent
4525                                || should_force_pic_veneer)
4526                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4527                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4528                 }
4529             }
4530           else
4531             {
4532               // Thumb to arm.
4533
4534               // FIXME: We should check that the input section is from an
4535               // object that has interwork enabled.
4536
4537               stub_type = (output_is_position_independent
4538                            || should_force_pic_veneer)
4539                 // PIC stubs.
4540                 ? ((may_use_blx
4541                     && (r_type == elfcpp::R_ARM_THM_CALL))
4542                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4543                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4544
4545                 // non-PIC stubs.
4546                 : ((may_use_blx
4547                     && (r_type == elfcpp::R_ARM_THM_CALL))
4548                    ? arm_stub_long_branch_any_any       // V5T and above.
4549                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4550
4551               // Handle v4t short branches.
4552               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4553                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4554                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4555                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4556             }
4557         }
4558     }
4559   else if (r_type == elfcpp::R_ARM_CALL
4560            || r_type == elfcpp::R_ARM_JUMP24
4561            || r_type == elfcpp::R_ARM_PLT32)
4562     {
4563       branch_offset = static_cast<int64_t>(destination) - location;
4564       if (target_is_thumb)
4565         {
4566           // Arm to thumb.
4567
4568           // FIXME: We should check that the input section is from an
4569           // object that has interwork enabled.
4570
4571           // We have an extra 2-bytes reach because of
4572           // the mode change (bit 24 (H) of BLX encoding).
4573           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4574               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4575               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4576               || (r_type == elfcpp::R_ARM_JUMP24)
4577               || (r_type == elfcpp::R_ARM_PLT32))
4578             {
4579               stub_type = (output_is_position_independent
4580                            || should_force_pic_veneer)
4581                 // PIC stubs.
4582                 ? (may_use_blx
4583                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4584                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4585
4586                 // non-PIC stubs.
4587                 : (may_use_blx
4588                    ? arm_stub_long_branch_any_any       // V5T and above.
4589                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4590             }
4591         }
4592       else
4593         {
4594           // Arm to arm.
4595           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4596               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4597             {
4598               stub_type = (output_is_position_independent
4599                            || should_force_pic_veneer)
4600                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4601                 : arm_stub_long_branch_any_any;         /// non-PIC.
4602             }
4603         }
4604     }
4605
4606   return stub_type;
4607 }
4608
4609 // Cortex_a8_stub methods.
4610
4611 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4612 // I is the position of the instruction template in the stub template.
4613
4614 uint16_t
4615 Cortex_a8_stub::do_thumb16_special(size_t i)
4616 {
4617   // The only use of this is to copy condition code from a conditional
4618   // branch being worked around to the corresponding conditional branch in
4619   // to the stub.
4620   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4621               && i == 0);
4622   uint16_t data = this->stub_template()->insns()[i].data();
4623   gold_assert((data & 0xff00U) == 0xd000U);
4624   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4625   return data;
4626 }
4627
4628 // Stub_factory methods.
4629
4630 Stub_factory::Stub_factory()
4631 {
4632   // The instruction template sequences are declared as static
4633   // objects and initialized first time the constructor runs.
4634
4635   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4636   // to reach the stub if necessary.
4637   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4638     {
4639       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4640       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4641                                                 // dcd   R_ARM_ABS32(X)
4642     };
4643
4644   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4645   // available.
4646   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4647     {
4648       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4649       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4650       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4651                                                 // dcd   R_ARM_ABS32(X)
4652     };
4653
4654   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4655   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4656     {
4657       Insn_template::thumb16_insn(0xb401),      // push {r0}
4658       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4659       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4660       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4661       Insn_template::thumb16_insn(0x4760),      // bx   ip
4662       Insn_template::thumb16_insn(0xbf00),      // nop
4663       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4664                                                 // dcd  R_ARM_ABS32(X)
4665     };
4666
4667   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4668   // allowed.
4669   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4670     {
4671       Insn_template::thumb16_insn(0x4778),      // bx   pc
4672       Insn_template::thumb16_insn(0x46c0),      // nop
4673       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4674       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4675       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4676                                                 // dcd  R_ARM_ABS32(X)
4677     };
4678
4679   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4680   // available.
4681   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4682     {
4683       Insn_template::thumb16_insn(0x4778),      // bx   pc
4684       Insn_template::thumb16_insn(0x46c0),      // nop
4685       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4686       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4687                                                 // dcd   R_ARM_ABS32(X)
4688     };
4689
4690   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4691   // one, when the destination is close enough.
4692   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4693     {
4694       Insn_template::thumb16_insn(0x4778),              // bx   pc
4695       Insn_template::thumb16_insn(0x46c0),              // nop
4696       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4697     };
4698
4699   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4700   // blx to reach the stub if necessary.
4701   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4702     {
4703       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4704       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4705       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4706                                                 // dcd   R_ARM_REL32(X-4)
4707     };
4708
4709   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4710   // blx to reach the stub if necessary.  We can not add into pc;
4711   // it is not guaranteed to mode switch (different in ARMv6 and
4712   // ARMv7).
4713   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4714     {
4715       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4716       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4717       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4718       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4719                                                 // dcd   R_ARM_REL32(X)
4720     };
4721
4722   // V4T ARM -> ARM long branch stub, PIC.
4723   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4724     {
4725       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4726       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4727       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4728       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4729                                                 // dcd   R_ARM_REL32(X)
4730     };
4731
4732   // V4T Thumb -> ARM long branch stub, PIC.
4733   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4734     {
4735       Insn_template::thumb16_insn(0x4778),      // bx   pc
4736       Insn_template::thumb16_insn(0x46c0),      // nop
4737       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4738       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4739       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4740                                                 // dcd  R_ARM_REL32(X)
4741     };
4742
4743   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4744   // architectures.
4745   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4746     {
4747       Insn_template::thumb16_insn(0xb401),      // push {r0}
4748       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4749       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4750       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4751       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4752       Insn_template::thumb16_insn(0x4760),      // bx   ip
4753       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4754                                                 // dcd  R_ARM_REL32(X)
4755     };
4756
4757   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4758   // allowed.
4759   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4760     {
4761       Insn_template::thumb16_insn(0x4778),      // bx   pc
4762       Insn_template::thumb16_insn(0x46c0),      // nop
4763       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4764       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4765       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4766       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4767                                                 // dcd  R_ARM_REL32(X)
4768     };
4769
4770   // Cortex-A8 erratum-workaround stubs.
4771
4772   // Stub used for conditional branches (which may be beyond +/-1MB away,
4773   // so we can't use a conditional branch to reach this stub).
4774
4775   // original code:
4776   //
4777   //    b<cond> X
4778   // after:
4779   //
4780   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4781     {
4782       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4783       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4784       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4785                                                         //      b.w X
4786     };
4787
4788   // Stub used for b.w and bl.w instructions.
4789
4790   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4791     {
4792       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4793     };
4794
4795   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4796     {
4797       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4798     };
4799
4800   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4801   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4802   // the real destination using an ARM-mode branch.
4803   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4804     {
4805       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4806     };
4807
4808   // Stub used to provide an interworking for R_ARM_V4BX relocation
4809   // (bx r[n] instruction).
4810   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4811     {
4812       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4813       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4814       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4815     };
4816
4817   // Fill in the stub template look-up table.  Stub templates are constructed
4818   // per instance of Stub_factory for fast look-up without locking
4819   // in a thread-enabled environment.
4820
4821   this->stub_templates_[arm_stub_none] =
4822     new Stub_template(arm_stub_none, NULL, 0);
4823
4824 #define DEF_STUB(x)     \
4825   do \
4826     { \
4827       size_t array_size \
4828         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4829       Stub_type type = arm_stub_##x; \
4830       this->stub_templates_[type] = \
4831         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4832     } \
4833   while (0);
4834
4835   DEF_STUBS
4836 #undef DEF_STUB
4837 }
4838
4839 // Stub_table methods.
4840
4841 // Remove all Cortex-A8 stub.
4842
4843 template<bool big_endian>
4844 void
4845 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4846 {
4847   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4848        p != this->cortex_a8_stubs_.end();
4849        ++p)
4850     delete p->second;
4851   this->cortex_a8_stubs_.clear();
4852 }
4853
4854 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4855
4856 template<bool big_endian>
4857 void
4858 Stub_table<big_endian>::relocate_stub(
4859     Stub* stub,
4860     const Relocate_info<32, big_endian>* relinfo,
4861     Target_arm<big_endian>* arm_target,
4862     Output_section* output_section,
4863     unsigned char* view,
4864     Arm_address address,
4865     section_size_type view_size)
4866 {
4867   const Stub_template* stub_template = stub->stub_template();
4868   if (stub_template->reloc_count() != 0)
4869     {
4870       // Adjust view to cover the stub only.
4871       section_size_type offset = stub->offset();
4872       section_size_type stub_size = stub_template->size();
4873       gold_assert(offset + stub_size <= view_size);
4874
4875       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4876                                 address + offset, stub_size);
4877     }
4878 }
4879
4880 // Relocate all stubs in this stub table.
4881
4882 template<bool big_endian>
4883 void
4884 Stub_table<big_endian>::relocate_stubs(
4885     const Relocate_info<32, big_endian>* relinfo,
4886     Target_arm<big_endian>* arm_target,
4887     Output_section* output_section,
4888     unsigned char* view,
4889     Arm_address address,
4890     section_size_type view_size)
4891 {
4892   // If we are passed a view bigger than the stub table's.  we need to
4893   // adjust the view.
4894   gold_assert(address == this->address()
4895               && (view_size
4896                   == static_cast<section_size_type>(this->data_size())));
4897
4898   // Relocate all relocation stubs.
4899   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4900       p != this->reloc_stubs_.end();
4901       ++p)
4902     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4903                         address, view_size);
4904
4905   // Relocate all Cortex-A8 stubs.
4906   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4907        p != this->cortex_a8_stubs_.end();
4908        ++p)
4909     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4910                         address, view_size);
4911
4912   // Relocate all ARM V4BX stubs.
4913   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4914        p != this->arm_v4bx_stubs_.end();
4915        ++p)
4916     {
4917       if (*p != NULL)
4918         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4919                             address, view_size);
4920     }
4921 }
4922
4923 // Write out the stubs to file.
4924
4925 template<bool big_endian>
4926 void
4927 Stub_table<big_endian>::do_write(Output_file* of)
4928 {
4929   off_t offset = this->offset();
4930   const section_size_type oview_size =
4931     convert_to_section_size_type(this->data_size());
4932   unsigned char* const oview = of->get_output_view(offset, oview_size);
4933
4934   // Write relocation stubs.
4935   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4936       p != this->reloc_stubs_.end();
4937       ++p)
4938     {
4939       Reloc_stub* stub = p->second;
4940       Arm_address address = this->address() + stub->offset();
4941       gold_assert(address
4942                   == align_address(address,
4943                                    stub->stub_template()->alignment()));
4944       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4945                   big_endian);
4946     }
4947
4948   // Write Cortex-A8 stubs.
4949   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4950        p != this->cortex_a8_stubs_.end();
4951        ++p)
4952     {
4953       Cortex_a8_stub* stub = p->second;
4954       Arm_address address = this->address() + stub->offset();
4955       gold_assert(address
4956                   == align_address(address,
4957                                    stub->stub_template()->alignment()));
4958       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4959                   big_endian);
4960     }
4961
4962   // Write ARM V4BX relocation stubs.
4963   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4964        p != this->arm_v4bx_stubs_.end();
4965        ++p)
4966     {
4967       if (*p == NULL)
4968         continue;
4969
4970       Arm_address address = this->address() + (*p)->offset();
4971       gold_assert(address
4972                   == align_address(address,
4973                                    (*p)->stub_template()->alignment()));
4974       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4975                   big_endian);
4976     }
4977
4978   of->write_output_view(this->offset(), oview_size, oview);
4979 }
4980
4981 // Update the data size and address alignment of the stub table at the end
4982 // of a relaxation pass.   Return true if either the data size or the
4983 // alignment changed in this relaxation pass.
4984
4985 template<bool big_endian>
4986 bool
4987 Stub_table<big_endian>::update_data_size_and_addralign()
4988 {
4989   // Go over all stubs in table to compute data size and address alignment.
4990   off_t size = this->reloc_stubs_size_;
4991   unsigned addralign = this->reloc_stubs_addralign_;
4992
4993   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4994        p != this->cortex_a8_stubs_.end();
4995        ++p)
4996     {
4997       const Stub_template* stub_template = p->second->stub_template();
4998       addralign = std::max(addralign, stub_template->alignment());
4999       size = (align_address(size, stub_template->alignment())
5000               + stub_template->size());
5001     }
5002
5003   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5004        p != this->arm_v4bx_stubs_.end();
5005        ++p)
5006     {
5007       if (*p == NULL)
5008         continue;
5009
5010       const Stub_template* stub_template = (*p)->stub_template();
5011       addralign = std::max(addralign, stub_template->alignment());
5012       size = (align_address(size, stub_template->alignment())
5013               + stub_template->size());
5014     }
5015
5016   // Check if either data size or alignment changed in this pass.
5017   // Update prev_data_size_ and prev_addralign_.  These will be used
5018   // as the current data size and address alignment for the next pass.
5019   bool changed = size != this->prev_data_size_;
5020   this->prev_data_size_ = size;
5021
5022   if (addralign != this->prev_addralign_)
5023     changed = true;
5024   this->prev_addralign_ = addralign;
5025
5026   return changed;
5027 }
5028
5029 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5030 // table.  It also marks all input sections needing Cortex-A8 workaround.
5031
5032 template<bool big_endian>
5033 void
5034 Stub_table<big_endian>::finalize_stubs()
5035 {
5036   off_t off = this->reloc_stubs_size_;
5037   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5038        p != this->cortex_a8_stubs_.end();
5039        ++p)
5040     {
5041       Cortex_a8_stub* stub = p->second;
5042       const Stub_template* stub_template = stub->stub_template();
5043       uint64_t stub_addralign = stub_template->alignment();
5044       off = align_address(off, stub_addralign);
5045       stub->set_offset(off);
5046       off += stub_template->size();
5047
5048       // Mark input section so that we can determine later if a code section
5049       // needs the Cortex-A8 workaround quickly.
5050       Arm_relobj<big_endian>* arm_relobj =
5051         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5052       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5053     }
5054
5055   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5056       p != this->arm_v4bx_stubs_.end();
5057       ++p)
5058     {
5059       if (*p == NULL)
5060         continue;
5061
5062       const Stub_template* stub_template = (*p)->stub_template();
5063       uint64_t stub_addralign = stub_template->alignment();
5064       off = align_address(off, stub_addralign);
5065       (*p)->set_offset(off);
5066       off += stub_template->size();
5067     }
5068
5069   gold_assert(off <= this->prev_data_size_);
5070 }
5071
5072 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5073 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5074 // of the address range seen by the linker.
5075
5076 template<bool big_endian>
5077 void
5078 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5079     Target_arm<big_endian>* arm_target,
5080     unsigned char* view,
5081     Arm_address view_address,
5082     section_size_type view_size)
5083 {
5084   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5085   for (Cortex_a8_stub_list::const_iterator p =
5086          this->cortex_a8_stubs_.lower_bound(view_address);
5087        ((p != this->cortex_a8_stubs_.end())
5088         && (p->first < (view_address + view_size)));
5089        ++p)
5090     {
5091       // We do not store the THUMB bit in the LSB of either the branch address
5092       // or the stub offset.  There is no need to strip the LSB.
5093       Arm_address branch_address = p->first;
5094       const Cortex_a8_stub* stub = p->second;
5095       Arm_address stub_address = this->address() + stub->offset();
5096
5097       // Offset of the branch instruction relative to this view.
5098       section_size_type offset =
5099         convert_to_section_size_type(branch_address - view_address);
5100       gold_assert((offset + 4) <= view_size);
5101
5102       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5103                                              view + offset, branch_address);
5104     }
5105 }
5106
5107 // Arm_input_section methods.
5108
5109 // Initialize an Arm_input_section.
5110
5111 template<bool big_endian>
5112 void
5113 Arm_input_section<big_endian>::init()
5114 {
5115   Relobj* relobj = this->relobj();
5116   unsigned int shndx = this->shndx();
5117
5118   // We have to cache original size, alignment and contents to avoid locking
5119   // the original file.
5120   this->original_addralign_ =
5121     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5122
5123   // This is not efficient but we expect only a small number of relaxed
5124   // input sections for stubs.
5125   section_size_type section_size;
5126   const unsigned char* section_contents =
5127     relobj->section_contents(shndx, &section_size, false);
5128   this->original_size_ =
5129     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5130
5131   gold_assert(this->original_contents_ == NULL);
5132   this->original_contents_ = new unsigned char[section_size];
5133   memcpy(this->original_contents_, section_contents, section_size);
5134
5135   // We want to make this look like the original input section after
5136   // output sections are finalized.
5137   Output_section* os = relobj->output_section(shndx);
5138   off_t offset = relobj->output_section_offset(shndx);
5139   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5140   this->set_address(os->address() + offset);
5141   this->set_file_offset(os->offset() + offset);
5142
5143   this->set_current_data_size(this->original_size_);
5144   this->finalize_data_size();
5145 }
5146
5147 template<bool big_endian>
5148 void
5149 Arm_input_section<big_endian>::do_write(Output_file* of)
5150 {
5151   // We have to write out the original section content.
5152   gold_assert(this->original_contents_ != NULL);
5153   of->write(this->offset(), this->original_contents_,
5154             this->original_size_);
5155
5156   // If this owns a stub table and it is not empty, write it.
5157   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5158     this->stub_table_->write(of);
5159 }
5160
5161 // Finalize data size.
5162
5163 template<bool big_endian>
5164 void
5165 Arm_input_section<big_endian>::set_final_data_size()
5166 {
5167   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5168
5169   if (this->is_stub_table_owner())
5170     {
5171       this->stub_table_->finalize_data_size();
5172       off = align_address(off, this->stub_table_->addralign());
5173       off += this->stub_table_->data_size();
5174     }
5175   this->set_data_size(off);
5176 }
5177
5178 // Reset address and file offset.
5179
5180 template<bool big_endian>
5181 void
5182 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5183 {
5184   // Size of the original input section contents.
5185   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5186
5187   // If this is a stub table owner, account for the stub table size.
5188   if (this->is_stub_table_owner())
5189     {
5190       Stub_table<big_endian>* stub_table = this->stub_table_;
5191
5192       // Reset the stub table's address and file offset.  The
5193       // current data size for child will be updated after that.
5194       stub_table_->reset_address_and_file_offset();
5195       off = align_address(off, stub_table_->addralign());
5196       off += stub_table->current_data_size();
5197     }
5198
5199   this->set_current_data_size(off);
5200 }
5201
5202 // Arm_exidx_cantunwind methods.
5203
5204 // Write this to Output file OF for a fixed endianness.
5205
5206 template<bool big_endian>
5207 void
5208 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5209 {
5210   off_t offset = this->offset();
5211   const section_size_type oview_size = 8;
5212   unsigned char* const oview = of->get_output_view(offset, oview_size);
5213
5214   Output_section* os = this->relobj_->output_section(this->shndx_);
5215   gold_assert(os != NULL);
5216
5217   Arm_relobj<big_endian>* arm_relobj =
5218     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5219   Arm_address output_offset =
5220     arm_relobj->get_output_section_offset(this->shndx_);
5221   Arm_address section_start;
5222   section_size_type section_size;
5223
5224   // Find out the end of the text section referred by this.
5225   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5226     {
5227       section_start = os->address() + output_offset;
5228       const Arm_exidx_input_section* exidx_input_section =
5229         arm_relobj->exidx_input_section_by_link(this->shndx_);
5230       gold_assert(exidx_input_section != NULL);
5231       section_size =
5232         convert_to_section_size_type(exidx_input_section->text_size());
5233     }
5234   else
5235     {
5236       // Currently this only happens for a relaxed section.
5237       const Output_relaxed_input_section* poris =
5238         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5239       gold_assert(poris != NULL);
5240       section_start = poris->address();
5241       section_size = convert_to_section_size_type(poris->data_size());
5242     }
5243
5244   // We always append this to the end of an EXIDX section.
5245   Arm_address output_address = section_start + section_size;
5246
5247   // Write out the entry.  The first word either points to the beginning
5248   // or after the end of a text section.  The second word is the special
5249   // EXIDX_CANTUNWIND value.
5250   uint32_t prel31_offset = output_address - this->address();
5251   if (Bits<31>::has_overflow32(offset))
5252     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5253   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5254                                                    prel31_offset & 0x7fffffffU);
5255   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5256                                                    elfcpp::EXIDX_CANTUNWIND);
5257
5258   of->write_output_view(this->offset(), oview_size, oview);
5259 }
5260
5261 // Arm_exidx_merged_section methods.
5262
5263 // Constructor for Arm_exidx_merged_section.
5264 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5265 // SECTION_OFFSET_MAP points to a section offset map describing how
5266 // parts of the input section are mapped to output.  DELETED_BYTES is
5267 // the number of bytes deleted from the EXIDX input section.
5268
5269 Arm_exidx_merged_section::Arm_exidx_merged_section(
5270     const Arm_exidx_input_section& exidx_input_section,
5271     const Arm_exidx_section_offset_map& section_offset_map,
5272     uint32_t deleted_bytes)
5273   : Output_relaxed_input_section(exidx_input_section.relobj(),
5274                                  exidx_input_section.shndx(),
5275                                  exidx_input_section.addralign()),
5276     exidx_input_section_(exidx_input_section),
5277     section_offset_map_(section_offset_map)
5278 {
5279   // If we retain or discard the whole EXIDX input section,  we would
5280   // not be here.
5281   gold_assert(deleted_bytes != 0
5282               && deleted_bytes != this->exidx_input_section_.size());
5283
5284   // Fix size here so that we do not need to implement set_final_data_size.
5285   uint32_t size = exidx_input_section.size() - deleted_bytes;
5286   this->set_data_size(size);
5287   this->fix_data_size();
5288
5289   // Allocate buffer for section contents and build contents.
5290   this->section_contents_ = new unsigned char[size];
5291 }
5292
5293 // Build the contents of a merged EXIDX output section.
5294
5295 void
5296 Arm_exidx_merged_section::build_contents(
5297     const unsigned char* original_contents,
5298     section_size_type original_size)
5299 {
5300   // Go over spans of input offsets and write only those that are not
5301   // discarded.
5302   section_offset_type in_start = 0;
5303   section_offset_type out_start = 0;
5304   section_offset_type in_max =
5305     convert_types<section_offset_type>(original_size);
5306   section_offset_type out_max =
5307     convert_types<section_offset_type>(this->data_size());
5308   for (Arm_exidx_section_offset_map::const_iterator p =
5309         this->section_offset_map_.begin();
5310       p != this->section_offset_map_.end();
5311       ++p)
5312     {
5313       section_offset_type in_end = p->first;
5314       gold_assert(in_end >= in_start);
5315       section_offset_type out_end = p->second;
5316       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5317       if (out_end != -1)
5318         {
5319           size_t out_chunk_size =
5320             convert_types<size_t>(out_end - out_start + 1);
5321
5322           gold_assert(out_chunk_size == in_chunk_size
5323                       && in_end < in_max && out_end < out_max);
5324
5325           memcpy(this->section_contents_ + out_start,
5326                  original_contents + in_start,
5327                  out_chunk_size);
5328           out_start += out_chunk_size;
5329         }
5330       in_start += in_chunk_size;
5331     }
5332 }
5333
5334 // Given an input OBJECT, an input section index SHNDX within that
5335 // object, and an OFFSET relative to the start of that input
5336 // section, return whether or not the corresponding offset within
5337 // the output section is known.  If this function returns true, it
5338 // sets *POUTPUT to the output offset.  The value -1 indicates that
5339 // this input offset is being discarded.
5340
5341 bool
5342 Arm_exidx_merged_section::do_output_offset(
5343     const Relobj* relobj,
5344     unsigned int shndx,
5345     section_offset_type offset,
5346     section_offset_type* poutput) const
5347 {
5348   // We only handle offsets for the original EXIDX input section.
5349   if (relobj != this->exidx_input_section_.relobj()
5350       || shndx != this->exidx_input_section_.shndx())
5351     return false;
5352
5353   section_offset_type section_size =
5354     convert_types<section_offset_type>(this->exidx_input_section_.size());
5355   if (offset < 0 || offset >= section_size)
5356     // Input offset is out of valid range.
5357     *poutput = -1;
5358   else
5359     {
5360       // We need to look up the section offset map to determine the output
5361       // offset.  Find the reference point in map that is first offset
5362       // bigger than or equal to this offset.
5363       Arm_exidx_section_offset_map::const_iterator p =
5364         this->section_offset_map_.lower_bound(offset);
5365
5366       // The section offset maps are build such that this should not happen if
5367       // input offset is in the valid range.
5368       gold_assert(p != this->section_offset_map_.end());
5369
5370       // We need to check if this is dropped.
5371      section_offset_type ref = p->first;
5372      section_offset_type mapped_ref = p->second;
5373
5374       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5375         // Offset is present in output.
5376         *poutput = mapped_ref + (offset - ref);
5377       else
5378         // Offset is discarded owing to EXIDX entry merging.
5379         *poutput = -1;
5380     }
5381
5382   return true;
5383 }
5384
5385 // Write this to output file OF.
5386
5387 void
5388 Arm_exidx_merged_section::do_write(Output_file* of)
5389 {
5390   off_t offset = this->offset();
5391   const section_size_type oview_size = this->data_size();
5392   unsigned char* const oview = of->get_output_view(offset, oview_size);
5393
5394   Output_section* os = this->relobj()->output_section(this->shndx());
5395   gold_assert(os != NULL);
5396
5397   memcpy(oview, this->section_contents_, oview_size);
5398   of->write_output_view(this->offset(), oview_size, oview);
5399 }
5400
5401 // Arm_exidx_fixup methods.
5402
5403 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5404 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5405 // points to the end of the last seen EXIDX section.
5406
5407 void
5408 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5409 {
5410   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5411       && this->last_input_section_ != NULL)
5412     {
5413       Relobj* relobj = this->last_input_section_->relobj();
5414       unsigned int text_shndx = this->last_input_section_->link();
5415       Arm_exidx_cantunwind* cantunwind =
5416         new Arm_exidx_cantunwind(relobj, text_shndx);
5417       this->exidx_output_section_->add_output_section_data(cantunwind);
5418       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5419     }
5420 }
5421
5422 // Process an EXIDX section entry in input.  Return whether this entry
5423 // can be deleted in the output.  SECOND_WORD in the second word of the
5424 // EXIDX entry.
5425
5426 bool
5427 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5428 {
5429   bool delete_entry;
5430   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5431     {
5432       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5433       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5434       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5435     }
5436   else if ((second_word & 0x80000000) != 0)
5437     {
5438       // Inlined unwinding data.  Merge if equal to previous.
5439       delete_entry = (merge_exidx_entries_
5440                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5441                       && this->last_inlined_entry_ == second_word);
5442       this->last_unwind_type_ = UT_INLINED_ENTRY;
5443       this->last_inlined_entry_ = second_word;
5444     }
5445   else
5446     {
5447       // Normal table entry.  In theory we could merge these too,
5448       // but duplicate entries are likely to be much less common.
5449       delete_entry = false;
5450       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5451     }
5452   return delete_entry;
5453 }
5454
5455 // Update the current section offset map during EXIDX section fix-up.
5456 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5457 // reference point, DELETED_BYTES is the number of deleted by in the
5458 // section so far.  If DELETE_ENTRY is true, the reference point and
5459 // all offsets after the previous reference point are discarded.
5460
5461 void
5462 Arm_exidx_fixup::update_offset_map(
5463     section_offset_type input_offset,
5464     section_size_type deleted_bytes,
5465     bool delete_entry)
5466 {
5467   if (this->section_offset_map_ == NULL)
5468     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5469   section_offset_type output_offset;
5470   if (delete_entry)
5471     output_offset = Arm_exidx_input_section::invalid_offset;
5472   else
5473     output_offset = input_offset - deleted_bytes;
5474   (*this->section_offset_map_)[input_offset] = output_offset;
5475 }
5476
5477 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5478 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5479 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5480 // If some entries are merged, also store a pointer to a newly created
5481 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5482 // owns the map and is responsible for releasing it after use.
5483
5484 template<bool big_endian>
5485 uint32_t
5486 Arm_exidx_fixup::process_exidx_section(
5487     const Arm_exidx_input_section* exidx_input_section,
5488     const unsigned char* section_contents,
5489     section_size_type section_size,
5490     Arm_exidx_section_offset_map** psection_offset_map)
5491 {
5492   Relobj* relobj = exidx_input_section->relobj();
5493   unsigned shndx = exidx_input_section->shndx();
5494
5495   if ((section_size % 8) != 0)
5496     {
5497       // Something is wrong with this section.  Better not touch it.
5498       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5499                  relobj->name().c_str(), shndx);
5500       this->last_input_section_ = exidx_input_section;
5501       this->last_unwind_type_ = UT_NONE;
5502       return 0;
5503     }
5504
5505   uint32_t deleted_bytes = 0;
5506   bool prev_delete_entry = false;
5507   gold_assert(this->section_offset_map_ == NULL);
5508
5509   for (section_size_type i = 0; i < section_size; i += 8)
5510     {
5511       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5512       const Valtype* wv =
5513           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5514       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5515
5516       bool delete_entry = this->process_exidx_entry(second_word);
5517
5518       // Entry deletion causes changes in output offsets.  We use a std::map
5519       // to record these.  And entry (x, y) means input offset x
5520       // is mapped to output offset y.  If y is invalid_offset, then x is
5521       // dropped in the output.  Because of the way std::map::lower_bound
5522       // works, we record the last offset in a region w.r.t to keeping or
5523       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5524       // the output offset y0 of it is determined by the output offset y1 of
5525       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5526       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5527       // y0 is also -1.
5528       if (delete_entry != prev_delete_entry && i != 0)
5529         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5530
5531       // Update total deleted bytes for this entry.
5532       if (delete_entry)
5533         deleted_bytes += 8;
5534
5535       prev_delete_entry = delete_entry;
5536     }
5537
5538   // If section offset map is not NULL, make an entry for the end of
5539   // section.
5540   if (this->section_offset_map_ != NULL)
5541     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5542
5543   *psection_offset_map = this->section_offset_map_;
5544   this->section_offset_map_ = NULL;
5545   this->last_input_section_ = exidx_input_section;
5546
5547   // Set the first output text section so that we can link the EXIDX output
5548   // section to it.  Ignore any EXIDX input section that is completely merged.
5549   if (this->first_output_text_section_ == NULL
5550       && deleted_bytes != section_size)
5551     {
5552       unsigned int link = exidx_input_section->link();
5553       Output_section* os = relobj->output_section(link);
5554       gold_assert(os != NULL);
5555       this->first_output_text_section_ = os;
5556     }
5557
5558   return deleted_bytes;
5559 }
5560
5561 // Arm_output_section methods.
5562
5563 // Create a stub group for input sections from BEGIN to END.  OWNER
5564 // points to the input section to be the owner a new stub table.
5565
5566 template<bool big_endian>
5567 void
5568 Arm_output_section<big_endian>::create_stub_group(
5569   Input_section_list::const_iterator begin,
5570   Input_section_list::const_iterator end,
5571   Input_section_list::const_iterator owner,
5572   Target_arm<big_endian>* target,
5573   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5574   const Task* task)
5575 {
5576   // We use a different kind of relaxed section in an EXIDX section.
5577   // The static casting from Output_relaxed_input_section to
5578   // Arm_input_section is invalid in an EXIDX section.  We are okay
5579   // because we should not be calling this for an EXIDX section.
