1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_; }
193 // Return the instruction sequence type of this.
196 { return this->type_; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_; }
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
275 arm_stub_type_last = arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type, const Insn_template*, size_t);
294 { return this->type_; }
296 // Return an array of instruction templates.
299 { return this->insns_; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_; }
306 // Return size of template in bytes.
309 { return this->size_; }
311 // Return alignment of the stub template.
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian>
451 do_fixed_endian_write(unsigned char*, section_size_type);
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
576 // Functors for STL associative containers.
580 operator()(const Key& k) const
581 { return k.hash_value(); }
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol* symbol;
610 const Relobj* relobj;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
634 return this->destination_address_;
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
755 // Return the associated register.
758 { return this->reg_; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
785 // A template to implement do_write.
786 template<bool big_endian>
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory&
815 static Stub_factory singleton;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
882 { return this->owner_; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
981 // Write out section contents.
983 do_write(Output_file*);
985 // Return the required alignment.
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_; }
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1064 this->do_fixed_endian_write<false>(of);
1067 // Write to a map file.
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1076 do_fixed_endian_write(Output_file*);
1078 // The object containing the section pointed by this.
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1107 // Build output contents.
1109 build_contents(const unsigned char*, section_size_type);
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1122 // Write merged section into file OF.
1124 do_write(Output_file* of);
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1141 // A class to wrap an ordinary input section containing executable code.
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1160 // Whether this is a stub table owner.
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1168 { return this->stub_table_; }
1170 // Set the stub_table.
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1181 // Return the original size of the section.
1183 original_size() const
1184 { return this->original_size_; }
1187 // Write data to output file.
1189 do_write(Output_file*);
1191 // Return required alignment of this.
1193 do_addralign() const
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1199 return this->original_addralign_;
1202 // Finalize data size.
1204 set_final_data_size();
1206 // Reset address and file offset.
1208 do_reset_address_and_file_offset();
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1243 unsigned char* original_contents_;
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1249 class Arm_exidx_fixup
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1261 { delete this->section_offset_map_; }
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1279 add_exidx_cantunwind_as_needed();
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1292 // Type of EXIDX unwind entry.
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1308 process_exidx_entry(uint32_t second_word);
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1331 Output_section* first_output_text_section_;
1333 bool merge_exidx_entries_;
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1357 ~Arm_output_section()
1360 // Group input sections for stub generation.
1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1370 // Append all input text sections in this into LIST.
1372 append_text_sections_to_list(Text_section_list* list);
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
1380 Symbol_table* symtab,
1381 bool merge_exidx_entries,
1384 // Link an EXIDX section into its corresponding text section.
1386 set_exidx_section_link();
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
1398 std::vector<Output_relaxed_input_section*>*,
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1404 class Arm_exidx_input_section
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
1417 ~Arm_exidx_input_section()
1420 // Accessors: This is a read-only class.
1422 // Return the object containing this EXIDX input section.
1425 { return this->relobj_; }
1427 // Return the section index of this EXIDX input section.
1430 { return this->shndx_; }
1432 // Return the section index of linked text section in the same object.
1435 { return this->link_; }
1437 // Return size of the EXIDX input section.
1440 { return this->size_; }
1442 // Return address alignment of EXIDX input section.
1445 { return this->addralign_; }
1447 // Return size of the associated text input section.
1450 { return this->text_size_; }
1452 // Whether there are any errors in the EXIDX input section.
1455 { return this->has_errors_; }
1457 // Set has-errors flag.
1460 { this->has_errors_ = true; }
1463 // Object containing this.
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1469 // Size of this. For ARM 32-bit is sufficient.
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
1473 // Size of associated text section.
1474 uint32_t text_size_;
1475 // Whether this has any errors.
1479 // Arm_relobj class.
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1498 { delete this->attributes_section_data_; }
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
1502 stub_table(unsigned int shndx) const
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1525 // Scan all relocation sections for stub generation.
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1530 // Convert regular input section with index SHNDX to a relaxed section.
1532 convert_input_section_to_relaxed_section(unsigned shndx)
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1546 // Processor-specific flags in ELF file header. This is valid only after
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1552 // Attribute section data This is the contents of the .ARM.attribute section
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1578 // Whether a section contains any Cortex-A8 workaround.
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1586 // Mark a section that has Cortex-A8 workaround.
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1619 // Whether output local symbol count needs updating.
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1624 // Set output_local_symbol_count_needs_update flag to be true.
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1629 // Update output local symbol count at the end of relaxation.
1631 update_output_local_symbol_count();
1633 // Whether we want to merge processor-specific flags and attributes.
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1638 // Export list of EXIDX section indices.
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1655 // Post constructor setup.
1659 // Call parent's setup method.
1660 Sized_relobj_file<32, big_endian>::do_setup();
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1667 // Count the local symbols.
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1678 // Read the symbol information.
1680 do_read_symbols(Read_symbols_data* sd);
1682 // Process relocs for garbage collection.
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1688 // Whether a section needs to be scanned for relocation stubs.
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
1692 const Symbol_table*, const unsigned char*);
1694 // Whether a section is a scannable text section.
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697 const Output_section*, const Symbol_table*);
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
1703 const Symbol_table*);
1705 // Scan a section for the Cortex-A8 erratum.
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1725 make_exidx_input_section(unsigned int shndx,
1726 const elfcpp::Shdr<32, big_endian>& shdr,
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1733 simple_input_section_output_address(unsigned int, Output_section*);
1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1739 // List of stub tables.
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
1756 // Whether we merge processor flags and attributes of this object to
1758 bool merge_flags_and_attributes_;
1761 // Arm_dynobj class.
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
1774 { delete this->attributes_section_data_; }
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1782 // Processor-specific flags in ELF file header. This is valid only after
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1794 // Read the symbol information.
1796 do_read_symbols(Read_symbols_data* sd);
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
1805 // Functor to read reloc addends during stub generation.
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
1818 32, big_endian>::Reloc& /* reloc */) const;
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1826 elfcpp::Elf_types<32>::Elf_Swxword
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1841 elfcpp::Elf_types<32>::Elf_Swxword
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1853 class Cortex_a8_reloc
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1864 // Accessors: This is a read-only class.
1866 // Return the relocation stub associated with this relocation if there is
1870 { return this->reloc_stub_; }
1872 // Return the relocation type.
1875 { return this->r_type_; }
1877 // Return the destination address of the relocation. LSB stores the THUMB
1881 { return this->destination_; }
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1890 Arm_address destination_;
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj_file<32, big_endian>* relobj,
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
1934 Sized_relobj_file<32, big_endian>* object,
1935 unsigned int index);
1938 // Write out the GOT table.
1940 do_write(Output_file*);
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1960 // Return the GOT offset.
1963 { return this->got_offset_; }
1968 { return this->r_type_; }
1970 // Whether the symbol is global or not.
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1975 // For a relocation against a global symbol, the global symbol.
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file<32, big_endian>*
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1991 // For a relocation against a local symbol, the local symbol index.
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2011 // For a global symbol, the symbol itself.
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file<32, big_endian>* relobj;
2018 // For a local symbol, the symbol index.
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2078 // Relocations that write full 32 bits.
2079 case elfcpp::R_ARM_ABS32:
2080 case elfcpp::R_ARM_REL32:
2081 case elfcpp::R_ARM_SBREL32:
2082 case elfcpp::R_ARM_GOTOFF32:
2083 case elfcpp::R_ARM_BASE_PREL:
2084 case elfcpp::R_ARM_GOT_BREL:
2085 case elfcpp::R_ARM_BASE_ABS:
2086 case elfcpp::R_ARM_ABS32_NOI:
2087 case elfcpp::R_ARM_REL32_NOI:
2088 case elfcpp::R_ARM_PLT32_ABS:
2089 case elfcpp::R_ARM_GOT_ABS:
2090 case elfcpp::R_ARM_GOT_PREL:
2091 case elfcpp::R_ARM_TLS_GD32:
2092 case elfcpp::R_ARM_TLS_LDM32:
2093 case elfcpp::R_ARM_TLS_LDO32:
2094 case elfcpp::R_ARM_TLS_IE32:
2095 case elfcpp::R_ARM_TLS_LE32:
2096 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2098 // For all other static relocations, return RELOC_SPECIAL.
2099 return Relocatable_relocs::RELOC_SPECIAL;
2105 // Utilities for manipulating integers of up to 32-bits
2109 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110 // an int32_t. NO_BITS must be between 1 to 32.
2111 template<int no_bits>
2112 static inline int32_t
2113 sign_extend(uint32_t bits)
2115 gold_assert(no_bits >= 0 && no_bits <= 32);
2117 return static_cast<int32_t>(bits);
2118 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2120 uint32_t top_bit = 1U << (no_bits - 1);
2121 int32_t as_signed = static_cast<int32_t>(bits);
2122 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2125 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126 template<int no_bits>
2128 has_overflow(uint32_t bits)
2130 gold_assert(no_bits >= 0 && no_bits <= 32);
2133 int32_t max = (1 << (no_bits - 1)) - 1;
2134 int32_t min = -(1 << (no_bits - 1));
2135 int32_t as_signed = static_cast<int32_t>(bits);
2136 return as_signed > max || as_signed < min;
2139 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140 // fits in the given number of bits as either a signed or unsigned value.
2141 // For example, has_signed_unsigned_overflow<8> would check
2142 // -128 <= bits <= 255
2143 template<int no_bits>
2145 has_signed_unsigned_overflow(uint32_t bits)
2147 gold_assert(no_bits >= 2 && no_bits <= 32);
2150 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151 int32_t min = -(1 << (no_bits - 1));
2152 int32_t as_signed = static_cast<int32_t>(bits);
2153 return as_signed > max || as_signed < min;
2156 // Select bits from A and B using bits in MASK. For each n in [0..31],
2157 // the n-th bit in the result is chosen from the n-th bits of A and B.
2158 // A zero selects A and a one selects B.
2159 static inline uint32_t
2160 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161 { return (a & ~mask) | (b & mask); }
2164 template<bool big_endian>
2165 class Target_arm : public Sized_target<32, big_endian>
2168 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2171 // When were are relocating a stub, we pass this as the relocation number.
2172 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2175 : Sized_target<32, big_endian>(&arm_info),
2176 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180 should_force_pic_veneer_(false),
2181 arm_input_section_map_(), attributes_section_data_(NULL),
2182 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2185 // Whether we force PCI branch veneers.
2187 should_force_pic_veneer() const
2188 { return this->should_force_pic_veneer_; }
2190 // Set PIC veneer flag.
2192 set_should_force_pic_veneer(bool value)
2193 { this->should_force_pic_veneer_ = value; }
2195 // Whether we use THUMB-2 instructions.
2197 using_thumb2() const
2199 Object_attribute* attr =
2200 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2201 int arch = attr->int_value();
2202 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2205 // Whether we use THUMB/THUMB-2 instructions only.
2207 using_thumb_only() const
2209 Object_attribute* attr =
2210 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2212 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2213 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2215 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2216 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2218 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2219 return attr->int_value() == 'M';
2222 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2224 may_use_arm_nop() const
2226 Object_attribute* attr =
2227 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2228 int arch = attr->int_value();
2229 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2230 || arch == elfcpp::TAG_CPU_ARCH_V6K
2231 || arch == elfcpp::TAG_CPU_ARCH_V7
2232 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2235 // Whether we have THUMB-2 NOP.W instruction.
2237 may_use_thumb2_nop() const
2239 Object_attribute* attr =
2240 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2241 int arch = attr->int_value();
2242 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2243 || arch == elfcpp::TAG_CPU_ARCH_V7
2244 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2247 // Whether we have v4T interworking instructions available.
2249 may_use_v4t_interworking() const
2251 Object_attribute* attr =
2252 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2253 int arch = attr->int_value();
2254 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2255 && arch != elfcpp::TAG_CPU_ARCH_V4);
2258 // Whether we have v5T interworking instructions available.
2260 may_use_v5t_interworking() const
2262 Object_attribute* attr =
2263 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2264 int arch = attr->int_value();
2265 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2266 && arch != elfcpp::TAG_CPU_ARCH_V4
2267 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2270 // Process the relocations to determine unreferenced sections for
2271 // garbage collection.
2273 gc_process_relocs(Symbol_table* symtab,
2275 Sized_relobj_file<32, big_endian>* object,
2276 unsigned int data_shndx,
2277 unsigned int sh_type,
2278 const unsigned char* prelocs,
2280 Output_section* output_section,
2281 bool needs_special_offset_handling,
2282 size_t local_symbol_count,
2283 const unsigned char* plocal_symbols);
2285 // Scan the relocations to look for symbol adjustments.
2287 scan_relocs(Symbol_table* symtab,
2289 Sized_relobj_file<32, big_endian>* object,
2290 unsigned int data_shndx,
2291 unsigned int sh_type,
2292 const unsigned char* prelocs,
2294 Output_section* output_section,
2295 bool needs_special_offset_handling,
2296 size_t local_symbol_count,
2297 const unsigned char* plocal_symbols);
2299 // Finalize the sections.
2301 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2303 // Return the value to use for a dynamic symbol which requires special
2306 do_dynsym_value(const Symbol*) const;
2308 // Relocate a section.
2310 relocate_section(const Relocate_info<32, big_endian>*,
2311 unsigned int sh_type,
2312 const unsigned char* prelocs,
2314 Output_section* output_section,
2315 bool needs_special_offset_handling,
2316 unsigned char* view,
2317 Arm_address view_address,
2318 section_size_type view_size,
2319 const Reloc_symbol_changes*);
2321 // Scan the relocs during a relocatable link.
2323 scan_relocatable_relocs(Symbol_table* symtab,
2325 Sized_relobj_file<32, big_endian>* object,
2326 unsigned int data_shndx,
2327 unsigned int sh_type,
2328 const unsigned char* prelocs,
2330 Output_section* output_section,
2331 bool needs_special_offset_handling,
2332 size_t local_symbol_count,
2333 const unsigned char* plocal_symbols,
2334 Relocatable_relocs*);
2336 // Relocate a section during a relocatable link.
2338 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2339 unsigned int sh_type,
2340 const unsigned char* prelocs,
2342 Output_section* output_section,
2343 off_t offset_in_output_section,
2344 const Relocatable_relocs*,
2345 unsigned char* view,
2346 Arm_address view_address,
2347 section_size_type view_size,
2348 unsigned char* reloc_view,
2349 section_size_type reloc_view_size);
2351 // Perform target-specific processing in a relocatable link. This is
2352 // only used if we use the relocation strategy RELOC_SPECIAL.
2354 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2355 unsigned int sh_type,
2356 const unsigned char* preloc_in,
2358 Output_section* output_section,
2359 off_t offset_in_output_section,
2360 unsigned char* view,
2361 typename elfcpp::Elf_types<32>::Elf_Addr
2363 section_size_type view_size,
2364 unsigned char* preloc_out);
2366 // Return whether SYM is defined by the ABI.
2368 do_is_defined_by_abi(Symbol* sym) const
2369 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2371 // Return whether there is a GOT section.
2373 has_got_section() const
2374 { return this->got_ != NULL; }
2376 // Return the size of the GOT section.
2380 gold_assert(this->got_ != NULL);
2381 return this->got_->data_size();
2384 // Return the number of entries in the GOT.
2386 got_entry_count() const
2388 if (!this->has_got_section())
2390 return this->got_size() / 4;
2393 // Return the number of entries in the PLT.
2395 plt_entry_count() const;
2397 // Return the offset of the first non-reserved PLT entry.
2399 first_plt_entry_offset() const;
2401 // Return the size of each PLT entry.
2403 plt_entry_size() const;
2405 // Map platform-specific reloc types
2407 get_real_reloc_type(unsigned int r_type);
2410 // Methods to support stub-generations.
2413 // Return the stub factory
2415 stub_factory() const
2416 { return this->stub_factory_; }
2418 // Make a new Arm_input_section object.
2419 Arm_input_section<big_endian>*
2420 new_arm_input_section(Relobj*, unsigned int);
2422 // Find the Arm_input_section object corresponding to the SHNDX-th input
2423 // section of RELOBJ.
2424 Arm_input_section<big_endian>*
2425 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2427 // Make a new Stub_table
2428 Stub_table<big_endian>*
2429 new_stub_table(Arm_input_section<big_endian>*);
2431 // Scan a section for stub generation.
2433 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2434 const unsigned char*, size_t, Output_section*,
2435 bool, const unsigned char*, Arm_address,
2440 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2441 Output_section*, unsigned char*, Arm_address,
2444 // Get the default ARM target.
2445 static Target_arm<big_endian>*
2448 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2449 && parameters->target().is_big_endian() == big_endian);
2450 return static_cast<Target_arm<big_endian>*>(
2451 parameters->sized_target<32, big_endian>());
2454 // Whether NAME belongs to a mapping symbol.
2456 is_mapping_symbol_name(const char* name)
2460 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2461 && (name[2] == '\0' || name[2] == '.'));
2464 // Whether we work around the Cortex-A8 erratum.
2466 fix_cortex_a8() const
2467 { return this->fix_cortex_a8_; }
2469 // Whether we merge exidx entries in debuginfo.
2471 merge_exidx_entries() const
2472 { return parameters->options().merge_exidx_entries(); }
2474 // Whether we fix R_ARM_V4BX relocation.
2476 // 1 - replace with MOV instruction (armv4 target)
2477 // 2 - make interworking veneer (>= armv4t targets only)
2478 General_options::Fix_v4bx
2480 { return parameters->options().fix_v4bx(); }
2482 // Scan a span of THUMB code section for Cortex-A8 erratum.
2484 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2485 section_size_type, section_size_type,
2486 const unsigned char*, Arm_address);
2488 // Apply Cortex-A8 workaround to a branch.
2490 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2491 unsigned char*, Arm_address);
2494 // Make an ELF object.
2496 do_make_elf_object(const std::string&, Input_file*, off_t,
2497 const elfcpp::Ehdr<32, big_endian>& ehdr);
2500 do_make_elf_object(const std::string&, Input_file*, off_t,
2501 const elfcpp::Ehdr<32, !big_endian>&)
2502 { gold_unreachable(); }
2505 do_make_elf_object(const std::string&, Input_file*, off_t,
2506 const elfcpp::Ehdr<64, false>&)
2507 { gold_unreachable(); }
2510 do_make_elf_object(const std::string&, Input_file*, off_t,
2511 const elfcpp::Ehdr<64, true>&)
2512 { gold_unreachable(); }
2514 // Make an output section.
2516 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2517 elfcpp::Elf_Xword flags)
2518 { return new Arm_output_section<big_endian>(name, type, flags); }
2521 do_adjust_elf_header(unsigned char* view, int len) const;
2523 // We only need to generate stubs, and hence perform relaxation if we are
2524 // not doing relocatable linking.
2526 do_may_relax() const
2527 { return !parameters->options().relocatable(); }
2530 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2532 // Determine whether an object attribute tag takes an integer, a
2535 do_attribute_arg_type(int tag) const;
2537 // Reorder tags during output.
2539 do_attributes_order(int num) const;
2541 // This is called when the target is selected as the default.
2543 do_select_as_default_target()
2545 // No locking is required since there should only be one default target.
2546 // We cannot have both the big-endian and little-endian ARM targets
2548 gold_assert(arm_reloc_property_table == NULL);
2549 arm_reloc_property_table = new Arm_reloc_property_table();
2552 // Virtual function which is set to return true by a target if
2553 // it can use relocation types to determine if a function's
2554 // pointer is taken.
2556 do_can_check_for_function_pointers() const
2559 // Whether a section called SECTION_NAME may have function pointers to
2560 // sections not eligible for safe ICF folding.
2562 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2564 return (!is_prefix_of(".ARM.exidx", section_name)
2565 && !is_prefix_of(".ARM.extab", section_name)
2566 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2570 // The class which scans relocations.
2575 : issued_non_pic_error_(false)
2579 get_reference_flags(unsigned int r_type);
2582 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2583 Sized_relobj_file<32, big_endian>* object,
2584 unsigned int data_shndx,
2585 Output_section* output_section,
2586 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2587 const elfcpp::Sym<32, big_endian>& lsym);
2590 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2591 Sized_relobj_file<32, big_endian>* object,
2592 unsigned int data_shndx,
2593 Output_section* output_section,
2594 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2598 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2599 Sized_relobj_file<32, big_endian>* ,
2602 const elfcpp::Rel<32, big_endian>& ,
2604 const elfcpp::Sym<32, big_endian>&);
2607 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2608 Sized_relobj_file<32, big_endian>* ,
2611 const elfcpp::Rel<32, big_endian>& ,
2612 unsigned int , Symbol*);
2616 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2617 unsigned int r_type);
2620 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2621 unsigned int r_type, Symbol*);
2624 check_non_pic(Relobj*, unsigned int r_type);
2626 // Almost identical to Symbol::needs_plt_entry except that it also
2627 // handles STT_ARM_TFUNC.
2629 symbol_needs_plt_entry(const Symbol* sym)
2631 // An undefined symbol from an executable does not need a PLT entry.
2632 if (sym->is_undefined() && !parameters->options().shared())
2635 return (!parameters->doing_static_link()
2636 && (sym->type() == elfcpp::STT_FUNC
2637 || sym->type() == elfcpp::STT_ARM_TFUNC)
2638 && (sym->is_from_dynobj()
2639 || sym->is_undefined()
2640 || sym->is_preemptible()));
2644 possible_function_pointer_reloc(unsigned int r_type);
2646 // Whether we have issued an error about a non-PIC compilation.
2647 bool issued_non_pic_error_;
2650 // The class which implements relocation.
2660 // Return whether the static relocation needs to be applied.
2662 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2663 unsigned int r_type,
2665 Output_section* output_section);
2667 // Do a relocation. Return false if the caller should not issue
2668 // any warnings about this relocation.
2670 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2671 Output_section*, size_t relnum,
2672 const elfcpp::Rel<32, big_endian>&,
2673 unsigned int r_type, const Sized_symbol<32>*,
2674 const Symbol_value<32>*,
2675 unsigned char*, Arm_address,
2678 // Return whether we want to pass flag NON_PIC_REF for this
2679 // reloc. This means the relocation type accesses a symbol not via
2682 reloc_is_non_pic(unsigned int r_type)
2686 // These relocation types reference GOT or PLT entries explicitly.
2687 case elfcpp::R_ARM_GOT_BREL:
2688 case elfcpp::R_ARM_GOT_ABS:
2689 case elfcpp::R_ARM_GOT_PREL:
2690 case elfcpp::R_ARM_GOT_BREL12:
2691 case elfcpp::R_ARM_PLT32_ABS:
2692 case elfcpp::R_ARM_TLS_GD32:
2693 case elfcpp::R_ARM_TLS_LDM32:
2694 case elfcpp::R_ARM_TLS_IE32:
2695 case elfcpp::R_ARM_TLS_IE12GP:
2697 // These relocate types may use PLT entries.
2698 case elfcpp::R_ARM_CALL:
2699 case elfcpp::R_ARM_THM_CALL:
2700 case elfcpp::R_ARM_JUMP24:
2701 case elfcpp::R_ARM_THM_JUMP24:
2702 case elfcpp::R_ARM_THM_JUMP19:
2703 case elfcpp::R_ARM_PLT32:
2704 case elfcpp::R_ARM_THM_XPC22:
2705 case elfcpp::R_ARM_PREL31:
2706 case elfcpp::R_ARM_SBREL31:
2715 // Do a TLS relocation.
2716 inline typename Arm_relocate_functions<big_endian>::Status
2717 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2718 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2719 const Sized_symbol<32>*, const Symbol_value<32>*,
2720 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2725 // A class which returns the size required for a relocation type,
2726 // used while scanning relocs during a relocatable link.
2727 class Relocatable_size_for_reloc
2731 get_size_for_reloc(unsigned int, Relobj*);
2734 // Adjust TLS relocation type based on the options and whether this
2735 // is a local symbol.
2736 static tls::Tls_optimization
2737 optimize_tls_reloc(bool is_final, int r_type);
2739 // Get the GOT section, creating it if necessary.
2740 Arm_output_data_got<big_endian>*
2741 got_section(Symbol_table*, Layout*);
2743 // Get the GOT PLT section.
2745 got_plt_section() const
2747 gold_assert(this->got_plt_ != NULL);
2748 return this->got_plt_;
2751 // Create a PLT entry for a global symbol.
2753 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2755 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2757 define_tls_base_symbol(Symbol_table*, Layout*);
2759 // Create a GOT entry for the TLS module index.
2761 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2762 Sized_relobj_file<32, big_endian>* object);
2764 // Get the PLT section.
2765 const Output_data_plt_arm<big_endian>*
2768 gold_assert(this->plt_ != NULL);
2772 // Get the dynamic reloc section, creating it if necessary.
2774 rel_dyn_section(Layout*);
2776 // Get the section to use for TLS_DESC relocations.
2778 rel_tls_desc_section(Layout*) const;
2780 // Return true if the symbol may need a COPY relocation.
2781 // References from an executable object to non-function symbols
2782 // defined in a dynamic object may need a COPY relocation.
2784 may_need_copy_reloc(Symbol* gsym)
2786 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2787 && gsym->may_need_copy_reloc());
2790 // Add a potential copy relocation.
2792 copy_reloc(Symbol_table* symtab, Layout* layout,
2793 Sized_relobj_file<32, big_endian>* object,
2794 unsigned int shndx, Output_section* output_section,
2795 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2797 this->copy_relocs_.copy_reloc(symtab, layout,
2798 symtab->get_sized_symbol<32>(sym),
2799 object, shndx, output_section, reloc,
2800 this->rel_dyn_section(layout));
2803 // Whether two EABI versions are compatible.
2805 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2807 // Merge processor-specific flags from input object and those in the ELF
2808 // header of the output.
2810 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2812 // Get the secondary compatible architecture.
2814 get_secondary_compatible_arch(const Attributes_section_data*);
2816 // Set the secondary compatible architecture.
2818 set_secondary_compatible_arch(Attributes_section_data*, int);
2821 tag_cpu_arch_combine(const char*, int, int*, int, int);
2823 // Helper to print AEABI enum tag value.
2825 aeabi_enum_name(unsigned int);
2827 // Return string value for TAG_CPU_name.
2829 tag_cpu_name_value(unsigned int);
2831 // Merge object attributes from input object and those in the output.
2833 merge_object_attributes(const char*, const Attributes_section_data*);
2835 // Helper to get an AEABI object attribute
2837 get_aeabi_object_attribute(int tag) const
2839 Attributes_section_data* pasd = this->attributes_section_data_;
2840 gold_assert(pasd != NULL);
2841 Object_attribute* attr =
2842 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2843 gold_assert(attr != NULL);
2848 // Methods to support stub-generations.
2851 // Group input sections for stub generation.
2853 group_sections(Layout*, section_size_type, bool, const Task*);
2855 // Scan a relocation for stub generation.
2857 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2858 const Sized_symbol<32>*, unsigned int,
2859 const Symbol_value<32>*,
2860 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2862 // Scan a relocation section for stub.
2863 template<int sh_type>
2865 scan_reloc_section_for_stubs(
2866 const Relocate_info<32, big_endian>* relinfo,
2867 const unsigned char* prelocs,
2869 Output_section* output_section,
2870 bool needs_special_offset_handling,
2871 const unsigned char* view,
2872 elfcpp::Elf_types<32>::Elf_Addr view_address,
2875 // Fix .ARM.exidx section coverage.
2877 fix_exidx_coverage(Layout*, const Input_objects*,
2878 Arm_output_section<big_endian>*, Symbol_table*,
2881 // Functors for STL set.
2882 struct output_section_address_less_than
2885 operator()(const Output_section* s1, const Output_section* s2) const
2886 { return s1->address() < s2->address(); }
2889 // Information about this specific target which we pass to the
2890 // general Target structure.
2891 static const Target::Target_info arm_info;
2893 // The types of GOT entries needed for this platform.
2894 // These values are exposed to the ABI in an incremental link.
2895 // Do not renumber existing values without changing the version
2896 // number of the .gnu_incremental_inputs section.
2899 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2900 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2901 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2902 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2903 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2906 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2908 // Map input section to Arm_input_section.
2909 typedef Unordered_map<Section_id,
2910 Arm_input_section<big_endian>*,
2912 Arm_input_section_map;
2914 // Map output addresses to relocs for Cortex-A8 erratum.
2915 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2916 Cortex_a8_relocs_info;
2919 Arm_output_data_got<big_endian>* got_;
2921 Output_data_plt_arm<big_endian>* plt_;
2922 // The GOT PLT section.
2923 Output_data_space* got_plt_;
2924 // The dynamic reloc section.
2925 Reloc_section* rel_dyn_;
2926 // Relocs saved to avoid a COPY reloc.
2927 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2928 // Space for variables copied with a COPY reloc.
2929 Output_data_space* dynbss_;
2930 // Offset of the GOT entry for the TLS module index.
2931 unsigned int got_mod_index_offset_;
2932 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2933 bool tls_base_symbol_defined_;
2934 // Vector of Stub_tables created.
2935 Stub_table_list stub_tables_;
2937 const Stub_factory &stub_factory_;
2938 // Whether we force PIC branch veneers.
2939 bool should_force_pic_veneer_;
2940 // Map for locating Arm_input_sections.
2941 Arm_input_section_map arm_input_section_map_;
2942 // Attributes section data in output.
2943 Attributes_section_data* attributes_section_data_;
2944 // Whether we want to fix code for Cortex-A8 erratum.
2945 bool fix_cortex_a8_;
2946 // Map addresses to relocs for Cortex-A8 erratum.
2947 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2950 template<bool big_endian>
2951 const Target::Target_info Target_arm<big_endian>::arm_info =
2954 big_endian, // is_big_endian
2955 elfcpp::EM_ARM, // machine_code
2956 false, // has_make_symbol
2957 false, // has_resolve
2958 false, // has_code_fill
2959 true, // is_default_stack_executable
2960 false, // can_icf_inline_merge_sections
2962 "/usr/lib/libc.so.1", // dynamic_linker
2963 0x8000, // default_text_segment_address
2964 0x1000, // abi_pagesize (overridable by -z max-page-size)
2965 0x1000, // common_pagesize (overridable by -z common-page-size)
2966 elfcpp::SHN_UNDEF, // small_common_shndx
2967 elfcpp::SHN_UNDEF, // large_common_shndx
2968 0, // small_common_section_flags
2969 0, // large_common_section_flags
2970 ".ARM.attributes", // attributes_section
2971 "aeabi" // attributes_vendor
2974 // Arm relocate functions class
2977 template<bool big_endian>
2978 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2983 STATUS_OKAY, // No error during relocation.
2984 STATUS_OVERFLOW, // Relocation overflow.
2985 STATUS_BAD_RELOC // Relocation cannot be applied.
2989 typedef Relocate_functions<32, big_endian> Base;
2990 typedef Arm_relocate_functions<big_endian> This;
2992 // Encoding of imm16 argument for movt and movw ARM instructions
2995 // imm16 := imm4 | imm12
2997 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2998 // +-------+---------------+-------+-------+-----------------------+
2999 // | | |imm4 | |imm12 |
3000 // +-------+---------------+-------+-------+-----------------------+
3002 // Extract the relocation addend from VAL based on the ARM
3003 // instruction encoding described above.
3004 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3005 extract_arm_movw_movt_addend(
3006 typename elfcpp::Swap<32, big_endian>::Valtype val)
3008 // According to the Elf ABI for ARM Architecture the immediate
3009 // field is sign-extended to form the addend.
3010 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
3013 // Insert X into VAL based on the ARM instruction encoding described
3015 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3016 insert_val_arm_movw_movt(
3017 typename elfcpp::Swap<32, big_endian>::Valtype val,
3018 typename elfcpp::Swap<32, big_endian>::Valtype x)
3022 val |= (x & 0xf000) << 4;
3026 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3029 // imm16 := imm4 | i | imm3 | imm8
3031 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3032 // +---------+-+-----------+-------++-+-----+-------+---------------+
3033 // | |i| |imm4 || |imm3 | |imm8 |
3034 // +---------+-+-----------+-------++-+-----+-------+---------------+
3036 // Extract the relocation addend from VAL based on the Thumb2
3037 // instruction encoding described above.
3038 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3039 extract_thumb_movw_movt_addend(
3040 typename elfcpp::Swap<32, big_endian>::Valtype val)
3042 // According to the Elf ABI for ARM Architecture the immediate
3043 // field is sign-extended to form the addend.
3044 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3045 | ((val >> 15) & 0x0800)
3046 | ((val >> 4) & 0x0700)
3050 // Insert X into VAL based on the Thumb2 instruction encoding
3052 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3053 insert_val_thumb_movw_movt(
3054 typename elfcpp::Swap<32, big_endian>::Valtype val,
3055 typename elfcpp::Swap<32, big_endian>::Valtype x)
3058 val |= (x & 0xf000) << 4;
3059 val |= (x & 0x0800) << 15;
3060 val |= (x & 0x0700) << 4;
3061 val |= (x & 0x00ff);
3065 // Calculate the smallest constant Kn for the specified residual.
3066 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3068 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3074 // Determine the most significant bit in the residual and
3075 // align the resulting value to a 2-bit boundary.
3076 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3078 // The desired shift is now (msb - 6), or zero, whichever
3080 return (((msb - 6) < 0) ? 0 : (msb - 6));
3083 // Calculate the final residual for the specified group index.
3084 // If the passed group index is less than zero, the method will return
3085 // the value of the specified residual without any change.
3086 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3087 static typename elfcpp::Swap<32, big_endian>::Valtype
3088 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3091 for (int n = 0; n <= group; n++)
3093 // Calculate which part of the value to mask.
3094 uint32_t shift = calc_grp_kn(residual);
3095 // Calculate the residual for the next time around.
3096 residual &= ~(residual & (0xff << shift));
3102 // Calculate the value of Gn for the specified group index.
