1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_; }
193 // Return the instruction sequence type of this.
196 { return this->type_; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_; }
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
275 arm_stub_type_last = arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type, const Insn_template*, size_t);
294 { return this->type_; }
296 // Return an array of instruction templates.
299 { return this->insns_; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_; }
306 // Return size of template in bytes.
309 { return this->size_; }
311 // Return alignment of the stub template.
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian>
451 do_fixed_endian_write(unsigned char*, section_size_type);
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
576 // Functors for STL associative containers.
580 operator()(const Key& k) const
581 { return k.hash_value(); }
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol* symbol;
610 const Relobj* relobj;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
634 return this->destination_address_;
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
755 // Return the associated register.
758 { return this->reg_; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
785 // A template to implement do_write.
786 template<bool big_endian>
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory&
815 static Stub_factory singleton;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
882 { return this->owner_; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
981 // Write out section contents.
983 do_write(Output_file*);
985 // Return the required alignment.
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_; }
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1064 this->do_fixed_endian_write<false>(of);
1067 // Write to a map file.
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1076 do_fixed_endian_write(Output_file*);
1078 // The object containing the section pointed by this.
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1107 // Return the original EXIDX input section.
1108 const Arm_exidx_input_section&
1109 exidx_input_section() const
1110 { return this->exidx_input_section_; }
1112 // Return the section offset map.
1113 const Arm_exidx_section_offset_map&
1114 section_offset_map() const
1115 { return this->section_offset_map_; }
1118 // Write merged section into file OF.
1120 do_write(Output_file* of);
1123 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1124 section_offset_type*) const;
1127 // Original EXIDX input section.
1128 const Arm_exidx_input_section& exidx_input_section_;
1129 // Section offset map.
1130 const Arm_exidx_section_offset_map& section_offset_map_;
1133 // A class to wrap an ordinary input section containing executable code.
1135 template<bool big_endian>
1136 class Arm_input_section : public Output_relaxed_input_section
1139 Arm_input_section(Relobj* relobj, unsigned int shndx)
1140 : Output_relaxed_input_section(relobj, shndx, 1),
1141 original_addralign_(1), original_size_(0), stub_table_(NULL)
1144 ~Arm_input_section()
1151 // Whether this is a stub table owner.
1153 is_stub_table_owner() const
1154 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1156 // Return the stub table.
1157 Stub_table<big_endian>*
1159 { return this->stub_table_; }
1161 // Set the stub_table.
1163 set_stub_table(Stub_table<big_endian>* stub_table)
1164 { this->stub_table_ = stub_table; }
1166 // Downcast a base pointer to an Arm_input_section pointer. This is
1167 // not type-safe but we only use Arm_input_section not the base class.
1168 static Arm_input_section<big_endian>*
1169 as_arm_input_section(Output_relaxed_input_section* poris)
1170 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1172 // Return the original size of the section.
1174 original_size() const
1175 { return this->original_size_; }
1178 // Write data to output file.
1180 do_write(Output_file*);
1182 // Return required alignment of this.
1184 do_addralign() const
1186 if (this->is_stub_table_owner())
1187 return std::max(this->stub_table_->addralign(),
1188 static_cast<uint64_t>(this->original_addralign_));
1190 return this->original_addralign_;
1193 // Finalize data size.
1195 set_final_data_size();
1197 // Reset address and file offset.
1199 do_reset_address_and_file_offset();
1203 do_output_offset(const Relobj* object, unsigned int shndx,
1204 section_offset_type offset,
1205 section_offset_type* poutput) const
1207 if ((object == this->relobj())
1208 && (shndx == this->shndx())
1211 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221 // Copying is not allowed.
1222 Arm_input_section(const Arm_input_section&);
1223 Arm_input_section& operator=(const Arm_input_section&);
1225 // Address alignment of the original input section.
1226 uint32_t original_addralign_;
1227 // Section size of the original input section.
1228 uint32_t original_size_;
1230 Stub_table<big_endian>* stub_table_;
1233 // Arm_exidx_fixup class. This is used to define a number of methods
1234 // and keep states for fixing up EXIDX coverage.
1236 class Arm_exidx_fixup
1239 Arm_exidx_fixup(Output_section* exidx_output_section,
1240 bool merge_exidx_entries = true)
1241 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1242 last_inlined_entry_(0), last_input_section_(NULL),
1243 section_offset_map_(NULL), first_output_text_section_(NULL),
1244 merge_exidx_entries_(merge_exidx_entries)
1248 { delete this->section_offset_map_; }
1250 // Process an EXIDX section for entry merging. Return number of bytes to
1251 // be deleted in output. If parts of the input EXIDX section are merged
1252 // a heap allocated Arm_exidx_section_offset_map is store in the located
1253 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1255 template<bool big_endian>
1257 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1258 Arm_exidx_section_offset_map** psection_offset_map);
1260 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1261 // input section, if there is not one already.
1263 add_exidx_cantunwind_as_needed();
1265 // Return the output section for the text section which is linked to the
1266 // first exidx input in output.
1268 first_output_text_section() const
1269 { return this->first_output_text_section_; }
1272 // Copying is not allowed.
1273 Arm_exidx_fixup(const Arm_exidx_fixup&);
1274 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1276 // Type of EXIDX unwind entry.
1281 // EXIDX_CANTUNWIND.
1282 UT_EXIDX_CANTUNWIND,
1289 // Process an EXIDX entry. We only care about the second word of the
1290 // entry. Return true if the entry can be deleted.
1292 process_exidx_entry(uint32_t second_word);
1294 // Update the current section offset map during EXIDX section fix-up.
1295 // If there is no map, create one. INPUT_OFFSET is the offset of a
1296 // reference point, DELETED_BYTES is the number of deleted by in the
1297 // section so far. If DELETE_ENTRY is true, the reference point and
1298 // all offsets after the previous reference point are discarded.
1300 update_offset_map(section_offset_type input_offset,
1301 section_size_type deleted_bytes, bool delete_entry);
1303 // EXIDX output section.
1304 Output_section* exidx_output_section_;
1305 // Unwind type of the last EXIDX entry processed.
1306 Unwind_type last_unwind_type_;
1307 // Last seen inlined EXIDX entry.
1308 uint32_t last_inlined_entry_;
1309 // Last processed EXIDX input section.
1310 const Arm_exidx_input_section* last_input_section_;
1311 // Section offset map created in process_exidx_section.
1312 Arm_exidx_section_offset_map* section_offset_map_;
1313 // Output section for the text section which is linked to the first exidx
1315 Output_section* first_output_text_section_;
1317 bool merge_exidx_entries_;
1320 // Arm output section class. This is defined mainly to add a number of
1321 // stub generation methods.
1323 template<bool big_endian>
1324 class Arm_output_section : public Output_section
1327 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1329 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1330 elfcpp::Elf_Xword flags)
1331 : Output_section(name, type, flags)
1333 if (type == elfcpp::SHT_ARM_EXIDX)
1334 this->set_always_keeps_input_sections();
1337 ~Arm_output_section()
1340 // Group input sections for stub generation.
1342 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1344 // Downcast a base pointer to an Arm_output_section pointer. This is
1345 // not type-safe but we only use Arm_output_section not the base class.
1346 static Arm_output_section<big_endian>*
1347 as_arm_output_section(Output_section* os)
1348 { return static_cast<Arm_output_section<big_endian>*>(os); }
1350 // Append all input text sections in this into LIST.
1352 append_text_sections_to_list(Text_section_list* list);
1354 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1355 // is a list of text input sections sorted in ascending order of their
1356 // output addresses.
1358 fix_exidx_coverage(Layout* layout,
1359 const Text_section_list& sorted_text_section,
1360 Symbol_table* symtab,
1361 bool merge_exidx_entries);
1363 // Link an EXIDX section into its corresponding text section.
1365 set_exidx_section_link();
1369 typedef Output_section::Input_section Input_section;
1370 typedef Output_section::Input_section_list Input_section_list;
1372 // Create a stub group.
1373 void create_stub_group(Input_section_list::const_iterator,
1374 Input_section_list::const_iterator,
1375 Input_section_list::const_iterator,
1376 Target_arm<big_endian>*,
1377 std::vector<Output_relaxed_input_section*>*);
1380 // Arm_exidx_input_section class. This represents an EXIDX input section.
1382 class Arm_exidx_input_section
1385 static const section_offset_type invalid_offset =
1386 static_cast<section_offset_type>(-1);
1388 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1389 unsigned int link, uint32_t size, uint32_t addralign)
1390 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1391 addralign_(addralign), has_errors_(false)
1394 ~Arm_exidx_input_section()
1397 // Accessors: This is a read-only class.
1399 // Return the object containing this EXIDX input section.
1402 { return this->relobj_; }
1404 // Return the section index of this EXIDX input section.
1407 { return this->shndx_; }
1409 // Return the section index of linked text section in the same object.
1412 { return this->link_; }
1414 // Return size of the EXIDX input section.
1417 { return this->size_; }
1419 // Reutnr address alignment of EXIDX input section.
1422 { return this->addralign_; }
1424 // Whether there are any errors in the EXIDX input section.
1427 { return this->has_errors_; }
1429 // Set has-errors flag.
1432 { this->has_errors_ = true; }
1435 // Object containing this.
1437 // Section index of this.
1438 unsigned int shndx_;
1439 // text section linked to this in the same object.
1441 // Size of this. For ARM 32-bit is sufficient.
1443 // Address alignment of this. For ARM 32-bit is sufficient.
1444 uint32_t addralign_;
1445 // Whether this has any errors.
1449 // Arm_relobj class.
1451 template<bool big_endian>
1452 class Arm_relobj : public Sized_relobj<32, big_endian>
1455 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1457 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1458 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1459 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1460 stub_tables_(), local_symbol_is_thumb_function_(),
1461 attributes_section_data_(NULL), mapping_symbols_info_(),
1462 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1463 output_local_symbol_count_needs_update_(false),
1464 merge_flags_and_attributes_(true)
1468 { delete this->attributes_section_data_; }
1470 // Return the stub table of the SHNDX-th section if there is one.
1471 Stub_table<big_endian>*
1472 stub_table(unsigned int shndx) const
1474 gold_assert(shndx < this->stub_tables_.size());
1475 return this->stub_tables_[shndx];
1478 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1480 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1482 gold_assert(shndx < this->stub_tables_.size());
1483 this->stub_tables_[shndx] = stub_table;
1486 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1487 // index. This is only valid after do_count_local_symbol is called.
1489 local_symbol_is_thumb_function(unsigned int r_sym) const
1491 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1492 return this->local_symbol_is_thumb_function_[r_sym];
1495 // Scan all relocation sections for stub generation.
1497 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1500 // Convert regular input section with index SHNDX to a relaxed section.
1502 convert_input_section_to_relaxed_section(unsigned shndx)
1504 // The stubs have relocations and we need to process them after writing
1505 // out the stubs. So relocation now must follow section write.
1506 this->set_section_offset(shndx, -1ULL);
1507 this->set_relocs_must_follow_section_writes();
1510 // Downcast a base pointer to an Arm_relobj pointer. This is
1511 // not type-safe but we only use Arm_relobj not the base class.
1512 static Arm_relobj<big_endian>*
1513 as_arm_relobj(Relobj* relobj)
1514 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1516 // Processor-specific flags in ELF file header. This is valid only after
1519 processor_specific_flags() const
1520 { return this->processor_specific_flags_; }
1522 // Attribute section data This is the contents of the .ARM.attribute section
1524 const Attributes_section_data*
1525 attributes_section_data() const
1526 { return this->attributes_section_data_; }
1528 // Mapping symbol location.
1529 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1531 // Functor for STL container.
1532 struct Mapping_symbol_position_less
1535 operator()(const Mapping_symbol_position& p1,
1536 const Mapping_symbol_position& p2) const
1538 return (p1.first < p2.first
1539 || (p1.first == p2.first && p1.second < p2.second));
1543 // We only care about the first character of a mapping symbol, so
1544 // we only store that instead of the whole symbol name.
1545 typedef std::map<Mapping_symbol_position, char,
1546 Mapping_symbol_position_less> Mapping_symbols_info;
1548 // Whether a section contains any Cortex-A8 workaround.
1550 section_has_cortex_a8_workaround(unsigned int shndx) const
1552 return (this->section_has_cortex_a8_workaround_ != NULL
1553 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1556 // Mark a section that has Cortex-A8 workaround.
1558 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1560 if (this->section_has_cortex_a8_workaround_ == NULL)
1561 this->section_has_cortex_a8_workaround_ =
1562 new std::vector<bool>(this->shnum(), false);
1563 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1566 // Return the EXIDX section of an text section with index SHNDX or NULL
1567 // if the text section has no associated EXIDX section.
1568 const Arm_exidx_input_section*
1569 exidx_input_section_by_link(unsigned int shndx) const
1571 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1572 return ((p != this->exidx_section_map_.end()
1573 && p->second->link() == shndx)
1578 // Return the EXIDX section with index SHNDX or NULL if there is none.
1579 const Arm_exidx_input_section*
1580 exidx_input_section_by_shndx(unsigned shndx) const
1582 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1583 return ((p != this->exidx_section_map_.end()
1584 && p->second->shndx() == shndx)
1589 // Whether output local symbol count needs updating.
1591 output_local_symbol_count_needs_update() const
1592 { return this->output_local_symbol_count_needs_update_; }
1594 // Set output_local_symbol_count_needs_update flag to be true.
1596 set_output_local_symbol_count_needs_update()
1597 { this->output_local_symbol_count_needs_update_ = true; }
1599 // Update output local symbol count at the end of relaxation.
1601 update_output_local_symbol_count();
1603 // Whether we want to merge processor-specific flags and attributes.
1605 merge_flags_and_attributes() const
1606 { return this->merge_flags_and_attributes_; }
1608 // Export list of EXIDX section indices.
1610 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1613 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1614 p != this->exidx_section_map_.end();
1617 if (p->second->shndx() == p->first)
1618 list->push_back(p->first);
1620 // Sort list to make result independent of implementation of map.
1621 std::sort(list->begin(), list->end());
1625 // Post constructor setup.
1629 // Call parent's setup method.
1630 Sized_relobj<32, big_endian>::do_setup();
1632 // Initialize look-up tables.
1633 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1634 this->stub_tables_.swap(empty_stub_table_list);
1637 // Count the local symbols.
1639 do_count_local_symbols(Stringpool_template<char>*,
1640 Stringpool_template<char>*);
1643 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1644 const unsigned char* pshdrs, Output_file* of,
1645 typename Sized_relobj<32, big_endian>::Views* pivews);
1647 // Read the symbol information.
1649 do_read_symbols(Read_symbols_data* sd);
1651 // Process relocs for garbage collection.
1653 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1657 // Whether a section needs to be scanned for relocation stubs.
1659 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1660 const Relobj::Output_sections&,
1661 const Symbol_table*, const unsigned char*);
1663 // Whether a section is a scannable text section.
1665 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1666 const Output_section*, const Symbol_table*);
1668 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1670 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1671 unsigned int, Output_section*,
1672 const Symbol_table*);
1674 // Scan a section for the Cortex-A8 erratum.
1676 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1677 unsigned int, Output_section*,
1678 Target_arm<big_endian>*);
1680 // Find the linked text section of an EXIDX section by looking at the
1681 // first reloction of the EXIDX section. PSHDR points to the section
1682 // headers of a relocation section and PSYMS points to the local symbols.
1683 // PSHNDX points to a location storing the text section index if found.
1684 // Return whether we can find the linked section.
1686 find_linked_text_section(const unsigned char* pshdr,
1687 const unsigned char* psyms, unsigned int* pshndx);
1690 // Make a new Arm_exidx_input_section object for EXIDX section with
1691 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1692 // index of the linked text section.
1694 make_exidx_input_section(unsigned int shndx,
1695 const elfcpp::Shdr<32, big_endian>& shdr,
1696 unsigned int text_shndx,
1697 const elfcpp::Shdr<32, big_endian>& text_shdr);
1699 // Return the output address of either a plain input section or a
1700 // relaxed input section. SHNDX is the section index.
1702 simple_input_section_output_address(unsigned int, Output_section*);
1704 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1705 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1708 // List of stub tables.
1709 Stub_table_list stub_tables_;
1710 // Bit vector to tell if a local symbol is a thumb function or not.
1711 // This is only valid after do_count_local_symbol is called.
1712 std::vector<bool> local_symbol_is_thumb_function_;
1713 // processor-specific flags in ELF file header.
1714 elfcpp::Elf_Word processor_specific_flags_;
1715 // Object attributes if there is an .ARM.attributes section or NULL.
1716 Attributes_section_data* attributes_section_data_;
1717 // Mapping symbols information.
1718 Mapping_symbols_info mapping_symbols_info_;
1719 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1720 std::vector<bool>* section_has_cortex_a8_workaround_;
1721 // Map a text section to its associated .ARM.exidx section, if there is one.
1722 Exidx_section_map exidx_section_map_;
1723 // Whether output local symbol count needs updating.
1724 bool output_local_symbol_count_needs_update_;
1725 // Whether we merge processor flags and attributes of this object to
1727 bool merge_flags_and_attributes_;
1730 // Arm_dynobj class.
1732 template<bool big_endian>
1733 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1736 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1737 const elfcpp::Ehdr<32, big_endian>& ehdr)
1738 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1739 processor_specific_flags_(0), attributes_section_data_(NULL)
1743 { delete this->attributes_section_data_; }
1745 // Downcast a base pointer to an Arm_relobj pointer. This is
1746 // not type-safe but we only use Arm_relobj not the base class.
1747 static Arm_dynobj<big_endian>*
1748 as_arm_dynobj(Dynobj* dynobj)
1749 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1751 // Processor-specific flags in ELF file header. This is valid only after
1754 processor_specific_flags() const
1755 { return this->processor_specific_flags_; }
1757 // Attributes section data.
1758 const Attributes_section_data*
1759 attributes_section_data() const
1760 { return this->attributes_section_data_; }
1763 // Read the symbol information.
1765 do_read_symbols(Read_symbols_data* sd);
1768 // processor-specific flags in ELF file header.
1769 elfcpp::Elf_Word processor_specific_flags_;
1770 // Object attributes if there is an .ARM.attributes section or NULL.
1771 Attributes_section_data* attributes_section_data_;
1774 // Functor to read reloc addends during stub generation.
1776 template<int sh_type, bool big_endian>
1777 struct Stub_addend_reader
1779 // Return the addend for a relocation of a particular type. Depending
1780 // on whether this is a REL or RELA relocation, read the addend from a
1781 // view or from a Reloc object.
1782 elfcpp::Elf_types<32>::Elf_Swxword
1784 unsigned int /* r_type */,
1785 const unsigned char* /* view */,
1786 const typename Reloc_types<sh_type,
1787 32, big_endian>::Reloc& /* reloc */) const;
1790 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1792 template<bool big_endian>
1793 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1795 elfcpp::Elf_types<32>::Elf_Swxword
1798 const unsigned char*,
1799 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1802 // Specialized Stub_addend_reader for RELA type relocation sections.
1803 // We currently do not handle RELA type relocation sections but it is trivial
1804 // to implement the addend reader. This is provided for completeness and to
1805 // make it easier to add support for RELA relocation sections in the future.
1807 template<bool big_endian>
1808 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1810 elfcpp::Elf_types<32>::Elf_Swxword
1813 const unsigned char*,
1814 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1815 big_endian>::Reloc& reloc) const
1816 { return reloc.get_r_addend(); }
1819 // Cortex_a8_reloc class. We keep record of relocation that may need
1820 // the Cortex-A8 erratum workaround.
1822 class Cortex_a8_reloc
1825 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1826 Arm_address destination)
1827 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1833 // Accessors: This is a read-only class.
1835 // Return the relocation stub associated with this relocation if there is
1839 { return this->reloc_stub_; }
1841 // Return the relocation type.
1844 { return this->r_type_; }
1846 // Return the destination address of the relocation. LSB stores the THUMB
1850 { return this->destination_; }
1853 // Associated relocation stub if there is one, or NULL.
1854 const Reloc_stub* reloc_stub_;
1856 unsigned int r_type_;
1857 // Destination address of this relocation. LSB is used to distinguish
1859 Arm_address destination_;
1862 // Arm_output_data_got class. We derive this from Output_data_got to add
1863 // extra methods to handle TLS relocations in a static link.
1865 template<bool big_endian>
1866 class Arm_output_data_got : public Output_data_got<32, big_endian>
1869 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1870 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1873 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1874 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1875 // applied in a static link.
1877 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1878 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1880 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1881 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1882 // relocation that needs to be applied in a static link.
1884 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1885 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1887 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1891 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1892 // The first one is initialized to be 1, which is the module index for
1893 // the main executable and the second one 0. A reloc of the type
1894 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1895 // be applied by gold. GSYM is a global symbol.
1897 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1899 // Same as the above but for a local symbol in OBJECT with INDEX.
1901 add_tls_gd32_with_static_reloc(unsigned int got_type,
1902 Sized_relobj<32, big_endian>* object,
1903 unsigned int index);
1906 // Write out the GOT table.
1908 do_write(Output_file*);
1911 // This class represent dynamic relocations that need to be applied by
1912 // gold because we are using TLS relocations in a static link.
1916 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1917 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1918 { this->u_.global.symbol = gsym; }
1920 Static_reloc(unsigned int got_offset, unsigned int r_type,
1921 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1922 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1924 this->u_.local.relobj = relobj;
1925 this->u_.local.index = index;
1928 // Return the GOT offset.
1931 { return this->got_offset_; }
1936 { return this->r_type_; }
1938 // Whether the symbol is global or not.
1940 symbol_is_global() const
1941 { return this->symbol_is_global_; }
1943 // For a relocation against a global symbol, the global symbol.
1947 gold_assert(this->symbol_is_global_);
1948 return this->u_.global.symbol;
1951 // For a relocation against a local symbol, the defining object.
1952 Sized_relobj<32, big_endian>*
1955 gold_assert(!this->symbol_is_global_);
1956 return this->u_.local.relobj;
1959 // For a relocation against a local symbol, the local symbol index.
1963 gold_assert(!this->symbol_is_global_);
1964 return this->u_.local.index;
1968 // GOT offset of the entry to which this relocation is applied.
1969 unsigned int got_offset_;
1970 // Type of relocation.
1971 unsigned int r_type_;
1972 // Whether this relocation is against a global symbol.
1973 bool symbol_is_global_;
1974 // A global or local symbol.
1979 // For a global symbol, the symbol itself.
1984 // For a local symbol, the object defining object.
1985 Sized_relobj<32, big_endian>* relobj;
1986 // For a local symbol, the symbol index.
1992 // Symbol table of the output object.
1993 Symbol_table* symbol_table_;
1994 // Layout of the output object.
1996 // Static relocs to be applied to the GOT.
1997 std::vector<Static_reloc> static_relocs_;
2000 // The ARM target has many relocation types with odd-sizes or incontigious
2001 // bits. The default handling of relocatable relocation cannot process these
2002 // relocations. So we have to extend the default code.
2004 template<bool big_endian, int sh_type, typename Classify_reloc>
2005 class Arm_scan_relocatable_relocs :
2006 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2009 // Return the strategy to use for a local symbol which is a section
2010 // symbol, given the relocation type.
2011 inline Relocatable_relocs::Reloc_strategy
2012 local_section_strategy(unsigned int r_type, Relobj*)
2014 if (sh_type == elfcpp::SHT_RELA)
2015 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2018 if (r_type == elfcpp::R_ARM_TARGET1
2019 || r_type == elfcpp::R_ARM_TARGET2)
2021 const Target_arm<big_endian>* arm_target =
2022 Target_arm<big_endian>::default_target();
2023 r_type = arm_target->get_real_reloc_type(r_type);
2028 // Relocations that write nothing. These exclude R_ARM_TARGET1
2029 // and R_ARM_TARGET2.
2030 case elfcpp::R_ARM_NONE:
2031 case elfcpp::R_ARM_V4BX:
2032 case elfcpp::R_ARM_TLS_GOTDESC:
2033 case elfcpp::R_ARM_TLS_CALL:
2034 case elfcpp::R_ARM_TLS_DESCSEQ:
2035 case elfcpp::R_ARM_THM_TLS_CALL:
2036 case elfcpp::R_ARM_GOTRELAX:
2037 case elfcpp::R_ARM_GNU_VTENTRY:
2038 case elfcpp::R_ARM_GNU_VTINHERIT:
2039 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2040 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2041 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2042 // These should have been converted to something else above.
2043 case elfcpp::R_ARM_TARGET1:
2044 case elfcpp::R_ARM_TARGET2:
2046 // Relocations that write full 32 bits.
2047 case elfcpp::R_ARM_ABS32:
2048 case elfcpp::R_ARM_REL32:
2049 case elfcpp::R_ARM_SBREL32:
2050 case elfcpp::R_ARM_GOTOFF32:
2051 case elfcpp::R_ARM_BASE_PREL:
2052 case elfcpp::R_ARM_GOT_BREL:
2053 case elfcpp::R_ARM_BASE_ABS:
2054 case elfcpp::R_ARM_ABS32_NOI:
2055 case elfcpp::R_ARM_REL32_NOI:
2056 case elfcpp::R_ARM_PLT32_ABS:
2057 case elfcpp::R_ARM_GOT_ABS:
2058 case elfcpp::R_ARM_GOT_PREL:
2059 case elfcpp::R_ARM_TLS_GD32:
2060 case elfcpp::R_ARM_TLS_LDM32:
2061 case elfcpp::R_ARM_TLS_LDO32:
2062 case elfcpp::R_ARM_TLS_IE32:
2063 case elfcpp::R_ARM_TLS_LE32:
2064 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2066 // For all other static relocations, return RELOC_SPECIAL.
2067 return Relocatable_relocs::RELOC_SPECIAL;
2073 // Utilities for manipulating integers of up to 32-bits
2077 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2078 // an int32_t. NO_BITS must be between 1 to 32.
2079 template<int no_bits>
2080 static inline int32_t
2081 sign_extend(uint32_t bits)
2083 gold_assert(no_bits >= 0 && no_bits <= 32);
2085 return static_cast<int32_t>(bits);
2086 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2088 uint32_t top_bit = 1U << (no_bits - 1);
2089 int32_t as_signed = static_cast<int32_t>(bits);
2090 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2093 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2094 template<int no_bits>
2096 has_overflow(uint32_t bits)
2098 gold_assert(no_bits >= 0 && no_bits <= 32);
2101 int32_t max = (1 << (no_bits - 1)) - 1;
2102 int32_t min = -(1 << (no_bits - 1));
2103 int32_t as_signed = static_cast<int32_t>(bits);
2104 return as_signed > max || as_signed < min;
2107 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2108 // fits in the given number of bits as either a signed or unsigned value.
2109 // For example, has_signed_unsigned_overflow<8> would check
2110 // -128 <= bits <= 255
2111 template<int no_bits>
2113 has_signed_unsigned_overflow(uint32_t bits)
2115 gold_assert(no_bits >= 2 && no_bits <= 32);
2118 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2119 int32_t min = -(1 << (no_bits - 1));
2120 int32_t as_signed = static_cast<int32_t>(bits);
2121 return as_signed > max || as_signed < min;
2124 // Select bits from A and B using bits in MASK. For each n in [0..31],
2125 // the n-th bit in the result is chosen from the n-th bits of A and B.
2126 // A zero selects A and a one selects B.
2127 static inline uint32_t
2128 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2129 { return (a & ~mask) | (b & mask); }
2132 template<bool big_endian>
2133 class Target_arm : public Sized_target<32, big_endian>
2136 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2139 // When were are relocating a stub, we pass this as the relocation number.
2140 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2143 : Sized_target<32, big_endian>(&arm_info),
2144 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2145 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2146 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2147 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2148 may_use_blx_(false), should_force_pic_veneer_(false),
2149 arm_input_section_map_(), attributes_section_data_(NULL),
2150 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2153 // Virtual function which is set to return true by a target if
2154 // it can use relocation types to determine if a function's
2155 // pointer is taken.
2157 can_check_for_function_pointers() const
2160 // Whether a section called SECTION_NAME may have function pointers to
2161 // sections not eligible for safe ICF folding.
2163 section_may_have_icf_unsafe_pointers(const char* section_name) const
2165 return (!is_prefix_of(".ARM.exidx", section_name)
2166 && !is_prefix_of(".ARM.extab", section_name)
2167 && Target::section_may_have_icf_unsafe_pointers(section_name));
2170 // Whether we can use BLX.
2173 { return this->may_use_blx_; }
2175 // Set use-BLX flag.
2177 set_may_use_blx(bool value)
2178 { this->may_use_blx_ = value; }
2180 // Whether we force PCI branch veneers.
2182 should_force_pic_veneer() const
2183 { return this->should_force_pic_veneer_; }
2185 // Set PIC veneer flag.
2187 set_should_force_pic_veneer(bool value)
2188 { this->should_force_pic_veneer_ = value; }
2190 // Whether we use THUMB-2 instructions.
2192 using_thumb2() const
2194 Object_attribute* attr =
2195 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2196 int arch = attr->int_value();
2197 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2200 // Whether we use THUMB/THUMB-2 instructions only.
2202 using_thumb_only() const
2204 Object_attribute* attr =
2205 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2207 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2208 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2210 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2211 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2213 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2214 return attr->int_value() == 'M';
2217 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2219 may_use_arm_nop() const
2221 Object_attribute* attr =
2222 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2223 int arch = attr->int_value();
2224 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2225 || arch == elfcpp::TAG_CPU_ARCH_V6K
2226 || arch == elfcpp::TAG_CPU_ARCH_V7
2227 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2230 // Whether we have THUMB-2 NOP.W instruction.
2232 may_use_thumb2_nop() const
2234 Object_attribute* attr =
2235 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2236 int arch = attr->int_value();
2237 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2238 || arch == elfcpp::TAG_CPU_ARCH_V7
2239 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2242 // Process the relocations to determine unreferenced sections for
2243 // garbage collection.
2245 gc_process_relocs(Symbol_table* symtab,
2247 Sized_relobj<32, big_endian>* object,
2248 unsigned int data_shndx,
2249 unsigned int sh_type,
2250 const unsigned char* prelocs,
2252 Output_section* output_section,
2253 bool needs_special_offset_handling,
2254 size_t local_symbol_count,
2255 const unsigned char* plocal_symbols);
2257 // Scan the relocations to look for symbol adjustments.
2259 scan_relocs(Symbol_table* symtab,
2261 Sized_relobj<32, big_endian>* object,
2262 unsigned int data_shndx,
2263 unsigned int sh_type,
2264 const unsigned char* prelocs,
2266 Output_section* output_section,
2267 bool needs_special_offset_handling,
2268 size_t local_symbol_count,
2269 const unsigned char* plocal_symbols);
2271 // Finalize the sections.
2273 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2275 // Return the value to use for a dynamic symbol which requires special
2278 do_dynsym_value(const Symbol*) const;
2280 // Relocate a section.
2282 relocate_section(const Relocate_info<32, big_endian>*,
2283 unsigned int sh_type,
2284 const unsigned char* prelocs,
2286 Output_section* output_section,
2287 bool needs_special_offset_handling,
2288 unsigned char* view,
2289 Arm_address view_address,
2290 section_size_type view_size,
2291 const Reloc_symbol_changes*);
2293 // Scan the relocs during a relocatable link.
2295 scan_relocatable_relocs(Symbol_table* symtab,
2297 Sized_relobj<32, big_endian>* object,
2298 unsigned int data_shndx,
2299 unsigned int sh_type,
2300 const unsigned char* prelocs,
2302 Output_section* output_section,
2303 bool needs_special_offset_handling,
2304 size_t local_symbol_count,
2305 const unsigned char* plocal_symbols,
2306 Relocatable_relocs*);
2308 // Relocate a section during a relocatable link.