5580   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5581
5582   // Currently we convert ordinary input sections into relaxed sections only
5583   // at this point but we may want to support creating relaxed input section
5584   // very early.  So we check here to see if owner is already a relaxed
5585   // section.
5586
5587   Arm_input_section<big_endian>* arm_input_section;
5588   if (owner->is_relaxed_input_section())
5589     {
5590       arm_input_section =
5591         Arm_input_section<big_endian>::as_arm_input_section(
5592           owner->relaxed_input_section());
5593     }
5594   else
5595     {
5596       gold_assert(owner->is_input_section());
5597       // Create a new relaxed input section.  We need to lock the original
5598       // file.
5599       Task_lock_obj<Object> tl(task, owner->relobj());
5600       arm_input_section =
5601         target->new_arm_input_section(owner->relobj(), owner->shndx());
5602       new_relaxed_sections->push_back(arm_input_section);
5603     }
5604
5605   // Create a stub table.
5606   Stub_table<big_endian>* stub_table =
5607     target->new_stub_table(arm_input_section);
5608
5609   arm_input_section->set_stub_table(stub_table);
5610
5611   Input_section_list::const_iterator p = begin;
5612   Input_section_list::const_iterator prev_p;
5613
5614   // Look for input sections or relaxed input sections in [begin ... end].
5615   do
5616     {
5617       if (p->is_input_section() || p->is_relaxed_input_section())
5618         {
5619           // The stub table information for input sections live
5620           // in their objects.
5621           Arm_relobj<big_endian>* arm_relobj =
5622             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5623           arm_relobj->set_stub_table(p->shndx(), stub_table);
5624         }
5625       prev_p = p++;
5626     }
5627   while (prev_p != end);
5628 }
5629
5630 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5631 // of stub groups.  We grow a stub group by adding input section until the
5632 // size is just below GROUP_SIZE.  The last input section will be converted
5633 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5634 // input section after the stub table, effectively double the group size.
5635 //
5636 // This is similar to the group_sections() function in elf32-arm.c but is
5637 // implemented differently.
5638
5639 template<bool big_endian>
5640 void
5641 Arm_output_section<big_endian>::group_sections(
5642     section_size_type group_size,
5643     bool stubs_always_after_branch,
5644     Target_arm<big_endian>* target,
5645     const Task* task)
5646 {
5647   // We only care about sections containing code.
5648   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5649     return;
5650
5651   // States for grouping.
5652   typedef enum
5653   {
5654     // No group is being built.
5655     NO_GROUP,
5656     // A group is being built but the stub table is not found yet.
5657     // We keep group a stub group until the size is just under GROUP_SIZE.
5658     // The last input section in the group will be used as the stub table.
5659     FINDING_STUB_SECTION,
5660     // A group is being built and we have already found a stub table.
5661     // We enter this state to grow a stub group by adding input section
5662     // after the stub table.  This effectively doubles the group size.
5663     HAS_STUB_SECTION
5664   } State;
5665
5666   // Any newly created relaxed sections are stored here.
5667   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5668
5669   State state = NO_GROUP;
5670   section_size_type off = 0;
5671   section_size_type group_begin_offset = 0;
5672   section_size_type group_end_offset = 0;
5673   section_size_type stub_table_end_offset = 0;
5674   Input_section_list::const_iterator group_begin =
5675     this->input_sections().end();
5676   Input_section_list::const_iterator stub_table =
5677     this->input_sections().end();
5678   Input_section_list::const_iterator group_end = this->input_sections().end();
5679   for (Input_section_list::const_iterator p = this->input_sections().begin();
5680        p != this->input_sections().end();
5681        ++p)
5682     {
5683       section_size_type section_begin_offset =
5684         align_address(off, p->addralign());
5685       section_size_type section_end_offset =
5686         section_begin_offset + p->data_size();
5687
5688       // Check to see if we should group the previously seen sections.
5689       switch (state)
5690         {
5691         case NO_GROUP:
5692           break;
5693
5694         case FINDING_STUB_SECTION:
5695           // Adding this section makes the group larger than GROUP_SIZE.
5696           if (section_end_offset - group_begin_offset >= group_size)
5697             {
5698               if (stubs_always_after_branch)
5699                 {
5700                   gold_assert(group_end != this->input_sections().end());
5701                   this->create_stub_group(group_begin, group_end, group_end,
5702                                           target, &new_relaxed_sections,
5703                                           task);
5704                   state = NO_GROUP;
5705                 }
5706               else
5707                 {
5708                   // But wait, there's more!  Input sections up to
5709                   // stub_group_size bytes after the stub table can be
5710                   // handled by it too.
5711                   state = HAS_STUB_SECTION;
5712                   stub_table = group_end;
5713                   stub_table_end_offset = group_end_offset;
5714                 }
5715             }
5716             break;
5717
5718         case HAS_STUB_SECTION:
5719           // Adding this section makes the post stub-section group larger
5720           // than GROUP_SIZE.
5721           if (section_end_offset - stub_table_end_offset >= group_size)
5722            {
5723              gold_assert(group_end != this->input_sections().end());
5724              this->create_stub_group(group_begin, group_end, stub_table,
5725                                      target, &new_relaxed_sections, task);
5726              state = NO_GROUP;
5727            }
5728            break;
5729
5730           default:
5731             gold_unreachable();
5732         }
5733
5734       // If we see an input section and currently there is no group, start
5735       // a new one.  Skip any empty sections.  We look at the data size
5736       // instead of calling p->relobj()->section_size() to avoid locking.
5737       if ((p->is_input_section() || p->is_relaxed_input_section())
5738           && (p->data_size() != 0))
5739         {
5740           if (state == NO_GROUP)
5741             {
5742               state = FINDING_STUB_SECTION;
5743               group_begin = p;
5744               group_begin_offset = section_begin_offset;
5745             }
5746
5747           // Keep track of the last input section seen.
5748           group_end = p;
5749           group_end_offset = section_end_offset;
5750         }
5751
5752       off = section_end_offset;
5753     }
5754
5755   // Create a stub group for any ungrouped sections.
5756   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5757     {
5758       gold_assert(group_end != this->input_sections().end());
5759       this->create_stub_group(group_begin, group_end,
5760                               (state == FINDING_STUB_SECTION
5761                                ? group_end
5762                                : stub_table),
5763                                target, &new_relaxed_sections, task);
5764     }
5765
5766   // Convert input section into relaxed input section in a batch.
5767   if (!new_relaxed_sections.empty())
5768     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5769
5770   // Update the section offsets
5771   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5772     {
5773       Arm_relobj<big_endian>* arm_relobj =
5774         Arm_relobj<big_endian>::as_arm_relobj(
5775           new_relaxed_sections[i]->relobj());
5776       unsigned int shndx = new_relaxed_sections[i]->shndx();
5777       // Tell Arm_relobj that this input section is converted.
5778       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5779     }
5780 }
5781
5782 // Append non empty text sections in this to LIST in ascending
5783 // order of their position in this.
5784
5785 template<bool big_endian>
5786 void
5787 Arm_output_section<big_endian>::append_text_sections_to_list(
5788     Text_section_list* list)
5789 {
5790   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5791
5792   for (Input_section_list::const_iterator p = this->input_sections().begin();
5793        p != this->input_sections().end();
5794        ++p)
5795     {
5796       // We only care about plain or relaxed input sections.  We also
5797       // ignore any merged sections.
5798       if (p->is_input_section() || p->is_relaxed_input_section())
5799         list->push_back(Text_section_list::value_type(p->relobj(),
5800                                                       p->shndx()));
5801     }
5802 }
5803
5804 template<bool big_endian>
5805 void
5806 Arm_output_section<big_endian>::fix_exidx_coverage(
5807     Layout* layout,
5808     const Text_section_list& sorted_text_sections,
5809     Symbol_table* symtab,
5810     bool merge_exidx_entries,
5811     const Task* task)
5812 {
5813   // We should only do this for the EXIDX output section.
5814   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5815
5816   // We don't want the relaxation loop to undo these changes, so we discard
5817   // the current saved states and take another one after the fix-up.
5818   this->discard_states();
5819
5820   // Remove all input sections.
5821   uint64_t address = this->address();
5822   typedef std::list<Output_section::Input_section> Input_section_list;
5823   Input_section_list input_sections;
5824   this->reset_address_and_file_offset();
5825   this->get_input_sections(address, std::string(""), &input_sections);
5826
5827   if (!this->input_sections().empty())
5828     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5829
5830   // Go through all the known input sections and record them.
5831   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5832   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5833                         Section_id_hash> Text_to_exidx_map;
5834   Text_to_exidx_map text_to_exidx_map;
5835   for (Input_section_list::const_iterator p = input_sections.begin();
5836        p != input_sections.end();
5837        ++p)
5838     {
5839       // This should never happen.  At this point, we should only see
5840       // plain EXIDX input sections.
5841       gold_assert(!p->is_relaxed_input_section());
5842       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5843     }
5844
5845   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5846
5847   // Go over the sorted text sections.
5848   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5849   Section_id_set processed_input_sections;
5850   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5851        p != sorted_text_sections.end();
5852        ++p)
5853     {
5854       Relobj* relobj = p->first;
5855       unsigned int shndx = p->second;
5856
5857       Arm_relobj<big_endian>* arm_relobj =
5858          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5859       const Arm_exidx_input_section* exidx_input_section =
5860          arm_relobj->exidx_input_section_by_link(shndx);
5861
5862       // If this text section has no EXIDX section or if the EXIDX section
5863       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5864       // of the last seen EXIDX section.
5865       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5866         {
5867           exidx_fixup.add_exidx_cantunwind_as_needed();
5868           continue;
5869         }
5870
5871       Relobj* exidx_relobj = exidx_input_section->relobj();
5872       unsigned int exidx_shndx = exidx_input_section->shndx();
5873       Section_id sid(exidx_relobj, exidx_shndx);
5874       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5875       if (iter == text_to_exidx_map.end())
5876         {
5877           // This is odd.  We have not seen this EXIDX input section before.
5878           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5879           // issue a warning instead.  We assume the user knows what he
5880           // or she is doing.  Otherwise, this is an error.
5881           if (layout->script_options()->saw_sections_clause())
5882             gold_warning(_("unwinding may not work because EXIDX input section"
5883                            " %u of %s is not in EXIDX output section"),
5884                          exidx_shndx, exidx_relobj->name().c_str());
5885           else
5886             gold_error(_("unwinding may not work because EXIDX input section"
5887                          " %u of %s is not in EXIDX output section"),
5888                        exidx_shndx, exidx_relobj->name().c_str());
5889
5890           exidx_fixup.add_exidx_cantunwind_as_needed();
5891           continue;
5892         }
5893
5894       // We need to access the contents of the EXIDX section, lock the
5895       // object here.
5896       Task_lock_obj<Object> tl(task, exidx_relobj);
5897       section_size_type exidx_size;
5898       const unsigned char* exidx_contents =
5899         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5900
5901       // Fix up coverage and append input section to output data list.
5902       Arm_exidx_section_offset_map* section_offset_map = NULL;
5903       uint32_t deleted_bytes =
5904         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5905                                                       exidx_contents,
5906                                                       exidx_size,
5907                                                       &section_offset_map);
5908
5909       if (deleted_bytes == exidx_input_section->size())
5910         {
5911           // The whole EXIDX section got merged.  Remove it from output.
5912           gold_assert(section_offset_map == NULL);
5913           exidx_relobj->set_output_section(exidx_shndx, NULL);
5914
5915           // All local symbols defined in this input section will be dropped.
5916           // We need to adjust output local symbol count.
5917           arm_relobj->set_output_local_symbol_count_needs_update();
5918         }
5919       else if (deleted_bytes > 0)
5920         {
5921           // Some entries are merged.  We need to convert this EXIDX input
5922           // section into a relaxed section.
5923           gold_assert(section_offset_map != NULL);
5924
5925           Arm_exidx_merged_section* merged_section =
5926             new Arm_exidx_merged_section(*exidx_input_section,
5927                                          *section_offset_map, deleted_bytes);
5928           merged_section->build_contents(exidx_contents, exidx_size);
5929
5930           const std::string secname = exidx_relobj->section_name(exidx_shndx);
5931           this->add_relaxed_input_section(layout, merged_section, secname);
5932           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5933
5934           // All local symbols defined in discarded portions of this input
5935           // section will be dropped.  We need to adjust output local symbol
5936           // count.
5937           arm_relobj->set_output_local_symbol_count_needs_update();
5938         }
5939       else
5940         {
5941           // Just add back the EXIDX input section.
5942           gold_assert(section_offset_map == NULL);
5943           const Output_section::Input_section* pis = iter->second;
5944           gold_assert(pis->is_input_section());
5945           this->add_script_input_section(*pis);
5946         }
5947
5948       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5949     }
5950
5951   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5952   exidx_fixup.add_exidx_cantunwind_as_needed();
5953
5954   // Remove any known EXIDX input sections that are not processed.
5955   for (Input_section_list::const_iterator p = input_sections.begin();
5956        p != input_sections.end();
5957        ++p)
5958     {
5959       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5960           == processed_input_sections.end())
5961         {
5962           // We discard a known EXIDX section because its linked
5963           // text section has been folded by ICF.  We also discard an
5964           // EXIDX section with error, the output does not matter in this
5965           // case.  We do this to avoid triggering asserts.
5966           Arm_relobj<big_endian>* arm_relobj =
5967             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5968           const Arm_exidx_input_section* exidx_input_section =
5969             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5970           gold_assert(exidx_input_section != NULL);
5971           if (!exidx_input_section->has_errors())
5972             {
5973               unsigned int text_shndx = exidx_input_section->link();
5974               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5975             }
5976
5977           // Remove this from link.  We also need to recount the
5978           // local symbols.
5979           p->relobj()->set_output_section(p->shndx(), NULL);
5980           arm_relobj->set_output_local_symbol_count_needs_update();
5981         }
5982     }
5983
5984   // Link exidx output section to the first seen output section and
5985   // set correct entry size.
5986   this->set_link_section(exidx_fixup.first_output_text_section());
5987   this->set_entsize(8);
5988
5989   // Make changes permanent.
5990   this->save_states();
5991   this->set_section_offsets_need_adjustment();
5992 }
5993
5994 // Link EXIDX output sections to text output sections.
5995
5996 template<bool big_endian>
5997 void
5998 Arm_output_section<big_endian>::set_exidx_section_link()
5999 {
6000   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6001   if (!this->input_sections().empty())
6002     {
6003       Input_section_list::const_iterator p = this->input_sections().begin();
6004       Arm_relobj<big_endian>* arm_relobj =
6005         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6006       unsigned exidx_shndx = p->shndx();
6007       const Arm_exidx_input_section* exidx_input_section =
6008         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6009       gold_assert(exidx_input_section != NULL);
6010       unsigned int text_shndx = exidx_input_section->link();
6011       Output_section* os = arm_relobj->output_section(text_shndx);
6012       this->set_link_section(os);
6013     }
6014 }
6015
6016 // Arm_relobj methods.
6017
6018 // Determine if an input section is scannable for stub processing.  SHDR is
6019 // the header of the section and SHNDX is the section index.  OS is the output
6020 // section for the input section and SYMTAB is the global symbol table used to
6021 // look up ICF information.
6022
6023 template<bool big_endian>
6024 bool
6025 Arm_relobj<big_endian>::section_is_scannable(
6026     const elfcpp::Shdr<32, big_endian>& shdr,
6027     unsigned int shndx,
6028     const Output_section* os,
6029     const Symbol_table* symtab)
6030 {
6031   // Skip any empty sections, unallocated sections or sections whose
6032   // type are not SHT_PROGBITS.
6033   if (shdr.get_sh_size() == 0
6034       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6035       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6036     return false;
6037
6038   // Skip any discarded or ICF'ed sections.
6039   if (os == NULL || symtab->is_section_folded(this, shndx))
6040     return false;
6041
6042   // If this requires special offset handling, check to see if it is
6043   // a relaxed section.  If this is not, then it is a merged section that
6044   // we cannot handle.
6045   if (this->is_output_section_offset_invalid(shndx))
6046     {
6047       const Output_relaxed_input_section* poris =
6048         os->find_relaxed_input_section(this, shndx);
6049       if (poris == NULL)
6050         return false;
6051     }
6052
6053   return true;
6054 }
6055
6056 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6057 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6058
6059 template<bool big_endian>
6060 bool
6061 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6062     const elfcpp::Shdr<32, big_endian>& shdr,
6063     const Relobj::Output_sections& out_sections,
6064     const Symbol_table* symtab,
6065     const unsigned char* pshdrs)
6066 {
6067   unsigned int sh_type = shdr.get_sh_type();
6068   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6069     return false;
6070
6071   // Ignore empty section.
6072   off_t sh_size = shdr.get_sh_size();
6073   if (sh_size == 0)
6074     return false;
6075
6076   // Ignore reloc section with unexpected symbol table.  The
6077   // error will be reported in the final link.
6078   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6079     return false;
6080
6081   unsigned int reloc_size;
6082   if (sh_type == elfcpp::SHT_REL)
6083     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6084   else
6085     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6086
6087   // Ignore reloc section with unexpected entsize or uneven size.
6088   // The error will be reported in the final link.
6089   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6090     return false;
6091
6092   // Ignore reloc section with bad info.  This error will be
6093   // reported in the final link.
6094   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6095   if (index >= this->shnum())
6096     return false;
6097
6098   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6099   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6100   return this->section_is_scannable(text_shdr, index,
6101                                    out_sections[index], symtab);
6102 }
6103
6104 // Return the output address of either a plain input section or a relaxed
6105 // input section.  SHNDX is the section index.  We define and use this
6106 // instead of calling Output_section::output_address because that is slow
6107 // for large output.
6108
6109 template<bool big_endian>
6110 Arm_address
6111 Arm_relobj<big_endian>::simple_input_section_output_address(
6112     unsigned int shndx,
6113     Output_section* os)
6114 {
6115   if (this->is_output_section_offset_invalid(shndx))
6116     {
6117       const Output_relaxed_input_section* poris =
6118         os->find_relaxed_input_section(this, shndx);
6119       // We do not handle merged sections here.
6120       gold_assert(poris != NULL);
6121       return poris->address();
6122     }
6123   else
6124     return os->address() + this->get_output_section_offset(shndx);
6125 }
6126
6127 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6128 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6129
6130 template<bool big_endian>
6131 bool
6132 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6133     const elfcpp::Shdr<32, big_endian>& shdr,
6134     unsigned int shndx,
6135     Output_section* os,
6136     const Symbol_table* symtab)
6137 {
6138   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6139     return false;
6140
6141   // If the section does not cross any 4K-boundaries, it does not need to
6142   // be scanned.
6143   Arm_address address = this->simple_input_section_output_address(shndx, os);
6144   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6145     return false;
6146
6147   return true;
6148 }
6149
6150 // Scan a section for Cortex-A8 workaround.
6151
6152 template<bool big_endian>
6153 void
6154 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6155     const elfcpp::Shdr<32, big_endian>& shdr,
6156     unsigned int shndx,
6157     Output_section* os,
6158     Target_arm<big_endian>* arm_target)
6159 {
6160   // Look for the first mapping symbol in this section.  It should be
6161   // at (shndx, 0).
6162   Mapping_symbol_position section_start(shndx, 0);
6163   typename Mapping_symbols_info::const_iterator p =
6164     this->mapping_symbols_info_.lower_bound(section_start);
6165
6166   // There are no mapping symbols for this section.  Treat it as a data-only
6167   // section.  Issue a warning if section is marked as containing
6168   // instructions.
6169   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6170     {
6171       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6172         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6173                        "erratum because it has no mapping symbols."),
6174                      shndx, this->name().c_str());
6175       return;
6176     }
6177
6178   Arm_address output_address =
6179     this->simple_input_section_output_address(shndx, os);
6180
6181   // Get the section contents.
6182   section_size_type input_view_size = 0;
6183   const unsigned char* input_view =
6184     this->section_contents(shndx, &input_view_size, false);
6185
6186   // We need to go through the mapping symbols to determine what to
6187   // scan.  There are two reasons.  First, we should look at THUMB code and
6188   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6189   // to speed up the scanning.
6190
6191   while (p != this->mapping_symbols_info_.end()
6192         && p->first.first == shndx)
6193     {
6194       typename Mapping_symbols_info::const_iterator next =
6195         this->mapping_symbols_info_.upper_bound(p->first);
6196
6197       // Only scan part of a section with THUMB code.
6198       if (p->second == 't')
6199         {
6200           // Determine the end of this range.
6201           section_size_type span_start =
6202             convert_to_section_size_type(p->first.second);
6203           section_size_type span_end;
6204           if (next != this->mapping_symbols_info_.end()
6205               && next->first.first == shndx)
6206             span_end = convert_to_section_size_type(next->first.second);
6207           else
6208             span_end = convert_to_section_size_type(shdr.get_sh_size());
6209
6210           if (((span_start + output_address) & ~0xfffUL)
6211               != ((span_end + output_address - 1) & ~0xfffUL))
6212             {
6213               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6214                                                           span_start, span_end,
6215                                                           input_view,
6216                                                           output_address);
6217             }
6218         }
6219
6220       p = next;
6221     }
6222 }
6223
6224 // Scan relocations for stub generation.
6225
6226 template<bool big_endian>
6227 void
6228 Arm_relobj<big_endian>::scan_sections_for_stubs(
6229     Target_arm<big_endian>* arm_target,
6230     const Symbol_table* symtab,
6231     const Layout* layout)
6232 {
6233   unsigned int shnum = this->shnum();
6234   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6235
6236   // Read the section headers.
6237   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6238                                                shnum * shdr_size,
6239                                                true, true);
6240
6241   // To speed up processing, we set up hash tables for fast lookup of
6242   // input offsets to output addresses.
6243   this->initialize_input_to_output_maps();
6244
6245   const Relobj::Output_sections& out_sections(this->output_sections());
6246
6247   Relocate_info<32, big_endian> relinfo;
6248   relinfo.symtab = symtab;
6249   relinfo.layout = layout;
6250   relinfo.object = this;
6251
6252   // Do relocation stubs scanning.
6253   const unsigned char* p = pshdrs + shdr_size;
6254   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6255     {
6256       const elfcpp::Shdr<32, big_endian> shdr(p);
6257       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6258                                                   pshdrs))
6259         {
6260           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6261           Arm_address output_offset = this->get_output_section_offset(index);
6262           Arm_address output_address;
6263           if (output_offset != invalid_address)
6264             output_address = out_sections[index]->address() + output_offset;
6265           else
6266             {
6267               // Currently this only happens for a relaxed section.
6268               const Output_relaxed_input_section* poris =
6269               out_sections[index]->find_relaxed_input_section(this, index);
6270               gold_assert(poris != NULL);
6271               output_address = poris->address();
6272             }
6273
6274           // Get the relocations.
6275           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6276                                                         shdr.get_sh_size(),
6277                                                         true, false);
6278
6279           // Get the section contents.  This does work for the case in which
6280           // we modify the contents of an input section.  We need to pass the
6281           // output view under such circumstances.
6282           section_size_type input_view_size = 0;
6283           const unsigned char* input_view =
6284             this->section_contents(index, &input_view_size, false);
6285
6286           relinfo.reloc_shndx = i;
6287           relinfo.data_shndx = index;
6288           unsigned int sh_type = shdr.get_sh_type();
6289           unsigned int reloc_size;
6290           if (sh_type == elfcpp::SHT_REL)
6291             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6292           else
6293             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6294
6295           Output_section* os = out_sections[index];
6296           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6297                                              shdr.get_sh_size() / reloc_size,
6298                                              os,
6299                                              output_offset == invalid_address,
6300                                              input_view, output_address,
6301                                              input_view_size);
6302         }
6303     }
6304
6305   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6306   // after its relocation section, if there is one, is processed for
6307   // relocation stubs.  Merging this loop with the one above would have been
6308   // complicated since we would have had to make sure that relocation stub
6309   // scanning is done first.
6310   if (arm_target->fix_cortex_a8())
6311     {
6312       const unsigned char* p = pshdrs + shdr_size;
6313       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6314         {
6315           const elfcpp::Shdr<32, big_endian> shdr(p);
6316           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6317                                                           out_sections[i],
6318                                                           symtab))
6319             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6320                                                      arm_target);
6321         }
6322     }
6323
6324   // After we've done the relocations, we release the hash tables,
6325   // since we no longer need them.
6326   this->free_input_to_output_maps();
6327 }
6328
6329 // Count the local symbols.  The ARM backend needs to know if a symbol
6330 // is a THUMB function or not.  For global symbols, it is easy because
6331 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6332 // harder because we cannot access this information.   So we override the
6333 // do_count_local_symbol in parent and scan local symbols to mark
6334 // THUMB functions.  This is not the most efficient way but I do not want to
6335 // slow down other ports by calling a per symbol target hook inside
6336 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6337
6338 template<bool big_endian>
6339 void
6340 Arm_relobj<big_endian>::do_count_local_symbols(
6341     Stringpool_template<char>* pool,
6342     Stringpool_template<char>* dynpool)
6343 {
6344   // We need to fix-up the values of any local symbols whose type are
6345   // STT_ARM_TFUNC.
6346
6347   // Ask parent to count the local symbols.
6348   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6349   const unsigned int loccount = this->local_symbol_count();
6350   if (loccount == 0)
6351     return;
6352
6353   // Initialize the thumb function bit-vector.
6354   std::vector<bool> empty_vector(loccount, false);
6355   this->local_symbol_is_thumb_function_.swap(empty_vector);
6356
6357   // Read the symbol table section header.
6358   const unsigned int symtab_shndx = this->symtab_shndx();
6359   elfcpp::Shdr<32, big_endian>
6360       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6361   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6362
6363   // Read the local symbols.
6364   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6365   gold_assert(loccount == symtabshdr.get_sh_info());
6366   off_t locsize = loccount * sym_size;
6367   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6368                                               locsize, true, true);
6369
6370   // For mapping symbol processing, we need to read the symbol names.
6371   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6372   if (strtab_shndx >= this->shnum())
6373     {
6374       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6375       return;
6376     }
6377
6378   elfcpp::Shdr<32, big_endian>
6379     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6380   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6381     {
6382       this->error(_("symbol table name section has wrong type: %u"),
6383                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6384       return;
6385     }
6386   const char* pnames =
6387     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6388                                                  strtabshdr.get_sh_size(),
6389                                                  false, false));
6390
6391   // Loop over the local symbols and mark any local symbols pointing
6392   // to THUMB functions.
6393
6394   // Skip the first dummy symbol.
6395   psyms += sym_size;
6396   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6397     this->local_values();
6398   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6399     {
6400       elfcpp::Sym<32, big_endian> sym(psyms);
6401       elfcpp::STT st_type = sym.get_st_type();
6402       Symbol_value<32>& lv((*plocal_values)[i]);
6403       Arm_address input_value = lv.input_value();
6404
6405       // Check to see if this is a mapping symbol.
6406       const char* sym_name = pnames + sym.get_st_name();
6407       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6408         {
6409           bool is_ordinary;
6410           unsigned int input_shndx =
6411             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6412           gold_assert(is_ordinary);
6413
6414           // Strip of LSB in case this is a THUMB symbol.
6415           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6416           this->mapping_symbols_info_[msp] = sym_name[1];
6417         }
6418
6419       if (st_type == elfcpp::STT_ARM_TFUNC
6420           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6421         {
6422           // This is a THUMB function.  Mark this and canonicalize the
6423           // symbol value by setting LSB.
6424           this->local_symbol_is_thumb_function_[i] = true;
6425           if ((input_value & 1) == 0)
6426             lv.set_input_value(input_value | 1);
6427         }
6428     }
6429 }
6430
6431 // Relocate sections.
6432 template<bool big_endian>
6433 void
6434 Arm_relobj<big_endian>::do_relocate_sections(
6435     const Symbol_table* symtab,
6436     const Layout* layout,
6437     const unsigned char* pshdrs,
6438     Output_file* of,
6439     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6440 {
6441   // Call parent to relocate sections.
6442   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6443                                                           pshdrs, of, pviews);
6444
6445   // We do not generate stubs if doing a relocatable link.
6446   if (parameters->options().relocatable())
6447     return;
6448
6449   // Relocate stub tables.
6450   unsigned int shnum = this->shnum();
6451
6452   Target_arm<big_endian>* arm_target =
6453     Target_arm<big_endian>::default_target();
6454
6455   Relocate_info<32, big_endian> relinfo;
6456   relinfo.symtab = symtab;
6457   relinfo.layout = layout;
6458   relinfo.object = this;
6459
6460   for (unsigned int i = 1; i < shnum; ++i)
6461     {
6462       Arm_input_section<big_endian>* arm_input_section =
6463         arm_target->find_arm_input_section(this, i);
6464
6465       if (arm_input_section != NULL
6466           && arm_input_section->is_stub_table_owner()
6467           && !arm_input_section->stub_table()->empty())
6468         {
6469           // We cannot discard a section if it owns a stub table.
6470           Output_section* os = this->output_section(i);
6471           gold_assert(os != NULL);
6472
6473           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6474           relinfo.reloc_shdr = NULL;
6475           relinfo.data_shndx = i;
6476           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6477
6478           gold_assert((*pviews)[i].view != NULL);
6479
6480           // We are passed the output section view.  Adjust it to cover the
6481           // stub table only.
6482           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6483           gold_assert((stub_table->address() >= (*pviews)[i].address)
6484                       && ((stub_table->address() + stub_table->data_size())
6485                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6486
6487           off_t offset = stub_table->address() - (*pviews)[i].address;
6488           unsigned char* view = (*pviews)[i].view + offset;
6489           Arm_address address = stub_table->address();
6490           section_size_type view_size = stub_table->data_size();
6491
6492           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6493                                      view_size);
6494         }
6495
6496       // Apply Cortex A8 workaround if applicable.
6497       if (this->section_has_cortex_a8_workaround(i))
6498         {
6499           unsigned char* view = (*pviews)[i].view;
6500           Arm_address view_address = (*pviews)[i].address;
6501           section_size_type view_size = (*pviews)[i].view_size;
6502           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6503
6504           // Adjust view to cover section.
6505           Output_section* os = this->output_section(i);
6506           gold_assert(os != NULL);
6507           Arm_address section_address =
6508             this->simple_input_section_output_address(i, os);
6509           uint64_t section_size = this->section_size(i);
6510
6511           gold_assert(section_address >= view_address
6512                       && ((section_address + section_size)
6513                           <= (view_address + view_size)));
6514
6515           unsigned char* section_view = view + (section_address - view_address);
6516
6517           // Apply the Cortex-A8 workaround to the output address range
6518           // corresponding to this input section.
6519           stub_table->apply_cortex_a8_workaround_to_address_range(
6520               arm_target,
6521               section_view,
6522               section_address,
6523               section_size);
6524         }
6525     }
6526 }
6527
6528 // Find the linked text section of an EXIDX section by looking at the first
6529 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6530 // must be linked to its associated code section via the sh_link field of
6531 // its section header.  However, some tools are broken and the link is not
6532 // always set.  LD just drops such an EXIDX section silently, causing the
6533 // associated code not unwindabled.   Here we try a little bit harder to
6534 // discover the linked code section.
6535 //
6536 // PSHDR points to the section header of a relocation section of an EXIDX
6537 // section.  If we can find a linked text section, return true and
6538 // store the text section index in the location PSHNDX.  Otherwise
6539 // return false.
6540
6541 template<bool big_endian>
6542 bool
6543 Arm_relobj<big_endian>::find_linked_text_section(
6544     const unsigned char* pshdr,
6545     const unsigned char* psyms,
6546     unsigned int* pshndx)
6547 {
6548   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6549
6550   // If there is no relocation, we cannot find the linked text section.