3103 // We return it in the form of an encoded constant-and-rotation.
3104 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3105 static typename elfcpp::Swap<32, big_endian>::Valtype
3106 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3109 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3112 for (int n = 0; n <= group; n++)
3114 // Calculate which part of the value to mask.
3115 shift = calc_grp_kn(residual);
3116 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3117 gn = residual & (0xff << shift);
3118 // Calculate the residual for the next time around.
3121 // Return Gn in the form of an encoded constant-and-rotation.
3122 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3126 // Handle ARM long branches.
3127 static typename This::Status
3128 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3129 unsigned char*, const Sized_symbol<32>*,
3130 const Arm_relobj<big_endian>*, unsigned int,
3131 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3133 // Handle THUMB long branches.
3134 static typename This::Status
3135 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3136 unsigned char*, const Sized_symbol<32>*,
3137 const Arm_relobj<big_endian>*, unsigned int,
3138 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3141 // Return the branch offset of a 32-bit THUMB branch.
3142 static inline int32_t
3143 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3145 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3146 // involving the J1 and J2 bits.
3147 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3148 uint32_t upper = upper_insn & 0x3ffU;
3149 uint32_t lower = lower_insn & 0x7ffU;
3150 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3151 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3152 uint32_t i1 = j1 ^ s ? 0 : 1;
3153 uint32_t i2 = j2 ^ s ? 0 : 1;
3155 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3156 | (upper << 12) | (lower << 1));
3159 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3160 // UPPER_INSN is the original upper instruction of the branch. Caller is
3161 // responsible for overflow checking and BLX offset adjustment.
3162 static inline uint16_t
3163 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3165 uint32_t s = offset < 0 ? 1 : 0;
3166 uint32_t bits = static_cast<uint32_t>(offset);
3167 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3170 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3171 // LOWER_INSN is the original lower instruction of the branch. Caller is
3172 // responsible for overflow checking and BLX offset adjustment.
3173 static inline uint16_t
3174 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3176 uint32_t s = offset < 0 ? 1 : 0;
3177 uint32_t bits = static_cast<uint32_t>(offset);
3178 return ((lower_insn & ~0x2fffU)
3179 | ((((bits >> 23) & 1) ^ !s) << 13)
3180 | ((((bits >> 22) & 1) ^ !s) << 11)
3181 | ((bits >> 1) & 0x7ffU));
3184 // Return the branch offset of a 32-bit THUMB conditional branch.
3185 static inline int32_t
3186 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3188 uint32_t s = (upper_insn & 0x0400U) >> 10;
3189 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3190 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3191 uint32_t lower = (lower_insn & 0x07ffU);
3192 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3194 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3197 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3198 // instruction. UPPER_INSN is the original upper instruction of the branch.
3199 // Caller is responsible for overflow checking.
3200 static inline uint16_t
3201 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3203 uint32_t s = offset < 0 ? 1 : 0;
3204 uint32_t bits = static_cast<uint32_t>(offset);
3205 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3208 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3209 // instruction. LOWER_INSN is the original lower instruction of the branch.
3210 // The caller is responsible for overflow checking.
3211 static inline uint16_t
3212 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3214 uint32_t bits = static_cast<uint32_t>(offset);
3215 uint32_t j2 = (bits & 0x00080000U) >> 19;
3216 uint32_t j1 = (bits & 0x00040000U) >> 18;
3217 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3219 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3222 // R_ARM_ABS8: S + A
3223 static inline typename This::Status
3224 abs8(unsigned char* view,
3225 const Sized_relobj_file<32, big_endian>* object,
3226 const Symbol_value<32>* psymval)
3228 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3229 Valtype* wv = reinterpret_cast<Valtype*>(view);
3230 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3231 int32_t addend = utils::sign_extend<8>(val);
3232 Arm_address x = psymval->value(object, addend);
3233 val = utils::bit_select(val, x, 0xffU);
3234 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3236 // R_ARM_ABS8 permits signed or unsigned results.
3237 int signed_x = static_cast<int32_t>(x);
3238 return ((signed_x < -128 || signed_x > 255)
3239 ? This::STATUS_OVERFLOW
3240 : This::STATUS_OKAY);
3243 // R_ARM_THM_ABS5: S + A
3244 static inline typename This::Status
3245 thm_abs5(unsigned char* view,
3246 const Sized_relobj_file<32, big_endian>* object,
3247 const Symbol_value<32>* psymval)
3249 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3250 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3251 Valtype* wv = reinterpret_cast<Valtype*>(view);
3252 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3253 Reltype addend = (val & 0x7e0U) >> 6;
3254 Reltype x = psymval->value(object, addend);
3255 val = utils::bit_select(val, x << 6, 0x7e0U);
3256 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3258 // R_ARM_ABS16 permits signed or unsigned results.
3259 int signed_x = static_cast<int32_t>(x);
3260 return ((signed_x < -32768 || signed_x > 65535)
3261 ? This::STATUS_OVERFLOW
3262 : This::STATUS_OKAY);
3265 // R_ARM_ABS12: S + A
3266 static inline typename This::Status
3267 abs12(unsigned char* view,
3268 const Sized_relobj_file<32, big_endian>* object,
3269 const Symbol_value<32>* psymval)
3271 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3272 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3273 Valtype* wv = reinterpret_cast<Valtype*>(view);
3274 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3275 Reltype addend = val & 0x0fffU;
3276 Reltype x = psymval->value(object, addend);
3277 val = utils::bit_select(val, x, 0x0fffU);
3278 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3279 return (utils::has_overflow<12>(x)
3280 ? This::STATUS_OVERFLOW
3281 : This::STATUS_OKAY);
3284 // R_ARM_ABS16: S + A
3285 static inline typename This::Status
3286 abs16(unsigned char* view,
3287 const Sized_relobj_file<32, big_endian>* object,
3288 const Symbol_value<32>* psymval)
3290 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3291 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3292 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3293 int32_t addend = utils::sign_extend<16>(val);
3294 Arm_address x = psymval->value(object, addend);
3295 val = utils::bit_select(val, x, 0xffffU);
3296 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3298 // R_ARM_ABS16 permits signed or unsigned results.
3299 int signed_x = static_cast<int32_t>(x);
3300 return ((signed_x < -32768 || signed_x > 65536)
3301 ? This::STATUS_OVERFLOW
3302 : This::STATUS_OKAY);
3305 // R_ARM_ABS32: (S + A) | T
3306 static inline typename This::Status
3307 abs32(unsigned char* view,
3308 const Sized_relobj_file<32, big_endian>* object,
3309 const Symbol_value<32>* psymval,
3310 Arm_address thumb_bit)
3312 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3313 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3314 Valtype x = psymval->value(object, addend) | thumb_bit;
3315 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3316 return This::STATUS_OKAY;
3319 // R_ARM_REL32: (S + A) | T - P
3320 static inline typename This::Status
3321 rel32(unsigned char* view,
3322 const Sized_relobj_file<32, big_endian>* object,
3323 const Symbol_value<32>* psymval,
3324 Arm_address address,
3325 Arm_address thumb_bit)
3327 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3328 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3329 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3330 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3331 return This::STATUS_OKAY;
3334 // R_ARM_THM_JUMP24: (S + A) | T - P
3335 static typename This::Status
3336 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3337 const Symbol_value<32>* psymval, Arm_address address,
3338 Arm_address thumb_bit);
3340 // R_ARM_THM_JUMP6: S + A – P
3341 static inline typename This::Status
3342 thm_jump6(unsigned char* view,
3343 const Sized_relobj_file<32, big_endian>* object,
3344 const Symbol_value<32>* psymval,
3345 Arm_address address)
3347 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3348 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3349 Valtype* wv = reinterpret_cast<Valtype*>(view);
3350 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3351 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3352 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3353 Reltype x = (psymval->value(object, addend) - address);
3354 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3355 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3356 // CZB does only forward jumps.
3357 return ((x > 0x007e)
3358 ? This::STATUS_OVERFLOW
3359 : This::STATUS_OKAY);
3362 // R_ARM_THM_JUMP8: S + A – P
3363 static inline typename This::Status
3364 thm_jump8(unsigned char* view,
3365 const Sized_relobj_file<32, big_endian>* object,
3366 const Symbol_value<32>* psymval,
3367 Arm_address address)
3369 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3370 Valtype* wv = reinterpret_cast<Valtype*>(view);
3371 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3372 int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3373 int32_t x = (psymval->value(object, addend) - address);
3374 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3375 | ((x & 0x01fe) >> 1)));
3376 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3377 return (utils::has_overflow<9>(x)
3378 ? This::STATUS_OVERFLOW
3379 : This::STATUS_OKAY);
3382 // R_ARM_THM_JUMP11: S + A – P
3383 static inline typename This::Status
3384 thm_jump11(unsigned char* view,
3385 const Sized_relobj_file<32, big_endian>* object,
3386 const Symbol_value<32>* psymval,
3387 Arm_address address)
3389 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3390 Valtype* wv = reinterpret_cast<Valtype*>(view);
3391 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3392 int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3393 int32_t x = (psymval->value(object, addend) - address);
3394 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3395 | ((x & 0x0ffe) >> 1)));
3396 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3397 return (utils::has_overflow<12>(x)
3398 ? This::STATUS_OVERFLOW
3399 : This::STATUS_OKAY);
3402 // R_ARM_BASE_PREL: B(S) + A - P
3403 static inline typename This::Status
3404 base_prel(unsigned char* view,
3406 Arm_address address)
3408 Base::rel32(view, origin - address);
3412 // R_ARM_BASE_ABS: B(S) + A
3413 static inline typename This::Status
3414 base_abs(unsigned char* view,
3417 Base::rel32(view, origin);
3421 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3422 static inline typename This::Status
3423 got_brel(unsigned char* view,
3424 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3426 Base::rel32(view, got_offset);
3427 return This::STATUS_OKAY;
3430 // R_ARM_GOT_PREL: GOT(S) + A - P
3431 static inline typename This::Status
3432 got_prel(unsigned char* view,
3433 Arm_address got_entry,
3434 Arm_address address)
3436 Base::rel32(view, got_entry - address);
3437 return This::STATUS_OKAY;
3440 // R_ARM_PREL: (S + A) | T - P
3441 static inline typename This::Status
3442 prel31(unsigned char* view,
3443 const Sized_relobj_file<32, big_endian>* object,
3444 const Symbol_value<32>* psymval,
3445 Arm_address address,
3446 Arm_address thumb_bit)
3448 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3449 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3450 Valtype addend = utils::sign_extend<31>(val);
3451 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3452 val = utils::bit_select(val, x, 0x7fffffffU);
3453 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3454 return (utils::has_overflow<31>(x) ?
3455 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3458 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3459 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3460 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3461 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3462 static inline typename This::Status
3463 movw(unsigned char* view,
3464 const Sized_relobj_file<32, big_endian>* object,
3465 const Symbol_value<32>* psymval,
3466 Arm_address relative_address_base,
3467 Arm_address thumb_bit,
3468 bool check_overflow)
3470 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3471 Valtype* wv = reinterpret_cast<Valtype*>(view);
3472 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3473 Valtype addend = This::extract_arm_movw_movt_addend(val);
3474 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3475 - relative_address_base);
3476 val = This::insert_val_arm_movw_movt(val, x);
3477 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3478 return ((check_overflow && utils::has_overflow<16>(x))
3479 ? This::STATUS_OVERFLOW
3480 : This::STATUS_OKAY);
3483 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3484 // R_ARM_MOVT_PREL: S + A - P
3485 // R_ARM_MOVT_BREL: S + A - B(S)
3486 static inline typename This::Status
3487 movt(unsigned char* view,
3488 const Sized_relobj_file<32, big_endian>* object,
3489 const Symbol_value<32>* psymval,
3490 Arm_address relative_address_base)
3492 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3493 Valtype* wv = reinterpret_cast<Valtype*>(view);
3494 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3495 Valtype addend = This::extract_arm_movw_movt_addend(val);
3496 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3497 val = This::insert_val_arm_movw_movt(val, x);
3498 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3499 // FIXME: IHI0044D says that we should check for overflow.
3500 return This::STATUS_OKAY;
3503 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3504 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3505 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3506 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3507 static inline typename This::Status
3508 thm_movw(unsigned char* view,
3509 const Sized_relobj_file<32, big_endian>* object,
3510 const Symbol_value<32>* psymval,
3511 Arm_address relative_address_base,
3512 Arm_address thumb_bit,
3513 bool check_overflow)
3515 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3516 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3517 Valtype* wv = reinterpret_cast<Valtype*>(view);
3518 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3519 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3520 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3522 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3523 val = This::insert_val_thumb_movw_movt(val, x);
3524 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3525 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3526 return ((check_overflow && utils::has_overflow<16>(x))
3527 ? This::STATUS_OVERFLOW
3528 : This::STATUS_OKAY);
3531 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3532 // R_ARM_THM_MOVT_PREL: S + A - P
3533 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3534 static inline typename This::Status
3535 thm_movt(unsigned char* view,
3536 const Sized_relobj_file<32, big_endian>* object,
3537 const Symbol_value<32>* psymval,
3538 Arm_address relative_address_base)
3540 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3541 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3542 Valtype* wv = reinterpret_cast<Valtype*>(view);
3543 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3544 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3545 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3546 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3547 val = This::insert_val_thumb_movw_movt(val, x);
3548 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3549 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3550 return This::STATUS_OKAY;
3553 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3554 static inline typename This::Status
3555 thm_alu11(unsigned char* view,
3556 const Sized_relobj_file<32, big_endian>* object,
3557 const Symbol_value<32>* psymval,
3558 Arm_address address,
3559 Arm_address thumb_bit)
3561 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3562 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3563 Valtype* wv = reinterpret_cast<Valtype*>(view);
3564 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3565 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3567 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3568 // -----------------------------------------------------------------------
3569 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3570 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3571 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3572 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3573 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3574 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3576 // Determine a sign for the addend.
3577 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3578 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3579 // Thumb2 addend encoding:
3580 // imm12 := i | imm3 | imm8
3581 int32_t addend = (insn & 0xff)
3582 | ((insn & 0x00007000) >> 4)
3583 | ((insn & 0x04000000) >> 15);
3584 // Apply a sign to the added.
3587 int32_t x = (psymval->value(object, addend) | thumb_bit)
3588 - (address & 0xfffffffc);
3589 Reltype val = abs(x);
3590 // Mask out the value and a distinct part of the ADD/SUB opcode
3591 // (bits 7:5 of opword).
3592 insn = (insn & 0xfb0f8f00)
3594 | ((val & 0x700) << 4)
3595 | ((val & 0x800) << 15);
3596 // Set the opcode according to whether the value to go in the
3597 // place is negative.
3601 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3602 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3603 return ((val > 0xfff) ?
3604 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3607 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3608 static inline typename This::Status
3609 thm_pc8(unsigned char* view,
3610 const Sized_relobj_file<32, big_endian>* object,
3611 const Symbol_value<32>* psymval,
3612 Arm_address address)
3614 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3615 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3616 Valtype* wv = reinterpret_cast<Valtype*>(view);
3617 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3618 Reltype addend = ((insn & 0x00ff) << 2);
3619 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3620 Reltype val = abs(x);
3621 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3623 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3624 return ((val > 0x03fc)
3625 ? This::STATUS_OVERFLOW
3626 : This::STATUS_OKAY);
3629 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3630 static inline typename This::Status
3631 thm_pc12(unsigned char* view,
3632 const Sized_relobj_file<32, big_endian>* object,
3633 const Symbol_value<32>* psymval,
3634 Arm_address address)
3636 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3637 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3638 Valtype* wv = reinterpret_cast<Valtype*>(view);
3639 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3640 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3641 // Determine a sign for the addend (positive if the U bit is 1).
3642 const int sign = (insn & 0x00800000) ? 1 : -1;
3643 int32_t addend = (insn & 0xfff);
3644 // Apply a sign to the added.
3647 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3648 Reltype val = abs(x);
3649 // Mask out and apply the value and the U bit.
3650 insn = (insn & 0xff7ff000) | (val & 0xfff);
3651 // Set the U bit according to whether the value to go in the
3652 // place is positive.
3656 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3657 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3658 return ((val > 0xfff) ?
3659 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3663 static inline typename This::Status
3664 v4bx(const Relocate_info<32, big_endian>* relinfo,
3665 unsigned char* view,
3666 const Arm_relobj<big_endian>* object,
3667 const Arm_address address,
3668 const bool is_interworking)
3671 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3672 Valtype* wv = reinterpret_cast<Valtype*>(view);
3673 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3675 // Ensure that we have a BX instruction.
3676 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3677 const uint32_t reg = (val & 0xf);
3678 if (is_interworking && reg != 0xf)
3680 Stub_table<big_endian>* stub_table =
3681 object->stub_table(relinfo->data_shndx);
3682 gold_assert(stub_table != NULL);
3684 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3685 gold_assert(stub != NULL);
3687 int32_t veneer_address =
3688 stub_table->address() + stub->offset() - 8 - address;
3689 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3690 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3691 // Replace with a branch to veneer (B <addr>)
3692 val = (val & 0xf0000000) | 0x0a000000
3693 | ((veneer_address >> 2) & 0x00ffffff);
3697 // Preserve Rm (lowest four bits) and the condition code
3698 // (highest four bits). Other bits encode MOV PC,Rm.
3699 val = (val & 0xf000000f) | 0x01a0f000;
3701 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3702 return This::STATUS_OKAY;
3705 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3706 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3707 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3708 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3709 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3710 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3711 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3712 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3713 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3714 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3715 static inline typename This::Status
3716 arm_grp_alu(unsigned char* view,
3717 const Sized_relobj_file<32, big_endian>* object,
3718 const Symbol_value<32>* psymval,
3720 Arm_address address,
3721 Arm_address thumb_bit,
3722 bool check_overflow)
3724 gold_assert(group >= 0 && group < 3);
3725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3726 Valtype* wv = reinterpret_cast<Valtype*>(view);
3727 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3729 // ALU group relocations are allowed only for the ADD/SUB instructions.
3730 // (0x00800000 - ADD, 0x00400000 - SUB)
3731 const Valtype opcode = insn & 0x01e00000;
3732 if (opcode != 0x00800000 && opcode != 0x00400000)
3733 return This::STATUS_BAD_RELOC;
3735 // Determine a sign for the addend.
3736 const int sign = (opcode == 0x00800000) ? 1 : -1;
3737 // shifter = rotate_imm * 2
3738 const uint32_t shifter = (insn & 0xf00) >> 7;
3739 // Initial addend value.
3740 int32_t addend = insn & 0xff;
3741 // Rotate addend right by shifter.
3742 addend = (addend >> shifter) | (addend << (32 - shifter));
3743 // Apply a sign to the added.
3746 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3747 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3748 // Check for overflow if required
3750 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3751 return This::STATUS_OVERFLOW;
3753 // Mask out the value and the ADD/SUB part of the opcode; take care
3754 // not to destroy the S bit.
3756 // Set the opcode according to whether the value to go in the
3757 // place is negative.
3758 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3759 // Encode the offset (encoded Gn).
3762 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3763 return This::STATUS_OKAY;
3766 // R_ARM_LDR_PC_G0: S + A - P
3767 // R_ARM_LDR_PC_G1: S + A - P
3768 // R_ARM_LDR_PC_G2: S + A - P
3769 // R_ARM_LDR_SB_G0: S + A - B(S)
3770 // R_ARM_LDR_SB_G1: S + A - B(S)
3771 // R_ARM_LDR_SB_G2: S + A - B(S)
3772 static inline typename This::Status
3773 arm_grp_ldr(unsigned char* view,
3774 const Sized_relobj_file<32, big_endian>* object,
3775 const Symbol_value<32>* psymval,
3777 Arm_address address)
3779 gold_assert(group >= 0 && group < 3);
3780 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3781 Valtype* wv = reinterpret_cast<Valtype*>(view);
3782 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3784 const int sign = (insn & 0x00800000) ? 1 : -1;
3785 int32_t addend = (insn & 0xfff) * sign;
3786 int32_t x = (psymval->value(object, addend) - address);
3787 // Calculate the relevant G(n-1) value to obtain this stage residual.
3789 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3790 if (residual >= 0x1000)
3791 return This::STATUS_OVERFLOW;
3793 // Mask out the value and U bit.
3795 // Set the U bit for non-negative values.
3800 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3801 return This::STATUS_OKAY;
3804 // R_ARM_LDRS_PC_G0: S + A - P
3805 // R_ARM_LDRS_PC_G1: S + A - P
3806 // R_ARM_LDRS_PC_G2: S + A - P
3807 // R_ARM_LDRS_SB_G0: S + A - B(S)
3808 // R_ARM_LDRS_SB_G1: S + A - B(S)
3809 // R_ARM_LDRS_SB_G2: S + A - B(S)
3810 static inline typename This::Status
3811 arm_grp_ldrs(unsigned char* view,
3812 const Sized_relobj_file<32, big_endian>* object,
3813 const Symbol_value<32>* psymval,
3815 Arm_address address)
3817 gold_assert(group >= 0 && group < 3);
3818 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3819 Valtype* wv = reinterpret_cast<Valtype*>(view);
3820 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3822 const int sign = (insn & 0x00800000) ? 1 : -1;
3823 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3824 int32_t x = (psymval->value(object, addend) - address);
3825 // Calculate the relevant G(n-1) value to obtain this stage residual.
3827 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3828 if (residual >= 0x100)
3829 return This::STATUS_OVERFLOW;
3831 // Mask out the value and U bit.
3833 // Set the U bit for non-negative values.
3836 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3838 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3839 return This::STATUS_OKAY;
3842 // R_ARM_LDC_PC_G0: S + A - P
3843 // R_ARM_LDC_PC_G1: S + A - P
3844 // R_ARM_LDC_PC_G2: S + A - P
3845 // R_ARM_LDC_SB_G0: S + A - B(S)
3846 // R_ARM_LDC_SB_G1: S + A - B(S)
3847 // R_ARM_LDC_SB_G2: S + A - B(S)
3848 static inline typename This::Status
3849 arm_grp_ldc(unsigned char* view,
3850 const Sized_relobj_file<32, big_endian>* object,
3851 const Symbol_value<32>* psymval,
3853 Arm_address address)
3855 gold_assert(group >= 0 && group < 3);
3856 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3857 Valtype* wv = reinterpret_cast<Valtype*>(view);
3858 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3860 const int sign = (insn & 0x00800000) ? 1 : -1;
3861 int32_t addend = ((insn & 0xff) << 2) * sign;
3862 int32_t x = (psymval->value(object, addend) - address);
3863 // Calculate the relevant G(n-1) value to obtain this stage residual.
3865 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3866 if ((residual & 0x3) != 0 || residual >= 0x400)
3867 return This::STATUS_OVERFLOW;
3869 // Mask out the value and U bit.
3871 // Set the U bit for non-negative values.
3874 insn |= (residual >> 2);
3876 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3877 return This::STATUS_OKAY;
3881 // Relocate ARM long branches. This handles relocation types
3882 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3883 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3884 // undefined and we do not use PLT in this relocation. In such a case,
3885 // the branch is converted into an NOP.
3887 template<bool big_endian>
3888 typename Arm_relocate_functions<big_endian>::Status
3889 Arm_relocate_functions<big_endian>::arm_branch_common(
3890 unsigned int r_type,
3891 const Relocate_info<32, big_endian>* relinfo,
3892 unsigned char* view,
3893 const Sized_symbol<32>* gsym,
3894 const Arm_relobj<big_endian>* object,
3896 const Symbol_value<32>* psymval,
3897 Arm_address address,
3898 Arm_address thumb_bit,
3899 bool is_weakly_undefined_without_plt)
3901 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3902 Valtype* wv = reinterpret_cast<Valtype*>(view);
3903 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3905 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3906 && ((val & 0x0f000000UL) == 0x0a000000UL);
3907 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3908 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3909 && ((val & 0x0f000000UL) == 0x0b000000UL);
3910 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3911 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3913 // Check that the instruction is valid.
3914 if (r_type == elfcpp::R_ARM_CALL)
3916 if (!insn_is_uncond_bl && !insn_is_blx)
3917 return This::STATUS_BAD_RELOC;
3919 else if (r_type == elfcpp::R_ARM_JUMP24)
3921 if (!insn_is_b && !insn_is_cond_bl)
3922 return This::STATUS_BAD_RELOC;
3924 else if (r_type == elfcpp::R_ARM_PLT32)
3926 if (!insn_is_any_branch)
3927 return This::STATUS_BAD_RELOC;
3929 else if (r_type == elfcpp::R_ARM_XPC25)
3931 // FIXME: AAELF document IH0044C does not say much about it other
3932 // than it being obsolete.
3933 if (!insn_is_any_branch)
3934 return This::STATUS_BAD_RELOC;
3939 // A branch to an undefined weak symbol is turned into a jump to
3940 // the next instruction unless a PLT entry will be created.
3941 // Do the same for local undefined symbols.
3942 // The jump to the next instruction is optimized as a NOP depending
3943 // on the architecture.
3944 const Target_arm<big_endian>* arm_target =
3945 Target_arm<big_endian>::default_target();
3946 if (is_weakly_undefined_without_plt)
3948 gold_assert(!parameters->options().relocatable());
3949 Valtype cond = val & 0xf0000000U;
3950 if (arm_target->may_use_arm_nop())
3951 val = cond | 0x0320f000;
3953 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3954 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3955 return This::STATUS_OKAY;
3958 Valtype addend = utils::sign_extend<26>(val << 2);
3959 Valtype branch_target = psymval->value(object, addend);
3960 int32_t branch_offset = branch_target - address;
3962 // We need a stub if the branch offset is too large or if we need
3964 bool may_use_blx = arm_target->may_use_v5t_interworking();
3965 Reloc_stub* stub = NULL;
3967 if (!parameters->options().relocatable()
3968 && (utils::has_overflow<26>(branch_offset)
3969 || ((thumb_bit != 0)
3970 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3972 Valtype unadjusted_branch_target = psymval->value(object, 0);
3974 Stub_type stub_type =
3975 Reloc_stub::stub_type_for_reloc(r_type, address,
3976 unadjusted_branch_target,
3978 if (stub_type != arm_stub_none)
3980 Stub_table<big_endian>* stub_table =
3981 object->stub_table(relinfo->data_shndx);
3982 gold_assert(stub_table != NULL);
3984 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3985 stub = stub_table->find_reloc_stub(stub_key);
3986 gold_assert(stub != NULL);
3987 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3988 branch_target = stub_table->address() + stub->offset() + addend;
3989 branch_offset = branch_target - address;
3990 gold_assert(!utils::has_overflow<26>(branch_offset));
3994 // At this point, if we still need to switch mode, the instruction
3995 // must either be a BLX or a BL that can be converted to a BLX.
3999 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4000 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4003 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
4004 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4005 return (utils::has_overflow<26>(branch_offset)
4006 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
4009 // Relocate THUMB long branches. This handles relocation types
4010 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4011 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4012 // undefined and we do not use PLT in this relocation. In such a case,
4013 // the branch is converted into an NOP.
4015 template<bool big_endian>
4016 typename Arm_relocate_functions<big_endian>::Status
4017 Arm_relocate_functions<big_endian>::thumb_branch_common(
4018 unsigned int r_type,
4019 const Relocate_info<32, big_endian>* relinfo,
4020 unsigned char* view,
4021 const Sized_symbol<32>* gsym,
4022 const Arm_relobj<big_endian>* object,
4024 const Symbol_value<32>* psymval,
4025 Arm_address address,
4026 Arm_address thumb_bit,
4027 bool is_weakly_undefined_without_plt)
4029 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4030 Valtype* wv = reinterpret_cast<Valtype*>(view);
4031 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4032 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4034 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4036 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4037 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4039 // Check that the instruction is valid.
4040 if (r_type == elfcpp::R_ARM_THM_CALL)
4042 if (!is_bl_insn && !is_blx_insn)
4043 return This::STATUS_BAD_RELOC;
4045 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4047 // This cannot be a BLX.
4049 return This::STATUS_BAD_RELOC;
4051 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4053 // Check for Thumb to Thumb call.
4055 return This::STATUS_BAD_RELOC;
4058 gold_warning(_("%s: Thumb BLX instruction targets "
4059 "thumb function '%s'."),
4060 object->name().c_str(),
4061 (gsym ? gsym->name() : "(local)"));
4062 // Convert BLX to BL.
4063 lower_insn |= 0x1000U;
4069 // A branch to an undefined weak symbol is turned into a jump to
4070 // the next instruction unless a PLT entry will be created.
4071 // The jump to the next instruction is optimized as a NOP.W for
4072 // Thumb-2 enabled architectures.
4073 const Target_arm<big_endian>* arm_target =
4074 Target_arm<big_endian>::default_target();
4075 if (is_weakly_undefined_without_plt)
4077 gold_assert(!parameters->options().relocatable());
4078 if (arm_target->may_use_thumb2_nop())
4080 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4081 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4085 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4086 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4088 return This::STATUS_OKAY;
4091 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4092 Arm_address branch_target = psymval->value(object, addend);
4094 // For BLX, bit 1 of target address comes from bit 1 of base address.
4095 bool may_use_blx = arm_target->may_use_v5t_interworking();
4096 if (thumb_bit == 0 && may_use_blx)
4097 branch_target = utils::bit_select(branch_target, address, 0x2);
4099 int32_t branch_offset = branch_target - address;
4101 // We need a stub if the branch offset is too large or if we need
4103 bool thumb2 = arm_target->using_thumb2();
4104 if (!parameters->options().relocatable()
4105 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4106 || (thumb2 && utils::has_overflow<25>(branch_offset))
4107 || ((thumb_bit == 0)
4108 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4109 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4111 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4113 Stub_type stub_type =
4114 Reloc_stub::stub_type_for_reloc(r_type, address,
4115 unadjusted_branch_target,
4118 if (stub_type != arm_stub_none)
4120 Stub_table<big_endian>* stub_table =
4121 object->stub_table(relinfo->data_shndx);
4122 gold_assert(stub_table != NULL);
4124 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4125 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4126 gold_assert(stub != NULL);
4127 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4128 branch_target = stub_table->address() + stub->offset() + addend;
4129 if (thumb_bit == 0 && may_use_blx)
4130 branch_target = utils::bit_select(branch_target, address, 0x2);
4131 branch_offset = branch_target - address;
4135 // At this point, if we still need to switch mode, the instruction
4136 // must either be a BLX or a BL that can be converted to a BLX.
4139 gold_assert(may_use_blx
4140 && (r_type == elfcpp::R_ARM_THM_CALL
4141 || r_type == elfcpp::R_ARM_THM_XPC22));
4142 // Make sure this is a BLX.
4143 lower_insn &= ~0x1000U;
4147 // Make sure this is a BL.
4148 lower_insn |= 0x1000U;
4151 // For a BLX instruction, make sure that the relocation is rounded up
4152 // to a word boundary. This follows the semantics of the instruction
4153 // which specifies that bit 1 of the target address will come from bit
4154 // 1 of the base address.
4155 if ((lower_insn & 0x5000U) == 0x4000U)
4156 gold_assert((branch_offset & 3) == 0);
4158 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4159 // We use the Thumb-2 encoding, which is safe even if dealing with
4160 // a Thumb-1 instruction by virtue of our overflow check above. */
4161 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4162 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4164 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4165 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4167 gold_assert(!utils::has_overflow<25>(branch_offset));
4170 ? utils::has_overflow<25>(branch_offset)
4171 : utils::has_overflow<23>(branch_offset))
4172 ? This::STATUS_OVERFLOW
4173 : This::STATUS_OKAY);
4176 // Relocate THUMB-2 long conditional branches.
4177 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4178 // undefined and we do not use PLT in this relocation. In such a case,
4179 // the branch is converted into an NOP.
4181 template<bool big_endian>
4182 typename Arm_relocate_functions<big_endian>::Status
4183 Arm_relocate_functions<big_endian>::thm_jump19(
4184 unsigned char* view,
4185 const Arm_relobj<big_endian>* object,
4186 const Symbol_value<32>* psymval,
4187 Arm_address address,
4188 Arm_address thumb_bit)
4190 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4191 Valtype* wv = reinterpret_cast<Valtype*>(view);
4192 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4193 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4194 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4196 Arm_address branch_target = psymval->value(object, addend);
4197 int32_t branch_offset = branch_target - address;
4199 // ??? Should handle interworking? GCC might someday try to
4200 // use this for tail calls.
4201 // FIXME: We do support thumb entry to PLT yet.
4204 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4205 return This::STATUS_BAD_RELOC;
4208 // Put RELOCATION back into the insn.
4209 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4210 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4212 // Put the relocated value back in the object file:
4213 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4214 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4216 return (utils::has_overflow<21>(branch_offset)
4217 ? This::STATUS_OVERFLOW
4218 : This::STATUS_OKAY);
4221 // Get the GOT section, creating it if necessary.
4223 template<bool big_endian>
4224 Arm_output_data_got<big_endian>*
4225 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4227 if (this->got_ == NULL)
4229 gold_assert(symtab != NULL && layout != NULL);
4231 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4233 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4234 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4235 this->got_, ORDER_DATA, false);
4237 // The old GNU linker creates a .got.plt section. We just
4238 // create another set of data in the .got section. Note that we
4239 // always create a PLT if we create a GOT, although the PLT
4241 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4242 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4243 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4244 this->got_plt_, ORDER_DATA, false);
4246 // The first three entries are reserved.
4247 this->got_plt_->set_current_data_size(3 * 4);
4249 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4250 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4251 Symbol_table::PREDEFINED,
4253 0, 0, elfcpp::STT_OBJECT,
4255 elfcpp::STV_HIDDEN, 0,
4261 // Get the dynamic reloc section, creating it if necessary.