2310 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2311 unsigned int sh_type,
2312 const unsigned char* prelocs,
2314 Output_section* output_section,
2315 off_t offset_in_output_section,
2316 const Relocatable_relocs*,
2317 unsigned char* view,
2318 Arm_address view_address,
2319 section_size_type view_size,
2320 unsigned char* reloc_view,
2321 section_size_type reloc_view_size);
2323 // Perform target-specific processing in a relocatable link. This is
2324 // only used if we use the relocation strategy RELOC_SPECIAL.
2326 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2327 unsigned int sh_type,
2328 const unsigned char* preloc_in,
2330 Output_section* output_section,
2331 off_t offset_in_output_section,
2332 unsigned char* view,
2333 typename elfcpp::Elf_types<32>::Elf_Addr
2335 section_size_type view_size,
2336 unsigned char* preloc_out);
2338 // Return whether SYM is defined by the ABI.
2340 do_is_defined_by_abi(Symbol* sym) const
2341 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2343 // Return whether there is a GOT section.
2345 has_got_section() const
2346 { return this->got_ != NULL; }
2348 // Return the size of the GOT section.
2352 gold_assert(this->got_ != NULL);
2353 return this->got_->data_size();
2356 // Return the number of entries in the GOT.
2358 got_entry_count() const
2360 if (!this->has_got_section())
2362 return this->got_size() / 4;
2365 // Return the number of entries in the PLT.
2367 plt_entry_count() const;
2369 // Return the offset of the first non-reserved PLT entry.
2371 first_plt_entry_offset() const;
2373 // Return the size of each PLT entry.
2375 plt_entry_size() const;
2377 // Map platform-specific reloc types
2379 get_real_reloc_type(unsigned int r_type);
2382 // Methods to support stub-generations.
2385 // Return the stub factory
2387 stub_factory() const
2388 { return this->stub_factory_; }
2390 // Make a new Arm_input_section object.
2391 Arm_input_section<big_endian>*
2392 new_arm_input_section(Relobj*, unsigned int);
2394 // Find the Arm_input_section object corresponding to the SHNDX-th input
2395 // section of RELOBJ.
2396 Arm_input_section<big_endian>*
2397 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2399 // Make a new Stub_table
2400 Stub_table<big_endian>*
2401 new_stub_table(Arm_input_section<big_endian>*);
2403 // Scan a section for stub generation.
2405 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2406 const unsigned char*, size_t, Output_section*,
2407 bool, const unsigned char*, Arm_address,
2412 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2413 Output_section*, unsigned char*, Arm_address,
2416 // Get the default ARM target.
2417 static Target_arm<big_endian>*
2420 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2421 && parameters->target().is_big_endian() == big_endian);
2422 return static_cast<Target_arm<big_endian>*>(
2423 parameters->sized_target<32, big_endian>());
2426 // Whether NAME belongs to a mapping symbol.
2428 is_mapping_symbol_name(const char* name)
2432 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2433 && (name[2] == '\0' || name[2] == '.'));
2436 // Whether we work around the Cortex-A8 erratum.
2438 fix_cortex_a8() const
2439 { return this->fix_cortex_a8_; }
2441 // Whether we merge exidx entries in debuginfo.
2443 merge_exidx_entries() const
2444 { return parameters->options().merge_exidx_entries(); }
2446 // Whether we fix R_ARM_V4BX relocation.
2448 // 1 - replace with MOV instruction (armv4 target)
2449 // 2 - make interworking veneer (>= armv4t targets only)
2450 General_options::Fix_v4bx
2452 { return parameters->options().fix_v4bx(); }
2454 // Scan a span of THUMB code section for Cortex-A8 erratum.
2456 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2457 section_size_type, section_size_type,
2458 const unsigned char*, Arm_address);
2460 // Apply Cortex-A8 workaround to a branch.
2462 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2463 unsigned char*, Arm_address);
2466 // Make an ELF object.
2468 do_make_elf_object(const std::string&, Input_file*, off_t,
2469 const elfcpp::Ehdr<32, big_endian>& ehdr);
2472 do_make_elf_object(const std::string&, Input_file*, off_t,
2473 const elfcpp::Ehdr<32, !big_endian>&)
2474 { gold_unreachable(); }
2477 do_make_elf_object(const std::string&, Input_file*, off_t,
2478 const elfcpp::Ehdr<64, false>&)
2479 { gold_unreachable(); }
2482 do_make_elf_object(const std::string&, Input_file*, off_t,
2483 const elfcpp::Ehdr<64, true>&)
2484 { gold_unreachable(); }
2486 // Make an output section.
2488 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2489 elfcpp::Elf_Xword flags)
2490 { return new Arm_output_section<big_endian>(name, type, flags); }
2493 do_adjust_elf_header(unsigned char* view, int len) const;
2495 // We only need to generate stubs, and hence perform relaxation if we are
2496 // not doing relocatable linking.
2498 do_may_relax() const
2499 { return !parameters->options().relocatable(); }
2502 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2504 // Determine whether an object attribute tag takes an integer, a
2507 do_attribute_arg_type(int tag) const;
2509 // Reorder tags during output.
2511 do_attributes_order(int num) const;
2513 // This is called when the target is selected as the default.
2515 do_select_as_default_target()
2517 // No locking is required since there should only be one default target.
2518 // We cannot have both the big-endian and little-endian ARM targets
2520 gold_assert(arm_reloc_property_table == NULL);
2521 arm_reloc_property_table = new Arm_reloc_property_table();
2525 // The class which scans relocations.
2530 : issued_non_pic_error_(false)
2534 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2535 Sized_relobj<32, big_endian>* object,
2536 unsigned int data_shndx,
2537 Output_section* output_section,
2538 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2539 const elfcpp::Sym<32, big_endian>& lsym);
2542 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2543 Sized_relobj<32, big_endian>* object,
2544 unsigned int data_shndx,
2545 Output_section* output_section,
2546 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2550 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2551 Sized_relobj<32, big_endian>* ,
2554 const elfcpp::Rel<32, big_endian>& ,
2556 const elfcpp::Sym<32, big_endian>&);
2559 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2560 Sized_relobj<32, big_endian>* ,
2563 const elfcpp::Rel<32, big_endian>& ,
2564 unsigned int , Symbol*);
2568 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2569 unsigned int r_type);
2572 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2573 unsigned int r_type, Symbol*);
2576 check_non_pic(Relobj*, unsigned int r_type);
2578 // Almost identical to Symbol::needs_plt_entry except that it also
2579 // handles STT_ARM_TFUNC.
2581 symbol_needs_plt_entry(const Symbol* sym)
2583 // An undefined symbol from an executable does not need a PLT entry.
2584 if (sym->is_undefined() && !parameters->options().shared())
2587 return (!parameters->doing_static_link()
2588 && (sym->type() == elfcpp::STT_FUNC
2589 || sym->type() == elfcpp::STT_ARM_TFUNC)
2590 && (sym->is_from_dynobj()
2591 || sym->is_undefined()
2592 || sym->is_preemptible()));
2596 possible_function_pointer_reloc(unsigned int r_type);
2598 // Whether we have issued an error about a non-PIC compilation.
2599 bool issued_non_pic_error_;
2602 // The class which implements relocation.
2612 // Return whether the static relocation needs to be applied.
2614 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2617 Output_section* output_section);
2619 // Do a relocation. Return false if the caller should not issue
2620 // any warnings about this relocation.
2622 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2623 Output_section*, size_t relnum,
2624 const elfcpp::Rel<32, big_endian>&,
2625 unsigned int r_type, const Sized_symbol<32>*,
2626 const Symbol_value<32>*,
2627 unsigned char*, Arm_address,
2630 // Return whether we want to pass flag NON_PIC_REF for this
2631 // reloc. This means the relocation type accesses a symbol not via
2634 reloc_is_non_pic(unsigned int r_type)
2638 // These relocation types reference GOT or PLT entries explicitly.
2639 case elfcpp::R_ARM_GOT_BREL:
2640 case elfcpp::R_ARM_GOT_ABS:
2641 case elfcpp::R_ARM_GOT_PREL:
2642 case elfcpp::R_ARM_GOT_BREL12:
2643 case elfcpp::R_ARM_PLT32_ABS:
2644 case elfcpp::R_ARM_TLS_GD32:
2645 case elfcpp::R_ARM_TLS_LDM32:
2646 case elfcpp::R_ARM_TLS_IE32:
2647 case elfcpp::R_ARM_TLS_IE12GP:
2649 // These relocate types may use PLT entries.
2650 case elfcpp::R_ARM_CALL:
2651 case elfcpp::R_ARM_THM_CALL:
2652 case elfcpp::R_ARM_JUMP24:
2653 case elfcpp::R_ARM_THM_JUMP24:
2654 case elfcpp::R_ARM_THM_JUMP19:
2655 case elfcpp::R_ARM_PLT32:
2656 case elfcpp::R_ARM_THM_XPC22:
2657 case elfcpp::R_ARM_PREL31:
2658 case elfcpp::R_ARM_SBREL31:
2667 // Do a TLS relocation.
2668 inline typename Arm_relocate_functions<big_endian>::Status
2669 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2670 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2671 const Sized_symbol<32>*, const Symbol_value<32>*,
2672 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2677 // A class which returns the size required for a relocation type,
2678 // used while scanning relocs during a relocatable link.
2679 class Relocatable_size_for_reloc
2683 get_size_for_reloc(unsigned int, Relobj*);
2686 // Adjust TLS relocation type based on the options and whether this
2687 // is a local symbol.
2688 static tls::Tls_optimization
2689 optimize_tls_reloc(bool is_final, int r_type);
2691 // Get the GOT section, creating it if necessary.
2692 Arm_output_data_got<big_endian>*
2693 got_section(Symbol_table*, Layout*);
2695 // Get the GOT PLT section.
2697 got_plt_section() const
2699 gold_assert(this->got_plt_ != NULL);
2700 return this->got_plt_;
2703 // Create a PLT entry for a global symbol.
2705 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2707 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2709 define_tls_base_symbol(Symbol_table*, Layout*);
2711 // Create a GOT entry for the TLS module index.
2713 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2714 Sized_relobj<32, big_endian>* object);
2716 // Get the PLT section.
2717 const Output_data_plt_arm<big_endian>*
2720 gold_assert(this->plt_ != NULL);
2724 // Get the dynamic reloc section, creating it if necessary.
2726 rel_dyn_section(Layout*);
2728 // Get the section to use for TLS_DESC relocations.
2730 rel_tls_desc_section(Layout*) const;
2732 // Return true if the symbol may need a COPY relocation.
2733 // References from an executable object to non-function symbols
2734 // defined in a dynamic object may need a COPY relocation.
2736 may_need_copy_reloc(Symbol* gsym)
2738 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2739 && gsym->may_need_copy_reloc());
2742 // Add a potential copy relocation.
2744 copy_reloc(Symbol_table* symtab, Layout* layout,
2745 Sized_relobj<32, big_endian>* object,
2746 unsigned int shndx, Output_section* output_section,
2747 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2749 this->copy_relocs_.copy_reloc(symtab, layout,
2750 symtab->get_sized_symbol<32>(sym),
2751 object, shndx, output_section, reloc,
2752 this->rel_dyn_section(layout));
2755 // Whether two EABI versions are compatible.
2757 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2759 // Merge processor-specific flags from input object and those in the ELF
2760 // header of the output.
2762 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2764 // Get the secondary compatible architecture.
2766 get_secondary_compatible_arch(const Attributes_section_data*);
2768 // Set the secondary compatible architecture.
2770 set_secondary_compatible_arch(Attributes_section_data*, int);
2773 tag_cpu_arch_combine(const char*, int, int*, int, int);
2775 // Helper to print AEABI enum tag value.
2777 aeabi_enum_name(unsigned int);
2779 // Return string value for TAG_CPU_name.
2781 tag_cpu_name_value(unsigned int);
2783 // Merge object attributes from input object and those in the output.
2785 merge_object_attributes(const char*, const Attributes_section_data*);
2787 // Helper to get an AEABI object attribute
2789 get_aeabi_object_attribute(int tag) const
2791 Attributes_section_data* pasd = this->attributes_section_data_;
2792 gold_assert(pasd != NULL);
2793 Object_attribute* attr =
2794 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2795 gold_assert(attr != NULL);
2800 // Methods to support stub-generations.
2803 // Group input sections for stub generation.
2805 group_sections(Layout*, section_size_type, bool);
2807 // Scan a relocation for stub generation.
2809 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2810 const Sized_symbol<32>*, unsigned int,
2811 const Symbol_value<32>*,
2812 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2814 // Scan a relocation section for stub.
2815 template<int sh_type>
2817 scan_reloc_section_for_stubs(
2818 const Relocate_info<32, big_endian>* relinfo,
2819 const unsigned char* prelocs,
2821 Output_section* output_section,
2822 bool needs_special_offset_handling,
2823 const unsigned char* view,
2824 elfcpp::Elf_types<32>::Elf_Addr view_address,
2827 // Fix .ARM.exidx section coverage.
2829 fix_exidx_coverage(Layout*, const Input_objects*,
2830 Arm_output_section<big_endian>*, Symbol_table*);
2832 // Functors for STL set.
2833 struct output_section_address_less_than
2836 operator()(const Output_section* s1, const Output_section* s2) const
2837 { return s1->address() < s2->address(); }
2840 // Information about this specific target which we pass to the
2841 // general Target structure.
2842 static const Target::Target_info arm_info;
2844 // The types of GOT entries needed for this platform.
2845 // These values are exposed to the ABI in an incremental link.
2846 // Do not renumber existing values without changing the version
2847 // number of the .gnu_incremental_inputs section.
2850 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2851 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2852 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2853 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2854 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2857 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2859 // Map input section to Arm_input_section.
2860 typedef Unordered_map<Section_id,
2861 Arm_input_section<big_endian>*,
2863 Arm_input_section_map;
2865 // Map output addresses to relocs for Cortex-A8 erratum.
2866 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2867 Cortex_a8_relocs_info;
2870 Arm_output_data_got<big_endian>* got_;
2872 Output_data_plt_arm<big_endian>* plt_;
2873 // The GOT PLT section.
2874 Output_data_space* got_plt_;
2875 // The dynamic reloc section.
2876 Reloc_section* rel_dyn_;
2877 // Relocs saved to avoid a COPY reloc.
2878 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2879 // Space for variables copied with a COPY reloc.
2880 Output_data_space* dynbss_;
2881 // Offset of the GOT entry for the TLS module index.
2882 unsigned int got_mod_index_offset_;
2883 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2884 bool tls_base_symbol_defined_;
2885 // Vector of Stub_tables created.
2886 Stub_table_list stub_tables_;
2888 const Stub_factory &stub_factory_;
2889 // Whether we can use BLX.
2891 // Whether we force PIC branch veneers.
2892 bool should_force_pic_veneer_;
2893 // Map for locating Arm_input_sections.
2894 Arm_input_section_map arm_input_section_map_;
2895 // Attributes section data in output.
2896 Attributes_section_data* attributes_section_data_;
2897 // Whether we want to fix code for Cortex-A8 erratum.
2898 bool fix_cortex_a8_;
2899 // Map addresses to relocs for Cortex-A8 erratum.
2900 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2903 template<bool big_endian>
2904 const Target::Target_info Target_arm<big_endian>::arm_info =
2907 big_endian, // is_big_endian
2908 elfcpp::EM_ARM, // machine_code
2909 false, // has_make_symbol
2910 false, // has_resolve
2911 false, // has_code_fill
2912 true, // is_default_stack_executable
2914 "/usr/lib/libc.so.1", // dynamic_linker
2915 0x8000, // default_text_segment_address
2916 0x1000, // abi_pagesize (overridable by -z max-page-size)
2917 0x1000, // common_pagesize (overridable by -z common-page-size)
2918 elfcpp::SHN_UNDEF, // small_common_shndx
2919 elfcpp::SHN_UNDEF, // large_common_shndx
2920 0, // small_common_section_flags
2921 0, // large_common_section_flags
2922 ".ARM.attributes", // attributes_section
2923 "aeabi" // attributes_vendor
2926 // Arm relocate functions class
2929 template<bool big_endian>
2930 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2935 STATUS_OKAY, // No error during relocation.
2936 STATUS_OVERFLOW, // Relocation oveflow.
2937 STATUS_BAD_RELOC // Relocation cannot be applied.
2941 typedef Relocate_functions<32, big_endian> Base;
2942 typedef Arm_relocate_functions<big_endian> This;
2944 // Encoding of imm16 argument for movt and movw ARM instructions
2947 // imm16 := imm4 | imm12
2949 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2950 // +-------+---------------+-------+-------+-----------------------+
2951 // | | |imm4 | |imm12 |
2952 // +-------+---------------+-------+-------+-----------------------+
2954 // Extract the relocation addend from VAL based on the ARM
2955 // instruction encoding described above.
2956 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2957 extract_arm_movw_movt_addend(
2958 typename elfcpp::Swap<32, big_endian>::Valtype val)
2960 // According to the Elf ABI for ARM Architecture the immediate
2961 // field is sign-extended to form the addend.
2962 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2965 // Insert X into VAL based on the ARM instruction encoding described
2967 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2968 insert_val_arm_movw_movt(
2969 typename elfcpp::Swap<32, big_endian>::Valtype val,
2970 typename elfcpp::Swap<32, big_endian>::Valtype x)
2974 val |= (x & 0xf000) << 4;
2978 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2981 // imm16 := imm4 | i | imm3 | imm8
2983 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2984 // +---------+-+-----------+-------++-+-----+-------+---------------+
2985 // | |i| |imm4 || |imm3 | |imm8 |
2986 // +---------+-+-----------+-------++-+-----+-------+---------------+
2988 // Extract the relocation addend from VAL based on the Thumb2
2989 // instruction encoding described above.
2990 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2991 extract_thumb_movw_movt_addend(
2992 typename elfcpp::Swap<32, big_endian>::Valtype val)
2994 // According to the Elf ABI for ARM Architecture the immediate
2995 // field is sign-extended to form the addend.
2996 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2997 | ((val >> 15) & 0x0800)
2998 | ((val >> 4) & 0x0700)
3002 // Insert X into VAL based on the Thumb2 instruction encoding
3004 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3005 insert_val_thumb_movw_movt(
3006 typename elfcpp::Swap<32, big_endian>::Valtype val,
3007 typename elfcpp::Swap<32, big_endian>::Valtype x)
3010 val |= (x & 0xf000) << 4;
3011 val |= (x & 0x0800) << 15;
3012 val |= (x & 0x0700) << 4;
3013 val |= (x & 0x00ff);
3017 // Calculate the smallest constant Kn for the specified residual.
3018 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3020 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3026 // Determine the most significant bit in the residual and
3027 // align the resulting value to a 2-bit boundary.
3028 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3030 // The desired shift is now (msb - 6), or zero, whichever
3032 return (((msb - 6) < 0) ? 0 : (msb - 6));
3035 // Calculate the final residual for the specified group index.
3036 // If the passed group index is less than zero, the method will return
3037 // the value of the specified residual without any change.
3038 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3039 static typename elfcpp::Swap<32, big_endian>::Valtype
3040 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3043 for (int n = 0; n <= group; n++)
3045 // Calculate which part of the value to mask.
3046 uint32_t shift = calc_grp_kn(residual);
3047 // Calculate the residual for the next time around.
3048 residual &= ~(residual & (0xff << shift));
3054 // Calculate the value of Gn for the specified group index.
3055 // We return it in the form of an encoded constant-and-rotation.
3056 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3057 static typename elfcpp::Swap<32, big_endian>::Valtype
3058 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3061 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3064 for (int n = 0; n <= group; n++)
3066 // Calculate which part of the value to mask.
3067 shift = calc_grp_kn(residual);
3068 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3069 gn = residual & (0xff << shift);
3070 // Calculate the residual for the next time around.
3073 // Return Gn in the form of an encoded constant-and-rotation.
3074 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3078 // Handle ARM long branches.
3079 static typename This::Status
3080 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3081 unsigned char*, const Sized_symbol<32>*,
3082 const Arm_relobj<big_endian>*, unsigned int,
3083 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3085 // Handle THUMB long branches.
3086 static typename This::Status
3087 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3088 unsigned char*, const Sized_symbol<32>*,
3089 const Arm_relobj<big_endian>*, unsigned int,
3090 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3093 // Return the branch offset of a 32-bit THUMB branch.
3094 static inline int32_t
3095 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3097 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3098 // involving the J1 and J2 bits.
3099 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3100 uint32_t upper = upper_insn & 0x3ffU;
3101 uint32_t lower = lower_insn & 0x7ffU;
3102 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3103 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3104 uint32_t i1 = j1 ^ s ? 0 : 1;
3105 uint32_t i2 = j2 ^ s ? 0 : 1;
3107 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3108 | (upper << 12) | (lower << 1));
3111 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3112 // UPPER_INSN is the original upper instruction of the branch. Caller is
3113 // responsible for overflow checking and BLX offset adjustment.
3114 static inline uint16_t
3115 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3117 uint32_t s = offset < 0 ? 1 : 0;
3118 uint32_t bits = static_cast<uint32_t>(offset);
3119 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3122 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3123 // LOWER_INSN is the original lower instruction of the branch. Caller is
3124 // responsible for overflow checking and BLX offset adjustment.
3125 static inline uint16_t
3126 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3128 uint32_t s = offset < 0 ? 1 : 0;
3129 uint32_t bits = static_cast<uint32_t>(offset);
3130 return ((lower_insn & ~0x2fffU)
3131 | ((((bits >> 23) & 1) ^ !s) << 13)
3132 | ((((bits >> 22) & 1) ^ !s) << 11)
3133 | ((bits >> 1) & 0x7ffU));
3136 // Return the branch offset of a 32-bit THUMB conditional branch.
3137 static inline int32_t
3138 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3140 uint32_t s = (upper_insn & 0x0400U) >> 10;
3141 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3142 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3143 uint32_t lower = (lower_insn & 0x07ffU);
3144 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3146 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3149 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3150 // instruction. UPPER_INSN is the original upper instruction of the branch.
3151 // Caller is responsible for overflow checking.
3152 static inline uint16_t
3153 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3155 uint32_t s = offset < 0 ? 1 : 0;
3156 uint32_t bits = static_cast<uint32_t>(offset);
3157 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3160 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3161 // instruction. LOWER_INSN is the original lower instruction of the branch.
3162 // Caller is reponsible for overflow checking.
3163 static inline uint16_t
3164 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3166 uint32_t bits = static_cast<uint32_t>(offset);
3167 uint32_t j2 = (bits & 0x00080000U) >> 19;
3168 uint32_t j1 = (bits & 0x00040000U) >> 18;
3169 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3171 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3174 // R_ARM_ABS8: S + A
3175 static inline typename This::Status
3176 abs8(unsigned char* view,
3177 const Sized_relobj<32, big_endian>* object,
3178 const Symbol_value<32>* psymval)
3180 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3181 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3182 Valtype* wv = reinterpret_cast<Valtype*>(view);
3183 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3184 Reltype addend = utils::sign_extend<8>(val);
3185 Reltype x = psymval->value(object, addend);
3186 val = utils::bit_select(val, x, 0xffU);
3187 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3189 // R_ARM_ABS8 permits signed or unsigned results.
3190 int signed_x = static_cast<int32_t>(x);
3191 return ((signed_x < -128 || signed_x > 255)
3192 ? This::STATUS_OVERFLOW
3193 : This::STATUS_OKAY);
3196 // R_ARM_THM_ABS5: S + A
3197 static inline typename This::Status
3198 thm_abs5(unsigned char* view,
3199 const Sized_relobj<32, big_endian>* object,
3200 const Symbol_value<32>* psymval)
3202 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3203 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3204 Valtype* wv = reinterpret_cast<Valtype*>(view);
3205 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3206 Reltype addend = (val & 0x7e0U) >> 6;
3207 Reltype x = psymval->value(object, addend);
3208 val = utils::bit_select(val, x << 6, 0x7e0U);
3209 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3211 // R_ARM_ABS16 permits signed or unsigned results.
3212 int signed_x = static_cast<int32_t>(x);
3213 return ((signed_x < -32768 || signed_x > 65535)
3214 ? This::STATUS_OVERFLOW
3215 : This::STATUS_OKAY);
3218 // R_ARM_ABS12: S + A
3219 static inline typename This::Status
3220 abs12(unsigned char* view,
3221 const Sized_relobj<32, big_endian>* object,
3222 const Symbol_value<32>* psymval)
3224 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3225 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3226 Valtype* wv = reinterpret_cast<Valtype*>(view);
3227 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3228 Reltype addend = val & 0x0fffU;
3229 Reltype x = psymval->value(object, addend);
3230 val = utils::bit_select(val, x, 0x0fffU);
3231 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3232 return (utils::has_overflow<12>(x)
3233 ? This::STATUS_OVERFLOW
3234 : This::STATUS_OKAY);
3237 // R_ARM_ABS16: S + A
3238 static inline typename This::Status
3239 abs16(unsigned char* view,
3240 const Sized_relobj<32, big_endian>* object,
3241 const Symbol_value<32>* psymval)
3243 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3244 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3245 Valtype* wv = reinterpret_cast<Valtype*>(view);
3246 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3247 Reltype addend = utils::sign_extend<16>(val);
3248 Reltype x = psymval->value(object, addend);
3249 val = utils::bit_select(val, x, 0xffffU);
3250 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3251 return (utils::has_signed_unsigned_overflow<16>(x)
3252 ? This::STATUS_OVERFLOW
3253 : This::STATUS_OKAY);
3256 // R_ARM_ABS32: (S + A) | T
3257 static inline typename This::Status
3258 abs32(unsigned char* view,
3259 const Sized_relobj<32, big_endian>* object,
3260 const Symbol_value<32>* psymval,
3261 Arm_address thumb_bit)
3263 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3264 Valtype* wv = reinterpret_cast<Valtype*>(view);
3265 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3266 Valtype x = psymval->value(object, addend) | thumb_bit;
3267 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3268 return This::STATUS_OKAY;
3271 // R_ARM_REL32: (S + A) | T - P
3272 static inline typename This::Status
3273 rel32(unsigned char* view,
3274 const Sized_relobj<32, big_endian>* object,
3275 const Symbol_value<32>* psymval,
3276 Arm_address address,
3277 Arm_address thumb_bit)
3279 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3280 Valtype* wv = reinterpret_cast<Valtype*>(view);
3281 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3282 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3283 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3284 return This::STATUS_OKAY;
3287 // R_ARM_THM_JUMP24: (S + A) | T - P
3288 static typename This::Status
3289 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3290 const Symbol_value<32>* psymval, Arm_address address,
3291 Arm_address thumb_bit);
3293 // R_ARM_THM_JUMP6: S + A – P
3294 static inline typename This::Status
3295 thm_jump6(unsigned char* view,
3296 const Sized_relobj<32, big_endian>* object,
3297 const Symbol_value<32>* psymval,
3298 Arm_address address)
3300 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3301 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3302 Valtype* wv = reinterpret_cast<Valtype*>(view);
3303 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3304 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3305 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3306 Reltype x = (psymval->value(object, addend) - address);
3307 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3308 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3309 // CZB does only forward jumps.
3310 return ((x > 0x007e)
3311 ? This::STATUS_OVERFLOW
3312 : This::STATUS_OKAY);
3315 // R_ARM_THM_JUMP8: S + A – P
3316 static inline typename This::Status
3317 thm_jump8(unsigned char* view,
3318 const Sized_relobj<32, big_endian>* object,
3319 const Symbol_value<32>* psymval,
3320 Arm_address address)
3322 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3323 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3324 Valtype* wv = reinterpret_cast<Valtype*>(view);
3325 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3326 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3327 Reltype x = (psymval->value(object, addend) - address);
3328 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3329 return (utils::has_overflow<8>(x)
3330 ? This::STATUS_OVERFLOW
3331 : This::STATUS_OKAY);
3334 // R_ARM_THM_JUMP11: S + A – P
3335 static inline typename This::Status
3336 thm_jump11(unsigned char* view,
3337 const Sized_relobj<32, big_endian>* object,
3338 const Symbol_value<32>* psymval,
3339 Arm_address address)
3341 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3342 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3343 Valtype* wv = reinterpret_cast<Valtype*>(view);
3344 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3345 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3346 Reltype x = (psymval->value(object, addend) - address);
3347 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3348 return (utils::has_overflow<11>(x)
3349 ? This::STATUS_OVERFLOW
3350 : This::STATUS_OKAY);
3353 // R_ARM_BASE_PREL: B(S) + A - P
3354 static inline typename This::Status
3355 base_prel(unsigned char* view,
3357 Arm_address address)
3359 Base::rel32(view, origin - address);
3363 // R_ARM_BASE_ABS: B(S) + A
3364 static inline typename This::Status
3365 base_abs(unsigned char* view,
3368 Base::rel32(view, origin);
3372 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3373 static inline typename This::Status
3374 got_brel(unsigned char* view,
3375 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3377 Base::rel32(view, got_offset);
3378 return This::STATUS_OKAY;
3381 // R_ARM_GOT_PREL: GOT(S) + A - P
3382 static inline typename This::Status
3383 got_prel(unsigned char* view,
3384 Arm_address got_entry,
3385 Arm_address address)
3387 Base::rel32(view, got_entry - address);
3388 return This::STATUS_OKAY;
3391 // R_ARM_PREL: (S + A) | T - P
3392 static inline typename This::Status
3393 prel31(unsigned char* view,
3394 const Sized_relobj<32, big_endian>* object,
3395 const Symbol_value<32>* psymval,
3396 Arm_address address,
3397 Arm_address thumb_bit)
3399 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3400 Valtype* wv = reinterpret_cast<Valtype*>(view);
3401 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3402 Valtype addend = utils::sign_extend<31>(val);
3403 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3404 val = utils::bit_select(val, x, 0x7fffffffU);
3405 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3406 return (utils::has_overflow<31>(x) ?
3407 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3410 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3411 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3412 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3413 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3414 static inline typename This::Status
3415 movw(unsigned char* view,
3416 const Sized_relobj<32, big_endian>* object,
3417 const Symbol_value<32>* psymval,
3418 Arm_address relative_address_base,
3419 Arm_address thumb_bit,
3420 bool check_overflow)
3422 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3423 Valtype* wv = reinterpret_cast<Valtype*>(view);
3424 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3425 Valtype addend = This::extract_arm_movw_movt_addend(val);
3426 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3427 - relative_address_base);
3428 val = This::insert_val_arm_movw_movt(val, x);
3429 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3430 return ((check_overflow && utils::has_overflow<16>(x))
3431 ? This::STATUS_OVERFLOW
3432 : This::STATUS_OKAY);
3435 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3436 // R_ARM_MOVT_PREL: S + A - P
3437 // R_ARM_MOVT_BREL: S + A - B(S)
3438 static inline typename This::Status
3439 movt(unsigned char* view,
3440 const Sized_relobj<32, big_endian>* object,
3441 const Symbol_value<32>* psymval,
3442 Arm_address relative_address_base)
3444 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3445 Valtype* wv = reinterpret_cast<Valtype*>(view);
3446 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3447 Valtype addend = This::extract_arm_movw_movt_addend(val);
3448 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3449 val = This::insert_val_arm_movw_movt(val, x);
3450 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3451 // FIXME: IHI0044D says that we should check for overflow.