6551   size_t reloc_size;
6552   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6553       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6554   else
6555       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6556   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6557
6558   // Get the relocations.
6559   const unsigned char* prelocs =
6560       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6561
6562   // Find the REL31 relocation for the first word of the first EXIDX entry.
6563   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6564     {
6565       Arm_address r_offset;
6566       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6567       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6568         {
6569           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6570           r_info = reloc.get_r_info();
6571           r_offset = reloc.get_r_offset();
6572         }
6573       else
6574         {
6575           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6576           r_info = reloc.get_r_info();
6577           r_offset = reloc.get_r_offset();
6578         }
6579
6580       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6581       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6582         continue;
6583
6584       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6585       if (r_sym == 0
6586           || r_sym >= this->local_symbol_count()
6587           || r_offset != 0)
6588         continue;
6589
6590       // This is the relocation for the first word of the first EXIDX entry.
6591       // We expect to see a local section symbol.
6592       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6593       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6594       if (sym.get_st_type() == elfcpp::STT_SECTION)
6595         {
6596           bool is_ordinary;
6597           *pshndx =
6598             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6599           gold_assert(is_ordinary);
6600           return true;
6601         }
6602       else
6603         return false;
6604     }
6605
6606   return false;
6607 }
6608
6609 // Make an EXIDX input section object for an EXIDX section whose index is
6610 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6611 // is the section index of the linked text section.
6612
6613 template<bool big_endian>
6614 void
6615 Arm_relobj<big_endian>::make_exidx_input_section(
6616     unsigned int shndx,
6617     const elfcpp::Shdr<32, big_endian>& shdr,
6618     unsigned int text_shndx,
6619     const elfcpp::Shdr<32, big_endian>& text_shdr)
6620 {
6621   // Create an Arm_exidx_input_section object for this EXIDX section.
6622   Arm_exidx_input_section* exidx_input_section =
6623     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6624                                 shdr.get_sh_addralign(),
6625                                 text_shdr.get_sh_size());
6626
6627   gold_assert(this->exidx_section_map_[shndx] == NULL);
6628   this->exidx_section_map_[shndx] = exidx_input_section;
6629
6630   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6631     {
6632       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6633                  this->section_name(shndx).c_str(), shndx, text_shndx,
6634                  this->name().c_str());
6635       exidx_input_section->set_has_errors();
6636     }
6637   else if (this->exidx_section_map_[text_shndx] != NULL)
6638     {
6639       unsigned other_exidx_shndx =
6640         this->exidx_section_map_[text_shndx]->shndx();
6641       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6642                    "%s(%u) in %s"),
6643                  this->section_name(shndx).c_str(), shndx,
6644                  this->section_name(other_exidx_shndx).c_str(),
6645                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6646                  text_shndx, this->name().c_str());
6647       exidx_input_section->set_has_errors();
6648     }
6649   else
6650      this->exidx_section_map_[text_shndx] = exidx_input_section;
6651
6652   // Check section flags of text section.
6653   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6654     {
6655       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6656                    " in %s"),
6657                  this->section_name(shndx).c_str(), shndx,
6658                  this->section_name(text_shndx).c_str(), text_shndx,
6659                  this->name().c_str());
6660       exidx_input_section->set_has_errors();
6661     }
6662   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6663     // I would like to make this an error but currently ld just ignores
6664     // this.
6665     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6666                    "%s(%u) in %s"),
6667                  this->section_name(shndx).c_str(), shndx,
6668                  this->section_name(text_shndx).c_str(), text_shndx,
6669                  this->name().c_str());
6670 }
6671
6672 // Read the symbol information.
6673
6674 template<bool big_endian>
6675 void
6676 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6677 {
6678   // Call parent class to read symbol information.
6679   Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6680
6681   // If this input file is a binary file, it has no processor
6682   // specific flags and attributes section.
6683   Input_file::Format format = this->input_file()->format();
6684   if (format != Input_file::FORMAT_ELF)
6685     {
6686       gold_assert(format == Input_file::FORMAT_BINARY);
6687       this->merge_flags_and_attributes_ = false;
6688       return;
6689     }
6690
6691   // Read processor-specific flags in ELF file header.
6692   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6693                                               elfcpp::Elf_sizes<32>::ehdr_size,
6694                                               true, false);
6695   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6696   this->processor_specific_flags_ = ehdr.get_e_flags();
6697
6698   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6699   // sections.
6700   std::vector<unsigned int> deferred_exidx_sections;
6701   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6702   const unsigned char* pshdrs = sd->section_headers->data();
6703   const unsigned char* ps = pshdrs + shdr_size;
6704   bool must_merge_flags_and_attributes = false;
6705   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6706     {
6707       elfcpp::Shdr<32, big_endian> shdr(ps);
6708
6709       // Sometimes an object has no contents except the section name string
6710       // table and an empty symbol table with the undefined symbol.  We
6711       // don't want to merge processor-specific flags from such an object.
6712       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6713         {
6714           // Symbol table is not empty.
6715           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6716              elfcpp::Elf_sizes<32>::sym_size;
6717           if (shdr.get_sh_size() > sym_size)
6718             must_merge_flags_and_attributes = true;
6719         }
6720       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6721         // If this is neither an empty symbol table nor a string table,
6722         // be conservative.
6723         must_merge_flags_and_attributes = true;
6724
6725       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6726         {
6727           gold_assert(this->attributes_section_data_ == NULL);
6728           section_offset_type section_offset = shdr.get_sh_offset();
6729           section_size_type section_size =
6730             convert_to_section_size_type(shdr.get_sh_size());
6731           const unsigned char* view =
6732              this->get_view(section_offset, section_size, true, false);
6733           this->attributes_section_data_ =
6734             new Attributes_section_data(view, section_size);
6735         }
6736       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6737         {
6738           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6739           if (text_shndx == elfcpp::SHN_UNDEF)
6740             deferred_exidx_sections.push_back(i);
6741           else
6742             {
6743               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6744                                                      + text_shndx * shdr_size);
6745               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6746             }
6747           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6748           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6749             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6750                          this->section_name(i).c_str(), this->name().c_str());
6751         }
6752     }
6753
6754   // This is rare.
6755   if (!must_merge_flags_and_attributes)
6756     {
6757       gold_assert(deferred_exidx_sections.empty());
6758       this->merge_flags_and_attributes_ = false;
6759       return;
6760     }
6761
6762   // Some tools are broken and they do not set the link of EXIDX sections.
6763   // We look at the first relocation to figure out the linked sections.
6764   if (!deferred_exidx_sections.empty())
6765     {
6766       // We need to go over the section headers again to find the mapping
6767       // from sections being relocated to their relocation sections.  This is
6768       // a bit inefficient as we could do that in the loop above.  However,
6769       // we do not expect any deferred EXIDX sections normally.  So we do not
6770       // want to slow down the most common path.
6771       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6772       Reloc_map reloc_map;
6773       ps = pshdrs + shdr_size;
6774       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6775         {
6776           elfcpp::Shdr<32, big_endian> shdr(ps);
6777           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6778           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6779             {
6780               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6781               if (info_shndx >= this->shnum())
6782                 gold_error(_("relocation section %u has invalid info %u"),
6783                            i, info_shndx);
6784               Reloc_map::value_type value(info_shndx, i);
6785               std::pair<Reloc_map::iterator, bool> result =
6786                 reloc_map.insert(value);
6787               if (!result.second)
6788                 gold_error(_("section %u has multiple relocation sections "
6789                              "%u and %u"),
6790                            info_shndx, i, reloc_map[info_shndx]);
6791             }
6792         }
6793
6794       // Read the symbol table section header.
6795       const unsigned int symtab_shndx = this->symtab_shndx();
6796       elfcpp::Shdr<32, big_endian>
6797           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6798       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6799
6800       // Read the local symbols.
6801       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6802       const unsigned int loccount = this->local_symbol_count();
6803       gold_assert(loccount == symtabshdr.get_sh_info());
6804       off_t locsize = loccount * sym_size;
6805       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6806                                                   locsize, true, true);
6807
6808       // Process the deferred EXIDX sections.
6809       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6810         {
6811           unsigned int shndx = deferred_exidx_sections[i];
6812           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6813           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6814           Reloc_map::const_iterator it = reloc_map.find(shndx);
6815           if (it != reloc_map.end())
6816             find_linked_text_section(pshdrs + it->second * shdr_size,
6817                                      psyms, &text_shndx);
6818           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6819                                                  + text_shndx * shdr_size);
6820           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6821         }
6822     }
6823 }
6824
6825 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6826 // sections for unwinding.  These sections are referenced implicitly by
6827 // text sections linked in the section headers.  If we ignore these implicit
6828 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6829 // will be garbage-collected incorrectly.  Hence we override the same function
6830 // in the base class to handle these implicit references.
6831
6832 template<bool big_endian>
6833 void
6834 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6835                                              Layout* layout,
6836                                              Read_relocs_data* rd)
6837 {
6838   // First, call base class method to process relocations in this object.
6839   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6840
6841   // If --gc-sections is not specified, there is nothing more to do.
6842   // This happens when --icf is used but --gc-sections is not.
6843   if (!parameters->options().gc_sections())
6844     return;
6845
6846   unsigned int shnum = this->shnum();
6847   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6848   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6849                                                shnum * shdr_size,
6850                                                true, true);
6851
6852   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6853   // to these from the linked text sections.
6854   const unsigned char* ps = pshdrs + shdr_size;
6855   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6856     {
6857       elfcpp::Shdr<32, big_endian> shdr(ps);
6858       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6859         {
6860           // Found an .ARM.exidx section, add it to the set of reachable
6861           // sections from its linked text section.
6862           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6863           symtab->gc()->add_reference(this, text_shndx, this, i);
6864         }
6865     }
6866 }
6867
6868 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6869 // symbols  will be removed in output.  Adjust output local symbol count
6870 // accordingly.  We can only changed the static output local symbol count.  It
6871 // is too late to change the dynamic symbols.
6872
6873 template<bool big_endian>
6874 void
6875 Arm_relobj<big_endian>::update_output_local_symbol_count()
6876 {
6877   // Caller should check that this needs updating.  We want caller checking
6878   // because output_local_symbol_count_needs_update() is most likely inlined.
6879   gold_assert(this->output_local_symbol_count_needs_update_);
6880
6881   gold_assert(this->symtab_shndx() != -1U);
6882   if (this->symtab_shndx() == 0)
6883     {
6884       // This object has no symbols.  Weird but legal.
6885       return;
6886     }
6887
6888   // Read the symbol table section header.
6889   const unsigned int symtab_shndx = this->symtab_shndx();
6890   elfcpp::Shdr<32, big_endian>
6891     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6892   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6893
6894   // Read the local symbols.
6895   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6896   const unsigned int loccount = this->local_symbol_count();
6897   gold_assert(loccount == symtabshdr.get_sh_info());
6898   off_t locsize = loccount * sym_size;
6899   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6900                                               locsize, true, true);
6901
6902   // Loop over the local symbols.
6903
6904   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6905      Output_sections;
6906   const Output_sections& out_sections(this->output_sections());
6907   unsigned int shnum = this->shnum();
6908   unsigned int count = 0;
6909   // Skip the first, dummy, symbol.
6910   psyms += sym_size;
6911   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6912     {
6913       elfcpp::Sym<32, big_endian> sym(psyms);
6914
6915       Symbol_value<32>& lv((*this->local_values())[i]);
6916
6917       // This local symbol was already discarded by do_count_local_symbols.
6918       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6919         continue;
6920
6921       bool is_ordinary;
6922       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6923                                                   &is_ordinary);
6924
6925       if (shndx < shnum)
6926         {
6927           Output_section* os = out_sections[shndx];
6928
6929           // This local symbol no longer has an output section.  Discard it.
6930           if (os == NULL)
6931             {
6932               lv.set_no_output_symtab_entry();
6933               continue;
6934             }
6935
6936           // Currently we only discard parts of EXIDX input sections.
6937           // We explicitly check for a merged EXIDX input section to avoid
6938           // calling Output_section_data::output_offset unless necessary.
6939           if ((this->get_output_section_offset(shndx) == invalid_address)
6940               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6941             {
6942               section_offset_type output_offset =
6943                 os->output_offset(this, shndx, lv.input_value());
6944               if (output_offset == -1)
6945                 {
6946                   // This symbol is defined in a part of an EXIDX input section
6947                   // that is discarded due to entry merging.
6948                   lv.set_no_output_symtab_entry();
6949                   continue;
6950                 }
6951             }
6952         }
6953
6954       ++count;
6955     }
6956
6957   this->set_output_local_symbol_count(count);
6958   this->output_local_symbol_count_needs_update_ = false;
6959 }
6960
6961 // Arm_dynobj methods.
6962
6963 // Read the symbol information.
6964
6965 template<bool big_endian>
6966 void
6967 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6968 {
6969   // Call parent class to read symbol information.
6970   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6971
6972   // Read processor-specific flags in ELF file header.
6973   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6974                                               elfcpp::Elf_sizes<32>::ehdr_size,
6975                                               true, false);
6976   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6977   this->processor_specific_flags_ = ehdr.get_e_flags();
6978
6979   // Read the attributes section if there is one.
6980   // We read from the end because gas seems to put it near the end of
6981   // the section headers.
6982   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6983   const unsigned char* ps =
6984     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6985   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6986     {
6987       elfcpp::Shdr<32, big_endian> shdr(ps);
6988       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6989         {
6990           section_offset_type section_offset = shdr.get_sh_offset();
6991           section_size_type section_size =
6992             convert_to_section_size_type(shdr.get_sh_size());
6993           const unsigned char* view =
6994             this->get_view(section_offset, section_size, true, false);
6995           this->attributes_section_data_ =
6996             new Attributes_section_data(view, section_size);
6997           break;
6998         }
6999     }
7000 }
7001
7002 // Stub_addend_reader methods.
7003
7004 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7005
7006 template<bool big_endian>
7007 elfcpp::Elf_types<32>::Elf_Swxword
7008 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7009     unsigned int r_type,
7010     const unsigned char* view,
7011     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7012 {
7013   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7014
7015   switch (r_type)
7016     {
7017     case elfcpp::R_ARM_CALL:
7018     case elfcpp::R_ARM_JUMP24:
7019     case elfcpp::R_ARM_PLT32:
7020       {
7021         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7022         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7023         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7024         return Bits<26>::sign_extend32(val << 2);
7025       }
7026
7027     case elfcpp::R_ARM_THM_CALL:
7028     case elfcpp::R_ARM_THM_JUMP24:
7029     case elfcpp::R_ARM_THM_XPC22:
7030       {
7031         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7032         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7033         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7034         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7035         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7036       }
7037
7038     case elfcpp::R_ARM_THM_JUMP19:
7039       {
7040         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7041         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7042         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7043         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7044         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7045       }
7046
7047     default:
7048       gold_unreachable();
7049     }
7050 }
7051
7052 // Arm_output_data_got methods.
7053
7054 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7055 // The first one is initialized to be 1, which is the module index for
7056 // the main executable and the second one 0.  A reloc of the type
7057 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7058 // be applied by gold.  GSYM is a global symbol.
7059 //
7060 template<bool big_endian>
7061 void
7062 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7063     unsigned int got_type,
7064     Symbol* gsym)
7065 {
7066   if (gsym->has_got_offset(got_type))
7067     return;
7068
7069   // We are doing a static link.  Just mark it as belong to module 1,
7070   // the executable.
7071   unsigned int got_offset = this->add_constant(1);
7072   gsym->set_got_offset(got_type, got_offset);
7073   got_offset = this->add_constant(0);
7074   this->static_relocs_.push_back(Static_reloc(got_offset,
7075                                               elfcpp::R_ARM_TLS_DTPOFF32,
7076                                               gsym));
7077 }
7078
7079 // Same as the above but for a local symbol.
7080
7081 template<bool big_endian>
7082 void
7083 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7084   unsigned int got_type,
7085   Sized_relobj_file<32, big_endian>* object,
7086   unsigned int index)
7087 {
7088   if (object->local_has_got_offset(index, got_type))
7089     return;
7090
7091   // We are doing a static link.  Just mark it as belong to module 1,
7092   // the executable.
7093   unsigned int got_offset = this->add_constant(1);
7094   object->set_local_got_offset(index, got_type, got_offset);
7095   got_offset = this->add_constant(0);
7096   this->static_relocs_.push_back(Static_reloc(got_offset,
7097                                               elfcpp::R_ARM_TLS_DTPOFF32,
7098                                               object, index));
7099 }
7100
7101 template<bool big_endian>
7102 void
7103 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7104 {
7105   // Call parent to write out GOT.
7106   Output_data_got<32, big_endian>::do_write(of);
7107
7108   // We are done if there is no fix up.
7109   if (this->static_relocs_.empty())
7110     return;
7111
7112   gold_assert(parameters->doing_static_link());
7113
7114   const off_t offset = this->offset();
7115   const section_size_type oview_size =
7116     convert_to_section_size_type(this->data_size());
7117   unsigned char* const oview = of->get_output_view(offset, oview_size);
7118
7119   Output_segment* tls_segment = this->layout_->tls_segment();
7120   gold_assert(tls_segment != NULL);
7121
7122   // The thread pointer $tp points to the TCB, which is followed by the
7123   // TLS.  So we need to adjust $tp relative addressing by this amount.
7124   Arm_address aligned_tcb_size =
7125     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7126
7127   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7128     {
7129       Static_reloc& reloc(this->static_relocs_[i]);
7130
7131       Arm_address value;
7132       if (!reloc.symbol_is_global())
7133         {
7134           Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7135           const Symbol_value<32>* psymval =
7136             reloc.relobj()->local_symbol(reloc.index());
7137
7138           // We are doing static linking.  Issue an error and skip this
7139           // relocation if the symbol is undefined or in a discarded_section.
7140           bool is_ordinary;
7141           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7142           if ((shndx == elfcpp::SHN_UNDEF)
7143               || (is_ordinary
7144                   && shndx != elfcpp::SHN_UNDEF
7145                   && !object->is_section_included(shndx)
7146                   && !this->symbol_table_->is_section_folded(object, shndx)))
7147             {
7148               gold_error(_("undefined or discarded local symbol %u from "
7149                            " object %s in GOT"),
7150                          reloc.index(), reloc.relobj()->name().c_str());
7151               continue;
7152             }
7153
7154           value = psymval->value(object, 0);
7155         }
7156       else
7157         {
7158           const Symbol* gsym = reloc.symbol();
7159           gold_assert(gsym != NULL);
7160           if (gsym->is_forwarder())
7161             gsym = this->symbol_table_->resolve_forwards(gsym);
7162
7163           // We are doing static linking.  Issue an error and skip this
7164           // relocation if the symbol is undefined or in a discarded_section
7165           // unless it is a weakly_undefined symbol.
7166           if ((gsym->is_defined_in_discarded_section()
7167                || gsym->is_undefined())
7168               && !gsym->is_weak_undefined())
7169             {
7170               gold_error(_("undefined or discarded symbol %s in GOT"),
7171                          gsym->name());
7172               continue;
7173             }
7174
7175           if (!gsym->is_weak_undefined())
7176             {
7177               const Sized_symbol<32>* sym =
7178                 static_cast<const Sized_symbol<32>*>(gsym);
7179               value = sym->value();
7180             }
7181           else
7182               value = 0;
7183         }
7184
7185       unsigned got_offset = reloc.got_offset();
7186       gold_assert(got_offset < oview_size);
7187
7188       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7189       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7190       Valtype x;
7191       switch (reloc.r_type())
7192         {
7193         case elfcpp::R_ARM_TLS_DTPOFF32:
7194           x = value;
7195           break;
7196         case elfcpp::R_ARM_TLS_TPOFF32:
7197           x = value + aligned_tcb_size;
7198           break;
7199         default:
7200           gold_unreachable();
7201         }
7202       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7203     }
7204
7205   of->write_output_view(offset, oview_size, oview);
7206 }
7207
7208 // A class to handle the PLT data.
7209 // This is an abstract base class that handles most of the linker details
7210 // but does not know the actual contents of PLT entries.  The derived
7211 // classes below fill in those details.
7212
7213 template<bool big_endian>
7214 class Output_data_plt_arm : public Output_section_data
7215 {
7216  public:
7217   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7218     Reloc_section;
7219
7220   Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7221
7222   // Add an entry to the PLT.
7223   void
7224   add_entry(Symbol* gsym);
7225
7226   // Return the .rel.plt section data.
7227   const Reloc_section*
7228   rel_plt() const
7229   { return this->rel_; }
7230
7231   // Return the number of PLT entries.
7232   unsigned int
7233   entry_count() const
7234   { return this->count_; }
7235
7236   // Return the offset of the first non-reserved PLT entry.
7237   unsigned int
7238   first_plt_entry_offset() const
7239   { return this->do_first_plt_entry_offset(); }
7240
7241   // Return the size of a PLT entry.
7242   unsigned int
7243   get_plt_entry_size() const
7244   { return this->do_get_plt_entry_size(); }
7245
7246  protected:
7247   // Fill in the first PLT entry.
7248   void
7249   fill_first_plt_entry(unsigned char* pov,
7250                        Arm_address got_address,
7251                        Arm_address plt_address)
7252   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7253
7254   void
7255   fill_plt_entry(unsigned char* pov,
7256                  Arm_address got_address,
7257                  Arm_address plt_address,
7258                  unsigned int got_offset,
7259                  unsigned int plt_offset)
7260   { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7261
7262   virtual unsigned int
7263   do_first_plt_entry_offset() const = 0;
7264
7265   virtual unsigned int
7266   do_get_plt_entry_size() const = 0;
7267
7268   virtual void
7269   do_fill_first_plt_entry(unsigned char* pov,
7270                           Arm_address got_address,
7271                           Arm_address plt_address) = 0;
7272
7273   virtual void
7274   do_fill_plt_entry(unsigned char* pov,
7275                     Arm_address got_address,
7276                     Arm_address plt_address,
7277                     unsigned int got_offset,
7278                     unsigned int plt_offset) = 0;
7279
7280   void
7281   do_adjust_output_section(Output_section* os);
7282
7283   // Write to a map file.
7284   void
7285   do_print_to_mapfile(Mapfile* mapfile) const
7286   { mapfile->print_output_data(this, _("** PLT")); }
7287
7288  private:
7289   // Set the final size.
7290   void
7291   set_final_data_size()
7292   {
7293     this->set_data_size(this->first_plt_entry_offset()
7294                         + this->count_ * this->get_plt_entry_size());
7295   }
7296
7297   // Write out the PLT data.
7298   void
7299   do_write(Output_file*);
7300
7301   // The reloc section.
7302   Reloc_section* rel_;
7303   // The .got.plt section.
7304   Output_data_space* got_plt_;
7305   // The number of PLT entries.
7306   unsigned int count_;
7307 };
7308
7309 // Create the PLT section.  The ordinary .got section is an argument,
7310 // since we need to refer to the start.  We also create our own .got
7311 // section just for PLT entries.
7312
7313 template<bool big_endian>
7314 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7315                                                      uint64_t addralign,
7316                                                      Output_data_space* got_plt)
7317   : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7318 {
7319   this->rel_ = new Reloc_section(false);
7320   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7321                                   elfcpp::SHF_ALLOC, this->rel_,
7322                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7323 }
7324
7325 template<bool big_endian>
7326 void
7327 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7328 {
7329   os->set_entsize(0);
7330 }
7331
7332 // Add an entry to the PLT.
7333
7334 template<bool big_endian>
7335 void
7336 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7337 {
7338   gold_assert(!gsym->has_plt_offset());
7339
7340   // Note that when setting the PLT offset we skip the initial
7341   // reserved PLT entry.
7342   gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7343                        + this->first_plt_entry_offset());
7344
7345   ++this->count_;
7346
7347   section_offset_type got_offset = this->got_plt_->current_data_size();
7348
7349   // Every PLT entry needs a GOT entry which points back to the PLT
7350   // entry (this will be changed by the dynamic linker, normally
7351   // lazily when the function is called).
7352   this->got_plt_->set_current_data_size(got_offset + 4);
7353
7354   // Every PLT entry needs a reloc.
7355   gsym->set_needs_dynsym_entry();
7356   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7357                          got_offset);
7358
7359   // Note that we don't need to save the symbol.  The contents of the
7360   // PLT are independent of which symbols are used.  The symbols only
7361   // appear in the relocations.
7362 }
7363
7364 template<bool big_endian>
7365 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7366 {
7367  public:
7368   Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7369     : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7370   { }
7371
7372  protected:
7373   // Return the offset of the first non-reserved PLT entry.
7374   virtual unsigned int
7375   do_first_plt_entry_offset() const
7376   { return sizeof(first_plt_entry); }
7377
7378   // Return the size of a PLT entry.
7379   virtual unsigned int
7380   do_get_plt_entry_size() const
7381   { return sizeof(plt_entry); }
7382
7383   virtual void
7384   do_fill_first_plt_entry(unsigned char* pov,
7385                           Arm_address got_address,
7386                           Arm_address plt_address);
7387
7388   virtual void
7389   do_fill_plt_entry(unsigned char* pov,
7390                     Arm_address got_address,
7391                     Arm_address plt_address,
7392                     unsigned int got_offset,
7393                     unsigned int plt_offset);
7394
7395  private:
7396   // Template for the first PLT entry.
7397   static const uint32_t first_plt_entry[5];
7398
7399   // Template for subsequent PLT entries.
7400   static const uint32_t plt_entry[3];
7401 };
7402
7403 // ARM PLTs.
7404 // FIXME:  This is not very flexible.  Right now this has only been tested
7405 // on armv5te.  If we are to support additional architecture features like
7406 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7407
7408 // The first entry in the PLT.
7409 template<bool big_endian>
7410 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7411 {
7412   0xe52de004,   // str   lr, [sp, #-4]!
7413   0xe59fe004,   // ldr   lr, [pc, #4]
7414   0xe08fe00e,   // add   lr, pc, lr
7415   0xe5bef008,   // ldr   pc, [lr, #8]!
7416   0x00000000,   // &GOT[0] - .
7417 };
7418
7419 template<bool big_endian>
7420 void
7421 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7422     unsigned char* pov,
7423     Arm_address got_address,
7424     Arm_address plt_address)
7425 {
7426   // Write first PLT entry.  All but the last word are constants.
7427   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7428                                       / sizeof(plt_entry[0]));
7429   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7430     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7431   // Last word in first PLT entry is &GOT[0] - .
7432   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7433                                          got_address - (plt_address + 16));
7434 }
7435
7436 // Subsequent entries in the PLT.
7437
7438 template<bool big_endian>
7439 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7440 {
7441   0xe28fc600,   // add   ip, pc, #0xNN00000
7442   0xe28cca00,   // add   ip, ip, #0xNN000
7443   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7444 };
7445
7446 template<bool big_endian>
7447 void
7448 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7449     unsigned char* pov,
7450     Arm_address got_address,
7451     Arm_address plt_address,
7452     unsigned int got_offset,
7453     unsigned int plt_offset)
7454 {
7455   int32_t offset = ((got_address + got_offset)
7456                     - (plt_address + plt_offset + 8));
7457
7458   gold_assert(offset >= 0 && offset < 0x0fffffff);
7459   uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7460   elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7461   uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7462   elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7463   uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7464   elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7465 }
7466
7467 // Write out the PLT.  This uses the hand-coded instructions above,
7468 // and adjusts them as needed.  This is all specified by the arm ELF
7469 // Processor Supplement.
7470
7471 template<bool big_endian>
7472 void
7473 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7474 {
7475   const off_t offset = this->offset();
7476   const section_size_type oview_size =
7477     convert_to_section_size_type(this->data_size());
7478   unsigned char* const oview = of->get_output_view(offset, oview_size);
7479
7480   const off_t got_file_offset = this->got_plt_->offset();
7481   const section_size_type got_size =
7482     convert_to_section_size_type(this->got_plt_->data_size());
7483   unsigned char* const got_view = of->get_output_view(got_file_offset,
7484                                                       got_size);
7485   unsigned char* pov = oview;
7486
7487   Arm_address plt_address = this->address();
7488   Arm_address got_address = this->got_plt_->address();
7489
7490   // Write first PLT entry.
7491   this->fill_first_plt_entry(pov, got_address, plt_address);
7492   pov += this->first_plt_entry_offset();
7493
7494   unsigned char* got_pov = got_view;
7495
7496   memset(got_pov, 0, 12);
7497   got_pov += 12;
7498
7499   unsigned int plt_offset = this->first_plt_entry_offset();
7500   unsigned int got_offset = 12;
7501   const unsigned int count = this->count_;
7502   for (unsigned int i = 0;
7503        i < count;
7504        ++i,
7505          pov += this->get_plt_entry_size(),
7506          got_pov += 4,
7507          plt_offset += this->get_plt_entry_size(),
7508          got_offset += 4)
7509     {
7510       // Set and adjust the PLT entry itself.
7511       this->fill_plt_entry(pov, got_address, plt_address,
7512                            got_offset, plt_offset);
7513
7514       // Set the entry in the GOT.
7515       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7516     }
7517
7518   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7519   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7520
7521   of->write_output_view(offset, oview_size, oview);
7522   of->write_output_view(got_file_offset, got_size, got_view);
7523 }
7524
7525 // Create a PLT entry for a global symbol.
7526
7527 template<bool big_endian>
7528 void
7529 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7530                                        Symbol* gsym)
7531 {
7532   if (gsym->has_plt_offset())
7533     return;
7534
7535   if (this->plt_ == NULL)
7536     {
7537       // Create the GOT sections first.
7538       this->got_section(symtab, layout);
7539
7540       this->plt_ = this->make_data_plt(layout, this->got_plt_);
7541
7542       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7543                                       (elfcpp::SHF_ALLOC
7544                                        | elfcpp::SHF_EXECINSTR),
7545                                       this->plt_, ORDER_PLT, false);
7546     }
7547   this->plt_->add_entry(gsym);
7548 }
7549
7550 // Return the number of entries in the PLT.
7551
7552 template<bool big_endian>
7553 unsigned int
7554 Target_arm<big_endian>::plt_entry_count() const
7555 {
7556   if (this->plt_ == NULL)
7557     return 0;
7558   return this->plt_->entry_count();
7559 }
7560
7561 // Return the offset of the first non-reserved PLT entry.
7562
7563 template<bool big_endian>
7564 unsigned int
7565 Target_arm<big_endian>::first_plt_entry_offset() const
7566 {
7567   return this->plt_->first_plt_entry_offset();
7568 }
7569
7570 // Return the size of each PLT entry.
7571
7572 template<bool big_endian>
7573 unsigned int
7574 Target_arm<big_endian>::plt_entry_size() const
7575 {
7576   return this->plt_->get_plt_entry_size();
7577 }
7578
7579 // Get the section to use for TLS_DESC relocations.
7580
7581 template<bool big_endian>
7582 typename Target_arm<big_endian>::Reloc_section*
7583 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7584 {
7585   return this->plt_section()->rel_tls_desc(layout);
7586 }
7587
7588 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7589
7590 template<bool big_endian>
7591 void
7592 Target_arm<big_endian>::define_tls_base_symbol(
7593     Symbol_table* symtab,
7594     Layout* layout)
7595 {
7596   if (this->tls_base_symbol_defined_)
7597     return;
7598
7599   Output_segment* tls_segment = layout->tls_segment();
7600   if (tls_segment != NULL)
7601     {
7602       bool is_exec = parameters->options().output_is_executable();
7603       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7604                                        Symbol_table::PREDEFINED,
7605                                        tls_segment, 0, 0,
7606                                        elfcpp::STT_TLS,
7607                                        elfcpp::STB_LOCAL,
7608                                        elfcpp::STV_HIDDEN, 0,
7609                                        (is_exec
7610                                         ? Symbol::SEGMENT_END
7611                                         : Symbol::SEGMENT_START),
7612                                        true);
7613     }
7614   this->tls_base_symbol_defined_ = true;
7615 }
7616
7617 // Create a GOT entry for the TLS module index.