4263 template<bool big_endian>
4264 typename Target_arm<big_endian>::Reloc_section*
4265 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4267 if (this->rel_dyn_ == NULL)
4269 gold_assert(layout != NULL);
4270 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4271 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4272 elfcpp::SHF_ALLOC, this->rel_dyn_,
4273 ORDER_DYNAMIC_RELOCS, false);
4275 return this->rel_dyn_;
4278 // Insn_template methods.
4280 // Return byte size of an instruction template.
4283 Insn_template::size() const
4285 switch (this->type())
4288 case THUMB16_SPECIAL_TYPE:
4299 // Return alignment of an instruction template.
4302 Insn_template::alignment() const
4304 switch (this->type())
4307 case THUMB16_SPECIAL_TYPE:
4318 // Stub_template methods.
4320 Stub_template::Stub_template(
4321 Stub_type type, const Insn_template* insns,
4323 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4324 entry_in_thumb_mode_(false), relocs_()
4328 // Compute byte size and alignment of stub template.
4329 for (size_t i = 0; i < insn_count; i++)
4331 unsigned insn_alignment = insns[i].alignment();
4332 size_t insn_size = insns[i].size();
4333 gold_assert((offset & (insn_alignment - 1)) == 0);
4334 this->alignment_ = std::max(this->alignment_, insn_alignment);
4335 switch (insns[i].type())
4337 case Insn_template::THUMB16_TYPE:
4338 case Insn_template::THUMB16_SPECIAL_TYPE:
4340 this->entry_in_thumb_mode_ = true;
4343 case Insn_template::THUMB32_TYPE:
4344 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4345 this->relocs_.push_back(Reloc(i, offset));
4347 this->entry_in_thumb_mode_ = true;
4350 case Insn_template::ARM_TYPE:
4351 // Handle cases where the target is encoded within the
4353 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4354 this->relocs_.push_back(Reloc(i, offset));
4357 case Insn_template::DATA_TYPE:
4358 // Entry point cannot be data.
4359 gold_assert(i != 0);
4360 this->relocs_.push_back(Reloc(i, offset));
4366 offset += insn_size;
4368 this->size_ = offset;
4373 // Template to implement do_write for a specific target endianness.
4375 template<bool big_endian>
4377 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4379 const Stub_template* stub_template = this->stub_template();
4380 const Insn_template* insns = stub_template->insns();
4382 // FIXME: We do not handle BE8 encoding yet.
4383 unsigned char* pov = view;
4384 for (size_t i = 0; i < stub_template->insn_count(); i++)
4386 switch (insns[i].type())
4388 case Insn_template::THUMB16_TYPE:
4389 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4391 case Insn_template::THUMB16_SPECIAL_TYPE:
4392 elfcpp::Swap<16, big_endian>::writeval(
4394 this->thumb16_special(i));
4396 case Insn_template::THUMB32_TYPE:
4398 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4399 uint32_t lo = insns[i].data() & 0xffff;
4400 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4401 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4404 case Insn_template::ARM_TYPE:
4405 case Insn_template::DATA_TYPE:
4406 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4411 pov += insns[i].size();
4413 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4416 // Reloc_stub::Key methods.
4418 // Dump a Key as a string for debugging.
4421 Reloc_stub::Key::name() const
4423 if (this->r_sym_ == invalid_index)
4425 // Global symbol key name
4426 // <stub-type>:<symbol name>:<addend>.
4427 const std::string sym_name = this->u_.symbol->name();
4428 // We need to print two hex number and two colons. So just add 100 bytes
4429 // to the symbol name size.
4430 size_t len = sym_name.size() + 100;
4431 char* buffer = new char[len];
4432 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4433 sym_name.c_str(), this->addend_);
4434 gold_assert(c > 0 && c < static_cast<int>(len));
4436 return std::string(buffer);
4440 // local symbol key name
4441 // <stub-type>:<object>:<r_sym>:<addend>.
4442 const size_t len = 200;
4444 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4445 this->u_.relobj, this->r_sym_, this->addend_);
4446 gold_assert(c > 0 && c < static_cast<int>(len));
4447 return std::string(buffer);
4451 // Reloc_stub methods.
4453 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4454 // LOCATION to DESTINATION.
4455 // This code is based on the arm_type_of_stub function in
4456 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4460 Reloc_stub::stub_type_for_reloc(
4461 unsigned int r_type,
4462 Arm_address location,
4463 Arm_address destination,
4464 bool target_is_thumb)
4466 Stub_type stub_type = arm_stub_none;
4468 // This is a bit ugly but we want to avoid using a templated class for
4469 // big and little endianities.
4471 bool should_force_pic_veneer;
4474 if (parameters->target().is_big_endian())
4476 const Target_arm<true>* big_endian_target =
4477 Target_arm<true>::default_target();
4478 may_use_blx = big_endian_target->may_use_v5t_interworking();
4479 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4480 thumb2 = big_endian_target->using_thumb2();
4481 thumb_only = big_endian_target->using_thumb_only();
4485 const Target_arm<false>* little_endian_target =
4486 Target_arm<false>::default_target();
4487 may_use_blx = little_endian_target->may_use_v5t_interworking();
4488 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4489 thumb2 = little_endian_target->using_thumb2();
4490 thumb_only = little_endian_target->using_thumb_only();
4493 int64_t branch_offset;
4494 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4496 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4497 // base address (instruction address + 4).
4498 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4499 destination = utils::bit_select(destination, location, 0x2);
4500 branch_offset = static_cast<int64_t>(destination) - location;
4502 // Handle cases where:
4503 // - this call goes too far (different Thumb/Thumb2 max
4505 // - it's a Thumb->Arm call and blx is not available, or it's a
4506 // Thumb->Arm branch (not bl). A stub is needed in this case.
4508 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4509 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4511 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4512 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4513 || ((!target_is_thumb)
4514 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4515 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4517 if (target_is_thumb)
4522 stub_type = (parameters->options().shared()
4523 || should_force_pic_veneer)
4526 && (r_type == elfcpp::R_ARM_THM_CALL))
4527 // V5T and above. Stub starts with ARM code, so
4528 // we must be able to switch mode before
4529 // reaching it, which is only possible for 'bl'
4530 // (ie R_ARM_THM_CALL relocation).
4531 ? arm_stub_long_branch_any_thumb_pic
4532 // On V4T, use Thumb code only.
4533 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4537 && (r_type == elfcpp::R_ARM_THM_CALL))
4538 ? arm_stub_long_branch_any_any // V5T and above.
4539 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4543 stub_type = (parameters->options().shared()
4544 || should_force_pic_veneer)
4545 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4546 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4553 // FIXME: We should check that the input section is from an
4554 // object that has interwork enabled.
4556 stub_type = (parameters->options().shared()
4557 || should_force_pic_veneer)
4560 && (r_type == elfcpp::R_ARM_THM_CALL))
4561 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4562 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4566 && (r_type == elfcpp::R_ARM_THM_CALL))
4567 ? arm_stub_long_branch_any_any // V5T and above.
4568 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4570 // Handle v4t short branches.
4571 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4572 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4573 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4574 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4578 else if (r_type == elfcpp::R_ARM_CALL
4579 || r_type == elfcpp::R_ARM_JUMP24
4580 || r_type == elfcpp::R_ARM_PLT32)
4582 branch_offset = static_cast<int64_t>(destination) - location;
4583 if (target_is_thumb)
4587 // FIXME: We should check that the input section is from an
4588 // object that has interwork enabled.
4590 // We have an extra 2-bytes reach because of
4591 // the mode change (bit 24 (H) of BLX encoding).
4592 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4593 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4594 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4595 || (r_type == elfcpp::R_ARM_JUMP24)
4596 || (r_type == elfcpp::R_ARM_PLT32))
4598 stub_type = (parameters->options().shared()
4599 || should_force_pic_veneer)
4602 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4603 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4607 ? arm_stub_long_branch_any_any // V5T and above.
4608 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4614 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4615 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4617 stub_type = (parameters->options().shared()
4618 || should_force_pic_veneer)
4619 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4620 : arm_stub_long_branch_any_any; /// non-PIC.
4628 // Cortex_a8_stub methods.
4630 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4631 // I is the position of the instruction template in the stub template.
4634 Cortex_a8_stub::do_thumb16_special(size_t i)
4636 // The only use of this is to copy condition code from a conditional
4637 // branch being worked around to the corresponding conditional branch in
4639 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4641 uint16_t data = this->stub_template()->insns()[i].data();
4642 gold_assert((data & 0xff00U) == 0xd000U);
4643 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4647 // Stub_factory methods.
4649 Stub_factory::Stub_factory()
4651 // The instruction template sequences are declared as static
4652 // objects and initialized first time the constructor runs.
4654 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4655 // to reach the stub if necessary.
4656 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4658 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4659 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4660 // dcd R_ARM_ABS32(X)
4663 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4665 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4667 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4668 Insn_template::arm_insn(0xe12fff1c), // bx ip
4669 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4670 // dcd R_ARM_ABS32(X)
4673 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4674 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4676 Insn_template::thumb16_insn(0xb401), // push {r0}
4677 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4678 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4679 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4680 Insn_template::thumb16_insn(0x4760), // bx ip
4681 Insn_template::thumb16_insn(0xbf00), // nop
4682 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4683 // dcd R_ARM_ABS32(X)
4686 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4688 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4690 Insn_template::thumb16_insn(0x4778), // bx pc
4691 Insn_template::thumb16_insn(0x46c0), // nop
4692 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4693 Insn_template::arm_insn(0xe12fff1c), // bx ip
4694 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4695 // dcd R_ARM_ABS32(X)
4698 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4700 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4702 Insn_template::thumb16_insn(0x4778), // bx pc
4703 Insn_template::thumb16_insn(0x46c0), // nop
4704 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4705 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4706 // dcd R_ARM_ABS32(X)
4709 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4710 // one, when the destination is close enough.
4711 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4713 Insn_template::thumb16_insn(0x4778), // bx pc
4714 Insn_template::thumb16_insn(0x46c0), // nop
4715 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4718 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4719 // blx to reach the stub if necessary.
4720 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4722 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4723 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4724 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4725 // dcd R_ARM_REL32(X-4)
4728 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4729 // blx to reach the stub if necessary. We can not add into pc;
4730 // it is not guaranteed to mode switch (different in ARMv6 and
4732 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4734 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4735 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4736 Insn_template::arm_insn(0xe12fff1c), // bx ip
4737 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4738 // dcd R_ARM_REL32(X)
4741 // V4T ARM -> ARM long branch stub, PIC.
4742 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4744 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4745 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4746 Insn_template::arm_insn(0xe12fff1c), // bx ip
4747 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4748 // dcd R_ARM_REL32(X)
4751 // V4T Thumb -> ARM long branch stub, PIC.
4752 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4754 Insn_template::thumb16_insn(0x4778), // bx pc
4755 Insn_template::thumb16_insn(0x46c0), // nop
4756 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4757 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4758 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4759 // dcd R_ARM_REL32(X)
4762 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4764 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4766 Insn_template::thumb16_insn(0xb401), // push {r0}
4767 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4768 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4769 Insn_template::thumb16_insn(0x4484), // add ip, r0
4770 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4771 Insn_template::thumb16_insn(0x4760), // bx ip
4772 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4773 // dcd R_ARM_REL32(X)
4776 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4778 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4780 Insn_template::thumb16_insn(0x4778), // bx pc
4781 Insn_template::thumb16_insn(0x46c0), // nop
4782 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4783 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4784 Insn_template::arm_insn(0xe12fff1c), // bx ip
4785 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4786 // dcd R_ARM_REL32(X)
4789 // Cortex-A8 erratum-workaround stubs.
4791 // Stub used for conditional branches (which may be beyond +/-1MB away,
4792 // so we can't use a conditional branch to reach this stub).
4799 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4801 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4802 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4803 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4807 // Stub used for b.w and bl.w instructions.
4809 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4811 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4814 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4816 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4819 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4820 // instruction (which switches to ARM mode) to point to this stub. Jump to
4821 // the real destination using an ARM-mode branch.
4822 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4824 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4827 // Stub used to provide an interworking for R_ARM_V4BX relocation
4828 // (bx r[n] instruction).
4829 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4831 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4832 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4833 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4836 // Fill in the stub template look-up table. Stub templates are constructed
4837 // per instance of Stub_factory for fast look-up without locking
4838 // in a thread-enabled environment.
4840 this->stub_templates_[arm_stub_none] =
4841 new Stub_template(arm_stub_none, NULL, 0);
4843 #define DEF_STUB(x) \
4847 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4848 Stub_type type = arm_stub_##x; \
4849 this->stub_templates_[type] = \
4850 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4858 // Stub_table methods.
4860 // Remove all Cortex-A8 stub.
4862 template<bool big_endian>
4864 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4866 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4867 p != this->cortex_a8_stubs_.end();
4870 this->cortex_a8_stubs_.clear();
4873 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4875 template<bool big_endian>
4877 Stub_table<big_endian>::relocate_stub(
4879 const Relocate_info<32, big_endian>* relinfo,
4880 Target_arm<big_endian>* arm_target,
4881 Output_section* output_section,
4882 unsigned char* view,
4883 Arm_address address,
4884 section_size_type view_size)
4886 const Stub_template* stub_template = stub->stub_template();
4887 if (stub_template->reloc_count() != 0)
4889 // Adjust view to cover the stub only.
4890 section_size_type offset = stub->offset();
4891 section_size_type stub_size = stub_template->size();
4892 gold_assert(offset + stub_size <= view_size);
4894 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4895 address + offset, stub_size);
4899 // Relocate all stubs in this stub table.
4901 template<bool big_endian>
4903 Stub_table<big_endian>::relocate_stubs(
4904 const Relocate_info<32, big_endian>* relinfo,
4905 Target_arm<big_endian>* arm_target,
4906 Output_section* output_section,
4907 unsigned char* view,
4908 Arm_address address,
4909 section_size_type view_size)
4911 // If we are passed a view bigger than the stub table's. we need to
4913 gold_assert(address == this->address()
4915 == static_cast<section_size_type>(this->data_size())));
4917 // Relocate all relocation stubs.
4918 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4919 p != this->reloc_stubs_.end();
4921 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4922 address, view_size);
4924 // Relocate all Cortex-A8 stubs.
4925 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4926 p != this->cortex_a8_stubs_.end();
4928 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4929 address, view_size);
4931 // Relocate all ARM V4BX stubs.
4932 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4933 p != this->arm_v4bx_stubs_.end();
4937 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4938 address, view_size);
4942 // Write out the stubs to file.
4944 template<bool big_endian>
4946 Stub_table<big_endian>::do_write(Output_file* of)
4948 off_t offset = this->offset();
4949 const section_size_type oview_size =
4950 convert_to_section_size_type(this->data_size());
4951 unsigned char* const oview = of->get_output_view(offset, oview_size);
4953 // Write relocation stubs.
4954 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4955 p != this->reloc_stubs_.end();
4958 Reloc_stub* stub = p->second;
4959 Arm_address address = this->address() + stub->offset();
4961 == align_address(address,
4962 stub->stub_template()->alignment()));
4963 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4967 // Write Cortex-A8 stubs.
4968 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4969 p != this->cortex_a8_stubs_.end();
4972 Cortex_a8_stub* stub = p->second;
4973 Arm_address address = this->address() + stub->offset();
4975 == align_address(address,
4976 stub->stub_template()->alignment()));
4977 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4981 // Write ARM V4BX relocation stubs.
4982 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4983 p != this->arm_v4bx_stubs_.end();
4989 Arm_address address = this->address() + (*p)->offset();
4991 == align_address(address,
4992 (*p)->stub_template()->alignment()));
4993 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4997 of->write_output_view(this->offset(), oview_size, oview);
5000 // Update the data size and address alignment of the stub table at the end
5001 // of a relaxation pass. Return true if either the data size or the
5002 // alignment changed in this relaxation pass.
5004 template<bool big_endian>
5006 Stub_table<big_endian>::update_data_size_and_addralign()
5008 // Go over all stubs in table to compute data size and address alignment.
5009 off_t size = this->reloc_stubs_size_;
5010 unsigned addralign = this->reloc_stubs_addralign_;
5012 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5013 p != this->cortex_a8_stubs_.end();
5016 const Stub_template* stub_template = p->second->stub_template();
5017 addralign = std::max(addralign, stub_template->alignment());
5018 size = (align_address(size, stub_template->alignment())
5019 + stub_template->size());
5022 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5023 p != this->arm_v4bx_stubs_.end();
5029 const Stub_template* stub_template = (*p)->stub_template();
5030 addralign = std::max(addralign, stub_template->alignment());
5031 size = (align_address(size, stub_template->alignment())
5032 + stub_template->size());
5035 // Check if either data size or alignment changed in this pass.
5036 // Update prev_data_size_ and prev_addralign_. These will be used
5037 // as the current data size and address alignment for the next pass.
5038 bool changed = size != this->prev_data_size_;
5039 this->prev_data_size_ = size;
5041 if (addralign != this->prev_addralign_)
5043 this->prev_addralign_ = addralign;
5048 // Finalize the stubs. This sets the offsets of the stubs within the stub
5049 // table. It also marks all input sections needing Cortex-A8 workaround.
5051 template<bool big_endian>
5053 Stub_table<big_endian>::finalize_stubs()
5055 off_t off = this->reloc_stubs_size_;
5056 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5057 p != this->cortex_a8_stubs_.end();
5060 Cortex_a8_stub* stub = p->second;
5061 const Stub_template* stub_template = stub->stub_template();
5062 uint64_t stub_addralign = stub_template->alignment();
5063 off = align_address(off, stub_addralign);
5064 stub->set_offset(off);
5065 off += stub_template->size();
5067 // Mark input section so that we can determine later if a code section
5068 // needs the Cortex-A8 workaround quickly.
5069 Arm_relobj<big_endian>* arm_relobj =
5070 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5071 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5074 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5075 p != this->arm_v4bx_stubs_.end();
5081 const Stub_template* stub_template = (*p)->stub_template();
5082 uint64_t stub_addralign = stub_template->alignment();
5083 off = align_address(off, stub_addralign);
5084 (*p)->set_offset(off);
5085 off += stub_template->size();
5088 gold_assert(off <= this->prev_data_size_);
5091 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5092 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5093 // of the address range seen by the linker.
5095 template<bool big_endian>
5097 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5098 Target_arm<big_endian>* arm_target,
5099 unsigned char* view,
5100 Arm_address view_address,
5101 section_size_type view_size)
5103 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5104 for (Cortex_a8_stub_list::const_iterator p =
5105 this->cortex_a8_stubs_.lower_bound(view_address);
5106 ((p != this->cortex_a8_stubs_.end())
5107 && (p->first < (view_address + view_size)));
5110 // We do not store the THUMB bit in the LSB of either the branch address
5111 // or the stub offset. There is no need to strip the LSB.
5112 Arm_address branch_address = p->first;
5113 const Cortex_a8_stub* stub = p->second;
5114 Arm_address stub_address = this->address() + stub->offset();
5116 // Offset of the branch instruction relative to this view.
5117 section_size_type offset =
5118 convert_to_section_size_type(branch_address - view_address);
5119 gold_assert((offset + 4) <= view_size);
5121 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5122 view + offset, branch_address);
5126 // Arm_input_section methods.
5128 // Initialize an Arm_input_section.
5130 template<bool big_endian>
5132 Arm_input_section<big_endian>::init()
5134 Relobj* relobj = this->relobj();
5135 unsigned int shndx = this->shndx();
5137 // We have to cache original size, alignment and contents to avoid locking
5138 // the original file.
5139 this->original_addralign_ =
5140 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5142 // This is not efficient but we expect only a small number of relaxed
5143 // input sections for stubs.
5144 section_size_type section_size;
5145 const unsigned char* section_contents =
5146 relobj->section_contents(shndx, §ion_size, false);
5147 this->original_size_ =
5148 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5150 gold_assert(this->original_contents_ == NULL);
5151 this->original_contents_ = new unsigned char[section_size];
5152 memcpy(this->original_contents_, section_contents, section_size);
5154 // We want to make this look like the original input section after
5155 // output sections are finalized.
5156 Output_section* os = relobj->output_section(shndx);
5157 off_t offset = relobj->output_section_offset(shndx);
5158 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5159 this->set_address(os->address() + offset);
5160 this->set_file_offset(os->offset() + offset);
5162 this->set_current_data_size(this->original_size_);
5163 this->finalize_data_size();
5166 template<bool big_endian>
5168 Arm_input_section<big_endian>::do_write(Output_file* of)
5170 // We have to write out the original section content.
5171 gold_assert(this->original_contents_ != NULL);
5172 of->write(this->offset(), this->original_contents_,
5173 this->original_size_);
5175 // If this owns a stub table and it is not empty, write it.
5176 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5177 this->stub_table_->write(of);
5180 // Finalize data size.
5182 template<bool big_endian>
5184 Arm_input_section<big_endian>::set_final_data_size()
5186 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5188 if (this->is_stub_table_owner())
5190 this->stub_table_->finalize_data_size();
5191 off = align_address(off, this->stub_table_->addralign());
5192 off += this->stub_table_->data_size();
5194 this->set_data_size(off);
5197 // Reset address and file offset.
5199 template<bool big_endian>
5201 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5203 // Size of the original input section contents.
5204 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5206 // If this is a stub table owner, account for the stub table size.
5207 if (this->is_stub_table_owner())
5209 Stub_table<big_endian>* stub_table = this->stub_table_;
5211 // Reset the stub table's address and file offset. The
5212 // current data size for child will be updated after that.
5213 stub_table_->reset_address_and_file_offset();
5214 off = align_address(off, stub_table_->addralign());
5215 off += stub_table->current_data_size();
5218 this->set_current_data_size(off);
5221 // Arm_exidx_cantunwind methods.
5223 // Write this to Output file OF for a fixed endianness.
5225 template<bool big_endian>
5227 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5229 off_t offset = this->offset();
5230 const section_size_type oview_size = 8;
5231 unsigned char* const oview = of->get_output_view(offset, oview_size);
5233 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5235 Output_section* os = this->relobj_->output_section(this->shndx_);
5236 gold_assert(os != NULL);
5238 Arm_relobj<big_endian>* arm_relobj =
5239 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5240 Arm_address output_offset =
5241 arm_relobj->get_output_section_offset(this->shndx_);
5242 Arm_address section_start;
5243 section_size_type section_size;
5245 // Find out the end of the text section referred by this.
5246 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5248 section_start = os->address() + output_offset;
5249 const Arm_exidx_input_section* exidx_input_section =
5250 arm_relobj->exidx_input_section_by_link(this->shndx_);
5251 gold_assert(exidx_input_section != NULL);
5253 convert_to_section_size_type(exidx_input_section->text_size());
5257 // Currently this only happens for a relaxed section.
5258 const Output_relaxed_input_section* poris =
5259 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5260 gold_assert(poris != NULL);
5261 section_start = poris->address();
5262 section_size = convert_to_section_size_type(poris->data_size());
5265 // We always append this to the end of an EXIDX section.
5266 Arm_address output_address = section_start + section_size;
5268 // Write out the entry. The first word either points to the beginning
5269 // or after the end of a text section. The second word is the special
5270 // EXIDX_CANTUNWIND value.
5271 uint32_t prel31_offset = output_address - this->address();
5272 if (utils::has_overflow<31>(offset))
5273 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5274 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5275 prel31_offset & 0x7fffffffU);
5276 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5277 elfcpp::EXIDX_CANTUNWIND);
5279 of->write_output_view(this->offset(), oview_size, oview);
5282 // Arm_exidx_merged_section methods.
5284 // Constructor for Arm_exidx_merged_section.
5285 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5286 // SECTION_OFFSET_MAP points to a section offset map describing how
5287 // parts of the input section are mapped to output. DELETED_BYTES is
5288 // the number of bytes deleted from the EXIDX input section.
5290 Arm_exidx_merged_section::Arm_exidx_merged_section(
5291 const Arm_exidx_input_section& exidx_input_section,
5292 const Arm_exidx_section_offset_map& section_offset_map,
5293 uint32_t deleted_bytes)
5294 : Output_relaxed_input_section(exidx_input_section.relobj(),
5295 exidx_input_section.shndx(),
5296 exidx_input_section.addralign()),
5297 exidx_input_section_(exidx_input_section),
5298 section_offset_map_(section_offset_map)
5300 // If we retain or discard the whole EXIDX input section, we would
5302 gold_assert(deleted_bytes != 0
5303 && deleted_bytes != this->exidx_input_section_.size());
5305 // Fix size here so that we do not need to implement set_final_data_size.
5306 uint32_t size = exidx_input_section.size() - deleted_bytes;
5307 this->set_data_size(size);
5308 this->fix_data_size();
5310 // Allocate buffer for section contents and build contents.
5311 this->section_contents_ = new unsigned char[size];
5314 // Build the contents of a merged EXIDX output section.
5317 Arm_exidx_merged_section::build_contents(
5318 const unsigned char* original_contents,
5319 section_size_type original_size)
5321 // Go over spans of input offsets and write only those that are not
5323 section_offset_type in_start = 0;
5324 section_offset_type out_start = 0;
5325 section_offset_type in_max =
5326 convert_types<section_offset_type>(original_size);
5327 section_offset_type out_max =
5328 convert_types<section_offset_type>(this->data_size());
5329 for (Arm_exidx_section_offset_map::const_iterator p =
5330 this->section_offset_map_.begin();
5331 p != this->section_offset_map_.end();
5334 section_offset_type in_end = p->first;
5335 gold_assert(in_end >= in_start);
5336 section_offset_type out_end = p->second;
5337 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5340 size_t out_chunk_size =
5341 convert_types<size_t>(out_end - out_start + 1);
5343 gold_assert(out_chunk_size == in_chunk_size
5344 && in_end < in_max && out_end < out_max);
5346 memcpy(this->section_contents_ + out_start,
5347 original_contents + in_start,
5349 out_start += out_chunk_size;
5351 in_start += in_chunk_size;
5355 // Given an input OBJECT, an input section index SHNDX within that
5356 // object, and an OFFSET relative to the start of that input
5357 // section, return whether or not the corresponding offset within
5358 // the output section is known. If this function returns true, it
5359 // sets *POUTPUT to the output offset. The value -1 indicates that
5360 // this input offset is being discarded.
5363 Arm_exidx_merged_section::do_output_offset(
5364 const Relobj* relobj,
5366 section_offset_type offset,
5367 section_offset_type* poutput) const
5369 // We only handle offsets for the original EXIDX input section.
5370 if (relobj != this->exidx_input_section_.relobj()
5371 || shndx != this->exidx_input_section_.shndx())
5374 section_offset_type section_size =
5375 convert_types<section_offset_type>(this->exidx_input_section_.size());
5376 if (offset < 0 || offset >= section_size)
5377 // Input offset is out of valid range.
5381 // We need to look up the section offset map to determine the output
5382 // offset. Find the reference point in map that is first offset
5383 // bigger than or equal to this offset.
5384 Arm_exidx_section_offset_map::const_iterator p =
5385 this->section_offset_map_.lower_bound(offset);
5387 // The section offset maps are build such that this should not happen if
5388 // input offset is in the valid range.
5389 gold_assert(p != this->section_offset_map_.end());
5391 // We need to check if this is dropped.
5392 section_offset_type ref = p->first;
5393 section_offset_type mapped_ref = p->second;
5395 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5396 // Offset is present in output.
5397 *poutput = mapped_ref + (offset - ref);
5399 // Offset is discarded owing to EXIDX entry merging.
5406 // Write this to output file OF.
5409 Arm_exidx_merged_section::do_write(Output_file* of)
5411 off_t offset = this->offset();
5412 const section_size_type oview_size = this->data_size();
5413 unsigned char* const oview = of->get_output_view(offset, oview_size);
5415 Output_section* os = this->relobj()->output_section(this->shndx());
5416 gold_assert(os != NULL);
5418 memcpy(oview, this->section_contents_, oview_size);
5419 of->write_output_view(this->offset(), oview_size, oview);
5422 // Arm_exidx_fixup methods.
5424 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5425 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5426 // points to the end of the last seen EXIDX section.
5429 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5431 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5432 && this->last_input_section_ != NULL)
5434 Relobj* relobj = this->last_input_section_->relobj();
5435 unsigned int text_shndx = this->last_input_section_->link();
5436 Arm_exidx_cantunwind* cantunwind =
5437 new Arm_exidx_cantunwind(relobj, text_shndx);
5438 this->exidx_output_section_->add_output_section_data(cantunwind);
5439 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5443 // Process an EXIDX section entry in input. Return whether this entry
5444 // can be deleted in the output. SECOND_WORD in the second word of the
5448 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5451 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5453 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5454 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5455 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5457 else if ((second_word & 0x80000000) != 0)
5459 // Inlined unwinding data. Merge if equal to previous.
5460 delete_entry = (merge_exidx_entries_
5461 && this->last_unwind_type_ == UT_INLINED_ENTRY
5462 && this->last_inlined_entry_ == second_word);
5463 this->last_unwind_type_ = UT_INLINED_ENTRY;
5464 this->last_inlined_entry_ = second_word;
5468 // Normal table entry. In theory we could merge these too,
5469 // but duplicate entries are likely to be much less common.
5470 delete_entry = false;
5471 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5473 return delete_entry;
5476 // Update the current section offset map during EXIDX section fix-up.
5477 // If there is no map, create one. INPUT_OFFSET is the offset of a
5478 // reference point, DELETED_BYTES is the number of deleted by in the
5479 // section so far. If DELETE_ENTRY is true, the reference point and
5480 // all offsets after the previous reference point are discarded.
5483 Arm_exidx_fixup::update_offset_map(
5484 section_offset_type input_offset,
5485 section_size_type deleted_bytes,
5488 if (this->section_offset_map_ == NULL)
5489 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5490 section_offset_type output_offset;
5492 output_offset = Arm_exidx_input_section::invalid_offset;
5494 output_offset = input_offset - deleted_bytes;
5495 (*this->section_offset_map_)[input_offset] = output_offset;
5498 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5499 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5500 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5501 // If some entries are merged, also store a pointer to a newly created
5502 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5503 // owns the map and is responsible for releasing it after use.
5505 template<bool big_endian>
5507 Arm_exidx_fixup::process_exidx_section(
5508 const Arm_exidx_input_section* exidx_input_section,
5509 const unsigned char* section_contents,
5510 section_size_type section_size,
5511 Arm_exidx_section_offset_map** psection_offset_map)
5513 Relobj* relobj = exidx_input_section->relobj();
5514 unsigned shndx = exidx_input_section->shndx();
5516 if ((section_size % 8) != 0)
5518 // Something is wrong with this section. Better not touch it.
5519 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5520 relobj->name().c_str(), shndx);
5521 this->last_input_section_ = exidx_input_section;
5522 this->last_unwind_type_ = UT_NONE;
5526 uint32_t deleted_bytes = 0;
5527 bool prev_delete_entry = false;
5528 gold_assert(this->section_offset_map_ == NULL);
5530 for (section_size_type i = 0; i < section_size; i += 8)
5532 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5534 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5535 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5537 bool delete_entry = this->process_exidx_entry(second_word);
5539 // Entry deletion causes changes in output offsets. We use a std::map
5540 // to record these. And entry (x, y) means input offset x
5541 // is mapped to output offset y. If y is invalid_offset, then x is
5542 // dropped in the output. Because of the way std::map::lower_bound
5543 // works, we record the last offset in a region w.r.t to keeping or
5544 // dropping. If there is no entry (x0, y0) for an input offset x0,
5545 // the output offset y0 of it is determined by the output offset y1 of
5546 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5547 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5549 if (delete_entry != prev_delete_entry && i != 0)
5550 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5552 // Update total deleted bytes for this entry.
5556 prev_delete_entry = delete_entry;
5559 // If section offset map is not NULL, make an entry for the end of
5561 if (this->section_offset_map_ != NULL)
5562 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5564 *psection_offset_map = this->section_offset_map_;
5565 this->section_offset_map_ = NULL;
5566 this->last_input_section_ = exidx_input_section;
5568 // Set the first output text section so that we can link the EXIDX output
5569 // section to it. Ignore any EXIDX input section that is completely merged.
5570 if (this->first_output_text_section_ == NULL
5571 && deleted_bytes != section_size)
5573 unsigned int link = exidx_input_section->link();
5574 Output_section* os = relobj->output_section(link);
5575 gold_assert(os != NULL);
5576 this->first_output_text_section_ = os;
5579 return deleted_bytes;
5582 // Arm_output_section methods.
5584 // Create a stub group for input sections from BEGIN to END. OWNER
5585 // points to the input section to be the owner a new stub table.
5587 template<bool big_endian>
5589 Arm_output_section<big_endian>::create_stub_group(
5590 Input_section_list::const_iterator begin,
5591 Input_section_list::const_iterator end,
5592 Input_section_list::const_iterator owner,
5593 Target_arm<big_endian>* target,
5594 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5597 // We use a different kind of relaxed section in an EXIDX section.
5598 // The static casting from Output_relaxed_input_section to
5599 // Arm_input_section is invalid in an EXIDX section. We are okay
5600 // because we should not be calling this for an EXIDX section.
5601 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5603 // Currently we convert ordinary input sections into relaxed sections only
5604 // at this point but we may want to support creating relaxed input section
5605 // very early. So we check here to see if owner is already a relaxed
5608 Arm_input_section<big_endian>* arm_input_section;
5609 if (owner->is_relaxed_input_section())
5612 Arm_input_section<big_endian>::as_arm_input_section(
5613 owner->relaxed_input_section());
5617 gold_assert(owner->is_input_section());
5618 // Create a new relaxed input section. We need to lock the original
5620 Task_lock_obj<Object> tl(task, owner->relobj());
5622 target->new_arm_input_section(owner->relobj(), owner->shndx());
5623 new_relaxed_sections->push_back(arm_input_section);
5626 // Create a stub table.