3452 return This::STATUS_OKAY;
3455 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3456 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3457 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3458 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3459 static inline typename This::Status
3460 thm_movw(unsigned char* view,
3461 const Sized_relobj<32, big_endian>* object,
3462 const Symbol_value<32>* psymval,
3463 Arm_address relative_address_base,
3464 Arm_address thumb_bit,
3465 bool check_overflow)
3467 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3468 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3469 Valtype* wv = reinterpret_cast<Valtype*>(view);
3470 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3471 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3472 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3474 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3475 val = This::insert_val_thumb_movw_movt(val, x);
3476 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3477 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3478 return ((check_overflow && utils::has_overflow<16>(x))
3479 ? This::STATUS_OVERFLOW
3480 : This::STATUS_OKAY);
3483 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3484 // R_ARM_THM_MOVT_PREL: S + A - P
3485 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3486 static inline typename This::Status
3487 thm_movt(unsigned char* view,
3488 const Sized_relobj<32, big_endian>* object,
3489 const Symbol_value<32>* psymval,
3490 Arm_address relative_address_base)
3492 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3493 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3494 Valtype* wv = reinterpret_cast<Valtype*>(view);
3495 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3496 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3497 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3498 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3499 val = This::insert_val_thumb_movw_movt(val, x);
3500 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3501 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3502 return This::STATUS_OKAY;
3505 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3506 static inline typename This::Status
3507 thm_alu11(unsigned char* view,
3508 const Sized_relobj<32, big_endian>* object,
3509 const Symbol_value<32>* psymval,
3510 Arm_address address,
3511 Arm_address thumb_bit)
3513 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3514 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3515 Valtype* wv = reinterpret_cast<Valtype*>(view);
3516 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3517 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3519 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3520 // -----------------------------------------------------------------------
3521 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3522 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3523 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3524 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3525 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3526 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3528 // Determine a sign for the addend.
3529 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3530 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3531 // Thumb2 addend encoding:
3532 // imm12 := i | imm3 | imm8
3533 int32_t addend = (insn & 0xff)
3534 | ((insn & 0x00007000) >> 4)
3535 | ((insn & 0x04000000) >> 15);
3536 // Apply a sign to the added.
3539 int32_t x = (psymval->value(object, addend) | thumb_bit)
3540 - (address & 0xfffffffc);
3541 Reltype val = abs(x);
3542 // Mask out the value and a distinct part of the ADD/SUB opcode
3543 // (bits 7:5 of opword).
3544 insn = (insn & 0xfb0f8f00)
3546 | ((val & 0x700) << 4)
3547 | ((val & 0x800) << 15);
3548 // Set the opcode according to whether the value to go in the
3549 // place is negative.
3553 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3554 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3555 return ((val > 0xfff) ?
3556 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3559 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3560 static inline typename This::Status
3561 thm_pc8(unsigned char* view,
3562 const Sized_relobj<32, big_endian>* object,
3563 const Symbol_value<32>* psymval,
3564 Arm_address address)
3566 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3567 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3568 Valtype* wv = reinterpret_cast<Valtype*>(view);
3569 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3570 Reltype addend = ((insn & 0x00ff) << 2);
3571 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3572 Reltype val = abs(x);
3573 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3575 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3576 return ((val > 0x03fc)
3577 ? This::STATUS_OVERFLOW
3578 : This::STATUS_OKAY);
3581 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3582 static inline typename This::Status
3583 thm_pc12(unsigned char* view,
3584 const Sized_relobj<32, big_endian>* object,
3585 const Symbol_value<32>* psymval,
3586 Arm_address address)
3588 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3589 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3590 Valtype* wv = reinterpret_cast<Valtype*>(view);
3591 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3592 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3593 // Determine a sign for the addend (positive if the U bit is 1).
3594 const int sign = (insn & 0x00800000) ? 1 : -1;
3595 int32_t addend = (insn & 0xfff);
3596 // Apply a sign to the added.
3599 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3600 Reltype val = abs(x);
3601 // Mask out and apply the value and the U bit.
3602 insn = (insn & 0xff7ff000) | (val & 0xfff);
3603 // Set the U bit according to whether the value to go in the
3604 // place is positive.
3608 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3609 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3610 return ((val > 0xfff) ?
3611 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3615 static inline typename This::Status
3616 v4bx(const Relocate_info<32, big_endian>* relinfo,
3617 unsigned char* view,
3618 const Arm_relobj<big_endian>* object,
3619 const Arm_address address,
3620 const bool is_interworking)
3623 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3624 Valtype* wv = reinterpret_cast<Valtype*>(view);
3625 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3627 // Ensure that we have a BX instruction.
3628 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3629 const uint32_t reg = (val & 0xf);
3630 if (is_interworking && reg != 0xf)
3632 Stub_table<big_endian>* stub_table =
3633 object->stub_table(relinfo->data_shndx);
3634 gold_assert(stub_table != NULL);
3636 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3637 gold_assert(stub != NULL);
3639 int32_t veneer_address =
3640 stub_table->address() + stub->offset() - 8 - address;
3641 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3642 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3643 // Replace with a branch to veneer (B <addr>)
3644 val = (val & 0xf0000000) | 0x0a000000
3645 | ((veneer_address >> 2) & 0x00ffffff);
3649 // Preserve Rm (lowest four bits) and the condition code
3650 // (highest four bits). Other bits encode MOV PC,Rm.
3651 val = (val & 0xf000000f) | 0x01a0f000;
3653 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3654 return This::STATUS_OKAY;
3657 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3658 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3659 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3660 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3661 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3662 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3663 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3664 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3665 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3666 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3667 static inline typename This::Status
3668 arm_grp_alu(unsigned char* view,
3669 const Sized_relobj<32, big_endian>* object,
3670 const Symbol_value<32>* psymval,
3672 Arm_address address,
3673 Arm_address thumb_bit,
3674 bool check_overflow)
3676 gold_assert(group >= 0 && group < 3);
3677 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3678 Valtype* wv = reinterpret_cast<Valtype*>(view);
3679 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3681 // ALU group relocations are allowed only for the ADD/SUB instructions.
3682 // (0x00800000 - ADD, 0x00400000 - SUB)
3683 const Valtype opcode = insn & 0x01e00000;
3684 if (opcode != 0x00800000 && opcode != 0x00400000)
3685 return This::STATUS_BAD_RELOC;
3687 // Determine a sign for the addend.
3688 const int sign = (opcode == 0x00800000) ? 1 : -1;
3689 // shifter = rotate_imm * 2
3690 const uint32_t shifter = (insn & 0xf00) >> 7;
3691 // Initial addend value.
3692 int32_t addend = insn & 0xff;
3693 // Rotate addend right by shifter.
3694 addend = (addend >> shifter) | (addend << (32 - shifter));
3695 // Apply a sign to the added.
3698 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3699 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3700 // Check for overflow if required
3702 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3703 return This::STATUS_OVERFLOW;
3705 // Mask out the value and the ADD/SUB part of the opcode; take care
3706 // not to destroy the S bit.
3708 // Set the opcode according to whether the value to go in the
3709 // place is negative.
3710 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3711 // Encode the offset (encoded Gn).
3714 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3715 return This::STATUS_OKAY;
3718 // R_ARM_LDR_PC_G0: S + A - P
3719 // R_ARM_LDR_PC_G1: S + A - P
3720 // R_ARM_LDR_PC_G2: S + A - P
3721 // R_ARM_LDR_SB_G0: S + A - B(S)
3722 // R_ARM_LDR_SB_G1: S + A - B(S)
3723 // R_ARM_LDR_SB_G2: S + A - B(S)
3724 static inline typename This::Status
3725 arm_grp_ldr(unsigned char* view,
3726 const Sized_relobj<32, big_endian>* object,
3727 const Symbol_value<32>* psymval,
3729 Arm_address address)
3731 gold_assert(group >= 0 && group < 3);
3732 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3733 Valtype* wv = reinterpret_cast<Valtype*>(view);
3734 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3736 const int sign = (insn & 0x00800000) ? 1 : -1;
3737 int32_t addend = (insn & 0xfff) * sign;
3738 int32_t x = (psymval->value(object, addend) - address);
3739 // Calculate the relevant G(n-1) value to obtain this stage residual.
3741 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3742 if (residual >= 0x1000)
3743 return This::STATUS_OVERFLOW;
3745 // Mask out the value and U bit.
3747 // Set the U bit for non-negative values.
3752 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3753 return This::STATUS_OKAY;
3756 // R_ARM_LDRS_PC_G0: S + A - P
3757 // R_ARM_LDRS_PC_G1: S + A - P
3758 // R_ARM_LDRS_PC_G2: S + A - P
3759 // R_ARM_LDRS_SB_G0: S + A - B(S)
3760 // R_ARM_LDRS_SB_G1: S + A - B(S)
3761 // R_ARM_LDRS_SB_G2: S + A - B(S)
3762 static inline typename This::Status
3763 arm_grp_ldrs(unsigned char* view,
3764 const Sized_relobj<32, big_endian>* object,
3765 const Symbol_value<32>* psymval,
3767 Arm_address address)
3769 gold_assert(group >= 0 && group < 3);
3770 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3771 Valtype* wv = reinterpret_cast<Valtype*>(view);
3772 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3774 const int sign = (insn & 0x00800000) ? 1 : -1;
3775 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3776 int32_t x = (psymval->value(object, addend) - address);
3777 // Calculate the relevant G(n-1) value to obtain this stage residual.
3779 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3780 if (residual >= 0x100)
3781 return This::STATUS_OVERFLOW;
3783 // Mask out the value and U bit.
3785 // Set the U bit for non-negative values.
3788 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3790 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3791 return This::STATUS_OKAY;
3794 // R_ARM_LDC_PC_G0: S + A - P
3795 // R_ARM_LDC_PC_G1: S + A - P
3796 // R_ARM_LDC_PC_G2: S + A - P
3797 // R_ARM_LDC_SB_G0: S + A - B(S)
3798 // R_ARM_LDC_SB_G1: S + A - B(S)
3799 // R_ARM_LDC_SB_G2: S + A - B(S)
3800 static inline typename This::Status
3801 arm_grp_ldc(unsigned char* view,
3802 const Sized_relobj<32, big_endian>* object,
3803 const Symbol_value<32>* psymval,
3805 Arm_address address)
3807 gold_assert(group >= 0 && group < 3);
3808 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3809 Valtype* wv = reinterpret_cast<Valtype*>(view);
3810 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3812 const int sign = (insn & 0x00800000) ? 1 : -1;
3813 int32_t addend = ((insn & 0xff) << 2) * sign;
3814 int32_t x = (psymval->value(object, addend) - address);
3815 // Calculate the relevant G(n-1) value to obtain this stage residual.
3817 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3818 if ((residual & 0x3) != 0 || residual >= 0x400)
3819 return This::STATUS_OVERFLOW;
3821 // Mask out the value and U bit.
3823 // Set the U bit for non-negative values.
3826 insn |= (residual >> 2);
3828 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3829 return This::STATUS_OKAY;
3833 // Relocate ARM long branches. This handles relocation types
3834 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3835 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3836 // undefined and we do not use PLT in this relocation. In such a case,
3837 // the branch is converted into an NOP.
3839 template<bool big_endian>
3840 typename Arm_relocate_functions<big_endian>::Status
3841 Arm_relocate_functions<big_endian>::arm_branch_common(
3842 unsigned int r_type,
3843 const Relocate_info<32, big_endian>* relinfo,
3844 unsigned char* view,
3845 const Sized_symbol<32>* gsym,
3846 const Arm_relobj<big_endian>* object,
3848 const Symbol_value<32>* psymval,
3849 Arm_address address,
3850 Arm_address thumb_bit,
3851 bool is_weakly_undefined_without_plt)
3853 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3854 Valtype* wv = reinterpret_cast<Valtype*>(view);
3855 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3857 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3858 && ((val & 0x0f000000UL) == 0x0a000000UL);
3859 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3860 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3861 && ((val & 0x0f000000UL) == 0x0b000000UL);
3862 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3863 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3865 // Check that the instruction is valid.
3866 if (r_type == elfcpp::R_ARM_CALL)
3868 if (!insn_is_uncond_bl && !insn_is_blx)
3869 return This::STATUS_BAD_RELOC;
3871 else if (r_type == elfcpp::R_ARM_JUMP24)
3873 if (!insn_is_b && !insn_is_cond_bl)
3874 return This::STATUS_BAD_RELOC;
3876 else if (r_type == elfcpp::R_ARM_PLT32)
3878 if (!insn_is_any_branch)
3879 return This::STATUS_BAD_RELOC;
3881 else if (r_type == elfcpp::R_ARM_XPC25)
3883 // FIXME: AAELF document IH0044C does not say much about it other
3884 // than it being obsolete.
3885 if (!insn_is_any_branch)
3886 return This::STATUS_BAD_RELOC;
3891 // A branch to an undefined weak symbol is turned into a jump to
3892 // the next instruction unless a PLT entry will be created.
3893 // Do the same for local undefined symbols.
3894 // The jump to the next instruction is optimized as a NOP depending
3895 // on the architecture.
3896 const Target_arm<big_endian>* arm_target =
3897 Target_arm<big_endian>::default_target();
3898 if (is_weakly_undefined_without_plt)
3900 gold_assert(!parameters->options().relocatable());
3901 Valtype cond = val & 0xf0000000U;
3902 if (arm_target->may_use_arm_nop())
3903 val = cond | 0x0320f000;
3905 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3906 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3907 return This::STATUS_OKAY;
3910 Valtype addend = utils::sign_extend<26>(val << 2);
3911 Valtype branch_target = psymval->value(object, addend);
3912 int32_t branch_offset = branch_target - address;
3914 // We need a stub if the branch offset is too large or if we need
3916 bool may_use_blx = arm_target->may_use_blx();
3917 Reloc_stub* stub = NULL;
3919 if (!parameters->options().relocatable()
3920 && (utils::has_overflow<26>(branch_offset)
3921 || ((thumb_bit != 0)
3922 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3924 Valtype unadjusted_branch_target = psymval->value(object, 0);
3926 Stub_type stub_type =
3927 Reloc_stub::stub_type_for_reloc(r_type, address,
3928 unadjusted_branch_target,
3930 if (stub_type != arm_stub_none)
3932 Stub_table<big_endian>* stub_table =
3933 object->stub_table(relinfo->data_shndx);
3934 gold_assert(stub_table != NULL);
3936 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3937 stub = stub_table->find_reloc_stub(stub_key);
3938 gold_assert(stub != NULL);
3939 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3940 branch_target = stub_table->address() + stub->offset() + addend;
3941 branch_offset = branch_target - address;
3942 gold_assert(!utils::has_overflow<26>(branch_offset));
3946 // At this point, if we still need to switch mode, the instruction
3947 // must either be a BLX or a BL that can be converted to a BLX.
3951 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3952 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3955 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3956 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3957 return (utils::has_overflow<26>(branch_offset)
3958 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3961 // Relocate THUMB long branches. This handles relocation types
3962 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3963 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3964 // undefined and we do not use PLT in this relocation. In such a case,
3965 // the branch is converted into an NOP.
3967 template<bool big_endian>
3968 typename Arm_relocate_functions<big_endian>::Status
3969 Arm_relocate_functions<big_endian>::thumb_branch_common(
3970 unsigned int r_type,
3971 const Relocate_info<32, big_endian>* relinfo,
3972 unsigned char* view,
3973 const Sized_symbol<32>* gsym,
3974 const Arm_relobj<big_endian>* object,
3976 const Symbol_value<32>* psymval,
3977 Arm_address address,
3978 Arm_address thumb_bit,
3979 bool is_weakly_undefined_without_plt)
3981 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3982 Valtype* wv = reinterpret_cast<Valtype*>(view);
3983 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3984 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3986 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3988 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3989 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3991 // Check that the instruction is valid.
3992 if (r_type == elfcpp::R_ARM_THM_CALL)
3994 if (!is_bl_insn && !is_blx_insn)
3995 return This::STATUS_BAD_RELOC;
3997 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3999 // This cannot be a BLX.
4001 return This::STATUS_BAD_RELOC;
4003 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4005 // Check for Thumb to Thumb call.
4007 return This::STATUS_BAD_RELOC;
4010 gold_warning(_("%s: Thumb BLX instruction targets "
4011 "thumb function '%s'."),
4012 object->name().c_str(),
4013 (gsym ? gsym->name() : "(local)"));
4014 // Convert BLX to BL.
4015 lower_insn |= 0x1000U;
4021 // A branch to an undefined weak symbol is turned into a jump to
4022 // the next instruction unless a PLT entry will be created.
4023 // The jump to the next instruction is optimized as a NOP.W for
4024 // Thumb-2 enabled architectures.
4025 const Target_arm<big_endian>* arm_target =
4026 Target_arm<big_endian>::default_target();
4027 if (is_weakly_undefined_without_plt)
4029 gold_assert(!parameters->options().relocatable());
4030 if (arm_target->may_use_thumb2_nop())
4032 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4033 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4037 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4038 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4040 return This::STATUS_OKAY;
4043 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4044 Arm_address branch_target = psymval->value(object, addend);
4046 // For BLX, bit 1 of target address comes from bit 1 of base address.
4047 bool may_use_blx = arm_target->may_use_blx();
4048 if (thumb_bit == 0 && may_use_blx)
4049 branch_target = utils::bit_select(branch_target, address, 0x2);
4051 int32_t branch_offset = branch_target - address;
4053 // We need a stub if the branch offset is too large or if we need
4055 bool thumb2 = arm_target->using_thumb2();
4056 if (!parameters->options().relocatable()
4057 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4058 || (thumb2 && utils::has_overflow<25>(branch_offset))
4059 || ((thumb_bit == 0)
4060 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4061 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4063 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4065 Stub_type stub_type =
4066 Reloc_stub::stub_type_for_reloc(r_type, address,
4067 unadjusted_branch_target,
4070 if (stub_type != arm_stub_none)
4072 Stub_table<big_endian>* stub_table =
4073 object->stub_table(relinfo->data_shndx);
4074 gold_assert(stub_table != NULL);
4076 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4077 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4078 gold_assert(stub != NULL);
4079 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4080 branch_target = stub_table->address() + stub->offset() + addend;
4081 if (thumb_bit == 0 && may_use_blx)
4082 branch_target = utils::bit_select(branch_target, address, 0x2);
4083 branch_offset = branch_target - address;
4087 // At this point, if we still need to switch mode, the instruction
4088 // must either be a BLX or a BL that can be converted to a BLX.
4091 gold_assert(may_use_blx
4092 && (r_type == elfcpp::R_ARM_THM_CALL
4093 || r_type == elfcpp::R_ARM_THM_XPC22));
4094 // Make sure this is a BLX.
4095 lower_insn &= ~0x1000U;
4099 // Make sure this is a BL.
4100 lower_insn |= 0x1000U;
4103 // For a BLX instruction, make sure that the relocation is rounded up
4104 // to a word boundary. This follows the semantics of the instruction
4105 // which specifies that bit 1 of the target address will come from bit
4106 // 1 of the base address.
4107 if ((lower_insn & 0x5000U) == 0x4000U)
4108 gold_assert((branch_offset & 3) == 0);
4110 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4111 // We use the Thumb-2 encoding, which is safe even if dealing with
4112 // a Thumb-1 instruction by virtue of our overflow check above. */
4113 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4114 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4116 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4117 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4119 gold_assert(!utils::has_overflow<25>(branch_offset));
4122 ? utils::has_overflow<25>(branch_offset)
4123 : utils::has_overflow<23>(branch_offset))
4124 ? This::STATUS_OVERFLOW
4125 : This::STATUS_OKAY);
4128 // Relocate THUMB-2 long conditional branches.
4129 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4130 // undefined and we do not use PLT in this relocation. In such a case,
4131 // the branch is converted into an NOP.
4133 template<bool big_endian>
4134 typename Arm_relocate_functions<big_endian>::Status
4135 Arm_relocate_functions<big_endian>::thm_jump19(
4136 unsigned char* view,
4137 const Arm_relobj<big_endian>* object,
4138 const Symbol_value<32>* psymval,
4139 Arm_address address,
4140 Arm_address thumb_bit)
4142 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4143 Valtype* wv = reinterpret_cast<Valtype*>(view);
4144 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4145 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4146 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4148 Arm_address branch_target = psymval->value(object, addend);
4149 int32_t branch_offset = branch_target - address;
4151 // ??? Should handle interworking? GCC might someday try to
4152 // use this for tail calls.
4153 // FIXME: We do support thumb entry to PLT yet.
4156 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4157 return This::STATUS_BAD_RELOC;
4160 // Put RELOCATION back into the insn.
4161 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4162 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4164 // Put the relocated value back in the object file:
4165 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4166 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4168 return (utils::has_overflow<21>(branch_offset)
4169 ? This::STATUS_OVERFLOW
4170 : This::STATUS_OKAY);
4173 // Get the GOT section, creating it if necessary.
4175 template<bool big_endian>
4176 Arm_output_data_got<big_endian>*
4177 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4179 if (this->got_ == NULL)
4181 gold_assert(symtab != NULL && layout != NULL);
4183 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4185 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4186 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4187 this->got_, ORDER_DATA, false);
4189 // The old GNU linker creates a .got.plt section. We just
4190 // create another set of data in the .got section. Note that we
4191 // always create a PLT if we create a GOT, although the PLT
4193 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4194 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4195 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4196 this->got_plt_, ORDER_DATA, false);
4198 // The first three entries are reserved.
4199 this->got_plt_->set_current_data_size(3 * 4);
4201 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4202 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4203 Symbol_table::PREDEFINED,
4205 0, 0, elfcpp::STT_OBJECT,
4207 elfcpp::STV_HIDDEN, 0,
4213 // Get the dynamic reloc section, creating it if necessary.
4215 template<bool big_endian>
4216 typename Target_arm<big_endian>::Reloc_section*
4217 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4219 if (this->rel_dyn_ == NULL)
4221 gold_assert(layout != NULL);
4222 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4223 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4224 elfcpp::SHF_ALLOC, this->rel_dyn_,
4225 ORDER_DYNAMIC_RELOCS, false);
4227 return this->rel_dyn_;
4230 // Insn_template methods.
4232 // Return byte size of an instruction template.
4235 Insn_template::size() const
4237 switch (this->type())
4240 case THUMB16_SPECIAL_TYPE:
4251 // Return alignment of an instruction template.
4254 Insn_template::alignment() const
4256 switch (this->type())
4259 case THUMB16_SPECIAL_TYPE:
4270 // Stub_template methods.
4272 Stub_template::Stub_template(
4273 Stub_type type, const Insn_template* insns,
4275 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4276 entry_in_thumb_mode_(false), relocs_()
4280 // Compute byte size and alignment of stub template.
4281 for (size_t i = 0; i < insn_count; i++)
4283 unsigned insn_alignment = insns[i].alignment();
4284 size_t insn_size = insns[i].size();
4285 gold_assert((offset & (insn_alignment - 1)) == 0);
4286 this->alignment_ = std::max(this->alignment_, insn_alignment);
4287 switch (insns[i].type())
4289 case Insn_template::THUMB16_TYPE:
4290 case Insn_template::THUMB16_SPECIAL_TYPE:
4292 this->entry_in_thumb_mode_ = true;
4295 case Insn_template::THUMB32_TYPE:
4296 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4297 this->relocs_.push_back(Reloc(i, offset));
4299 this->entry_in_thumb_mode_ = true;
4302 case Insn_template::ARM_TYPE:
4303 // Handle cases where the target is encoded within the
4305 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4306 this->relocs_.push_back(Reloc(i, offset));
4309 case Insn_template::DATA_TYPE:
4310 // Entry point cannot be data.
4311 gold_assert(i != 0);
4312 this->relocs_.push_back(Reloc(i, offset));
4318 offset += insn_size;
4320 this->size_ = offset;
4325 // Template to implement do_write for a specific target endianness.
4327 template<bool big_endian>
4329 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4331 const Stub_template* stub_template = this->stub_template();
4332 const Insn_template* insns = stub_template->insns();
4334 // FIXME: We do not handle BE8 encoding yet.
4335 unsigned char* pov = view;
4336 for (size_t i = 0; i < stub_template->insn_count(); i++)
4338 switch (insns[i].type())
4340 case Insn_template::THUMB16_TYPE:
4341 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4343 case Insn_template::THUMB16_SPECIAL_TYPE:
4344 elfcpp::Swap<16, big_endian>::writeval(
4346 this->thumb16_special(i));
4348 case Insn_template::THUMB32_TYPE:
4350 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4351 uint32_t lo = insns[i].data() & 0xffff;
4352 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4353 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4356 case Insn_template::ARM_TYPE:
4357 case Insn_template::DATA_TYPE:
4358 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4363 pov += insns[i].size();
4365 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4368 // Reloc_stub::Key methods.
4370 // Dump a Key as a string for debugging.
4373 Reloc_stub::Key::name() const
4375 if (this->r_sym_ == invalid_index)
4377 // Global symbol key name
4378 // <stub-type>:<symbol name>:<addend>.
4379 const std::string sym_name = this->u_.symbol->name();
4380 // We need to print two hex number and two colons. So just add 100 bytes
4381 // to the symbol name size.
4382 size_t len = sym_name.size() + 100;
4383 char* buffer = new char[len];
4384 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4385 sym_name.c_str(), this->addend_);
4386 gold_assert(c > 0 && c < static_cast<int>(len));
4388 return std::string(buffer);
4392 // local symbol key name
4393 // <stub-type>:<object>:<r_sym>:<addend>.
4394 const size_t len = 200;
4396 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4397 this->u_.relobj, this->r_sym_, this->addend_);
4398 gold_assert(c > 0 && c < static_cast<int>(len));
4399 return std::string(buffer);
4403 // Reloc_stub methods.
4405 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4406 // LOCATION to DESTINATION.
4407 // This code is based on the arm_type_of_stub function in
4408 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4412 Reloc_stub::stub_type_for_reloc(
4413 unsigned int r_type,
4414 Arm_address location,
4415 Arm_address destination,
4416 bool target_is_thumb)
4418 Stub_type stub_type = arm_stub_none;
4420 // This is a bit ugly but we want to avoid using a templated class for
4421 // big and little endianities.
4423 bool should_force_pic_veneer;
4426 if (parameters->target().is_big_endian())
4428 const Target_arm<true>* big_endian_target =
4429 Target_arm<true>::default_target();
4430 may_use_blx = big_endian_target->may_use_blx();
4431 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4432 thumb2 = big_endian_target->using_thumb2();
4433 thumb_only = big_endian_target->using_thumb_only();
4437 const Target_arm<false>* little_endian_target =
4438 Target_arm<false>::default_target();
4439 may_use_blx = little_endian_target->may_use_blx();
4440 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4441 thumb2 = little_endian_target->using_thumb2();
4442 thumb_only = little_endian_target->using_thumb_only();
4445 int64_t branch_offset;
4446 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4448 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4449 // base address (instruction address + 4).
4450 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4451 destination = utils::bit_select(destination, location, 0x2);
4452 branch_offset = static_cast<int64_t>(destination) - location;
4454 // Handle cases where:
4455 // - this call goes too far (different Thumb/Thumb2 max
4457 // - it's a Thumb->Arm call and blx is not available, or it's a
4458 // Thumb->Arm branch (not bl). A stub is needed in this case.
4460 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4461 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4463 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4464 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4465 || ((!target_is_thumb)
4466 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4467 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4469 if (target_is_thumb)
4474 stub_type = (parameters->options().shared()
4475 || should_force_pic_veneer)
4478 && (r_type == elfcpp::R_ARM_THM_CALL))
4479 // V5T and above. Stub starts with ARM code, so
4480 // we must be able to switch mode before
4481 // reaching it, which is only possible for 'bl'
4482 // (ie R_ARM_THM_CALL relocation).
4483 ? arm_stub_long_branch_any_thumb_pic
4484 // On V4T, use Thumb code only.
4485 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4489 && (r_type == elfcpp::R_ARM_THM_CALL))
4490 ? arm_stub_long_branch_any_any // V5T and above.
4491 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4495 stub_type = (parameters->options().shared()
4496 || should_force_pic_veneer)
4497 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4498 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4505 // FIXME: We should check that the input section is from an
4506 // object that has interwork enabled.
4508 stub_type = (parameters->options().shared()
4509 || should_force_pic_veneer)
4512 && (r_type == elfcpp::R_ARM_THM_CALL))
4513 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4514 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4518 && (r_type == elfcpp::R_ARM_THM_CALL))
4519 ? arm_stub_long_branch_any_any // V5T and above.
4520 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4522 // Handle v4t short branches.
4523 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4524 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4525 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4526 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4530 else if (r_type == elfcpp::R_ARM_CALL
4531 || r_type == elfcpp::R_ARM_JUMP24
4532 || r_type == elfcpp::R_ARM_PLT32)
4534 branch_offset = static_cast<int64_t>(destination) - location;
4535 if (target_is_thumb)
4539 // FIXME: We should check that the input section is from an
4540 // object that has interwork enabled.
4542 // We have an extra 2-bytes reach because of
4543 // the mode change (bit 24 (H) of BLX encoding).
4544 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4545 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4546 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4547 || (r_type == elfcpp::R_ARM_JUMP24)
4548 || (r_type == elfcpp::R_ARM_PLT32))
4550 stub_type = (parameters->options().shared()
4551 || should_force_pic_veneer)
4554 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4555 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4559 ? arm_stub_long_branch_any_any // V5T and above.
4560 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4566 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4567 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4569 stub_type = (parameters->options().shared()
4570 || should_force_pic_veneer)
4571 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4572 : arm_stub_long_branch_any_any; /// non-PIC.
4580 // Cortex_a8_stub methods.
4582 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4583 // I is the position of the instruction template in the stub template.
4586 Cortex_a8_stub::do_thumb16_special(size_t i)
4588 // The only use of this is to copy condition code from a conditional
4589 // branch being worked around to the corresponding conditional branch in
4591 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4593 uint16_t data = this->stub_template()->insns()[i].data();
4594 gold_assert((data & 0xff00U) == 0xd000U);
4595 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4599 // Stub_factory methods.
4601 Stub_factory::Stub_factory()
4603 // The instruction template sequences are declared as static
4604 // objects and initialized first time the constructor runs.
4606 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4607 // to reach the stub if necessary.
4608 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4610 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4611 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4612 // dcd R_ARM_ABS32(X)
4615 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4617 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4619 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4620 Insn_template::arm_insn(0xe12fff1c), // bx ip
4621 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4622 // dcd R_ARM_ABS32(X)
4625 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4626 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4628 Insn_template::thumb16_insn(0xb401), // push {r0}
4629 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4630 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4631 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4632 Insn_template::thumb16_insn(0x4760), // bx ip
4633 Insn_template::thumb16_insn(0xbf00), // nop
4634 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4635 // dcd R_ARM_ABS32(X)
4638 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4640 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4642 Insn_template::thumb16_insn(0x4778), // bx pc
4643 Insn_template::thumb16_insn(0x46c0), // nop
4644 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4645 Insn_template::arm_insn(0xe12fff1c), // bx ip
4646 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4647 // dcd R_ARM_ABS32(X)
4650 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4652 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4654 Insn_template::thumb16_insn(0x4778), // bx pc
4655 Insn_template::thumb16_insn(0x46c0), // nop
4656 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4657 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4658 // dcd R_ARM_ABS32(X)
4661 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4662 // one, when the destination is close enough.
4663 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4665 Insn_template::thumb16_insn(0x4778), // bx pc
4666 Insn_template::thumb16_insn(0x46c0), // nop
4667 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4670 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4671 // blx to reach the stub if necessary.
4672 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4674 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4675 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4676 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4677 // dcd R_ARM_REL32(X-4)
4680 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4681 // blx to reach the stub if necessary. We can not add into pc;
4682 // it is not guaranteed to mode switch (different in ARMv6 and
4684 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4686 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4687 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4688 Insn_template::arm_insn(0xe12fff1c), // bx ip
4689 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4690 // dcd R_ARM_REL32(X)
4693 // V4T ARM -> ARM long branch stub, PIC.
4694 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4696 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4697 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4698 Insn_template::arm_insn(0xe12fff1c), // bx ip
4699 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4700 // dcd R_ARM_REL32(X)
4703 // V4T Thumb -> ARM long branch stub, PIC.