7618
7619 template<bool big_endian>
7620 unsigned int
7621 Target_arm<big_endian>::got_mod_index_entry(
7622     Symbol_table* symtab,
7623     Layout* layout,
7624     Sized_relobj_file<32, big_endian>* object)
7625 {
7626   if (this->got_mod_index_offset_ == -1U)
7627     {
7628       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7629       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7630       unsigned int got_offset;
7631       if (!parameters->doing_static_link())
7632         {
7633           got_offset = got->add_constant(0);
7634           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7635           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7636                              got_offset);
7637         }
7638       else
7639         {
7640           // We are doing a static link.  Just mark it as belong to module 1,
7641           // the executable.
7642           got_offset = got->add_constant(1);
7643         }
7644
7645       got->add_constant(0);
7646       this->got_mod_index_offset_ = got_offset;
7647     }
7648   return this->got_mod_index_offset_;
7649 }
7650
7651 // Optimize the TLS relocation type based on what we know about the
7652 // symbol.  IS_FINAL is true if the final address of this symbol is
7653 // known at link time.
7654
7655 template<bool big_endian>
7656 tls::Tls_optimization
7657 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7658 {
7659   // FIXME: Currently we do not do any TLS optimization.
7660   return tls::TLSOPT_NONE;
7661 }
7662
7663 // Get the Reference_flags for a particular relocation.
7664
7665 template<bool big_endian>
7666 int
7667 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7668 {
7669   switch (r_type)
7670     {
7671     case elfcpp::R_ARM_NONE:
7672     case elfcpp::R_ARM_V4BX:
7673     case elfcpp::R_ARM_GNU_VTENTRY:
7674     case elfcpp::R_ARM_GNU_VTINHERIT:
7675       // No symbol reference.
7676       return 0;
7677
7678     case elfcpp::R_ARM_ABS32:
7679     case elfcpp::R_ARM_ABS16:
7680     case elfcpp::R_ARM_ABS12:
7681     case elfcpp::R_ARM_THM_ABS5:
7682     case elfcpp::R_ARM_ABS8:
7683     case elfcpp::R_ARM_BASE_ABS:
7684     case elfcpp::R_ARM_MOVW_ABS_NC:
7685     case elfcpp::R_ARM_MOVT_ABS:
7686     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7687     case elfcpp::R_ARM_THM_MOVT_ABS:
7688     case elfcpp::R_ARM_ABS32_NOI:
7689       return Symbol::ABSOLUTE_REF;
7690
7691     case elfcpp::R_ARM_REL32:
7692     case elfcpp::R_ARM_LDR_PC_G0:
7693     case elfcpp::R_ARM_SBREL32:
7694     case elfcpp::R_ARM_THM_PC8:
7695     case elfcpp::R_ARM_BASE_PREL:
7696     case elfcpp::R_ARM_MOVW_PREL_NC:
7697     case elfcpp::R_ARM_MOVT_PREL:
7698     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7699     case elfcpp::R_ARM_THM_MOVT_PREL:
7700     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7701     case elfcpp::R_ARM_THM_PC12:
7702     case elfcpp::R_ARM_REL32_NOI:
7703     case elfcpp::R_ARM_ALU_PC_G0_NC:
7704     case elfcpp::R_ARM_ALU_PC_G0:
7705     case elfcpp::R_ARM_ALU_PC_G1_NC:
7706     case elfcpp::R_ARM_ALU_PC_G1:
7707     case elfcpp::R_ARM_ALU_PC_G2:
7708     case elfcpp::R_ARM_LDR_PC_G1:
7709     case elfcpp::R_ARM_LDR_PC_G2:
7710     case elfcpp::R_ARM_LDRS_PC_G0:
7711     case elfcpp::R_ARM_LDRS_PC_G1:
7712     case elfcpp::R_ARM_LDRS_PC_G2:
7713     case elfcpp::R_ARM_LDC_PC_G0:
7714     case elfcpp::R_ARM_LDC_PC_G1:
7715     case elfcpp::R_ARM_LDC_PC_G2:
7716     case elfcpp::R_ARM_ALU_SB_G0_NC:
7717     case elfcpp::R_ARM_ALU_SB_G0:
7718     case elfcpp::R_ARM_ALU_SB_G1_NC:
7719     case elfcpp::R_ARM_ALU_SB_G1:
7720     case elfcpp::R_ARM_ALU_SB_G2:
7721     case elfcpp::R_ARM_LDR_SB_G0:
7722     case elfcpp::R_ARM_LDR_SB_G1:
7723     case elfcpp::R_ARM_LDR_SB_G2:
7724     case elfcpp::R_ARM_LDRS_SB_G0:
7725     case elfcpp::R_ARM_LDRS_SB_G1:
7726     case elfcpp::R_ARM_LDRS_SB_G2:
7727     case elfcpp::R_ARM_LDC_SB_G0:
7728     case elfcpp::R_ARM_LDC_SB_G1:
7729     case elfcpp::R_ARM_LDC_SB_G2:
7730     case elfcpp::R_ARM_MOVW_BREL_NC:
7731     case elfcpp::R_ARM_MOVT_BREL:
7732     case elfcpp::R_ARM_MOVW_BREL:
7733     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7734     case elfcpp::R_ARM_THM_MOVT_BREL:
7735     case elfcpp::R_ARM_THM_MOVW_BREL:
7736     case elfcpp::R_ARM_GOTOFF32:
7737     case elfcpp::R_ARM_GOTOFF12:
7738     case elfcpp::R_ARM_SBREL31:
7739       return Symbol::RELATIVE_REF;
7740
7741     case elfcpp::R_ARM_PLT32:
7742     case elfcpp::R_ARM_CALL:
7743     case elfcpp::R_ARM_JUMP24:
7744     case elfcpp::R_ARM_THM_CALL:
7745     case elfcpp::R_ARM_THM_JUMP24:
7746     case elfcpp::R_ARM_THM_JUMP19:
7747     case elfcpp::R_ARM_THM_JUMP6:
7748     case elfcpp::R_ARM_THM_JUMP11:
7749     case elfcpp::R_ARM_THM_JUMP8:
7750     // R_ARM_PREL31 is not used to relocate call/jump instructions but
7751     // in unwind tables. It may point to functions via PLTs.
7752     // So we treat it like call/jump relocations above.
7753     case elfcpp::R_ARM_PREL31:
7754       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7755
7756     case elfcpp::R_ARM_GOT_BREL:
7757     case elfcpp::R_ARM_GOT_ABS:
7758     case elfcpp::R_ARM_GOT_PREL:
7759       // Absolute in GOT.
7760       return Symbol::ABSOLUTE_REF;
7761
7762     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7763     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7764     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7765     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7766     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7767       return Symbol::TLS_REF;
7768
7769     case elfcpp::R_ARM_TARGET1:
7770     case elfcpp::R_ARM_TARGET2:
7771     case elfcpp::R_ARM_COPY:
7772     case elfcpp::R_ARM_GLOB_DAT:
7773     case elfcpp::R_ARM_JUMP_SLOT:
7774     case elfcpp::R_ARM_RELATIVE:
7775     case elfcpp::R_ARM_PC24:
7776     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7777     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7778     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7779     default:
7780       // Not expected.  We will give an error later.
7781       return 0;
7782     }
7783 }
7784
7785 // Report an unsupported relocation against a local symbol.
7786
7787 template<bool big_endian>
7788 void
7789 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7790     Sized_relobj_file<32, big_endian>* object,
7791     unsigned int r_type)
7792 {
7793   gold_error(_("%s: unsupported reloc %u against local symbol"),
7794              object->name().c_str(), r_type);
7795 }
7796
7797 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7798 // dynamic linker does not support it, issue an error.  The GNU linker
7799 // only issues a non-PIC error for an allocated read-only section.
7800 // Here we know the section is allocated, but we don't know that it is
7801 // read-only.  But we check for all the relocation types which the
7802 // glibc dynamic linker supports, so it seems appropriate to issue an
7803 // error even if the section is not read-only.
7804
7805 template<bool big_endian>
7806 void
7807 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7808                                             unsigned int r_type)
7809 {
7810   switch (r_type)
7811     {
7812     // These are the relocation types supported by glibc for ARM.
7813     case elfcpp::R_ARM_RELATIVE:
7814     case elfcpp::R_ARM_COPY:
7815     case elfcpp::R_ARM_GLOB_DAT:
7816     case elfcpp::R_ARM_JUMP_SLOT:
7817     case elfcpp::R_ARM_ABS32:
7818     case elfcpp::R_ARM_ABS32_NOI:
7819     case elfcpp::R_ARM_PC24:
7820     // FIXME: The following 3 types are not supported by Android's dynamic
7821     // linker.
7822     case elfcpp::R_ARM_TLS_DTPMOD32:
7823     case elfcpp::R_ARM_TLS_DTPOFF32:
7824     case elfcpp::R_ARM_TLS_TPOFF32:
7825       return;
7826
7827     default:
7828       {
7829         // This prevents us from issuing more than one error per reloc
7830         // section.  But we can still wind up issuing more than one
7831         // error per object file.
7832         if (this->issued_non_pic_error_)
7833           return;
7834         const Arm_reloc_property* reloc_property =
7835           arm_reloc_property_table->get_reloc_property(r_type);
7836         gold_assert(reloc_property != NULL);
7837         object->error(_("requires unsupported dynamic reloc %s; "
7838                       "recompile with -fPIC"),
7839                       reloc_property->name().c_str());
7840         this->issued_non_pic_error_ = true;
7841         return;
7842       }
7843
7844     case elfcpp::R_ARM_NONE:
7845       gold_unreachable();
7846     }
7847 }
7848
7849 // Scan a relocation for a local symbol.
7850 // FIXME: This only handles a subset of relocation types used by Android
7851 // on ARM v5te devices.
7852
7853 template<bool big_endian>
7854 inline void
7855 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7856                                     Layout* layout,
7857                                     Target_arm* target,
7858                                     Sized_relobj_file<32, big_endian>* object,
7859                                     unsigned int data_shndx,
7860                                     Output_section* output_section,
7861                                     const elfcpp::Rel<32, big_endian>& reloc,
7862                                     unsigned int r_type,
7863                                     const elfcpp::Sym<32, big_endian>& lsym,
7864                                     bool is_discarded)
7865 {
7866   if (is_discarded)
7867     return;
7868
7869   r_type = get_real_reloc_type(r_type);
7870   switch (r_type)
7871     {
7872     case elfcpp::R_ARM_NONE:
7873     case elfcpp::R_ARM_V4BX:
7874     case elfcpp::R_ARM_GNU_VTENTRY:
7875     case elfcpp::R_ARM_GNU_VTINHERIT:
7876       break;
7877
7878     case elfcpp::R_ARM_ABS32:
7879     case elfcpp::R_ARM_ABS32_NOI:
7880       // If building a shared library (or a position-independent
7881       // executable), we need to create a dynamic relocation for
7882       // this location. The relocation applied at link time will
7883       // apply the link-time value, so we flag the location with
7884       // an R_ARM_RELATIVE relocation so the dynamic loader can
7885       // relocate it easily.
7886       if (parameters->options().output_is_position_independent())
7887         {
7888           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7889           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7890           // If we are to add more other reloc types than R_ARM_ABS32,
7891           // we need to add check_non_pic(object, r_type) here.
7892           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7893                                       output_section, data_shndx,
7894                                       reloc.get_r_offset());
7895         }
7896       break;
7897
7898     case elfcpp::R_ARM_ABS16:
7899     case elfcpp::R_ARM_ABS12:
7900     case elfcpp::R_ARM_THM_ABS5:
7901     case elfcpp::R_ARM_ABS8:
7902     case elfcpp::R_ARM_BASE_ABS:
7903     case elfcpp::R_ARM_MOVW_ABS_NC:
7904     case elfcpp::R_ARM_MOVT_ABS:
7905     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7906     case elfcpp::R_ARM_THM_MOVT_ABS:
7907       // If building a shared library (or a position-independent
7908       // executable), we need to create a dynamic relocation for
7909       // this location. Because the addend needs to remain in the
7910       // data section, we need to be careful not to apply this
7911       // relocation statically.
7912       if (parameters->options().output_is_position_independent())
7913         {
7914           check_non_pic(object, r_type);
7915           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7916           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7917           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7918             rel_dyn->add_local(object, r_sym, r_type, output_section,
7919                                data_shndx, reloc.get_r_offset());
7920           else
7921             {
7922               gold_assert(lsym.get_st_value() == 0);
7923               unsigned int shndx = lsym.get_st_shndx();
7924               bool is_ordinary;
7925               shndx = object->adjust_sym_shndx(r_sym, shndx,
7926                                                &is_ordinary);
7927               if (!is_ordinary)
7928                 object->error(_("section symbol %u has bad shndx %u"),
7929                               r_sym, shndx);
7930               else
7931                 rel_dyn->add_local_section(object, shndx,
7932                                            r_type, output_section,
7933                                            data_shndx, reloc.get_r_offset());
7934             }
7935         }
7936       break;
7937
7938     case elfcpp::R_ARM_REL32:
7939     case elfcpp::R_ARM_LDR_PC_G0:
7940     case elfcpp::R_ARM_SBREL32:
7941     case elfcpp::R_ARM_THM_CALL:
7942     case elfcpp::R_ARM_THM_PC8:
7943     case elfcpp::R_ARM_BASE_PREL:
7944     case elfcpp::R_ARM_PLT32:
7945     case elfcpp::R_ARM_CALL:
7946     case elfcpp::R_ARM_JUMP24:
7947     case elfcpp::R_ARM_THM_JUMP24:
7948     case elfcpp::R_ARM_SBREL31:
7949     case elfcpp::R_ARM_PREL31:
7950     case elfcpp::R_ARM_MOVW_PREL_NC:
7951     case elfcpp::R_ARM_MOVT_PREL:
7952     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7953     case elfcpp::R_ARM_THM_MOVT_PREL:
7954     case elfcpp::R_ARM_THM_JUMP19:
7955     case elfcpp::R_ARM_THM_JUMP6:
7956     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7957     case elfcpp::R_ARM_THM_PC12:
7958     case elfcpp::R_ARM_REL32_NOI:
7959     case elfcpp::R_ARM_ALU_PC_G0_NC:
7960     case elfcpp::R_ARM_ALU_PC_G0:
7961     case elfcpp::R_ARM_ALU_PC_G1_NC:
7962     case elfcpp::R_ARM_ALU_PC_G1:
7963     case elfcpp::R_ARM_ALU_PC_G2:
7964     case elfcpp::R_ARM_LDR_PC_G1:
7965     case elfcpp::R_ARM_LDR_PC_G2:
7966     case elfcpp::R_ARM_LDRS_PC_G0:
7967     case elfcpp::R_ARM_LDRS_PC_G1:
7968     case elfcpp::R_ARM_LDRS_PC_G2:
7969     case elfcpp::R_ARM_LDC_PC_G0:
7970     case elfcpp::R_ARM_LDC_PC_G1:
7971     case elfcpp::R_ARM_LDC_PC_G2:
7972     case elfcpp::R_ARM_ALU_SB_G0_NC:
7973     case elfcpp::R_ARM_ALU_SB_G0:
7974     case elfcpp::R_ARM_ALU_SB_G1_NC:
7975     case elfcpp::R_ARM_ALU_SB_G1:
7976     case elfcpp::R_ARM_ALU_SB_G2:
7977     case elfcpp::R_ARM_LDR_SB_G0:
7978     case elfcpp::R_ARM_LDR_SB_G1:
7979     case elfcpp::R_ARM_LDR_SB_G2:
7980     case elfcpp::R_ARM_LDRS_SB_G0:
7981     case elfcpp::R_ARM_LDRS_SB_G1:
7982     case elfcpp::R_ARM_LDRS_SB_G2:
7983     case elfcpp::R_ARM_LDC_SB_G0:
7984     case elfcpp::R_ARM_LDC_SB_G1:
7985     case elfcpp::R_ARM_LDC_SB_G2:
7986     case elfcpp::R_ARM_MOVW_BREL_NC:
7987     case elfcpp::R_ARM_MOVT_BREL:
7988     case elfcpp::R_ARM_MOVW_BREL:
7989     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7990     case elfcpp::R_ARM_THM_MOVT_BREL:
7991     case elfcpp::R_ARM_THM_MOVW_BREL:
7992     case elfcpp::R_ARM_THM_JUMP11:
7993     case elfcpp::R_ARM_THM_JUMP8:
7994       // We don't need to do anything for a relative addressing relocation
7995       // against a local symbol if it does not reference the GOT.
7996       break;
7997
7998     case elfcpp::R_ARM_GOTOFF32:
7999     case elfcpp::R_ARM_GOTOFF12:
8000       // We need a GOT section:
8001       target->got_section(symtab, layout);
8002       break;
8003
8004     case elfcpp::R_ARM_GOT_BREL:
8005     case elfcpp::R_ARM_GOT_PREL:
8006       {
8007         // The symbol requires a GOT entry.
8008         Arm_output_data_got<big_endian>* got =
8009           target->got_section(symtab, layout);
8010         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8011         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8012           {
8013             // If we are generating a shared object, we need to add a
8014             // dynamic RELATIVE relocation for this symbol's GOT entry.
8015             if (parameters->options().output_is_position_independent())
8016               {
8017                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8018                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8019                 rel_dyn->add_local_relative(
8020                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8021                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8022               }
8023           }
8024       }
8025       break;
8026
8027     case elfcpp::R_ARM_TARGET1:
8028     case elfcpp::R_ARM_TARGET2:
8029       // This should have been mapped to another type already.
8030       // Fall through.
8031     case elfcpp::R_ARM_COPY:
8032     case elfcpp::R_ARM_GLOB_DAT:
8033     case elfcpp::R_ARM_JUMP_SLOT:
8034     case elfcpp::R_ARM_RELATIVE:
8035       // These are relocations which should only be seen by the
8036       // dynamic linker, and should never be seen here.
8037       gold_error(_("%s: unexpected reloc %u in object file"),
8038                  object->name().c_str(), r_type);
8039       break;
8040
8041
8042       // These are initial TLS relocs, which are expected when
8043       // linking.
8044     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8045     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8046     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8047     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8048     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8049       {
8050         bool output_is_shared = parameters->options().shared();
8051         const tls::Tls_optimization optimized_type
8052             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8053                                                          r_type);
8054         switch (r_type)
8055           {
8056           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8057             if (optimized_type == tls::TLSOPT_NONE)
8058               {
8059                 // Create a pair of GOT entries for the module index and
8060                 // dtv-relative offset.
8061                 Arm_output_data_got<big_endian>* got
8062                     = target->got_section(symtab, layout);
8063                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8064                 unsigned int shndx = lsym.get_st_shndx();
8065                 bool is_ordinary;
8066                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8067                 if (!is_ordinary)
8068                   {
8069                     object->error(_("local symbol %u has bad shndx %u"),
8070                                   r_sym, shndx);
8071                     break;
8072                   }
8073
8074                 if (!parameters->doing_static_link())
8075                   got->add_local_pair_with_rel(object, r_sym, shndx,
8076                                                GOT_TYPE_TLS_PAIR,
8077                                                target->rel_dyn_section(layout),
8078                                                elfcpp::R_ARM_TLS_DTPMOD32);
8079                 else
8080                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8081                                                       object, r_sym);
8082               }
8083             else
8084               // FIXME: TLS optimization not supported yet.
8085               gold_unreachable();
8086             break;
8087
8088           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8089             if (optimized_type == tls::TLSOPT_NONE)
8090               {
8091                 // Create a GOT entry for the module index.
8092                 target->got_mod_index_entry(symtab, layout, object);
8093               }
8094             else
8095               // FIXME: TLS optimization not supported yet.
8096               gold_unreachable();
8097             break;
8098
8099           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8100             break;
8101
8102           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8103             layout->set_has_static_tls();
8104             if (optimized_type == tls::TLSOPT_NONE)
8105               {
8106                 // Create a GOT entry for the tp-relative offset.
8107                 Arm_output_data_got<big_endian>* got
8108                   = target->got_section(symtab, layout);
8109                 unsigned int r_sym =
8110                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
8111                 if (!parameters->doing_static_link())
8112                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8113                                             target->rel_dyn_section(layout),
8114                                             elfcpp::R_ARM_TLS_TPOFF32);
8115                 else if (!object->local_has_got_offset(r_sym,
8116                                                        GOT_TYPE_TLS_OFFSET))
8117                   {
8118                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8119                     unsigned int got_offset =
8120                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8121                     got->add_static_reloc(got_offset,
8122                                           elfcpp::R_ARM_TLS_TPOFF32, object,
8123                                           r_sym);
8124                   }
8125               }
8126             else
8127               // FIXME: TLS optimization not supported yet.
8128               gold_unreachable();
8129             break;
8130
8131           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8132             layout->set_has_static_tls();
8133             if (output_is_shared)
8134               {
8135                 // We need to create a dynamic relocation.
8136                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8137                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8138                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8139                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8140                                    output_section, data_shndx,
8141                                    reloc.get_r_offset());
8142               }
8143             break;
8144
8145           default:
8146             gold_unreachable();
8147           }
8148       }
8149       break;
8150
8151     case elfcpp::R_ARM_PC24:
8152     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8153     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8154     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8155     default:
8156       unsupported_reloc_local(object, r_type);
8157       break;
8158     }
8159 }
8160
8161 // Report an unsupported relocation against a global symbol.
8162
8163 template<bool big_endian>
8164 void
8165 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8166     Sized_relobj_file<32, big_endian>* object,
8167     unsigned int r_type,
8168     Symbol* gsym)
8169 {
8170   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8171              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8172 }
8173
8174 template<bool big_endian>
8175 inline bool
8176 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8177     unsigned int r_type)
8178 {
8179   switch (r_type)
8180     {
8181     case elfcpp::R_ARM_PC24:
8182     case elfcpp::R_ARM_THM_CALL:
8183     case elfcpp::R_ARM_PLT32:
8184     case elfcpp::R_ARM_CALL:
8185     case elfcpp::R_ARM_JUMP24:
8186     case elfcpp::R_ARM_THM_JUMP24:
8187     case elfcpp::R_ARM_SBREL31:
8188     case elfcpp::R_ARM_PREL31:
8189     case elfcpp::R_ARM_THM_JUMP19:
8190     case elfcpp::R_ARM_THM_JUMP6:
8191     case elfcpp::R_ARM_THM_JUMP11:
8192     case elfcpp::R_ARM_THM_JUMP8:
8193       // All the relocations above are branches except SBREL31 and PREL31.
8194       return false;
8195
8196     default:
8197       // Be conservative and assume this is a function pointer.
8198       return true;
8199     }
8200 }
8201
8202 template<bool big_endian>
8203 inline bool
8204 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8205   Symbol_table*,
8206   Layout*,
8207   Target_arm<big_endian>* target,
8208   Sized_relobj_file<32, big_endian>*,
8209   unsigned int,
8210   Output_section*,
8211   const elfcpp::Rel<32, big_endian>&,
8212   unsigned int r_type,
8213   const elfcpp::Sym<32, big_endian>&)
8214 {
8215   r_type = target->get_real_reloc_type(r_type);
8216   return possible_function_pointer_reloc(r_type);
8217 }
8218
8219 template<bool big_endian>
8220 inline bool
8221 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8222   Symbol_table*,
8223   Layout*,
8224   Target_arm<big_endian>* target,
8225   Sized_relobj_file<32, big_endian>*,
8226   unsigned int,
8227   Output_section*,
8228   const elfcpp::Rel<32, big_endian>&,
8229   unsigned int r_type,
8230   Symbol* gsym)
8231 {
8232   // GOT is not a function.
8233   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8234     return false;
8235
8236   r_type = target->get_real_reloc_type(r_type);
8237   return possible_function_pointer_reloc(r_type);
8238 }
8239
8240 // Scan a relocation for a global symbol.
8241
8242 template<bool big_endian>
8243 inline void
8244 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8245                                      Layout* layout,
8246                                      Target_arm* target,
8247                                      Sized_relobj_file<32, big_endian>* object,
8248                                      unsigned int data_shndx,
8249                                      Output_section* output_section,
8250                                      const elfcpp::Rel<32, big_endian>& reloc,
8251                                      unsigned int r_type,
8252                                      Symbol* gsym)
8253 {
8254   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8255   // section.  We check here to avoid creating a dynamic reloc against
8256   // _GLOBAL_OFFSET_TABLE_.
8257   if (!target->has_got_section()
8258       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8259     target->got_section(symtab, layout);
8260
8261   r_type = get_real_reloc_type(r_type);
8262   switch (r_type)
8263     {
8264     case elfcpp::R_ARM_NONE:
8265     case elfcpp::R_ARM_V4BX:
8266     case elfcpp::R_ARM_GNU_VTENTRY:
8267     case elfcpp::R_ARM_GNU_VTINHERIT:
8268       break;
8269
8270     case elfcpp::R_ARM_ABS32:
8271     case elfcpp::R_ARM_ABS16:
8272     case elfcpp::R_ARM_ABS12:
8273     case elfcpp::R_ARM_THM_ABS5:
8274     case elfcpp::R_ARM_ABS8:
8275     case elfcpp::R_ARM_BASE_ABS:
8276     case elfcpp::R_ARM_MOVW_ABS_NC:
8277     case elfcpp::R_ARM_MOVT_ABS:
8278     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8279     case elfcpp::R_ARM_THM_MOVT_ABS:
8280     case elfcpp::R_ARM_ABS32_NOI:
8281       // Absolute addressing relocations.
8282       {
8283         // Make a PLT entry if necessary.
8284         if (this->symbol_needs_plt_entry(gsym))
8285           {
8286             target->make_plt_entry(symtab, layout, gsym);
8287             // Since this is not a PC-relative relocation, we may be
8288             // taking the address of a function. In that case we need to
8289             // set the entry in the dynamic symbol table to the address of
8290             // the PLT entry.
8291             if (gsym->is_from_dynobj() && !parameters->options().shared())
8292               gsym->set_needs_dynsym_value();
8293           }
8294         // Make a dynamic relocation if necessary.
8295         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8296           {
8297             if (gsym->may_need_copy_reloc())
8298               {
8299                 target->copy_reloc(symtab, layout, object,
8300                                    data_shndx, output_section, gsym, reloc);
8301               }
8302             else if ((r_type == elfcpp::R_ARM_ABS32
8303                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8304                      && gsym->can_use_relative_reloc(false))
8305               {
8306                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8307                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8308                                              output_section, object,
8309                                              data_shndx, reloc.get_r_offset());
8310               }
8311             else
8312               {
8313                 check_non_pic(object, r_type);
8314                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8315                 rel_dyn->add_global(gsym, r_type, output_section, object,
8316                                     data_shndx, reloc.get_r_offset());
8317               }
8318           }
8319       }
8320       break;
8321
8322     case elfcpp::R_ARM_GOTOFF32:
8323     case elfcpp::R_ARM_GOTOFF12:
8324       // We need a GOT section.
8325       target->got_section(symtab, layout);
8326       break;
8327
8328     case elfcpp::R_ARM_REL32:
8329     case elfcpp::R_ARM_LDR_PC_G0:
8330     case elfcpp::R_ARM_SBREL32:
8331     case elfcpp::R_ARM_THM_PC8:
8332     case elfcpp::R_ARM_BASE_PREL:
8333     case elfcpp::R_ARM_MOVW_PREL_NC:
8334     case elfcpp::R_ARM_MOVT_PREL:
8335     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8336     case elfcpp::R_ARM_THM_MOVT_PREL:
8337     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8338     case elfcpp::R_ARM_THM_PC12:
8339     case elfcpp::R_ARM_REL32_NOI:
8340     case elfcpp::R_ARM_ALU_PC_G0_NC:
8341     case elfcpp::R_ARM_ALU_PC_G0:
8342     case elfcpp::R_ARM_ALU_PC_G1_NC:
8343     case elfcpp::R_ARM_ALU_PC_G1:
8344     case elfcpp::R_ARM_ALU_PC_G2:
8345     case elfcpp::R_ARM_LDR_PC_G1:
8346     case elfcpp::R_ARM_LDR_PC_G2:
8347     case elfcpp::R_ARM_LDRS_PC_G0:
8348     case elfcpp::R_ARM_LDRS_PC_G1:
8349     case elfcpp::R_ARM_LDRS_PC_G2:
8350     case elfcpp::R_ARM_LDC_PC_G0:
8351     case elfcpp::R_ARM_LDC_PC_G1:
8352     case elfcpp::R_ARM_LDC_PC_G2:
8353     case elfcpp::R_ARM_ALU_SB_G0_NC:
8354     case elfcpp::R_ARM_ALU_SB_G0:
8355     case elfcpp::R_ARM_ALU_SB_G1_NC:
8356     case elfcpp::R_ARM_ALU_SB_G1:
8357     case elfcpp::R_ARM_ALU_SB_G2:
8358     case elfcpp::R_ARM_LDR_SB_G0:
8359     case elfcpp::R_ARM_LDR_SB_G1:
8360     case elfcpp::R_ARM_LDR_SB_G2:
8361     case elfcpp::R_ARM_LDRS_SB_G0:
8362     case elfcpp::R_ARM_LDRS_SB_G1:
8363     case elfcpp::R_ARM_LDRS_SB_G2:
8364     case elfcpp::R_ARM_LDC_SB_G0:
8365     case elfcpp::R_ARM_LDC_SB_G1:
8366     case elfcpp::R_ARM_LDC_SB_G2:
8367     case elfcpp::R_ARM_MOVW_BREL_NC:
8368     case elfcpp::R_ARM_MOVT_BREL:
8369     case elfcpp::R_ARM_MOVW_BREL:
8370     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8371     case elfcpp::R_ARM_THM_MOVT_BREL:
8372     case elfcpp::R_ARM_THM_MOVW_BREL:
8373       // Relative addressing relocations.
8374       {
8375         // Make a dynamic relocation if necessary.
8376         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8377           {
8378             if (target->may_need_copy_reloc(gsym))
8379               {
8380                 target->copy_reloc(symtab, layout, object,
8381                                    data_shndx, output_section, gsym, reloc);
8382               }
8383             else
8384               {
8385                 check_non_pic(object, r_type);
8386                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8387                 rel_dyn->add_global(gsym, r_type, output_section, object,
8388                                     data_shndx, reloc.get_r_offset());
8389               }
8390           }
8391       }
8392       break;
8393
8394     case elfcpp::R_ARM_THM_CALL:
8395     case elfcpp::R_ARM_PLT32:
8396     case elfcpp::R_ARM_CALL:
8397     case elfcpp::R_ARM_JUMP24:
8398     case elfcpp::R_ARM_THM_JUMP24:
8399     case elfcpp::R_ARM_SBREL31:
8400     case elfcpp::R_ARM_PREL31:
8401     case elfcpp::R_ARM_THM_JUMP19:
8402     case elfcpp::R_ARM_THM_JUMP6:
8403     case elfcpp::R_ARM_THM_JUMP11:
8404     case elfcpp::R_ARM_THM_JUMP8:
8405       // All the relocation above are branches except for the PREL31 ones.
8406       // A PREL31 relocation can point to a personality function in a shared
8407       // library.  In that case we want to use a PLT because we want to
8408       // call the personality routine and the dynamic linkers we care about
8409       // do not support dynamic PREL31 relocations. An REL31 relocation may
8410       // point to a function whose unwinding behaviour is being described but
8411       // we will not mistakenly generate a PLT for that because we should use
8412       // a local section symbol.
8413
8414       // If the symbol is fully resolved, this is just a relative
8415       // local reloc.  Otherwise we need a PLT entry.