5627 Stub_table<big_endian>* stub_table =
5628 target->new_stub_table(arm_input_section);
5630 arm_input_section->set_stub_table(stub_table);
5632 Input_section_list::const_iterator p = begin;
5633 Input_section_list::const_iterator prev_p;
5635 // Look for input sections or relaxed input sections in [begin ... end].
5638 if (p->is_input_section() || p->is_relaxed_input_section())
5640 // The stub table information for input sections live
5641 // in their objects.
5642 Arm_relobj<big_endian>* arm_relobj =
5643 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5644 arm_relobj->set_stub_table(p->shndx(), stub_table);
5648 while (prev_p != end);
5651 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5652 // of stub groups. We grow a stub group by adding input section until the
5653 // size is just below GROUP_SIZE. The last input section will be converted
5654 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5655 // input section after the stub table, effectively double the group size.
5657 // This is similar to the group_sections() function in elf32-arm.c but is
5658 // implemented differently.
5660 template<bool big_endian>
5662 Arm_output_section<big_endian>::group_sections(
5663 section_size_type group_size,
5664 bool stubs_always_after_branch,
5665 Target_arm<big_endian>* target,
5668 // We only care about sections containing code.
5669 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5672 // States for grouping.
5675 // No group is being built.
5677 // A group is being built but the stub table is not found yet.
5678 // We keep group a stub group until the size is just under GROUP_SIZE.
5679 // The last input section in the group will be used as the stub table.
5680 FINDING_STUB_SECTION,
5681 // A group is being built and we have already found a stub table.
5682 // We enter this state to grow a stub group by adding input section
5683 // after the stub table. This effectively doubles the group size.
5687 // Any newly created relaxed sections are stored here.
5688 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5690 State state = NO_GROUP;
5691 section_size_type off = 0;
5692 section_size_type group_begin_offset = 0;
5693 section_size_type group_end_offset = 0;
5694 section_size_type stub_table_end_offset = 0;
5695 Input_section_list::const_iterator group_begin =
5696 this->input_sections().end();
5697 Input_section_list::const_iterator stub_table =
5698 this->input_sections().end();
5699 Input_section_list::const_iterator group_end = this->input_sections().end();
5700 for (Input_section_list::const_iterator p = this->input_sections().begin();
5701 p != this->input_sections().end();
5704 section_size_type section_begin_offset =
5705 align_address(off, p->addralign());
5706 section_size_type section_end_offset =
5707 section_begin_offset + p->data_size();
5709 // Check to see if we should group the previously seen sections.
5715 case FINDING_STUB_SECTION:
5716 // Adding this section makes the group larger than GROUP_SIZE.
5717 if (section_end_offset - group_begin_offset >= group_size)
5719 if (stubs_always_after_branch)
5721 gold_assert(group_end != this->input_sections().end());
5722 this->create_stub_group(group_begin, group_end, group_end,
5723 target, &new_relaxed_sections,
5729 // But wait, there's more! Input sections up to
5730 // stub_group_size bytes after the stub table can be
5731 // handled by it too.
5732 state = HAS_STUB_SECTION;
5733 stub_table = group_end;
5734 stub_table_end_offset = group_end_offset;
5739 case HAS_STUB_SECTION:
5740 // Adding this section makes the post stub-section group larger
5742 if (section_end_offset - stub_table_end_offset >= group_size)
5744 gold_assert(group_end != this->input_sections().end());
5745 this->create_stub_group(group_begin, group_end, stub_table,
5746 target, &new_relaxed_sections, task);
5755 // If we see an input section and currently there is no group, start
5756 // a new one. Skip any empty sections. We look at the data size
5757 // instead of calling p->relobj()->section_size() to avoid locking.
5758 if ((p->is_input_section() || p->is_relaxed_input_section())
5759 && (p->data_size() != 0))
5761 if (state == NO_GROUP)
5763 state = FINDING_STUB_SECTION;
5765 group_begin_offset = section_begin_offset;
5768 // Keep track of the last input section seen.
5770 group_end_offset = section_end_offset;
5773 off = section_end_offset;
5776 // Create a stub group for any ungrouped sections.
5777 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5779 gold_assert(group_end != this->input_sections().end());
5780 this->create_stub_group(group_begin, group_end,
5781 (state == FINDING_STUB_SECTION
5784 target, &new_relaxed_sections, task);
5787 // Convert input section into relaxed input section in a batch.
5788 if (!new_relaxed_sections.empty())
5789 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5791 // Update the section offsets
5792 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5794 Arm_relobj<big_endian>* arm_relobj =
5795 Arm_relobj<big_endian>::as_arm_relobj(
5796 new_relaxed_sections[i]->relobj());
5797 unsigned int shndx = new_relaxed_sections[i]->shndx();
5798 // Tell Arm_relobj that this input section is converted.
5799 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5803 // Append non empty text sections in this to LIST in ascending
5804 // order of their position in this.
5806 template<bool big_endian>
5808 Arm_output_section<big_endian>::append_text_sections_to_list(
5809 Text_section_list* list)
5811 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5813 for (Input_section_list::const_iterator p = this->input_sections().begin();
5814 p != this->input_sections().end();
5817 // We only care about plain or relaxed input sections. We also
5818 // ignore any merged sections.
5819 if (p->is_input_section() || p->is_relaxed_input_section())
5820 list->push_back(Text_section_list::value_type(p->relobj(),
5825 template<bool big_endian>
5827 Arm_output_section<big_endian>::fix_exidx_coverage(
5829 const Text_section_list& sorted_text_sections,
5830 Symbol_table* symtab,
5831 bool merge_exidx_entries,
5834 // We should only do this for the EXIDX output section.
5835 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5837 // We don't want the relaxation loop to undo these changes, so we discard
5838 // the current saved states and take another one after the fix-up.
5839 this->discard_states();
5841 // Remove all input sections.
5842 uint64_t address = this->address();
5843 typedef std::list<Output_section::Input_section> Input_section_list;
5844 Input_section_list input_sections;
5845 this->reset_address_and_file_offset();
5846 this->get_input_sections(address, std::string(""), &input_sections);
5848 if (!this->input_sections().empty())
5849 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5851 // Go through all the known input sections and record them.
5852 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5853 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5854 Section_id_hash> Text_to_exidx_map;
5855 Text_to_exidx_map text_to_exidx_map;
5856 for (Input_section_list::const_iterator p = input_sections.begin();
5857 p != input_sections.end();
5860 // This should never happen. At this point, we should only see
5861 // plain EXIDX input sections.
5862 gold_assert(!p->is_relaxed_input_section());
5863 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5866 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5868 // Go over the sorted text sections.
5869 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5870 Section_id_set processed_input_sections;
5871 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5872 p != sorted_text_sections.end();
5875 Relobj* relobj = p->first;
5876 unsigned int shndx = p->second;
5878 Arm_relobj<big_endian>* arm_relobj =
5879 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5880 const Arm_exidx_input_section* exidx_input_section =
5881 arm_relobj->exidx_input_section_by_link(shndx);
5883 // If this text section has no EXIDX section or if the EXIDX section
5884 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5885 // of the last seen EXIDX section.
5886 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5888 exidx_fixup.add_exidx_cantunwind_as_needed();
5892 Relobj* exidx_relobj = exidx_input_section->relobj();
5893 unsigned int exidx_shndx = exidx_input_section->shndx();
5894 Section_id sid(exidx_relobj, exidx_shndx);
5895 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5896 if (iter == text_to_exidx_map.end())
5898 // This is odd. We have not seen this EXIDX input section before.
5899 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5900 // issue a warning instead. We assume the user knows what he
5901 // or she is doing. Otherwise, this is an error.
5902 if (layout->script_options()->saw_sections_clause())
5903 gold_warning(_("unwinding may not work because EXIDX input section"
5904 " %u of %s is not in EXIDX output section"),
5905 exidx_shndx, exidx_relobj->name().c_str());
5907 gold_error(_("unwinding may not work because EXIDX input section"
5908 " %u of %s is not in EXIDX output section"),
5909 exidx_shndx, exidx_relobj->name().c_str());
5911 exidx_fixup.add_exidx_cantunwind_as_needed();
5915 // We need to access the contents of the EXIDX section, lock the
5917 Task_lock_obj<Object> tl(task, exidx_relobj);
5918 section_size_type exidx_size;
5919 const unsigned char* exidx_contents =
5920 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5922 // Fix up coverage and append input section to output data list.
5923 Arm_exidx_section_offset_map* section_offset_map = NULL;
5924 uint32_t deleted_bytes =
5925 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5928 §ion_offset_map);
5930 if (deleted_bytes == exidx_input_section->size())
5932 // The whole EXIDX section got merged. Remove it from output.
5933 gold_assert(section_offset_map == NULL);
5934 exidx_relobj->set_output_section(exidx_shndx, NULL);
5936 // All local symbols defined in this input section will be dropped.
5937 // We need to adjust output local symbol count.
5938 arm_relobj->set_output_local_symbol_count_needs_update();
5940 else if (deleted_bytes > 0)
5942 // Some entries are merged. We need to convert this EXIDX input
5943 // section into a relaxed section.
5944 gold_assert(section_offset_map != NULL);
5946 Arm_exidx_merged_section* merged_section =
5947 new Arm_exidx_merged_section(*exidx_input_section,
5948 *section_offset_map, deleted_bytes);
5949 merged_section->build_contents(exidx_contents, exidx_size);
5951 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5952 this->add_relaxed_input_section(layout, merged_section, secname);
5953 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5955 // All local symbols defined in discarded portions of this input
5956 // section will be dropped. We need to adjust output local symbol
5958 arm_relobj->set_output_local_symbol_count_needs_update();
5962 // Just add back the EXIDX input section.
5963 gold_assert(section_offset_map == NULL);
5964 const Output_section::Input_section* pis = iter->second;
5965 gold_assert(pis->is_input_section());
5966 this->add_script_input_section(*pis);
5969 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5972 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5973 exidx_fixup.add_exidx_cantunwind_as_needed();
5975 // Remove any known EXIDX input sections that are not processed.
5976 for (Input_section_list::const_iterator p = input_sections.begin();
5977 p != input_sections.end();
5980 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5981 == processed_input_sections.end())
5983 // We discard a known EXIDX section because its linked
5984 // text section has been folded by ICF. We also discard an
5985 // EXIDX section with error, the output does not matter in this
5986 // case. We do this to avoid triggering asserts.
5987 Arm_relobj<big_endian>* arm_relobj =
5988 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5989 const Arm_exidx_input_section* exidx_input_section =
5990 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5991 gold_assert(exidx_input_section != NULL);
5992 if (!exidx_input_section->has_errors())
5994 unsigned int text_shndx = exidx_input_section->link();
5995 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5998 // Remove this from link. We also need to recount the
6000 p->relobj()->set_output_section(p->shndx(), NULL);
6001 arm_relobj->set_output_local_symbol_count_needs_update();
6005 // Link exidx output section to the first seen output section and
6006 // set correct entry size.
6007 this->set_link_section(exidx_fixup.first_output_text_section());
6008 this->set_entsize(8);
6010 // Make changes permanent.
6011 this->save_states();
6012 this->set_section_offsets_need_adjustment();
6015 // Link EXIDX output sections to text output sections.
6017 template<bool big_endian>
6019 Arm_output_section<big_endian>::set_exidx_section_link()
6021 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6022 if (!this->input_sections().empty())
6024 Input_section_list::const_iterator p = this->input_sections().begin();
6025 Arm_relobj<big_endian>* arm_relobj =
6026 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6027 unsigned exidx_shndx = p->shndx();
6028 const Arm_exidx_input_section* exidx_input_section =
6029 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6030 gold_assert(exidx_input_section != NULL);
6031 unsigned int text_shndx = exidx_input_section->link();
6032 Output_section* os = arm_relobj->output_section(text_shndx);
6033 this->set_link_section(os);
6037 // Arm_relobj methods.
6039 // Determine if an input section is scannable for stub processing. SHDR is
6040 // the header of the section and SHNDX is the section index. OS is the output
6041 // section for the input section and SYMTAB is the global symbol table used to
6042 // look up ICF information.
6044 template<bool big_endian>
6046 Arm_relobj<big_endian>::section_is_scannable(
6047 const elfcpp::Shdr<32, big_endian>& shdr,
6049 const Output_section* os,
6050 const Symbol_table* symtab)
6052 // Skip any empty sections, unallocated sections or sections whose
6053 // type are not SHT_PROGBITS.
6054 if (shdr.get_sh_size() == 0
6055 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6056 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6059 // Skip any discarded or ICF'ed sections.
6060 if (os == NULL || symtab->is_section_folded(this, shndx))
6063 // If this requires special offset handling, check to see if it is
6064 // a relaxed section. If this is not, then it is a merged section that
6065 // we cannot handle.
6066 if (this->is_output_section_offset_invalid(shndx))
6068 const Output_relaxed_input_section* poris =
6069 os->find_relaxed_input_section(this, shndx);
6077 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6078 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6080 template<bool big_endian>
6082 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6083 const elfcpp::Shdr<32, big_endian>& shdr,
6084 const Relobj::Output_sections& out_sections,
6085 const Symbol_table* symtab,
6086 const unsigned char* pshdrs)
6088 unsigned int sh_type = shdr.get_sh_type();
6089 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6092 // Ignore empty section.
6093 off_t sh_size = shdr.get_sh_size();
6097 // Ignore reloc section with unexpected symbol table. The
6098 // error will be reported in the final link.
6099 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6102 unsigned int reloc_size;
6103 if (sh_type == elfcpp::SHT_REL)
6104 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6106 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6108 // Ignore reloc section with unexpected entsize or uneven size.
6109 // The error will be reported in the final link.
6110 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6113 // Ignore reloc section with bad info. This error will be
6114 // reported in the final link.
6115 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6116 if (index >= this->shnum())
6119 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6120 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6121 return this->section_is_scannable(text_shdr, index,
6122 out_sections[index], symtab);
6125 // Return the output address of either a plain input section or a relaxed
6126 // input section. SHNDX is the section index. We define and use this
6127 // instead of calling Output_section::output_address because that is slow
6128 // for large output.
6130 template<bool big_endian>
6132 Arm_relobj<big_endian>::simple_input_section_output_address(
6136 if (this->is_output_section_offset_invalid(shndx))
6138 const Output_relaxed_input_section* poris =
6139 os->find_relaxed_input_section(this, shndx);
6140 // We do not handle merged sections here.
6141 gold_assert(poris != NULL);
6142 return poris->address();
6145 return os->address() + this->get_output_section_offset(shndx);
6148 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6149 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6151 template<bool big_endian>
6153 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6154 const elfcpp::Shdr<32, big_endian>& shdr,
6157 const Symbol_table* symtab)
6159 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6162 // If the section does not cross any 4K-boundaries, it does not need to
6164 Arm_address address = this->simple_input_section_output_address(shndx, os);
6165 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6171 // Scan a section for Cortex-A8 workaround.
6173 template<bool big_endian>
6175 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6176 const elfcpp::Shdr<32, big_endian>& shdr,
6179 Target_arm<big_endian>* arm_target)
6181 // Look for the first mapping symbol in this section. It should be
6183 Mapping_symbol_position section_start(shndx, 0);
6184 typename Mapping_symbols_info::const_iterator p =
6185 this->mapping_symbols_info_.lower_bound(section_start);
6187 // There are no mapping symbols for this section. Treat it as a data-only
6188 // section. Issue a warning if section is marked as containing
6190 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6192 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6193 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6194 "erratum because it has no mapping symbols."),
6195 shndx, this->name().c_str());
6199 Arm_address output_address =
6200 this->simple_input_section_output_address(shndx, os);
6202 // Get the section contents.
6203 section_size_type input_view_size = 0;
6204 const unsigned char* input_view =
6205 this->section_contents(shndx, &input_view_size, false);
6207 // We need to go through the mapping symbols to determine what to
6208 // scan. There are two reasons. First, we should look at THUMB code and
6209 // THUMB code only. Second, we only want to look at the 4K-page boundary
6210 // to speed up the scanning.
6212 while (p != this->mapping_symbols_info_.end()
6213 && p->first.first == shndx)
6215 typename Mapping_symbols_info::const_iterator next =
6216 this->mapping_symbols_info_.upper_bound(p->first);
6218 // Only scan part of a section with THUMB code.
6219 if (p->second == 't')
6221 // Determine the end of this range.
6222 section_size_type span_start =
6223 convert_to_section_size_type(p->first.second);
6224 section_size_type span_end;
6225 if (next != this->mapping_symbols_info_.end()
6226 && next->first.first == shndx)
6227 span_end = convert_to_section_size_type(next->first.second);
6229 span_end = convert_to_section_size_type(shdr.get_sh_size());
6231 if (((span_start + output_address) & ~0xfffUL)
6232 != ((span_end + output_address - 1) & ~0xfffUL))
6234 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6235 span_start, span_end,
6245 // Scan relocations for stub generation.
6247 template<bool big_endian>
6249 Arm_relobj<big_endian>::scan_sections_for_stubs(
6250 Target_arm<big_endian>* arm_target,
6251 const Symbol_table* symtab,
6252 const Layout* layout)
6254 unsigned int shnum = this->shnum();
6255 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6257 // Read the section headers.
6258 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6262 // To speed up processing, we set up hash tables for fast lookup of
6263 // input offsets to output addresses.
6264 this->initialize_input_to_output_maps();
6266 const Relobj::Output_sections& out_sections(this->output_sections());
6268 Relocate_info<32, big_endian> relinfo;
6269 relinfo.symtab = symtab;
6270 relinfo.layout = layout;
6271 relinfo.object = this;
6273 // Do relocation stubs scanning.
6274 const unsigned char* p = pshdrs + shdr_size;
6275 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6277 const elfcpp::Shdr<32, big_endian> shdr(p);
6278 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6281 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6282 Arm_address output_offset = this->get_output_section_offset(index);
6283 Arm_address output_address;
6284 if (output_offset != invalid_address)
6285 output_address = out_sections[index]->address() + output_offset;
6288 // Currently this only happens for a relaxed section.
6289 const Output_relaxed_input_section* poris =
6290 out_sections[index]->find_relaxed_input_section(this, index);
6291 gold_assert(poris != NULL);
6292 output_address = poris->address();
6295 // Get the relocations.
6296 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6300 // Get the section contents. This does work for the case in which
6301 // we modify the contents of an input section. We need to pass the
6302 // output view under such circumstances.
6303 section_size_type input_view_size = 0;
6304 const unsigned char* input_view =
6305 this->section_contents(index, &input_view_size, false);
6307 relinfo.reloc_shndx = i;
6308 relinfo.data_shndx = index;
6309 unsigned int sh_type = shdr.get_sh_type();
6310 unsigned int reloc_size;
6311 if (sh_type == elfcpp::SHT_REL)
6312 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6314 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6316 Output_section* os = out_sections[index];
6317 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6318 shdr.get_sh_size() / reloc_size,
6320 output_offset == invalid_address,
6321 input_view, output_address,
6326 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6327 // after its relocation section, if there is one, is processed for
6328 // relocation stubs. Merging this loop with the one above would have been
6329 // complicated since we would have had to make sure that relocation stub
6330 // scanning is done first.
6331 if (arm_target->fix_cortex_a8())
6333 const unsigned char* p = pshdrs + shdr_size;
6334 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6336 const elfcpp::Shdr<32, big_endian> shdr(p);
6337 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6340 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6345 // After we've done the relocations, we release the hash tables,
6346 // since we no longer need them.
6347 this->free_input_to_output_maps();
6350 // Count the local symbols. The ARM backend needs to know if a symbol
6351 // is a THUMB function or not. For global symbols, it is easy because
6352 // the Symbol object keeps the ELF symbol type. For local symbol it is
6353 // harder because we cannot access this information. So we override the
6354 // do_count_local_symbol in parent and scan local symbols to mark
6355 // THUMB functions. This is not the most efficient way but I do not want to
6356 // slow down other ports by calling a per symbol target hook inside
6357 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6359 template<bool big_endian>
6361 Arm_relobj<big_endian>::do_count_local_symbols(
6362 Stringpool_template<char>* pool,
6363 Stringpool_template<char>* dynpool)
6365 // We need to fix-up the values of any local symbols whose type are
6368 // Ask parent to count the local symbols.
6369 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6370 const unsigned int loccount = this->local_symbol_count();
6374 // Initialize the thumb function bit-vector.
6375 std::vector<bool> empty_vector(loccount, false);
6376 this->local_symbol_is_thumb_function_.swap(empty_vector);
6378 // Read the symbol table section header.
6379 const unsigned int symtab_shndx = this->symtab_shndx();
6380 elfcpp::Shdr<32, big_endian>
6381 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6382 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6384 // Read the local symbols.
6385 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6386 gold_assert(loccount == symtabshdr.get_sh_info());
6387 off_t locsize = loccount * sym_size;
6388 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6389 locsize, true, true);
6391 // For mapping symbol processing, we need to read the symbol names.
6392 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6393 if (strtab_shndx >= this->shnum())
6395 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6399 elfcpp::Shdr<32, big_endian>
6400 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6401 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6403 this->error(_("symbol table name section has wrong type: %u"),
6404 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6407 const char* pnames =
6408 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6409 strtabshdr.get_sh_size(),
6412 // Loop over the local symbols and mark any local symbols pointing
6413 // to THUMB functions.
6415 // Skip the first dummy symbol.
6417 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6418 this->local_values();
6419 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6421 elfcpp::Sym<32, big_endian> sym(psyms);
6422 elfcpp::STT st_type = sym.get_st_type();
6423 Symbol_value<32>& lv((*plocal_values)[i]);
6424 Arm_address input_value = lv.input_value();
6426 // Check to see if this is a mapping symbol.
6427 const char* sym_name = pnames + sym.get_st_name();
6428 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6431 unsigned int input_shndx =
6432 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6433 gold_assert(is_ordinary);
6435 // Strip of LSB in case this is a THUMB symbol.
6436 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6437 this->mapping_symbols_info_[msp] = sym_name[1];
6440 if (st_type == elfcpp::STT_ARM_TFUNC
6441 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6443 // This is a THUMB function. Mark this and canonicalize the
6444 // symbol value by setting LSB.
6445 this->local_symbol_is_thumb_function_[i] = true;
6446 if ((input_value & 1) == 0)
6447 lv.set_input_value(input_value | 1);
6452 // Relocate sections.
6453 template<bool big_endian>
6455 Arm_relobj<big_endian>::do_relocate_sections(
6456 const Symbol_table* symtab,
6457 const Layout* layout,
6458 const unsigned char* pshdrs,
6460 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6462 // Call parent to relocate sections.
6463 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6464 pshdrs, of, pviews);
6466 // We do not generate stubs if doing a relocatable link.
6467 if (parameters->options().relocatable())
6470 // Relocate stub tables.
6471 unsigned int shnum = this->shnum();
6473 Target_arm<big_endian>* arm_target =
6474 Target_arm<big_endian>::default_target();
6476 Relocate_info<32, big_endian> relinfo;
6477 relinfo.symtab = symtab;
6478 relinfo.layout = layout;
6479 relinfo.object = this;
6481 for (unsigned int i = 1; i < shnum; ++i)
6483 Arm_input_section<big_endian>* arm_input_section =
6484 arm_target->find_arm_input_section(this, i);
6486 if (arm_input_section != NULL
6487 && arm_input_section->is_stub_table_owner()
6488 && !arm_input_section->stub_table()->empty())
6490 // We cannot discard a section if it owns a stub table.
6491 Output_section* os = this->output_section(i);
6492 gold_assert(os != NULL);
6494 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6495 relinfo.reloc_shdr = NULL;
6496 relinfo.data_shndx = i;
6497 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6499 gold_assert((*pviews)[i].view != NULL);
6501 // We are passed the output section view. Adjust it to cover the
6503 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6504 gold_assert((stub_table->address() >= (*pviews)[i].address)
6505 && ((stub_table->address() + stub_table->data_size())
6506 <= (*pviews)[i].address + (*pviews)[i].view_size));
6508 off_t offset = stub_table->address() - (*pviews)[i].address;
6509 unsigned char* view = (*pviews)[i].view + offset;
6510 Arm_address address = stub_table->address();
6511 section_size_type view_size = stub_table->data_size();
6513 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6517 // Apply Cortex A8 workaround if applicable.
6518 if (this->section_has_cortex_a8_workaround(i))
6520 unsigned char* view = (*pviews)[i].view;
6521 Arm_address view_address = (*pviews)[i].address;
6522 section_size_type view_size = (*pviews)[i].view_size;
6523 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6525 // Adjust view to cover section.
6526 Output_section* os = this->output_section(i);
6527 gold_assert(os != NULL);
6528 Arm_address section_address =
6529 this->simple_input_section_output_address(i, os);
6530 uint64_t section_size = this->section_size(i);
6532 gold_assert(section_address >= view_address
6533 && ((section_address + section_size)
6534 <= (view_address + view_size)));
6536 unsigned char* section_view = view + (section_address - view_address);
6538 // Apply the Cortex-A8 workaround to the output address range
6539 // corresponding to this input section.
6540 stub_table->apply_cortex_a8_workaround_to_address_range(
6549 // Find the linked text section of an EXIDX section by looking at the first
6550 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6551 // must be linked to its associated code section via the sh_link field of
6552 // its section header. However, some tools are broken and the link is not
6553 // always set. LD just drops such an EXIDX section silently, causing the
6554 // associated code not unwindabled. Here we try a little bit harder to
6555 // discover the linked code section.
6557 // PSHDR points to the section header of a relocation section of an EXIDX
6558 // section. If we can find a linked text section, return true and
6559 // store the text section index in the location PSHNDX. Otherwise
6562 template<bool big_endian>
6564 Arm_relobj<big_endian>::find_linked_text_section(
6565 const unsigned char* pshdr,
6566 const unsigned char* psyms,
6567 unsigned int* pshndx)
6569 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6571 // If there is no relocation, we cannot find the linked text section.
6573 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6574 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6576 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6577 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6579 // Get the relocations.
6580 const unsigned char* prelocs =
6581 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6583 // Find the REL31 relocation for the first word of the first EXIDX entry.
6584 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6586 Arm_address r_offset;
6587 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6588 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6590 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6591 r_info = reloc.get_r_info();
6592 r_offset = reloc.get_r_offset();
6596 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6597 r_info = reloc.get_r_info();
6598 r_offset = reloc.get_r_offset();
6601 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6602 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6605 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6607 || r_sym >= this->local_symbol_count()
6611 // This is the relocation for the first word of the first EXIDX entry.
6612 // We expect to see a local section symbol.
6613 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6614 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6615 if (sym.get_st_type() == elfcpp::STT_SECTION)
6619 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6620 gold_assert(is_ordinary);
6630 // Make an EXIDX input section object for an EXIDX section whose index is
6631 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6632 // is the section index of the linked text section.
6634 template<bool big_endian>
6636 Arm_relobj<big_endian>::make_exidx_input_section(
6638 const elfcpp::Shdr<32, big_endian>& shdr,
6639 unsigned int text_shndx,
6640 const elfcpp::Shdr<32, big_endian>& text_shdr)
6642 // Create an Arm_exidx_input_section object for this EXIDX section.
6643 Arm_exidx_input_section* exidx_input_section =
6644 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6645 shdr.get_sh_addralign(),
6646 text_shdr.get_sh_size());
6648 gold_assert(this->exidx_section_map_[shndx] == NULL);
6649 this->exidx_section_map_[shndx] = exidx_input_section;
6651 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6653 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6654 this->section_name(shndx).c_str(), shndx, text_shndx,
6655 this->name().c_str());
6656 exidx_input_section->set_has_errors();
6658 else if (this->exidx_section_map_[text_shndx] != NULL)
6660 unsigned other_exidx_shndx =
6661 this->exidx_section_map_[text_shndx]->shndx();
6662 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6664 this->section_name(shndx).c_str(), shndx,
6665 this->section_name(other_exidx_shndx).c_str(),
6666 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6667 text_shndx, this->name().c_str());
6668 exidx_input_section->set_has_errors();
6671 this->exidx_section_map_[text_shndx] = exidx_input_section;
6673 // Check section flags of text section.
6674 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6676 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6678 this->section_name(shndx).c_str(), shndx,
6679 this->section_name(text_shndx).c_str(), text_shndx,
6680 this->name().c_str());
6681 exidx_input_section->set_has_errors();
6683 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6684 // I would like to make this an error but currently ld just ignores
6686 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6688 this->section_name(shndx).c_str(), shndx,
6689 this->section_name(text_shndx).c_str(), text_shndx,
6690 this->name().c_str());
6693 // Read the symbol information.
6695 template<bool big_endian>
6697 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6699 // Call parent class to read symbol information.
6700 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6702 // If this input file is a binary file, it has no processor
6703 // specific flags and attributes section.
6704 Input_file::Format format = this->input_file()->format();
6705 if (format != Input_file::FORMAT_ELF)
6707 gold_assert(format == Input_file::FORMAT_BINARY);
6708 this->merge_flags_and_attributes_ = false;
6712 // Read processor-specific flags in ELF file header.
6713 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6714 elfcpp::Elf_sizes<32>::ehdr_size,
6716 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6717 this->processor_specific_flags_ = ehdr.get_e_flags();
6719 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6721 std::vector<unsigned int> deferred_exidx_sections;
6722 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6723 const unsigned char* pshdrs = sd->section_headers->data();
6724 const unsigned char* ps = pshdrs + shdr_size;
6725 bool must_merge_flags_and_attributes = false;
6726 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6728 elfcpp::Shdr<32, big_endian> shdr(ps);
6730 // Sometimes an object has no contents except the section name string
6731 // table and an empty symbol table with the undefined symbol. We
6732 // don't want to merge processor-specific flags from such an object.
6733 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6735 // Symbol table is not empty.
6736 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6737 elfcpp::Elf_sizes<32>::sym_size;
6738 if (shdr.get_sh_size() > sym_size)
6739 must_merge_flags_and_attributes = true;
6741 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6742 // If this is neither an empty symbol table nor a string table,
6744 must_merge_flags_and_attributes = true;
6746 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6748 gold_assert(this->attributes_section_data_ == NULL);
6749 section_offset_type section_offset = shdr.get_sh_offset();
6750 section_size_type section_size =
6751 convert_to_section_size_type(shdr.get_sh_size());
6752 const unsigned char* view =
6753 this->get_view(section_offset, section_size, true, false);
6754 this->attributes_section_data_ =
6755 new Attributes_section_data(view, section_size);
6757 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6759 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6760 if (text_shndx == elfcpp::SHN_UNDEF)
6761 deferred_exidx_sections.push_back(i);
6764 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6765 + text_shndx * shdr_size);
6766 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6768 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6769 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6770 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6771 this->section_name(i).c_str(), this->name().c_str());
6776 if (!must_merge_flags_and_attributes)
6778 gold_assert(deferred_exidx_sections.empty());
6779 this->merge_flags_and_attributes_ = false;
6783 // Some tools are broken and they do not set the link of EXIDX sections.
6784 // We look at the first relocation to figure out the linked sections.
6785 if (!deferred_exidx_sections.empty())
6787 // We need to go over the section headers again to find the mapping
6788 // from sections being relocated to their relocation sections. This is
6789 // a bit inefficient as we could do that in the loop above. However,
6790 // we do not expect any deferred EXIDX sections normally. So we do not
6791 // want to slow down the most common path.
6792 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6793 Reloc_map reloc_map;
6794 ps = pshdrs + shdr_size;
6795 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6797 elfcpp::Shdr<32, big_endian> shdr(ps);
6798 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6799 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6801 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6802 if (info_shndx >= this->shnum())
6803 gold_error(_("relocation section %u has invalid info %u"),
6805 Reloc_map::value_type value(info_shndx, i);
6806 std::pair<Reloc_map::iterator, bool> result =
6807 reloc_map.insert(value);
6809 gold_error(_("section %u has multiple relocation sections "
6811 info_shndx, i, reloc_map[info_shndx]);
6815 // Read the symbol table section header.
6816 const unsigned int symtab_shndx = this->symtab_shndx();
6817 elfcpp::Shdr<32, big_endian>
6818 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6819 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6821 // Read the local symbols.
6822 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6823 const unsigned int loccount = this->local_symbol_count();
6824 gold_assert(loccount == symtabshdr.get_sh_info());
6825 off_t locsize = loccount * sym_size;
6826 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6827 locsize, true, true);
6829 // Process the deferred EXIDX sections.
6830 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6832 unsigned int shndx = deferred_exidx_sections[i];
6833 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6834 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6835 Reloc_map::const_iterator it = reloc_map.find(shndx);
6836 if (it != reloc_map.end())
6837 find_linked_text_section(pshdrs + it->second * shdr_size,
6838 psyms, &text_shndx);
6839 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6840 + text_shndx * shdr_size);
6841 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6846 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6847 // sections for unwinding. These sections are referenced implicitly by
6848 // text sections linked in the section headers. If we ignore these implicit
6849 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6850 // will be garbage-collected incorrectly. Hence we override the same function
6851 // in the base class to handle these implicit references.
6853 template<bool big_endian>
6855 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6857 Read_relocs_data* rd)
6859 // First, call base class method to process relocations in this object.
6860 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6862 // If --gc-sections is not specified, there is nothing more to do.
6863 // This happens when --icf is used but --gc-sections is not.
6864 if (!parameters->options().gc_sections())
6867 unsigned int shnum = this->shnum();
6868 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6869 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6873 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6874 // to these from the linked text sections.
6875 const unsigned char* ps = pshdrs + shdr_size;
6876 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6878 elfcpp::Shdr<32, big_endian> shdr(ps);
6879 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6881 // Found an .ARM.exidx section, add it to the set of reachable
6882 // sections from its linked text section.
6883 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6884 symtab->gc()->add_reference(this, text_shndx, this, i);
6889 // Update output local symbol count. Owing to EXIDX entry merging, some local
6890 // symbols will be removed in output. Adjust output local symbol count
6891 // accordingly. We can only changed the static output local symbol count. It
6892 // is too late to change the dynamic symbols.