4704 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4706 Insn_template::thumb16_insn(0x4778), // bx pc
4707 Insn_template::thumb16_insn(0x46c0), // nop
4708 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4709 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4710 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4711 // dcd R_ARM_REL32(X)
4714 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4716 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4718 Insn_template::thumb16_insn(0xb401), // push {r0}
4719 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4720 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4721 Insn_template::thumb16_insn(0x4484), // add ip, r0
4722 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4723 Insn_template::thumb16_insn(0x4760), // bx ip
4724 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4725 // dcd R_ARM_REL32(X)
4728 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4730 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4732 Insn_template::thumb16_insn(0x4778), // bx pc
4733 Insn_template::thumb16_insn(0x46c0), // nop
4734 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4735 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4736 Insn_template::arm_insn(0xe12fff1c), // bx ip
4737 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4738 // dcd R_ARM_REL32(X)
4741 // Cortex-A8 erratum-workaround stubs.
4743 // Stub used for conditional branches (which may be beyond +/-1MB away,
4744 // so we can't use a conditional branch to reach this stub).
4751 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4753 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4754 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4755 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4759 // Stub used for b.w and bl.w instructions.
4761 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4763 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4766 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4768 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4771 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4772 // instruction (which switches to ARM mode) to point to this stub. Jump to
4773 // the real destination using an ARM-mode branch.
4774 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4776 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4779 // Stub used to provide an interworking for R_ARM_V4BX relocation
4780 // (bx r[n] instruction).
4781 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4783 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4784 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4785 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4788 // Fill in the stub template look-up table. Stub templates are constructed
4789 // per instance of Stub_factory for fast look-up without locking
4790 // in a thread-enabled environment.
4792 this->stub_templates_[arm_stub_none] =
4793 new Stub_template(arm_stub_none, NULL, 0);
4795 #define DEF_STUB(x) \
4799 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4800 Stub_type type = arm_stub_##x; \
4801 this->stub_templates_[type] = \
4802 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4810 // Stub_table methods.
4812 // Removel all Cortex-A8 stub.
4814 template<bool big_endian>
4816 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4818 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4819 p != this->cortex_a8_stubs_.end();
4822 this->cortex_a8_stubs_.clear();
4825 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4827 template<bool big_endian>
4829 Stub_table<big_endian>::relocate_stub(
4831 const Relocate_info<32, big_endian>* relinfo,
4832 Target_arm<big_endian>* arm_target,
4833 Output_section* output_section,
4834 unsigned char* view,
4835 Arm_address address,
4836 section_size_type view_size)
4838 const Stub_template* stub_template = stub->stub_template();
4839 if (stub_template->reloc_count() != 0)
4841 // Adjust view to cover the stub only.
4842 section_size_type offset = stub->offset();
4843 section_size_type stub_size = stub_template->size();
4844 gold_assert(offset + stub_size <= view_size);
4846 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4847 address + offset, stub_size);
4851 // Relocate all stubs in this stub table.
4853 template<bool big_endian>
4855 Stub_table<big_endian>::relocate_stubs(
4856 const Relocate_info<32, big_endian>* relinfo,
4857 Target_arm<big_endian>* arm_target,
4858 Output_section* output_section,
4859 unsigned char* view,
4860 Arm_address address,
4861 section_size_type view_size)
4863 // If we are passed a view bigger than the stub table's. we need to
4865 gold_assert(address == this->address()
4867 == static_cast<section_size_type>(this->data_size())));
4869 // Relocate all relocation stubs.
4870 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4871 p != this->reloc_stubs_.end();
4873 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4874 address, view_size);
4876 // Relocate all Cortex-A8 stubs.
4877 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4878 p != this->cortex_a8_stubs_.end();
4880 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4881 address, view_size);
4883 // Relocate all ARM V4BX stubs.
4884 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4885 p != this->arm_v4bx_stubs_.end();
4889 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4890 address, view_size);
4894 // Write out the stubs to file.
4896 template<bool big_endian>
4898 Stub_table<big_endian>::do_write(Output_file* of)
4900 off_t offset = this->offset();
4901 const section_size_type oview_size =
4902 convert_to_section_size_type(this->data_size());
4903 unsigned char* const oview = of->get_output_view(offset, oview_size);
4905 // Write relocation stubs.
4906 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4907 p != this->reloc_stubs_.end();
4910 Reloc_stub* stub = p->second;
4911 Arm_address address = this->address() + stub->offset();
4913 == align_address(address,
4914 stub->stub_template()->alignment()));
4915 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4919 // Write Cortex-A8 stubs.
4920 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4921 p != this->cortex_a8_stubs_.end();
4924 Cortex_a8_stub* stub = p->second;
4925 Arm_address address = this->address() + stub->offset();
4927 == align_address(address,
4928 stub->stub_template()->alignment()));
4929 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4933 // Write ARM V4BX relocation stubs.
4934 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4935 p != this->arm_v4bx_stubs_.end();
4941 Arm_address address = this->address() + (*p)->offset();
4943 == align_address(address,
4944 (*p)->stub_template()->alignment()));
4945 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4949 of->write_output_view(this->offset(), oview_size, oview);
4952 // Update the data size and address alignment of the stub table at the end
4953 // of a relaxation pass. Return true if either the data size or the
4954 // alignment changed in this relaxation pass.
4956 template<bool big_endian>
4958 Stub_table<big_endian>::update_data_size_and_addralign()
4960 // Go over all stubs in table to compute data size and address alignment.
4961 off_t size = this->reloc_stubs_size_;
4962 unsigned addralign = this->reloc_stubs_addralign_;
4964 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4965 p != this->cortex_a8_stubs_.end();
4968 const Stub_template* stub_template = p->second->stub_template();
4969 addralign = std::max(addralign, stub_template->alignment());
4970 size = (align_address(size, stub_template->alignment())
4971 + stub_template->size());
4974 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4975 p != this->arm_v4bx_stubs_.end();
4981 const Stub_template* stub_template = (*p)->stub_template();
4982 addralign = std::max(addralign, stub_template->alignment());
4983 size = (align_address(size, stub_template->alignment())
4984 + stub_template->size());
4987 // Check if either data size or alignment changed in this pass.
4988 // Update prev_data_size_ and prev_addralign_. These will be used
4989 // as the current data size and address alignment for the next pass.
4990 bool changed = size != this->prev_data_size_;
4991 this->prev_data_size_ = size;
4993 if (addralign != this->prev_addralign_)
4995 this->prev_addralign_ = addralign;
5000 // Finalize the stubs. This sets the offsets of the stubs within the stub
5001 // table. It also marks all input sections needing Cortex-A8 workaround.
5003 template<bool big_endian>
5005 Stub_table<big_endian>::finalize_stubs()
5007 off_t off = this->reloc_stubs_size_;
5008 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5009 p != this->cortex_a8_stubs_.end();
5012 Cortex_a8_stub* stub = p->second;
5013 const Stub_template* stub_template = stub->stub_template();
5014 uint64_t stub_addralign = stub_template->alignment();
5015 off = align_address(off, stub_addralign);
5016 stub->set_offset(off);
5017 off += stub_template->size();
5019 // Mark input section so that we can determine later if a code section
5020 // needs the Cortex-A8 workaround quickly.
5021 Arm_relobj<big_endian>* arm_relobj =
5022 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5023 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5026 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5027 p != this->arm_v4bx_stubs_.end();
5033 const Stub_template* stub_template = (*p)->stub_template();
5034 uint64_t stub_addralign = stub_template->alignment();
5035 off = align_address(off, stub_addralign);
5036 (*p)->set_offset(off);
5037 off += stub_template->size();
5040 gold_assert(off <= this->prev_data_size_);
5043 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5044 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5045 // of the address range seen by the linker.
5047 template<bool big_endian>
5049 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5050 Target_arm<big_endian>* arm_target,
5051 unsigned char* view,
5052 Arm_address view_address,
5053 section_size_type view_size)
5055 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5056 for (Cortex_a8_stub_list::const_iterator p =
5057 this->cortex_a8_stubs_.lower_bound(view_address);
5058 ((p != this->cortex_a8_stubs_.end())
5059 && (p->first < (view_address + view_size)));
5062 // We do not store the THUMB bit in the LSB of either the branch address
5063 // or the stub offset. There is no need to strip the LSB.
5064 Arm_address branch_address = p->first;
5065 const Cortex_a8_stub* stub = p->second;
5066 Arm_address stub_address = this->address() + stub->offset();
5068 // Offset of the branch instruction relative to this view.
5069 section_size_type offset =
5070 convert_to_section_size_type(branch_address - view_address);
5071 gold_assert((offset + 4) <= view_size);
5073 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5074 view + offset, branch_address);
5078 // Arm_input_section methods.
5080 // Initialize an Arm_input_section.
5082 template<bool big_endian>
5084 Arm_input_section<big_endian>::init()
5086 Relobj* relobj = this->relobj();
5087 unsigned int shndx = this->shndx();
5089 // Cache these to speed up size and alignment queries. It is too slow
5090 // to call section_addraglin and section_size every time.
5091 this->original_addralign_ =
5092 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5093 this->original_size_ =
5094 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5096 // We want to make this look like the original input section after
5097 // output sections are finalized.
5098 Output_section* os = relobj->output_section(shndx);
5099 off_t offset = relobj->output_section_offset(shndx);
5100 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5101 this->set_address(os->address() + offset);
5102 this->set_file_offset(os->offset() + offset);
5104 this->set_current_data_size(this->original_size_);
5105 this->finalize_data_size();
5108 template<bool big_endian>
5110 Arm_input_section<big_endian>::do_write(Output_file* of)
5112 // We have to write out the original section content.
5113 section_size_type section_size;
5114 const unsigned char* section_contents =
5115 this->relobj()->section_contents(this->shndx(), §ion_size, false);
5116 of->write(this->offset(), section_contents, section_size);
5118 // If this owns a stub table and it is not empty, write it.
5119 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5120 this->stub_table_->write(of);
5123 // Finalize data size.
5125 template<bool big_endian>
5127 Arm_input_section<big_endian>::set_final_data_size()
5129 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5131 if (this->is_stub_table_owner())
5133 this->stub_table_->finalize_data_size();
5134 off = align_address(off, this->stub_table_->addralign());
5135 off += this->stub_table_->data_size();
5137 this->set_data_size(off);
5140 // Reset address and file offset.
5142 template<bool big_endian>
5144 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5146 // Size of the original input section contents.
5147 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5149 // If this is a stub table owner, account for the stub table size.
5150 if (this->is_stub_table_owner())
5152 Stub_table<big_endian>* stub_table = this->stub_table_;
5154 // Reset the stub table's address and file offset. The
5155 // current data size for child will be updated after that.
5156 stub_table_->reset_address_and_file_offset();
5157 off = align_address(off, stub_table_->addralign());
5158 off += stub_table->current_data_size();
5161 this->set_current_data_size(off);
5164 // Arm_exidx_cantunwind methods.
5166 // Write this to Output file OF for a fixed endianness.
5168 template<bool big_endian>
5170 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5172 off_t offset = this->offset();
5173 const section_size_type oview_size = 8;
5174 unsigned char* const oview = of->get_output_view(offset, oview_size);
5176 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5177 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5179 Output_section* os = this->relobj_->output_section(this->shndx_);
5180 gold_assert(os != NULL);
5182 Arm_relobj<big_endian>* arm_relobj =
5183 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5184 Arm_address output_offset =
5185 arm_relobj->get_output_section_offset(this->shndx_);
5186 Arm_address section_start;
5187 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5188 section_start = os->address() + output_offset;
5191 // Currently this only happens for a relaxed section.
5192 const Output_relaxed_input_section* poris =
5193 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5194 gold_assert(poris != NULL);
5195 section_start = poris->address();
5198 // We always append this to the end of an EXIDX section.
5199 Arm_address output_address =
5200 section_start + this->relobj_->section_size(this->shndx_);
5202 // Write out the entry. The first word either points to the beginning
5203 // or after the end of a text section. The second word is the special
5204 // EXIDX_CANTUNWIND value.
5205 uint32_t prel31_offset = output_address - this->address();
5206 if (utils::has_overflow<31>(offset))
5207 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5208 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5209 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5211 of->write_output_view(this->offset(), oview_size, oview);
5214 // Arm_exidx_merged_section methods.
5216 // Constructor for Arm_exidx_merged_section.
5217 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5218 // SECTION_OFFSET_MAP points to a section offset map describing how
5219 // parts of the input section are mapped to output. DELETED_BYTES is
5220 // the number of bytes deleted from the EXIDX input section.
5222 Arm_exidx_merged_section::Arm_exidx_merged_section(
5223 const Arm_exidx_input_section& exidx_input_section,
5224 const Arm_exidx_section_offset_map& section_offset_map,
5225 uint32_t deleted_bytes)
5226 : Output_relaxed_input_section(exidx_input_section.relobj(),
5227 exidx_input_section.shndx(),
5228 exidx_input_section.addralign()),
5229 exidx_input_section_(exidx_input_section),
5230 section_offset_map_(section_offset_map)
5232 // Fix size here so that we do not need to implement set_final_data_size.
5233 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5234 this->fix_data_size();
5237 // Given an input OBJECT, an input section index SHNDX within that
5238 // object, and an OFFSET relative to the start of that input
5239 // section, return whether or not the corresponding offset within
5240 // the output section is known. If this function returns true, it
5241 // sets *POUTPUT to the output offset. The value -1 indicates that
5242 // this input offset is being discarded.
5245 Arm_exidx_merged_section::do_output_offset(
5246 const Relobj* relobj,
5248 section_offset_type offset,
5249 section_offset_type* poutput) const
5251 // We only handle offsets for the original EXIDX input section.
5252 if (relobj != this->exidx_input_section_.relobj()
5253 || shndx != this->exidx_input_section_.shndx())
5256 section_offset_type section_size =
5257 convert_types<section_offset_type>(this->exidx_input_section_.size());
5258 if (offset < 0 || offset >= section_size)
5259 // Input offset is out of valid range.
5263 // We need to look up the section offset map to determine the output
5264 // offset. Find the reference point in map that is first offset
5265 // bigger than or equal to this offset.
5266 Arm_exidx_section_offset_map::const_iterator p =
5267 this->section_offset_map_.lower_bound(offset);
5269 // The section offset maps are build such that this should not happen if
5270 // input offset is in the valid range.
5271 gold_assert(p != this->section_offset_map_.end());
5273 // We need to check if this is dropped.
5274 section_offset_type ref = p->first;
5275 section_offset_type mapped_ref = p->second;
5277 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5278 // Offset is present in output.
5279 *poutput = mapped_ref + (offset - ref);
5281 // Offset is discarded owing to EXIDX entry merging.
5288 // Write this to output file OF.
5291 Arm_exidx_merged_section::do_write(Output_file* of)
5293 // If we retain or discard the whole EXIDX input section, we would
5295 gold_assert(this->data_size() != this->exidx_input_section_.size()
5296 && this->data_size() != 0);
5298 off_t offset = this->offset();
5299 const section_size_type oview_size = this->data_size();
5300 unsigned char* const oview = of->get_output_view(offset, oview_size);
5302 Output_section* os = this->relobj()->output_section(this->shndx());
5303 gold_assert(os != NULL);
5305 // Get contents of EXIDX input section.
5306 section_size_type section_size;
5307 const unsigned char* section_contents =
5308 this->relobj()->section_contents(this->shndx(), §ion_size, false);
5309 gold_assert(section_size == this->exidx_input_section_.size());
5311 // Go over spans of input offsets and write only those that are not
5313 section_offset_type in_start = 0;
5314 section_offset_type out_start = 0;
5315 for(Arm_exidx_section_offset_map::const_iterator p =
5316 this->section_offset_map_.begin();
5317 p != this->section_offset_map_.end();
5320 section_offset_type in_end = p->first;
5321 gold_assert(in_end >= in_start);
5322 section_offset_type out_end = p->second;
5323 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5326 size_t out_chunk_size =
5327 convert_types<size_t>(out_end - out_start + 1);
5328 gold_assert(out_chunk_size == in_chunk_size);
5329 memcpy(oview + out_start, section_contents + in_start,
5331 out_start += out_chunk_size;
5333 in_start += in_chunk_size;
5336 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5337 of->write_output_view(this->offset(), oview_size, oview);
5340 // Arm_exidx_fixup methods.
5342 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5343 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5344 // points to the end of the last seen EXIDX section.
5347 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5349 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5350 && this->last_input_section_ != NULL)
5352 Relobj* relobj = this->last_input_section_->relobj();
5353 unsigned int text_shndx = this->last_input_section_->link();
5354 Arm_exidx_cantunwind* cantunwind =
5355 new Arm_exidx_cantunwind(relobj, text_shndx);
5356 this->exidx_output_section_->add_output_section_data(cantunwind);
5357 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5361 // Process an EXIDX section entry in input. Return whether this entry
5362 // can be deleted in the output. SECOND_WORD in the second word of the
5366 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5369 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5371 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5372 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5373 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5375 else if ((second_word & 0x80000000) != 0)
5377 // Inlined unwinding data. Merge if equal to previous.
5378 delete_entry = (merge_exidx_entries_
5379 && this->last_unwind_type_ == UT_INLINED_ENTRY
5380 && this->last_inlined_entry_ == second_word);
5381 this->last_unwind_type_ = UT_INLINED_ENTRY;
5382 this->last_inlined_entry_ = second_word;
5386 // Normal table entry. In theory we could merge these too,
5387 // but duplicate entries are likely to be much less common.
5388 delete_entry = false;
5389 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5391 return delete_entry;
5394 // Update the current section offset map during EXIDX section fix-up.
5395 // If there is no map, create one. INPUT_OFFSET is the offset of a
5396 // reference point, DELETED_BYTES is the number of deleted by in the
5397 // section so far. If DELETE_ENTRY is true, the reference point and
5398 // all offsets after the previous reference point are discarded.
5401 Arm_exidx_fixup::update_offset_map(
5402 section_offset_type input_offset,
5403 section_size_type deleted_bytes,
5406 if (this->section_offset_map_ == NULL)
5407 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5408 section_offset_type output_offset;
5410 output_offset = Arm_exidx_input_section::invalid_offset;
5412 output_offset = input_offset - deleted_bytes;
5413 (*this->section_offset_map_)[input_offset] = output_offset;
5416 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5417 // bytes deleted. If some entries are merged, also store a pointer to a newly
5418 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5419 // caller owns the map and is responsible for releasing it after use.
5421 template<bool big_endian>
5423 Arm_exidx_fixup::process_exidx_section(
5424 const Arm_exidx_input_section* exidx_input_section,
5425 Arm_exidx_section_offset_map** psection_offset_map)
5427 Relobj* relobj = exidx_input_section->relobj();
5428 unsigned shndx = exidx_input_section->shndx();
5429 section_size_type section_size;
5430 const unsigned char* section_contents =
5431 relobj->section_contents(shndx, §ion_size, false);
5433 if ((section_size % 8) != 0)
5435 // Something is wrong with this section. Better not touch it.
5436 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5437 relobj->name().c_str(), shndx);
5438 this->last_input_section_ = exidx_input_section;
5439 this->last_unwind_type_ = UT_NONE;
5443 uint32_t deleted_bytes = 0;
5444 bool prev_delete_entry = false;
5445 gold_assert(this->section_offset_map_ == NULL);
5447 for (section_size_type i = 0; i < section_size; i += 8)
5449 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5451 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5452 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5454 bool delete_entry = this->process_exidx_entry(second_word);
5456 // Entry deletion causes changes in output offsets. We use a std::map
5457 // to record these. And entry (x, y) means input offset x
5458 // is mapped to output offset y. If y is invalid_offset, then x is
5459 // dropped in the output. Because of the way std::map::lower_bound
5460 // works, we record the last offset in a region w.r.t to keeping or
5461 // dropping. If there is no entry (x0, y0) for an input offset x0,
5462 // the output offset y0 of it is determined by the output offset y1 of
5463 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5464 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5466 if (delete_entry != prev_delete_entry && i != 0)
5467 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5469 // Update total deleted bytes for this entry.
5473 prev_delete_entry = delete_entry;
5476 // If section offset map is not NULL, make an entry for the end of
5478 if (this->section_offset_map_ != NULL)
5479 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5481 *psection_offset_map = this->section_offset_map_;
5482 this->section_offset_map_ = NULL;
5483 this->last_input_section_ = exidx_input_section;
5485 // Set the first output text section so that we can link the EXIDX output
5486 // section to it. Ignore any EXIDX input section that is completely merged.
5487 if (this->first_output_text_section_ == NULL
5488 && deleted_bytes != section_size)
5490 unsigned int link = exidx_input_section->link();
5491 Output_section* os = relobj->output_section(link);
5492 gold_assert(os != NULL);
5493 this->first_output_text_section_ = os;
5496 return deleted_bytes;
5499 // Arm_output_section methods.
5501 // Create a stub group for input sections from BEGIN to END. OWNER
5502 // points to the input section to be the owner a new stub table.
5504 template<bool big_endian>
5506 Arm_output_section<big_endian>::create_stub_group(
5507 Input_section_list::const_iterator begin,
5508 Input_section_list::const_iterator end,
5509 Input_section_list::const_iterator owner,
5510 Target_arm<big_endian>* target,
5511 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5513 // We use a different kind of relaxed section in an EXIDX section.
5514 // The static casting from Output_relaxed_input_section to
5515 // Arm_input_section is invalid in an EXIDX section. We are okay
5516 // because we should not be calling this for an EXIDX section.
5517 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5519 // Currently we convert ordinary input sections into relaxed sections only
5520 // at this point but we may want to support creating relaxed input section
5521 // very early. So we check here to see if owner is already a relaxed
5524 Arm_input_section<big_endian>* arm_input_section;
5525 if (owner->is_relaxed_input_section())
5528 Arm_input_section<big_endian>::as_arm_input_section(
5529 owner->relaxed_input_section());
5533 gold_assert(owner->is_input_section());
5534 // Create a new relaxed input section.
5536 target->new_arm_input_section(owner->relobj(), owner->shndx());
5537 new_relaxed_sections->push_back(arm_input_section);
5540 // Create a stub table.
5541 Stub_table<big_endian>* stub_table =
5542 target->new_stub_table(arm_input_section);
5544 arm_input_section->set_stub_table(stub_table);
5546 Input_section_list::const_iterator p = begin;
5547 Input_section_list::const_iterator prev_p;
5549 // Look for input sections or relaxed input sections in [begin ... end].
5552 if (p->is_input_section() || p->is_relaxed_input_section())
5554 // The stub table information for input sections live
5555 // in their objects.
5556 Arm_relobj<big_endian>* arm_relobj =
5557 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5558 arm_relobj->set_stub_table(p->shndx(), stub_table);
5562 while (prev_p != end);
5565 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5566 // of stub groups. We grow a stub group by adding input section until the
5567 // size is just below GROUP_SIZE. The last input section will be converted
5568 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5569 // input section after the stub table, effectively double the group size.
5571 // This is similar to the group_sections() function in elf32-arm.c but is
5572 // implemented differently.
5574 template<bool big_endian>
5576 Arm_output_section<big_endian>::group_sections(
5577 section_size_type group_size,
5578 bool stubs_always_after_branch,
5579 Target_arm<big_endian>* target)
5581 // We only care about sections containing code.
5582 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5585 // States for grouping.
5588 // No group is being built.
5590 // A group is being built but the stub table is not found yet.
5591 // We keep group a stub group until the size is just under GROUP_SIZE.
5592 // The last input section in the group will be used as the stub table.
5593 FINDING_STUB_SECTION,
5594 // A group is being built and we have already found a stub table.
5595 // We enter this state to grow a stub group by adding input section
5596 // after the stub table. This effectively doubles the group size.
5600 // Any newly created relaxed sections are stored here.
5601 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5603 State state = NO_GROUP;
5604 section_size_type off = 0;
5605 section_size_type group_begin_offset = 0;
5606 section_size_type group_end_offset = 0;
5607 section_size_type stub_table_end_offset = 0;
5608 Input_section_list::const_iterator group_begin =
5609 this->input_sections().end();
5610 Input_section_list::const_iterator stub_table =
5611 this->input_sections().end();
5612 Input_section_list::const_iterator group_end = this->input_sections().end();
5613 for (Input_section_list::const_iterator p = this->input_sections().begin();
5614 p != this->input_sections().end();
5617 section_size_type section_begin_offset =
5618 align_address(off, p->addralign());
5619 section_size_type section_end_offset =
5620 section_begin_offset + p->data_size();
5622 // Check to see if we should group the previously seens sections.
5628 case FINDING_STUB_SECTION:
5629 // Adding this section makes the group larger than GROUP_SIZE.
5630 if (section_end_offset - group_begin_offset >= group_size)
5632 if (stubs_always_after_branch)
5634 gold_assert(group_end != this->input_sections().end());
5635 this->create_stub_group(group_begin, group_end, group_end,
5636 target, &new_relaxed_sections);
5641 // But wait, there's more! Input sections up to
5642 // stub_group_size bytes after the stub table can be
5643 // handled by it too.
5644 state = HAS_STUB_SECTION;
5645 stub_table = group_end;
5646 stub_table_end_offset = group_end_offset;
5651 case HAS_STUB_SECTION:
5652 // Adding this section makes the post stub-section group larger
5654 if (section_end_offset - stub_table_end_offset >= group_size)
5656 gold_assert(group_end != this->input_sections().end());
5657 this->create_stub_group(group_begin, group_end, stub_table,
5658 target, &new_relaxed_sections);
5667 // If we see an input section and currently there is no group, start
5668 // a new one. Skip any empty sections.
5669 if ((p->is_input_section() || p->is_relaxed_input_section())
5670 && (p->relobj()->section_size(p->shndx()) != 0))
5672 if (state == NO_GROUP)
5674 state = FINDING_STUB_SECTION;
5676 group_begin_offset = section_begin_offset;
5679 // Keep track of the last input section seen.
5681 group_end_offset = section_end_offset;
5684 off = section_end_offset;
5687 // Create a stub group for any ungrouped sections.
5688 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5690 gold_assert(group_end != this->input_sections().end());
5691 this->create_stub_group(group_begin, group_end,
5692 (state == FINDING_STUB_SECTION
5695 target, &new_relaxed_sections);
5698 // Convert input section into relaxed input section in a batch.
5699 if (!new_relaxed_sections.empty())
5700 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5702 // Update the section offsets
5703 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5705 Arm_relobj<big_endian>* arm_relobj =
5706 Arm_relobj<big_endian>::as_arm_relobj(
5707 new_relaxed_sections[i]->relobj());
5708 unsigned int shndx = new_relaxed_sections[i]->shndx();
5709 // Tell Arm_relobj that this input section is converted.
5710 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5714 // Append non empty text sections in this to LIST in ascending
5715 // order of their position in this.
5717 template<bool big_endian>
5719 Arm_output_section<big_endian>::append_text_sections_to_list(
5720 Text_section_list* list)
5722 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5724 for (Input_section_list::const_iterator p = this->input_sections().begin();
5725 p != this->input_sections().end();
5728 // We only care about plain or relaxed input sections. We also
5729 // ignore any merged sections.
5730 if ((p->is_input_section() || p->is_relaxed_input_section())
5731 && p->data_size() != 0)
5732 list->push_back(Text_section_list::value_type(p->relobj(),
5737 template<bool big_endian>
5739 Arm_output_section<big_endian>::fix_exidx_coverage(
5741 const Text_section_list& sorted_text_sections,
5742 Symbol_table* symtab,
5743 bool merge_exidx_entries)
5745 // We should only do this for the EXIDX output section.
5746 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5748 // We don't want the relaxation loop to undo these changes, so we discard
5749 // the current saved states and take another one after the fix-up.
5750 this->discard_states();
5752 // Remove all input sections.
5753 uint64_t address = this->address();
5754 typedef std::list<Output_section::Input_section> Input_section_list;
5755 Input_section_list input_sections;
5756 this->reset_address_and_file_offset();
5757 this->get_input_sections(address, std::string(""), &input_sections);
5759 if (!this->input_sections().empty())
5760 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5762 // Go through all the known input sections and record them.
5763 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5764 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5765 Section_id_hash> Text_to_exidx_map;
5766 Text_to_exidx_map text_to_exidx_map;
5767 for (Input_section_list::const_iterator p = input_sections.begin();
5768 p != input_sections.end();
5771 // This should never happen. At this point, we should only see
5772 // plain EXIDX input sections.
5773 gold_assert(!p->is_relaxed_input_section());
5774 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5777 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5779 // Go over the sorted text sections.
5780 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5781 Section_id_set processed_input_sections;
5782 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5783 p != sorted_text_sections.end();
5786 Relobj* relobj = p->first;
5787 unsigned int shndx = p->second;
5789 Arm_relobj<big_endian>* arm_relobj =
5790 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5791 const Arm_exidx_input_section* exidx_input_section =
5792 arm_relobj->exidx_input_section_by_link(shndx);
5794 // If this text section has no EXIDX section or if the EXIDX section
5795 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5796 // of the last seen EXIDX section.
5797 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5799 exidx_fixup.add_exidx_cantunwind_as_needed();
5803 Relobj* exidx_relobj = exidx_input_section->relobj();
5804 unsigned int exidx_shndx = exidx_input_section->shndx();
5805 Section_id sid(exidx_relobj, exidx_shndx);
5806 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5807 if (iter == text_to_exidx_map.end())
5809 // This is odd. We have not seen this EXIDX input section before.
5810 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5811 // issue a warning instead. We assume the user knows what he
5812 // or she is doing. Otherwise, this is an error.
5813 if (layout->script_options()->saw_sections_clause())
5814 gold_warning(_("unwinding may not work because EXIDX input section"
5815 " %u of %s is not in EXIDX output section"),
5816 exidx_shndx, exidx_relobj->name().c_str());
5818 gold_error(_("unwinding may not work because EXIDX input section"
5819 " %u of %s is not in EXIDX output section"),
5820 exidx_shndx, exidx_relobj->name().c_str());
5822 exidx_fixup.add_exidx_cantunwind_as_needed();
5826 // Fix up coverage and append input section to output data list.
5827 Arm_exidx_section_offset_map* section_offset_map = NULL;
5828 uint32_t deleted_bytes =
5829 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5830 §ion_offset_map);
5832 if (deleted_bytes == exidx_input_section->size())
5834 // The whole EXIDX section got merged. Remove it from output.
5835 gold_assert(section_offset_map == NULL);
5836 exidx_relobj->set_output_section(exidx_shndx, NULL);
5838 // All local symbols defined in this input section will be dropped.
5839 // We need to adjust output local symbol count.
5840 arm_relobj->set_output_local_symbol_count_needs_update();
5842 else if (deleted_bytes > 0)
5844 // Some entries are merged. We need to convert this EXIDX input
5845 // section into a relaxed section.
5846 gold_assert(section_offset_map != NULL);
5847 Arm_exidx_merged_section* merged_section =
5848 new Arm_exidx_merged_section(*exidx_input_section,
5849 *section_offset_map, deleted_bytes);
5850 this->add_relaxed_input_section(merged_section);
5851 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5853 // All local symbols defined in discarded portions of this input
5854 // section will be dropped. We need to adjust output local symbol
5856 arm_relobj->set_output_local_symbol_count_needs_update();
5860 // Just add back the EXIDX input section.
5861 gold_assert(section_offset_map == NULL);
5862 const Output_section::Input_section* pis = iter->second;
5863 gold_assert(pis->is_input_section());
5864 this->add_script_input_section(*pis);
5867 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5870 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5871 exidx_fixup.add_exidx_cantunwind_as_needed();
5873 // Remove any known EXIDX input sections that are not processed.
5874 for (Input_section_list::const_iterator p = input_sections.begin();
5875 p != input_sections.end();
5878 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5879 == processed_input_sections.end())
5881 // We discard a known EXIDX section because its linked
5882 // text section has been folded by ICF. We also discard an
5883 // EXIDX section with error, the output does not matter in this
5884 // case. We do this to avoid triggering asserts.