8416       if (gsym->final_value_is_known())
8417         break;
8418       // If building a shared library, we can also skip the PLT entry
8419       // if the symbol is defined in the output file and is protected
8420       // or hidden.
8421       if (gsym->is_defined()
8422           && !gsym->is_from_dynobj()
8423           && !gsym->is_preemptible())
8424         break;
8425       target->make_plt_entry(symtab, layout, gsym);
8426       break;
8427
8428     case elfcpp::R_ARM_GOT_BREL:
8429     case elfcpp::R_ARM_GOT_ABS:
8430     case elfcpp::R_ARM_GOT_PREL:
8431       {
8432         // The symbol requires a GOT entry.
8433         Arm_output_data_got<big_endian>* got =
8434           target->got_section(symtab, layout);
8435         if (gsym->final_value_is_known())
8436           got->add_global(gsym, GOT_TYPE_STANDARD);
8437         else
8438           {
8439             // If this symbol is not fully resolved, we need to add a
8440             // GOT entry with a dynamic relocation.
8441             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8442             if (gsym->is_from_dynobj()
8443                 || gsym->is_undefined()
8444                 || gsym->is_preemptible()
8445                 || (gsym->visibility() == elfcpp::STV_PROTECTED
8446                     && parameters->options().shared()))
8447               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8448                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8449             else
8450               {
8451                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8452                   rel_dyn->add_global_relative(
8453                       gsym, elfcpp::R_ARM_RELATIVE, got,
8454                       gsym->got_offset(GOT_TYPE_STANDARD));
8455               }
8456           }
8457       }
8458       break;
8459
8460     case elfcpp::R_ARM_TARGET1:
8461     case elfcpp::R_ARM_TARGET2:
8462       // These should have been mapped to other types already.
8463       // Fall through.
8464     case elfcpp::R_ARM_COPY:
8465     case elfcpp::R_ARM_GLOB_DAT:
8466     case elfcpp::R_ARM_JUMP_SLOT:
8467     case elfcpp::R_ARM_RELATIVE:
8468       // These are relocations which should only be seen by the
8469       // dynamic linker, and should never be seen here.
8470       gold_error(_("%s: unexpected reloc %u in object file"),
8471                  object->name().c_str(), r_type);
8472       break;
8473
8474       // These are initial tls relocs, which are expected when
8475       // linking.
8476     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8477     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8478     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8479     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8480     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8481       {
8482         const bool is_final = gsym->final_value_is_known();
8483         const tls::Tls_optimization optimized_type
8484             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8485         switch (r_type)
8486           {
8487           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8488             if (optimized_type == tls::TLSOPT_NONE)
8489               {
8490                 // Create a pair of GOT entries for the module index and
8491                 // dtv-relative offset.
8492                 Arm_output_data_got<big_endian>* got
8493                     = target->got_section(symtab, layout);
8494                 if (!parameters->doing_static_link())
8495                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8496                                                 target->rel_dyn_section(layout),
8497                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8498                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8499                 else
8500                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8501               }
8502             else
8503               // FIXME: TLS optimization not supported yet.
8504               gold_unreachable();
8505             break;
8506
8507           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8508             if (optimized_type == tls::TLSOPT_NONE)
8509               {
8510                 // Create a GOT entry for the module index.
8511                 target->got_mod_index_entry(symtab, layout, object);
8512               }
8513             else
8514               // FIXME: TLS optimization not supported yet.
8515               gold_unreachable();
8516             break;
8517
8518           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8519             break;
8520
8521           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8522             layout->set_has_static_tls();
8523             if (optimized_type == tls::TLSOPT_NONE)
8524               {
8525                 // Create a GOT entry for the tp-relative offset.
8526                 Arm_output_data_got<big_endian>* got
8527                   = target->got_section(symtab, layout);
8528                 if (!parameters->doing_static_link())
8529                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8530                                            target->rel_dyn_section(layout),
8531                                            elfcpp::R_ARM_TLS_TPOFF32);
8532                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8533                   {
8534                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8535                     unsigned int got_offset =
8536                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8537                     got->add_static_reloc(got_offset,
8538                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
8539                   }
8540               }
8541             else
8542               // FIXME: TLS optimization not supported yet.
8543               gold_unreachable();
8544             break;
8545
8546           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8547             layout->set_has_static_tls();
8548             if (parameters->options().shared())
8549               {
8550                 // We need to create a dynamic relocation.
8551                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8552                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8553                                     output_section, object,
8554                                     data_shndx, reloc.get_r_offset());
8555               }
8556             break;
8557
8558           default:
8559             gold_unreachable();
8560           }
8561       }
8562       break;
8563
8564     case elfcpp::R_ARM_PC24:
8565     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8566     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8567     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8568     default:
8569       unsupported_reloc_global(object, r_type, gsym);
8570       break;
8571     }
8572 }
8573
8574 // Process relocations for gc.
8575
8576 template<bool big_endian>
8577 void
8578 Target_arm<big_endian>::gc_process_relocs(
8579     Symbol_table* symtab,
8580     Layout* layout,
8581     Sized_relobj_file<32, big_endian>* object,
8582     unsigned int data_shndx,
8583     unsigned int,
8584     const unsigned char* prelocs,
8585     size_t reloc_count,
8586     Output_section* output_section,
8587     bool needs_special_offset_handling,
8588     size_t local_symbol_count,
8589     const unsigned char* plocal_symbols)
8590 {
8591   typedef Target_arm<big_endian> Arm;
8592   typedef typename Target_arm<big_endian>::Scan Scan;
8593
8594   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8595                           typename Target_arm::Relocatable_size_for_reloc>(
8596     symtab,
8597     layout,
8598     this,
8599     object,
8600     data_shndx,
8601     prelocs,
8602     reloc_count,
8603     output_section,
8604     needs_special_offset_handling,
8605     local_symbol_count,
8606     plocal_symbols);
8607 }
8608
8609 // Scan relocations for a section.
8610
8611 template<bool big_endian>
8612 void
8613 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8614                                     Layout* layout,
8615                                     Sized_relobj_file<32, big_endian>* object,
8616                                     unsigned int data_shndx,
8617                                     unsigned int sh_type,
8618                                     const unsigned char* prelocs,
8619                                     size_t reloc_count,
8620                                     Output_section* output_section,
8621                                     bool needs_special_offset_handling,
8622                                     size_t local_symbol_count,
8623                                     const unsigned char* plocal_symbols)
8624 {
8625   typedef typename Target_arm<big_endian>::Scan Scan;
8626   if (sh_type == elfcpp::SHT_RELA)
8627     {
8628       gold_error(_("%s: unsupported RELA reloc section"),
8629                  object->name().c_str());
8630       return;
8631     }
8632
8633   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8634     symtab,
8635     layout,
8636     this,
8637     object,
8638     data_shndx,
8639     prelocs,
8640     reloc_count,
8641     output_section,
8642     needs_special_offset_handling,
8643     local_symbol_count,
8644     plocal_symbols);
8645 }
8646
8647 // Finalize the sections.
8648
8649 template<bool big_endian>
8650 void
8651 Target_arm<big_endian>::do_finalize_sections(
8652     Layout* layout,
8653     const Input_objects* input_objects,
8654     Symbol_table*)
8655 {
8656   bool merged_any_attributes = false;
8657   // Merge processor-specific flags.
8658   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8659        p != input_objects->relobj_end();
8660        ++p)
8661     {
8662       Arm_relobj<big_endian>* arm_relobj =
8663         Arm_relobj<big_endian>::as_arm_relobj(*p);
8664       if (arm_relobj->merge_flags_and_attributes())
8665         {
8666           this->merge_processor_specific_flags(
8667               arm_relobj->name(),
8668               arm_relobj->processor_specific_flags());
8669           this->merge_object_attributes(arm_relobj->name().c_str(),
8670                                         arm_relobj->attributes_section_data());
8671           merged_any_attributes = true;
8672         }
8673     }
8674
8675   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8676        p != input_objects->dynobj_end();
8677        ++p)
8678     {
8679       Arm_dynobj<big_endian>* arm_dynobj =
8680         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8681       this->merge_processor_specific_flags(
8682           arm_dynobj->name(),
8683           arm_dynobj->processor_specific_flags());
8684       this->merge_object_attributes(arm_dynobj->name().c_str(),
8685                                     arm_dynobj->attributes_section_data());
8686       merged_any_attributes = true;
8687     }
8688
8689   // Create an empty uninitialized attribute section if we still don't have it
8690   // at this moment.  This happens if there is no attributes sections in all
8691   // inputs.
8692   if (this->attributes_section_data_ == NULL)
8693     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8694
8695   const Object_attribute* cpu_arch_attr =
8696     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8697   // Check if we need to use Cortex-A8 workaround.
8698   if (parameters->options().user_set_fix_cortex_a8())
8699     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8700   else
8701     {
8702       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8703       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8704       // profile.
8705       const Object_attribute* cpu_arch_profile_attr =
8706         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8707       this->fix_cortex_a8_ =
8708         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8709          && (cpu_arch_profile_attr->int_value() == 'A'
8710              || cpu_arch_profile_attr->int_value() == 0));
8711     }
8712
8713   // Check if we can use V4BX interworking.
8714   // The V4BX interworking stub contains BX instruction,
8715   // which is not specified for some profiles.
8716   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8717       && !this->may_use_v4t_interworking())
8718     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8719                  "the target profile does not support BX instruction"));
8720
8721   // Fill in some more dynamic tags.
8722   const Reloc_section* rel_plt = (this->plt_ == NULL
8723                                   ? NULL
8724                                   : this->plt_->rel_plt());
8725   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8726                                   this->rel_dyn_, true, false);
8727
8728   // Emit any relocs we saved in an attempt to avoid generating COPY
8729   // relocs.
8730   if (this->copy_relocs_.any_saved_relocs())
8731     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8732
8733   // Handle the .ARM.exidx section.
8734   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8735
8736   if (!parameters->options().relocatable())
8737     {
8738       if (exidx_section != NULL
8739           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8740         {
8741           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8742           // the .ARM.exidx section.
8743           if (!layout->script_options()->saw_phdrs_clause())
8744             {
8745               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8746                                                       0)
8747                           == NULL);
8748               Output_segment*  exidx_segment =
8749                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8750               exidx_segment->add_output_section_to_nonload(exidx_section,
8751                                                            elfcpp::PF_R);
8752             }
8753         }
8754     }
8755
8756   // Create an .ARM.attributes section if we have merged any attributes
8757   // from inputs.
8758   if (merged_any_attributes)
8759     {
8760       Output_attributes_section_data* attributes_section =
8761       new Output_attributes_section_data(*this->attributes_section_data_);
8762       layout->add_output_section_data(".ARM.attributes",
8763                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8764                                       attributes_section, ORDER_INVALID,
8765                                       false);
8766     }
8767
8768   // Fix up links in section EXIDX headers.
8769   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8770        p != layout->section_list().end();
8771        ++p)
8772     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8773       {
8774         Arm_output_section<big_endian>* os =
8775           Arm_output_section<big_endian>::as_arm_output_section(*p);
8776         os->set_exidx_section_link();
8777       }
8778 }
8779
8780 // Return whether a direct absolute static relocation needs to be applied.
8781 // In cases where Scan::local() or Scan::global() has created
8782 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8783 // of the relocation is carried in the data, and we must not
8784 // apply the static relocation.
8785
8786 template<bool big_endian>
8787 inline bool
8788 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8789     const Sized_symbol<32>* gsym,
8790     unsigned int r_type,
8791     bool is_32bit,
8792     Output_section* output_section)
8793 {
8794   // If the output section is not allocated, then we didn't call
8795   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8796   // the reloc here.
8797   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8798       return true;
8799
8800   int ref_flags = Scan::get_reference_flags(r_type);
8801
8802   // For local symbols, we will have created a non-RELATIVE dynamic
8803   // relocation only if (a) the output is position independent,
8804   // (b) the relocation is absolute (not pc- or segment-relative), and
8805   // (c) the relocation is not 32 bits wide.
8806   if (gsym == NULL)
8807     return !(parameters->options().output_is_position_independent()
8808              && (ref_flags & Symbol::ABSOLUTE_REF)
8809              && !is_32bit);
8810
8811   // For global symbols, we use the same helper routines used in the
8812   // scan pass.  If we did not create a dynamic relocation, or if we
8813   // created a RELATIVE dynamic relocation, we should apply the static
8814   // relocation.
8815   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8816   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8817                  && gsym->can_use_relative_reloc(ref_flags
8818                                                  & Symbol::FUNCTION_CALL);
8819   return !has_dyn || is_rel;
8820 }
8821
8822 // Perform a relocation.
8823
8824 template<bool big_endian>
8825 inline bool
8826 Target_arm<big_endian>::Relocate::relocate(
8827     const Relocate_info<32, big_endian>* relinfo,
8828     Target_arm* target,
8829     Output_section* output_section,
8830     size_t relnum,
8831     const elfcpp::Rel<32, big_endian>& rel,
8832     unsigned int r_type,
8833     const Sized_symbol<32>* gsym,
8834     const Symbol_value<32>* psymval,
8835     unsigned char* view,
8836     Arm_address address,
8837     section_size_type view_size)
8838 {
8839   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8840
8841   r_type = get_real_reloc_type(r_type);
8842   const Arm_reloc_property* reloc_property =
8843     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8844   if (reloc_property == NULL)
8845     {
8846       std::string reloc_name =
8847         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8848       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8849                              _("cannot relocate %s in object file"),
8850                              reloc_name.c_str());
8851       return true;
8852     }
8853
8854   const Arm_relobj<big_endian>* object =
8855     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8856
8857   // If the final branch target of a relocation is THUMB instruction, this
8858   // is 1.  Otherwise it is 0.
8859   Arm_address thumb_bit = 0;
8860   Symbol_value<32> symval;
8861   bool is_weakly_undefined_without_plt = false;
8862   bool have_got_offset = false;
8863   unsigned int got_offset = 0;
8864
8865   // If the relocation uses the GOT entry of a symbol instead of the symbol
8866   // itself, we don't care about whether the symbol is defined or what kind
8867   // of symbol it is.
8868   if (reloc_property->uses_got_entry())
8869     {
8870       // Get the GOT offset.
8871       // The GOT pointer points to the end of the GOT section.
8872       // We need to subtract the size of the GOT section to get
8873       // the actual offset to use in the relocation.
8874       // TODO: We should move GOT offset computing code in TLS relocations
8875       // to here.
8876       switch (r_type)
8877         {
8878         case elfcpp::R_ARM_GOT_BREL:
8879         case elfcpp::R_ARM_GOT_PREL:
8880           if (gsym != NULL)
8881             {
8882               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8883               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8884                             - target->got_size());
8885             }
8886           else
8887             {
8888               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8889               gold_assert(object->local_has_got_offset(r_sym,
8890                                                        GOT_TYPE_STANDARD));
8891               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8892                             - target->got_size());
8893             }
8894           have_got_offset = true;
8895           break;
8896
8897         default:
8898           break;
8899         }
8900     }
8901   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8902     {
8903       if (gsym != NULL)
8904         {
8905           // This is a global symbol.  Determine if we use PLT and if the
8906           // final target is THUMB.
8907           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8908             {
8909               // This uses a PLT, change the symbol value.
8910               symval.set_output_value(target->plt_section()->address()
8911                                       + gsym->plt_offset());
8912               psymval = &symval;
8913             }
8914           else if (gsym->is_weak_undefined())
8915             {
8916               // This is a weakly undefined symbol and we do not use PLT
8917               // for this relocation.  A branch targeting this symbol will
8918               // be converted into an NOP.
8919               is_weakly_undefined_without_plt = true;
8920             }
8921           else if (gsym->is_undefined() && reloc_property->uses_symbol())
8922             {
8923               // This relocation uses the symbol value but the symbol is
8924               // undefined.  Exit early and have the caller reporting an
8925               // error.
8926               return true;
8927             }
8928           else
8929             {
8930               // Set thumb bit if symbol:
8931               // -Has type STT_ARM_TFUNC or
8932               // -Has type STT_FUNC, is defined and with LSB in value set.
8933               thumb_bit =
8934                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8935                  || (gsym->type() == elfcpp::STT_FUNC
8936                      && !gsym->is_undefined()
8937                      && ((psymval->value(object, 0) & 1) != 0)))
8938                 ? 1
8939                 : 0);
8940             }
8941         }
8942       else
8943         {
8944           // This is a local symbol.  Determine if the final target is THUMB.
8945           // We saved this information when all the local symbols were read.
8946           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8947           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8948           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8949         }
8950     }
8951   else
8952     {
8953       // This is a fake relocation synthesized for a stub.  It does not have
8954       // a real symbol.  We just look at the LSB of the symbol value to
8955       // determine if the target is THUMB or not.
8956       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8957     }
8958
8959   // Strip LSB if this points to a THUMB target.
8960   if (thumb_bit != 0
8961       && reloc_property->uses_thumb_bit()
8962       && ((psymval->value(object, 0) & 1) != 0))
8963     {
8964       Arm_address stripped_value =
8965         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8966       symval.set_output_value(stripped_value);
8967       psymval = &symval;
8968     }
8969
8970   // To look up relocation stubs, we need to pass the symbol table index of
8971   // a local symbol.
8972   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8973
8974   // Get the addressing origin of the output segment defining the
8975   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8976   Arm_address sym_origin = 0;
8977   if (reloc_property->uses_symbol_base())
8978     {
8979       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8980         // R_ARM_BASE_ABS with the NULL symbol will give the
8981         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8982         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8983         sym_origin = target->got_plt_section()->address();
8984       else if (gsym == NULL)
8985         sym_origin = 0;
8986       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8987         sym_origin = gsym->output_segment()->vaddr();
8988       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8989         sym_origin = gsym->output_data()->address();
8990
8991       // TODO: Assumes the segment base to be zero for the global symbols
8992       // till the proper support for the segment-base-relative addressing
8993       // will be implemented.  This is consistent with GNU ld.
8994     }
8995
8996   // For relative addressing relocation, find out the relative address base.
8997   Arm_address relative_address_base = 0;
8998   switch(reloc_property->relative_address_base())
8999     {
9000     case Arm_reloc_property::RAB_NONE:
9001     // Relocations with relative address bases RAB_TLS and RAB_tp are
9002     // handled by relocate_tls.  So we do not need to do anything here.
9003     case Arm_reloc_property::RAB_TLS:
9004     case Arm_reloc_property::RAB_tp:
9005       break;
9006     case Arm_reloc_property::RAB_B_S:
9007       relative_address_base = sym_origin;
9008       break;
9009     case Arm_reloc_property::RAB_GOT_ORG:
9010       relative_address_base = target->got_plt_section()->address();
9011       break;
9012     case Arm_reloc_property::RAB_P:
9013       relative_address_base = address;
9014       break;
9015     case Arm_reloc_property::RAB_Pa:
9016       relative_address_base = address & 0xfffffffcU;
9017       break;
9018     default:
9019       gold_unreachable();
9020     }
9021
9022   typename Arm_relocate_functions::Status reloc_status =
9023         Arm_relocate_functions::STATUS_OKAY;
9024   bool check_overflow = reloc_property->checks_overflow();
9025   switch (r_type)
9026     {
9027     case elfcpp::R_ARM_NONE:
9028       break;
9029
9030     case elfcpp::R_ARM_ABS8:
9031       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9032         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9033       break;
9034
9035     case elfcpp::R_ARM_ABS12:
9036       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9037         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9038       break;
9039
9040     case elfcpp::R_ARM_ABS16:
9041       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9042         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9043       break;
9044
9045     case elfcpp::R_ARM_ABS32:
9046       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9047         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9048                                                      thumb_bit);
9049       break;
9050
9051     case elfcpp::R_ARM_ABS32_NOI:
9052       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9053         // No thumb bit for this relocation: (S + A)
9054         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9055                                                      0);
9056       break;
9057
9058     case elfcpp::R_ARM_MOVW_ABS_NC:
9059       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9060         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9061                                                     0, thumb_bit,
9062                                                     check_overflow);
9063       break;
9064
9065     case elfcpp::R_ARM_MOVT_ABS:
9066       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9067         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9068       break;
9069
9070     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9071       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9072         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9073                                                         0, thumb_bit, false);
9074       break;
9075
9076     case elfcpp::R_ARM_THM_MOVT_ABS:
9077       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9078         reloc_status = Arm_relocate_functions::thm_movt(view, object,
9079                                                         psymval, 0);
9080       break;
9081
9082     case elfcpp::R_ARM_MOVW_PREL_NC:
9083     case elfcpp::R_ARM_MOVW_BREL_NC:
9084     case elfcpp::R_ARM_MOVW_BREL:
9085       reloc_status =
9086         Arm_relocate_functions::movw(view, object, psymval,
9087                                      relative_address_base, thumb_bit,
9088                                      check_overflow);
9089       break;
9090
9091     case elfcpp::R_ARM_MOVT_PREL:
9092     case elfcpp::R_ARM_MOVT_BREL:
9093       reloc_status =
9094         Arm_relocate_functions::movt(view, object, psymval,
9095                                      relative_address_base);
9096       break;
9097
9098     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9099     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9100     case elfcpp::R_ARM_THM_MOVW_BREL:
9101       reloc_status =
9102         Arm_relocate_functions::thm_movw(view, object, psymval,
9103                                          relative_address_base,
9104                                          thumb_bit, check_overflow);
9105       break;
9106
9107     case elfcpp::R_ARM_THM_MOVT_PREL:
9108     case elfcpp::R_ARM_THM_MOVT_BREL:
9109       reloc_status =
9110         Arm_relocate_functions::thm_movt(view, object, psymval,
9111                                          relative_address_base);
9112       break;
9113
9114     case elfcpp::R_ARM_REL32:
9115       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9116                                                    address, thumb_bit);
9117       break;
9118
9119     case elfcpp::R_ARM_THM_ABS5:
9120       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9121         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9122       break;
9123
9124     // Thumb long branches.
9125     case elfcpp::R_ARM_THM_CALL:
9126     case elfcpp::R_ARM_THM_XPC22:
9127     case elfcpp::R_ARM_THM_JUMP24:
9128       reloc_status =
9129         Arm_relocate_functions::thumb_branch_common(
9130             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9131             thumb_bit, is_weakly_undefined_without_plt);
9132       break;
9133
9134     case elfcpp::R_ARM_GOTOFF32:
9135       {
9136         Arm_address got_origin;
9137         got_origin = target->got_plt_section()->address();
9138         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9139                                                      got_origin, thumb_bit);
9140       }
9141       break;
9142
9143     case elfcpp::R_ARM_BASE_PREL:
9144       gold_assert(gsym != NULL);
9145       reloc_status =
9146           Arm_relocate_functions::base_prel(view, sym_origin, address);
9147       break;
9148
9149     case elfcpp::R_ARM_BASE_ABS:
9150       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9151         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9152       break;
9153
9154     case elfcpp::R_ARM_GOT_BREL:
9155       gold_assert(have_got_offset);
9156       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9157       break;
9158
9159     case elfcpp::R_ARM_GOT_PREL:
9160       gold_assert(have_got_offset);
9161       // Get the address origin for GOT PLT, which is allocated right
9162       // after the GOT section, to calculate an absolute address of
9163       // the symbol GOT entry (got_origin + got_offset).
9164       Arm_address got_origin;
9165       got_origin = target->got_plt_section()->address();
9166       reloc_status = Arm_relocate_functions::got_prel(view,
9167                                                       got_origin + got_offset,
9168                                                       address);
9169       break;
9170
9171     case elfcpp::R_ARM_PLT32:
9172     case elfcpp::R_ARM_CALL:
9173     case elfcpp::R_ARM_JUMP24:
9174     case elfcpp::R_ARM_XPC25:
9175       gold_assert(gsym == NULL
9176                   || gsym->has_plt_offset()
9177                   || gsym->final_value_is_known()
9178                   || (gsym->is_defined()
9179                       && !gsym->is_from_dynobj()
9180                       && !gsym->is_preemptible()));
9181       reloc_status =
9182         Arm_relocate_functions::arm_branch_common(
9183             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9184             thumb_bit, is_weakly_undefined_without_plt);
9185       break;
9186
9187     case elfcpp::R_ARM_THM_JUMP19:
9188       reloc_status =
9189         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9190                                            thumb_bit);
9191       break;
9192
9193     case elfcpp::R_ARM_THM_JUMP6:
9194       reloc_status =
9195         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9196       break;
9197
9198     case elfcpp::R_ARM_THM_JUMP8:
9199       reloc_status =
9200         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9201       break;
9202
9203     case elfcpp::R_ARM_THM_JUMP11:
9204       reloc_status =
9205         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9206       break;
9207
9208     case elfcpp::R_ARM_PREL31:
9209       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9210                                                     address, thumb_bit);
9211       break;
9212
9213     case elfcpp::R_ARM_V4BX:
9214       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9215         {
9216           const bool is_v4bx_interworking =
9217               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9218           reloc_status =
9219             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9220                                          is_v4bx_interworking);
9221         }
9222       break;
9223
9224     case elfcpp::R_ARM_THM_PC8:
9225       reloc_status =
9226         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9227       break;
9228
9229     case elfcpp::R_ARM_THM_PC12:
9230       reloc_status =
9231         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9232       break;
9233
9234     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9235       reloc_status =
9236         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9237                                           thumb_bit);
9238       break;
9239
9240     case elfcpp::R_ARM_ALU_PC_G0_NC:
9241     case elfcpp::R_ARM_ALU_PC_G0:
9242     case elfcpp::R_ARM_ALU_PC_G1_NC:
9243     case elfcpp::R_ARM_ALU_PC_G1:
9244     case elfcpp::R_ARM_ALU_PC_G2:
9245     case elfcpp::R_ARM_ALU_SB_G0_NC:
9246     case elfcpp::R_ARM_ALU_SB_G0:
9247     case elfcpp::R_ARM_ALU_SB_G1_NC:
9248     case elfcpp::R_ARM_ALU_SB_G1:
9249     case elfcpp::R_ARM_ALU_SB_G2:
9250       reloc_status =
9251         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9252                                             reloc_property->group_index(),
9253                                             relative_address_base,
9254                                             thumb_bit, check_overflow);
9255       break;
9256
9257     case elfcpp::R_ARM_LDR_PC_G0:
9258     case elfcpp::R_ARM_LDR_PC_G1:
9259     case elfcpp::R_ARM_LDR_PC_G2:
9260     case elfcpp::R_ARM_LDR_SB_G0:
9261     case elfcpp::R_ARM_LDR_SB_G1:
9262     case elfcpp::R_ARM_LDR_SB_G2:
9263       reloc_status =
9264           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9265                                               reloc_property->group_index(),
9266                                               relative_address_base);
9267       break;
9268
9269     case elfcpp::R_ARM_LDRS_PC_G0:
9270     case elfcpp::R_ARM_LDRS_PC_G1:
9271     case elfcpp::R_ARM_LDRS_PC_G2:
9272     case elfcpp::R_ARM_LDRS_SB_G0:
9273     case elfcpp::R_ARM_LDRS_SB_G1:
9274     case elfcpp::R_ARM_LDRS_SB_G2:
9275       reloc_status =
9276           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9277                                                reloc_property->group_index(),
9278                                                relative_address_base);
9279       break;
9280
9281     case elfcpp::R_ARM_LDC_PC_G0:
9282     case elfcpp::R_ARM_LDC_PC_G1:
9283     case elfcpp::R_ARM_LDC_PC_G2:
9284     case elfcpp::R_ARM_LDC_SB_G0:
9285     case elfcpp::R_ARM_LDC_SB_G1:
9286     case elfcpp::R_ARM_LDC_SB_G2:
9287       reloc_status =
9288           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9289                                               reloc_property->group_index(),
9290                                               relative_address_base);
9291       break;
9292
9293       // These are initial tls relocs, which are expected when
9294       // linking.
9295     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9296     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9297     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9298     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9299     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9300       reloc_status =
9301         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9302                            view, address, view_size);
9303       break;
9304
9305     // The known and unknown unsupported and/or deprecated relocations.
9306     case elfcpp::R_ARM_PC24:
9307     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9308     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9309     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9310     default:
9311       // Just silently leave the method. We should get an appropriate error
9312       // message in the scan methods.
9313       break;
9314     }
9315
9316   // Report any errors.
9317   switch (reloc_status)
9318     {
9319     case Arm_relocate_functions::STATUS_OKAY:
9320       break;
9321     case Arm_relocate_functions::STATUS_OVERFLOW:
9322       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9323                              _("relocation overflow in %s"),
9324                              reloc_property->name().c_str());
9325       break;
9326     case Arm_relocate_functions::STATUS_BAD_RELOC:
9327       gold_error_at_location(
9328         relinfo,
9329         relnum,
9330         rel.get_r_offset(),
9331         _("unexpected opcode while processing relocation %s"),
9332         reloc_property->name().c_str());
9333       break;
9334     default:
9335       gold_unreachable();
9336     }
9337
9338   return true;
9339 }
9340
9341 // Perform a TLS relocation.
9342
9343 template<bool big_endian>
9344 inline typename Arm_relocate_functions<big_endian>::Status
9345 Target_arm<big_endian>::Relocate::relocate_tls(
9346     const Relocate_info<32, big_endian>* relinfo,
9347     Target_arm<big_endian>* target,
9348     size_t relnum,
9349     const elfcpp::Rel<32, big_endian>& rel,
9350     unsigned int r_type,
9351     const Sized_symbol<32>* gsym,
9352     const Symbol_value<32>* psymval,
9353     unsigned char* view,
9354     elfcpp::Elf_types<32>::Elf_Addr address,
9355     section_size_type /*view_size*/ )
9356 {
9357   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9358   typedef Relocate_functions<32, big_endian> RelocFuncs;
9359   Output_segment* tls_segment = relinfo->layout->tls_segment();
9360
9361   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9362
9363   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9364
9365   const bool is_final = (gsym == NULL
9366                          ? !parameters->options().shared()
9367                          : gsym->final_value_is_known());
9368   const tls::Tls_optimization optimized_type
9369       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9370   switch (r_type)
9371     {
9372     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9373         {
9374           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9375           unsigned int got_offset;
9376           if (gsym != NULL)
9377             {
9378               gold_assert(gsym->has_got_offset(got_type));
9379               got_offset = gsym->got_offset(got_type) - target->got_size();
9380             }
9381           else
9382             {
9383               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9384               gold_assert(object->local_has_got_offset(r_sym, got_type));
9385               got_offset = (object->local_got_offset(r_sym, got_type)
9386                             - target->got_size());
9387             }
9388           if (optimized_type == tls::TLSOPT_NONE)
9389             {
9390               Arm_address got_entry =
9391                 target->got_plt_section()->address() + got_offset;
9392
9393               // Relocate the field with the PC relative offset of the pair of
9394               // GOT entries.
9395               RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9396               return ArmRelocFuncs::STATUS_OKAY;
9397             }
9398         }
9399       break;
9400
9401     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9402       if (optimized_type == tls::TLSOPT_NONE)
9403         {
9404           // Relocate the field with the offset of the GOT entry for
9405           // the module index.
9406           unsigned int got_offset;
9407           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9408                         - target->got_size());
9409           Arm_address got_entry =
9410             target->got_plt_section()->address() + got_offset;
9411
9412           // Relocate the field with the PC relative offset of the pair of
9413           // GOT entries.
9414           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9415           return ArmRelocFuncs::STATUS_OKAY;
9416         }
9417       break;
9418
9419     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9420       RelocFuncs::rel32_unaligned(view, value);
9421       return ArmRelocFuncs::STATUS_OKAY;
9422
9423     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9424       if (optimized_type == tls::TLSOPT_NONE)
9425         {
9426           // Relocate the field with the offset of the GOT entry for
9427           // the tp-relative offset of the symbol.