6894 template<bool big_endian>
6896 Arm_relobj<big_endian>::update_output_local_symbol_count()
6898 // Caller should check that this needs updating. We want caller checking
6899 // because output_local_symbol_count_needs_update() is most likely inlined.
6900 gold_assert(this->output_local_symbol_count_needs_update_);
6902 gold_assert(this->symtab_shndx() != -1U);
6903 if (this->symtab_shndx() == 0)
6905 // This object has no symbols. Weird but legal.
6909 // Read the symbol table section header.
6910 const unsigned int symtab_shndx = this->symtab_shndx();
6911 elfcpp::Shdr<32, big_endian>
6912 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6913 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6915 // Read the local symbols.
6916 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6917 const unsigned int loccount = this->local_symbol_count();
6918 gold_assert(loccount == symtabshdr.get_sh_info());
6919 off_t locsize = loccount * sym_size;
6920 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6921 locsize, true, true);
6923 // Loop over the local symbols.
6925 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6927 const Output_sections& out_sections(this->output_sections());
6928 unsigned int shnum = this->shnum();
6929 unsigned int count = 0;
6930 // Skip the first, dummy, symbol.
6932 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6934 elfcpp::Sym<32, big_endian> sym(psyms);
6936 Symbol_value<32>& lv((*this->local_values())[i]);
6938 // This local symbol was already discarded by do_count_local_symbols.
6939 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6943 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6948 Output_section* os = out_sections[shndx];
6950 // This local symbol no longer has an output section. Discard it.
6953 lv.set_no_output_symtab_entry();
6957 // Currently we only discard parts of EXIDX input sections.
6958 // We explicitly check for a merged EXIDX input section to avoid
6959 // calling Output_section_data::output_offset unless necessary.
6960 if ((this->get_output_section_offset(shndx) == invalid_address)
6961 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6963 section_offset_type output_offset =
6964 os->output_offset(this, shndx, lv.input_value());
6965 if (output_offset == -1)
6967 // This symbol is defined in a part of an EXIDX input section
6968 // that is discarded due to entry merging.
6969 lv.set_no_output_symtab_entry();
6978 this->set_output_local_symbol_count(count);
6979 this->output_local_symbol_count_needs_update_ = false;
6982 // Arm_dynobj methods.
6984 // Read the symbol information.
6986 template<bool big_endian>
6988 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6990 // Call parent class to read symbol information.
6991 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6993 // Read processor-specific flags in ELF file header.
6994 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6995 elfcpp::Elf_sizes<32>::ehdr_size,
6997 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6998 this->processor_specific_flags_ = ehdr.get_e_flags();
7000 // Read the attributes section if there is one.
7001 // We read from the end because gas seems to put it near the end of
7002 // the section headers.
7003 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7004 const unsigned char* ps =
7005 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7006 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7008 elfcpp::Shdr<32, big_endian> shdr(ps);
7009 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7011 section_offset_type section_offset = shdr.get_sh_offset();
7012 section_size_type section_size =
7013 convert_to_section_size_type(shdr.get_sh_size());
7014 const unsigned char* view =
7015 this->get_view(section_offset, section_size, true, false);
7016 this->attributes_section_data_ =
7017 new Attributes_section_data(view, section_size);
7023 // Stub_addend_reader methods.
7025 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7027 template<bool big_endian>
7028 elfcpp::Elf_types<32>::Elf_Swxword
7029 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7030 unsigned int r_type,
7031 const unsigned char* view,
7032 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7034 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7038 case elfcpp::R_ARM_CALL:
7039 case elfcpp::R_ARM_JUMP24:
7040 case elfcpp::R_ARM_PLT32:
7042 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7043 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7044 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7045 return utils::sign_extend<26>(val << 2);
7048 case elfcpp::R_ARM_THM_CALL:
7049 case elfcpp::R_ARM_THM_JUMP24:
7050 case elfcpp::R_ARM_THM_XPC22:
7052 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7053 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7054 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7055 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7056 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7059 case elfcpp::R_ARM_THM_JUMP19:
7061 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7062 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7063 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7064 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7065 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7073 // Arm_output_data_got methods.
7075 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7076 // The first one is initialized to be 1, which is the module index for
7077 // the main executable and the second one 0. A reloc of the type
7078 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7079 // be applied by gold. GSYM is a global symbol.
7081 template<bool big_endian>
7083 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7084 unsigned int got_type,
7087 if (gsym->has_got_offset(got_type))
7090 // We are doing a static link. Just mark it as belong to module 1,
7092 unsigned int got_offset = this->add_constant(1);
7093 gsym->set_got_offset(got_type, got_offset);
7094 got_offset = this->add_constant(0);
7095 this->static_relocs_.push_back(Static_reloc(got_offset,
7096 elfcpp::R_ARM_TLS_DTPOFF32,
7100 // Same as the above but for a local symbol.
7102 template<bool big_endian>
7104 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7105 unsigned int got_type,
7106 Sized_relobj_file<32, big_endian>* object,
7109 if (object->local_has_got_offset(index, got_type))
7112 // We are doing a static link. Just mark it as belong to module 1,
7114 unsigned int got_offset = this->add_constant(1);
7115 object->set_local_got_offset(index, got_type, got_offset);
7116 got_offset = this->add_constant(0);
7117 this->static_relocs_.push_back(Static_reloc(got_offset,
7118 elfcpp::R_ARM_TLS_DTPOFF32,
7122 template<bool big_endian>
7124 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7126 // Call parent to write out GOT.
7127 Output_data_got<32, big_endian>::do_write(of);
7129 // We are done if there is no fix up.
7130 if (this->static_relocs_.empty())
7133 gold_assert(parameters->doing_static_link());
7135 const off_t offset = this->offset();
7136 const section_size_type oview_size =
7137 convert_to_section_size_type(this->data_size());
7138 unsigned char* const oview = of->get_output_view(offset, oview_size);
7140 Output_segment* tls_segment = this->layout_->tls_segment();
7141 gold_assert(tls_segment != NULL);
7143 // The thread pointer $tp points to the TCB, which is followed by the
7144 // TLS. So we need to adjust $tp relative addressing by this amount.
7145 Arm_address aligned_tcb_size =
7146 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7148 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7150 Static_reloc& reloc(this->static_relocs_[i]);
7153 if (!reloc.symbol_is_global())
7155 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7156 const Symbol_value<32>* psymval =
7157 reloc.relobj()->local_symbol(reloc.index());
7159 // We are doing static linking. Issue an error and skip this
7160 // relocation if the symbol is undefined or in a discarded_section.
7162 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7163 if ((shndx == elfcpp::SHN_UNDEF)
7165 && shndx != elfcpp::SHN_UNDEF
7166 && !object->is_section_included(shndx)
7167 && !this->symbol_table_->is_section_folded(object, shndx)))
7169 gold_error(_("undefined or discarded local symbol %u from "
7170 " object %s in GOT"),
7171 reloc.index(), reloc.relobj()->name().c_str());
7175 value = psymval->value(object, 0);
7179 const Symbol* gsym = reloc.symbol();
7180 gold_assert(gsym != NULL);
7181 if (gsym->is_forwarder())
7182 gsym = this->symbol_table_->resolve_forwards(gsym);
7184 // We are doing static linking. Issue an error and skip this
7185 // relocation if the symbol is undefined or in a discarded_section
7186 // unless it is a weakly_undefined symbol.
7187 if ((gsym->is_defined_in_discarded_section()
7188 || gsym->is_undefined())
7189 && !gsym->is_weak_undefined())
7191 gold_error(_("undefined or discarded symbol %s in GOT"),
7196 if (!gsym->is_weak_undefined())
7198 const Sized_symbol<32>* sym =
7199 static_cast<const Sized_symbol<32>*>(gsym);
7200 value = sym->value();
7206 unsigned got_offset = reloc.got_offset();
7207 gold_assert(got_offset < oview_size);
7209 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7210 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7212 switch (reloc.r_type())
7214 case elfcpp::R_ARM_TLS_DTPOFF32:
7217 case elfcpp::R_ARM_TLS_TPOFF32:
7218 x = value + aligned_tcb_size;
7223 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7226 of->write_output_view(offset, oview_size, oview);
7229 // A class to handle the PLT data.
7231 template<bool big_endian>
7232 class Output_data_plt_arm : public Output_section_data
7235 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7238 Output_data_plt_arm(Layout*, Output_data_space*);
7240 // Add an entry to the PLT.
7242 add_entry(Symbol* gsym);
7244 // Return the .rel.plt section data.
7245 const Reloc_section*
7247 { return this->rel_; }
7249 // Return the number of PLT entries.
7252 { return this->count_; }
7254 // Return the offset of the first non-reserved PLT entry.
7256 first_plt_entry_offset()
7257 { return sizeof(first_plt_entry); }
7259 // Return the size of a PLT entry.
7261 get_plt_entry_size()
7262 { return sizeof(plt_entry); }
7266 do_adjust_output_section(Output_section* os);
7268 // Write to a map file.
7270 do_print_to_mapfile(Mapfile* mapfile) const
7271 { mapfile->print_output_data(this, _("** PLT")); }
7274 // Template for the first PLT entry.
7275 static const uint32_t first_plt_entry[5];
7277 // Template for subsequent PLT entries.
7278 static const uint32_t plt_entry[3];
7280 // Set the final size.
7282 set_final_data_size()
7284 this->set_data_size(sizeof(first_plt_entry)
7285 + this->count_ * sizeof(plt_entry));
7288 // Write out the PLT data.
7290 do_write(Output_file*);
7292 // The reloc section.
7293 Reloc_section* rel_;
7294 // The .got.plt section.
7295 Output_data_space* got_plt_;
7296 // The number of PLT entries.
7297 unsigned int count_;
7300 // Create the PLT section. The ordinary .got section is an argument,
7301 // since we need to refer to the start. We also create our own .got
7302 // section just for PLT entries.
7304 template<bool big_endian>
7305 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7306 Output_data_space* got_plt)
7307 : Output_section_data(4), got_plt_(got_plt), count_(0)
7309 this->rel_ = new Reloc_section(false);
7310 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7311 elfcpp::SHF_ALLOC, this->rel_,
7312 ORDER_DYNAMIC_PLT_RELOCS, false);
7315 template<bool big_endian>
7317 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7322 // Add an entry to the PLT.
7324 template<bool big_endian>
7326 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7328 gold_assert(!gsym->has_plt_offset());
7330 // Note that when setting the PLT offset we skip the initial
7331 // reserved PLT entry.
7332 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7333 + sizeof(first_plt_entry));
7337 section_offset_type got_offset = this->got_plt_->current_data_size();
7339 // Every PLT entry needs a GOT entry which points back to the PLT
7340 // entry (this will be changed by the dynamic linker, normally
7341 // lazily when the function is called).
7342 this->got_plt_->set_current_data_size(got_offset + 4);
7344 // Every PLT entry needs a reloc.
7345 gsym->set_needs_dynsym_entry();
7346 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7349 // Note that we don't need to save the symbol. The contents of the
7350 // PLT are independent of which symbols are used. The symbols only
7351 // appear in the relocations.
7355 // FIXME: This is not very flexible. Right now this has only been tested
7356 // on armv5te. If we are to support additional architecture features like
7357 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7359 // The first entry in the PLT.
7360 template<bool big_endian>
7361 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7363 0xe52de004, // str lr, [sp, #-4]!
7364 0xe59fe004, // ldr lr, [pc, #4]
7365 0xe08fe00e, // add lr, pc, lr
7366 0xe5bef008, // ldr pc, [lr, #8]!
7367 0x00000000, // &GOT[0] - .
7370 // Subsequent entries in the PLT.
7372 template<bool big_endian>
7373 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7375 0xe28fc600, // add ip, pc, #0xNN00000
7376 0xe28cca00, // add ip, ip, #0xNN000
7377 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7380 // Write out the PLT. This uses the hand-coded instructions above,
7381 // and adjusts them as needed. This is all specified by the arm ELF
7382 // Processor Supplement.
7384 template<bool big_endian>
7386 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7388 const off_t offset = this->offset();
7389 const section_size_type oview_size =
7390 convert_to_section_size_type(this->data_size());
7391 unsigned char* const oview = of->get_output_view(offset, oview_size);
7393 const off_t got_file_offset = this->got_plt_->offset();
7394 const section_size_type got_size =
7395 convert_to_section_size_type(this->got_plt_->data_size());
7396 unsigned char* const got_view = of->get_output_view(got_file_offset,
7398 unsigned char* pov = oview;
7400 Arm_address plt_address = this->address();
7401 Arm_address got_address = this->got_plt_->address();
7403 // Write first PLT entry. All but the last word are constants.
7404 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7405 / sizeof(plt_entry[0]));
7406 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7407 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7408 // Last word in first PLT entry is &GOT[0] - .
7409 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7410 got_address - (plt_address + 16));
7411 pov += sizeof(first_plt_entry);
7413 unsigned char* got_pov = got_view;
7415 memset(got_pov, 0, 12);
7418 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7419 unsigned int plt_offset = sizeof(first_plt_entry);
7420 unsigned int plt_rel_offset = 0;
7421 unsigned int got_offset = 12;
7422 const unsigned int count = this->count_;
7423 for (unsigned int i = 0;
7426 pov += sizeof(plt_entry),
7428 plt_offset += sizeof(plt_entry),
7429 plt_rel_offset += rel_size,
7432 // Set and adjust the PLT entry itself.
7433 int32_t offset = ((got_address + got_offset)
7434 - (plt_address + plt_offset + 8));
7436 gold_assert(offset >= 0 && offset < 0x0fffffff);
7437 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7438 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7439 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7440 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7441 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7442 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7444 // Set the entry in the GOT.
7445 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7448 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7449 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7451 of->write_output_view(offset, oview_size, oview);
7452 of->write_output_view(got_file_offset, got_size, got_view);
7455 // Create a PLT entry for a global symbol.
7457 template<bool big_endian>
7459 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7462 if (gsym->has_plt_offset())
7465 if (this->plt_ == NULL)
7467 // Create the GOT sections first.
7468 this->got_section(symtab, layout);
7470 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7471 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7473 | elfcpp::SHF_EXECINSTR),
7474 this->plt_, ORDER_PLT, false);
7476 this->plt_->add_entry(gsym);
7479 // Return the number of entries in the PLT.
7481 template<bool big_endian>
7483 Target_arm<big_endian>::plt_entry_count() const
7485 if (this->plt_ == NULL)
7487 return this->plt_->entry_count();
7490 // Return the offset of the first non-reserved PLT entry.
7492 template<bool big_endian>
7494 Target_arm<big_endian>::first_plt_entry_offset() const
7496 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7499 // Return the size of each PLT entry.
7501 template<bool big_endian>
7503 Target_arm<big_endian>::plt_entry_size() const
7505 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7508 // Get the section to use for TLS_DESC relocations.
7510 template<bool big_endian>
7511 typename Target_arm<big_endian>::Reloc_section*
7512 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7514 return this->plt_section()->rel_tls_desc(layout);
7517 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7519 template<bool big_endian>
7521 Target_arm<big_endian>::define_tls_base_symbol(
7522 Symbol_table* symtab,
7525 if (this->tls_base_symbol_defined_)
7528 Output_segment* tls_segment = layout->tls_segment();
7529 if (tls_segment != NULL)
7531 bool is_exec = parameters->options().output_is_executable();
7532 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7533 Symbol_table::PREDEFINED,
7537 elfcpp::STV_HIDDEN, 0,
7539 ? Symbol::SEGMENT_END
7540 : Symbol::SEGMENT_START),
7543 this->tls_base_symbol_defined_ = true;
7546 // Create a GOT entry for the TLS module index.
7548 template<bool big_endian>
7550 Target_arm<big_endian>::got_mod_index_entry(
7551 Symbol_table* symtab,
7553 Sized_relobj_file<32, big_endian>* object)
7555 if (this->got_mod_index_offset_ == -1U)
7557 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7558 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7559 unsigned int got_offset;
7560 if (!parameters->doing_static_link())
7562 got_offset = got->add_constant(0);
7563 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7564 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7569 // We are doing a static link. Just mark it as belong to module 1,
7571 got_offset = got->add_constant(1);
7574 got->add_constant(0);
7575 this->got_mod_index_offset_ = got_offset;
7577 return this->got_mod_index_offset_;
7580 // Optimize the TLS relocation type based on what we know about the
7581 // symbol. IS_FINAL is true if the final address of this symbol is
7582 // known at link time.
7584 template<bool big_endian>
7585 tls::Tls_optimization
7586 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7588 // FIXME: Currently we do not do any TLS optimization.
7589 return tls::TLSOPT_NONE;
7592 // Get the Reference_flags for a particular relocation.
7594 template<bool big_endian>
7596 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7600 case elfcpp::R_ARM_NONE:
7601 case elfcpp::R_ARM_V4BX:
7602 case elfcpp::R_ARM_GNU_VTENTRY:
7603 case elfcpp::R_ARM_GNU_VTINHERIT:
7604 // No symbol reference.
7607 case elfcpp::R_ARM_ABS32:
7608 case elfcpp::R_ARM_ABS16:
7609 case elfcpp::R_ARM_ABS12:
7610 case elfcpp::R_ARM_THM_ABS5:
7611 case elfcpp::R_ARM_ABS8:
7612 case elfcpp::R_ARM_BASE_ABS:
7613 case elfcpp::R_ARM_MOVW_ABS_NC:
7614 case elfcpp::R_ARM_MOVT_ABS:
7615 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7616 case elfcpp::R_ARM_THM_MOVT_ABS:
7617 case elfcpp::R_ARM_ABS32_NOI:
7618 return Symbol::ABSOLUTE_REF;
7620 case elfcpp::R_ARM_REL32:
7621 case elfcpp::R_ARM_LDR_PC_G0:
7622 case elfcpp::R_ARM_SBREL32:
7623 case elfcpp::R_ARM_THM_PC8:
7624 case elfcpp::R_ARM_BASE_PREL:
7625 case elfcpp::R_ARM_MOVW_PREL_NC:
7626 case elfcpp::R_ARM_MOVT_PREL:
7627 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7628 case elfcpp::R_ARM_THM_MOVT_PREL:
7629 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7630 case elfcpp::R_ARM_THM_PC12:
7631 case elfcpp::R_ARM_REL32_NOI:
7632 case elfcpp::R_ARM_ALU_PC_G0_NC:
7633 case elfcpp::R_ARM_ALU_PC_G0:
7634 case elfcpp::R_ARM_ALU_PC_G1_NC:
7635 case elfcpp::R_ARM_ALU_PC_G1:
7636 case elfcpp::R_ARM_ALU_PC_G2:
7637 case elfcpp::R_ARM_LDR_PC_G1:
7638 case elfcpp::R_ARM_LDR_PC_G2:
7639 case elfcpp::R_ARM_LDRS_PC_G0:
7640 case elfcpp::R_ARM_LDRS_PC_G1:
7641 case elfcpp::R_ARM_LDRS_PC_G2:
7642 case elfcpp::R_ARM_LDC_PC_G0:
7643 case elfcpp::R_ARM_LDC_PC_G1:
7644 case elfcpp::R_ARM_LDC_PC_G2:
7645 case elfcpp::R_ARM_ALU_SB_G0_NC:
7646 case elfcpp::R_ARM_ALU_SB_G0:
7647 case elfcpp::R_ARM_ALU_SB_G1_NC:
7648 case elfcpp::R_ARM_ALU_SB_G1:
7649 case elfcpp::R_ARM_ALU_SB_G2:
7650 case elfcpp::R_ARM_LDR_SB_G0:
7651 case elfcpp::R_ARM_LDR_SB_G1:
7652 case elfcpp::R_ARM_LDR_SB_G2:
7653 case elfcpp::R_ARM_LDRS_SB_G0:
7654 case elfcpp::R_ARM_LDRS_SB_G1:
7655 case elfcpp::R_ARM_LDRS_SB_G2:
7656 case elfcpp::R_ARM_LDC_SB_G0:
7657 case elfcpp::R_ARM_LDC_SB_G1:
7658 case elfcpp::R_ARM_LDC_SB_G2:
7659 case elfcpp::R_ARM_MOVW_BREL_NC:
7660 case elfcpp::R_ARM_MOVT_BREL:
7661 case elfcpp::R_ARM_MOVW_BREL:
7662 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7663 case elfcpp::R_ARM_THM_MOVT_BREL:
7664 case elfcpp::R_ARM_THM_MOVW_BREL:
7665 case elfcpp::R_ARM_GOTOFF32:
7666 case elfcpp::R_ARM_GOTOFF12:
7667 case elfcpp::R_ARM_SBREL31:
7668 return Symbol::RELATIVE_REF;
7670 case elfcpp::R_ARM_PLT32:
7671 case elfcpp::R_ARM_CALL:
7672 case elfcpp::R_ARM_JUMP24:
7673 case elfcpp::R_ARM_THM_CALL:
7674 case elfcpp::R_ARM_THM_JUMP24:
7675 case elfcpp::R_ARM_THM_JUMP19:
7676 case elfcpp::R_ARM_THM_JUMP6:
7677 case elfcpp::R_ARM_THM_JUMP11:
7678 case elfcpp::R_ARM_THM_JUMP8:
7679 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7680 // in unwind tables. It may point to functions via PLTs.
7681 // So we treat it like call/jump relocations above.
7682 case elfcpp::R_ARM_PREL31:
7683 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7685 case elfcpp::R_ARM_GOT_BREL:
7686 case elfcpp::R_ARM_GOT_ABS:
7687 case elfcpp::R_ARM_GOT_PREL:
7689 return Symbol::ABSOLUTE_REF;
7691 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7692 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7693 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7694 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7695 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7696 return Symbol::TLS_REF;
7698 case elfcpp::R_ARM_TARGET1:
7699 case elfcpp::R_ARM_TARGET2:
7700 case elfcpp::R_ARM_COPY:
7701 case elfcpp::R_ARM_GLOB_DAT:
7702 case elfcpp::R_ARM_JUMP_SLOT:
7703 case elfcpp::R_ARM_RELATIVE:
7704 case elfcpp::R_ARM_PC24:
7705 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7706 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7707 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7709 // Not expected. We will give an error later.
7714 // Report an unsupported relocation against a local symbol.
7716 template<bool big_endian>
7718 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7719 Sized_relobj_file<32, big_endian>* object,
7720 unsigned int r_type)
7722 gold_error(_("%s: unsupported reloc %u against local symbol"),
7723 object->name().c_str(), r_type);
7726 // We are about to emit a dynamic relocation of type R_TYPE. If the
7727 // dynamic linker does not support it, issue an error. The GNU linker
7728 // only issues a non-PIC error for an allocated read-only section.
7729 // Here we know the section is allocated, but we don't know that it is
7730 // read-only. But we check for all the relocation types which the
7731 // glibc dynamic linker supports, so it seems appropriate to issue an
7732 // error even if the section is not read-only.
7734 template<bool big_endian>
7736 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7737 unsigned int r_type)
7741 // These are the relocation types supported by glibc for ARM.
7742 case elfcpp::R_ARM_RELATIVE:
7743 case elfcpp::R_ARM_COPY:
7744 case elfcpp::R_ARM_GLOB_DAT:
7745 case elfcpp::R_ARM_JUMP_SLOT:
7746 case elfcpp::R_ARM_ABS32:
7747 case elfcpp::R_ARM_ABS32_NOI:
7748 case elfcpp::R_ARM_PC24:
7749 // FIXME: The following 3 types are not supported by Android's dynamic
7751 case elfcpp::R_ARM_TLS_DTPMOD32:
7752 case elfcpp::R_ARM_TLS_DTPOFF32:
7753 case elfcpp::R_ARM_TLS_TPOFF32:
7758 // This prevents us from issuing more than one error per reloc
7759 // section. But we can still wind up issuing more than one
7760 // error per object file.
7761 if (this->issued_non_pic_error_)
7763 const Arm_reloc_property* reloc_property =
7764 arm_reloc_property_table->get_reloc_property(r_type);
7765 gold_assert(reloc_property != NULL);
7766 object->error(_("requires unsupported dynamic reloc %s; "
7767 "recompile with -fPIC"),
7768 reloc_property->name().c_str());
7769 this->issued_non_pic_error_ = true;
7773 case elfcpp::R_ARM_NONE:
7778 // Scan a relocation for a local symbol.
7779 // FIXME: This only handles a subset of relocation types used by Android
7780 // on ARM v5te devices.
7782 template<bool big_endian>
7784 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7787 Sized_relobj_file<32, big_endian>* object,
7788 unsigned int data_shndx,
7789 Output_section* output_section,
7790 const elfcpp::Rel<32, big_endian>& reloc,
7791 unsigned int r_type,
7792 const elfcpp::Sym<32, big_endian>& lsym)
7794 r_type = get_real_reloc_type(r_type);
7797 case elfcpp::R_ARM_NONE:
7798 case elfcpp::R_ARM_V4BX:
7799 case elfcpp::R_ARM_GNU_VTENTRY:
7800 case elfcpp::R_ARM_GNU_VTINHERIT:
7803 case elfcpp::R_ARM_ABS32:
7804 case elfcpp::R_ARM_ABS32_NOI:
7805 // If building a shared library (or a position-independent
7806 // executable), we need to create a dynamic relocation for
7807 // this location. The relocation applied at link time will
7808 // apply the link-time value, so we flag the location with
7809 // an R_ARM_RELATIVE relocation so the dynamic loader can
7810 // relocate it easily.
7811 if (parameters->options().output_is_position_independent())
7813 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7814 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7815 // If we are to add more other reloc types than R_ARM_ABS32,
7816 // we need to add check_non_pic(object, r_type) here.
7817 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7818 output_section, data_shndx,
7819 reloc.get_r_offset());
7823 case elfcpp::R_ARM_ABS16:
7824 case elfcpp::R_ARM_ABS12:
7825 case elfcpp::R_ARM_THM_ABS5:
7826 case elfcpp::R_ARM_ABS8:
7827 case elfcpp::R_ARM_BASE_ABS:
7828 case elfcpp::R_ARM_MOVW_ABS_NC:
7829 case elfcpp::R_ARM_MOVT_ABS:
7830 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7831 case elfcpp::R_ARM_THM_MOVT_ABS:
7832 // If building a shared library (or a position-independent
7833 // executable), we need to create a dynamic relocation for
7834 // this location. Because the addend needs to remain in the
7835 // data section, we need to be careful not to apply this
7836 // relocation statically.
7837 if (parameters->options().output_is_position_independent())
7839 check_non_pic(object, r_type);
7840 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7841 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7842 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7843 rel_dyn->add_local(object, r_sym, r_type, output_section,
7844 data_shndx, reloc.get_r_offset());
7847 gold_assert(lsym.get_st_value() == 0);
7848 unsigned int shndx = lsym.get_st_shndx();
7850 shndx = object->adjust_sym_shndx(r_sym, shndx,
7853 object->error(_("section symbol %u has bad shndx %u"),
7856 rel_dyn->add_local_section(object, shndx,
7857 r_type, output_section,
7858 data_shndx, reloc.get_r_offset());
7863 case elfcpp::R_ARM_REL32:
7864 case elfcpp::R_ARM_LDR_PC_G0:
7865 case elfcpp::R_ARM_SBREL32:
7866 case elfcpp::R_ARM_THM_CALL:
7867 case elfcpp::R_ARM_THM_PC8:
7868 case elfcpp::R_ARM_BASE_PREL:
7869 case elfcpp::R_ARM_PLT32:
7870 case elfcpp::R_ARM_CALL:
7871 case elfcpp::R_ARM_JUMP24:
7872 case elfcpp::R_ARM_THM_JUMP24:
7873 case elfcpp::R_ARM_SBREL31:
7874 case elfcpp::R_ARM_PREL31:
7875 case elfcpp::R_ARM_MOVW_PREL_NC:
7876 case elfcpp::R_ARM_MOVT_PREL:
7877 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7878 case elfcpp::R_ARM_THM_MOVT_PREL:
7879 case elfcpp::R_ARM_THM_JUMP19:
7880 case elfcpp::R_ARM_THM_JUMP6:
7881 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7882 case elfcpp::R_ARM_THM_PC12:
7883 case elfcpp::R_ARM_REL32_NOI:
7884 case elfcpp::R_ARM_ALU_PC_G0_NC:
7885 case elfcpp::R_ARM_ALU_PC_G0:
7886 case elfcpp::R_ARM_ALU_PC_G1_NC:
7887 case elfcpp::R_ARM_ALU_PC_G1:
7888 case elfcpp::R_ARM_ALU_PC_G2:
7889 case elfcpp::R_ARM_LDR_PC_G1:
7890 case elfcpp::R_ARM_LDR_PC_G2:
7891 case elfcpp::R_ARM_LDRS_PC_G0:
7892 case elfcpp::R_ARM_LDRS_PC_G1:
7893 case elfcpp::R_ARM_LDRS_PC_G2:
7894 case elfcpp::R_ARM_LDC_PC_G0:
7895 case elfcpp::R_ARM_LDC_PC_G1:
7896 case elfcpp::R_ARM_LDC_PC_G2:
7897 case elfcpp::R_ARM_ALU_SB_G0_NC:
7898 case elfcpp::R_ARM_ALU_SB_G0:
7899 case elfcpp::R_ARM_ALU_SB_G1_NC:
7900 case elfcpp::R_ARM_ALU_SB_G1:
7901 case elfcpp::R_ARM_ALU_SB_G2:
7902 case elfcpp::R_ARM_LDR_SB_G0:
7903 case elfcpp::R_ARM_LDR_SB_G1:
7904 case elfcpp::R_ARM_LDR_SB_G2:
7905 case elfcpp::R_ARM_LDRS_SB_G0:
7906 case elfcpp::R_ARM_LDRS_SB_G1:
7907 case elfcpp::R_ARM_LDRS_SB_G2:
7908 case elfcpp::R_ARM_LDC_SB_G0:
7909 case elfcpp::R_ARM_LDC_SB_G1:
7910 case elfcpp::R_ARM_LDC_SB_G2:
7911 case elfcpp::R_ARM_MOVW_BREL_NC:
7912 case elfcpp::R_ARM_MOVT_BREL:
7913 case elfcpp::R_ARM_MOVW_BREL:
7914 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7915 case elfcpp::R_ARM_THM_MOVT_BREL:
7916 case elfcpp::R_ARM_THM_MOVW_BREL:
7917 case elfcpp::R_ARM_THM_JUMP11:
7918 case elfcpp::R_ARM_THM_JUMP8:
7919 // We don't need to do anything for a relative addressing relocation
7920 // against a local symbol if it does not reference the GOT.
7923 case elfcpp::R_ARM_GOTOFF32:
7924 case elfcpp::R_ARM_GOTOFF12:
7925 // We need a GOT section:
7926 target->got_section(symtab, layout);
7929 case elfcpp::R_ARM_GOT_BREL:
7930 case elfcpp::R_ARM_GOT_PREL:
7932 // The symbol requires a GOT entry.
7933 Arm_output_data_got<big_endian>* got =
7934 target->got_section(symtab, layout);
7935 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7936 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7938 // If we are generating a shared object, we need to add a
7939 // dynamic RELATIVE relocation for this symbol's GOT entry.
7940 if (parameters->options().output_is_position_independent())
7942 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7943 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7944 rel_dyn->add_local_relative(
7945 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7946 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7952 case elfcpp::R_ARM_TARGET1:
7953 case elfcpp::R_ARM_TARGET2:
7954 // This should have been mapped to another type already.
7956 case elfcpp::R_ARM_COPY:
7957 case elfcpp::R_ARM_GLOB_DAT:
7958 case elfcpp::R_ARM_JUMP_SLOT:
7959 case elfcpp::R_ARM_RELATIVE:
7960 // These are relocations which should only be seen by the
7961 // dynamic linker, and should never be seen here.
7962 gold_error(_("%s: unexpected reloc %u in object file"),
7963 object->name().c_str(), r_type);
7967 // These are initial TLS relocs, which are expected when
7969 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7970 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7971 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7972 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7973 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7975 bool output_is_shared = parameters->options().shared();
7976 const tls::Tls_optimization optimized_type
7977 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7981 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7982 if (optimized_type == tls::TLSOPT_NONE)
7984 // Create a pair of GOT entries for the module index and
7985 // dtv-relative offset.
7986 Arm_output_data_got<big_endian>* got
7987 = target->got_section(symtab, layout);
7988 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7989 unsigned int shndx = lsym.get_st_shndx();
7991 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7994 object->error(_("local symbol %u has bad shndx %u"),
7999 if (!parameters->doing_static_link())
8000 got->add_local_pair_with_rel(object, r_sym, shndx,
8002 target->rel_dyn_section(layout),
8003 elfcpp::R_ARM_TLS_DTPMOD32, 0);
8005 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8009 // FIXME: TLS optimization not supported yet.
8013 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8014 if (optimized_type == tls::TLSOPT_NONE)
8016 // Create a GOT entry for the module index.
8017 target->got_mod_index_entry(symtab, layout, object);
8020 // FIXME: TLS optimization not supported yet.
8024 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8027 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8028 layout->set_has_static_tls();
8029 if (optimized_type == tls::TLSOPT_NONE)
8031 // Create a GOT entry for the tp-relative offset.
8032 Arm_output_data_got<big_endian>* got
8033 = target->got_section(symtab, layout);
8034 unsigned int r_sym =
8035 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8036 if (!parameters->doing_static_link())
8037 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8038 target->rel_dyn_section(layout),
8039 elfcpp::R_ARM_TLS_TPOFF32);
8040 else if (!object->local_has_got_offset(r_sym,
8041 GOT_TYPE_TLS_OFFSET))
8043 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8044 unsigned int got_offset =
8045 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8046 got->add_static_reloc(got_offset,
8047 elfcpp::R_ARM_TLS_TPOFF32, object,
8052 // FIXME: TLS optimization not supported yet.