5885 Arm_relobj<big_endian>* arm_relobj =
5886 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5887 const Arm_exidx_input_section* exidx_input_section =
5888 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5889 gold_assert(exidx_input_section != NULL);
5890 if (!exidx_input_section->has_errors())
5892 unsigned int text_shndx = exidx_input_section->link();
5893 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5896 // Remove this from link. We also need to recount the
5898 p->relobj()->set_output_section(p->shndx(), NULL);
5899 arm_relobj->set_output_local_symbol_count_needs_update();
5903 // Link exidx output section to the first seen output section and
5904 // set correct entry size.
5905 this->set_link_section(exidx_fixup.first_output_text_section());
5906 this->set_entsize(8);
5908 // Make changes permanent.
5909 this->save_states();
5910 this->set_section_offsets_need_adjustment();
5913 // Link EXIDX output sections to text output sections.
5915 template<bool big_endian>
5917 Arm_output_section<big_endian>::set_exidx_section_link()
5919 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5920 if (!this->input_sections().empty())
5922 Input_section_list::const_iterator p = this->input_sections().begin();
5923 Arm_relobj<big_endian>* arm_relobj =
5924 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5925 unsigned exidx_shndx = p->shndx();
5926 const Arm_exidx_input_section* exidx_input_section =
5927 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5928 gold_assert(exidx_input_section != NULL);
5929 unsigned int text_shndx = exidx_input_section->link();
5930 Output_section* os = arm_relobj->output_section(text_shndx);
5931 this->set_link_section(os);
5935 // Arm_relobj methods.
5937 // Determine if an input section is scannable for stub processing. SHDR is
5938 // the header of the section and SHNDX is the section index. OS is the output
5939 // section for the input section and SYMTAB is the global symbol table used to
5940 // look up ICF information.
5942 template<bool big_endian>
5944 Arm_relobj<big_endian>::section_is_scannable(
5945 const elfcpp::Shdr<32, big_endian>& shdr,
5947 const Output_section* os,
5948 const Symbol_table* symtab)
5950 // Skip any empty sections, unallocated sections or sections whose
5951 // type are not SHT_PROGBITS.
5952 if (shdr.get_sh_size() == 0
5953 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5954 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5957 // Skip any discarded or ICF'ed sections.
5958 if (os == NULL || symtab->is_section_folded(this, shndx))
5961 // If this requires special offset handling, check to see if it is
5962 // a relaxed section. If this is not, then it is a merged section that
5963 // we cannot handle.
5964 if (this->is_output_section_offset_invalid(shndx))
5966 const Output_relaxed_input_section* poris =
5967 os->find_relaxed_input_section(this, shndx);
5975 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5976 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5978 template<bool big_endian>
5980 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5981 const elfcpp::Shdr<32, big_endian>& shdr,
5982 const Relobj::Output_sections& out_sections,
5983 const Symbol_table* symtab,
5984 const unsigned char* pshdrs)
5986 unsigned int sh_type = shdr.get_sh_type();
5987 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5990 // Ignore empty section.
5991 off_t sh_size = shdr.get_sh_size();
5995 // Ignore reloc section with unexpected symbol table. The
5996 // error will be reported in the final link.
5997 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6000 unsigned int reloc_size;
6001 if (sh_type == elfcpp::SHT_REL)
6002 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6004 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6006 // Ignore reloc section with unexpected entsize or uneven size.
6007 // The error will be reported in the final link.
6008 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6011 // Ignore reloc section with bad info. This error will be
6012 // reported in the final link.
6013 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6014 if (index >= this->shnum())
6017 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6018 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6019 return this->section_is_scannable(text_shdr, index,
6020 out_sections[index], symtab);
6023 // Return the output address of either a plain input section or a relaxed
6024 // input section. SHNDX is the section index. We define and use this
6025 // instead of calling Output_section::output_address because that is slow
6026 // for large output.
6028 template<bool big_endian>
6030 Arm_relobj<big_endian>::simple_input_section_output_address(
6034 if (this->is_output_section_offset_invalid(shndx))
6036 const Output_relaxed_input_section* poris =
6037 os->find_relaxed_input_section(this, shndx);
6038 // We do not handle merged sections here.
6039 gold_assert(poris != NULL);
6040 return poris->address();
6043 return os->address() + this->get_output_section_offset(shndx);
6046 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6047 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6049 template<bool big_endian>
6051 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6052 const elfcpp::Shdr<32, big_endian>& shdr,
6055 const Symbol_table* symtab)
6057 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6060 // If the section does not cross any 4K-boundaries, it does not need to
6062 Arm_address address = this->simple_input_section_output_address(shndx, os);
6063 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6069 // Scan a section for Cortex-A8 workaround.
6071 template<bool big_endian>
6073 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6074 const elfcpp::Shdr<32, big_endian>& shdr,
6077 Target_arm<big_endian>* arm_target)
6079 // Look for the first mapping symbol in this section. It should be
6081 Mapping_symbol_position section_start(shndx, 0);
6082 typename Mapping_symbols_info::const_iterator p =
6083 this->mapping_symbols_info_.lower_bound(section_start);
6085 // There are no mapping symbols for this section. Treat it as a data-only
6086 // section. Issue a warning if section is marked as containing
6088 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6090 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6091 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6092 "erratum because it has no mapping symbols."),
6093 shndx, this->name().c_str());
6097 Arm_address output_address =
6098 this->simple_input_section_output_address(shndx, os);
6100 // Get the section contents.
6101 section_size_type input_view_size = 0;
6102 const unsigned char* input_view =
6103 this->section_contents(shndx, &input_view_size, false);
6105 // We need to go through the mapping symbols to determine what to
6106 // scan. There are two reasons. First, we should look at THUMB code and
6107 // THUMB code only. Second, we only want to look at the 4K-page boundary
6108 // to speed up the scanning.
6110 while (p != this->mapping_symbols_info_.end()
6111 && p->first.first == shndx)
6113 typename Mapping_symbols_info::const_iterator next =
6114 this->mapping_symbols_info_.upper_bound(p->first);
6116 // Only scan part of a section with THUMB code.
6117 if (p->second == 't')
6119 // Determine the end of this range.
6120 section_size_type span_start =
6121 convert_to_section_size_type(p->first.second);
6122 section_size_type span_end;
6123 if (next != this->mapping_symbols_info_.end()
6124 && next->first.first == shndx)
6125 span_end = convert_to_section_size_type(next->first.second);
6127 span_end = convert_to_section_size_type(shdr.get_sh_size());
6129 if (((span_start + output_address) & ~0xfffUL)
6130 != ((span_end + output_address - 1) & ~0xfffUL))
6132 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6133 span_start, span_end,
6143 // Scan relocations for stub generation.
6145 template<bool big_endian>
6147 Arm_relobj<big_endian>::scan_sections_for_stubs(
6148 Target_arm<big_endian>* arm_target,
6149 const Symbol_table* symtab,
6150 const Layout* layout)
6152 unsigned int shnum = this->shnum();
6153 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6155 // Read the section headers.
6156 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6160 // To speed up processing, we set up hash tables for fast lookup of
6161 // input offsets to output addresses.
6162 this->initialize_input_to_output_maps();
6164 const Relobj::Output_sections& out_sections(this->output_sections());
6166 Relocate_info<32, big_endian> relinfo;
6167 relinfo.symtab = symtab;
6168 relinfo.layout = layout;
6169 relinfo.object = this;
6171 // Do relocation stubs scanning.
6172 const unsigned char* p = pshdrs + shdr_size;
6173 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6175 const elfcpp::Shdr<32, big_endian> shdr(p);
6176 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6179 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6180 Arm_address output_offset = this->get_output_section_offset(index);
6181 Arm_address output_address;
6182 if (output_offset != invalid_address)
6183 output_address = out_sections[index]->address() + output_offset;
6186 // Currently this only happens for a relaxed section.
6187 const Output_relaxed_input_section* poris =
6188 out_sections[index]->find_relaxed_input_section(this, index);
6189 gold_assert(poris != NULL);
6190 output_address = poris->address();
6193 // Get the relocations.
6194 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6198 // Get the section contents. This does work for the case in which
6199 // we modify the contents of an input section. We need to pass the
6200 // output view under such circumstances.
6201 section_size_type input_view_size = 0;
6202 const unsigned char* input_view =
6203 this->section_contents(index, &input_view_size, false);
6205 relinfo.reloc_shndx = i;
6206 relinfo.data_shndx = index;
6207 unsigned int sh_type = shdr.get_sh_type();
6208 unsigned int reloc_size;
6209 if (sh_type == elfcpp::SHT_REL)
6210 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6212 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6214 Output_section* os = out_sections[index];
6215 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6216 shdr.get_sh_size() / reloc_size,
6218 output_offset == invalid_address,
6219 input_view, output_address,
6224 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6225 // after its relocation section, if there is one, is processed for
6226 // relocation stubs. Merging this loop with the one above would have been
6227 // complicated since we would have had to make sure that relocation stub
6228 // scanning is done first.
6229 if (arm_target->fix_cortex_a8())
6231 const unsigned char* p = pshdrs + shdr_size;
6232 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6234 const elfcpp::Shdr<32, big_endian> shdr(p);
6235 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6238 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6243 // After we've done the relocations, we release the hash tables,
6244 // since we no longer need them.
6245 this->free_input_to_output_maps();
6248 // Count the local symbols. The ARM backend needs to know if a symbol
6249 // is a THUMB function or not. For global symbols, it is easy because
6250 // the Symbol object keeps the ELF symbol type. For local symbol it is
6251 // harder because we cannot access this information. So we override the
6252 // do_count_local_symbol in parent and scan local symbols to mark
6253 // THUMB functions. This is not the most efficient way but I do not want to
6254 // slow down other ports by calling a per symbol targer hook inside
6255 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6257 template<bool big_endian>
6259 Arm_relobj<big_endian>::do_count_local_symbols(
6260 Stringpool_template<char>* pool,
6261 Stringpool_template<char>* dynpool)
6263 // We need to fix-up the values of any local symbols whose type are
6266 // Ask parent to count the local symbols.
6267 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6268 const unsigned int loccount = this->local_symbol_count();
6272 // Intialize the thumb function bit-vector.
6273 std::vector<bool> empty_vector(loccount, false);
6274 this->local_symbol_is_thumb_function_.swap(empty_vector);
6276 // Read the symbol table section header.
6277 const unsigned int symtab_shndx = this->symtab_shndx();
6278 elfcpp::Shdr<32, big_endian>
6279 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6280 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6282 // Read the local symbols.
6283 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6284 gold_assert(loccount == symtabshdr.get_sh_info());
6285 off_t locsize = loccount * sym_size;
6286 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6287 locsize, true, true);
6289 // For mapping symbol processing, we need to read the symbol names.
6290 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6291 if (strtab_shndx >= this->shnum())
6293 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6297 elfcpp::Shdr<32, big_endian>
6298 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6299 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6301 this->error(_("symbol table name section has wrong type: %u"),
6302 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6305 const char* pnames =
6306 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6307 strtabshdr.get_sh_size(),
6310 // Loop over the local symbols and mark any local symbols pointing
6311 // to THUMB functions.
6313 // Skip the first dummy symbol.
6315 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6316 this->local_values();
6317 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6319 elfcpp::Sym<32, big_endian> sym(psyms);
6320 elfcpp::STT st_type = sym.get_st_type();
6321 Symbol_value<32>& lv((*plocal_values)[i]);
6322 Arm_address input_value = lv.input_value();
6324 // Check to see if this is a mapping symbol.
6325 const char* sym_name = pnames + sym.get_st_name();
6326 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6329 unsigned int input_shndx =
6330 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6331 gold_assert(is_ordinary);
6333 // Strip of LSB in case this is a THUMB symbol.
6334 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6335 this->mapping_symbols_info_[msp] = sym_name[1];
6338 if (st_type == elfcpp::STT_ARM_TFUNC
6339 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6341 // This is a THUMB function. Mark this and canonicalize the
6342 // symbol value by setting LSB.
6343 this->local_symbol_is_thumb_function_[i] = true;
6344 if ((input_value & 1) == 0)
6345 lv.set_input_value(input_value | 1);
6350 // Relocate sections.
6351 template<bool big_endian>
6353 Arm_relobj<big_endian>::do_relocate_sections(
6354 const Symbol_table* symtab,
6355 const Layout* layout,
6356 const unsigned char* pshdrs,
6358 typename Sized_relobj<32, big_endian>::Views* pviews)
6360 // Call parent to relocate sections.
6361 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6364 // We do not generate stubs if doing a relocatable link.
6365 if (parameters->options().relocatable())
6368 // Relocate stub tables.
6369 unsigned int shnum = this->shnum();
6371 Target_arm<big_endian>* arm_target =
6372 Target_arm<big_endian>::default_target();
6374 Relocate_info<32, big_endian> relinfo;
6375 relinfo.symtab = symtab;
6376 relinfo.layout = layout;
6377 relinfo.object = this;
6379 for (unsigned int i = 1; i < shnum; ++i)
6381 Arm_input_section<big_endian>* arm_input_section =
6382 arm_target->find_arm_input_section(this, i);
6384 if (arm_input_section != NULL
6385 && arm_input_section->is_stub_table_owner()
6386 && !arm_input_section->stub_table()->empty())
6388 // We cannot discard a section if it owns a stub table.
6389 Output_section* os = this->output_section(i);
6390 gold_assert(os != NULL);
6392 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6393 relinfo.reloc_shdr = NULL;
6394 relinfo.data_shndx = i;
6395 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6397 gold_assert((*pviews)[i].view != NULL);
6399 // We are passed the output section view. Adjust it to cover the
6401 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6402 gold_assert((stub_table->address() >= (*pviews)[i].address)
6403 && ((stub_table->address() + stub_table->data_size())
6404 <= (*pviews)[i].address + (*pviews)[i].view_size));
6406 off_t offset = stub_table->address() - (*pviews)[i].address;
6407 unsigned char* view = (*pviews)[i].view + offset;
6408 Arm_address address = stub_table->address();
6409 section_size_type view_size = stub_table->data_size();
6411 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6415 // Apply Cortex A8 workaround if applicable.
6416 if (this->section_has_cortex_a8_workaround(i))
6418 unsigned char* view = (*pviews)[i].view;
6419 Arm_address view_address = (*pviews)[i].address;
6420 section_size_type view_size = (*pviews)[i].view_size;
6421 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6423 // Adjust view to cover section.
6424 Output_section* os = this->output_section(i);
6425 gold_assert(os != NULL);
6426 Arm_address section_address =
6427 this->simple_input_section_output_address(i, os);
6428 uint64_t section_size = this->section_size(i);
6430 gold_assert(section_address >= view_address
6431 && ((section_address + section_size)
6432 <= (view_address + view_size)));
6434 unsigned char* section_view = view + (section_address - view_address);
6436 // Apply the Cortex-A8 workaround to the output address range
6437 // corresponding to this input section.
6438 stub_table->apply_cortex_a8_workaround_to_address_range(
6447 // Find the linked text section of an EXIDX section by looking the the first
6448 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6449 // must be linked to to its associated code section via the sh_link field of
6450 // its section header. However, some tools are broken and the link is not
6451 // always set. LD just drops such an EXIDX section silently, causing the
6452 // associated code not unwindabled. Here we try a little bit harder to
6453 // discover the linked code section.
6455 // PSHDR points to the section header of a relocation section of an EXIDX
6456 // section. If we can find a linked text section, return true and
6457 // store the text section index in the location PSHNDX. Otherwise
6460 template<bool big_endian>
6462 Arm_relobj<big_endian>::find_linked_text_section(
6463 const unsigned char* pshdr,
6464 const unsigned char* psyms,
6465 unsigned int* pshndx)
6467 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6469 // If there is no relocation, we cannot find the linked text section.
6471 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6472 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6474 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6475 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6477 // Get the relocations.
6478 const unsigned char* prelocs =
6479 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6481 // Find the REL31 relocation for the first word of the first EXIDX entry.
6482 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6484 Arm_address r_offset;
6485 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6486 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6488 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6489 r_info = reloc.get_r_info();
6490 r_offset = reloc.get_r_offset();
6494 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6495 r_info = reloc.get_r_info();
6496 r_offset = reloc.get_r_offset();
6499 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6500 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6503 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6505 || r_sym >= this->local_symbol_count()
6509 // This is the relocation for the first word of the first EXIDX entry.
6510 // We expect to see a local section symbol.
6511 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6512 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6513 if (sym.get_st_type() == elfcpp::STT_SECTION)
6517 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6518 gold_assert(is_ordinary);
6528 // Make an EXIDX input section object for an EXIDX section whose index is
6529 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6530 // is the section index of the linked text section.
6532 template<bool big_endian>
6534 Arm_relobj<big_endian>::make_exidx_input_section(
6536 const elfcpp::Shdr<32, big_endian>& shdr,
6537 unsigned int text_shndx,
6538 const elfcpp::Shdr<32, big_endian>& text_shdr)
6540 // Create an Arm_exidx_input_section object for this EXIDX section.
6541 Arm_exidx_input_section* exidx_input_section =
6542 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6543 shdr.get_sh_addralign());
6545 gold_assert(this->exidx_section_map_[shndx] == NULL);
6546 this->exidx_section_map_[shndx] = exidx_input_section;
6548 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6550 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6551 this->section_name(shndx).c_str(), shndx, text_shndx,
6552 this->name().c_str());
6553 exidx_input_section->set_has_errors();
6555 else if (this->exidx_section_map_[text_shndx] != NULL)
6557 unsigned other_exidx_shndx =
6558 this->exidx_section_map_[text_shndx]->shndx();
6559 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6561 this->section_name(shndx).c_str(), shndx,
6562 this->section_name(other_exidx_shndx).c_str(),
6563 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6564 text_shndx, this->name().c_str());
6565 exidx_input_section->set_has_errors();
6568 this->exidx_section_map_[text_shndx] = exidx_input_section;
6570 // Check section flags of text section.
6571 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6573 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6575 this->section_name(shndx).c_str(), shndx,
6576 this->section_name(text_shndx).c_str(), text_shndx,
6577 this->name().c_str());
6578 exidx_input_section->set_has_errors();
6580 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6581 // I would like to make this an error but currenlty ld just ignores
6583 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6585 this->section_name(shndx).c_str(), shndx,
6586 this->section_name(text_shndx).c_str(), text_shndx,
6587 this->name().c_str());
6590 // Read the symbol information.
6592 template<bool big_endian>
6594 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6596 // Call parent class to read symbol information.
6597 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6599 // If this input file is a binary file, it has no processor
6600 // specific flags and attributes section.
6601 Input_file::Format format = this->input_file()->format();
6602 if (format != Input_file::FORMAT_ELF)
6604 gold_assert(format == Input_file::FORMAT_BINARY);
6605 this->merge_flags_and_attributes_ = false;
6609 // Read processor-specific flags in ELF file header.
6610 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6611 elfcpp::Elf_sizes<32>::ehdr_size,
6613 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6614 this->processor_specific_flags_ = ehdr.get_e_flags();
6616 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6618 std::vector<unsigned int> deferred_exidx_sections;
6619 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6620 const unsigned char* pshdrs = sd->section_headers->data();
6621 const unsigned char* ps = pshdrs + shdr_size;
6622 bool must_merge_flags_and_attributes = false;
6623 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6625 elfcpp::Shdr<32, big_endian> shdr(ps);
6627 // Sometimes an object has no contents except the section name string
6628 // table and an empty symbol table with the undefined symbol. We
6629 // don't want to merge processor-specific flags from such an object.
6630 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6632 // Symbol table is not empty.
6633 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6634 elfcpp::Elf_sizes<32>::sym_size;
6635 if (shdr.get_sh_size() > sym_size)
6636 must_merge_flags_and_attributes = true;
6638 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6639 // If this is neither an empty symbol table nor a string table,
6641 must_merge_flags_and_attributes = true;
6643 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6645 gold_assert(this->attributes_section_data_ == NULL);
6646 section_offset_type section_offset = shdr.get_sh_offset();
6647 section_size_type section_size =
6648 convert_to_section_size_type(shdr.get_sh_size());
6649 File_view* view = this->get_lasting_view(section_offset,
6650 section_size, true, false);
6651 this->attributes_section_data_ =
6652 new Attributes_section_data(view->data(), section_size);
6654 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6656 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6657 if (text_shndx == elfcpp::SHN_UNDEF)
6658 deferred_exidx_sections.push_back(i);
6661 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6662 + text_shndx * shdr_size);
6663 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6665 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6666 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6667 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6668 this->section_name(i).c_str(), this->name().c_str());
6673 if (!must_merge_flags_and_attributes)
6675 gold_assert(deferred_exidx_sections.empty());
6676 this->merge_flags_and_attributes_ = false;
6680 // Some tools are broken and they do not set the link of EXIDX sections.
6681 // We look at the first relocation to figure out the linked sections.
6682 if (!deferred_exidx_sections.empty())
6684 // We need to go over the section headers again to find the mapping
6685 // from sections being relocated to their relocation sections. This is
6686 // a bit inefficient as we could do that in the loop above. However,
6687 // we do not expect any deferred EXIDX sections normally. So we do not
6688 // want to slow down the most common path.
6689 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6690 Reloc_map reloc_map;
6691 ps = pshdrs + shdr_size;
6692 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6694 elfcpp::Shdr<32, big_endian> shdr(ps);
6695 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6696 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6698 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6699 if (info_shndx >= this->shnum())
6700 gold_error(_("relocation section %u has invalid info %u"),
6702 Reloc_map::value_type value(info_shndx, i);
6703 std::pair<Reloc_map::iterator, bool> result =
6704 reloc_map.insert(value);
6706 gold_error(_("section %u has multiple relocation sections "
6708 info_shndx, i, reloc_map[info_shndx]);
6712 // Read the symbol table section header.
6713 const unsigned int symtab_shndx = this->symtab_shndx();
6714 elfcpp::Shdr<32, big_endian>
6715 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6716 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6718 // Read the local symbols.
6719 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6720 const unsigned int loccount = this->local_symbol_count();
6721 gold_assert(loccount == symtabshdr.get_sh_info());
6722 off_t locsize = loccount * sym_size;
6723 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6724 locsize, true, true);
6726 // Process the deferred EXIDX sections.
6727 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6729 unsigned int shndx = deferred_exidx_sections[i];
6730 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6731 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6732 Reloc_map::const_iterator it = reloc_map.find(shndx);
6733 if (it != reloc_map.end())
6734 find_linked_text_section(pshdrs + it->second * shdr_size,
6735 psyms, &text_shndx);
6736 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6737 + text_shndx * shdr_size);
6738 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6743 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6744 // sections for unwinding. These sections are referenced implicitly by
6745 // text sections linked in the section headers. If we ignore these implict
6746 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6747 // will be garbage-collected incorrectly. Hence we override the same function
6748 // in the base class to handle these implicit references.
6750 template<bool big_endian>
6752 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6754 Read_relocs_data* rd)
6756 // First, call base class method to process relocations in this object.
6757 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6759 // If --gc-sections is not specified, there is nothing more to do.
6760 // This happens when --icf is used but --gc-sections is not.
6761 if (!parameters->options().gc_sections())
6764 unsigned int shnum = this->shnum();
6765 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6766 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6770 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6771 // to these from the linked text sections.
6772 const unsigned char* ps = pshdrs + shdr_size;
6773 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6775 elfcpp::Shdr<32, big_endian> shdr(ps);
6776 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6778 // Found an .ARM.exidx section, add it to the set of reachable
6779 // sections from its linked text section.
6780 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6781 symtab->gc()->add_reference(this, text_shndx, this, i);
6786 // Update output local symbol count. Owing to EXIDX entry merging, some local
6787 // symbols will be removed in output. Adjust output local symbol count
6788 // accordingly. We can only changed the static output local symbol count. It
6789 // is too late to change the dynamic symbols.
6791 template<bool big_endian>
6793 Arm_relobj<big_endian>::update_output_local_symbol_count()
6795 // Caller should check that this needs updating. We want caller checking
6796 // because output_local_symbol_count_needs_update() is most likely inlined.
6797 gold_assert(this->output_local_symbol_count_needs_update_);
6799 gold_assert(this->symtab_shndx() != -1U);
6800 if (this->symtab_shndx() == 0)
6802 // This object has no symbols. Weird but legal.
6806 // Read the symbol table section header.
6807 const unsigned int symtab_shndx = this->symtab_shndx();
6808 elfcpp::Shdr<32, big_endian>
6809 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6810 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6812 // Read the local symbols.
6813 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6814 const unsigned int loccount = this->local_symbol_count();
6815 gold_assert(loccount == symtabshdr.get_sh_info());
6816 off_t locsize = loccount * sym_size;
6817 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6818 locsize, true, true);
6820 // Loop over the local symbols.
6822 typedef typename Sized_relobj<32, big_endian>::Output_sections
6824 const Output_sections& out_sections(this->output_sections());
6825 unsigned int shnum = this->shnum();
6826 unsigned int count = 0;
6827 // Skip the first, dummy, symbol.
6829 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6831 elfcpp::Sym<32, big_endian> sym(psyms);
6833 Symbol_value<32>& lv((*this->local_values())[i]);
6835 // This local symbol was already discarded by do_count_local_symbols.
6836 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6840 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6845 Output_section* os = out_sections[shndx];
6847 // This local symbol no longer has an output section. Discard it.
6850 lv.set_no_output_symtab_entry();
6854 // Currently we only discard parts of EXIDX input sections.
6855 // We explicitly check for a merged EXIDX input section to avoid
6856 // calling Output_section_data::output_offset unless necessary.
6857 if ((this->get_output_section_offset(shndx) == invalid_address)
6858 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6860 section_offset_type output_offset =
6861 os->output_offset(this, shndx, lv.input_value());
6862 if (output_offset == -1)
6864 // This symbol is defined in a part of an EXIDX input section
6865 // that is discarded due to entry merging.
6866 lv.set_no_output_symtab_entry();
6875 this->set_output_local_symbol_count(count);
6876 this->output_local_symbol_count_needs_update_ = false;
6879 // Arm_dynobj methods.
6881 // Read the symbol information.
6883 template<bool big_endian>
6885 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6887 // Call parent class to read symbol information.
6888 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6890 // Read processor-specific flags in ELF file header.
6891 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6892 elfcpp::Elf_sizes<32>::ehdr_size,
6894 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6895 this->processor_specific_flags_ = ehdr.get_e_flags();
6897 // Read the attributes section if there is one.
6898 // We read from the end because gas seems to put it near the end of
6899 // the section headers.
6900 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6901 const unsigned char* ps =
6902 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6903 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6905 elfcpp::Shdr<32, big_endian> shdr(ps);
6906 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6908 section_offset_type section_offset = shdr.get_sh_offset();
6909 section_size_type section_size =
6910 convert_to_section_size_type(shdr.get_sh_size());
6911 File_view* view = this->get_lasting_view(section_offset,
6912 section_size, true, false);
6913 this->attributes_section_data_ =
6914 new Attributes_section_data(view->data(), section_size);
6920 // Stub_addend_reader methods.
6922 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6924 template<bool big_endian>
6925 elfcpp::Elf_types<32>::Elf_Swxword
6926 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6927 unsigned int r_type,
6928 const unsigned char* view,
6929 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6931 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6935 case elfcpp::R_ARM_CALL:
6936 case elfcpp::R_ARM_JUMP24:
6937 case elfcpp::R_ARM_PLT32:
6939 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6940 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6941 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6942 return utils::sign_extend<26>(val << 2);
6945 case elfcpp::R_ARM_THM_CALL:
6946 case elfcpp::R_ARM_THM_JUMP24:
6947 case elfcpp::R_ARM_THM_XPC22:
6949 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6950 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6951 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6952 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6953 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6956 case elfcpp::R_ARM_THM_JUMP19:
6958 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6959 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6960 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6961 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6962 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6970 // Arm_output_data_got methods.
6972 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6973 // The first one is initialized to be 1, which is the module index for
6974 // the main executable and the second one 0. A reloc of the type
6975 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6976 // be applied by gold. GSYM is a global symbol.
6978 template<bool big_endian>
6980 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6981 unsigned int got_type,
6984 if (gsym->has_got_offset(got_type))
6987 // We are doing a static link. Just mark it as belong to module 1,
6989 unsigned int got_offset = this->add_constant(1);
6990 gsym->set_got_offset(got_type, got_offset);
6991 got_offset = this->add_constant(0);
6992 this->static_relocs_.push_back(Static_reloc(got_offset,
6993 elfcpp::R_ARM_TLS_DTPOFF32,
6997 // Same as the above but for a local symbol.
6999 template<bool big_endian>
7001 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7002 unsigned int got_type,
7003 Sized_relobj<32, big_endian>* object,
7006 if (object->local_has_got_offset(index, got_type))
7009 // We are doing a static link. Just mark it as belong to module 1,
7011 unsigned int got_offset = this->add_constant(1);
7012 object->set_local_got_offset(index, got_type, got_offset);
7013 got_offset = this->add_constant(0);
7014 this->static_relocs_.push_back(Static_reloc(got_offset,
7015 elfcpp::R_ARM_TLS_DTPOFF32,
7019 template<bool big_endian>
7021 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7023 // Call parent to write out GOT.
7024 Output_data_got<32, big_endian>::do_write(of);
7026 // We are done if there is no fix up.
7027 if (this->static_relocs_.empty())
7030 gold_assert(parameters->doing_static_link());
7032 const off_t offset = this->offset();
7033 const section_size_type oview_size =
7034 convert_to_section_size_type(this->data_size());
7035 unsigned char* const oview = of->get_output_view(offset, oview_size);
7037 Output_segment* tls_segment = this->layout_->tls_segment();
7038 gold_assert(tls_segment != NULL);
7040 // The thread pointer $tp points to the TCB, which is followed by the
7041 // TLS. So we need to adjust $tp relative addressing by this amount.
7042 Arm_address aligned_tcb_size =
7043 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7045 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7047 Static_reloc& reloc(this->static_relocs_[i]);
7050 if (!reloc.symbol_is_global())
7052 Sized_relobj<32, big_endian>* object = reloc.relobj();
7053 const Symbol_value<32>* psymval =
7054 reloc.relobj()->local_symbol(reloc.index());
7056 // We are doing static linking. Issue an error and skip this
7057 // relocation if the symbol is undefined or in a discarded_section.
7059 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7060 if ((shndx == elfcpp::SHN_UNDEF)
7062 && shndx != elfcpp::SHN_UNDEF
7063 && !object->is_section_included(shndx)
7064 && !this->symbol_table_->is_section_folded(object, shndx)))
7066 gold_error(_("undefined or discarded local symbol %u from "
7067 " object %s in GOT"),
7068 reloc.index(), reloc.relobj()->name().c_str());
7072 value = psymval->value(object, 0);
7076 const Symbol* gsym = reloc.symbol();
7077 gold_assert(gsym != NULL);
7078 if (gsym->is_forwarder())
7079 gsym = this->symbol_table_->resolve_forwards(gsym);
7081 // We are doing static linking. Issue an error and skip this
7082 // relocation if the symbol is undefined or in a discarded_section
7083 // unless it is a weakly_undefined symbol.
7084 if ((gsym->is_defined_in_discarded_section()
7085 || gsym->is_undefined())
7086 && !gsym->is_weak_undefined())
7088 gold_error(_("undefined or discarded symbol %s in GOT"),
7093 if (!gsym->is_weak_undefined())
7095 const Sized_symbol<32>* sym =
7096 static_cast<const Sized_symbol<32>*>(gsym);
7097 value = sym->value();
7103 unsigned got_offset = reloc.got_offset();
7104 gold_assert(got_offset < oview_size);
7106 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7107 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7109 switch (reloc.r_type())
7111 case elfcpp::R_ARM_TLS_DTPOFF32:
7114 case elfcpp::R_ARM_TLS_TPOFF32:
7115 x = value + aligned_tcb_size;
7120 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7123 of->write_output_view(offset, oview_size, oview);
7126 // A class to handle the PLT data.