9428           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9429           unsigned int got_offset;
9430           if (gsym != NULL)
9431             {
9432               gold_assert(gsym->has_got_offset(got_type));
9433               got_offset = gsym->got_offset(got_type);
9434             }
9435           else
9436             {
9437               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9438               gold_assert(object->local_has_got_offset(r_sym, got_type));
9439               got_offset = object->local_got_offset(r_sym, got_type);
9440             }
9441
9442           // All GOT offsets are relative to the end of the GOT.
9443           got_offset -= target->got_size();
9444
9445           Arm_address got_entry =
9446             target->got_plt_section()->address() + got_offset;
9447
9448           // Relocate the field with the PC relative offset of the GOT entry.
9449           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9450           return ArmRelocFuncs::STATUS_OKAY;
9451         }
9452       break;
9453
9454     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9455       // If we're creating a shared library, a dynamic relocation will
9456       // have been created for this location, so do not apply it now.
9457       if (!parameters->options().shared())
9458         {
9459           gold_assert(tls_segment != NULL);
9460
9461           // $tp points to the TCB, which is followed by the TLS, so we
9462           // need to add TCB size to the offset.
9463           Arm_address aligned_tcb_size =
9464             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9465           RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9466
9467         }
9468       return ArmRelocFuncs::STATUS_OKAY;
9469
9470     default:
9471       gold_unreachable();
9472     }
9473
9474   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9475                          _("unsupported reloc %u"),
9476                          r_type);
9477   return ArmRelocFuncs::STATUS_BAD_RELOC;
9478 }
9479
9480 // Relocate section data.
9481
9482 template<bool big_endian>
9483 void
9484 Target_arm<big_endian>::relocate_section(
9485     const Relocate_info<32, big_endian>* relinfo,
9486     unsigned int sh_type,
9487     const unsigned char* prelocs,
9488     size_t reloc_count,
9489     Output_section* output_section,
9490     bool needs_special_offset_handling,
9491     unsigned char* view,
9492     Arm_address address,
9493     section_size_type view_size,
9494     const Reloc_symbol_changes* reloc_symbol_changes)
9495 {
9496   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9497   gold_assert(sh_type == elfcpp::SHT_REL);
9498
9499   // See if we are relocating a relaxed input section.  If so, the view
9500   // covers the whole output section and we need to adjust accordingly.
9501   if (needs_special_offset_handling)
9502     {
9503       const Output_relaxed_input_section* poris =
9504         output_section->find_relaxed_input_section(relinfo->object,
9505                                                    relinfo->data_shndx);
9506       if (poris != NULL)
9507         {
9508           Arm_address section_address = poris->address();
9509           section_size_type section_size = poris->data_size();
9510
9511           gold_assert((section_address >= address)
9512                       && ((section_address + section_size)
9513                           <= (address + view_size)));
9514
9515           off_t offset = section_address - address;
9516           view += offset;
9517           address += offset;
9518           view_size = section_size;
9519         }
9520     }
9521
9522   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9523                          Arm_relocate, gold::Default_comdat_behavior>(
9524     relinfo,
9525     this,
9526     prelocs,
9527     reloc_count,
9528     output_section,
9529     needs_special_offset_handling,
9530     view,
9531     address,
9532     view_size,
9533     reloc_symbol_changes);
9534 }
9535
9536 // Return the size of a relocation while scanning during a relocatable
9537 // link.
9538
9539 template<bool big_endian>
9540 unsigned int
9541 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9542     unsigned int r_type,
9543     Relobj* object)
9544 {
9545   r_type = get_real_reloc_type(r_type);
9546   const Arm_reloc_property* arp =
9547       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9548   if (arp != NULL)
9549     return arp->size();
9550   else
9551     {
9552       std::string reloc_name =
9553         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9554       gold_error(_("%s: unexpected %s in object file"),
9555                  object->name().c_str(), reloc_name.c_str());
9556       return 0;
9557     }
9558 }
9559
9560 // Scan the relocs during a relocatable link.
9561
9562 template<bool big_endian>
9563 void
9564 Target_arm<big_endian>::scan_relocatable_relocs(
9565     Symbol_table* symtab,
9566     Layout* layout,
9567     Sized_relobj_file<32, big_endian>* object,
9568     unsigned int data_shndx,
9569     unsigned int sh_type,
9570     const unsigned char* prelocs,
9571     size_t reloc_count,
9572     Output_section* output_section,
9573     bool needs_special_offset_handling,
9574     size_t local_symbol_count,
9575     const unsigned char* plocal_symbols,
9576     Relocatable_relocs* rr)
9577 {
9578   gold_assert(sh_type == elfcpp::SHT_REL);
9579
9580   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9581     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9582
9583   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9584       Scan_relocatable_relocs>(
9585     symtab,
9586     layout,
9587     object,
9588     data_shndx,
9589     prelocs,
9590     reloc_count,
9591     output_section,
9592     needs_special_offset_handling,
9593     local_symbol_count,
9594     plocal_symbols,
9595     rr);
9596 }
9597
9598 // Emit relocations for a section.
9599
9600 template<bool big_endian>
9601 void
9602 Target_arm<big_endian>::relocate_relocs(
9603     const Relocate_info<32, big_endian>* relinfo,
9604     unsigned int sh_type,
9605     const unsigned char* prelocs,
9606     size_t reloc_count,
9607     Output_section* output_section,
9608     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9609     const Relocatable_relocs* rr,
9610     unsigned char* view,
9611     Arm_address view_address,
9612     section_size_type view_size,
9613     unsigned char* reloc_view,
9614     section_size_type reloc_view_size)
9615 {
9616   gold_assert(sh_type == elfcpp::SHT_REL);
9617
9618   gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
9619     relinfo,
9620     prelocs,
9621     reloc_count,
9622     output_section,
9623     offset_in_output_section,
9624     rr,
9625     view,
9626     view_address,
9627     view_size,
9628     reloc_view,
9629     reloc_view_size);
9630 }
9631
9632 // Perform target-specific processing in a relocatable link.  This is
9633 // only used if we use the relocation strategy RELOC_SPECIAL.
9634
9635 template<bool big_endian>
9636 void
9637 Target_arm<big_endian>::relocate_special_relocatable(
9638     const Relocate_info<32, big_endian>* relinfo,
9639     unsigned int sh_type,
9640     const unsigned char* preloc_in,
9641     size_t relnum,
9642     Output_section* output_section,
9643     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9644     unsigned char* view,
9645     elfcpp::Elf_types<32>::Elf_Addr view_address,
9646     section_size_type,
9647     unsigned char* preloc_out)
9648 {
9649   // We can only handle REL type relocation sections.
9650   gold_assert(sh_type == elfcpp::SHT_REL);
9651
9652   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9653   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9654     Reltype_write;
9655   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9656
9657   const Arm_relobj<big_endian>* object =
9658     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9659   const unsigned int local_count = object->local_symbol_count();
9660
9661   Reltype reloc(preloc_in);
9662   Reltype_write reloc_write(preloc_out);
9663
9664   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9665   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9666   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9667
9668   const Arm_reloc_property* arp =
9669     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9670   gold_assert(arp != NULL);
9671
9672   // Get the new symbol index.
9673   // We only use RELOC_SPECIAL strategy in local relocations.
9674   gold_assert(r_sym < local_count);
9675
9676   // We are adjusting a section symbol.  We need to find
9677   // the symbol table index of the section symbol for
9678   // the output section corresponding to input section
9679   // in which this symbol is defined.
9680   bool is_ordinary;
9681   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9682   gold_assert(is_ordinary);
9683   Output_section* os = object->output_section(shndx);
9684   gold_assert(os != NULL);
9685   gold_assert(os->needs_symtab_index());
9686   unsigned int new_symndx = os->symtab_index();
9687
9688   // Get the new offset--the location in the output section where
9689   // this relocation should be applied.
9690
9691   Arm_address offset = reloc.get_r_offset();
9692   Arm_address new_offset;
9693   if (offset_in_output_section != invalid_address)
9694     new_offset = offset + offset_in_output_section;
9695   else
9696     {
9697       section_offset_type sot_offset =
9698           convert_types<section_offset_type, Arm_address>(offset);
9699       section_offset_type new_sot_offset =
9700           output_section->output_offset(object, relinfo->data_shndx,
9701                                         sot_offset);
9702       gold_assert(new_sot_offset != -1);
9703       new_offset = new_sot_offset;
9704     }
9705
9706   // In an object file, r_offset is an offset within the section.
9707   // In an executable or dynamic object, generated by
9708   // --emit-relocs, r_offset is an absolute address.
9709   if (!parameters->options().relocatable())
9710     {
9711       new_offset += view_address;
9712       if (offset_in_output_section != invalid_address)
9713         new_offset -= offset_in_output_section;
9714     }
9715
9716   reloc_write.put_r_offset(new_offset);
9717   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9718
9719   // Handle the reloc addend.
9720   // The relocation uses a section symbol in the input file.
9721   // We are adjusting it to use a section symbol in the output
9722   // file.  The input section symbol refers to some address in
9723   // the input section.  We need the relocation in the output
9724   // file to refer to that same address.  This adjustment to
9725   // the addend is the same calculation we use for a simple
9726   // absolute relocation for the input section symbol.
9727
9728   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9729
9730   // Handle THUMB bit.
9731   Symbol_value<32> symval;
9732   Arm_address thumb_bit =
9733      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9734   if (thumb_bit != 0
9735       && arp->uses_thumb_bit()
9736       && ((psymval->value(object, 0) & 1) != 0))
9737     {
9738       Arm_address stripped_value =
9739         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9740       symval.set_output_value(stripped_value);
9741       psymval = &symval;
9742     }
9743
9744   unsigned char* paddend = view + offset;
9745   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9746         Arm_relocate_functions<big_endian>::STATUS_OKAY;
9747   switch (r_type)
9748     {
9749     case elfcpp::R_ARM_ABS8:
9750       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9751                                                               psymval);
9752       break;
9753
9754     case elfcpp::R_ARM_ABS12:
9755       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9756                                                                psymval);
9757       break;
9758
9759     case elfcpp::R_ARM_ABS16:
9760       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9761                                                                psymval);
9762       break;
9763
9764     case elfcpp::R_ARM_THM_ABS5:
9765       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9766                                                                   object,
9767                                                                   psymval);
9768       break;
9769
9770     case elfcpp::R_ARM_MOVW_ABS_NC:
9771     case elfcpp::R_ARM_MOVW_PREL_NC:
9772     case elfcpp::R_ARM_MOVW_BREL_NC:
9773     case elfcpp::R_ARM_MOVW_BREL:
9774       reloc_status = Arm_relocate_functions<big_endian>::movw(
9775           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9776       break;
9777
9778     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9779     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9780     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9781     case elfcpp::R_ARM_THM_MOVW_BREL:
9782       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9783           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9784       break;
9785
9786     case elfcpp::R_ARM_THM_CALL:
9787     case elfcpp::R_ARM_THM_XPC22:
9788     case elfcpp::R_ARM_THM_JUMP24:
9789       reloc_status =
9790         Arm_relocate_functions<big_endian>::thumb_branch_common(
9791             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9792             false);
9793       break;
9794
9795     case elfcpp::R_ARM_PLT32:
9796     case elfcpp::R_ARM_CALL:
9797     case elfcpp::R_ARM_JUMP24:
9798     case elfcpp::R_ARM_XPC25:
9799       reloc_status =
9800         Arm_relocate_functions<big_endian>::arm_branch_common(
9801             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9802             false);
9803       break;
9804
9805     case elfcpp::R_ARM_THM_JUMP19:
9806       reloc_status =
9807         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9808                                                        psymval, 0, thumb_bit);
9809       break;
9810
9811     case elfcpp::R_ARM_THM_JUMP6:
9812       reloc_status =
9813         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9814                                                       0);
9815       break;
9816
9817     case elfcpp::R_ARM_THM_JUMP8:
9818       reloc_status =
9819         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9820                                                       0);
9821       break;
9822
9823     case elfcpp::R_ARM_THM_JUMP11:
9824       reloc_status =
9825         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9826                                                        0);
9827       break;
9828
9829     case elfcpp::R_ARM_PREL31:
9830       reloc_status =
9831         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9832                                                    thumb_bit);
9833       break;
9834
9835     case elfcpp::R_ARM_THM_PC8:
9836       reloc_status =
9837         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9838                                                     0);
9839       break;
9840
9841     case elfcpp::R_ARM_THM_PC12:
9842       reloc_status =
9843         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9844                                                      0);
9845       break;
9846
9847     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9848       reloc_status =
9849         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9850                                                       0, thumb_bit);
9851       break;
9852
9853     // These relocation truncate relocation results so we cannot handle them
9854     // in a relocatable link.
9855     case elfcpp::R_ARM_MOVT_ABS:
9856     case elfcpp::R_ARM_THM_MOVT_ABS:
9857     case elfcpp::R_ARM_MOVT_PREL:
9858     case elfcpp::R_ARM_MOVT_BREL:
9859     case elfcpp::R_ARM_THM_MOVT_PREL:
9860     case elfcpp::R_ARM_THM_MOVT_BREL:
9861     case elfcpp::R_ARM_ALU_PC_G0_NC:
9862     case elfcpp::R_ARM_ALU_PC_G0:
9863     case elfcpp::R_ARM_ALU_PC_G1_NC:
9864     case elfcpp::R_ARM_ALU_PC_G1:
9865     case elfcpp::R_ARM_ALU_PC_G2:
9866     case elfcpp::R_ARM_ALU_SB_G0_NC:
9867     case elfcpp::R_ARM_ALU_SB_G0:
9868     case elfcpp::R_ARM_ALU_SB_G1_NC:
9869     case elfcpp::R_ARM_ALU_SB_G1:
9870     case elfcpp::R_ARM_ALU_SB_G2:
9871     case elfcpp::R_ARM_LDR_PC_G0:
9872     case elfcpp::R_ARM_LDR_PC_G1:
9873     case elfcpp::R_ARM_LDR_PC_G2:
9874     case elfcpp::R_ARM_LDR_SB_G0:
9875     case elfcpp::R_ARM_LDR_SB_G1:
9876     case elfcpp::R_ARM_LDR_SB_G2:
9877     case elfcpp::R_ARM_LDRS_PC_G0:
9878     case elfcpp::R_ARM_LDRS_PC_G1:
9879     case elfcpp::R_ARM_LDRS_PC_G2:
9880     case elfcpp::R_ARM_LDRS_SB_G0:
9881     case elfcpp::R_ARM_LDRS_SB_G1:
9882     case elfcpp::R_ARM_LDRS_SB_G2:
9883     case elfcpp::R_ARM_LDC_PC_G0:
9884     case elfcpp::R_ARM_LDC_PC_G1:
9885     case elfcpp::R_ARM_LDC_PC_G2:
9886     case elfcpp::R_ARM_LDC_SB_G0:
9887     case elfcpp::R_ARM_LDC_SB_G1:
9888     case elfcpp::R_ARM_LDC_SB_G2:
9889       gold_error(_("cannot handle %s in a relocatable link"),
9890                  arp->name().c_str());
9891       break;
9892
9893     default:
9894       gold_unreachable();
9895     }
9896
9897   // Report any errors.
9898   switch (reloc_status)
9899     {
9900     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9901       break;
9902     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9903       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9904                              _("relocation overflow in %s"),
9905                              arp->name().c_str());
9906       break;
9907     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9908       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9909         _("unexpected opcode while processing relocation %s"),
9910         arp->name().c_str());
9911       break;
9912     default:
9913       gold_unreachable();
9914     }
9915 }
9916
9917 // Return the value to use for a dynamic symbol which requires special
9918 // treatment.  This is how we support equality comparisons of function
9919 // pointers across shared library boundaries, as described in the
9920 // processor specific ABI supplement.
9921
9922 template<bool big_endian>
9923 uint64_t
9924 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9925 {
9926   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9927   return this->plt_section()->address() + gsym->plt_offset();
9928 }
9929
9930 // Map platform-specific relocs to real relocs
9931 //
9932 template<bool big_endian>
9933 unsigned int
9934 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9935 {
9936   switch (r_type)
9937     {
9938     case elfcpp::R_ARM_TARGET1:
9939       // This is either R_ARM_ABS32 or R_ARM_REL32;
9940       return elfcpp::R_ARM_ABS32;
9941
9942     case elfcpp::R_ARM_TARGET2:
9943       // This can be any reloc type but usually is R_ARM_GOT_PREL
9944       return elfcpp::R_ARM_GOT_PREL;
9945
9946     default:
9947       return r_type;
9948     }
9949 }
9950
9951 // Whether if two EABI versions V1 and V2 are compatible.
9952
9953 template<bool big_endian>
9954 bool
9955 Target_arm<big_endian>::are_eabi_versions_compatible(
9956     elfcpp::Elf_Word v1,
9957     elfcpp::Elf_Word v2)
9958 {
9959   // v4 and v5 are the same spec before and after it was released,
9960   // so allow mixing them.
9961   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9962       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9963       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9964     return true;
9965
9966   return v1 == v2;
9967 }
9968
9969 // Combine FLAGS from an input object called NAME and the processor-specific
9970 // flags in the ELF header of the output.  Much of this is adapted from the
9971 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9972 // in bfd/elf32-arm.c.
9973
9974 template<bool big_endian>
9975 void
9976 Target_arm<big_endian>::merge_processor_specific_flags(
9977     const std::string& name,
9978     elfcpp::Elf_Word flags)
9979 {
9980   if (this->are_processor_specific_flags_set())
9981     {
9982       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9983
9984       // Nothing to merge if flags equal to those in output.
9985       if (flags == out_flags)
9986         return;
9987
9988       // Complain about various flag mismatches.
9989       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9990       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9991       if (!this->are_eabi_versions_compatible(version1, version2)
9992           && parameters->options().warn_mismatch())
9993         gold_error(_("Source object %s has EABI version %d but output has "
9994                      "EABI version %d."),
9995                    name.c_str(),
9996                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9997                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9998     }
9999   else
10000     {
10001       // If the input is the default architecture and had the default
10002       // flags then do not bother setting the flags for the output
10003       // architecture, instead allow future merges to do this.  If no
10004       // future merges ever set these flags then they will retain their
10005       // uninitialised values, which surprise surprise, correspond
10006       // to the default values.
10007       if (flags == 0)
10008         return;
10009
10010       // This is the first time, just copy the flags.
10011       // We only copy the EABI version for now.
10012       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10013     }
10014 }
10015
10016 // Adjust ELF file header.
10017 template<bool big_endian>
10018 void
10019 Target_arm<big_endian>::do_adjust_elf_header(
10020     unsigned char* view,
10021     int len)
10022 {
10023   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10024
10025   elfcpp::Ehdr<32, big_endian> ehdr(view);
10026   elfcpp::Elf_Word flags = this->processor_specific_flags();
10027   unsigned char e_ident[elfcpp::EI_NIDENT];
10028   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10029
10030   if (elfcpp::arm_eabi_version(flags)
10031       == elfcpp::EF_ARM_EABI_UNKNOWN)
10032     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10033   else
10034     e_ident[elfcpp::EI_OSABI] = 0;
10035   e_ident[elfcpp::EI_ABIVERSION] = 0;
10036
10037   // FIXME: Do EF_ARM_BE8 adjustment.
10038
10039   // If we're working in EABI_VER5, set the hard/soft float ABI flags
10040   // as appropriate.
10041   if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10042   {
10043     elfcpp::Elf_Half type = ehdr.get_e_type();
10044     if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10045       {
10046         Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10047         if (attr->int_value())
10048           flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10049         else
10050           flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10051         this->set_processor_specific_flags(flags);
10052       }
10053   }
10054   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10055   oehdr.put_e_ident(e_ident);
10056 }
10057
10058 // do_make_elf_object to override the same function in the base class.
10059 // We need to use a target-specific sub-class of
10060 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10061 // Hence we need to have our own ELF object creation.
10062
10063 template<bool big_endian>
10064 Object*
10065 Target_arm<big_endian>::do_make_elf_object(
10066     const std::string& name,
10067     Input_file* input_file,
10068     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10069 {
10070   int et = ehdr.get_e_type();
10071   // ET_EXEC files are valid input for --just-symbols/-R,
10072   // and we treat them as relocatable objects.
10073   if (et == elfcpp::ET_REL
10074       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10075     {
10076       Arm_relobj<big_endian>* obj =
10077         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10078       obj->setup();
10079       return obj;
10080     }
10081   else if (et == elfcpp::ET_DYN)
10082     {
10083       Sized_dynobj<32, big_endian>* obj =
10084         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10085       obj->setup();
10086       return obj;
10087     }
10088   else
10089     {
10090       gold_error(_("%s: unsupported ELF file type %d"),
10091                  name.c_str(), et);
10092       return NULL;
10093     }
10094 }
10095
10096 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10097 // Returns -1 if no architecture could be read.
10098 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10099
10100 template<bool big_endian>
10101 int
10102 Target_arm<big_endian>::get_secondary_compatible_arch(
10103     const Attributes_section_data* pasd)
10104 {
10105   const Object_attribute* known_attributes =
10106     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10107
10108   // Note: the tag and its argument below are uleb128 values, though
10109   // currently-defined values fit in one byte for each.
10110   const std::string& sv =
10111     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10112   if (sv.size() == 2
10113       && sv.data()[0] == elfcpp::Tag_CPU_arch
10114       && (sv.data()[1] & 128) != 128)
10115    return sv.data()[1];
10116
10117   // This tag is "safely ignorable", so don't complain if it looks funny.
10118   return -1;
10119 }
10120
10121 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10122 // The tag is removed if ARCH is -1.
10123 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10124
10125 template<bool big_endian>
10126 void
10127 Target_arm<big_endian>::set_secondary_compatible_arch(
10128     Attributes_section_data* pasd,
10129     int arch)
10130 {
10131   Object_attribute* known_attributes =
10132     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10133
10134   if (arch == -1)
10135     {
10136       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10137       return;
10138     }
10139
10140   // Note: the tag and its argument below are uleb128 values, though
10141   // currently-defined values fit in one byte for each.
10142   char sv[3];
10143   sv[0] = elfcpp::Tag_CPU_arch;
10144   gold_assert(arch != 0);
10145   sv[1] = arch;
10146   sv[2] = '\0';
10147
10148   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10149 }
10150
10151 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10152 // into account.
10153 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10154
10155 template<bool big_endian>
10156 int
10157 Target_arm<big_endian>::tag_cpu_arch_combine(
10158     const char* name,
10159     int oldtag,
10160     int* secondary_compat_out,
10161     int newtag,
10162     int secondary_compat)
10163 {
10164 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10165   static const int v6t2[] =
10166     {
10167       T(V6T2),   // PRE_V4.
10168       T(V6T2),   // V4.
10169       T(V6T2),   // V4T.
10170       T(V6T2),   // V5T.
10171       T(V6T2),   // V5TE.
10172       T(V6T2),   // V5TEJ.
10173       T(V6T2),   // V6.
10174       T(V7),     // V6KZ.
10175       T(V6T2)    // V6T2.
10176     };
10177   static const int v6k[] =
10178     {
10179       T(V6K),    // PRE_V4.
10180       T(V6K),    // V4.
10181       T(V6K),    // V4T.
10182       T(V6K),    // V5T.
10183       T(V6K),    // V5TE.
10184       T(V6K),    // V5TEJ.
10185       T(V6K),    // V6.
10186       T(V6KZ),   // V6KZ.
10187       T(V7),     // V6T2.
10188       T(V6K)     // V6K.
10189     };
10190   static const int v7[] =
10191     {
10192       T(V7),     // PRE_V4.
10193       T(V7),     // V4.
10194       T(V7),     // V4T.
10195       T(V7),     // V5T.
10196       T(V7),     // V5TE.
10197       T(V7),     // V5TEJ.
10198       T(V7),     // V6.
10199       T(V7),     // V6KZ.
10200       T(V7),     // V6T2.
10201       T(V7),     // V6K.
10202       T(V7)      // V7.
10203     };
10204   static const int v6_m[] =
10205     {
10206       -1,        // PRE_V4.
10207       -1,        // V4.
10208       T(V6K),    // V4T.
10209       T(V6K),    // V5T.
10210       T(V6K),    // V5TE.
10211       T(V6K),    // V5TEJ.
10212       T(V6K),    // V6.
10213       T(V6KZ),   // V6KZ.
10214       T(V7),     // V6T2.
10215       T(V6K),    // V6K.
10216       T(V7),     // V7.
10217       T(V6_M)    // V6_M.
10218     };
10219   static const int v6s_m[] =
10220     {
10221       -1,        // PRE_V4.
10222       -1,        // V4.
10223       T(V6K),    // V4T.
10224       T(V6K),    // V5T.
10225       T(V6K),    // V5TE.
10226       T(V6K),    // V5TEJ.
10227       T(V6K),    // V6.
10228       T(V6KZ),   // V6KZ.
10229       T(V7),     // V6T2.
10230       T(V6K),    // V6K.
10231       T(V7),     // V7.
10232       T(V6S_M),  // V6_M.
10233       T(V6S_M)   // V6S_M.
10234     };
10235   static const int v7e_m[] =
10236     {
10237       -1,       // PRE_V4.
10238       -1,       // V4.
10239       T(V7E_M), // V4T.
10240       T(V7E_M), // V5T.
10241       T(V7E_M), // V5TE.
10242       T(V7E_M), // V5TEJ.
10243       T(V7E_M), // V6.
10244       T(V7E_M), // V6KZ.
10245       T(V7E_M), // V6T2.
10246       T(V7E_M), // V6K.
10247       T(V7E_M), // V7.
10248       T(V7E_M), // V6_M.
10249       T(V7E_M), // V6S_M.
10250       T(V7E_M)  // V7E_M.
10251     };
10252   static const int v4t_plus_v6_m[] =
10253     {
10254       -1,               // PRE_V4.
10255       -1,               // V4.
10256       T(V4T),           // V4T.
10257       T(V5T),           // V5T.
10258       T(V5TE),          // V5TE.
10259       T(V5TEJ),         // V5TEJ.
10260       T(V6),            // V6.
10261       T(V6KZ),          // V6KZ.
10262       T(V6T2),          // V6T2.
10263       T(V6K),           // V6K.
10264       T(V7),            // V7.
10265       T(V6_M),          // V6_M.
10266       T(V6S_M),         // V6S_M.
10267       T(V7E_M),         // V7E_M.
10268       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10269     };
10270   static const int* comb[] =
10271     {
10272       v6t2,
10273       v6k,
10274       v7,
10275       v6_m,
10276       v6s_m,
10277       v7e_m,
10278       // Pseudo-architecture.
10279       v4t_plus_v6_m
10280     };
10281
10282   // Check we've not got a higher architecture than we know about.
10283
10284   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10285     {
10286       gold_error(_("%s: unknown CPU architecture"), name);
10287       return -1;
10288     }
10289
10290   // Override old tag if we have a Tag_also_compatible_with on the output.
10291
10292   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10293       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10294     oldtag = T(V4T_PLUS_V6_M);
10295
10296   // And override the new tag if we have a Tag_also_compatible_with on the
10297   // input.
10298
10299   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10300       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10301     newtag = T(V4T_PLUS_V6_M);
10302
10303   // Architectures before V6KZ add features monotonically.
10304   int tagh = std::max(oldtag, newtag);
10305   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10306     return tagh;
10307
10308   int tagl = std::min(oldtag, newtag);
10309   int result = comb[tagh - T(V6T2)][tagl];
10310
10311   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10312   // as the canonical version.
10313   if (result == T(V4T_PLUS_V6_M))
10314     {
10315       result = T(V4T);
10316       *secondary_compat_out = T(V6_M);
10317     }
10318   else
10319     *secondary_compat_out = -1;
10320
10321   if (result == -1)
10322     {
10323       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10324                  name, oldtag, newtag);
10325       return -1;
10326     }
10327
10328   return result;
10329 #undef T
10330 }
10331
10332 // Helper to print AEABI enum tag value.
10333
10334 template<bool big_endian>
10335 std::string
10336 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10337 {
10338   static const char* aeabi_enum_names[] =
10339     { "", "variable-size", "32-bit", "" };
10340   const size_t aeabi_enum_names_size =
10341     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10342
10343   if (value < aeabi_enum_names_size)
10344     return std::string(aeabi_enum_names[value]);
10345   else
10346     {
10347       char buffer[100];
10348       sprintf(buffer, "<unknown value %u>", value);
10349       return std::string(buffer);
10350     }
10351 }
10352
10353 // Return the string value to store in TAG_CPU_name.
10354
10355 template<bool big_endian>
10356 std::string
10357 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10358 {
10359   static const char* name_table[] = {
10360     // These aren't real CPU names, but we can't guess
10361     // that from the architecture version alone.
10362    "Pre v4",
10363    "ARM v4",
10364    "ARM v4T",
10365    "ARM v5T",
10366    "ARM v5TE",
10367    "ARM v5TEJ",
10368    "ARM v6",
10369    "ARM v6KZ",
10370    "ARM v6T2",
10371    "ARM v6K",
10372    "ARM v7",
10373    "ARM v6-M",
10374    "ARM v6S-M",
10375    "ARM v7E-M"
10376  };
10377  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10378
10379   if (value < name_table_size)
10380     return std::string(name_table[value]);
10381   else
10382     {
10383       char buffer[100];
10384       sprintf(buffer, "<unknown CPU value %u>", value);
10385       return std::string(buffer);
10386     }
10387 }
10388
10389 // Merge object attributes from input file called NAME with those of the
10390 // output.  The input object attributes are in the object pointed by PASD.
10391
10392 template<bool big_endian>
10393 void
10394 Target_arm<big_endian>::merge_object_attributes(
10395     const char* name,
10396     const Attributes_section_data* pasd)
10397 {
10398   // Return if there is no attributes section data.
10399   if (pasd == NULL)
10400     return;
10401
10402   // If output has no object attributes, just copy.
10403   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10404   if (this->attributes_section_data_ == NULL)
10405     {
10406       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10407       Object_attribute* out_attr =
10408         this->attributes_section_data_->known_attributes(vendor);
10409
10410       // We do not output objects with Tag_MPextension_use_legacy - we move
10411       //  the attribute's value to Tag_MPextension_use.  */
10412       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10413         {
10414           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10415               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10416                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10417             {
10418               gold_error(_("%s has both the current and legacy "
10419                            "Tag_MPextension_use attributes"),
10420                          name);
10421             }
10422
10423           out_attr[elfcpp::Tag_MPextension_use] =
10424             out_attr[elfcpp::Tag_MPextension_use_legacy];
10425           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10426           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10427         }
10428
10429       return;
10430     }
10431
10432   const Object_attribute* in_attr = pasd->known_attributes(vendor);
10433   Object_attribute* out_attr =
10434     this->attributes_section_data_->known_attributes(vendor);
10435
10436   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10437   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10438       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10439     {
10440       // Ignore mismatches if the object doesn't use floating point.  */
10441       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10442         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10443             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10444       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10445                && parameters->options().warn_mismatch())
10446         gold_error(_("%s uses VFP register arguments, output does not"),
10447                    name);
10448     }
10449
10450   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10451     {
10452       // Merge this attribute with existing attributes.
10453       switch (i)
10454         {
10455         case elfcpp::Tag_CPU_raw_name:
10456         case elfcpp::Tag_CPU_name:
10457           // These are merged after Tag_CPU_arch.
10458           break;
10459
10460         case elfcpp::Tag_ABI_optimization_goals:
10461         case elfcpp::Tag_ABI_FP_optimization_goals:
10462           // Use the first value seen.
10463           break;
10464
10465         case elfcpp::Tag_CPU_arch:
10466           {
10467             unsigned int saved_out_attr = out_attr->int_value();
10468             // Merge Tag_CPU_arch and Tag_also_compatible_with.