8056 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8057 layout->set_has_static_tls();
8058 if (output_is_shared)
8060 // We need to create a dynamic relocation.
8061 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8062 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8063 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8064 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8065 output_section, data_shndx,
8066 reloc.get_r_offset());
8076 case elfcpp::R_ARM_PC24:
8077 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8078 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8079 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8081 unsupported_reloc_local(object, r_type);
8086 // Report an unsupported relocation against a global symbol.
8088 template<bool big_endian>
8090 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8091 Sized_relobj_file<32, big_endian>* object,
8092 unsigned int r_type,
8095 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8096 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8099 template<bool big_endian>
8101 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8102 unsigned int r_type)
8106 case elfcpp::R_ARM_PC24:
8107 case elfcpp::R_ARM_THM_CALL:
8108 case elfcpp::R_ARM_PLT32:
8109 case elfcpp::R_ARM_CALL:
8110 case elfcpp::R_ARM_JUMP24:
8111 case elfcpp::R_ARM_THM_JUMP24:
8112 case elfcpp::R_ARM_SBREL31:
8113 case elfcpp::R_ARM_PREL31:
8114 case elfcpp::R_ARM_THM_JUMP19:
8115 case elfcpp::R_ARM_THM_JUMP6:
8116 case elfcpp::R_ARM_THM_JUMP11:
8117 case elfcpp::R_ARM_THM_JUMP8:
8118 // All the relocations above are branches except SBREL31 and PREL31.
8122 // Be conservative and assume this is a function pointer.
8127 template<bool big_endian>
8129 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8132 Target_arm<big_endian>* target,
8133 Sized_relobj_file<32, big_endian>*,
8136 const elfcpp::Rel<32, big_endian>&,
8137 unsigned int r_type,
8138 const elfcpp::Sym<32, big_endian>&)
8140 r_type = target->get_real_reloc_type(r_type);
8141 return possible_function_pointer_reloc(r_type);
8144 template<bool big_endian>
8146 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8149 Target_arm<big_endian>* target,
8150 Sized_relobj_file<32, big_endian>*,
8153 const elfcpp::Rel<32, big_endian>&,
8154 unsigned int r_type,
8157 // GOT is not a function.
8158 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8161 r_type = target->get_real_reloc_type(r_type);
8162 return possible_function_pointer_reloc(r_type);
8165 // Scan a relocation for a global symbol.
8167 template<bool big_endian>
8169 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8172 Sized_relobj_file<32, big_endian>* object,
8173 unsigned int data_shndx,
8174 Output_section* output_section,
8175 const elfcpp::Rel<32, big_endian>& reloc,
8176 unsigned int r_type,
8179 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8180 // section. We check here to avoid creating a dynamic reloc against
8181 // _GLOBAL_OFFSET_TABLE_.
8182 if (!target->has_got_section()
8183 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8184 target->got_section(symtab, layout);
8186 r_type = get_real_reloc_type(r_type);
8189 case elfcpp::R_ARM_NONE:
8190 case elfcpp::R_ARM_V4BX:
8191 case elfcpp::R_ARM_GNU_VTENTRY:
8192 case elfcpp::R_ARM_GNU_VTINHERIT:
8195 case elfcpp::R_ARM_ABS32:
8196 case elfcpp::R_ARM_ABS16:
8197 case elfcpp::R_ARM_ABS12:
8198 case elfcpp::R_ARM_THM_ABS5:
8199 case elfcpp::R_ARM_ABS8:
8200 case elfcpp::R_ARM_BASE_ABS:
8201 case elfcpp::R_ARM_MOVW_ABS_NC:
8202 case elfcpp::R_ARM_MOVT_ABS:
8203 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8204 case elfcpp::R_ARM_THM_MOVT_ABS:
8205 case elfcpp::R_ARM_ABS32_NOI:
8206 // Absolute addressing relocations.
8208 // Make a PLT entry if necessary.
8209 if (this->symbol_needs_plt_entry(gsym))
8211 target->make_plt_entry(symtab, layout, gsym);
8212 // Since this is not a PC-relative relocation, we may be
8213 // taking the address of a function. In that case we need to
8214 // set the entry in the dynamic symbol table to the address of
8216 if (gsym->is_from_dynobj() && !parameters->options().shared())
8217 gsym->set_needs_dynsym_value();
8219 // Make a dynamic relocation if necessary.
8220 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8222 if (gsym->may_need_copy_reloc())
8224 target->copy_reloc(symtab, layout, object,
8225 data_shndx, output_section, gsym, reloc);
8227 else if ((r_type == elfcpp::R_ARM_ABS32
8228 || r_type == elfcpp::R_ARM_ABS32_NOI)
8229 && gsym->can_use_relative_reloc(false))
8231 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8232 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8233 output_section, object,
8234 data_shndx, reloc.get_r_offset());
8238 check_non_pic(object, r_type);
8239 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8240 rel_dyn->add_global(gsym, r_type, output_section, object,
8241 data_shndx, reloc.get_r_offset());
8247 case elfcpp::R_ARM_GOTOFF32:
8248 case elfcpp::R_ARM_GOTOFF12:
8249 // We need a GOT section.
8250 target->got_section(symtab, layout);
8253 case elfcpp::R_ARM_REL32:
8254 case elfcpp::R_ARM_LDR_PC_G0:
8255 case elfcpp::R_ARM_SBREL32:
8256 case elfcpp::R_ARM_THM_PC8:
8257 case elfcpp::R_ARM_BASE_PREL:
8258 case elfcpp::R_ARM_MOVW_PREL_NC:
8259 case elfcpp::R_ARM_MOVT_PREL:
8260 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8261 case elfcpp::R_ARM_THM_MOVT_PREL:
8262 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8263 case elfcpp::R_ARM_THM_PC12:
8264 case elfcpp::R_ARM_REL32_NOI:
8265 case elfcpp::R_ARM_ALU_PC_G0_NC:
8266 case elfcpp::R_ARM_ALU_PC_G0:
8267 case elfcpp::R_ARM_ALU_PC_G1_NC:
8268 case elfcpp::R_ARM_ALU_PC_G1:
8269 case elfcpp::R_ARM_ALU_PC_G2:
8270 case elfcpp::R_ARM_LDR_PC_G1:
8271 case elfcpp::R_ARM_LDR_PC_G2:
8272 case elfcpp::R_ARM_LDRS_PC_G0:
8273 case elfcpp::R_ARM_LDRS_PC_G1:
8274 case elfcpp::R_ARM_LDRS_PC_G2:
8275 case elfcpp::R_ARM_LDC_PC_G0:
8276 case elfcpp::R_ARM_LDC_PC_G1:
8277 case elfcpp::R_ARM_LDC_PC_G2:
8278 case elfcpp::R_ARM_ALU_SB_G0_NC:
8279 case elfcpp::R_ARM_ALU_SB_G0:
8280 case elfcpp::R_ARM_ALU_SB_G1_NC:
8281 case elfcpp::R_ARM_ALU_SB_G1:
8282 case elfcpp::R_ARM_ALU_SB_G2:
8283 case elfcpp::R_ARM_LDR_SB_G0:
8284 case elfcpp::R_ARM_LDR_SB_G1:
8285 case elfcpp::R_ARM_LDR_SB_G2:
8286 case elfcpp::R_ARM_LDRS_SB_G0:
8287 case elfcpp::R_ARM_LDRS_SB_G1:
8288 case elfcpp::R_ARM_LDRS_SB_G2:
8289 case elfcpp::R_ARM_LDC_SB_G0:
8290 case elfcpp::R_ARM_LDC_SB_G1:
8291 case elfcpp::R_ARM_LDC_SB_G2:
8292 case elfcpp::R_ARM_MOVW_BREL_NC:
8293 case elfcpp::R_ARM_MOVT_BREL:
8294 case elfcpp::R_ARM_MOVW_BREL:
8295 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8296 case elfcpp::R_ARM_THM_MOVT_BREL:
8297 case elfcpp::R_ARM_THM_MOVW_BREL:
8298 // Relative addressing relocations.
8300 // Make a dynamic relocation if necessary.
8301 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8303 if (target->may_need_copy_reloc(gsym))
8305 target->copy_reloc(symtab, layout, object,
8306 data_shndx, output_section, gsym, reloc);
8310 check_non_pic(object, r_type);
8311 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8312 rel_dyn->add_global(gsym, r_type, output_section, object,
8313 data_shndx, reloc.get_r_offset());
8319 case elfcpp::R_ARM_THM_CALL:
8320 case elfcpp::R_ARM_PLT32:
8321 case elfcpp::R_ARM_CALL:
8322 case elfcpp::R_ARM_JUMP24:
8323 case elfcpp::R_ARM_THM_JUMP24:
8324 case elfcpp::R_ARM_SBREL31:
8325 case elfcpp::R_ARM_PREL31:
8326 case elfcpp::R_ARM_THM_JUMP19:
8327 case elfcpp::R_ARM_THM_JUMP6:
8328 case elfcpp::R_ARM_THM_JUMP11:
8329 case elfcpp::R_ARM_THM_JUMP8:
8330 // All the relocation above are branches except for the PREL31 ones.
8331 // A PREL31 relocation can point to a personality function in a shared
8332 // library. In that case we want to use a PLT because we want to
8333 // call the personality routine and the dynamic linkers we care about
8334 // do not support dynamic PREL31 relocations. An REL31 relocation may
8335 // point to a function whose unwinding behaviour is being described but
8336 // we will not mistakenly generate a PLT for that because we should use
8337 // a local section symbol.
8339 // If the symbol is fully resolved, this is just a relative
8340 // local reloc. Otherwise we need a PLT entry.
8341 if (gsym->final_value_is_known())
8343 // If building a shared library, we can also skip the PLT entry
8344 // if the symbol is defined in the output file and is protected
8346 if (gsym->is_defined()
8347 && !gsym->is_from_dynobj()
8348 && !gsym->is_preemptible())
8350 target->make_plt_entry(symtab, layout, gsym);
8353 case elfcpp::R_ARM_GOT_BREL:
8354 case elfcpp::R_ARM_GOT_ABS:
8355 case elfcpp::R_ARM_GOT_PREL:
8357 // The symbol requires a GOT entry.
8358 Arm_output_data_got<big_endian>* got =
8359 target->got_section(symtab, layout);
8360 if (gsym->final_value_is_known())
8361 got->add_global(gsym, GOT_TYPE_STANDARD);
8364 // If this symbol is not fully resolved, we need to add a
8365 // GOT entry with a dynamic relocation.
8366 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8367 if (gsym->is_from_dynobj()
8368 || gsym->is_undefined()
8369 || gsym->is_preemptible())
8370 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8371 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8374 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8375 rel_dyn->add_global_relative(
8376 gsym, elfcpp::R_ARM_RELATIVE, got,
8377 gsym->got_offset(GOT_TYPE_STANDARD));
8383 case elfcpp::R_ARM_TARGET1:
8384 case elfcpp::R_ARM_TARGET2:
8385 // These should have been mapped to other types already.
8387 case elfcpp::R_ARM_COPY:
8388 case elfcpp::R_ARM_GLOB_DAT:
8389 case elfcpp::R_ARM_JUMP_SLOT:
8390 case elfcpp::R_ARM_RELATIVE:
8391 // These are relocations which should only be seen by the
8392 // dynamic linker, and should never be seen here.
8393 gold_error(_("%s: unexpected reloc %u in object file"),
8394 object->name().c_str(), r_type);
8397 // These are initial tls relocs, which are expected when
8399 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8400 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8401 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8402 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8403 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8405 const bool is_final = gsym->final_value_is_known();
8406 const tls::Tls_optimization optimized_type
8407 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8410 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8411 if (optimized_type == tls::TLSOPT_NONE)
8413 // Create a pair of GOT entries for the module index and
8414 // dtv-relative offset.
8415 Arm_output_data_got<big_endian>* got
8416 = target->got_section(symtab, layout);
8417 if (!parameters->doing_static_link())
8418 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8419 target->rel_dyn_section(layout),
8420 elfcpp::R_ARM_TLS_DTPMOD32,
8421 elfcpp::R_ARM_TLS_DTPOFF32);
8423 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8426 // FIXME: TLS optimization not supported yet.
8430 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8431 if (optimized_type == tls::TLSOPT_NONE)
8433 // Create a GOT entry for the module index.
8434 target->got_mod_index_entry(symtab, layout, object);
8437 // FIXME: TLS optimization not supported yet.
8441 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8444 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8445 layout->set_has_static_tls();
8446 if (optimized_type == tls::TLSOPT_NONE)
8448 // Create a GOT entry for the tp-relative offset.
8449 Arm_output_data_got<big_endian>* got
8450 = target->got_section(symtab, layout);
8451 if (!parameters->doing_static_link())
8452 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8453 target->rel_dyn_section(layout),
8454 elfcpp::R_ARM_TLS_TPOFF32);
8455 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8457 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8458 unsigned int got_offset =
8459 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8460 got->add_static_reloc(got_offset,
8461 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8465 // FIXME: TLS optimization not supported yet.
8469 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8470 layout->set_has_static_tls();
8471 if (parameters->options().shared())
8473 // We need to create a dynamic relocation.
8474 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8475 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8476 output_section, object,
8477 data_shndx, reloc.get_r_offset());
8487 case elfcpp::R_ARM_PC24:
8488 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8489 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8490 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8492 unsupported_reloc_global(object, r_type, gsym);
8497 // Process relocations for gc.
8499 template<bool big_endian>
8501 Target_arm<big_endian>::gc_process_relocs(
8502 Symbol_table* symtab,
8504 Sized_relobj_file<32, big_endian>* object,
8505 unsigned int data_shndx,
8507 const unsigned char* prelocs,
8509 Output_section* output_section,
8510 bool needs_special_offset_handling,
8511 size_t local_symbol_count,
8512 const unsigned char* plocal_symbols)
8514 typedef Target_arm<big_endian> Arm;
8515 typedef typename Target_arm<big_endian>::Scan Scan;
8517 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8518 typename Target_arm::Relocatable_size_for_reloc>(
8527 needs_special_offset_handling,
8532 // Scan relocations for a section.
8534 template<bool big_endian>
8536 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8538 Sized_relobj_file<32, big_endian>* object,
8539 unsigned int data_shndx,
8540 unsigned int sh_type,
8541 const unsigned char* prelocs,
8543 Output_section* output_section,
8544 bool needs_special_offset_handling,
8545 size_t local_symbol_count,
8546 const unsigned char* plocal_symbols)
8548 typedef typename Target_arm<big_endian>::Scan Scan;
8549 if (sh_type == elfcpp::SHT_RELA)
8551 gold_error(_("%s: unsupported RELA reloc section"),
8552 object->name().c_str());
8556 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8565 needs_special_offset_handling,
8570 // Finalize the sections.
8572 template<bool big_endian>
8574 Target_arm<big_endian>::do_finalize_sections(
8576 const Input_objects* input_objects,
8577 Symbol_table* symtab)
8579 bool merged_any_attributes = false;
8580 // Merge processor-specific flags.
8581 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8582 p != input_objects->relobj_end();
8585 Arm_relobj<big_endian>* arm_relobj =
8586 Arm_relobj<big_endian>::as_arm_relobj(*p);
8587 if (arm_relobj->merge_flags_and_attributes())
8589 this->merge_processor_specific_flags(
8591 arm_relobj->processor_specific_flags());
8592 this->merge_object_attributes(arm_relobj->name().c_str(),
8593 arm_relobj->attributes_section_data());
8594 merged_any_attributes = true;
8598 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8599 p != input_objects->dynobj_end();
8602 Arm_dynobj<big_endian>* arm_dynobj =
8603 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8604 this->merge_processor_specific_flags(
8606 arm_dynobj->processor_specific_flags());
8607 this->merge_object_attributes(arm_dynobj->name().c_str(),
8608 arm_dynobj->attributes_section_data());
8609 merged_any_attributes = true;
8612 // Create an empty uninitialized attribute section if we still don't have it
8613 // at this moment. This happens if there is no attributes sections in all
8615 if (this->attributes_section_data_ == NULL)
8616 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8618 const Object_attribute* cpu_arch_attr =
8619 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8620 // Check if we need to use Cortex-A8 workaround.
8621 if (parameters->options().user_set_fix_cortex_a8())
8622 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8625 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8626 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8628 const Object_attribute* cpu_arch_profile_attr =
8629 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8630 this->fix_cortex_a8_ =
8631 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8632 && (cpu_arch_profile_attr->int_value() == 'A'
8633 || cpu_arch_profile_attr->int_value() == 0));
8636 // Check if we can use V4BX interworking.
8637 // The V4BX interworking stub contains BX instruction,
8638 // which is not specified for some profiles.
8639 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8640 && !this->may_use_v4t_interworking())
8641 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8642 "the target profile does not support BX instruction"));
8644 // Fill in some more dynamic tags.
8645 const Reloc_section* rel_plt = (this->plt_ == NULL
8647 : this->plt_->rel_plt());
8648 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8649 this->rel_dyn_, true, false);
8651 // Emit any relocs we saved in an attempt to avoid generating COPY
8653 if (this->copy_relocs_.any_saved_relocs())
8654 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8656 // Handle the .ARM.exidx section.
8657 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8659 if (!parameters->options().relocatable())
8661 if (exidx_section != NULL
8662 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8664 // Create __exidx_start and __exidx_end symbols.
8665 symtab->define_in_output_data("__exidx_start", NULL,
8666 Symbol_table::PREDEFINED,
8667 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8668 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8670 symtab->define_in_output_data("__exidx_end", NULL,
8671 Symbol_table::PREDEFINED,
8672 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8673 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8676 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8677 // the .ARM.exidx section.
8678 if (!layout->script_options()->saw_phdrs_clause())
8680 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8683 Output_segment* exidx_segment =
8684 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8685 exidx_segment->add_output_section_to_nonload(exidx_section,
8691 symtab->define_as_constant("__exidx_start", NULL,
8692 Symbol_table::PREDEFINED,
8693 0, 0, elfcpp::STT_OBJECT,
8694 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8696 symtab->define_as_constant("__exidx_end", NULL,
8697 Symbol_table::PREDEFINED,
8698 0, 0, elfcpp::STT_OBJECT,
8699 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8704 // Create an .ARM.attributes section if we have merged any attributes
8706 if (merged_any_attributes)
8708 Output_attributes_section_data* attributes_section =
8709 new Output_attributes_section_data(*this->attributes_section_data_);
8710 layout->add_output_section_data(".ARM.attributes",
8711 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8712 attributes_section, ORDER_INVALID,
8716 // Fix up links in section EXIDX headers.
8717 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8718 p != layout->section_list().end();
8720 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8722 Arm_output_section<big_endian>* os =
8723 Arm_output_section<big_endian>::as_arm_output_section(*p);
8724 os->set_exidx_section_link();
8728 // Return whether a direct absolute static relocation needs to be applied.
8729 // In cases where Scan::local() or Scan::global() has created
8730 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8731 // of the relocation is carried in the data, and we must not
8732 // apply the static relocation.
8734 template<bool big_endian>
8736 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8737 const Sized_symbol<32>* gsym,
8738 unsigned int r_type,
8740 Output_section* output_section)
8742 // If the output section is not allocated, then we didn't call
8743 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8745 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8748 int ref_flags = Scan::get_reference_flags(r_type);
8750 // For local symbols, we will have created a non-RELATIVE dynamic
8751 // relocation only if (a) the output is position independent,
8752 // (b) the relocation is absolute (not pc- or segment-relative), and
8753 // (c) the relocation is not 32 bits wide.
8755 return !(parameters->options().output_is_position_independent()
8756 && (ref_flags & Symbol::ABSOLUTE_REF)
8759 // For global symbols, we use the same helper routines used in the
8760 // scan pass. If we did not create a dynamic relocation, or if we
8761 // created a RELATIVE dynamic relocation, we should apply the static
8763 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8764 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8765 && gsym->can_use_relative_reloc(ref_flags
8766 & Symbol::FUNCTION_CALL);
8767 return !has_dyn || is_rel;
8770 // Perform a relocation.
8772 template<bool big_endian>
8774 Target_arm<big_endian>::Relocate::relocate(
8775 const Relocate_info<32, big_endian>* relinfo,
8777 Output_section* output_section,
8779 const elfcpp::Rel<32, big_endian>& rel,
8780 unsigned int r_type,
8781 const Sized_symbol<32>* gsym,
8782 const Symbol_value<32>* psymval,
8783 unsigned char* view,
8784 Arm_address address,
8785 section_size_type view_size)
8787 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8789 r_type = get_real_reloc_type(r_type);
8790 const Arm_reloc_property* reloc_property =
8791 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8792 if (reloc_property == NULL)
8794 std::string reloc_name =
8795 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8796 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8797 _("cannot relocate %s in object file"),
8798 reloc_name.c_str());
8802 const Arm_relobj<big_endian>* object =
8803 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8805 // If the final branch target of a relocation is THUMB instruction, this
8806 // is 1. Otherwise it is 0.
8807 Arm_address thumb_bit = 0;
8808 Symbol_value<32> symval;
8809 bool is_weakly_undefined_without_plt = false;
8810 bool have_got_offset = false;
8811 unsigned int got_offset = 0;
8813 // If the relocation uses the GOT entry of a symbol instead of the symbol
8814 // itself, we don't care about whether the symbol is defined or what kind
8816 if (reloc_property->uses_got_entry())
8818 // Get the GOT offset.
8819 // The GOT pointer points to the end of the GOT section.
8820 // We need to subtract the size of the GOT section to get
8821 // the actual offset to use in the relocation.
8822 // TODO: We should move GOT offset computing code in TLS relocations
8826 case elfcpp::R_ARM_GOT_BREL:
8827 case elfcpp::R_ARM_GOT_PREL:
8830 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8831 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8832 - target->got_size());
8836 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8837 gold_assert(object->local_has_got_offset(r_sym,
8838 GOT_TYPE_STANDARD));
8839 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8840 - target->got_size());
8842 have_got_offset = true;
8849 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8853 // This is a global symbol. Determine if we use PLT and if the
8854 // final target is THUMB.
8855 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8857 // This uses a PLT, change the symbol value.
8858 symval.set_output_value(target->plt_section()->address()
8859 + gsym->plt_offset());
8862 else if (gsym->is_weak_undefined())
8864 // This is a weakly undefined symbol and we do not use PLT
8865 // for this relocation. A branch targeting this symbol will
8866 // be converted into an NOP.
8867 is_weakly_undefined_without_plt = true;
8869 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8871 // This relocation uses the symbol value but the symbol is
8872 // undefined. Exit early and have the caller reporting an
8878 // Set thumb bit if symbol:
8879 // -Has type STT_ARM_TFUNC or
8880 // -Has type STT_FUNC, is defined and with LSB in value set.
8882 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8883 || (gsym->type() == elfcpp::STT_FUNC
8884 && !gsym->is_undefined()
8885 && ((psymval->value(object, 0) & 1) != 0)))
8892 // This is a local symbol. Determine if the final target is THUMB.
8893 // We saved this information when all the local symbols were read.
8894 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8895 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8896 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8901 // This is a fake relocation synthesized for a stub. It does not have
8902 // a real symbol. We just look at the LSB of the symbol value to
8903 // determine if the target is THUMB or not.
8904 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8907 // Strip LSB if this points to a THUMB target.
8909 && reloc_property->uses_thumb_bit()
8910 && ((psymval->value(object, 0) & 1) != 0))
8912 Arm_address stripped_value =
8913 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8914 symval.set_output_value(stripped_value);
8918 // To look up relocation stubs, we need to pass the symbol table index of
8920 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8922 // Get the addressing origin of the output segment defining the
8923 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8924 Arm_address sym_origin = 0;
8925 if (reloc_property->uses_symbol_base())
8927 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8928 // R_ARM_BASE_ABS with the NULL symbol will give the
8929 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8930 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8931 sym_origin = target->got_plt_section()->address();
8932 else if (gsym == NULL)
8934 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8935 sym_origin = gsym->output_segment()->vaddr();
8936 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8937 sym_origin = gsym->output_data()->address();
8939 // TODO: Assumes the segment base to be zero for the global symbols
8940 // till the proper support for the segment-base-relative addressing
8941 // will be implemented. This is consistent with GNU ld.
8944 // For relative addressing relocation, find out the relative address base.
8945 Arm_address relative_address_base = 0;
8946 switch(reloc_property->relative_address_base())
8948 case Arm_reloc_property::RAB_NONE:
8949 // Relocations with relative address bases RAB_TLS and RAB_tp are
8950 // handled by relocate_tls. So we do not need to do anything here.
8951 case Arm_reloc_property::RAB_TLS:
8952 case Arm_reloc_property::RAB_tp:
8954 case Arm_reloc_property::RAB_B_S:
8955 relative_address_base = sym_origin;
8957 case Arm_reloc_property::RAB_GOT_ORG:
8958 relative_address_base = target->got_plt_section()->address();
8960 case Arm_reloc_property::RAB_P:
8961 relative_address_base = address;
8963 case Arm_reloc_property::RAB_Pa:
8964 relative_address_base = address & 0xfffffffcU;
8970 typename Arm_relocate_functions::Status reloc_status =
8971 Arm_relocate_functions::STATUS_OKAY;
8972 bool check_overflow = reloc_property->checks_overflow();
8975 case elfcpp::R_ARM_NONE:
8978 case elfcpp::R_ARM_ABS8:
8979 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8980 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8983 case elfcpp::R_ARM_ABS12:
8984 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8985 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8988 case elfcpp::R_ARM_ABS16:
8989 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8990 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8993 case elfcpp::R_ARM_ABS32:
8994 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8995 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8999 case elfcpp::R_ARM_ABS32_NOI:
9000 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9001 // No thumb bit for this relocation: (S + A)
9002 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9006 case elfcpp::R_ARM_MOVW_ABS_NC:
9007 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9008 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9013 case elfcpp::R_ARM_MOVT_ABS:
9014 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9015 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9018 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9019 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9020 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9021 0, thumb_bit, false);
9024 case elfcpp::R_ARM_THM_MOVT_ABS:
9025 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9026 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9030 case elfcpp::R_ARM_MOVW_PREL_NC:
9031 case elfcpp::R_ARM_MOVW_BREL_NC:
9032 case elfcpp::R_ARM_MOVW_BREL:
9034 Arm_relocate_functions::movw(view, object, psymval,
9035 relative_address_base, thumb_bit,
9039 case elfcpp::R_ARM_MOVT_PREL:
9040 case elfcpp::R_ARM_MOVT_BREL:
9042 Arm_relocate_functions::movt(view, object, psymval,
9043 relative_address_base);
9046 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9047 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9048 case elfcpp::R_ARM_THM_MOVW_BREL:
9050 Arm_relocate_functions::thm_movw(view, object, psymval,
9051 relative_address_base,
9052 thumb_bit, check_overflow);
9055 case elfcpp::R_ARM_THM_MOVT_PREL:
9056 case elfcpp::R_ARM_THM_MOVT_BREL:
9058 Arm_relocate_functions::thm_movt(view, object, psymval,
9059 relative_address_base);
9062 case elfcpp::R_ARM_REL32:
9063 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9064 address, thumb_bit);
9067 case elfcpp::R_ARM_THM_ABS5:
9068 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9069 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9072 // Thumb long branches.
9073 case elfcpp::R_ARM_THM_CALL:
9074 case elfcpp::R_ARM_THM_XPC22:
9075 case elfcpp::R_ARM_THM_JUMP24:
9077 Arm_relocate_functions::thumb_branch_common(
9078 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9079 thumb_bit, is_weakly_undefined_without_plt);
9082 case elfcpp::R_ARM_GOTOFF32:
9084 Arm_address got_origin;
9085 got_origin = target->got_plt_section()->address();
9086 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9087 got_origin, thumb_bit);
9091 case elfcpp::R_ARM_BASE_PREL:
9092 gold_assert(gsym != NULL);
9094 Arm_relocate_functions::base_prel(view, sym_origin, address);
9097 case elfcpp::R_ARM_BASE_ABS:
9098 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9099 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9102 case elfcpp::R_ARM_GOT_BREL:
9103 gold_assert(have_got_offset);
9104 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9107 case elfcpp::R_ARM_GOT_PREL:
9108 gold_assert(have_got_offset);
9109 // Get the address origin for GOT PLT, which is allocated right
9110 // after the GOT section, to calculate an absolute address of
9111 // the symbol GOT entry (got_origin + got_offset).
9112 Arm_address got_origin;
9113 got_origin = target->got_plt_section()->address();
9114 reloc_status = Arm_relocate_functions::got_prel(view,
9115 got_origin + got_offset,
9119 case elfcpp::R_ARM_PLT32:
9120 case elfcpp::R_ARM_CALL:
9121 case elfcpp::R_ARM_JUMP24:
9122 case elfcpp::R_ARM_XPC25:
9123 gold_assert(gsym == NULL
9124 || gsym->has_plt_offset()
9125 || gsym->final_value_is_known()
9126 || (gsym->is_defined()
9127 && !gsym->is_from_dynobj()
9128 && !gsym->is_preemptible()));
9130 Arm_relocate_functions::arm_branch_common(
9131 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9132 thumb_bit, is_weakly_undefined_without_plt);
9135 case elfcpp::R_ARM_THM_JUMP19:
9137 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9141 case elfcpp::R_ARM_THM_JUMP6:
9143 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9146 case elfcpp::R_ARM_THM_JUMP8:
9148 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9151 case elfcpp::R_ARM_THM_JUMP11:
9153 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9156 case elfcpp::R_ARM_PREL31:
9157 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9158 address, thumb_bit);
9161 case elfcpp::R_ARM_V4BX:
9162 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9164 const bool is_v4bx_interworking =
9165 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9167 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9168 is_v4bx_interworking);
9172 case elfcpp::R_ARM_THM_PC8:
9174 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9177 case elfcpp::R_ARM_THM_PC12:
9179 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9182 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9184 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9188 case elfcpp::R_ARM_ALU_PC_G0_NC:
9189 case elfcpp::R_ARM_ALU_PC_G0:
9190 case elfcpp::R_ARM_ALU_PC_G1_NC:
9191 case elfcpp::R_ARM_ALU_PC_G1:
9192 case elfcpp::R_ARM_ALU_PC_G2:
9193 case elfcpp::R_ARM_ALU_SB_G0_NC:
9194 case elfcpp::R_ARM_ALU_SB_G0:
9195 case elfcpp::R_ARM_ALU_SB_G1_NC:
9196 case elfcpp::R_ARM_ALU_SB_G1:
9197 case elfcpp::R_ARM_ALU_SB_G2:
9199 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9200 reloc_property->group_index(),
9201 relative_address_base,
9202 thumb_bit, check_overflow);
9205 case elfcpp::R_ARM_LDR_PC_G0:
9206 case elfcpp::R_ARM_LDR_PC_G1:
9207 case elfcpp::R_ARM_LDR_PC_G2:
9208 case elfcpp::R_ARM_LDR_SB_G0:
9209 case elfcpp::R_ARM_LDR_SB_G1:
9210 case elfcpp::R_ARM_LDR_SB_G2:
9212 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9213 reloc_property->group_index(),
9214 relative_address_base);
9217 case elfcpp::R_ARM_LDRS_PC_G0:
9218 case elfcpp::R_ARM_LDRS_PC_G1:
9219 case elfcpp::R_ARM_LDRS_PC_G2:
9220 case elfcpp::R_ARM_LDRS_SB_G0:
9221 case elfcpp::R_ARM_LDRS_SB_G1:
9222 case elfcpp::R_ARM_LDRS_SB_G2:
9224 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9225 reloc_property->group_index(),
9226 relative_address_base);
9229 case elfcpp::R_ARM_LDC_PC_G0:
9230 case elfcpp::R_ARM_LDC_PC_G1:
9231 case elfcpp::R_ARM_LDC_PC_G2:
9232 case elfcpp::R_ARM_LDC_SB_G0:
9233 case elfcpp::R_ARM_LDC_SB_G1:
9234 case elfcpp::R_ARM_LDC_SB_G2:
9236 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9237 reloc_property->group_index(),
9238 relative_address_base);
9241 // These are initial tls relocs, which are expected when
9243 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9244 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9245 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9246 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9247 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9249 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9250 view, address, view_size);
9253 // The known and unknown unsupported and/or deprecated relocations.
9254 case elfcpp::R_ARM_PC24:
9255 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9256 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9257 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9259 // Just silently leave the method. We should get an appropriate error
9260 // message in the scan methods.
9264 // Report any errors.
9265 switch (reloc_status)
9267 case Arm_relocate_functions::STATUS_OKAY:
9269 case Arm_relocate_functions::STATUS_OVERFLOW:
9270 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9271 _("relocation overflow in %s"),
9272 reloc_property->name().c_str());
9274 case Arm_relocate_functions::STATUS_BAD_RELOC:
9275 gold_error_at_location(
9279 _("unexpected opcode while processing relocation %s"),
9280 reloc_property->name().c_str());
9289 // Perform a TLS relocation.