7128 template<bool big_endian>
7129 class Output_data_plt_arm : public Output_section_data
7132 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7135 Output_data_plt_arm(Layout*, Output_data_space*);
7137 // Add an entry to the PLT.
7139 add_entry(Symbol* gsym);
7141 // Return the .rel.plt section data.
7142 const Reloc_section*
7144 { return this->rel_; }
7146 // Return the number of PLT entries.
7149 { return this->count_; }
7151 // Return the offset of the first non-reserved PLT entry.
7153 first_plt_entry_offset()
7154 { return sizeof(first_plt_entry); }
7156 // Return the size of a PLT entry.
7158 get_plt_entry_size()
7159 { return sizeof(plt_entry); }
7163 do_adjust_output_section(Output_section* os);
7165 // Write to a map file.
7167 do_print_to_mapfile(Mapfile* mapfile) const
7168 { mapfile->print_output_data(this, _("** PLT")); }
7171 // Template for the first PLT entry.
7172 static const uint32_t first_plt_entry[5];
7174 // Template for subsequent PLT entries.
7175 static const uint32_t plt_entry[3];
7177 // Set the final size.
7179 set_final_data_size()
7181 this->set_data_size(sizeof(first_plt_entry)
7182 + this->count_ * sizeof(plt_entry));
7185 // Write out the PLT data.
7187 do_write(Output_file*);
7189 // The reloc section.
7190 Reloc_section* rel_;
7191 // The .got.plt section.
7192 Output_data_space* got_plt_;
7193 // The number of PLT entries.
7194 unsigned int count_;
7197 // Create the PLT section. The ordinary .got section is an argument,
7198 // since we need to refer to the start. We also create our own .got
7199 // section just for PLT entries.
7201 template<bool big_endian>
7202 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7203 Output_data_space* got_plt)
7204 : Output_section_data(4), got_plt_(got_plt), count_(0)
7206 this->rel_ = new Reloc_section(false);
7207 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7208 elfcpp::SHF_ALLOC, this->rel_,
7209 ORDER_DYNAMIC_PLT_RELOCS, false);
7212 template<bool big_endian>
7214 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7219 // Add an entry to the PLT.
7221 template<bool big_endian>
7223 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7225 gold_assert(!gsym->has_plt_offset());
7227 // Note that when setting the PLT offset we skip the initial
7228 // reserved PLT entry.
7229 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7230 + sizeof(first_plt_entry));
7234 section_offset_type got_offset = this->got_plt_->current_data_size();
7236 // Every PLT entry needs a GOT entry which points back to the PLT
7237 // entry (this will be changed by the dynamic linker, normally
7238 // lazily when the function is called).
7239 this->got_plt_->set_current_data_size(got_offset + 4);
7241 // Every PLT entry needs a reloc.
7242 gsym->set_needs_dynsym_entry();
7243 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7246 // Note that we don't need to save the symbol. The contents of the
7247 // PLT are independent of which symbols are used. The symbols only
7248 // appear in the relocations.
7252 // FIXME: This is not very flexible. Right now this has only been tested
7253 // on armv5te. If we are to support additional architecture features like
7254 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7256 // The first entry in the PLT.
7257 template<bool big_endian>
7258 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7260 0xe52de004, // str lr, [sp, #-4]!
7261 0xe59fe004, // ldr lr, [pc, #4]
7262 0xe08fe00e, // add lr, pc, lr
7263 0xe5bef008, // ldr pc, [lr, #8]!
7264 0x00000000, // &GOT[0] - .
7267 // Subsequent entries in the PLT.
7269 template<bool big_endian>
7270 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7272 0xe28fc600, // add ip, pc, #0xNN00000
7273 0xe28cca00, // add ip, ip, #0xNN000
7274 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7277 // Write out the PLT. This uses the hand-coded instructions above,
7278 // and adjusts them as needed. This is all specified by the arm ELF
7279 // Processor Supplement.
7281 template<bool big_endian>
7283 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7285 const off_t offset = this->offset();
7286 const section_size_type oview_size =
7287 convert_to_section_size_type(this->data_size());
7288 unsigned char* const oview = of->get_output_view(offset, oview_size);
7290 const off_t got_file_offset = this->got_plt_->offset();
7291 const section_size_type got_size =
7292 convert_to_section_size_type(this->got_plt_->data_size());
7293 unsigned char* const got_view = of->get_output_view(got_file_offset,
7295 unsigned char* pov = oview;
7297 Arm_address plt_address = this->address();
7298 Arm_address got_address = this->got_plt_->address();
7300 // Write first PLT entry. All but the last word are constants.
7301 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7302 / sizeof(plt_entry[0]));
7303 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7304 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7305 // Last word in first PLT entry is &GOT[0] - .
7306 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7307 got_address - (plt_address + 16));
7308 pov += sizeof(first_plt_entry);
7310 unsigned char* got_pov = got_view;
7312 memset(got_pov, 0, 12);
7315 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7316 unsigned int plt_offset = sizeof(first_plt_entry);
7317 unsigned int plt_rel_offset = 0;
7318 unsigned int got_offset = 12;
7319 const unsigned int count = this->count_;
7320 for (unsigned int i = 0;
7323 pov += sizeof(plt_entry),
7325 plt_offset += sizeof(plt_entry),
7326 plt_rel_offset += rel_size,
7329 // Set and adjust the PLT entry itself.
7330 int32_t offset = ((got_address + got_offset)
7331 - (plt_address + plt_offset + 8));
7333 gold_assert(offset >= 0 && offset < 0x0fffffff);
7334 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7335 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7336 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7337 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7338 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7339 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7341 // Set the entry in the GOT.
7342 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7345 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7346 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7348 of->write_output_view(offset, oview_size, oview);
7349 of->write_output_view(got_file_offset, got_size, got_view);
7352 // Create a PLT entry for a global symbol.
7354 template<bool big_endian>
7356 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7359 if (gsym->has_plt_offset())
7362 if (this->plt_ == NULL)
7364 // Create the GOT sections first.
7365 this->got_section(symtab, layout);
7367 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7368 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7370 | elfcpp::SHF_EXECINSTR),
7371 this->plt_, ORDER_PLT, false);
7373 this->plt_->add_entry(gsym);
7376 // Return the number of entries in the PLT.
7378 template<bool big_endian>
7380 Target_arm<big_endian>::plt_entry_count() const
7382 if (this->plt_ == NULL)
7384 return this->plt_->entry_count();
7387 // Return the offset of the first non-reserved PLT entry.
7389 template<bool big_endian>
7391 Target_arm<big_endian>::first_plt_entry_offset() const
7393 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7396 // Return the size of each PLT entry.
7398 template<bool big_endian>
7400 Target_arm<big_endian>::plt_entry_size() const
7402 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7405 // Get the section to use for TLS_DESC relocations.
7407 template<bool big_endian>
7408 typename Target_arm<big_endian>::Reloc_section*
7409 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7411 return this->plt_section()->rel_tls_desc(layout);
7414 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7416 template<bool big_endian>
7418 Target_arm<big_endian>::define_tls_base_symbol(
7419 Symbol_table* symtab,
7422 if (this->tls_base_symbol_defined_)
7425 Output_segment* tls_segment = layout->tls_segment();
7426 if (tls_segment != NULL)
7428 bool is_exec = parameters->options().output_is_executable();
7429 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7430 Symbol_table::PREDEFINED,
7434 elfcpp::STV_HIDDEN, 0,
7436 ? Symbol::SEGMENT_END
7437 : Symbol::SEGMENT_START),
7440 this->tls_base_symbol_defined_ = true;
7443 // Create a GOT entry for the TLS module index.
7445 template<bool big_endian>
7447 Target_arm<big_endian>::got_mod_index_entry(
7448 Symbol_table* symtab,
7450 Sized_relobj<32, big_endian>* object)
7452 if (this->got_mod_index_offset_ == -1U)
7454 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7455 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7456 unsigned int got_offset;
7457 if (!parameters->doing_static_link())
7459 got_offset = got->add_constant(0);
7460 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7461 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7466 // We are doing a static link. Just mark it as belong to module 1,
7468 got_offset = got->add_constant(1);
7471 got->add_constant(0);
7472 this->got_mod_index_offset_ = got_offset;
7474 return this->got_mod_index_offset_;
7477 // Optimize the TLS relocation type based on what we know about the
7478 // symbol. IS_FINAL is true if the final address of this symbol is
7479 // known at link time.
7481 template<bool big_endian>
7482 tls::Tls_optimization
7483 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7485 // FIXME: Currently we do not do any TLS optimization.
7486 return tls::TLSOPT_NONE;
7489 // Report an unsupported relocation against a local symbol.
7491 template<bool big_endian>
7493 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7494 Sized_relobj<32, big_endian>* object,
7495 unsigned int r_type)
7497 gold_error(_("%s: unsupported reloc %u against local symbol"),
7498 object->name().c_str(), r_type);
7501 // We are about to emit a dynamic relocation of type R_TYPE. If the
7502 // dynamic linker does not support it, issue an error. The GNU linker
7503 // only issues a non-PIC error for an allocated read-only section.
7504 // Here we know the section is allocated, but we don't know that it is
7505 // read-only. But we check for all the relocation types which the
7506 // glibc dynamic linker supports, so it seems appropriate to issue an
7507 // error even if the section is not read-only.
7509 template<bool big_endian>
7511 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7512 unsigned int r_type)
7516 // These are the relocation types supported by glibc for ARM.
7517 case elfcpp::R_ARM_RELATIVE:
7518 case elfcpp::R_ARM_COPY:
7519 case elfcpp::R_ARM_GLOB_DAT:
7520 case elfcpp::R_ARM_JUMP_SLOT:
7521 case elfcpp::R_ARM_ABS32:
7522 case elfcpp::R_ARM_ABS32_NOI:
7523 case elfcpp::R_ARM_PC24:
7524 // FIXME: The following 3 types are not supported by Android's dynamic
7526 case elfcpp::R_ARM_TLS_DTPMOD32:
7527 case elfcpp::R_ARM_TLS_DTPOFF32:
7528 case elfcpp::R_ARM_TLS_TPOFF32:
7533 // This prevents us from issuing more than one error per reloc
7534 // section. But we can still wind up issuing more than one
7535 // error per object file.
7536 if (this->issued_non_pic_error_)
7538 const Arm_reloc_property* reloc_property =
7539 arm_reloc_property_table->get_reloc_property(r_type);
7540 gold_assert(reloc_property != NULL);
7541 object->error(_("requires unsupported dynamic reloc %s; "
7542 "recompile with -fPIC"),
7543 reloc_property->name().c_str());
7544 this->issued_non_pic_error_ = true;
7548 case elfcpp::R_ARM_NONE:
7553 // Scan a relocation for a local symbol.
7554 // FIXME: This only handles a subset of relocation types used by Android
7555 // on ARM v5te devices.
7557 template<bool big_endian>
7559 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7562 Sized_relobj<32, big_endian>* object,
7563 unsigned int data_shndx,
7564 Output_section* output_section,
7565 const elfcpp::Rel<32, big_endian>& reloc,
7566 unsigned int r_type,
7567 const elfcpp::Sym<32, big_endian>& lsym)
7569 r_type = get_real_reloc_type(r_type);
7572 case elfcpp::R_ARM_NONE:
7573 case elfcpp::R_ARM_V4BX:
7574 case elfcpp::R_ARM_GNU_VTENTRY:
7575 case elfcpp::R_ARM_GNU_VTINHERIT:
7578 case elfcpp::R_ARM_ABS32:
7579 case elfcpp::R_ARM_ABS32_NOI:
7580 // If building a shared library (or a position-independent
7581 // executable), we need to create a dynamic relocation for
7582 // this location. The relocation applied at link time will
7583 // apply the link-time value, so we flag the location with
7584 // an R_ARM_RELATIVE relocation so the dynamic loader can
7585 // relocate it easily.
7586 if (parameters->options().output_is_position_independent())
7588 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7589 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7590 // If we are to add more other reloc types than R_ARM_ABS32,
7591 // we need to add check_non_pic(object, r_type) here.
7592 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7593 output_section, data_shndx,
7594 reloc.get_r_offset());
7598 case elfcpp::R_ARM_ABS16:
7599 case elfcpp::R_ARM_ABS12:
7600 case elfcpp::R_ARM_THM_ABS5:
7601 case elfcpp::R_ARM_ABS8:
7602 case elfcpp::R_ARM_BASE_ABS:
7603 case elfcpp::R_ARM_MOVW_ABS_NC:
7604 case elfcpp::R_ARM_MOVT_ABS:
7605 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7606 case elfcpp::R_ARM_THM_MOVT_ABS:
7607 // If building a shared library (or a position-independent
7608 // executable), we need to create a dynamic relocation for
7609 // this location. Because the addend needs to remain in the
7610 // data section, we need to be careful not to apply this
7611 // relocation statically.
7612 if (parameters->options().output_is_position_independent())
7614 check_non_pic(object, r_type);
7615 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7616 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7617 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7618 rel_dyn->add_local(object, r_sym, r_type, output_section,
7619 data_shndx, reloc.get_r_offset());
7622 gold_assert(lsym.get_st_value() == 0);
7623 unsigned int shndx = lsym.get_st_shndx();
7625 shndx = object->adjust_sym_shndx(r_sym, shndx,
7628 object->error(_("section symbol %u has bad shndx %u"),
7631 rel_dyn->add_local_section(object, shndx,
7632 r_type, output_section,
7633 data_shndx, reloc.get_r_offset());
7638 case elfcpp::R_ARM_REL32:
7639 case elfcpp::R_ARM_LDR_PC_G0:
7640 case elfcpp::R_ARM_SBREL32:
7641 case elfcpp::R_ARM_THM_CALL:
7642 case elfcpp::R_ARM_THM_PC8:
7643 case elfcpp::R_ARM_BASE_PREL:
7644 case elfcpp::R_ARM_PLT32:
7645 case elfcpp::R_ARM_CALL:
7646 case elfcpp::R_ARM_JUMP24:
7647 case elfcpp::R_ARM_THM_JUMP24:
7648 case elfcpp::R_ARM_SBREL31:
7649 case elfcpp::R_ARM_PREL31:
7650 case elfcpp::R_ARM_MOVW_PREL_NC:
7651 case elfcpp::R_ARM_MOVT_PREL:
7652 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7653 case elfcpp::R_ARM_THM_MOVT_PREL:
7654 case elfcpp::R_ARM_THM_JUMP19:
7655 case elfcpp::R_ARM_THM_JUMP6:
7656 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7657 case elfcpp::R_ARM_THM_PC12:
7658 case elfcpp::R_ARM_REL32_NOI:
7659 case elfcpp::R_ARM_ALU_PC_G0_NC:
7660 case elfcpp::R_ARM_ALU_PC_G0:
7661 case elfcpp::R_ARM_ALU_PC_G1_NC:
7662 case elfcpp::R_ARM_ALU_PC_G1:
7663 case elfcpp::R_ARM_ALU_PC_G2:
7664 case elfcpp::R_ARM_LDR_PC_G1:
7665 case elfcpp::R_ARM_LDR_PC_G2:
7666 case elfcpp::R_ARM_LDRS_PC_G0:
7667 case elfcpp::R_ARM_LDRS_PC_G1:
7668 case elfcpp::R_ARM_LDRS_PC_G2:
7669 case elfcpp::R_ARM_LDC_PC_G0:
7670 case elfcpp::R_ARM_LDC_PC_G1:
7671 case elfcpp::R_ARM_LDC_PC_G2:
7672 case elfcpp::R_ARM_ALU_SB_G0_NC:
7673 case elfcpp::R_ARM_ALU_SB_G0:
7674 case elfcpp::R_ARM_ALU_SB_G1_NC:
7675 case elfcpp::R_ARM_ALU_SB_G1:
7676 case elfcpp::R_ARM_ALU_SB_G2:
7677 case elfcpp::R_ARM_LDR_SB_G0:
7678 case elfcpp::R_ARM_LDR_SB_G1:
7679 case elfcpp::R_ARM_LDR_SB_G2:
7680 case elfcpp::R_ARM_LDRS_SB_G0:
7681 case elfcpp::R_ARM_LDRS_SB_G1:
7682 case elfcpp::R_ARM_LDRS_SB_G2:
7683 case elfcpp::R_ARM_LDC_SB_G0:
7684 case elfcpp::R_ARM_LDC_SB_G1:
7685 case elfcpp::R_ARM_LDC_SB_G2:
7686 case elfcpp::R_ARM_MOVW_BREL_NC:
7687 case elfcpp::R_ARM_MOVT_BREL:
7688 case elfcpp::R_ARM_MOVW_BREL:
7689 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7690 case elfcpp::R_ARM_THM_MOVT_BREL:
7691 case elfcpp::R_ARM_THM_MOVW_BREL:
7692 case elfcpp::R_ARM_THM_JUMP11:
7693 case elfcpp::R_ARM_THM_JUMP8:
7694 // We don't need to do anything for a relative addressing relocation
7695 // against a local symbol if it does not reference the GOT.
7698 case elfcpp::R_ARM_GOTOFF32:
7699 case elfcpp::R_ARM_GOTOFF12:
7700 // We need a GOT section:
7701 target->got_section(symtab, layout);
7704 case elfcpp::R_ARM_GOT_BREL:
7705 case elfcpp::R_ARM_GOT_PREL:
7707 // The symbol requires a GOT entry.
7708 Arm_output_data_got<big_endian>* got =
7709 target->got_section(symtab, layout);
7710 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7711 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7713 // If we are generating a shared object, we need to add a
7714 // dynamic RELATIVE relocation for this symbol's GOT entry.
7715 if (parameters->options().output_is_position_independent())
7717 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7718 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7719 rel_dyn->add_local_relative(
7720 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7721 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7727 case elfcpp::R_ARM_TARGET1:
7728 case elfcpp::R_ARM_TARGET2:
7729 // This should have been mapped to another type already.
7731 case elfcpp::R_ARM_COPY:
7732 case elfcpp::R_ARM_GLOB_DAT:
7733 case elfcpp::R_ARM_JUMP_SLOT:
7734 case elfcpp::R_ARM_RELATIVE:
7735 // These are relocations which should only be seen by the
7736 // dynamic linker, and should never be seen here.
7737 gold_error(_("%s: unexpected reloc %u in object file"),
7738 object->name().c_str(), r_type);
7742 // These are initial TLS relocs, which are expected when
7744 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7745 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7746 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7747 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7748 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7750 bool output_is_shared = parameters->options().shared();
7751 const tls::Tls_optimization optimized_type
7752 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7756 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7757 if (optimized_type == tls::TLSOPT_NONE)
7759 // Create a pair of GOT entries for the module index and
7760 // dtv-relative offset.
7761 Arm_output_data_got<big_endian>* got
7762 = target->got_section(symtab, layout);
7763 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7764 unsigned int shndx = lsym.get_st_shndx();
7766 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7769 object->error(_("local symbol %u has bad shndx %u"),
7774 if (!parameters->doing_static_link())
7775 got->add_local_pair_with_rel(object, r_sym, shndx,
7777 target->rel_dyn_section(layout),
7778 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7780 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7784 // FIXME: TLS optimization not supported yet.
7788 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7789 if (optimized_type == tls::TLSOPT_NONE)
7791 // Create a GOT entry for the module index.
7792 target->got_mod_index_entry(symtab, layout, object);
7795 // FIXME: TLS optimization not supported yet.
7799 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7802 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7803 layout->set_has_static_tls();
7804 if (optimized_type == tls::TLSOPT_NONE)
7806 // Create a GOT entry for the tp-relative offset.
7807 Arm_output_data_got<big_endian>* got
7808 = target->got_section(symtab, layout);
7809 unsigned int r_sym =
7810 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7811 if (!parameters->doing_static_link())
7812 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7813 target->rel_dyn_section(layout),
7814 elfcpp::R_ARM_TLS_TPOFF32);
7815 else if (!object->local_has_got_offset(r_sym,
7816 GOT_TYPE_TLS_OFFSET))
7818 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7819 unsigned int got_offset =
7820 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7821 got->add_static_reloc(got_offset,
7822 elfcpp::R_ARM_TLS_TPOFF32, object,
7827 // FIXME: TLS optimization not supported yet.
7831 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7832 layout->set_has_static_tls();
7833 if (output_is_shared)
7835 // We need to create a dynamic relocation.
7836 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7837 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7838 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7839 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7840 output_section, data_shndx,
7841 reloc.get_r_offset());
7851 case elfcpp::R_ARM_PC24:
7852 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7853 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7854 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7856 unsupported_reloc_local(object, r_type);
7861 // Report an unsupported relocation against a global symbol.
7863 template<bool big_endian>
7865 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7866 Sized_relobj<32, big_endian>* object,
7867 unsigned int r_type,
7870 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7871 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7874 template<bool big_endian>
7876 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
7877 unsigned int r_type)
7881 case elfcpp::R_ARM_PC24:
7882 case elfcpp::R_ARM_THM_CALL:
7883 case elfcpp::R_ARM_PLT32:
7884 case elfcpp::R_ARM_CALL:
7885 case elfcpp::R_ARM_JUMP24:
7886 case elfcpp::R_ARM_THM_JUMP24:
7887 case elfcpp::R_ARM_SBREL31:
7888 case elfcpp::R_ARM_PREL31:
7889 case elfcpp::R_ARM_THM_JUMP19:
7890 case elfcpp::R_ARM_THM_JUMP6:
7891 case elfcpp::R_ARM_THM_JUMP11:
7892 case elfcpp::R_ARM_THM_JUMP8:
7893 // All the relocations above are branches except SBREL31 and PREL31.
7897 // Be conservative and assume this is a function pointer.
7902 template<bool big_endian>
7904 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
7907 Target_arm<big_endian>* target,
7908 Sized_relobj<32, big_endian>*,
7911 const elfcpp::Rel<32, big_endian>&,
7912 unsigned int r_type,
7913 const elfcpp::Sym<32, big_endian>&)
7915 r_type = target->get_real_reloc_type(r_type);
7916 return possible_function_pointer_reloc(r_type);
7919 template<bool big_endian>
7921 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
7924 Target_arm<big_endian>* target,
7925 Sized_relobj<32, big_endian>*,
7928 const elfcpp::Rel<32, big_endian>&,
7929 unsigned int r_type,
7932 // GOT is not a function.
7933 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7936 r_type = target->get_real_reloc_type(r_type);
7937 return possible_function_pointer_reloc(r_type);
7940 // Scan a relocation for a global symbol.
7942 template<bool big_endian>
7944 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7947 Sized_relobj<32, big_endian>* object,
7948 unsigned int data_shndx,
7949 Output_section* output_section,
7950 const elfcpp::Rel<32, big_endian>& reloc,
7951 unsigned int r_type,
7954 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7955 // section. We check here to avoid creating a dynamic reloc against
7956 // _GLOBAL_OFFSET_TABLE_.
7957 if (!target->has_got_section()
7958 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7959 target->got_section(symtab, layout);
7961 r_type = get_real_reloc_type(r_type);
7964 case elfcpp::R_ARM_NONE:
7965 case elfcpp::R_ARM_V4BX:
7966 case elfcpp::R_ARM_GNU_VTENTRY:
7967 case elfcpp::R_ARM_GNU_VTINHERIT:
7970 case elfcpp::R_ARM_ABS32:
7971 case elfcpp::R_ARM_ABS16:
7972 case elfcpp::R_ARM_ABS12:
7973 case elfcpp::R_ARM_THM_ABS5:
7974 case elfcpp::R_ARM_ABS8:
7975 case elfcpp::R_ARM_BASE_ABS:
7976 case elfcpp::R_ARM_MOVW_ABS_NC:
7977 case elfcpp::R_ARM_MOVT_ABS:
7978 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7979 case elfcpp::R_ARM_THM_MOVT_ABS:
7980 case elfcpp::R_ARM_ABS32_NOI:
7981 // Absolute addressing relocations.
7983 // Make a PLT entry if necessary.
7984 if (this->symbol_needs_plt_entry(gsym))
7986 target->make_plt_entry(symtab, layout, gsym);
7987 // Since this is not a PC-relative relocation, we may be
7988 // taking the address of a function. In that case we need to
7989 // set the entry in the dynamic symbol table to the address of
7991 if (gsym->is_from_dynobj() && !parameters->options().shared())
7992 gsym->set_needs_dynsym_value();
7994 // Make a dynamic relocation if necessary.
7995 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7997 if (gsym->may_need_copy_reloc())
7999 target->copy_reloc(symtab, layout, object,
8000 data_shndx, output_section, gsym, reloc);
8002 else if ((r_type == elfcpp::R_ARM_ABS32
8003 || r_type == elfcpp::R_ARM_ABS32_NOI)
8004 && gsym->can_use_relative_reloc(false))
8006 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8007 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8008 output_section, object,
8009 data_shndx, reloc.get_r_offset());
8013 check_non_pic(object, r_type);
8014 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8015 rel_dyn->add_global(gsym, r_type, output_section, object,
8016 data_shndx, reloc.get_r_offset());
8022 case elfcpp::R_ARM_GOTOFF32:
8023 case elfcpp::R_ARM_GOTOFF12:
8024 // We need a GOT section.
8025 target->got_section(symtab, layout);
8028 case elfcpp::R_ARM_REL32:
8029 case elfcpp::R_ARM_LDR_PC_G0:
8030 case elfcpp::R_ARM_SBREL32:
8031 case elfcpp::R_ARM_THM_PC8:
8032 case elfcpp::R_ARM_BASE_PREL:
8033 case elfcpp::R_ARM_MOVW_PREL_NC:
8034 case elfcpp::R_ARM_MOVT_PREL:
8035 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8036 case elfcpp::R_ARM_THM_MOVT_PREL:
8037 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8038 case elfcpp::R_ARM_THM_PC12:
8039 case elfcpp::R_ARM_REL32_NOI:
8040 case elfcpp::R_ARM_ALU_PC_G0_NC:
8041 case elfcpp::R_ARM_ALU_PC_G0:
8042 case elfcpp::R_ARM_ALU_PC_G1_NC:
8043 case elfcpp::R_ARM_ALU_PC_G1:
8044 case elfcpp::R_ARM_ALU_PC_G2:
8045 case elfcpp::R_ARM_LDR_PC_G1:
8046 case elfcpp::R_ARM_LDR_PC_G2:
8047 case elfcpp::R_ARM_LDRS_PC_G0:
8048 case elfcpp::R_ARM_LDRS_PC_G1:
8049 case elfcpp::R_ARM_LDRS_PC_G2:
8050 case elfcpp::R_ARM_LDC_PC_G0:
8051 case elfcpp::R_ARM_LDC_PC_G1:
8052 case elfcpp::R_ARM_LDC_PC_G2:
8053 case elfcpp::R_ARM_ALU_SB_G0_NC:
8054 case elfcpp::R_ARM_ALU_SB_G0:
8055 case elfcpp::R_ARM_ALU_SB_G1_NC:
8056 case elfcpp::R_ARM_ALU_SB_G1:
8057 case elfcpp::R_ARM_ALU_SB_G2:
8058 case elfcpp::R_ARM_LDR_SB_G0:
8059 case elfcpp::R_ARM_LDR_SB_G1:
8060 case elfcpp::R_ARM_LDR_SB_G2:
8061 case elfcpp::R_ARM_LDRS_SB_G0:
8062 case elfcpp::R_ARM_LDRS_SB_G1:
8063 case elfcpp::R_ARM_LDRS_SB_G2:
8064 case elfcpp::R_ARM_LDC_SB_G0:
8065 case elfcpp::R_ARM_LDC_SB_G1:
8066 case elfcpp::R_ARM_LDC_SB_G2:
8067 case elfcpp::R_ARM_MOVW_BREL_NC:
8068 case elfcpp::R_ARM_MOVT_BREL:
8069 case elfcpp::R_ARM_MOVW_BREL:
8070 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8071 case elfcpp::R_ARM_THM_MOVT_BREL:
8072 case elfcpp::R_ARM_THM_MOVW_BREL:
8073 // Relative addressing relocations.
8075 // Make a dynamic relocation if necessary.
8076 int flags = Symbol::NON_PIC_REF;
8077 if (gsym->needs_dynamic_reloc(flags))
8079 if (target->may_need_copy_reloc(gsym))
8081 target->copy_reloc(symtab, layout, object,
8082 data_shndx, output_section, gsym, reloc);
8086 check_non_pic(object, r_type);
8087 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8088 rel_dyn->add_global(gsym, r_type, output_section, object,
8089 data_shndx, reloc.get_r_offset());
8095 case elfcpp::R_ARM_THM_CALL:
8096 case elfcpp::R_ARM_PLT32:
8097 case elfcpp::R_ARM_CALL:
8098 case elfcpp::R_ARM_JUMP24:
8099 case elfcpp::R_ARM_THM_JUMP24:
8100 case elfcpp::R_ARM_SBREL31:
8101 case elfcpp::R_ARM_PREL31:
8102 case elfcpp::R_ARM_THM_JUMP19:
8103 case elfcpp::R_ARM_THM_JUMP6:
8104 case elfcpp::R_ARM_THM_JUMP11:
8105 case elfcpp::R_ARM_THM_JUMP8:
8106 // All the relocation above are branches except for the PREL31 ones.
8107 // A PREL31 relocation can point to a personality function in a shared
8108 // library. In that case we want to use a PLT because we want to
8109 // call the personality routine and the dyanmic linkers we care about
8110 // do not support dynamic PREL31 relocations. An REL31 relocation may
8111 // point to a function whose unwinding behaviour is being described but
8112 // we will not mistakenly generate a PLT for that because we should use
8113 // a local section symbol.
8115 // If the symbol is fully resolved, this is just a relative
8116 // local reloc. Otherwise we need a PLT entry.
8117 if (gsym->final_value_is_known())
8119 // If building a shared library, we can also skip the PLT entry
8120 // if the symbol is defined in the output file and is protected
8122 if (gsym->is_defined()
8123 && !gsym->is_from_dynobj()
8124 && !gsym->is_preemptible())
8126 target->make_plt_entry(symtab, layout, gsym);
8129 case elfcpp::R_ARM_GOT_BREL:
8130 case elfcpp::R_ARM_GOT_ABS:
8131 case elfcpp::R_ARM_GOT_PREL:
8133 // The symbol requires a GOT entry.
8134 Arm_output_data_got<big_endian>* got =
8135 target->got_section(symtab, layout);
8136 if (gsym->final_value_is_known())
8137 got->add_global(gsym, GOT_TYPE_STANDARD);
8140 // If this symbol is not fully resolved, we need to add a
8141 // GOT entry with a dynamic relocation.
8142 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8143 if (gsym->is_from_dynobj()
8144 || gsym->is_undefined()
8145 || gsym->is_preemptible())
8146 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8147 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8150 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8151 rel_dyn->add_global_relative(
8152 gsym, elfcpp::R_ARM_RELATIVE, got,
8153 gsym->got_offset(GOT_TYPE_STANDARD));
8159 case elfcpp::R_ARM_TARGET1:
8160 case elfcpp::R_ARM_TARGET2:
8161 // These should have been mapped to other types already.
8163 case elfcpp::R_ARM_COPY:
8164 case elfcpp::R_ARM_GLOB_DAT:
8165 case elfcpp::R_ARM_JUMP_SLOT:
8166 case elfcpp::R_ARM_RELATIVE:
8167 // These are relocations which should only be seen by the
8168 // dynamic linker, and should never be seen here.
8169 gold_error(_("%s: unexpected reloc %u in object file"),
8170 object->name().c_str(), r_type);
8173 // These are initial tls relocs, which are expected when
8175 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8176 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8177 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8178 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8179 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8181 const bool is_final = gsym->final_value_is_known();
8182 const tls::Tls_optimization optimized_type
8183 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8186 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8187 if (optimized_type == tls::TLSOPT_NONE)
8189 // Create a pair of GOT entries for the module index and
8190 // dtv-relative offset.