10469             int secondary_compat =
10470               this->get_secondary_compatible_arch(pasd);
10471             int secondary_compat_out =
10472               this->get_secondary_compatible_arch(
10473                   this->attributes_section_data_);
10474             out_attr[i].set_int_value(
10475                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10476                                      &secondary_compat_out,
10477                                      in_attr[i].int_value(),
10478                                      secondary_compat));
10479             this->set_secondary_compatible_arch(this->attributes_section_data_,
10480                                                 secondary_compat_out);
10481
10482             // Merge Tag_CPU_name and Tag_CPU_raw_name.
10483             if (out_attr[i].int_value() == saved_out_attr)
10484               ; // Leave the names alone.
10485             else if (out_attr[i].int_value() == in_attr[i].int_value())
10486               {
10487                 // The output architecture has been changed to match the
10488                 // input architecture.  Use the input names.
10489                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10490                     in_attr[elfcpp::Tag_CPU_name].string_value());
10491                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10492                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10493               }
10494             else
10495               {
10496                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10497                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10498               }
10499
10500             // If we still don't have a value for Tag_CPU_name,
10501             // make one up now.  Tag_CPU_raw_name remains blank.
10502             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10503               {
10504                 const std::string cpu_name =
10505                   this->tag_cpu_name_value(out_attr[i].int_value());
10506                 // FIXME:  If we see an unknown CPU, this will be set
10507                 // to "<unknown CPU n>", where n is the attribute value.
10508                 // This is different from BFD, which leaves the name alone.
10509                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10510               }
10511           }
10512           break;
10513
10514         case elfcpp::Tag_ARM_ISA_use:
10515         case elfcpp::Tag_THUMB_ISA_use:
10516         case elfcpp::Tag_WMMX_arch:
10517         case elfcpp::Tag_Advanced_SIMD_arch:
10518           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10519         case elfcpp::Tag_ABI_FP_rounding:
10520         case elfcpp::Tag_ABI_FP_exceptions:
10521         case elfcpp::Tag_ABI_FP_user_exceptions:
10522         case elfcpp::Tag_ABI_FP_number_model:
10523         case elfcpp::Tag_VFP_HP_extension:
10524         case elfcpp::Tag_CPU_unaligned_access:
10525         case elfcpp::Tag_T2EE_use:
10526         case elfcpp::Tag_Virtualization_use:
10527         case elfcpp::Tag_MPextension_use:
10528           // Use the largest value specified.
10529           if (in_attr[i].int_value() > out_attr[i].int_value())
10530             out_attr[i].set_int_value(in_attr[i].int_value());
10531           break;
10532
10533         case elfcpp::Tag_ABI_align8_preserved:
10534         case elfcpp::Tag_ABI_PCS_RO_data:
10535           // Use the smallest value specified.
10536           if (in_attr[i].int_value() < out_attr[i].int_value())
10537             out_attr[i].set_int_value(in_attr[i].int_value());
10538           break;
10539
10540         case elfcpp::Tag_ABI_align8_needed:
10541           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10542               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10543                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10544                       == 0)))
10545             {
10546               // This error message should be enabled once all non-conforming
10547               // binaries in the toolchain have had the attributes set
10548               // properly.
10549               // gold_error(_("output 8-byte data alignment conflicts with %s"),
10550               //            name);
10551             }
10552           // Fall through.
10553         case elfcpp::Tag_ABI_FP_denormal:
10554         case elfcpp::Tag_ABI_PCS_GOT_use:
10555           {
10556             // These tags have 0 = don't care, 1 = strong requirement,
10557             // 2 = weak requirement.
10558             static const int order_021[3] = {0, 2, 1};
10559
10560             // Use the "greatest" from the sequence 0, 2, 1, or the largest
10561             // value if greater than 2 (for future-proofing).
10562             if ((in_attr[i].int_value() > 2
10563                  && in_attr[i].int_value() > out_attr[i].int_value())
10564                 || (in_attr[i].int_value() <= 2
10565                     && out_attr[i].int_value() <= 2
10566                     && (order_021[in_attr[i].int_value()]
10567                         > order_021[out_attr[i].int_value()])))
10568               out_attr[i].set_int_value(in_attr[i].int_value());
10569           }
10570           break;
10571
10572         case elfcpp::Tag_CPU_arch_profile:
10573           if (out_attr[i].int_value() != in_attr[i].int_value())
10574             {
10575               // 0 will merge with anything.
10576               // 'A' and 'S' merge to 'A'.
10577               // 'R' and 'S' merge to 'R'.
10578               // 'M' and 'A|R|S' is an error.
10579               if (out_attr[i].int_value() == 0
10580                   || (out_attr[i].int_value() == 'S'
10581                       && (in_attr[i].int_value() == 'A'
10582                           || in_attr[i].int_value() == 'R')))
10583                 out_attr[i].set_int_value(in_attr[i].int_value());
10584               else if (in_attr[i].int_value() == 0
10585                        || (in_attr[i].int_value() == 'S'
10586                            && (out_attr[i].int_value() == 'A'
10587                                || out_attr[i].int_value() == 'R')))
10588                 ; // Do nothing.
10589               else if (parameters->options().warn_mismatch())
10590                 {
10591                   gold_error
10592                     (_("conflicting architecture profiles %c/%c"),
10593                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10594                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10595                 }
10596             }
10597           break;
10598         case elfcpp::Tag_VFP_arch:
10599             {
10600               static const struct
10601               {
10602                   int ver;
10603                   int regs;
10604               } vfp_versions[7] =
10605                 {
10606                   {0, 0},
10607                   {1, 16},
10608                   {2, 16},
10609                   {3, 32},
10610                   {3, 16},
10611                   {4, 32},
10612                   {4, 16}
10613                 };
10614
10615               // Values greater than 6 aren't defined, so just pick the
10616               // biggest.
10617               if (in_attr[i].int_value() > 6
10618                   && in_attr[i].int_value() > out_attr[i].int_value())
10619                 {
10620                   *out_attr = *in_attr;
10621                   break;
10622                 }
10623               // The output uses the superset of input features
10624               // (ISA version) and registers.
10625               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10626                                  vfp_versions[out_attr[i].int_value()].ver);
10627               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10628                                   vfp_versions[out_attr[i].int_value()].regs);
10629               // This assumes all possible supersets are also a valid
10630               // options.
10631               int newval;
10632               for (newval = 6; newval > 0; newval--)
10633                 {
10634                   if (regs == vfp_versions[newval].regs
10635                       && ver == vfp_versions[newval].ver)
10636                     break;
10637                 }
10638               out_attr[i].set_int_value(newval);
10639             }
10640           break;
10641         case elfcpp::Tag_PCS_config:
10642           if (out_attr[i].int_value() == 0)
10643             out_attr[i].set_int_value(in_attr[i].int_value());
10644           else if (in_attr[i].int_value() != 0
10645                    && out_attr[i].int_value() != 0
10646                    && parameters->options().warn_mismatch())
10647             {
10648               // It's sometimes ok to mix different configs, so this is only
10649               // a warning.
10650               gold_warning(_("%s: conflicting platform configuration"), name);
10651             }
10652           break;
10653         case elfcpp::Tag_ABI_PCS_R9_use:
10654           if (in_attr[i].int_value() != out_attr[i].int_value()
10655               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10656               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10657               && parameters->options().warn_mismatch())
10658             {
10659               gold_error(_("%s: conflicting use of R9"), name);
10660             }
10661           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10662             out_attr[i].set_int_value(in_attr[i].int_value());
10663           break;
10664         case elfcpp::Tag_ABI_PCS_RW_data:
10665           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10666               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10667                   != elfcpp::AEABI_R9_SB)
10668               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10669                   != elfcpp::AEABI_R9_unused)
10670               && parameters->options().warn_mismatch())
10671             {
10672               gold_error(_("%s: SB relative addressing conflicts with use "
10673                            "of R9"),
10674                            name);
10675             }
10676           // Use the smallest value specified.
10677           if (in_attr[i].int_value() < out_attr[i].int_value())
10678             out_attr[i].set_int_value(in_attr[i].int_value());
10679           break;
10680         case elfcpp::Tag_ABI_PCS_wchar_t:
10681           if (out_attr[i].int_value()
10682               && in_attr[i].int_value()
10683               && out_attr[i].int_value() != in_attr[i].int_value()
10684               && parameters->options().warn_mismatch()
10685               && parameters->options().wchar_size_warning())
10686             {
10687               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10688                              "use %u-byte wchar_t; use of wchar_t values "
10689                              "across objects may fail"),
10690                            name, in_attr[i].int_value(),
10691                            out_attr[i].int_value());
10692             }
10693           else if (in_attr[i].int_value() && !out_attr[i].int_value())
10694             out_attr[i].set_int_value(in_attr[i].int_value());
10695           break;
10696         case elfcpp::Tag_ABI_enum_size:
10697           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10698             {
10699               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10700                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10701                 {
10702                   // The existing object is compatible with anything.
10703                   // Use whatever requirements the new object has.
10704                   out_attr[i].set_int_value(in_attr[i].int_value());
10705                 }
10706               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10707                        && out_attr[i].int_value() != in_attr[i].int_value()
10708                        && parameters->options().warn_mismatch()
10709                        && parameters->options().enum_size_warning())
10710                 {
10711                   unsigned int in_value = in_attr[i].int_value();
10712                   unsigned int out_value = out_attr[i].int_value();
10713                   gold_warning(_("%s uses %s enums yet the output is to use "
10714                                  "%s enums; use of enum values across objects "
10715                                  "may fail"),
10716                                name,
10717                                this->aeabi_enum_name(in_value).c_str(),
10718                                this->aeabi_enum_name(out_value).c_str());
10719                 }
10720             }
10721           break;
10722         case elfcpp::Tag_ABI_VFP_args:
10723           // Already done.
10724           break;
10725         case elfcpp::Tag_ABI_WMMX_args:
10726           if (in_attr[i].int_value() != out_attr[i].int_value()
10727               && parameters->options().warn_mismatch())
10728             {
10729               gold_error(_("%s uses iWMMXt register arguments, output does "
10730                            "not"),
10731                          name);
10732             }
10733           break;
10734         case Object_attribute::Tag_compatibility:
10735           // Merged in target-independent code.
10736           break;
10737         case elfcpp::Tag_ABI_HardFP_use:
10738           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10739           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10740               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10741             out_attr[i].set_int_value(3);
10742           else if (in_attr[i].int_value() > out_attr[i].int_value())
10743             out_attr[i].set_int_value(in_attr[i].int_value());
10744           break;
10745         case elfcpp::Tag_ABI_FP_16bit_format:
10746           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10747             {
10748               if (in_attr[i].int_value() != out_attr[i].int_value()
10749                   && parameters->options().warn_mismatch())
10750                 gold_error(_("fp16 format mismatch between %s and output"),
10751                            name);
10752             }
10753           if (in_attr[i].int_value() != 0)
10754             out_attr[i].set_int_value(in_attr[i].int_value());
10755           break;
10756
10757         case elfcpp::Tag_DIV_use:
10758           // This tag is set to zero if we can use UDIV and SDIV in Thumb
10759           // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10760           // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10761           // CPU.  We will merge as follows: If the input attribute's value
10762           // is one then the output attribute's value remains unchanged.  If
10763           // the input attribute's value is zero or two then if the output
10764           // attribute's value is one the output value is set to the input
10765           // value, otherwise the output value must be the same as the
10766           // inputs.  */
10767           if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10768             {
10769               if (in_attr[i].int_value() != out_attr[i].int_value())
10770                 {
10771                   gold_error(_("DIV usage mismatch between %s and output"),
10772                              name);
10773                 }
10774             }
10775
10776           if (in_attr[i].int_value() != 1)
10777             out_attr[i].set_int_value(in_attr[i].int_value());
10778
10779           break;
10780
10781         case elfcpp::Tag_MPextension_use_legacy:
10782           // We don't output objects with Tag_MPextension_use_legacy - we
10783           // move the value to Tag_MPextension_use.
10784           if (in_attr[i].int_value() != 0
10785               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10786             {
10787               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10788                   != in_attr[i].int_value())
10789                 {
10790                   gold_error(_("%s has has both the current and legacy "
10791                                "Tag_MPextension_use attributes"),
10792                              name);
10793                 }
10794             }
10795
10796           if (in_attr[i].int_value()
10797               > out_attr[elfcpp::Tag_MPextension_use].int_value())
10798             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10799
10800           break;
10801
10802         case elfcpp::Tag_nodefaults:
10803           // This tag is set if it exists, but the value is unused (and is
10804           // typically zero).  We don't actually need to do anything here -
10805           // the merge happens automatically when the type flags are merged
10806           // below.
10807           break;
10808         case elfcpp::Tag_also_compatible_with:
10809           // Already done in Tag_CPU_arch.
10810           break;
10811         case elfcpp::Tag_conformance:
10812           // Keep the attribute if it matches.  Throw it away otherwise.
10813           // No attribute means no claim to conform.
10814           if (in_attr[i].string_value() != out_attr[i].string_value())
10815             out_attr[i].set_string_value("");
10816           break;
10817
10818         default:
10819           {
10820             const char* err_object = NULL;
10821
10822             // The "known_obj_attributes" table does contain some undefined
10823             // attributes.  Ensure that there are unused.
10824             if (out_attr[i].int_value() != 0
10825                 || out_attr[i].string_value() != "")
10826               err_object = "output";
10827             else if (in_attr[i].int_value() != 0
10828                      || in_attr[i].string_value() != "")
10829               err_object = name;
10830
10831             if (err_object != NULL
10832                 && parameters->options().warn_mismatch())
10833               {
10834                 // Attribute numbers >=64 (mod 128) can be safely ignored.
10835                 if ((i & 127) < 64)
10836                   gold_error(_("%s: unknown mandatory EABI object attribute "
10837                                "%d"),
10838                              err_object, i);
10839                 else
10840                   gold_warning(_("%s: unknown EABI object attribute %d"),
10841                                err_object, i);
10842               }
10843
10844             // Only pass on attributes that match in both inputs.
10845             if (!in_attr[i].matches(out_attr[i]))
10846               {
10847                 out_attr[i].set_int_value(0);
10848                 out_attr[i].set_string_value("");
10849               }
10850           }
10851         }
10852
10853       // If out_attr was copied from in_attr then it won't have a type yet.
10854       if (in_attr[i].type() && !out_attr[i].type())
10855         out_attr[i].set_type(in_attr[i].type());
10856     }
10857
10858   // Merge Tag_compatibility attributes and any common GNU ones.
10859   this->attributes_section_data_->merge(name, pasd);
10860
10861   // Check for any attributes not known on ARM.
10862   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10863   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10864   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10865   Other_attributes* out_other_attributes =
10866     this->attributes_section_data_->other_attributes(vendor);
10867   Other_attributes::iterator out_iter = out_other_attributes->begin();
10868
10869   while (in_iter != in_other_attributes->end()
10870          || out_iter != out_other_attributes->end())
10871     {
10872       const char* err_object = NULL;
10873       int err_tag = 0;
10874
10875       // The tags for each list are in numerical order.
10876       // If the tags are equal, then merge.
10877       if (out_iter != out_other_attributes->end()
10878           && (in_iter == in_other_attributes->end()
10879               || in_iter->first > out_iter->first))
10880         {
10881           // This attribute only exists in output.  We can't merge, and we
10882           // don't know what the tag means, so delete it.
10883           err_object = "output";
10884           err_tag = out_iter->first;
10885           int saved_tag = out_iter->first;
10886           delete out_iter->second;
10887           out_other_attributes->erase(out_iter);
10888           out_iter = out_other_attributes->upper_bound(saved_tag);
10889         }
10890       else if (in_iter != in_other_attributes->end()
10891                && (out_iter != out_other_attributes->end()
10892                    || in_iter->first < out_iter->first))
10893         {
10894           // This attribute only exists in input. We can't merge, and we
10895           // don't know what the tag means, so ignore it.
10896           err_object = name;
10897           err_tag = in_iter->first;
10898           ++in_iter;
10899         }
10900       else // The tags are equal.
10901         {
10902           // As present, all attributes in the list are unknown, and
10903           // therefore can't be merged meaningfully.
10904           err_object = "output";
10905           err_tag = out_iter->first;
10906
10907           //  Only pass on attributes that match in both inputs.
10908           if (!in_iter->second->matches(*(out_iter->second)))
10909             {
10910               // No match.  Delete the attribute.
10911               int saved_tag = out_iter->first;
10912               delete out_iter->second;
10913               out_other_attributes->erase(out_iter);
10914               out_iter = out_other_attributes->upper_bound(saved_tag);
10915             }
10916           else
10917             {
10918               // Matched.  Keep the attribute and move to the next.
10919               ++out_iter;
10920               ++in_iter;
10921             }
10922         }
10923
10924       if (err_object && parameters->options().warn_mismatch())
10925         {
10926           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10927           if ((err_tag & 127) < 64)
10928             {
10929               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10930                          err_object, err_tag);
10931             }
10932           else
10933             {
10934               gold_warning(_("%s: unknown EABI object attribute %d"),
10935                            err_object, err_tag);
10936             }
10937         }
10938     }
10939 }
10940
10941 // Stub-generation methods for Target_arm.
10942
10943 // Make a new Arm_input_section object.
10944
10945 template<bool big_endian>
10946 Arm_input_section<big_endian>*
10947 Target_arm<big_endian>::new_arm_input_section(
10948     Relobj* relobj,
10949     unsigned int shndx)
10950 {
10951   Section_id sid(relobj, shndx);
10952
10953   Arm_input_section<big_endian>* arm_input_section =
10954     new Arm_input_section<big_endian>(relobj, shndx);
10955   arm_input_section->init();
10956
10957   // Register new Arm_input_section in map for look-up.
10958   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10959     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10960
10961   // Make sure that it we have not created another Arm_input_section
10962   // for this input section already.
10963   gold_assert(ins.second);
10964
10965   return arm_input_section;
10966 }
10967
10968 // Find the Arm_input_section object corresponding to the SHNDX-th input
10969 // section of RELOBJ.
10970
10971 template<bool big_endian>
10972 Arm_input_section<big_endian>*
10973 Target_arm<big_endian>::find_arm_input_section(
10974     Relobj* relobj,
10975     unsigned int shndx) const
10976 {
10977   Section_id sid(relobj, shndx);
10978   typename Arm_input_section_map::const_iterator p =
10979     this->arm_input_section_map_.find(sid);
10980   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10981 }
10982
10983 // Make a new stub table.
10984
10985 template<bool big_endian>
10986 Stub_table<big_endian>*
10987 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10988 {
10989   Stub_table<big_endian>* stub_table =
10990     new Stub_table<big_endian>(owner);
10991   this->stub_tables_.push_back(stub_table);
10992
10993   stub_table->set_address(owner->address() + owner->data_size());
10994   stub_table->set_file_offset(owner->offset() + owner->data_size());
10995   stub_table->finalize_data_size();
10996
10997   return stub_table;
10998 }
10999
11000 // Scan a relocation for stub generation.
11001
11002 template<bool big_endian>
11003 void
11004 Target_arm<big_endian>::scan_reloc_for_stub(
11005     const Relocate_info<32, big_endian>* relinfo,
11006     unsigned int r_type,
11007     const Sized_symbol<32>* gsym,
11008     unsigned int r_sym,
11009     const Symbol_value<32>* psymval,
11010     elfcpp::Elf_types<32>::Elf_Swxword addend,
11011     Arm_address address)
11012 {
11013   const Arm_relobj<big_endian>* arm_relobj =
11014     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11015
11016   bool target_is_thumb;
11017   Symbol_value<32> symval;
11018   if (gsym != NULL)
11019     {
11020       // This is a global symbol.  Determine if we use PLT and if the
11021       // final target is THUMB.
11022       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11023         {
11024           // This uses a PLT, change the symbol value.
11025           symval.set_output_value(this->plt_section()->address()
11026                                   + gsym->plt_offset());
11027           psymval = &symval;
11028           target_is_thumb = false;
11029         }
11030       else if (gsym->is_undefined())
11031         // There is no need to generate a stub symbol is undefined.
11032         return;
11033       else
11034         {
11035           target_is_thumb =
11036             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11037              || (gsym->type() == elfcpp::STT_FUNC
11038                  && !gsym->is_undefined()
11039                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11040         }
11041     }
11042   else
11043     {
11044       // This is a local symbol.  Determine if the final target is THUMB.
11045       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11046     }
11047
11048   // Strip LSB if this points to a THUMB target.
11049   const Arm_reloc_property* reloc_property =
11050     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11051   gold_assert(reloc_property != NULL);
11052   if (target_is_thumb
11053       && reloc_property->uses_thumb_bit()
11054       && ((psymval->value(arm_relobj, 0) & 1) != 0))
11055     {
11056       Arm_address stripped_value =
11057         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11058       symval.set_output_value(stripped_value);
11059       psymval = &symval;
11060     }
11061
11062   // Get the symbol value.
11063   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11064
11065   // Owing to pipelining, the PC relative branches below actually skip
11066   // two instructions when the branch offset is 0.
11067   Arm_address destination;
11068   switch (r_type)
11069     {
11070     case elfcpp::R_ARM_CALL:
11071     case elfcpp::R_ARM_JUMP24:
11072     case elfcpp::R_ARM_PLT32:
11073       // ARM branches.
11074       destination = value + addend + 8;
11075       break;
11076     case elfcpp::R_ARM_THM_CALL:
11077     case elfcpp::R_ARM_THM_XPC22:
11078     case elfcpp::R_ARM_THM_JUMP24:
11079     case elfcpp::R_ARM_THM_JUMP19:
11080       // THUMB branches.
11081       destination = value + addend + 4;
11082       break;
11083     default:
11084       gold_unreachable();
11085     }
11086
11087   Reloc_stub* stub = NULL;
11088   Stub_type stub_type =
11089     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11090                                     target_is_thumb);
11091   if (stub_type != arm_stub_none)
11092     {
11093       // Try looking up an existing stub from a stub table.
11094       Stub_table<big_endian>* stub_table =
11095         arm_relobj->stub_table(relinfo->data_shndx);
11096       gold_assert(stub_table != NULL);
11097
11098       // Locate stub by destination.
11099       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11100
11101       // Create a stub if there is not one already
11102       stub = stub_table->find_reloc_stub(stub_key);
11103       if (stub == NULL)
11104         {
11105           // create a new stub and add it to stub table.
11106           stub = this->stub_factory().make_reloc_stub(stub_type);
11107           stub_table->add_reloc_stub(stub, stub_key);
11108         }
11109
11110       // Record the destination address.
11111       stub->set_destination_address(destination
11112                                     | (target_is_thumb ? 1 : 0));
11113     }
11114
11115   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11116   if (this->fix_cortex_a8_
11117       && (r_type == elfcpp::R_ARM_THM_JUMP24
11118           || r_type == elfcpp::R_ARM_THM_JUMP19
11119           || r_type == elfcpp::R_ARM_THM_CALL
11120           || r_type == elfcpp::R_ARM_THM_XPC22)
11121       && (address & 0xfffU) == 0xffeU)
11122     {
11123       // Found a candidate.  Note we haven't checked the destination is
11124       // within 4K here: if we do so (and don't create a record) we can't
11125       // tell that a branch should have been relocated when scanning later.
11126       this->cortex_a8_relocs_info_[address] =
11127         new Cortex_a8_reloc(stub, r_type,
11128                             destination | (target_is_thumb ? 1 : 0));
11129     }
11130 }
11131
11132 // This function scans a relocation sections for stub generation.
11133 // The template parameter Relocate must be a class type which provides
11134 // a single function, relocate(), which implements the machine
11135 // specific part of a relocation.
11136
11137 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11138 // SHT_REL or SHT_RELA.
11139
11140 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11141 // of relocs.  OUTPUT_SECTION is the output section.
11142 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11143 // mapped to output offsets.
11144
11145 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11146 // VIEW_SIZE is the size.  These refer to the input section, unless
11147 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11148 // the output section.
11149
11150 template<bool big_endian>
11151 template<int sh_type>
11152 void inline
11153 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11154     const Relocate_info<32, big_endian>* relinfo,
11155     const unsigned char* prelocs,
11156     size_t reloc_count,
11157     Output_section* output_section,
11158     bool needs_special_offset_handling,
11159     const unsigned char* view,
11160     elfcpp::Elf_types<32>::Elf_Addr view_address,
11161     section_size_type)
11162 {
11163   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11164   const int reloc_size =
11165     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11166
11167   Arm_relobj<big_endian>* arm_object =
11168     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11169   unsigned int local_count = arm_object->local_symbol_count();
11170
11171   gold::Default_comdat_behavior default_comdat_behavior;
11172   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11173
11174   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11175     {
11176       Reltype reloc(prelocs);
11177
11178       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11179       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11180       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11181
11182       r_type = this->get_real_reloc_type(r_type);
11183
11184       // Only a few relocation types need stubs.
11185       if ((r_type != elfcpp::R_ARM_CALL)
11186          && (r_type != elfcpp::R_ARM_JUMP24)
11187          && (r_type != elfcpp::R_ARM_PLT32)
11188          && (r_type != elfcpp::R_ARM_THM_CALL)
11189          && (r_type != elfcpp::R_ARM_THM_XPC22)
11190          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11191          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11192          && (r_type != elfcpp::R_ARM_V4BX))
11193         continue;
11194
11195       section_offset_type offset =
11196         convert_to_section_size_type(reloc.get_r_offset());
11197
11198       if (needs_special_offset_handling)
11199         {
11200           offset = output_section->output_offset(relinfo->object,
11201                                                  relinfo->data_shndx,
11202                                                  offset);
11203           if (offset == -1)
11204             continue;
11205         }
11206
11207       // Create a v4bx stub if --fix-v4bx-interworking is used.
11208       if (r_type == elfcpp::R_ARM_V4BX)
11209         {
11210           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11211             {
11212               // Get the BX instruction.
11213               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11214               const Valtype* wv =
11215                 reinterpret_cast<const Valtype*>(view + offset);
11216               elfcpp::Elf_types<32>::Elf_Swxword insn =
11217                 elfcpp::Swap<32, big_endian>::readval(wv);
11218               const uint32_t reg = (insn & 0xf);
11219
11220               if (reg < 0xf)
11221                 {
11222                   // Try looking up an existing stub from a stub table.
11223                   Stub_table<big_endian>* stub_table =
11224                     arm_object->stub_table(relinfo->data_shndx);
11225                   gold_assert(stub_table != NULL);
11226
11227                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11228                     {
11229                       // create a new stub and add it to stub table.
11230                       Arm_v4bx_stub* stub =
11231                         this->stub_factory().make_arm_v4bx_stub(reg);
11232                       gold_assert(stub != NULL);
11233                       stub_table->add_arm_v4bx_stub(stub);
11234                     }
11235                 }
11236             }
11237           continue;
11238         }
11239
11240       // Get the addend.
11241       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11242       elfcpp::Elf_types<32>::Elf_Swxword addend =
11243         stub_addend_reader(r_type, view + offset, reloc);
11244
11245       const Sized_symbol<32>* sym;
11246
11247       Symbol_value<32> symval;
11248       const Symbol_value<32> *psymval;
11249       bool is_defined_in_discarded_section;
11250       unsigned int shndx;
11251       if (r_sym < local_count)
11252         {
11253           sym = NULL;
11254           psymval = arm_object->local_symbol(r_sym);
11255
11256           // If the local symbol belongs to a section we are discarding,
11257           // and that section is a debug section, try to find the
11258           // corresponding kept section and map this symbol to its
11259           // counterpart in the kept section.  The symbol must not
11260           // correspond to a section we are folding.
11261           bool is_ordinary;
11262           shndx = psymval->input_shndx(&is_ordinary);
11263           is_defined_in_discarded_section =
11264             (is_ordinary
11265              && shndx != elfcpp::SHN_UNDEF
11266              && !arm_object->is_section_included(shndx)
11267              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11268
11269           // We need to compute the would-be final value of this local
11270           // symbol.
11271           if (!is_defined_in_discarded_section)
11272             {
11273               typedef Sized_relobj_file<32, big_endian> ObjType;
11274               typename ObjType::Compute_final_local_value_status status =
11275                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11276                                                       relinfo->symtab);
11277               if (status == ObjType::CFLV_OK)
11278                 {
11279                   // Currently we cannot handle a branch to a target in
11280                   // a merged section.  If this is the case, issue an error
11281                   // and also free the merge symbol value.
11282                   if (!symval.has_output_value())
11283                     {
11284                       const std::string& section_name =
11285                         arm_object->section_name(shndx);
11286                       arm_object->error(_("cannot handle branch to local %u "
11287                                           "in a merged section %s"),
11288                                         r_sym, section_name.c_str());
11289                     }
11290                   psymval = &symval;
11291                 }
11292               else
11293                 {
11294                   // We cannot determine the final value.
11295                   continue;
11296                 }
11297             }
11298         }
11299       else
11300         {
11301           const Symbol* gsym;
11302           gsym = arm_object->global_symbol(r_sym);
11303           gold_assert(gsym != NULL);
11304           if (gsym->is_forwarder())
11305             gsym = relinfo->symtab->resolve_forwards(gsym);
11306
11307           sym = static_cast<const Sized_symbol<32>*>(gsym);
11308           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11309             symval.set_output_symtab_index(sym->symtab_index());
11310           else
11311             symval.set_no_output_symtab_entry();
11312
11313           // We need to compute the would-be final value of this global
11314           // symbol.
11315           const Symbol_table* symtab = relinfo->symtab;
11316           const Sized_symbol<32>* sized_symbol =
11317             symtab->get_sized_symbol<32>(gsym);
11318           Symbol_table::Compute_final_value_status status;
11319           Arm_address value =
11320             symtab->compute_final_value<32>(sized_symbol, &status);
11321
11322           // Skip this if the symbol has not output section.
11323           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11324             continue;
11325           symval.set_output_value(value);
11326
11327           if (gsym->type() == elfcpp::STT_TLS)
11328             symval.set_is_tls_symbol();
11329           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11330             symval.set_is_ifunc_symbol();
11331           psymval = &symval;
11332
11333           is_defined_in_discarded_section =
11334             (gsym->is_defined_in_discarded_section()
11335              && gsym->is_undefined());
11336           shndx = 0;
11337         }
11338
11339       Symbol_value<32> symval2;
11340       if (is_defined_in_discarded_section)
11341         {
11342           if (comdat_behavior == CB_UNDETERMINED)
11343             {
11344               std::string name = arm_object->section_name(relinfo->data_shndx);
11345               comdat_behavior = default_comdat_behavior.get(name.c_str());
11346             }
11347           if (comdat_behavior == CB_PRETEND)
11348             {
11349               // FIXME: This case does not work for global symbols.
11350               // We have no place to store the original section index.
11351               // Fortunately this does not matter for comdat sections,
11352               // only for sections explicitly discarded by a linker
11353               // script.
11354               bool found;
11355               typename elfcpp::Elf_types<32>::Elf_Addr value =
11356                 arm_object->map_to_kept_section(shndx, &found);
11357               if (found)
11358                 symval2.set_output_value(value + psymval->input_value());
11359               else
11360                 symval2.set_output_value(0);
11361             }
11362           else
11363             {
11364               if (comdat_behavior == CB_WARNING)
11365                 gold_warning_at_location(relinfo, i, offset,
11366                                          _("relocation refers to discarded "
11367                                            "section"));
11368               symval2.set_output_value(0);
11369             }
11370           symval2.set_no_output_symtab_entry();
11371           psymval = &symval2;
11372         }
11373
11374       // If symbol is a section symbol, we don't know the actual type of
11375       // destination.  Give up.