9291 template<bool big_endian>
9292 inline typename Arm_relocate_functions<big_endian>::Status
9293 Target_arm<big_endian>::Relocate::relocate_tls(
9294 const Relocate_info<32, big_endian>* relinfo,
9295 Target_arm<big_endian>* target,
9297 const elfcpp::Rel<32, big_endian>& rel,
9298 unsigned int r_type,
9299 const Sized_symbol<32>* gsym,
9300 const Symbol_value<32>* psymval,
9301 unsigned char* view,
9302 elfcpp::Elf_types<32>::Elf_Addr address,
9303 section_size_type /*view_size*/ )
9305 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9306 typedef Relocate_functions<32, big_endian> RelocFuncs;
9307 Output_segment* tls_segment = relinfo->layout->tls_segment();
9309 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9311 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9313 const bool is_final = (gsym == NULL
9314 ? !parameters->options().shared()
9315 : gsym->final_value_is_known());
9316 const tls::Tls_optimization optimized_type
9317 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9320 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9322 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9323 unsigned int got_offset;
9326 gold_assert(gsym->has_got_offset(got_type));
9327 got_offset = gsym->got_offset(got_type) - target->got_size();
9331 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9332 gold_assert(object->local_has_got_offset(r_sym, got_type));
9333 got_offset = (object->local_got_offset(r_sym, got_type)
9334 - target->got_size());
9336 if (optimized_type == tls::TLSOPT_NONE)
9338 Arm_address got_entry =
9339 target->got_plt_section()->address() + got_offset;
9341 // Relocate the field with the PC relative offset of the pair of
9343 RelocFuncs::pcrel32(view, got_entry, address);
9344 return ArmRelocFuncs::STATUS_OKAY;
9349 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9350 if (optimized_type == tls::TLSOPT_NONE)
9352 // Relocate the field with the offset of the GOT entry for
9353 // the module index.
9354 unsigned int got_offset;
9355 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9356 - target->got_size());
9357 Arm_address got_entry =
9358 target->got_plt_section()->address() + got_offset;
9360 // Relocate the field with the PC relative offset of the pair of
9362 RelocFuncs::pcrel32(view, got_entry, address);
9363 return ArmRelocFuncs::STATUS_OKAY;
9367 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9368 RelocFuncs::rel32(view, value);
9369 return ArmRelocFuncs::STATUS_OKAY;
9371 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9372 if (optimized_type == tls::TLSOPT_NONE)
9374 // Relocate the field with the offset of the GOT entry for
9375 // the tp-relative offset of the symbol.
9376 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9377 unsigned int got_offset;
9380 gold_assert(gsym->has_got_offset(got_type));
9381 got_offset = gsym->got_offset(got_type);
9385 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9386 gold_assert(object->local_has_got_offset(r_sym, got_type));
9387 got_offset = object->local_got_offset(r_sym, got_type);
9390 // All GOT offsets are relative to the end of the GOT.
9391 got_offset -= target->got_size();
9393 Arm_address got_entry =
9394 target->got_plt_section()->address() + got_offset;
9396 // Relocate the field with the PC relative offset of the GOT entry.
9397 RelocFuncs::pcrel32(view, got_entry, address);
9398 return ArmRelocFuncs::STATUS_OKAY;
9402 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9403 // If we're creating a shared library, a dynamic relocation will
9404 // have been created for this location, so do not apply it now.
9405 if (!parameters->options().shared())
9407 gold_assert(tls_segment != NULL);
9409 // $tp points to the TCB, which is followed by the TLS, so we
9410 // need to add TCB size to the offset.
9411 Arm_address aligned_tcb_size =
9412 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9413 RelocFuncs::rel32(view, value + aligned_tcb_size);
9416 return ArmRelocFuncs::STATUS_OKAY;
9422 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9423 _("unsupported reloc %u"),
9425 return ArmRelocFuncs::STATUS_BAD_RELOC;
9428 // Relocate section data.
9430 template<bool big_endian>
9432 Target_arm<big_endian>::relocate_section(
9433 const Relocate_info<32, big_endian>* relinfo,
9434 unsigned int sh_type,
9435 const unsigned char* prelocs,
9437 Output_section* output_section,
9438 bool needs_special_offset_handling,
9439 unsigned char* view,
9440 Arm_address address,
9441 section_size_type view_size,
9442 const Reloc_symbol_changes* reloc_symbol_changes)
9444 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9445 gold_assert(sh_type == elfcpp::SHT_REL);
9447 // See if we are relocating a relaxed input section. If so, the view
9448 // covers the whole output section and we need to adjust accordingly.
9449 if (needs_special_offset_handling)
9451 const Output_relaxed_input_section* poris =
9452 output_section->find_relaxed_input_section(relinfo->object,
9453 relinfo->data_shndx);
9456 Arm_address section_address = poris->address();
9457 section_size_type section_size = poris->data_size();
9459 gold_assert((section_address >= address)
9460 && ((section_address + section_size)
9461 <= (address + view_size)));
9463 off_t offset = section_address - address;
9466 view_size = section_size;
9470 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9477 needs_special_offset_handling,
9481 reloc_symbol_changes);
9484 // Return the size of a relocation while scanning during a relocatable
9487 template<bool big_endian>
9489 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9490 unsigned int r_type,
9493 r_type = get_real_reloc_type(r_type);
9494 const Arm_reloc_property* arp =
9495 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9500 std::string reloc_name =
9501 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9502 gold_error(_("%s: unexpected %s in object file"),
9503 object->name().c_str(), reloc_name.c_str());
9508 // Scan the relocs during a relocatable link.
9510 template<bool big_endian>
9512 Target_arm<big_endian>::scan_relocatable_relocs(
9513 Symbol_table* symtab,
9515 Sized_relobj_file<32, big_endian>* object,
9516 unsigned int data_shndx,
9517 unsigned int sh_type,
9518 const unsigned char* prelocs,
9520 Output_section* output_section,
9521 bool needs_special_offset_handling,
9522 size_t local_symbol_count,
9523 const unsigned char* plocal_symbols,
9524 Relocatable_relocs* rr)
9526 gold_assert(sh_type == elfcpp::SHT_REL);
9528 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9529 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9531 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9532 Scan_relocatable_relocs>(
9540 needs_special_offset_handling,
9546 // Relocate a section during a relocatable link.
9548 template<bool big_endian>
9550 Target_arm<big_endian>::relocate_for_relocatable(
9551 const Relocate_info<32, big_endian>* relinfo,
9552 unsigned int sh_type,
9553 const unsigned char* prelocs,
9555 Output_section* output_section,
9556 off_t offset_in_output_section,
9557 const Relocatable_relocs* rr,
9558 unsigned char* view,
9559 Arm_address view_address,
9560 section_size_type view_size,
9561 unsigned char* reloc_view,
9562 section_size_type reloc_view_size)
9564 gold_assert(sh_type == elfcpp::SHT_REL);
9566 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9571 offset_in_output_section,
9580 // Perform target-specific processing in a relocatable link. This is
9581 // only used if we use the relocation strategy RELOC_SPECIAL.
9583 template<bool big_endian>
9585 Target_arm<big_endian>::relocate_special_relocatable(
9586 const Relocate_info<32, big_endian>* relinfo,
9587 unsigned int sh_type,
9588 const unsigned char* preloc_in,
9590 Output_section* output_section,
9591 off_t offset_in_output_section,
9592 unsigned char* view,
9593 elfcpp::Elf_types<32>::Elf_Addr view_address,
9595 unsigned char* preloc_out)
9597 // We can only handle REL type relocation sections.
9598 gold_assert(sh_type == elfcpp::SHT_REL);
9600 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9601 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9603 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9605 const Arm_relobj<big_endian>* object =
9606 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9607 const unsigned int local_count = object->local_symbol_count();
9609 Reltype reloc(preloc_in);
9610 Reltype_write reloc_write(preloc_out);
9612 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9613 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9614 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9616 const Arm_reloc_property* arp =
9617 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9618 gold_assert(arp != NULL);
9620 // Get the new symbol index.
9621 // We only use RELOC_SPECIAL strategy in local relocations.
9622 gold_assert(r_sym < local_count);
9624 // We are adjusting a section symbol. We need to find
9625 // the symbol table index of the section symbol for
9626 // the output section corresponding to input section
9627 // in which this symbol is defined.
9629 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9630 gold_assert(is_ordinary);
9631 Output_section* os = object->output_section(shndx);
9632 gold_assert(os != NULL);
9633 gold_assert(os->needs_symtab_index());
9634 unsigned int new_symndx = os->symtab_index();
9636 // Get the new offset--the location in the output section where
9637 // this relocation should be applied.
9639 Arm_address offset = reloc.get_r_offset();
9640 Arm_address new_offset;
9641 if (offset_in_output_section != invalid_address)
9642 new_offset = offset + offset_in_output_section;
9645 section_offset_type sot_offset =
9646 convert_types<section_offset_type, Arm_address>(offset);
9647 section_offset_type new_sot_offset =
9648 output_section->output_offset(object, relinfo->data_shndx,
9650 gold_assert(new_sot_offset != -1);
9651 new_offset = new_sot_offset;
9654 // In an object file, r_offset is an offset within the section.
9655 // In an executable or dynamic object, generated by
9656 // --emit-relocs, r_offset is an absolute address.
9657 if (!parameters->options().relocatable())
9659 new_offset += view_address;
9660 if (offset_in_output_section != invalid_address)
9661 new_offset -= offset_in_output_section;
9664 reloc_write.put_r_offset(new_offset);
9665 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9667 // Handle the reloc addend.
9668 // The relocation uses a section symbol in the input file.
9669 // We are adjusting it to use a section symbol in the output
9670 // file. The input section symbol refers to some address in
9671 // the input section. We need the relocation in the output
9672 // file to refer to that same address. This adjustment to
9673 // the addend is the same calculation we use for a simple
9674 // absolute relocation for the input section symbol.
9676 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9678 // Handle THUMB bit.
9679 Symbol_value<32> symval;
9680 Arm_address thumb_bit =
9681 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9683 && arp->uses_thumb_bit()
9684 && ((psymval->value(object, 0) & 1) != 0))
9686 Arm_address stripped_value =
9687 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9688 symval.set_output_value(stripped_value);
9692 unsigned char* paddend = view + offset;
9693 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9694 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9697 case elfcpp::R_ARM_ABS8:
9698 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9702 case elfcpp::R_ARM_ABS12:
9703 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9707 case elfcpp::R_ARM_ABS16:
9708 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9712 case elfcpp::R_ARM_THM_ABS5:
9713 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9718 case elfcpp::R_ARM_MOVW_ABS_NC:
9719 case elfcpp::R_ARM_MOVW_PREL_NC:
9720 case elfcpp::R_ARM_MOVW_BREL_NC:
9721 case elfcpp::R_ARM_MOVW_BREL:
9722 reloc_status = Arm_relocate_functions<big_endian>::movw(
9723 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9726 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9727 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9728 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9729 case elfcpp::R_ARM_THM_MOVW_BREL:
9730 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9731 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9734 case elfcpp::R_ARM_THM_CALL:
9735 case elfcpp::R_ARM_THM_XPC22:
9736 case elfcpp::R_ARM_THM_JUMP24:
9738 Arm_relocate_functions<big_endian>::thumb_branch_common(
9739 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9743 case elfcpp::R_ARM_PLT32:
9744 case elfcpp::R_ARM_CALL:
9745 case elfcpp::R_ARM_JUMP24:
9746 case elfcpp::R_ARM_XPC25:
9748 Arm_relocate_functions<big_endian>::arm_branch_common(
9749 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9753 case elfcpp::R_ARM_THM_JUMP19:
9755 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9756 psymval, 0, thumb_bit);
9759 case elfcpp::R_ARM_THM_JUMP6:
9761 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9765 case elfcpp::R_ARM_THM_JUMP8:
9767 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9771 case elfcpp::R_ARM_THM_JUMP11:
9773 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9777 case elfcpp::R_ARM_PREL31:
9779 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9783 case elfcpp::R_ARM_THM_PC8:
9785 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9789 case elfcpp::R_ARM_THM_PC12:
9791 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9795 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9797 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9801 // These relocation truncate relocation results so we cannot handle them
9802 // in a relocatable link.
9803 case elfcpp::R_ARM_MOVT_ABS:
9804 case elfcpp::R_ARM_THM_MOVT_ABS:
9805 case elfcpp::R_ARM_MOVT_PREL:
9806 case elfcpp::R_ARM_MOVT_BREL:
9807 case elfcpp::R_ARM_THM_MOVT_PREL:
9808 case elfcpp::R_ARM_THM_MOVT_BREL:
9809 case elfcpp::R_ARM_ALU_PC_G0_NC:
9810 case elfcpp::R_ARM_ALU_PC_G0:
9811 case elfcpp::R_ARM_ALU_PC_G1_NC:
9812 case elfcpp::R_ARM_ALU_PC_G1:
9813 case elfcpp::R_ARM_ALU_PC_G2:
9814 case elfcpp::R_ARM_ALU_SB_G0_NC:
9815 case elfcpp::R_ARM_ALU_SB_G0:
9816 case elfcpp::R_ARM_ALU_SB_G1_NC:
9817 case elfcpp::R_ARM_ALU_SB_G1:
9818 case elfcpp::R_ARM_ALU_SB_G2:
9819 case elfcpp::R_ARM_LDR_PC_G0:
9820 case elfcpp::R_ARM_LDR_PC_G1:
9821 case elfcpp::R_ARM_LDR_PC_G2:
9822 case elfcpp::R_ARM_LDR_SB_G0:
9823 case elfcpp::R_ARM_LDR_SB_G1:
9824 case elfcpp::R_ARM_LDR_SB_G2:
9825 case elfcpp::R_ARM_LDRS_PC_G0:
9826 case elfcpp::R_ARM_LDRS_PC_G1:
9827 case elfcpp::R_ARM_LDRS_PC_G2:
9828 case elfcpp::R_ARM_LDRS_SB_G0:
9829 case elfcpp::R_ARM_LDRS_SB_G1:
9830 case elfcpp::R_ARM_LDRS_SB_G2:
9831 case elfcpp::R_ARM_LDC_PC_G0:
9832 case elfcpp::R_ARM_LDC_PC_G1:
9833 case elfcpp::R_ARM_LDC_PC_G2:
9834 case elfcpp::R_ARM_LDC_SB_G0:
9835 case elfcpp::R_ARM_LDC_SB_G1:
9836 case elfcpp::R_ARM_LDC_SB_G2:
9837 gold_error(_("cannot handle %s in a relocatable link"),
9838 arp->name().c_str());
9845 // Report any errors.
9846 switch (reloc_status)
9848 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9850 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9851 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9852 _("relocation overflow in %s"),
9853 arp->name().c_str());
9855 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9856 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9857 _("unexpected opcode while processing relocation %s"),
9858 arp->name().c_str());
9865 // Return the value to use for a dynamic symbol which requires special
9866 // treatment. This is how we support equality comparisons of function
9867 // pointers across shared library boundaries, as described in the
9868 // processor specific ABI supplement.
9870 template<bool big_endian>
9872 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9874 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9875 return this->plt_section()->address() + gsym->plt_offset();
9878 // Map platform-specific relocs to real relocs
9880 template<bool big_endian>
9882 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9886 case elfcpp::R_ARM_TARGET1:
9887 // This is either R_ARM_ABS32 or R_ARM_REL32;
9888 return elfcpp::R_ARM_ABS32;
9890 case elfcpp::R_ARM_TARGET2:
9891 // This can be any reloc type but usually is R_ARM_GOT_PREL
9892 return elfcpp::R_ARM_GOT_PREL;
9899 // Whether if two EABI versions V1 and V2 are compatible.
9901 template<bool big_endian>
9903 Target_arm<big_endian>::are_eabi_versions_compatible(
9904 elfcpp::Elf_Word v1,
9905 elfcpp::Elf_Word v2)
9907 // v4 and v5 are the same spec before and after it was released,
9908 // so allow mixing them.
9909 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9910 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9911 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9917 // Combine FLAGS from an input object called NAME and the processor-specific
9918 // flags in the ELF header of the output. Much of this is adapted from the
9919 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9920 // in bfd/elf32-arm.c.
9922 template<bool big_endian>
9924 Target_arm<big_endian>::merge_processor_specific_flags(
9925 const std::string& name,
9926 elfcpp::Elf_Word flags)
9928 if (this->are_processor_specific_flags_set())
9930 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9932 // Nothing to merge if flags equal to those in output.
9933 if (flags == out_flags)
9936 // Complain about various flag mismatches.
9937 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9938 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9939 if (!this->are_eabi_versions_compatible(version1, version2)
9940 && parameters->options().warn_mismatch())
9941 gold_error(_("Source object %s has EABI version %d but output has "
9942 "EABI version %d."),
9944 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9945 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9949 // If the input is the default architecture and had the default
9950 // flags then do not bother setting the flags for the output
9951 // architecture, instead allow future merges to do this. If no
9952 // future merges ever set these flags then they will retain their
9953 // uninitialised values, which surprise surprise, correspond
9954 // to the default values.
9958 // This is the first time, just copy the flags.
9959 // We only copy the EABI version for now.
9960 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9964 // Adjust ELF file header.
9965 template<bool big_endian>
9967 Target_arm<big_endian>::do_adjust_elf_header(
9968 unsigned char* view,
9971 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9973 elfcpp::Ehdr<32, big_endian> ehdr(view);
9974 unsigned char e_ident[elfcpp::EI_NIDENT];
9975 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9977 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9978 == elfcpp::EF_ARM_EABI_UNKNOWN)
9979 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9981 e_ident[elfcpp::EI_OSABI] = 0;
9982 e_ident[elfcpp::EI_ABIVERSION] = 0;
9984 // FIXME: Do EF_ARM_BE8 adjustment.
9986 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9987 oehdr.put_e_ident(e_ident);
9990 // do_make_elf_object to override the same function in the base class.
9991 // We need to use a target-specific sub-class of
9992 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9993 // Hence we need to have our own ELF object creation.
9995 template<bool big_endian>
9997 Target_arm<big_endian>::do_make_elf_object(
9998 const std::string& name,
9999 Input_file* input_file,
10000 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10002 int et = ehdr.get_e_type();
10003 if (et == elfcpp::ET_REL)
10005 Arm_relobj<big_endian>* obj =
10006 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10010 else if (et == elfcpp::ET_DYN)
10012 Sized_dynobj<32, big_endian>* obj =
10013 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10019 gold_error(_("%s: unsupported ELF file type %d"),
10025 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10026 // Returns -1 if no architecture could be read.
10027 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10029 template<bool big_endian>
10031 Target_arm<big_endian>::get_secondary_compatible_arch(
10032 const Attributes_section_data* pasd)
10034 const Object_attribute* known_attributes =
10035 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10037 // Note: the tag and its argument below are uleb128 values, though
10038 // currently-defined values fit in one byte for each.
10039 const std::string& sv =
10040 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10042 && sv.data()[0] == elfcpp::Tag_CPU_arch
10043 && (sv.data()[1] & 128) != 128)
10044 return sv.data()[1];
10046 // This tag is "safely ignorable", so don't complain if it looks funny.
10050 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10051 // The tag is removed if ARCH is -1.
10052 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10054 template<bool big_endian>
10056 Target_arm<big_endian>::set_secondary_compatible_arch(
10057 Attributes_section_data* pasd,
10060 Object_attribute* known_attributes =
10061 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10065 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10069 // Note: the tag and its argument below are uleb128 values, though
10070 // currently-defined values fit in one byte for each.
10072 sv[0] = elfcpp::Tag_CPU_arch;
10073 gold_assert(arch != 0);
10077 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10080 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10082 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10084 template<bool big_endian>
10086 Target_arm<big_endian>::tag_cpu_arch_combine(
10089 int* secondary_compat_out,
10091 int secondary_compat)
10093 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10094 static const int v6t2[] =
10096 T(V6T2), // PRE_V4.
10106 static const int v6k[] =
10119 static const int v7[] =
10133 static const int v6_m[] =
10148 static const int v6s_m[] =
10164 static const int v7e_m[] =
10171 T(V7E_M), // V5TEJ.
10178 T(V7E_M), // V6S_M.
10181 static const int v4t_plus_v6_m[] =
10188 T(V5TEJ), // V5TEJ.
10195 T(V6S_M), // V6S_M.
10196 T(V7E_M), // V7E_M.
10197 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10199 static const int* comb[] =
10207 // Pseudo-architecture.
10211 // Check we've not got a higher architecture than we know about.
10213 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10215 gold_error(_("%s: unknown CPU architecture"), name);
10219 // Override old tag if we have a Tag_also_compatible_with on the output.
10221 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10222 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10223 oldtag = T(V4T_PLUS_V6_M);
10225 // And override the new tag if we have a Tag_also_compatible_with on the
10228 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10229 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10230 newtag = T(V4T_PLUS_V6_M);
10232 // Architectures before V6KZ add features monotonically.
10233 int tagh = std::max(oldtag, newtag);
10234 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10237 int tagl = std::min(oldtag, newtag);
10238 int result = comb[tagh - T(V6T2)][tagl];
10240 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10241 // as the canonical version.
10242 if (result == T(V4T_PLUS_V6_M))
10245 *secondary_compat_out = T(V6_M);
10248 *secondary_compat_out = -1;
10252 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10253 name, oldtag, newtag);
10261 // Helper to print AEABI enum tag value.
10263 template<bool big_endian>
10265 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10267 static const char* aeabi_enum_names[] =
10268 { "", "variable-size", "32-bit", "" };
10269 const size_t aeabi_enum_names_size =
10270 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10272 if (value < aeabi_enum_names_size)
10273 return std::string(aeabi_enum_names[value]);
10277 sprintf(buffer, "<unknown value %u>", value);
10278 return std::string(buffer);
10282 // Return the string value to store in TAG_CPU_name.
10284 template<bool big_endian>
10286 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10288 static const char* name_table[] = {
10289 // These aren't real CPU names, but we can't guess
10290 // that from the architecture version alone.
10306 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10308 if (value < name_table_size)
10309 return std::string(name_table[value]);
10313 sprintf(buffer, "<unknown CPU value %u>", value);
10314 return std::string(buffer);
10318 // Merge object attributes from input file called NAME with those of the
10319 // output. The input object attributes are in the object pointed by PASD.
10321 template<bool big_endian>
10323 Target_arm<big_endian>::merge_object_attributes(
10325 const Attributes_section_data* pasd)
10327 // Return if there is no attributes section data.
10331 // If output has no object attributes, just copy.
10332 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10333 if (this->attributes_section_data_ == NULL)
10335 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10336 Object_attribute* out_attr =
10337 this->attributes_section_data_->known_attributes(vendor);
10339 // We do not output objects with Tag_MPextension_use_legacy - we move
10340 // the attribute's value to Tag_MPextension_use. */
10341 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10343 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10344 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10345 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10347 gold_error(_("%s has both the current and legacy "
10348 "Tag_MPextension_use attributes"),
10352 out_attr[elfcpp::Tag_MPextension_use] =
10353 out_attr[elfcpp::Tag_MPextension_use_legacy];
10354 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10355 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10361 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10362 Object_attribute* out_attr =
10363 this->attributes_section_data_->known_attributes(vendor);
10365 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10366 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10367 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10369 // Ignore mismatches if the object doesn't use floating point. */
10370 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10371 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10372 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10373 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10374 && parameters->options().warn_mismatch())
10375 gold_error(_("%s uses VFP register arguments, output does not"),
10379 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10381 // Merge this attribute with existing attributes.
10384 case elfcpp::Tag_CPU_raw_name:
10385 case elfcpp::Tag_CPU_name:
10386 // These are merged after Tag_CPU_arch.
10389 case elfcpp::Tag_ABI_optimization_goals:
10390 case elfcpp::Tag_ABI_FP_optimization_goals:
10391 // Use the first value seen.
10394 case elfcpp::Tag_CPU_arch:
10396 unsigned int saved_out_attr = out_attr->int_value();
10397 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10398 int secondary_compat =
10399 this->get_secondary_compatible_arch(pasd);
10400 int secondary_compat_out =
10401 this->get_secondary_compatible_arch(
10402 this->attributes_section_data_);
10403 out_attr[i].set_int_value(
10404 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10405 &secondary_compat_out,
10406 in_attr[i].int_value(),
10407 secondary_compat));
10408 this->set_secondary_compatible_arch(this->attributes_section_data_,
10409 secondary_compat_out);
10411 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10412 if (out_attr[i].int_value() == saved_out_attr)
10413 ; // Leave the names alone.
10414 else if (out_attr[i].int_value() == in_attr[i].int_value())
10416 // The output architecture has been changed to match the
10417 // input architecture. Use the input names.
10418 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10419 in_attr[elfcpp::Tag_CPU_name].string_value());
10420 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10421 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10425 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10426 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10429 // If we still don't have a value for Tag_CPU_name,
10430 // make one up now. Tag_CPU_raw_name remains blank.
10431 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10433 const std::string cpu_name =
10434 this->tag_cpu_name_value(out_attr[i].int_value());
10435 // FIXME: If we see an unknown CPU, this will be set
10436 // to "<unknown CPU n>", where n is the attribute value.
10437 // This is different from BFD, which leaves the name alone.
10438 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10443 case elfcpp::Tag_ARM_ISA_use:
10444 case elfcpp::Tag_THUMB_ISA_use:
10445 case elfcpp::Tag_WMMX_arch:
10446 case elfcpp::Tag_Advanced_SIMD_arch:
10447 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10448 case elfcpp::Tag_ABI_FP_rounding:
10449 case elfcpp::Tag_ABI_FP_exceptions:
10450 case elfcpp::Tag_ABI_FP_user_exceptions:
10451 case elfcpp::Tag_ABI_FP_number_model:
10452 case elfcpp::Tag_VFP_HP_extension:
10453 case elfcpp::Tag_CPU_unaligned_access:
10454 case elfcpp::Tag_T2EE_use:
10455 case elfcpp::Tag_Virtualization_use:
10456 case elfcpp::Tag_MPextension_use:
10457 // Use the largest value specified.
10458 if (in_attr[i].int_value() > out_attr[i].int_value())
10459 out_attr[i].set_int_value(in_attr[i].int_value());
10462 case elfcpp::Tag_ABI_align8_preserved:
10463 case elfcpp::Tag_ABI_PCS_RO_data:
10464 // Use the smallest value specified.
10465 if (in_attr[i].int_value() < out_attr[i].int_value())
10466 out_attr[i].set_int_value(in_attr[i].int_value());
10469 case elfcpp::Tag_ABI_align8_needed:
10470 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10471 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10472 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10475 // This error message should be enabled once all non-conforming
10476 // binaries in the toolchain have had the attributes set
10478 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10482 case elfcpp::Tag_ABI_FP_denormal:
10483 case elfcpp::Tag_ABI_PCS_GOT_use:
10485 // These tags have 0 = don't care, 1 = strong requirement,
10486 // 2 = weak requirement.
10487 static const int order_021[3] = {0, 2, 1};
10489 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10490 // value if greater than 2 (for future-proofing).
10491 if ((in_attr[i].int_value() > 2
10492 && in_attr[i].int_value() > out_attr[i].int_value())
10493 || (in_attr[i].int_value() <= 2
10494 && out_attr[i].int_value() <= 2
10495 && (order_021[in_attr[i].int_value()]
10496 > order_021[out_attr[i].int_value()])))
10497 out_attr[i].set_int_value(in_attr[i].int_value());
10501 case elfcpp::Tag_CPU_arch_profile:
10502 if (out_attr[i].int_value() != in_attr[i].int_value())
10504 // 0 will merge with anything.
10505 // 'A' and 'S' merge to 'A'.
10506 // 'R' and 'S' merge to 'R'.
10507 // 'M' and 'A|R|S' is an error.
10508 if (out_attr[i].int_value() == 0
10509 || (out_attr[i].int_value() == 'S'
10510 && (in_attr[i].int_value() == 'A'
10511 || in_attr[i].int_value() == 'R')))
10512 out_attr[i].set_int_value(in_attr[i].int_value());
10513 else if (in_attr[i].int_value() == 0
10514 || (in_attr[i].int_value() == 'S'
10515 && (out_attr[i].int_value() == 'A'
10516 || out_attr[i].int_value() == 'R')))
10518 else if (parameters->options().warn_mismatch())
10521 (_("conflicting architecture profiles %c/%c"),
10522 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10523 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10527 case elfcpp::Tag_VFP_arch:
10529 static const struct
10533 } vfp_versions[7] =
10544 // Values greater than 6 aren't defined, so just pick the
10546 if (in_attr[i].int_value() > 6
10547 && in_attr[i].int_value() > out_attr[i].int_value())
10549 *out_attr = *in_attr;
10552 // The output uses the superset of input features
10553 // (ISA version) and registers.
10554 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10555 vfp_versions[out_attr[i].int_value()].ver);
10556 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10557 vfp_versions[out_attr[i].int_value()].regs);
10558 // This assumes all possible supersets are also a valid
10561 for (newval = 6; newval > 0; newval--)
10563 if (regs == vfp_versions[newval].regs
10564 && ver == vfp_versions[newval].ver)
10567 out_attr[i].set_int_value(newval);
10570 case elfcpp::Tag_PCS_config:
10571 if (out_attr[i].int_value() == 0)
10572 out_attr[i].set_int_value(in_attr[i].int_value());
10573 else if (in_attr[i].int_value() != 0
10574 && out_attr[i].int_value() != 0
10575 && parameters->options().warn_mismatch())
10577 // It's sometimes ok to mix different configs, so this is only
10579 gold_warning(_("%s: conflicting platform configuration"), name);
10582 case elfcpp::Tag_ABI_PCS_R9_use:
10583 if (in_attr[i].int_value() != out_attr[i].int_value()
10584 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10585 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10586 && parameters->options().warn_mismatch())
10588 gold_error(_("%s: conflicting use of R9"), name);
10590 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10591 out_attr[i].set_int_value(in_attr[i].int_value());
10593 case elfcpp::Tag_ABI_PCS_RW_data:
10594 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10595 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10596 != elfcpp::AEABI_R9_SB)
10597 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10598 != elfcpp::AEABI_R9_unused)
10599 && parameters->options().warn_mismatch())
10601 gold_error(_("%s: SB relative addressing conflicts with use "
10605 // Use the smallest value specified.
10606 if (in_attr[i].int_value() < out_attr[i].int_value())
10607 out_attr[i].set_int_value(in_attr[i].int_value());
10609 case elfcpp::Tag_ABI_PCS_wchar_t:
10610 if (out_attr[i].int_value()
10611 && in_attr[i].int_value()
10612 && out_attr[i].int_value() != in_attr[i].int_value()
10613 && parameters->options().warn_mismatch()
10614 && parameters->options().wchar_size_warning())
10616 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10617 "use %u-byte wchar_t; use of wchar_t values "
10618 "across objects may fail"),
10619 name, in_attr[i].int_value(),
10620 out_attr[i].int_value());
10622 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10623 out_attr[i].set_int_value(in_attr[i].int_value());
10625 case elfcpp::Tag_ABI_enum_size:
10626 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10628 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10629 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10631 // The existing object is compatible with anything.
10632 // Use whatever requirements the new object has.
10633 out_attr[i].set_int_value(in_attr[i].int_value());
10635 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10636 && out_attr[i].int_value() != in_attr[i].int_value()
10637 && parameters->options().warn_mismatch()
10638 && parameters->options().enum_size_warning())
10640 unsigned int in_value = in_attr[i].int_value();
10641 unsigned int out_value = out_attr[i].int_value();
10642 gold_warning(_("%s uses %s enums yet the output is to use "
10643 "%s enums; use of enum values across objects "
10646 this->aeabi_enum_name(in_value).c_str(),
10647 this->aeabi_enum_name(out_value).c_str());
10651 case elfcpp::Tag_ABI_VFP_args:
10654 case elfcpp::Tag_ABI_WMMX_args:
10655 if (in_attr[i].int_value() != out_attr[i].int_value()
10656 && parameters->options().warn_mismatch())
10658 gold_error(_("%s uses iWMMXt register arguments, output does "
10663 case Object_attribute::Tag_compatibility:
10664 // Merged in target-independent code.
10666 case elfcpp::Tag_ABI_HardFP_use:
10667 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10668 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10669 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10670 out_attr[i].set_int_value(3);
10671 else if (in_attr[i].int_value() > out_attr[i].int_value())
10672 out_attr[i].set_int_value(in_attr[i].int_value());
10674 case elfcpp::Tag_ABI_FP_16bit_format:
10675 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10677 if (in_attr[i].int_value() != out_attr[i].int_value()
10678 && parameters->options().warn_mismatch())
10679 gold_error(_("fp16 format mismatch between %s and output"),
10682 if (in_attr[i].int_value() != 0)
10683 out_attr[i].set_int_value(in_attr[i].int_value());
10686 case elfcpp::Tag_DIV_use:
10687 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10688 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10689 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10690 // CPU. We will merge as follows: If the input attribute's value
10691 // is one then the output attribute's value remains unchanged. If
10692 // the input attribute's value is zero or two then if the output
10693 // attribute's value is one the output value is set to the input
10694 // value, otherwise the output value must be the same as the
10696 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10698 if (in_attr[i].int_value() != out_attr[i].int_value())
10700 gold_error(_("DIV usage mismatch between %s and output"),
10705 if (in_attr[i].int_value() != 1)
10706 out_attr[i].set_int_value(in_attr[i].int_value());
10710 case elfcpp::Tag_MPextension_use_legacy:
10711 // We don't output objects with Tag_MPextension_use_legacy - we
10712 // move the value to Tag_MPextension_use.
10713 if (in_attr[i].int_value() != 0
10714 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10716 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10717 != in_attr[i].int_value())
10719 gold_error(_("%s has has both the current and legacy "
10720 "Tag_MPextension_use attributes"),
10725 if (in_attr[i].int_value()
10726 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10727 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10731 case elfcpp::Tag_nodefaults:
10732 // This tag is set if it exists, but the value is unused (and is
10733 // typically zero). We don't actually need to do anything here -
10734 // the merge happens automatically when the type flags are merged
10737 case elfcpp::Tag_also_compatible_with:
10738 // Already done in Tag_CPU_arch.
10740 case elfcpp::Tag_conformance:
10741 // Keep the attribute if it matches. Throw it away otherwise.
10742 // No attribute means no claim to conform.
10743 if (in_attr[i].string_value() != out_attr[i].string_value())
10744 out_attr[i].set_string_value("");
10749 const char* err_object = NULL;
10751 // The "known_obj_attributes" table does contain some undefined
10752 // attributes. Ensure that there are unused.