8191 Arm_output_data_got<big_endian>* got
8192 = target->got_section(symtab, layout);
8193 if (!parameters->doing_static_link())
8194 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8195 target->rel_dyn_section(layout),
8196 elfcpp::R_ARM_TLS_DTPMOD32,
8197 elfcpp::R_ARM_TLS_DTPOFF32);
8199 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8202 // FIXME: TLS optimization not supported yet.
8206 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8207 if (optimized_type == tls::TLSOPT_NONE)
8209 // Create a GOT entry for the module index.
8210 target->got_mod_index_entry(symtab, layout, object);
8213 // FIXME: TLS optimization not supported yet.
8217 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8220 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8221 layout->set_has_static_tls();
8222 if (optimized_type == tls::TLSOPT_NONE)
8224 // Create a GOT entry for the tp-relative offset.
8225 Arm_output_data_got<big_endian>* got
8226 = target->got_section(symtab, layout);
8227 if (!parameters->doing_static_link())
8228 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8229 target->rel_dyn_section(layout),
8230 elfcpp::R_ARM_TLS_TPOFF32);
8231 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8233 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8234 unsigned int got_offset =
8235 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8236 got->add_static_reloc(got_offset,
8237 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8241 // FIXME: TLS optimization not supported yet.
8245 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8246 layout->set_has_static_tls();
8247 if (parameters->options().shared())
8249 // We need to create a dynamic relocation.
8250 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8251 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8252 output_section, object,
8253 data_shndx, reloc.get_r_offset());
8263 case elfcpp::R_ARM_PC24:
8264 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8265 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8266 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8268 unsupported_reloc_global(object, r_type, gsym);
8273 // Process relocations for gc.
8275 template<bool big_endian>
8277 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8279 Sized_relobj<32, big_endian>* object,
8280 unsigned int data_shndx,
8282 const unsigned char* prelocs,
8284 Output_section* output_section,
8285 bool needs_special_offset_handling,
8286 size_t local_symbol_count,
8287 const unsigned char* plocal_symbols)
8289 typedef Target_arm<big_endian> Arm;
8290 typedef typename Target_arm<big_endian>::Scan Scan;
8292 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8293 typename Target_arm::Relocatable_size_for_reloc>(
8302 needs_special_offset_handling,
8307 // Scan relocations for a section.
8309 template<bool big_endian>
8311 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8313 Sized_relobj<32, big_endian>* object,
8314 unsigned int data_shndx,
8315 unsigned int sh_type,
8316 const unsigned char* prelocs,
8318 Output_section* output_section,
8319 bool needs_special_offset_handling,
8320 size_t local_symbol_count,
8321 const unsigned char* plocal_symbols)
8323 typedef typename Target_arm<big_endian>::Scan Scan;
8324 if (sh_type == elfcpp::SHT_RELA)
8326 gold_error(_("%s: unsupported RELA reloc section"),
8327 object->name().c_str());
8331 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8340 needs_special_offset_handling,
8345 // Finalize the sections.
8347 template<bool big_endian>
8349 Target_arm<big_endian>::do_finalize_sections(
8351 const Input_objects* input_objects,
8352 Symbol_table* symtab)
8354 bool merged_any_attributes = false;
8355 // Merge processor-specific flags.
8356 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8357 p != input_objects->relobj_end();
8360 Arm_relobj<big_endian>* arm_relobj =
8361 Arm_relobj<big_endian>::as_arm_relobj(*p);
8362 if (arm_relobj->merge_flags_and_attributes())
8364 this->merge_processor_specific_flags(
8366 arm_relobj->processor_specific_flags());
8367 this->merge_object_attributes(arm_relobj->name().c_str(),
8368 arm_relobj->attributes_section_data());
8369 merged_any_attributes = true;
8373 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8374 p != input_objects->dynobj_end();
8377 Arm_dynobj<big_endian>* arm_dynobj =
8378 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8379 this->merge_processor_specific_flags(
8381 arm_dynobj->processor_specific_flags());
8382 this->merge_object_attributes(arm_dynobj->name().c_str(),
8383 arm_dynobj->attributes_section_data());
8384 merged_any_attributes = true;
8387 // Create an empty uninitialized attribute section if we still don't have it
8388 // at this moment. This happens if there is no attributes sections in all
8390 if (this->attributes_section_data_ == NULL)
8391 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8394 const Object_attribute* cpu_arch_attr =
8395 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8396 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8397 this->set_may_use_blx(true);
8399 // Check if we need to use Cortex-A8 workaround.
8400 if (parameters->options().user_set_fix_cortex_a8())
8401 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8404 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8405 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8407 const Object_attribute* cpu_arch_profile_attr =
8408 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8409 this->fix_cortex_a8_ =
8410 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8411 && (cpu_arch_profile_attr->int_value() == 'A'
8412 || cpu_arch_profile_attr->int_value() == 0));
8415 // Check if we can use V4BX interworking.
8416 // The V4BX interworking stub contains BX instruction,
8417 // which is not specified for some profiles.
8418 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8419 && !this->may_use_blx())
8420 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8421 "the target profile does not support BX instruction"));
8423 // Fill in some more dynamic tags.
8424 const Reloc_section* rel_plt = (this->plt_ == NULL
8426 : this->plt_->rel_plt());
8427 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8428 this->rel_dyn_, true, false);
8430 // Emit any relocs we saved in an attempt to avoid generating COPY
8432 if (this->copy_relocs_.any_saved_relocs())
8433 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8435 // Handle the .ARM.exidx section.
8436 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8438 if (!parameters->options().relocatable())
8440 if (exidx_section != NULL
8441 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8443 // Create __exidx_start and __exdix_end symbols.
8444 symtab->define_in_output_data("__exidx_start", NULL,
8445 Symbol_table::PREDEFINED,
8446 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8447 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8449 symtab->define_in_output_data("__exidx_end", NULL,
8450 Symbol_table::PREDEFINED,
8451 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8452 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8455 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8456 // the .ARM.exidx section.
8457 if (!layout->script_options()->saw_phdrs_clause())
8459 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8462 Output_segment* exidx_segment =
8463 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8464 exidx_segment->add_output_section_to_nonload(exidx_section,
8470 symtab->define_as_constant("__exidx_start", NULL,
8471 Symbol_table::PREDEFINED,
8472 0, 0, elfcpp::STT_OBJECT,
8473 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8475 symtab->define_as_constant("__exidx_end", NULL,
8476 Symbol_table::PREDEFINED,
8477 0, 0, elfcpp::STT_OBJECT,
8478 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8483 // Create an .ARM.attributes section if we have merged any attributes
8485 if (merged_any_attributes)
8487 Output_attributes_section_data* attributes_section =
8488 new Output_attributes_section_data(*this->attributes_section_data_);
8489 layout->add_output_section_data(".ARM.attributes",
8490 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8491 attributes_section, ORDER_INVALID,
8495 // Fix up links in section EXIDX headers.
8496 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8497 p != layout->section_list().end();
8499 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8501 Arm_output_section<big_endian>* os =
8502 Arm_output_section<big_endian>::as_arm_output_section(*p);
8503 os->set_exidx_section_link();
8507 // Return whether a direct absolute static relocation needs to be applied.
8508 // In cases where Scan::local() or Scan::global() has created
8509 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8510 // of the relocation is carried in the data, and we must not
8511 // apply the static relocation.
8513 template<bool big_endian>
8515 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8516 const Sized_symbol<32>* gsym,
8519 Output_section* output_section)
8521 // If the output section is not allocated, then we didn't call
8522 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8524 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8527 // For local symbols, we will have created a non-RELATIVE dynamic
8528 // relocation only if (a) the output is position independent,
8529 // (b) the relocation is absolute (not pc- or segment-relative), and
8530 // (c) the relocation is not 32 bits wide.
8532 return !(parameters->options().output_is_position_independent()
8533 && (ref_flags & Symbol::ABSOLUTE_REF)
8536 // For global symbols, we use the same helper routines used in the
8537 // scan pass. If we did not create a dynamic relocation, or if we
8538 // created a RELATIVE dynamic relocation, we should apply the static
8540 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8541 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8542 && gsym->can_use_relative_reloc(ref_flags
8543 & Symbol::FUNCTION_CALL);
8544 return !has_dyn || is_rel;
8547 // Perform a relocation.
8549 template<bool big_endian>
8551 Target_arm<big_endian>::Relocate::relocate(
8552 const Relocate_info<32, big_endian>* relinfo,
8554 Output_section* output_section,
8556 const elfcpp::Rel<32, big_endian>& rel,
8557 unsigned int r_type,
8558 const Sized_symbol<32>* gsym,
8559 const Symbol_value<32>* psymval,
8560 unsigned char* view,
8561 Arm_address address,
8562 section_size_type view_size)
8564 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8566 r_type = get_real_reloc_type(r_type);
8567 const Arm_reloc_property* reloc_property =
8568 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8569 if (reloc_property == NULL)
8571 std::string reloc_name =
8572 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8573 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8574 _("cannot relocate %s in object file"),
8575 reloc_name.c_str());
8579 const Arm_relobj<big_endian>* object =
8580 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8582 // If the final branch target of a relocation is THUMB instruction, this
8583 // is 1. Otherwise it is 0.
8584 Arm_address thumb_bit = 0;
8585 Symbol_value<32> symval;
8586 bool is_weakly_undefined_without_plt = false;
8587 bool have_got_offset = false;
8588 unsigned int got_offset = 0;
8590 // If the relocation uses the GOT entry of a symbol instead of the symbol
8591 // itself, we don't care about whether the symbol is defined or what kind
8593 if (reloc_property->uses_got_entry())
8595 // Get the GOT offset.
8596 // The GOT pointer points to the end of the GOT section.
8597 // We need to subtract the size of the GOT section to get
8598 // the actual offset to use in the relocation.
8599 // TODO: We should move GOT offset computing code in TLS relocations
8603 case elfcpp::R_ARM_GOT_BREL:
8604 case elfcpp::R_ARM_GOT_PREL:
8607 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8608 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8609 - target->got_size());
8613 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8614 gold_assert(object->local_has_got_offset(r_sym,
8615 GOT_TYPE_STANDARD));
8616 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8617 - target->got_size());
8619 have_got_offset = true;
8626 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8630 // This is a global symbol. Determine if we use PLT and if the
8631 // final target is THUMB.
8632 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8634 // This uses a PLT, change the symbol value.
8635 symval.set_output_value(target->plt_section()->address()
8636 + gsym->plt_offset());
8639 else if (gsym->is_weak_undefined())
8641 // This is a weakly undefined symbol and we do not use PLT
8642 // for this relocation. A branch targeting this symbol will
8643 // be converted into an NOP.
8644 is_weakly_undefined_without_plt = true;
8646 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8648 // This relocation uses the symbol value but the symbol is
8649 // undefined. Exit early and have the caller reporting an
8655 // Set thumb bit if symbol:
8656 // -Has type STT_ARM_TFUNC or
8657 // -Has type STT_FUNC, is defined and with LSB in value set.
8659 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8660 || (gsym->type() == elfcpp::STT_FUNC
8661 && !gsym->is_undefined()
8662 && ((psymval->value(object, 0) & 1) != 0)))
8669 // This is a local symbol. Determine if the final target is THUMB.
8670 // We saved this information when all the local symbols were read.
8671 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8672 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8673 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8678 // This is a fake relocation synthesized for a stub. It does not have
8679 // a real symbol. We just look at the LSB of the symbol value to
8680 // determine if the target is THUMB or not.
8681 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8684 // Strip LSB if this points to a THUMB target.
8686 && reloc_property->uses_thumb_bit()
8687 && ((psymval->value(object, 0) & 1) != 0))
8689 Arm_address stripped_value =
8690 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8691 symval.set_output_value(stripped_value);
8695 // To look up relocation stubs, we need to pass the symbol table index of
8697 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8699 // Get the addressing origin of the output segment defining the
8700 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8701 Arm_address sym_origin = 0;
8702 if (reloc_property->uses_symbol_base())
8704 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8705 // R_ARM_BASE_ABS with the NULL symbol will give the
8706 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8707 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8708 sym_origin = target->got_plt_section()->address();
8709 else if (gsym == NULL)
8711 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8712 sym_origin = gsym->output_segment()->vaddr();
8713 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8714 sym_origin = gsym->output_data()->address();
8716 // TODO: Assumes the segment base to be zero for the global symbols
8717 // till the proper support for the segment-base-relative addressing
8718 // will be implemented. This is consistent with GNU ld.
8721 // For relative addressing relocation, find out the relative address base.
8722 Arm_address relative_address_base = 0;
8723 switch(reloc_property->relative_address_base())
8725 case Arm_reloc_property::RAB_NONE:
8726 // Relocations with relative address bases RAB_TLS and RAB_tp are
8727 // handled by relocate_tls. So we do not need to do anything here.
8728 case Arm_reloc_property::RAB_TLS:
8729 case Arm_reloc_property::RAB_tp:
8731 case Arm_reloc_property::RAB_B_S:
8732 relative_address_base = sym_origin;
8734 case Arm_reloc_property::RAB_GOT_ORG:
8735 relative_address_base = target->got_plt_section()->address();
8737 case Arm_reloc_property::RAB_P:
8738 relative_address_base = address;
8740 case Arm_reloc_property::RAB_Pa:
8741 relative_address_base = address & 0xfffffffcU;
8747 typename Arm_relocate_functions::Status reloc_status =
8748 Arm_relocate_functions::STATUS_OKAY;
8749 bool check_overflow = reloc_property->checks_overflow();
8752 case elfcpp::R_ARM_NONE:
8755 case elfcpp::R_ARM_ABS8:
8756 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8758 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8761 case elfcpp::R_ARM_ABS12:
8762 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8764 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8767 case elfcpp::R_ARM_ABS16:
8768 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8770 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8773 case elfcpp::R_ARM_ABS32:
8774 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8776 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8780 case elfcpp::R_ARM_ABS32_NOI:
8781 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8783 // No thumb bit for this relocation: (S + A)
8784 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8788 case elfcpp::R_ARM_MOVW_ABS_NC:
8789 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8791 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8796 case elfcpp::R_ARM_MOVT_ABS:
8797 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8799 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8802 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8803 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8805 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8806 0, thumb_bit, false);
8809 case elfcpp::R_ARM_THM_MOVT_ABS:
8810 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8812 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8816 case elfcpp::R_ARM_MOVW_PREL_NC:
8817 case elfcpp::R_ARM_MOVW_BREL_NC:
8818 case elfcpp::R_ARM_MOVW_BREL:
8820 Arm_relocate_functions::movw(view, object, psymval,
8821 relative_address_base, thumb_bit,
8825 case elfcpp::R_ARM_MOVT_PREL:
8826 case elfcpp::R_ARM_MOVT_BREL:
8828 Arm_relocate_functions::movt(view, object, psymval,
8829 relative_address_base);
8832 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8833 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8834 case elfcpp::R_ARM_THM_MOVW_BREL:
8836 Arm_relocate_functions::thm_movw(view, object, psymval,
8837 relative_address_base,
8838 thumb_bit, check_overflow);
8841 case elfcpp::R_ARM_THM_MOVT_PREL:
8842 case elfcpp::R_ARM_THM_MOVT_BREL:
8844 Arm_relocate_functions::thm_movt(view, object, psymval,
8845 relative_address_base);
8848 case elfcpp::R_ARM_REL32:
8849 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8850 address, thumb_bit);
8853 case elfcpp::R_ARM_THM_ABS5:
8854 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8856 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8859 // Thumb long branches.
8860 case elfcpp::R_ARM_THM_CALL:
8861 case elfcpp::R_ARM_THM_XPC22:
8862 case elfcpp::R_ARM_THM_JUMP24:
8864 Arm_relocate_functions::thumb_branch_common(
8865 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8866 thumb_bit, is_weakly_undefined_without_plt);
8869 case elfcpp::R_ARM_GOTOFF32:
8871 Arm_address got_origin;
8872 got_origin = target->got_plt_section()->address();
8873 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8874 got_origin, thumb_bit);
8878 case elfcpp::R_ARM_BASE_PREL:
8879 gold_assert(gsym != NULL);
8881 Arm_relocate_functions::base_prel(view, sym_origin, address);
8884 case elfcpp::R_ARM_BASE_ABS:
8886 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8890 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8894 case elfcpp::R_ARM_GOT_BREL:
8895 gold_assert(have_got_offset);
8896 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8899 case elfcpp::R_ARM_GOT_PREL:
8900 gold_assert(have_got_offset);
8901 // Get the address origin for GOT PLT, which is allocated right
8902 // after the GOT section, to calculate an absolute address of
8903 // the symbol GOT entry (got_origin + got_offset).
8904 Arm_address got_origin;
8905 got_origin = target->got_plt_section()->address();
8906 reloc_status = Arm_relocate_functions::got_prel(view,
8907 got_origin + got_offset,
8911 case elfcpp::R_ARM_PLT32:
8912 case elfcpp::R_ARM_CALL:
8913 case elfcpp::R_ARM_JUMP24:
8914 case elfcpp::R_ARM_XPC25:
8915 gold_assert(gsym == NULL
8916 || gsym->has_plt_offset()
8917 || gsym->final_value_is_known()
8918 || (gsym->is_defined()
8919 && !gsym->is_from_dynobj()
8920 && !gsym->is_preemptible()));
8922 Arm_relocate_functions::arm_branch_common(
8923 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8924 thumb_bit, is_weakly_undefined_without_plt);
8927 case elfcpp::R_ARM_THM_JUMP19:
8929 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8933 case elfcpp::R_ARM_THM_JUMP6:
8935 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8938 case elfcpp::R_ARM_THM_JUMP8:
8940 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8943 case elfcpp::R_ARM_THM_JUMP11:
8945 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8948 case elfcpp::R_ARM_PREL31:
8949 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8950 address, thumb_bit);
8953 case elfcpp::R_ARM_V4BX:
8954 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8956 const bool is_v4bx_interworking =
8957 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8959 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8960 is_v4bx_interworking);
8964 case elfcpp::R_ARM_THM_PC8:
8966 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8969 case elfcpp::R_ARM_THM_PC12:
8971 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8974 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8976 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8980 case elfcpp::R_ARM_ALU_PC_G0_NC:
8981 case elfcpp::R_ARM_ALU_PC_G0:
8982 case elfcpp::R_ARM_ALU_PC_G1_NC:
8983 case elfcpp::R_ARM_ALU_PC_G1:
8984 case elfcpp::R_ARM_ALU_PC_G2:
8985 case elfcpp::R_ARM_ALU_SB_G0_NC:
8986 case elfcpp::R_ARM_ALU_SB_G0:
8987 case elfcpp::R_ARM_ALU_SB_G1_NC:
8988 case elfcpp::R_ARM_ALU_SB_G1:
8989 case elfcpp::R_ARM_ALU_SB_G2:
8991 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8992 reloc_property->group_index(),
8993 relative_address_base,
8994 thumb_bit, check_overflow);
8997 case elfcpp::R_ARM_LDR_PC_G0:
8998 case elfcpp::R_ARM_LDR_PC_G1:
8999 case elfcpp::R_ARM_LDR_PC_G2:
9000 case elfcpp::R_ARM_LDR_SB_G0:
9001 case elfcpp::R_ARM_LDR_SB_G1:
9002 case elfcpp::R_ARM_LDR_SB_G2:
9004 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9005 reloc_property->group_index(),
9006 relative_address_base);
9009 case elfcpp::R_ARM_LDRS_PC_G0:
9010 case elfcpp::R_ARM_LDRS_PC_G1:
9011 case elfcpp::R_ARM_LDRS_PC_G2:
9012 case elfcpp::R_ARM_LDRS_SB_G0:
9013 case elfcpp::R_ARM_LDRS_SB_G1:
9014 case elfcpp::R_ARM_LDRS_SB_G2:
9016 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9017 reloc_property->group_index(),
9018 relative_address_base);
9021 case elfcpp::R_ARM_LDC_PC_G0:
9022 case elfcpp::R_ARM_LDC_PC_G1:
9023 case elfcpp::R_ARM_LDC_PC_G2:
9024 case elfcpp::R_ARM_LDC_SB_G0:
9025 case elfcpp::R_ARM_LDC_SB_G1:
9026 case elfcpp::R_ARM_LDC_SB_G2:
9028 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9029 reloc_property->group_index(),
9030 relative_address_base);
9033 // These are initial tls relocs, which are expected when
9035 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9036 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9037 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9038 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9039 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9041 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9042 view, address, view_size);
9045 // The known and unknown unsupported and/or deprecated relocations.
9046 case elfcpp::R_ARM_PC24:
9047 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9048 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9049 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9051 // Just silently leave the method. We should get an appropriate error
9052 // message in the scan methods.
9056 // Report any errors.
9057 switch (reloc_status)
9059 case Arm_relocate_functions::STATUS_OKAY:
9061 case Arm_relocate_functions::STATUS_OVERFLOW:
9062 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9063 _("relocation overflow in %s"),
9064 reloc_property->name().c_str());
9066 case Arm_relocate_functions::STATUS_BAD_RELOC:
9067 gold_error_at_location(
9071 _("unexpected opcode while processing relocation %s"),
9072 reloc_property->name().c_str());
9081 // Perform a TLS relocation.
9083 template<bool big_endian>
9084 inline typename Arm_relocate_functions<big_endian>::Status
9085 Target_arm<big_endian>::Relocate::relocate_tls(
9086 const Relocate_info<32, big_endian>* relinfo,
9087 Target_arm<big_endian>* target,
9089 const elfcpp::Rel<32, big_endian>& rel,
9090 unsigned int r_type,
9091 const Sized_symbol<32>* gsym,
9092 const Symbol_value<32>* psymval,
9093 unsigned char* view,
9094 elfcpp::Elf_types<32>::Elf_Addr address,
9095 section_size_type /*view_size*/ )
9097 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9098 typedef Relocate_functions<32, big_endian> RelocFuncs;
9099 Output_segment* tls_segment = relinfo->layout->tls_segment();
9101 const Sized_relobj<32, big_endian>* object = relinfo->object;
9103 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9105 const bool is_final = (gsym == NULL
9106 ? !parameters->options().shared()
9107 : gsym->final_value_is_known());
9108 const tls::Tls_optimization optimized_type
9109 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9112 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9114 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9115 unsigned int got_offset;
9118 gold_assert(gsym->has_got_offset(got_type));
9119 got_offset = gsym->got_offset(got_type) - target->got_size();
9123 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9124 gold_assert(object->local_has_got_offset(r_sym, got_type));
9125 got_offset = (object->local_got_offset(r_sym, got_type)
9126 - target->got_size());
9128 if (optimized_type == tls::TLSOPT_NONE)
9130 Arm_address got_entry =
9131 target->got_plt_section()->address() + got_offset;
9133 // Relocate the field with the PC relative offset of the pair of
9135 RelocFuncs::pcrel32(view, got_entry, address);
9136 return ArmRelocFuncs::STATUS_OKAY;
9141 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9142 if (optimized_type == tls::TLSOPT_NONE)
9144 // Relocate the field with the offset of the GOT entry for
9145 // the module index.
9146 unsigned int got_offset;
9147 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9148 - target->got_size());
9149 Arm_address got_entry =
9150 target->got_plt_section()->address() + got_offset;
9152 // Relocate the field with the PC relative offset of the pair of
9154 RelocFuncs::pcrel32(view, got_entry, address);
9155 return ArmRelocFuncs::STATUS_OKAY;
9159 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9160 RelocFuncs::rel32(view, value);
9161 return ArmRelocFuncs::STATUS_OKAY;
9163 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9164 if (optimized_type == tls::TLSOPT_NONE)
9166 // Relocate the field with the offset of the GOT entry for
9167 // the tp-relative offset of the symbol.
9168 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9169 unsigned int got_offset;
9172 gold_assert(gsym->has_got_offset(got_type));
9173 got_offset = gsym->got_offset(got_type);
9177 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9178 gold_assert(object->local_has_got_offset(r_sym, got_type));
9179 got_offset = object->local_got_offset(r_sym, got_type);
9182 // All GOT offsets are relative to the end of the GOT.
9183 got_offset -= target->got_size();
9185 Arm_address got_entry =
9186 target->got_plt_section()->address() + got_offset;
9188 // Relocate the field with the PC relative offset of the GOT entry.
9189 RelocFuncs::pcrel32(view, got_entry, address);
9190 return ArmRelocFuncs::STATUS_OKAY;
9194 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9195 // If we're creating a shared library, a dynamic relocation will
9196 // have been created for this location, so do not apply it now.
9197 if (!parameters->options().shared())
9199 gold_assert(tls_segment != NULL);
9201 // $tp points to the TCB, which is followed by the TLS, so we
9202 // need to add TCB size to the offset.
9203 Arm_address aligned_tcb_size =
9204 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9205 RelocFuncs::rel32(view, value + aligned_tcb_size);
9208 return ArmRelocFuncs::STATUS_OKAY;
9214 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9215 _("unsupported reloc %u"),
9217 return ArmRelocFuncs::STATUS_BAD_RELOC;
9220 // Relocate section data.
9222 template<bool big_endian>
9224 Target_arm<big_endian>::relocate_section(
9225 const Relocate_info<32, big_endian>* relinfo,
9226 unsigned int sh_type,
9227 const unsigned char* prelocs,
9229 Output_section* output_section,
9230 bool needs_special_offset_handling,
9231 unsigned char* view,
9232 Arm_address address,
9233 section_size_type view_size,
9234 const Reloc_symbol_changes* reloc_symbol_changes)
9236 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9237 gold_assert(sh_type == elfcpp::SHT_REL);
9239 // See if we are relocating a relaxed input section. If so, the view
9240 // covers the whole output section and we need to adjust accordingly.
9241 if (needs_special_offset_handling)
9243 const Output_relaxed_input_section* poris =
9244 output_section->find_relaxed_input_section(relinfo->object,
9245 relinfo->data_shndx);
9248 Arm_address section_address = poris->address();
9249 section_size_type section_size = poris->data_size();
9251 gold_assert((section_address >= address)
9252 && ((section_address + section_size)
9253 <= (address + view_size)));
9255 off_t offset = section_address - address;
9258 view_size = section_size;
9262 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9269 needs_special_offset_handling,
9273 reloc_symbol_changes);
9276 // Return the size of a relocation while scanning during a relocatable
9279 template<bool big_endian>
9281 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9282 unsigned int r_type,
9285 r_type = get_real_reloc_type(r_type);
9286 const Arm_reloc_property* arp =
9287 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9292 std::string reloc_name =
9293 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9294 gold_error(_("%s: unexpected %s in object file"),
9295 object->name().c_str(), reloc_name.c_str());
9300 // Scan the relocs during a relocatable link.
9302 template<bool big_endian>
9304 Target_arm<big_endian>::scan_relocatable_relocs(
9305 Symbol_table* symtab,
9307 Sized_relobj<32, big_endian>* object,
9308 unsigned int data_shndx,
9309 unsigned int sh_type,
9310 const unsigned char* prelocs,
9312 Output_section* output_section,
9313 bool needs_special_offset_handling,
9314 size_t local_symbol_count,
9315 const unsigned char* plocal_symbols,
9316 Relocatable_relocs* rr)
9318 gold_assert(sh_type == elfcpp::SHT_REL);
9320 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9321 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9323 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9324 Scan_relocatable_relocs>(
9332 needs_special_offset_handling,
9338 // Relocate a section during a relocatable link.
9340 template<bool big_endian>
9342 Target_arm<big_endian>::relocate_for_relocatable(
9343 const Relocate_info<32, big_endian>* relinfo,
9344 unsigned int sh_type,
9345 const unsigned char* prelocs,
9347 Output_section* output_section,
9348 off_t offset_in_output_section,
9349 const Relocatable_relocs* rr,
9350 unsigned char* view,
9351 Arm_address view_address,
9352 section_size_type view_size,
9353 unsigned char* reloc_view,
9354 section_size_type reloc_view_size)
9356 gold_assert(sh_type == elfcpp::SHT_REL);
9358 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9363 offset_in_output_section,
9372 // Perform target-specific processing in a relocatable link. This is
9373 // only used if we use the relocation strategy RELOC_SPECIAL.
9375 template<bool big_endian>
9377 Target_arm<big_endian>::relocate_special_relocatable(
9378 const Relocate_info<32, big_endian>* relinfo,
9379 unsigned int sh_type,
9380 const unsigned char* preloc_in,
9382 Output_section* output_section,
9383 off_t offset_in_output_section,
9384 unsigned char* view,
9385 elfcpp::Elf_types<32>::Elf_Addr view_address,
9387 unsigned char* preloc_out)
9389 // We can only handle REL type relocation sections.
9390 gold_assert(sh_type == elfcpp::SHT_REL);
9392 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9393 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9395 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9397 const Arm_relobj<big_endian>* object =
9398 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9399 const unsigned int local_count = object->local_symbol_count();
9401 Reltype reloc(preloc_in);
9402 Reltype_write reloc_write(preloc_out);
9404 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9405 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9406 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9408 const Arm_reloc_property* arp =
9409 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9410 gold_assert(arp != NULL);
9412 // Get the new symbol index.
9413 // We only use RELOC_SPECIAL strategy in local relocations.
9414 gold_assert(r_sym < local_count);
9416 // We are adjusting a section symbol. We need to find
9417 // the symbol table index of the section symbol for
9418 // the output section corresponding to input section
9419 // in which this symbol is defined.
9421 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9422 gold_assert(is_ordinary);
9423 Output_section* os = object->output_section(shndx);
9424 gold_assert(os != NULL);
9425 gold_assert(os->needs_symtab_index());
9426 unsigned int new_symndx = os->symtab_index();
9428 // Get the new offset--the location in the output section where
9429 // this relocation should be applied.
9431 Arm_address offset = reloc.get_r_offset();
9432 Arm_address new_offset;
9433 if (offset_in_output_section != invalid_address)
9434 new_offset = offset + offset_in_output_section;
9437 section_offset_type sot_offset =
9438 convert_types<section_offset_type, Arm_address>(offset);
9439 section_offset_type new_sot_offset =
9440 output_section->output_offset(object, relinfo->data_shndx,
9442 gold_assert(new_sot_offset != -1);
9443 new_offset = new_sot_offset;
9446 // In an object file, r_offset is an offset within the section.
9447 // In an executable or dynamic object, generated by
9448 // --emit-relocs, r_offset is an absolute address.
9449 if (!parameters->options().relocatable())
9451 new_offset += view_address;
9452 if (offset_in_output_section != invalid_address)
9453 new_offset -= offset_in_output_section;
9456 reloc_write.put_r_offset(new_offset);
9457 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9459 // Handle the reloc addend.
9460 // The relocation uses a section symbol in the input file.
9461 // We are adjusting it to use a section symbol in the output
9462 // file. The input section symbol refers to some address in
9463 // the input section. We need the relocation in the output
9464 // file to refer to that same address. This adjustment to
9465 // the addend is the same calculation we use for a simple
9466 // absolute relocation for the input section symbol.
9468 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9470 // Handle THUMB bit.