11376       if (psymval->is_section_symbol())
11377         continue;
11378
11379       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11380                                 addend, view_address + offset);
11381     }
11382 }
11383
11384 // Scan an input section for stub generation.
11385
11386 template<bool big_endian>
11387 void
11388 Target_arm<big_endian>::scan_section_for_stubs(
11389     const Relocate_info<32, big_endian>* relinfo,
11390     unsigned int sh_type,
11391     const unsigned char* prelocs,
11392     size_t reloc_count,
11393     Output_section* output_section,
11394     bool needs_special_offset_handling,
11395     const unsigned char* view,
11396     Arm_address view_address,
11397     section_size_type view_size)
11398 {
11399   if (sh_type == elfcpp::SHT_REL)
11400     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11401         relinfo,
11402         prelocs,
11403         reloc_count,
11404         output_section,
11405         needs_special_offset_handling,
11406         view,
11407         view_address,
11408         view_size);
11409   else if (sh_type == elfcpp::SHT_RELA)
11410     // We do not support RELA type relocations yet.  This is provided for
11411     // completeness.
11412     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11413         relinfo,
11414         prelocs,
11415         reloc_count,
11416         output_section,
11417         needs_special_offset_handling,
11418         view,
11419         view_address,
11420         view_size);
11421   else
11422     gold_unreachable();
11423 }
11424
11425 // Group input sections for stub generation.
11426 //
11427 // We group input sections in an output section so that the total size,
11428 // including any padding space due to alignment is smaller than GROUP_SIZE
11429 // unless the only input section in group is bigger than GROUP_SIZE already.
11430 // Then an ARM stub table is created to follow the last input section
11431 // in group.  For each group an ARM stub table is created an is placed
11432 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11433 // extend the group after the stub table.
11434
11435 template<bool big_endian>
11436 void
11437 Target_arm<big_endian>::group_sections(
11438     Layout* layout,
11439     section_size_type group_size,
11440     bool stubs_always_after_branch,
11441     const Task* task)
11442 {
11443   // Group input sections and insert stub table
11444   Layout::Section_list section_list;
11445   layout->get_allocated_sections(&section_list);
11446   for (Layout::Section_list::const_iterator p = section_list.begin();
11447        p != section_list.end();
11448        ++p)
11449     {
11450       Arm_output_section<big_endian>* output_section =
11451         Arm_output_section<big_endian>::as_arm_output_section(*p);
11452       output_section->group_sections(group_size, stubs_always_after_branch,
11453                                      this, task);
11454     }
11455 }
11456
11457 // Relaxation hook.  This is where we do stub generation.
11458
11459 template<bool big_endian>
11460 bool
11461 Target_arm<big_endian>::do_relax(
11462     int pass,
11463     const Input_objects* input_objects,
11464     Symbol_table* symtab,
11465     Layout* layout,
11466     const Task* task)
11467 {
11468   // No need to generate stubs if this is a relocatable link.
11469   gold_assert(!parameters->options().relocatable());
11470
11471   // If this is the first pass, we need to group input sections into
11472   // stub groups.
11473   bool done_exidx_fixup = false;
11474   typedef typename Stub_table_list::iterator Stub_table_iterator;
11475   if (pass == 1)
11476     {
11477       // Determine the stub group size.  The group size is the absolute
11478       // value of the parameter --stub-group-size.  If --stub-group-size
11479       // is passed a negative value, we restrict stubs to be always after
11480       // the stubbed branches.
11481       int32_t stub_group_size_param =
11482         parameters->options().stub_group_size();
11483       bool stubs_always_after_branch = stub_group_size_param < 0;
11484       section_size_type stub_group_size = abs(stub_group_size_param);
11485
11486       if (stub_group_size == 1)
11487         {
11488           // Default value.
11489           // Thumb branch range is +-4MB has to be used as the default
11490           // maximum size (a given section can contain both ARM and Thumb
11491           // code, so the worst case has to be taken into account).  If we are
11492           // fixing cortex-a8 errata, the branch range has to be even smaller,
11493           // since wide conditional branch has a range of +-1MB only.
11494           //
11495           // This value is 48K less than that, which allows for 4096
11496           // 12-byte stubs.  If we exceed that, then we will fail to link.
11497           // The user will have to relink with an explicit group size
11498           // option.
11499             stub_group_size = 4145152;
11500         }
11501
11502       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11503       // page as the first half of a 32-bit branch straddling two 4K pages.
11504       // This is a crude way of enforcing that.  In addition, long conditional
11505       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11506       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11507       // cortex-A8 stubs from long conditional branches.
11508       if (this->fix_cortex_a8_)
11509         {
11510           stubs_always_after_branch = true;
11511           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11512           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11513         }
11514
11515       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11516
11517       // Also fix .ARM.exidx section coverage.
11518       Arm_output_section<big_endian>* exidx_output_section = NULL;
11519       for (Layout::Section_list::const_iterator p =
11520              layout->section_list().begin();
11521            p != layout->section_list().end();
11522            ++p)
11523         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11524           {
11525             if (exidx_output_section == NULL)
11526               exidx_output_section =
11527                 Arm_output_section<big_endian>::as_arm_output_section(*p);
11528             else
11529               // We cannot handle this now.
11530               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11531                            "non-relocatable link"),
11532                           exidx_output_section->name(),
11533                           (*p)->name());
11534           }
11535
11536       if (exidx_output_section != NULL)
11537         {
11538           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11539                                    symtab, task);
11540           done_exidx_fixup = true;
11541         }
11542     }
11543   else
11544     {
11545       // If this is not the first pass, addresses and file offsets have
11546       // been reset at this point, set them here.
11547       for (Stub_table_iterator sp = this->stub_tables_.begin();
11548            sp != this->stub_tables_.end();
11549            ++sp)
11550         {
11551           Arm_input_section<big_endian>* owner = (*sp)->owner();
11552           off_t off = align_address(owner->original_size(),
11553                                     (*sp)->addralign());
11554           (*sp)->set_address_and_file_offset(owner->address() + off,
11555                                              owner->offset() + off);
11556         }
11557     }
11558
11559   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11560   // beginning of each relaxation pass, just blow away all the stubs.
11561   // Alternatively, we could selectively remove only the stubs and reloc
11562   // information for code sections that have moved since the last pass.
11563   // That would require more book-keeping.
11564   if (this->fix_cortex_a8_)
11565     {
11566       // Clear all Cortex-A8 reloc information.
11567       for (typename Cortex_a8_relocs_info::const_iterator p =
11568              this->cortex_a8_relocs_info_.begin();
11569            p != this->cortex_a8_relocs_info_.end();
11570            ++p)
11571         delete p->second;
11572       this->cortex_a8_relocs_info_.clear();
11573
11574       // Remove all Cortex-A8 stubs.
11575       for (Stub_table_iterator sp = this->stub_tables_.begin();
11576            sp != this->stub_tables_.end();
11577            ++sp)
11578         (*sp)->remove_all_cortex_a8_stubs();
11579     }
11580
11581   // Scan relocs for relocation stubs
11582   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11583        op != input_objects->relobj_end();
11584        ++op)
11585     {
11586       Arm_relobj<big_endian>* arm_relobj =
11587         Arm_relobj<big_endian>::as_arm_relobj(*op);
11588       // Lock the object so we can read from it.  This is only called
11589       // single-threaded from Layout::finalize, so it is OK to lock.
11590       Task_lock_obj<Object> tl(task, arm_relobj);
11591       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11592     }
11593
11594   // Check all stub tables to see if any of them have their data sizes
11595   // or addresses alignments changed.  These are the only things that
11596   // matter.
11597   bool any_stub_table_changed = false;
11598   Unordered_set<const Output_section*> sections_needing_adjustment;
11599   for (Stub_table_iterator sp = this->stub_tables_.begin();
11600        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11601        ++sp)
11602     {
11603       if ((*sp)->update_data_size_and_addralign())
11604         {
11605           // Update data size of stub table owner.
11606           Arm_input_section<big_endian>* owner = (*sp)->owner();
11607           uint64_t address = owner->address();
11608           off_t offset = owner->offset();
11609           owner->reset_address_and_file_offset();
11610           owner->set_address_and_file_offset(address, offset);
11611
11612           sections_needing_adjustment.insert(owner->output_section());
11613           any_stub_table_changed = true;
11614         }
11615     }
11616
11617   // Output_section_data::output_section() returns a const pointer but we
11618   // need to update output sections, so we record all output sections needing
11619   // update above and scan the sections here to find out what sections need
11620   // to be updated.
11621   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11622       p != layout->section_list().end();
11623       ++p)
11624     {
11625       if (sections_needing_adjustment.find(*p)
11626           != sections_needing_adjustment.end())
11627         (*p)->set_section_offsets_need_adjustment();
11628     }
11629
11630   // Stop relaxation if no EXIDX fix-up and no stub table change.
11631   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11632
11633   // Finalize the stubs in the last relaxation pass.
11634   if (!continue_relaxation)
11635     {
11636       for (Stub_table_iterator sp = this->stub_tables_.begin();
11637            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11638             ++sp)
11639         (*sp)->finalize_stubs();
11640
11641       // Update output local symbol counts of objects if necessary.
11642       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11643            op != input_objects->relobj_end();
11644            ++op)
11645         {
11646           Arm_relobj<big_endian>* arm_relobj =
11647             Arm_relobj<big_endian>::as_arm_relobj(*op);
11648
11649           // Update output local symbol counts.  We need to discard local
11650           // symbols defined in parts of input sections that are discarded by
11651           // relaxation.
11652           if (arm_relobj->output_local_symbol_count_needs_update())
11653             {
11654               // We need to lock the object's file to update it.
11655               Task_lock_obj<Object> tl(task, arm_relobj);
11656               arm_relobj->update_output_local_symbol_count();
11657             }
11658         }
11659     }
11660
11661   return continue_relaxation;
11662 }
11663
11664 // Relocate a stub.
11665
11666 template<bool big_endian>
11667 void
11668 Target_arm<big_endian>::relocate_stub(
11669     Stub* stub,
11670     const Relocate_info<32, big_endian>* relinfo,
11671     Output_section* output_section,
11672     unsigned char* view,
11673     Arm_address address,
11674     section_size_type view_size)
11675 {
11676   Relocate relocate;
11677   const Stub_template* stub_template = stub->stub_template();
11678   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11679     {
11680       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11681       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11682
11683       unsigned int r_type = insn->r_type();
11684       section_size_type reloc_offset = stub_template->reloc_offset(i);
11685       section_size_type reloc_size = insn->size();
11686       gold_assert(reloc_offset + reloc_size <= view_size);
11687
11688       // This is the address of the stub destination.
11689       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11690       Symbol_value<32> symval;
11691       symval.set_output_value(target);
11692
11693       // Synthesize a fake reloc just in case.  We don't have a symbol so
11694       // we use 0.
11695       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11696       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11697       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11698       reloc_write.put_r_offset(reloc_offset);
11699       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11700       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11701
11702       relocate.relocate(relinfo, this, output_section,
11703                         this->fake_relnum_for_stubs, rel, r_type,
11704                         NULL, &symval, view + reloc_offset,
11705                         address + reloc_offset, reloc_size);
11706     }
11707 }
11708
11709 // Determine whether an object attribute tag takes an integer, a
11710 // string or both.
11711
11712 template<bool big_endian>
11713 int
11714 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11715 {
11716   if (tag == Object_attribute::Tag_compatibility)
11717     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11718             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11719   else if (tag == elfcpp::Tag_nodefaults)
11720     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11721             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11722   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11723     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11724   else if (tag < 32)
11725     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11726   else
11727     return ((tag & 1) != 0
11728             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11729             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11730 }
11731
11732 // Reorder attributes.
11733 //
11734 // The ABI defines that Tag_conformance should be emitted first, and that
11735 // Tag_nodefaults should be second (if either is defined).  This sets those
11736 // two positions, and bumps up the position of all the remaining tags to
11737 // compensate.
11738
11739 template<bool big_endian>
11740 int
11741 Target_arm<big_endian>::do_attributes_order(int num) const
11742 {
11743   // Reorder the known object attributes in output.  We want to move
11744   // Tag_conformance to position 4 and Tag_conformance to position 5
11745   // and shift everything between 4 .. Tag_conformance - 1 to make room.
11746   if (num == 4)
11747     return elfcpp::Tag_conformance;
11748   if (num == 5)
11749     return elfcpp::Tag_nodefaults;
11750   if ((num - 2) < elfcpp::Tag_nodefaults)
11751     return num - 2;
11752   if ((num - 1) < elfcpp::Tag_conformance)
11753     return num - 1;
11754   return num;
11755 }
11756
11757 // Scan a span of THUMB code for Cortex-A8 erratum.
11758
11759 template<bool big_endian>
11760 void
11761 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11762     Arm_relobj<big_endian>* arm_relobj,
11763     unsigned int shndx,
11764     section_size_type span_start,
11765     section_size_type span_end,
11766     const unsigned char* view,
11767     Arm_address address)
11768 {
11769   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11770   //
11771   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11772   // The branch target is in the same 4KB region as the
11773   // first half of the branch.
11774   // The instruction before the branch is a 32-bit
11775   // length non-branch instruction.
11776   section_size_type i = span_start;
11777   bool last_was_32bit = false;
11778   bool last_was_branch = false;
11779   while (i < span_end)
11780     {
11781       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11782       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11783       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11784       bool is_blx = false, is_b = false;
11785       bool is_bl = false, is_bcc = false;
11786
11787       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11788       if (insn_32bit)
11789         {
11790           // Load the rest of the insn (in manual-friendly order).
11791           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11792
11793           // Encoding T4: B<c>.W.
11794           is_b = (insn & 0xf800d000U) == 0xf0009000U;
11795           // Encoding T1: BL<c>.W.
11796           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11797           // Encoding T2: BLX<c>.W.
11798           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11799           // Encoding T3: B<c>.W (not permitted in IT block).
11800           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11801                     && (insn & 0x07f00000U) != 0x03800000U);
11802         }
11803
11804       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11805
11806       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11807       // page boundary and it follows 32-bit non-branch instruction,
11808       // we need to work around.
11809       if (is_32bit_branch
11810           && ((address + i) & 0xfffU) == 0xffeU
11811           && last_was_32bit
11812           && !last_was_branch)
11813         {
11814           // Check to see if there is a relocation stub for this branch.
11815           bool force_target_arm = false;
11816           bool force_target_thumb = false;
11817           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11818           Cortex_a8_relocs_info::const_iterator p =
11819             this->cortex_a8_relocs_info_.find(address + i);
11820
11821           if (p != this->cortex_a8_relocs_info_.end())
11822             {
11823               cortex_a8_reloc = p->second;
11824               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11825
11826               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11827                   && !target_is_thumb)
11828                 force_target_arm = true;
11829               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11830                        && target_is_thumb)
11831                 force_target_thumb = true;
11832             }
11833
11834           off_t offset;
11835           Stub_type stub_type = arm_stub_none;
11836
11837           // Check if we have an offending branch instruction.
11838           uint16_t upper_insn = (insn >> 16) & 0xffffU;
11839           uint16_t lower_insn = insn & 0xffffU;
11840           typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11841
11842           if (cortex_a8_reloc != NULL
11843               && cortex_a8_reloc->reloc_stub() != NULL)
11844             // We've already made a stub for this instruction, e.g.
11845             // it's a long branch or a Thumb->ARM stub.  Assume that
11846             // stub will suffice to work around the A8 erratum (see
11847             // setting of always_after_branch above).
11848             ;
11849           else if (is_bcc)
11850             {
11851               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11852                                                               lower_insn);
11853               stub_type = arm_stub_a8_veneer_b_cond;
11854             }
11855           else if (is_b || is_bl || is_blx)
11856             {
11857               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11858                                                          lower_insn);
11859               if (is_blx)
11860                 offset &= ~3;
11861
11862               stub_type = (is_blx
11863                            ? arm_stub_a8_veneer_blx
11864                            : (is_bl
11865                               ? arm_stub_a8_veneer_bl
11866                               : arm_stub_a8_veneer_b));
11867             }
11868
11869           if (stub_type != arm_stub_none)
11870             {
11871               Arm_address pc_for_insn = address + i + 4;
11872
11873               // The original instruction is a BL, but the target is
11874               // an ARM instruction.  If we were not making a stub,
11875               // the BL would have been converted to a BLX.  Use the
11876               // BLX stub instead in that case.
11877               if (this->may_use_v5t_interworking() && force_target_arm
11878                   && stub_type == arm_stub_a8_veneer_bl)
11879                 {
11880                   stub_type = arm_stub_a8_veneer_blx;
11881                   is_blx = true;
11882                   is_bl = false;
11883                 }
11884               // Conversely, if the original instruction was
11885               // BLX but the target is Thumb mode, use the BL stub.
11886               else if (force_target_thumb
11887                        && stub_type == arm_stub_a8_veneer_blx)
11888                 {
11889                   stub_type = arm_stub_a8_veneer_bl;
11890                   is_blx = false;
11891                   is_bl = true;
11892                 }
11893
11894               if (is_blx)
11895                 pc_for_insn &= ~3;
11896
11897               // If we found a relocation, use the proper destination,
11898               // not the offset in the (unrelocated) instruction.
11899               // Note this is always done if we switched the stub type above.
11900               if (cortex_a8_reloc != NULL)
11901                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11902
11903               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11904
11905               // Add a new stub if destination address in in the same page.
11906               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11907                 {
11908                   Cortex_a8_stub* stub =
11909                     this->stub_factory_.make_cortex_a8_stub(stub_type,
11910                                                             arm_relobj, shndx,
11911                                                             address + i,
11912                                                             target, insn);
11913                   Stub_table<big_endian>* stub_table =
11914                     arm_relobj->stub_table(shndx);
11915                   gold_assert(stub_table != NULL);
11916                   stub_table->add_cortex_a8_stub(address + i, stub);
11917                 }
11918             }
11919         }
11920
11921       i += insn_32bit ? 4 : 2;
11922       last_was_32bit = insn_32bit;
11923       last_was_branch = is_32bit_branch;
11924     }
11925 }
11926
11927 // Apply the Cortex-A8 workaround.
11928
11929 template<bool big_endian>
11930 void
11931 Target_arm<big_endian>::apply_cortex_a8_workaround(
11932     const Cortex_a8_stub* stub,
11933     Arm_address stub_address,
11934     unsigned char* insn_view,
11935     Arm_address insn_address)
11936 {
11937   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11938   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11939   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11940   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11941   off_t branch_offset = stub_address - (insn_address + 4);
11942
11943   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11944   switch (stub->stub_template()->type())
11945     {
11946     case arm_stub_a8_veneer_b_cond:
11947       // For a conditional branch, we re-write it to be an unconditional
11948       // branch to the stub.  We use the THUMB-2 encoding here.
11949       upper_insn = 0xf000U;
11950       lower_insn = 0xb800U;
11951       // Fall through
11952     case arm_stub_a8_veneer_b:
11953     case arm_stub_a8_veneer_bl:
11954     case arm_stub_a8_veneer_blx:
11955       if ((lower_insn & 0x5000U) == 0x4000U)
11956         // For a BLX instruction, make sure that the relocation is
11957         // rounded up to a word boundary.  This follows the semantics of
11958         // the instruction which specifies that bit 1 of the target
11959         // address will come from bit 1 of the base address.
11960         branch_offset = (branch_offset + 2) & ~3;
11961
11962       // Put BRANCH_OFFSET back into the insn.
11963       gold_assert(!Bits<25>::has_overflow32(branch_offset));
11964       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11965       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11966       break;
11967
11968     default:
11969       gold_unreachable();
11970     }
11971
11972   // Put the relocated value back in the object file:
11973   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11974   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11975 }
11976
11977 // Target selector for ARM.  Note this is never instantiated directly.
11978 // It's only used in Target_selector_arm_nacl, below.
11979
11980 template<bool big_endian>
11981 class Target_selector_arm : public Target_selector
11982 {
11983  public:
11984   Target_selector_arm()
11985     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11986                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11987                       (big_endian ? "armelfb" : "armelf"))
11988   { }
11989
11990   Target*
11991   do_instantiate_target()
11992   { return new Target_arm<big_endian>(); }
11993 };
11994
11995 // Fix .ARM.exidx section coverage.
11996
11997 template<bool big_endian>
11998 void
11999 Target_arm<big_endian>::fix_exidx_coverage(
12000     Layout* layout,
12001     const Input_objects* input_objects,
12002     Arm_output_section<big_endian>* exidx_section,
12003     Symbol_table* symtab,
12004     const Task* task)
12005 {
12006   // We need to look at all the input sections in output in ascending
12007   // order of of output address.  We do that by building a sorted list
12008   // of output sections by addresses.  Then we looks at the output sections
12009   // in order.  The input sections in an output section are already sorted
12010   // by addresses within the output section.
12011
12012   typedef std::set<Output_section*, output_section_address_less_than>
12013       Sorted_output_section_list;
12014   Sorted_output_section_list sorted_output_sections;
12015
12016   // Find out all the output sections of input sections pointed by
12017   // EXIDX input sections.
12018   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12019        p != input_objects->relobj_end();
12020        ++p)
12021     {
12022       Arm_relobj<big_endian>* arm_relobj =
12023         Arm_relobj<big_endian>::as_arm_relobj(*p);
12024       std::vector<unsigned int> shndx_list;
12025       arm_relobj->get_exidx_shndx_list(&shndx_list);
12026       for (size_t i = 0; i < shndx_list.size(); ++i)
12027         {
12028           const Arm_exidx_input_section* exidx_input_section =
12029             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12030           gold_assert(exidx_input_section != NULL);
12031           if (!exidx_input_section->has_errors())
12032             {
12033               unsigned int text_shndx = exidx_input_section->link();
12034               Output_section* os = arm_relobj->output_section(text_shndx);
12035               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12036                 sorted_output_sections.insert(os);
12037             }
12038         }
12039     }
12040
12041   // Go over the output sections in ascending order of output addresses.
12042   typedef typename Arm_output_section<big_endian>::Text_section_list
12043       Text_section_list;
12044   Text_section_list sorted_text_sections;
12045   for (typename Sorted_output_section_list::iterator p =
12046         sorted_output_sections.begin();
12047       p != sorted_output_sections.end();
12048       ++p)
12049     {
12050       Arm_output_section<big_endian>* arm_output_section =
12051         Arm_output_section<big_endian>::as_arm_output_section(*p);
12052       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12053     }
12054
12055   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12056                                     merge_exidx_entries(), task);
12057 }
12058
12059 template<bool big_endian>
12060 void
12061 Target_arm<big_endian>::do_define_standard_symbols(
12062     Symbol_table* symtab,
12063     Layout* layout)
12064 {
12065   // Handle the .ARM.exidx section.
12066   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12067
12068   if (exidx_section != NULL)
12069     {
12070       // Create __exidx_start and __exidx_end symbols.
12071       symtab->define_in_output_data("__exidx_start",
12072                                     NULL, // version
12073                                     Symbol_table::PREDEFINED,
12074                                     exidx_section,
12075                                     0, // value
12076                                     0, // symsize
12077                                     elfcpp::STT_NOTYPE,
12078                                     elfcpp::STB_GLOBAL,
12079                                     elfcpp::STV_HIDDEN,
12080                                     0, // nonvis
12081                                     false, // offset_is_from_end
12082                                     true); // only_if_ref
12083
12084       symtab->define_in_output_data("__exidx_end",
12085                                     NULL, // version
12086                                     Symbol_table::PREDEFINED,
12087                                     exidx_section,
12088                                     0, // value
12089                                     0, // symsize
12090                                     elfcpp::STT_NOTYPE,
12091                                     elfcpp::STB_GLOBAL,
12092                                     elfcpp::STV_HIDDEN,
12093                                     0, // nonvis
12094                                     true, // offset_is_from_end
12095                                     true); // only_if_ref
12096     }
12097   else
12098     {
12099       // Define __exidx_start and __exidx_end even when .ARM.exidx
12100       // section is missing to match ld's behaviour.
12101       symtab->define_as_constant("__exidx_start", NULL,
12102                                  Symbol_table::PREDEFINED,
12103                                  0, 0, elfcpp::STT_OBJECT,
12104                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12105                                  true, false);
12106       symtab->define_as_constant("__exidx_end", NULL,
12107                                  Symbol_table::PREDEFINED,
12108                                  0, 0, elfcpp::STT_OBJECT,
12109                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12110                                  true, false);
12111     }
12112 }
12113
12114 // NaCl variant.  It uses different PLT contents.
12115
12116 template<bool big_endian>
12117 class Output_data_plt_arm_nacl;
12118
12119 template<bool big_endian>
12120 class Target_arm_nacl : public Target_arm<big_endian>
12121 {
12122  public:
12123   Target_arm_nacl()
12124     : Target_arm<big_endian>(&arm_nacl_info)
12125   { }
12126
12127  protected:
12128   virtual Output_data_plt_arm<big_endian>*
12129   do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12130   { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12131
12132  private:
12133   static const Target::Target_info arm_nacl_info;
12134 };
12135
12136 template<bool big_endian>
12137 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12138 {
12139   32,                   // size
12140   big_endian,           // is_big_endian
12141   elfcpp::EM_ARM,       // machine_code
12142   false,                // has_make_symbol
12143   false,                // has_resolve
12144   false,                // has_code_fill
12145   true,                 // is_default_stack_executable
12146   false,                // can_icf_inline_merge_sections
12147   '\0',                 // wrap_char
12148   "/lib/ld-nacl-arm.so.1", // dynamic_linker
12149   0x20000,              // default_text_segment_address
12150   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12151   0x10000,              // common_pagesize (overridable by -z common-page-size)
12152   true,                 // isolate_execinstr
12153   0x10000000,           // rosegment_gap
12154   elfcpp::SHN_UNDEF,    // small_common_shndx
12155   elfcpp::SHN_UNDEF,    // large_common_shndx
12156   0,                    // small_common_section_flags
12157   0,                    // large_common_section_flags
12158   ".ARM.attributes",    // attributes_section
12159   "aeabi"               // attributes_vendor
12160 };
12161
12162 template<bool big_endian>
12163 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12164 {
12165  public:
12166   Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12167     : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12168   { }
12169
12170  protected:
12171   // Return the offset of the first non-reserved PLT entry.
12172   virtual unsigned int
12173   do_first_plt_entry_offset() const
12174   { return sizeof(first_plt_entry); }
12175
12176   // Return the size of a PLT entry.
12177   virtual unsigned int
12178   do_get_plt_entry_size() const
12179   { return sizeof(plt_entry); }
12180
12181   virtual void
12182   do_fill_first_plt_entry(unsigned char* pov,
12183                           Arm_address got_address,
12184                           Arm_address plt_address);
12185
12186   virtual void
12187   do_fill_plt_entry(unsigned char* pov,
12188                     Arm_address got_address,
12189                     Arm_address plt_address,
12190                     unsigned int got_offset,
12191                     unsigned int plt_offset);
12192
12193  private:
12194   inline uint32_t arm_movw_immediate(uint32_t value)
12195   {
12196     return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12197   }
12198
12199   inline uint32_t arm_movt_immediate(uint32_t value)
12200   {
12201     return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12202   }
12203
12204   // Template for the first PLT entry.
12205   static const uint32_t first_plt_entry[16];
12206
12207   // Template for subsequent PLT entries.
12208   static const uint32_t plt_entry[4];
12209 };
12210
12211 // The first entry in the PLT.
12212 template<bool big_endian>
12213 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12214 {
12215   // First bundle:
12216   0xe300c000,                           // movw ip, #:lower16:&GOT[2]-.+8
12217   0xe340c000,                           // movt ip, #:upper16:&GOT[2]-.+8
12218   0xe08cc00f,                           // add  ip, ip, pc
12219   0xe52dc008,                           // str  ip, [sp, #-8]!
12220   // Second bundle:
12221   0xe3ccc103,                           // bic  ip, ip, #0xc0000000
12222   0xe59cc000,                           // ldr  ip, [ip]
12223   0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
12224   0xe12fff1c,                           // bx   ip
12225   // Third bundle:
12226   0xe320f000,                           // nop
12227   0xe320f000,                           // nop
12228   0xe320f000,                           // nop
12229   // .Lplt_tail:
12230   0xe50dc004,                           // str  ip, [sp, #-4]
12231   // Fourth bundle:
12232   0xe3ccc103,                           // bic  ip, ip, #0xc0000000
12233   0xe59cc000,                           // ldr  ip, [ip]
12234   0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
12235   0xe12fff1c,                           // bx   ip
12236 };
12237
12238 template<bool big_endian>
12239 void
12240 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12241     unsigned char* pov,
12242     Arm_address got_address,
12243     Arm_address plt_address)
12244 {
12245   // Write first PLT entry.  All but first two words are constants.
12246   const size_t num_first_plt_words = (sizeof(first_plt_entry)
12247                                       / sizeof(first_plt_entry[0]));
12248
12249   int32_t got_displacement = got_address + 8 - (plt_address + 16);
12250
12251   elfcpp::Swap<32, big_endian>::writeval
12252     (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12253   elfcpp::Swap<32, big_endian>::writeval
12254     (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12255
12256   for (size_t i = 2; i < num_first_plt_words; ++i)
12257     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12258 }
12259
12260 // Subsequent entries in the PLT.
12261
12262 template<bool big_endian>
12263 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12264 {
12265   0xe300c000,                           // movw ip, #:lower16:&GOT[n]-.+8
12266   0xe340c000,                           // movt ip, #:upper16:&GOT[n]-.+8
12267   0xe08cc00f,                           // add  ip, ip, pc
12268   0xea000000,                           // b    .Lplt_tail
12269 };
12270
12271 template<bool big_endian>
12272 void
12273 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12274     unsigned char* pov,
12275     Arm_address got_address,
12276     Arm_address plt_address,
12277     unsigned int got_offset,
12278     unsigned int plt_offset)
12279 {
12280   // Calculate the displacement between the PLT slot and the
12281   // common tail that's part of the special initial PLT slot.
12282   int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12283                                - (plt_address + plt_offset
12284                                   + sizeof(plt_entry) + sizeof(uint32_t)));
12285   gold_assert((tail_displacement & 3) == 0);
12286   tail_displacement >>= 2;
12287
12288   gold_assert ((tail_displacement & 0xff000000) == 0
12289                || (-tail_displacement & 0xff000000) == 0);
12290
12291   // Calculate the displacement between the PLT slot and the entry
12292   // in the GOT.  The offset accounts for the value produced by
12293   // adding to pc in the penultimate instruction of the PLT stub.
12294   const int32_t got_displacement = (got_address + got_offset
12295                                     - (plt_address + sizeof(plt_entry)));
12296
12297   elfcpp::Swap<32, big_endian>::writeval
12298     (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12299   elfcpp::Swap<32, big_endian>::writeval
12300     (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12301   elfcpp::Swap<32, big_endian>::writeval
12302     (pov + 8, plt_entry[2]);
12303   elfcpp::Swap<32, big_endian>::writeval
12304     (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12305 }
12306
12307 // Target selectors.
12308
12309 template<bool big_endian>
12310 class Target_selector_arm_nacl
12311   : public Target_selector_nacl<Target_selector_arm<big_endian>,
12312                                 Target_arm_nacl<big_endian> >
12313 {
12314  public:
12315   Target_selector_arm_nacl()
12316     : Target_selector_nacl<Target_selector_arm<big_endian>,
12317                            Target_arm_nacl<big_endian> >(
12318           "arm",
12319           big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12320           big_endian ? "armelfb_nacl" : "armelf_nacl")
12321   { }
12322 };
12323
12324 Target_selector_arm_nacl<false> target_selector_arm;
12325 Target_selector_arm_nacl<true> target_selector_armbe;
12326
12327 } // End anonymous namespace.