10753 if (out_attr[i].int_value() != 0
10754 || out_attr[i].string_value() != "")
10755 err_object = "output";
10756 else if (in_attr[i].int_value() != 0
10757 || in_attr[i].string_value() != "")
10760 if (err_object != NULL
10761 && parameters->options().warn_mismatch())
10763 // Attribute numbers >=64 (mod 128) can be safely ignored.
10764 if ((i & 127) < 64)
10765 gold_error(_("%s: unknown mandatory EABI object attribute "
10769 gold_warning(_("%s: unknown EABI object attribute %d"),
10773 // Only pass on attributes that match in both inputs.
10774 if (!in_attr[i].matches(out_attr[i]))
10776 out_attr[i].set_int_value(0);
10777 out_attr[i].set_string_value("");
10782 // If out_attr was copied from in_attr then it won't have a type yet.
10783 if (in_attr[i].type() && !out_attr[i].type())
10784 out_attr[i].set_type(in_attr[i].type());
10787 // Merge Tag_compatibility attributes and any common GNU ones.
10788 this->attributes_section_data_->merge(name, pasd);
10790 // Check for any attributes not known on ARM.
10791 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10792 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10793 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10794 Other_attributes* out_other_attributes =
10795 this->attributes_section_data_->other_attributes(vendor);
10796 Other_attributes::iterator out_iter = out_other_attributes->begin();
10798 while (in_iter != in_other_attributes->end()
10799 || out_iter != out_other_attributes->end())
10801 const char* err_object = NULL;
10804 // The tags for each list are in numerical order.
10805 // If the tags are equal, then merge.
10806 if (out_iter != out_other_attributes->end()
10807 && (in_iter == in_other_attributes->end()
10808 || in_iter->first > out_iter->first))
10810 // This attribute only exists in output. We can't merge, and we
10811 // don't know what the tag means, so delete it.
10812 err_object = "output";
10813 err_tag = out_iter->first;
10814 int saved_tag = out_iter->first;
10815 delete out_iter->second;
10816 out_other_attributes->erase(out_iter);
10817 out_iter = out_other_attributes->upper_bound(saved_tag);
10819 else if (in_iter != in_other_attributes->end()
10820 && (out_iter != out_other_attributes->end()
10821 || in_iter->first < out_iter->first))
10823 // This attribute only exists in input. We can't merge, and we
10824 // don't know what the tag means, so ignore it.
10826 err_tag = in_iter->first;
10829 else // The tags are equal.
10831 // As present, all attributes in the list are unknown, and
10832 // therefore can't be merged meaningfully.
10833 err_object = "output";
10834 err_tag = out_iter->first;
10836 // Only pass on attributes that match in both inputs.
10837 if (!in_iter->second->matches(*(out_iter->second)))
10839 // No match. Delete the attribute.
10840 int saved_tag = out_iter->first;
10841 delete out_iter->second;
10842 out_other_attributes->erase(out_iter);
10843 out_iter = out_other_attributes->upper_bound(saved_tag);
10847 // Matched. Keep the attribute and move to the next.
10853 if (err_object && parameters->options().warn_mismatch())
10855 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10856 if ((err_tag & 127) < 64)
10858 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10859 err_object, err_tag);
10863 gold_warning(_("%s: unknown EABI object attribute %d"),
10864 err_object, err_tag);
10870 // Stub-generation methods for Target_arm.
10872 // Make a new Arm_input_section object.
10874 template<bool big_endian>
10875 Arm_input_section<big_endian>*
10876 Target_arm<big_endian>::new_arm_input_section(
10878 unsigned int shndx)
10880 Section_id sid(relobj, shndx);
10882 Arm_input_section<big_endian>* arm_input_section =
10883 new Arm_input_section<big_endian>(relobj, shndx);
10884 arm_input_section->init();
10886 // Register new Arm_input_section in map for look-up.
10887 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10888 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10890 // Make sure that it we have not created another Arm_input_section
10891 // for this input section already.
10892 gold_assert(ins.second);
10894 return arm_input_section;
10897 // Find the Arm_input_section object corresponding to the SHNDX-th input
10898 // section of RELOBJ.
10900 template<bool big_endian>
10901 Arm_input_section<big_endian>*
10902 Target_arm<big_endian>::find_arm_input_section(
10904 unsigned int shndx) const
10906 Section_id sid(relobj, shndx);
10907 typename Arm_input_section_map::const_iterator p =
10908 this->arm_input_section_map_.find(sid);
10909 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10912 // Make a new stub table.
10914 template<bool big_endian>
10915 Stub_table<big_endian>*
10916 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10918 Stub_table<big_endian>* stub_table =
10919 new Stub_table<big_endian>(owner);
10920 this->stub_tables_.push_back(stub_table);
10922 stub_table->set_address(owner->address() + owner->data_size());
10923 stub_table->set_file_offset(owner->offset() + owner->data_size());
10924 stub_table->finalize_data_size();
10929 // Scan a relocation for stub generation.
10931 template<bool big_endian>
10933 Target_arm<big_endian>::scan_reloc_for_stub(
10934 const Relocate_info<32, big_endian>* relinfo,
10935 unsigned int r_type,
10936 const Sized_symbol<32>* gsym,
10937 unsigned int r_sym,
10938 const Symbol_value<32>* psymval,
10939 elfcpp::Elf_types<32>::Elf_Swxword addend,
10940 Arm_address address)
10942 typedef typename Target_arm<big_endian>::Relocate Relocate;
10944 const Arm_relobj<big_endian>* arm_relobj =
10945 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10947 bool target_is_thumb;
10948 Symbol_value<32> symval;
10951 // This is a global symbol. Determine if we use PLT and if the
10952 // final target is THUMB.
10953 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10955 // This uses a PLT, change the symbol value.
10956 symval.set_output_value(this->plt_section()->address()
10957 + gsym->plt_offset());
10959 target_is_thumb = false;
10961 else if (gsym->is_undefined())
10962 // There is no need to generate a stub symbol is undefined.
10967 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10968 || (gsym->type() == elfcpp::STT_FUNC
10969 && !gsym->is_undefined()
10970 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10975 // This is a local symbol. Determine if the final target is THUMB.
10976 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10979 // Strip LSB if this points to a THUMB target.
10980 const Arm_reloc_property* reloc_property =
10981 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10982 gold_assert(reloc_property != NULL);
10983 if (target_is_thumb
10984 && reloc_property->uses_thumb_bit()
10985 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10987 Arm_address stripped_value =
10988 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10989 symval.set_output_value(stripped_value);
10993 // Get the symbol value.
10994 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10996 // Owing to pipelining, the PC relative branches below actually skip
10997 // two instructions when the branch offset is 0.
10998 Arm_address destination;
11001 case elfcpp::R_ARM_CALL:
11002 case elfcpp::R_ARM_JUMP24:
11003 case elfcpp::R_ARM_PLT32:
11005 destination = value + addend + 8;
11007 case elfcpp::R_ARM_THM_CALL:
11008 case elfcpp::R_ARM_THM_XPC22:
11009 case elfcpp::R_ARM_THM_JUMP24:
11010 case elfcpp::R_ARM_THM_JUMP19:
11012 destination = value + addend + 4;
11015 gold_unreachable();
11018 Reloc_stub* stub = NULL;
11019 Stub_type stub_type =
11020 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11022 if (stub_type != arm_stub_none)
11024 // Try looking up an existing stub from a stub table.
11025 Stub_table<big_endian>* stub_table =
11026 arm_relobj->stub_table(relinfo->data_shndx);
11027 gold_assert(stub_table != NULL);
11029 // Locate stub by destination.
11030 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11032 // Create a stub if there is not one already
11033 stub = stub_table->find_reloc_stub(stub_key);
11036 // create a new stub and add it to stub table.
11037 stub = this->stub_factory().make_reloc_stub(stub_type);
11038 stub_table->add_reloc_stub(stub, stub_key);
11041 // Record the destination address.
11042 stub->set_destination_address(destination
11043 | (target_is_thumb ? 1 : 0));
11046 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11047 if (this->fix_cortex_a8_
11048 && (r_type == elfcpp::R_ARM_THM_JUMP24
11049 || r_type == elfcpp::R_ARM_THM_JUMP19
11050 || r_type == elfcpp::R_ARM_THM_CALL
11051 || r_type == elfcpp::R_ARM_THM_XPC22)
11052 && (address & 0xfffU) == 0xffeU)
11054 // Found a candidate. Note we haven't checked the destination is
11055 // within 4K here: if we do so (and don't create a record) we can't
11056 // tell that a branch should have been relocated when scanning later.
11057 this->cortex_a8_relocs_info_[address] =
11058 new Cortex_a8_reloc(stub, r_type,
11059 destination | (target_is_thumb ? 1 : 0));
11063 // This function scans a relocation sections for stub generation.
11064 // The template parameter Relocate must be a class type which provides
11065 // a single function, relocate(), which implements the machine
11066 // specific part of a relocation.
11068 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11069 // SHT_REL or SHT_RELA.
11071 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11072 // of relocs. OUTPUT_SECTION is the output section.
11073 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11074 // mapped to output offsets.
11076 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11077 // VIEW_SIZE is the size. These refer to the input section, unless
11078 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11079 // the output section.
11081 template<bool big_endian>
11082 template<int sh_type>
11084 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11085 const Relocate_info<32, big_endian>* relinfo,
11086 const unsigned char* prelocs,
11087 size_t reloc_count,
11088 Output_section* output_section,
11089 bool needs_special_offset_handling,
11090 const unsigned char* view,
11091 elfcpp::Elf_types<32>::Elf_Addr view_address,
11094 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11095 const int reloc_size =
11096 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11098 Arm_relobj<big_endian>* arm_object =
11099 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11100 unsigned int local_count = arm_object->local_symbol_count();
11102 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11104 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11106 Reltype reloc(prelocs);
11108 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11109 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11110 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11112 r_type = this->get_real_reloc_type(r_type);
11114 // Only a few relocation types need stubs.
11115 if ((r_type != elfcpp::R_ARM_CALL)
11116 && (r_type != elfcpp::R_ARM_JUMP24)
11117 && (r_type != elfcpp::R_ARM_PLT32)
11118 && (r_type != elfcpp::R_ARM_THM_CALL)
11119 && (r_type != elfcpp::R_ARM_THM_XPC22)
11120 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11121 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11122 && (r_type != elfcpp::R_ARM_V4BX))
11125 section_offset_type offset =
11126 convert_to_section_size_type(reloc.get_r_offset());
11128 if (needs_special_offset_handling)
11130 offset = output_section->output_offset(relinfo->object,
11131 relinfo->data_shndx,
11137 // Create a v4bx stub if --fix-v4bx-interworking is used.
11138 if (r_type == elfcpp::R_ARM_V4BX)
11140 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11142 // Get the BX instruction.
11143 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11144 const Valtype* wv =
11145 reinterpret_cast<const Valtype*>(view + offset);
11146 elfcpp::Elf_types<32>::Elf_Swxword insn =
11147 elfcpp::Swap<32, big_endian>::readval(wv);
11148 const uint32_t reg = (insn & 0xf);
11152 // Try looking up an existing stub from a stub table.
11153 Stub_table<big_endian>* stub_table =
11154 arm_object->stub_table(relinfo->data_shndx);
11155 gold_assert(stub_table != NULL);
11157 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11159 // create a new stub and add it to stub table.
11160 Arm_v4bx_stub* stub =
11161 this->stub_factory().make_arm_v4bx_stub(reg);
11162 gold_assert(stub != NULL);
11163 stub_table->add_arm_v4bx_stub(stub);
11171 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11172 elfcpp::Elf_types<32>::Elf_Swxword addend =
11173 stub_addend_reader(r_type, view + offset, reloc);
11175 const Sized_symbol<32>* sym;
11177 Symbol_value<32> symval;
11178 const Symbol_value<32> *psymval;
11179 bool is_defined_in_discarded_section;
11180 unsigned int shndx;
11181 if (r_sym < local_count)
11184 psymval = arm_object->local_symbol(r_sym);
11186 // If the local symbol belongs to a section we are discarding,
11187 // and that section is a debug section, try to find the
11188 // corresponding kept section and map this symbol to its
11189 // counterpart in the kept section. The symbol must not
11190 // correspond to a section we are folding.
11192 shndx = psymval->input_shndx(&is_ordinary);
11193 is_defined_in_discarded_section =
11195 && shndx != elfcpp::SHN_UNDEF
11196 && !arm_object->is_section_included(shndx)
11197 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11199 // We need to compute the would-be final value of this local
11201 if (!is_defined_in_discarded_section)
11203 typedef Sized_relobj_file<32, big_endian> ObjType;
11204 typename ObjType::Compute_final_local_value_status status =
11205 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11207 if (status == ObjType::CFLV_OK)
11209 // Currently we cannot handle a branch to a target in
11210 // a merged section. If this is the case, issue an error
11211 // and also free the merge symbol value.
11212 if (!symval.has_output_value())
11214 const std::string& section_name =
11215 arm_object->section_name(shndx);
11216 arm_object->error(_("cannot handle branch to local %u "
11217 "in a merged section %s"),
11218 r_sym, section_name.c_str());
11224 // We cannot determine the final value.
11231 const Symbol* gsym;
11232 gsym = arm_object->global_symbol(r_sym);
11233 gold_assert(gsym != NULL);
11234 if (gsym->is_forwarder())
11235 gsym = relinfo->symtab->resolve_forwards(gsym);
11237 sym = static_cast<const Sized_symbol<32>*>(gsym);
11238 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11239 symval.set_output_symtab_index(sym->symtab_index());
11241 symval.set_no_output_symtab_entry();
11243 // We need to compute the would-be final value of this global
11245 const Symbol_table* symtab = relinfo->symtab;
11246 const Sized_symbol<32>* sized_symbol =
11247 symtab->get_sized_symbol<32>(gsym);
11248 Symbol_table::Compute_final_value_status status;
11249 Arm_address value =
11250 symtab->compute_final_value<32>(sized_symbol, &status);
11252 // Skip this if the symbol has not output section.
11253 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11255 symval.set_output_value(value);
11257 if (gsym->type() == elfcpp::STT_TLS)
11258 symval.set_is_tls_symbol();
11259 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11260 symval.set_is_ifunc_symbol();
11263 is_defined_in_discarded_section =
11264 (gsym->is_defined_in_discarded_section()
11265 && gsym->is_undefined());
11269 Symbol_value<32> symval2;
11270 if (is_defined_in_discarded_section)
11272 if (comdat_behavior == CB_UNDETERMINED)
11274 std::string name = arm_object->section_name(relinfo->data_shndx);
11275 comdat_behavior = get_comdat_behavior(name.c_str());
11277 if (comdat_behavior == CB_PRETEND)
11279 // FIXME: This case does not work for global symbols.
11280 // We have no place to store the original section index.
11281 // Fortunately this does not matter for comdat sections,
11282 // only for sections explicitly discarded by a linker
11285 typename elfcpp::Elf_types<32>::Elf_Addr value =
11286 arm_object->map_to_kept_section(shndx, &found);
11288 symval2.set_output_value(value + psymval->input_value());
11290 symval2.set_output_value(0);
11294 if (comdat_behavior == CB_WARNING)
11295 gold_warning_at_location(relinfo, i, offset,
11296 _("relocation refers to discarded "
11298 symval2.set_output_value(0);
11300 symval2.set_no_output_symtab_entry();
11301 psymval = &symval2;
11304 // If symbol is a section symbol, we don't know the actual type of
11305 // destination. Give up.
11306 if (psymval->is_section_symbol())
11309 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11310 addend, view_address + offset);
11314 // Scan an input section for stub generation.
11316 template<bool big_endian>
11318 Target_arm<big_endian>::scan_section_for_stubs(
11319 const Relocate_info<32, big_endian>* relinfo,
11320 unsigned int sh_type,
11321 const unsigned char* prelocs,
11322 size_t reloc_count,
11323 Output_section* output_section,
11324 bool needs_special_offset_handling,
11325 const unsigned char* view,
11326 Arm_address view_address,
11327 section_size_type view_size)
11329 if (sh_type == elfcpp::SHT_REL)
11330 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11335 needs_special_offset_handling,
11339 else if (sh_type == elfcpp::SHT_RELA)
11340 // We do not support RELA type relocations yet. This is provided for
11342 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11347 needs_special_offset_handling,
11352 gold_unreachable();
11355 // Group input sections for stub generation.
11357 // We group input sections in an output section so that the total size,
11358 // including any padding space due to alignment is smaller than GROUP_SIZE
11359 // unless the only input section in group is bigger than GROUP_SIZE already.
11360 // Then an ARM stub table is created to follow the last input section
11361 // in group. For each group an ARM stub table is created an is placed
11362 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11363 // extend the group after the stub table.
11365 template<bool big_endian>
11367 Target_arm<big_endian>::group_sections(
11369 section_size_type group_size,
11370 bool stubs_always_after_branch,
11373 // Group input sections and insert stub table
11374 Layout::Section_list section_list;
11375 layout->get_allocated_sections(§ion_list);
11376 for (Layout::Section_list::const_iterator p = section_list.begin();
11377 p != section_list.end();
11380 Arm_output_section<big_endian>* output_section =
11381 Arm_output_section<big_endian>::as_arm_output_section(*p);
11382 output_section->group_sections(group_size, stubs_always_after_branch,
11387 // Relaxation hook. This is where we do stub generation.
11389 template<bool big_endian>
11391 Target_arm<big_endian>::do_relax(
11393 const Input_objects* input_objects,
11394 Symbol_table* symtab,
11398 // No need to generate stubs if this is a relocatable link.
11399 gold_assert(!parameters->options().relocatable());
11401 // If this is the first pass, we need to group input sections into
11403 bool done_exidx_fixup = false;
11404 typedef typename Stub_table_list::iterator Stub_table_iterator;
11407 // Determine the stub group size. The group size is the absolute
11408 // value of the parameter --stub-group-size. If --stub-group-size
11409 // is passed a negative value, we restrict stubs to be always after
11410 // the stubbed branches.
11411 int32_t stub_group_size_param =
11412 parameters->options().stub_group_size();
11413 bool stubs_always_after_branch = stub_group_size_param < 0;
11414 section_size_type stub_group_size = abs(stub_group_size_param);
11416 if (stub_group_size == 1)
11419 // Thumb branch range is +-4MB has to be used as the default
11420 // maximum size (a given section can contain both ARM and Thumb
11421 // code, so the worst case has to be taken into account). If we are
11422 // fixing cortex-a8 errata, the branch range has to be even smaller,
11423 // since wide conditional branch has a range of +-1MB only.
11425 // This value is 48K less than that, which allows for 4096
11426 // 12-byte stubs. If we exceed that, then we will fail to link.
11427 // The user will have to relink with an explicit group size
11429 stub_group_size = 4145152;
11432 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11433 // page as the first half of a 32-bit branch straddling two 4K pages.
11434 // This is a crude way of enforcing that. In addition, long conditional
11435 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11436 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11437 // cortex-A8 stubs from long conditional branches.
11438 if (this->fix_cortex_a8_)
11440 stubs_always_after_branch = true;
11441 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11442 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11445 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11447 // Also fix .ARM.exidx section coverage.
11448 Arm_output_section<big_endian>* exidx_output_section = NULL;
11449 for (Layout::Section_list::const_iterator p =
11450 layout->section_list().begin();
11451 p != layout->section_list().end();
11453 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11455 if (exidx_output_section == NULL)
11456 exidx_output_section =
11457 Arm_output_section<big_endian>::as_arm_output_section(*p);
11459 // We cannot handle this now.
11460 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11461 "non-relocatable link"),
11462 exidx_output_section->name(),
11466 if (exidx_output_section != NULL)
11468 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11470 done_exidx_fixup = true;
11475 // If this is not the first pass, addresses and file offsets have
11476 // been reset at this point, set them here.
11477 for (Stub_table_iterator sp = this->stub_tables_.begin();
11478 sp != this->stub_tables_.end();
11481 Arm_input_section<big_endian>* owner = (*sp)->owner();
11482 off_t off = align_address(owner->original_size(),
11483 (*sp)->addralign());
11484 (*sp)->set_address_and_file_offset(owner->address() + off,
11485 owner->offset() + off);
11489 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11490 // beginning of each relaxation pass, just blow away all the stubs.
11491 // Alternatively, we could selectively remove only the stubs and reloc
11492 // information for code sections that have moved since the last pass.
11493 // That would require more book-keeping.
11494 if (this->fix_cortex_a8_)
11496 // Clear all Cortex-A8 reloc information.
11497 for (typename Cortex_a8_relocs_info::const_iterator p =
11498 this->cortex_a8_relocs_info_.begin();
11499 p != this->cortex_a8_relocs_info_.end();
11502 this->cortex_a8_relocs_info_.clear();
11504 // Remove all Cortex-A8 stubs.
11505 for (Stub_table_iterator sp = this->stub_tables_.begin();
11506 sp != this->stub_tables_.end();
11508 (*sp)->remove_all_cortex_a8_stubs();
11511 // Scan relocs for relocation stubs
11512 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11513 op != input_objects->relobj_end();
11516 Arm_relobj<big_endian>* arm_relobj =
11517 Arm_relobj<big_endian>::as_arm_relobj(*op);
11518 // Lock the object so we can read from it. This is only called
11519 // single-threaded from Layout::finalize, so it is OK to lock.
11520 Task_lock_obj<Object> tl(task, arm_relobj);
11521 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11524 // Check all stub tables to see if any of them have their data sizes
11525 // or addresses alignments changed. These are the only things that
11527 bool any_stub_table_changed = false;
11528 Unordered_set<const Output_section*> sections_needing_adjustment;
11529 for (Stub_table_iterator sp = this->stub_tables_.begin();
11530 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11533 if ((*sp)->update_data_size_and_addralign())
11535 // Update data size of stub table owner.
11536 Arm_input_section<big_endian>* owner = (*sp)->owner();
11537 uint64_t address = owner->address();
11538 off_t offset = owner->offset();
11539 owner->reset_address_and_file_offset();
11540 owner->set_address_and_file_offset(address, offset);
11542 sections_needing_adjustment.insert(owner->output_section());
11543 any_stub_table_changed = true;
11547 // Output_section_data::output_section() returns a const pointer but we
11548 // need to update output sections, so we record all output sections needing
11549 // update above and scan the sections here to find out what sections need
11551 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11552 p != layout->section_list().end();
11555 if (sections_needing_adjustment.find(*p)
11556 != sections_needing_adjustment.end())
11557 (*p)->set_section_offsets_need_adjustment();
11560 // Stop relaxation if no EXIDX fix-up and no stub table change.
11561 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11563 // Finalize the stubs in the last relaxation pass.
11564 if (!continue_relaxation)
11566 for (Stub_table_iterator sp = this->stub_tables_.begin();
11567 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11569 (*sp)->finalize_stubs();
11571 // Update output local symbol counts of objects if necessary.
11572 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11573 op != input_objects->relobj_end();
11576 Arm_relobj<big_endian>* arm_relobj =
11577 Arm_relobj<big_endian>::as_arm_relobj(*op);
11579 // Update output local symbol counts. We need to discard local
11580 // symbols defined in parts of input sections that are discarded by
11582 if (arm_relobj->output_local_symbol_count_needs_update())
11584 // We need to lock the object's file to update it.
11585 Task_lock_obj<Object> tl(task, arm_relobj);
11586 arm_relobj->update_output_local_symbol_count();
11591 return continue_relaxation;
11594 // Relocate a stub.
11596 template<bool big_endian>
11598 Target_arm<big_endian>::relocate_stub(
11600 const Relocate_info<32, big_endian>* relinfo,
11601 Output_section* output_section,
11602 unsigned char* view,
11603 Arm_address address,
11604 section_size_type view_size)
11607 const Stub_template* stub_template = stub->stub_template();
11608 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11610 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11611 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11613 unsigned int r_type = insn->r_type();
11614 section_size_type reloc_offset = stub_template->reloc_offset(i);
11615 section_size_type reloc_size = insn->size();
11616 gold_assert(reloc_offset + reloc_size <= view_size);
11618 // This is the address of the stub destination.
11619 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11620 Symbol_value<32> symval;
11621 symval.set_output_value(target);
11623 // Synthesize a fake reloc just in case. We don't have a symbol so
11625 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11626 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11627 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11628 reloc_write.put_r_offset(reloc_offset);
11629 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11630 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11632 relocate.relocate(relinfo, this, output_section,
11633 this->fake_relnum_for_stubs, rel, r_type,
11634 NULL, &symval, view + reloc_offset,
11635 address + reloc_offset, reloc_size);
11639 // Determine whether an object attribute tag takes an integer, a
11642 template<bool big_endian>
11644 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11646 if (tag == Object_attribute::Tag_compatibility)
11647 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11648 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11649 else if (tag == elfcpp::Tag_nodefaults)
11650 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11651 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11652 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11653 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11655 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11657 return ((tag & 1) != 0
11658 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11659 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11662 // Reorder attributes.
11664 // The ABI defines that Tag_conformance should be emitted first, and that
11665 // Tag_nodefaults should be second (if either is defined). This sets those
11666 // two positions, and bumps up the position of all the remaining tags to
11669 template<bool big_endian>
11671 Target_arm<big_endian>::do_attributes_order(int num) const
11673 // Reorder the known object attributes in output. We want to move
11674 // Tag_conformance to position 4 and Tag_conformance to position 5
11675 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11677 return elfcpp::Tag_conformance;
11679 return elfcpp::Tag_nodefaults;
11680 if ((num - 2) < elfcpp::Tag_nodefaults)
11682 if ((num - 1) < elfcpp::Tag_conformance)
11687 // Scan a span of THUMB code for Cortex-A8 erratum.
11689 template<bool big_endian>
11691 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11692 Arm_relobj<big_endian>* arm_relobj,
11693 unsigned int shndx,
11694 section_size_type span_start,
11695 section_size_type span_end,
11696 const unsigned char* view,
11697 Arm_address address)
11699 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11701 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11702 // The branch target is in the same 4KB region as the
11703 // first half of the branch.
11704 // The instruction before the branch is a 32-bit
11705 // length non-branch instruction.
11706 section_size_type i = span_start;
11707 bool last_was_32bit = false;
11708 bool last_was_branch = false;
11709 while (i < span_end)
11711 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11712 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11713 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11714 bool is_blx = false, is_b = false;
11715 bool is_bl = false, is_bcc = false;
11717 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11720 // Load the rest of the insn (in manual-friendly order).
11721 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11723 // Encoding T4: B<c>.W.
11724 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11725 // Encoding T1: BL<c>.W.
11726 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11727 // Encoding T2: BLX<c>.W.
11728 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11729 // Encoding T3: B<c>.W (not permitted in IT block).
11730 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11731 && (insn & 0x07f00000U) != 0x03800000U);
11734 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11736 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11737 // page boundary and it follows 32-bit non-branch instruction,
11738 // we need to work around.
11739 if (is_32bit_branch
11740 && ((address + i) & 0xfffU) == 0xffeU
11742 && !last_was_branch)
11744 // Check to see if there is a relocation stub for this branch.
11745 bool force_target_arm = false;
11746 bool force_target_thumb = false;
11747 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11748 Cortex_a8_relocs_info::const_iterator p =
11749 this->cortex_a8_relocs_info_.find(address + i);
11751 if (p != this->cortex_a8_relocs_info_.end())
11753 cortex_a8_reloc = p->second;
11754 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11756 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11757 && !target_is_thumb)
11758 force_target_arm = true;
11759 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11760 && target_is_thumb)
11761 force_target_thumb = true;
11765 Stub_type stub_type = arm_stub_none;
11767 // Check if we have an offending branch instruction.
11768 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11769 uint16_t lower_insn = insn & 0xffffU;
11770 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11772 if (cortex_a8_reloc != NULL
11773 && cortex_a8_reloc->reloc_stub() != NULL)
11774 // We've already made a stub for this instruction, e.g.
11775 // it's a long branch or a Thumb->ARM stub. Assume that
11776 // stub will suffice to work around the A8 erratum (see
11777 // setting of always_after_branch above).
11781 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11783 stub_type = arm_stub_a8_veneer_b_cond;
11785 else if (is_b || is_bl || is_blx)
11787 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11792 stub_type = (is_blx
11793 ? arm_stub_a8_veneer_blx
11795 ? arm_stub_a8_veneer_bl
11796 : arm_stub_a8_veneer_b));
11799 if (stub_type != arm_stub_none)
11801 Arm_address pc_for_insn = address + i + 4;
11803 // The original instruction is a BL, but the target is
11804 // an ARM instruction. If we were not making a stub,
11805 // the BL would have been converted to a BLX. Use the
11806 // BLX stub instead in that case.
11807 if (this->may_use_v5t_interworking() && force_target_arm
11808 && stub_type == arm_stub_a8_veneer_bl)
11810 stub_type = arm_stub_a8_veneer_blx;
11814 // Conversely, if the original instruction was
11815 // BLX but the target is Thumb mode, use the BL stub.
11816 else if (force_target_thumb
11817 && stub_type == arm_stub_a8_veneer_blx)
11819 stub_type = arm_stub_a8_veneer_bl;
11827 // If we found a relocation, use the proper destination,
11828 // not the offset in the (unrelocated) instruction.
11829 // Note this is always done if we switched the stub type above.
11830 if (cortex_a8_reloc != NULL)
11831 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11833 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11835 // Add a new stub if destination address in in the same page.
11836 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11838 Cortex_a8_stub* stub =
11839 this->stub_factory_.make_cortex_a8_stub(stub_type,
11843 Stub_table<big_endian>* stub_table =
11844 arm_relobj->stub_table(shndx);
11845 gold_assert(stub_table != NULL);
11846 stub_table->add_cortex_a8_stub(address + i, stub);
11851 i += insn_32bit ? 4 : 2;
11852 last_was_32bit = insn_32bit;
11853 last_was_branch = is_32bit_branch;
11857 // Apply the Cortex-A8 workaround.
11859 template<bool big_endian>
11861 Target_arm<big_endian>::apply_cortex_a8_workaround(
11862 const Cortex_a8_stub* stub,
11863 Arm_address stub_address,
11864 unsigned char* insn_view,
11865 Arm_address insn_address)
11867 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11868 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11869 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11870 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11871 off_t branch_offset = stub_address - (insn_address + 4);
11873 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11874 switch (stub->stub_template()->type())
11876 case arm_stub_a8_veneer_b_cond:
11877 // For a conditional branch, we re-write it to be an unconditional
11878 // branch to the stub. We use the THUMB-2 encoding here.
11879 upper_insn = 0xf000U;
11880 lower_insn = 0xb800U;
11882 case arm_stub_a8_veneer_b:
11883 case arm_stub_a8_veneer_bl:
11884 case arm_stub_a8_veneer_blx:
11885 if ((lower_insn & 0x5000U) == 0x4000U)
11886 // For a BLX instruction, make sure that the relocation is
11887 // rounded up to a word boundary. This follows the semantics of
11888 // the instruction which specifies that bit 1 of the target
11889 // address will come from bit 1 of the base address.
11890 branch_offset = (branch_offset + 2) & ~3;
11892 // Put BRANCH_OFFSET back into the insn.
11893 gold_assert(!utils::has_overflow<25>(branch_offset));
11894 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11895 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11899 gold_unreachable();
11902 // Put the relocated value back in the object file:
11903 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11904 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11907 template<bool big_endian>
11908 class Target_selector_arm : public Target_selector
11911 Target_selector_arm()
11912 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11913 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11914 (big_endian ? "armelfb" : "armelf"))
11918 do_instantiate_target()
11919 { return new Target_arm<big_endian>(); }
11922 // Fix .ARM.exidx section coverage.
11924 template<bool big_endian>
11926 Target_arm<big_endian>::fix_exidx_coverage(
11928 const Input_objects* input_objects,
11929 Arm_output_section<big_endian>* exidx_section,
11930 Symbol_table* symtab,
11933 // We need to look at all the input sections in output in ascending
11934 // order of of output address. We do that by building a sorted list
11935 // of output sections by addresses. Then we looks at the output sections
11936 // in order. The input sections in an output section are already sorted
11937 // by addresses within the output section.
11939 typedef std::set<Output_section*, output_section_address_less_than>
11940 Sorted_output_section_list;
11941 Sorted_output_section_list sorted_output_sections;
11943 // Find out all the output sections of input sections pointed by
11944 // EXIDX input sections.
11945 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11946 p != input_objects->relobj_end();
11949 Arm_relobj<big_endian>* arm_relobj =
11950 Arm_relobj<big_endian>::as_arm_relobj(*p);
11951 std::vector<unsigned int> shndx_list;
11952 arm_relobj->get_exidx_shndx_list(&shndx_list);
11953 for (size_t i = 0; i < shndx_list.size(); ++i)
11955 const Arm_exidx_input_section* exidx_input_section =
11956 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11957 gold_assert(exidx_input_section != NULL);
11958 if (!exidx_input_section->has_errors())
11960 unsigned int text_shndx = exidx_input_section->link();
11961 Output_section* os = arm_relobj->output_section(text_shndx);
11962 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11963 sorted_output_sections.insert(os);
11968 // Go over the output sections in ascending order of output addresses.
11969 typedef typename Arm_output_section<big_endian>::Text_section_list
11971 Text_section_list sorted_text_sections;
11972 for (typename Sorted_output_section_list::iterator p =
11973 sorted_output_sections.begin();
11974 p != sorted_output_sections.end();
11977 Arm_output_section<big_endian>* arm_output_section =
11978 Arm_output_section<big_endian>::as_arm_output_section(*p);
11979 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11982 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11983 merge_exidx_entries(), task);
11986 Target_selector_arm<false> target_selector_arm;
11987 Target_selector_arm<true> target_selector_armbe;
11989 } // End anonymous namespace.