9471 Symbol_value<32> symval;
9472 Arm_address thumb_bit =
9473 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9475 && arp->uses_thumb_bit()
9476 && ((psymval->value(object, 0) & 1) != 0))
9478 Arm_address stripped_value =
9479 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9480 symval.set_output_value(stripped_value);
9484 unsigned char* paddend = view + offset;
9485 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9486 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9489 case elfcpp::R_ARM_ABS8:
9490 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9494 case elfcpp::R_ARM_ABS12:
9495 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9499 case elfcpp::R_ARM_ABS16:
9500 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9504 case elfcpp::R_ARM_THM_ABS5:
9505 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9510 case elfcpp::R_ARM_MOVW_ABS_NC:
9511 case elfcpp::R_ARM_MOVW_PREL_NC:
9512 case elfcpp::R_ARM_MOVW_BREL_NC:
9513 case elfcpp::R_ARM_MOVW_BREL:
9514 reloc_status = Arm_relocate_functions<big_endian>::movw(
9515 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9518 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9519 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9520 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9521 case elfcpp::R_ARM_THM_MOVW_BREL:
9522 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9523 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9526 case elfcpp::R_ARM_THM_CALL:
9527 case elfcpp::R_ARM_THM_XPC22:
9528 case elfcpp::R_ARM_THM_JUMP24:
9530 Arm_relocate_functions<big_endian>::thumb_branch_common(
9531 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9535 case elfcpp::R_ARM_PLT32:
9536 case elfcpp::R_ARM_CALL:
9537 case elfcpp::R_ARM_JUMP24:
9538 case elfcpp::R_ARM_XPC25:
9540 Arm_relocate_functions<big_endian>::arm_branch_common(
9541 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9545 case elfcpp::R_ARM_THM_JUMP19:
9547 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9548 psymval, 0, thumb_bit);
9551 case elfcpp::R_ARM_THM_JUMP6:
9553 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9557 case elfcpp::R_ARM_THM_JUMP8:
9559 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9563 case elfcpp::R_ARM_THM_JUMP11:
9565 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9569 case elfcpp::R_ARM_PREL31:
9571 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9575 case elfcpp::R_ARM_THM_PC8:
9577 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9581 case elfcpp::R_ARM_THM_PC12:
9583 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9587 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9589 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9593 // These relocation truncate relocation results so we cannot handle them
9594 // in a relocatable link.
9595 case elfcpp::R_ARM_MOVT_ABS:
9596 case elfcpp::R_ARM_THM_MOVT_ABS:
9597 case elfcpp::R_ARM_MOVT_PREL:
9598 case elfcpp::R_ARM_MOVT_BREL:
9599 case elfcpp::R_ARM_THM_MOVT_PREL:
9600 case elfcpp::R_ARM_THM_MOVT_BREL:
9601 case elfcpp::R_ARM_ALU_PC_G0_NC:
9602 case elfcpp::R_ARM_ALU_PC_G0:
9603 case elfcpp::R_ARM_ALU_PC_G1_NC:
9604 case elfcpp::R_ARM_ALU_PC_G1:
9605 case elfcpp::R_ARM_ALU_PC_G2:
9606 case elfcpp::R_ARM_ALU_SB_G0_NC:
9607 case elfcpp::R_ARM_ALU_SB_G0:
9608 case elfcpp::R_ARM_ALU_SB_G1_NC:
9609 case elfcpp::R_ARM_ALU_SB_G1:
9610 case elfcpp::R_ARM_ALU_SB_G2:
9611 case elfcpp::R_ARM_LDR_PC_G0:
9612 case elfcpp::R_ARM_LDR_PC_G1:
9613 case elfcpp::R_ARM_LDR_PC_G2:
9614 case elfcpp::R_ARM_LDR_SB_G0:
9615 case elfcpp::R_ARM_LDR_SB_G1:
9616 case elfcpp::R_ARM_LDR_SB_G2:
9617 case elfcpp::R_ARM_LDRS_PC_G0:
9618 case elfcpp::R_ARM_LDRS_PC_G1:
9619 case elfcpp::R_ARM_LDRS_PC_G2:
9620 case elfcpp::R_ARM_LDRS_SB_G0:
9621 case elfcpp::R_ARM_LDRS_SB_G1:
9622 case elfcpp::R_ARM_LDRS_SB_G2:
9623 case elfcpp::R_ARM_LDC_PC_G0:
9624 case elfcpp::R_ARM_LDC_PC_G1:
9625 case elfcpp::R_ARM_LDC_PC_G2:
9626 case elfcpp::R_ARM_LDC_SB_G0:
9627 case elfcpp::R_ARM_LDC_SB_G1:
9628 case elfcpp::R_ARM_LDC_SB_G2:
9629 gold_error(_("cannot handle %s in a relocatable link"),
9630 arp->name().c_str());
9637 // Report any errors.
9638 switch (reloc_status)
9640 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9642 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9643 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9644 _("relocation overflow in %s"),
9645 arp->name().c_str());
9647 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9648 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9649 _("unexpected opcode while processing relocation %s"),
9650 arp->name().c_str());
9657 // Return the value to use for a dynamic symbol which requires special
9658 // treatment. This is how we support equality comparisons of function
9659 // pointers across shared library boundaries, as described in the
9660 // processor specific ABI supplement.
9662 template<bool big_endian>
9664 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9666 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9667 return this->plt_section()->address() + gsym->plt_offset();
9670 // Map platform-specific relocs to real relocs
9672 template<bool big_endian>
9674 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9678 case elfcpp::R_ARM_TARGET1:
9679 // This is either R_ARM_ABS32 or R_ARM_REL32;
9680 return elfcpp::R_ARM_ABS32;
9682 case elfcpp::R_ARM_TARGET2:
9683 // This can be any reloc type but ususally is R_ARM_GOT_PREL
9684 return elfcpp::R_ARM_GOT_PREL;
9691 // Whether if two EABI versions V1 and V2 are compatible.
9693 template<bool big_endian>
9695 Target_arm<big_endian>::are_eabi_versions_compatible(
9696 elfcpp::Elf_Word v1,
9697 elfcpp::Elf_Word v2)
9699 // v4 and v5 are the same spec before and after it was released,
9700 // so allow mixing them.
9701 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9702 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9703 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9709 // Combine FLAGS from an input object called NAME and the processor-specific
9710 // flags in the ELF header of the output. Much of this is adapted from the
9711 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9712 // in bfd/elf32-arm.c.
9714 template<bool big_endian>
9716 Target_arm<big_endian>::merge_processor_specific_flags(
9717 const std::string& name,
9718 elfcpp::Elf_Word flags)
9720 if (this->are_processor_specific_flags_set())
9722 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9724 // Nothing to merge if flags equal to those in output.
9725 if (flags == out_flags)
9728 // Complain about various flag mismatches.
9729 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9730 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9731 if (!this->are_eabi_versions_compatible(version1, version2)
9732 && parameters->options().warn_mismatch())
9733 gold_error(_("Source object %s has EABI version %d but output has "
9734 "EABI version %d."),
9736 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9737 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9741 // If the input is the default architecture and had the default
9742 // flags then do not bother setting the flags for the output
9743 // architecture, instead allow future merges to do this. If no
9744 // future merges ever set these flags then they will retain their
9745 // uninitialised values, which surprise surprise, correspond
9746 // to the default values.
9750 // This is the first time, just copy the flags.
9751 // We only copy the EABI version for now.
9752 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9756 // Adjust ELF file header.
9757 template<bool big_endian>
9759 Target_arm<big_endian>::do_adjust_elf_header(
9760 unsigned char* view,
9763 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9765 elfcpp::Ehdr<32, big_endian> ehdr(view);
9766 unsigned char e_ident[elfcpp::EI_NIDENT];
9767 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9769 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9770 == elfcpp::EF_ARM_EABI_UNKNOWN)
9771 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9773 e_ident[elfcpp::EI_OSABI] = 0;
9774 e_ident[elfcpp::EI_ABIVERSION] = 0;
9776 // FIXME: Do EF_ARM_BE8 adjustment.
9778 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9779 oehdr.put_e_ident(e_ident);
9782 // do_make_elf_object to override the same function in the base class.
9783 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9784 // to store ARM specific information. Hence we need to have our own
9785 // ELF object creation.
9787 template<bool big_endian>
9789 Target_arm<big_endian>::do_make_elf_object(
9790 const std::string& name,
9791 Input_file* input_file,
9792 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9794 int et = ehdr.get_e_type();
9795 if (et == elfcpp::ET_REL)
9797 Arm_relobj<big_endian>* obj =
9798 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9802 else if (et == elfcpp::ET_DYN)
9804 Sized_dynobj<32, big_endian>* obj =
9805 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9811 gold_error(_("%s: unsupported ELF file type %d"),
9817 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9818 // Returns -1 if no architecture could be read.
9819 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9821 template<bool big_endian>
9823 Target_arm<big_endian>::get_secondary_compatible_arch(
9824 const Attributes_section_data* pasd)
9826 const Object_attribute* known_attributes =
9827 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9829 // Note: the tag and its argument below are uleb128 values, though
9830 // currently-defined values fit in one byte for each.
9831 const std::string& sv =
9832 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9834 && sv.data()[0] == elfcpp::Tag_CPU_arch
9835 && (sv.data()[1] & 128) != 128)
9836 return sv.data()[1];
9838 // This tag is "safely ignorable", so don't complain if it looks funny.
9842 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9843 // The tag is removed if ARCH is -1.
9844 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9846 template<bool big_endian>
9848 Target_arm<big_endian>::set_secondary_compatible_arch(
9849 Attributes_section_data* pasd,
9852 Object_attribute* known_attributes =
9853 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9857 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9861 // Note: the tag and its argument below are uleb128 values, though
9862 // currently-defined values fit in one byte for each.
9864 sv[0] = elfcpp::Tag_CPU_arch;
9865 gold_assert(arch != 0);
9869 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9872 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9874 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9876 template<bool big_endian>
9878 Target_arm<big_endian>::tag_cpu_arch_combine(
9881 int* secondary_compat_out,
9883 int secondary_compat)
9885 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9886 static const int v6t2[] =
9898 static const int v6k[] =
9911 static const int v7[] =
9925 static const int v6_m[] =
9940 static const int v6s_m[] =
9956 static const int v7e_m[] =
9973 static const int v4t_plus_v6_m[] =
9989 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9991 static const int* comb[] =
9999 // Pseudo-architecture.
10003 // Check we've not got a higher architecture than we know about.
10005 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
10007 gold_error(_("%s: unknown CPU architecture"), name);
10011 // Override old tag if we have a Tag_also_compatible_with on the output.
10013 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10014 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10015 oldtag = T(V4T_PLUS_V6_M);
10017 // And override the new tag if we have a Tag_also_compatible_with on the
10020 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10021 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10022 newtag = T(V4T_PLUS_V6_M);
10024 // Architectures before V6KZ add features monotonically.
10025 int tagh = std::max(oldtag, newtag);
10026 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10029 int tagl = std::min(oldtag, newtag);
10030 int result = comb[tagh - T(V6T2)][tagl];
10032 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10033 // as the canonical version.
10034 if (result == T(V4T_PLUS_V6_M))
10037 *secondary_compat_out = T(V6_M);
10040 *secondary_compat_out = -1;
10044 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10045 name, oldtag, newtag);
10053 // Helper to print AEABI enum tag value.
10055 template<bool big_endian>
10057 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10059 static const char* aeabi_enum_names[] =
10060 { "", "variable-size", "32-bit", "" };
10061 const size_t aeabi_enum_names_size =
10062 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10064 if (value < aeabi_enum_names_size)
10065 return std::string(aeabi_enum_names[value]);
10069 sprintf(buffer, "<unknown value %u>", value);
10070 return std::string(buffer);
10074 // Return the string value to store in TAG_CPU_name.
10076 template<bool big_endian>
10078 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10080 static const char* name_table[] = {
10081 // These aren't real CPU names, but we can't guess
10082 // that from the architecture version alone.
10098 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10100 if (value < name_table_size)
10101 return std::string(name_table[value]);
10105 sprintf(buffer, "<unknown CPU value %u>", value);
10106 return std::string(buffer);
10110 // Merge object attributes from input file called NAME with those of the
10111 // output. The input object attributes are in the object pointed by PASD.
10113 template<bool big_endian>
10115 Target_arm<big_endian>::merge_object_attributes(
10117 const Attributes_section_data* pasd)
10119 // Return if there is no attributes section data.
10123 // If output has no object attributes, just copy.
10124 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10125 if (this->attributes_section_data_ == NULL)
10127 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10128 Object_attribute* out_attr =
10129 this->attributes_section_data_->known_attributes(vendor);
10131 // We do not output objects with Tag_MPextension_use_legacy - we move
10132 // the attribute's value to Tag_MPextension_use. */
10133 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10135 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10136 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10137 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10139 gold_error(_("%s has both the current and legacy "
10140 "Tag_MPextension_use attributes"),
10144 out_attr[elfcpp::Tag_MPextension_use] =
10145 out_attr[elfcpp::Tag_MPextension_use_legacy];
10146 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10147 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10153 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10154 Object_attribute* out_attr =
10155 this->attributes_section_data_->known_attributes(vendor);
10157 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10158 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10159 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10161 // Ignore mismatches if the object doesn't use floating point. */
10162 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10163 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10164 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10165 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10166 && parameters->options().warn_mismatch())
10167 gold_error(_("%s uses VFP register arguments, output does not"),
10171 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10173 // Merge this attribute with existing attributes.
10176 case elfcpp::Tag_CPU_raw_name:
10177 case elfcpp::Tag_CPU_name:
10178 // These are merged after Tag_CPU_arch.
10181 case elfcpp::Tag_ABI_optimization_goals:
10182 case elfcpp::Tag_ABI_FP_optimization_goals:
10183 // Use the first value seen.
10186 case elfcpp::Tag_CPU_arch:
10188 unsigned int saved_out_attr = out_attr->int_value();
10189 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10190 int secondary_compat =
10191 this->get_secondary_compatible_arch(pasd);
10192 int secondary_compat_out =
10193 this->get_secondary_compatible_arch(
10194 this->attributes_section_data_);
10195 out_attr[i].set_int_value(
10196 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10197 &secondary_compat_out,
10198 in_attr[i].int_value(),
10199 secondary_compat));
10200 this->set_secondary_compatible_arch(this->attributes_section_data_,
10201 secondary_compat_out);
10203 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10204 if (out_attr[i].int_value() == saved_out_attr)
10205 ; // Leave the names alone.
10206 else if (out_attr[i].int_value() == in_attr[i].int_value())
10208 // The output architecture has been changed to match the
10209 // input architecture. Use the input names.
10210 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10211 in_attr[elfcpp::Tag_CPU_name].string_value());
10212 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10213 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10217 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10218 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10221 // If we still don't have a value for Tag_CPU_name,
10222 // make one up now. Tag_CPU_raw_name remains blank.
10223 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10225 const std::string cpu_name =
10226 this->tag_cpu_name_value(out_attr[i].int_value());
10227 // FIXME: If we see an unknown CPU, this will be set
10228 // to "<unknown CPU n>", where n is the attribute value.
10229 // This is different from BFD, which leaves the name alone.
10230 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10235 case elfcpp::Tag_ARM_ISA_use:
10236 case elfcpp::Tag_THUMB_ISA_use:
10237 case elfcpp::Tag_WMMX_arch:
10238 case elfcpp::Tag_Advanced_SIMD_arch:
10239 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10240 case elfcpp::Tag_ABI_FP_rounding:
10241 case elfcpp::Tag_ABI_FP_exceptions:
10242 case elfcpp::Tag_ABI_FP_user_exceptions:
10243 case elfcpp::Tag_ABI_FP_number_model:
10244 case elfcpp::Tag_VFP_HP_extension:
10245 case elfcpp::Tag_CPU_unaligned_access:
10246 case elfcpp::Tag_T2EE_use:
10247 case elfcpp::Tag_Virtualization_use:
10248 case elfcpp::Tag_MPextension_use:
10249 // Use the largest value specified.
10250 if (in_attr[i].int_value() > out_attr[i].int_value())
10251 out_attr[i].set_int_value(in_attr[i].int_value());
10254 case elfcpp::Tag_ABI_align8_preserved:
10255 case elfcpp::Tag_ABI_PCS_RO_data:
10256 // Use the smallest value specified.
10257 if (in_attr[i].int_value() < out_attr[i].int_value())
10258 out_attr[i].set_int_value(in_attr[i].int_value());
10261 case elfcpp::Tag_ABI_align8_needed:
10262 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10263 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10264 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10267 // This error message should be enabled once all non-conformant
10268 // binaries in the toolchain have had the attributes set
10270 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10274 case elfcpp::Tag_ABI_FP_denormal:
10275 case elfcpp::Tag_ABI_PCS_GOT_use:
10277 // These tags have 0 = don't care, 1 = strong requirement,
10278 // 2 = weak requirement.
10279 static const int order_021[3] = {0, 2, 1};
10281 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10282 // value if greater than 2 (for future-proofing).
10283 if ((in_attr[i].int_value() > 2
10284 && in_attr[i].int_value() > out_attr[i].int_value())
10285 || (in_attr[i].int_value() <= 2
10286 && out_attr[i].int_value() <= 2
10287 && (order_021[in_attr[i].int_value()]
10288 > order_021[out_attr[i].int_value()])))
10289 out_attr[i].set_int_value(in_attr[i].int_value());
10293 case elfcpp::Tag_CPU_arch_profile:
10294 if (out_attr[i].int_value() != in_attr[i].int_value())
10296 // 0 will merge with anything.
10297 // 'A' and 'S' merge to 'A'.
10298 // 'R' and 'S' merge to 'R'.
10299 // 'M' and 'A|R|S' is an error.
10300 if (out_attr[i].int_value() == 0
10301 || (out_attr[i].int_value() == 'S'
10302 && (in_attr[i].int_value() == 'A'
10303 || in_attr[i].int_value() == 'R')))
10304 out_attr[i].set_int_value(in_attr[i].int_value());
10305 else if (in_attr[i].int_value() == 0
10306 || (in_attr[i].int_value() == 'S'
10307 && (out_attr[i].int_value() == 'A'
10308 || out_attr[i].int_value() == 'R')))
10310 else if (parameters->options().warn_mismatch())
10313 (_("conflicting architecture profiles %c/%c"),
10314 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10315 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10319 case elfcpp::Tag_VFP_arch:
10321 static const struct
10325 } vfp_versions[7] =
10336 // Values greater than 6 aren't defined, so just pick the
10338 if (in_attr[i].int_value() > 6
10339 && in_attr[i].int_value() > out_attr[i].int_value())
10341 *out_attr = *in_attr;
10344 // The output uses the superset of input features
10345 // (ISA version) and registers.
10346 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10347 vfp_versions[out_attr[i].int_value()].ver);
10348 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10349 vfp_versions[out_attr[i].int_value()].regs);
10350 // This assumes all possible supersets are also a valid
10353 for (newval = 6; newval > 0; newval--)
10355 if (regs == vfp_versions[newval].regs
10356 && ver == vfp_versions[newval].ver)
10359 out_attr[i].set_int_value(newval);
10362 case elfcpp::Tag_PCS_config:
10363 if (out_attr[i].int_value() == 0)
10364 out_attr[i].set_int_value(in_attr[i].int_value());
10365 else if (in_attr[i].int_value() != 0
10366 && out_attr[i].int_value() != 0
10367 && parameters->options().warn_mismatch())
10369 // It's sometimes ok to mix different configs, so this is only
10371 gold_warning(_("%s: conflicting platform configuration"), name);
10374 case elfcpp::Tag_ABI_PCS_R9_use:
10375 if (in_attr[i].int_value() != out_attr[i].int_value()
10376 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10377 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10378 && parameters->options().warn_mismatch())
10380 gold_error(_("%s: conflicting use of R9"), name);
10382 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10383 out_attr[i].set_int_value(in_attr[i].int_value());
10385 case elfcpp::Tag_ABI_PCS_RW_data:
10386 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10387 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10388 != elfcpp::AEABI_R9_SB)
10389 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10390 != elfcpp::AEABI_R9_unused)
10391 && parameters->options().warn_mismatch())
10393 gold_error(_("%s: SB relative addressing conflicts with use "
10397 // Use the smallest value specified.
10398 if (in_attr[i].int_value() < out_attr[i].int_value())
10399 out_attr[i].set_int_value(in_attr[i].int_value());
10401 case elfcpp::Tag_ABI_PCS_wchar_t:
10402 if (out_attr[i].int_value()
10403 && in_attr[i].int_value()
10404 && out_attr[i].int_value() != in_attr[i].int_value()
10405 && parameters->options().warn_mismatch()
10406 && parameters->options().wchar_size_warning())
10408 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10409 "use %u-byte wchar_t; use of wchar_t values "
10410 "across objects may fail"),
10411 name, in_attr[i].int_value(),
10412 out_attr[i].int_value());
10414 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10415 out_attr[i].set_int_value(in_attr[i].int_value());
10417 case elfcpp::Tag_ABI_enum_size:
10418 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10420 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10421 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10423 // The existing object is compatible with anything.
10424 // Use whatever requirements the new object has.
10425 out_attr[i].set_int_value(in_attr[i].int_value());
10427 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10428 && out_attr[i].int_value() != in_attr[i].int_value()
10429 && parameters->options().warn_mismatch()
10430 && parameters->options().enum_size_warning())
10432 unsigned int in_value = in_attr[i].int_value();
10433 unsigned int out_value = out_attr[i].int_value();
10434 gold_warning(_("%s uses %s enums yet the output is to use "
10435 "%s enums; use of enum values across objects "
10438 this->aeabi_enum_name(in_value).c_str(),
10439 this->aeabi_enum_name(out_value).c_str());
10443 case elfcpp::Tag_ABI_VFP_args:
10446 case elfcpp::Tag_ABI_WMMX_args:
10447 if (in_attr[i].int_value() != out_attr[i].int_value()
10448 && parameters->options().warn_mismatch())
10450 gold_error(_("%s uses iWMMXt register arguments, output does "
10455 case Object_attribute::Tag_compatibility:
10456 // Merged in target-independent code.
10458 case elfcpp::Tag_ABI_HardFP_use:
10459 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10460 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10461 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10462 out_attr[i].set_int_value(3);
10463 else if (in_attr[i].int_value() > out_attr[i].int_value())
10464 out_attr[i].set_int_value(in_attr[i].int_value());
10466 case elfcpp::Tag_ABI_FP_16bit_format:
10467 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10469 if (in_attr[i].int_value() != out_attr[i].int_value()
10470 && parameters->options().warn_mismatch())
10471 gold_error(_("fp16 format mismatch between %s and output"),
10474 if (in_attr[i].int_value() != 0)
10475 out_attr[i].set_int_value(in_attr[i].int_value());
10478 case elfcpp::Tag_DIV_use:
10479 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10480 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10481 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10482 // CPU. We will merge as follows: If the input attribute's value
10483 // is one then the output attribute's value remains unchanged. If
10484 // the input attribute's value is zero or two then if the output
10485 // attribute's value is one the output value is set to the input
10486 // value, otherwise the output value must be the same as the
10488 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10490 if (in_attr[i].int_value() != out_attr[i].int_value())
10492 gold_error(_("DIV usage mismatch between %s and output"),
10497 if (in_attr[i].int_value() != 1)
10498 out_attr[i].set_int_value(in_attr[i].int_value());
10502 case elfcpp::Tag_MPextension_use_legacy:
10503 // We don't output objects with Tag_MPextension_use_legacy - we
10504 // move the value to Tag_MPextension_use.
10505 if (in_attr[i].int_value() != 0
10506 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10508 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10509 != in_attr[i].int_value())
10511 gold_error(_("%s has has both the current and legacy "
10512 "Tag_MPextension_use attributes"),
10517 if (in_attr[i].int_value()
10518 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10519 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10523 case elfcpp::Tag_nodefaults:
10524 // This tag is set if it exists, but the value is unused (and is
10525 // typically zero). We don't actually need to do anything here -
10526 // the merge happens automatically when the type flags are merged
10529 case elfcpp::Tag_also_compatible_with:
10530 // Already done in Tag_CPU_arch.
10532 case elfcpp::Tag_conformance:
10533 // Keep the attribute if it matches. Throw it away otherwise.
10534 // No attribute means no claim to conform.
10535 if (in_attr[i].string_value() != out_attr[i].string_value())
10536 out_attr[i].set_string_value("");
10541 const char* err_object = NULL;
10543 // The "known_obj_attributes" table does contain some undefined
10544 // attributes. Ensure that there are unused.
10545 if (out_attr[i].int_value() != 0
10546 || out_attr[i].string_value() != "")
10547 err_object = "output";
10548 else if (in_attr[i].int_value() != 0
10549 || in_attr[i].string_value() != "")
10552 if (err_object != NULL
10553 && parameters->options().warn_mismatch())
10555 // Attribute numbers >=64 (mod 128) can be safely ignored.
10556 if ((i & 127) < 64)
10557 gold_error(_("%s: unknown mandatory EABI object attribute "
10561 gold_warning(_("%s: unknown EABI object attribute %d"),
10565 // Only pass on attributes that match in both inputs.
10566 if (!in_attr[i].matches(out_attr[i]))
10568 out_attr[i].set_int_value(0);
10569 out_attr[i].set_string_value("");
10574 // If out_attr was copied from in_attr then it won't have a type yet.
10575 if (in_attr[i].type() && !out_attr[i].type())
10576 out_attr[i].set_type(in_attr[i].type());
10579 // Merge Tag_compatibility attributes and any common GNU ones.
10580 this->attributes_section_data_->merge(name, pasd);
10582 // Check for any attributes not known on ARM.
10583 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10584 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10585 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10586 Other_attributes* out_other_attributes =
10587 this->attributes_section_data_->other_attributes(vendor);
10588 Other_attributes::iterator out_iter = out_other_attributes->begin();
10590 while (in_iter != in_other_attributes->end()
10591 || out_iter != out_other_attributes->end())
10593 const char* err_object = NULL;
10596 // The tags for each list are in numerical order.
10597 // If the tags are equal, then merge.
10598 if (out_iter != out_other_attributes->end()
10599 && (in_iter == in_other_attributes->end()
10600 || in_iter->first > out_iter->first))
10602 // This attribute only exists in output. We can't merge, and we
10603 // don't know what the tag means, so delete it.
10604 err_object = "output";
10605 err_tag = out_iter->first;
10606 int saved_tag = out_iter->first;
10607 delete out_iter->second;
10608 out_other_attributes->erase(out_iter);
10609 out_iter = out_other_attributes->upper_bound(saved_tag);
10611 else if (in_iter != in_other_attributes->end()
10612 && (out_iter != out_other_attributes->end()
10613 || in_iter->first < out_iter->first))
10615 // This attribute only exists in input. We can't merge, and we
10616 // don't know what the tag means, so ignore it.
10618 err_tag = in_iter->first;
10621 else // The tags are equal.
10623 // As present, all attributes in the list are unknown, and
10624 // therefore can't be merged meaningfully.
10625 err_object = "output";
10626 err_tag = out_iter->first;
10628 // Only pass on attributes that match in both inputs.
10629 if (!in_iter->second->matches(*(out_iter->second)))
10631 // No match. Delete the attribute.
10632 int saved_tag = out_iter->first;
10633 delete out_iter->second;
10634 out_other_attributes->erase(out_iter);
10635 out_iter = out_other_attributes->upper_bound(saved_tag);
10639 // Matched. Keep the attribute and move to the next.
10645 if (err_object && parameters->options().warn_mismatch())
10647 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10648 if ((err_tag & 127) < 64)
10650 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10651 err_object, err_tag);
10655 gold_warning(_("%s: unknown EABI object attribute %d"),
10656 err_object, err_tag);
10662 // Stub-generation methods for Target_arm.
10664 // Make a new Arm_input_section object.
10666 template<bool big_endian>
10667 Arm_input_section<big_endian>*
10668 Target_arm<big_endian>::new_arm_input_section(
10670 unsigned int shndx)
10672 Section_id sid(relobj, shndx);
10674 Arm_input_section<big_endian>* arm_input_section =
10675 new Arm_input_section<big_endian>(relobj, shndx);
10676 arm_input_section->init();
10678 // Register new Arm_input_section in map for look-up.
10679 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10680 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10682 // Make sure that it we have not created another Arm_input_section
10683 // for this input section already.
10684 gold_assert(ins.second);
10686 return arm_input_section;
10689 // Find the Arm_input_section object corresponding to the SHNDX-th input
10690 // section of RELOBJ.
10692 template<bool big_endian>
10693 Arm_input_section<big_endian>*
10694 Target_arm<big_endian>::find_arm_input_section(
10696 unsigned int shndx) const
10698 Section_id sid(relobj, shndx);
10699 typename Arm_input_section_map::const_iterator p =
10700 this->arm_input_section_map_.find(sid);
10701 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10704 // Make a new stub table.
10706 template<bool big_endian>
10707 Stub_table<big_endian>*
10708 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10710 Stub_table<big_endian>* stub_table =
10711 new Stub_table<big_endian>(owner);
10712 this->stub_tables_.push_back(stub_table);
10714 stub_table->set_address(owner->address() + owner->data_size());
10715 stub_table->set_file_offset(owner->offset() + owner->data_size());
10716 stub_table->finalize_data_size();
10721 // Scan a relocation for stub generation.
10723 template<bool big_endian>
10725 Target_arm<big_endian>::scan_reloc_for_stub(
10726 const Relocate_info<32, big_endian>* relinfo,
10727 unsigned int r_type,
10728 const Sized_symbol<32>* gsym,
10729 unsigned int r_sym,
10730 const Symbol_value<32>* psymval,
10731 elfcpp::Elf_types<32>::Elf_Swxword addend,
10732 Arm_address address)
10734 typedef typename Target_arm<big_endian>::Relocate Relocate;
10736 const Arm_relobj<big_endian>* arm_relobj =
10737 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10739 bool target_is_thumb;
10740 Symbol_value<32> symval;
10743 // This is a global symbol. Determine if we use PLT and if the
10744 // final target is THUMB.
10745 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
10747 // This uses a PLT, change the symbol value.
10748 symval.set_output_value(this->plt_section()->address()
10749 + gsym->plt_offset());
10751 target_is_thumb = false;
10753 else if (gsym->is_undefined())
10754 // There is no need to generate a stub symbol is undefined.
10759 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10760 || (gsym->type() == elfcpp::STT_FUNC
10761 && !gsym->is_undefined()
10762 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10767 // This is a local symbol. Determine if the final target is THUMB.
10768 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10771 // Strip LSB if this points to a THUMB target.
10772 const Arm_reloc_property* reloc_property =
10773 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10774 gold_assert(reloc_property != NULL);
10775 if (target_is_thumb
10776 && reloc_property->uses_thumb_bit()
10777 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10779 Arm_address stripped_value =
10780 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10781 symval.set_output_value(stripped_value);
10785 // Get the symbol value.
10786 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10788 // Owing to pipelining, the PC relative branches below actually skip
10789 // two instructions when the branch offset is 0.
10790 Arm_address destination;
10793 case elfcpp::R_ARM_CALL:
10794 case elfcpp::R_ARM_JUMP24:
10795 case elfcpp::R_ARM_PLT32:
10797 destination = value + addend + 8;
10799 case elfcpp::R_ARM_THM_CALL:
10800 case elfcpp::R_ARM_THM_XPC22:
10801 case elfcpp::R_ARM_THM_JUMP24:
10802 case elfcpp::R_ARM_THM_JUMP19:
10804 destination = value + addend + 4;
10807 gold_unreachable();
10810 Reloc_stub* stub = NULL;
10811 Stub_type stub_type =
10812 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10814 if (stub_type != arm_stub_none)
10816 // Try looking up an existing stub from a stub table.
10817 Stub_table<big_endian>* stub_table =
10818 arm_relobj->stub_table(relinfo->data_shndx);
10819 gold_assert(stub_table != NULL);
10821 // Locate stub by destination.
10822 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10824 // Create a stub if there is not one already
10825 stub = stub_table->find_reloc_stub(stub_key);
10828 // create a new stub and add it to stub table.
10829 stub = this->stub_factory().make_reloc_stub(stub_type);
10830 stub_table->add_reloc_stub(stub, stub_key);
10833 // Record the destination address.
10834 stub->set_destination_address(destination
10835 | (target_is_thumb ? 1 : 0));
10838 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10839 if (this->fix_cortex_a8_
10840 && (r_type == elfcpp::R_ARM_THM_JUMP24
10841 || r_type == elfcpp::R_ARM_THM_JUMP19
10842 || r_type == elfcpp::R_ARM_THM_CALL
10843 || r_type == elfcpp::R_ARM_THM_XPC22)
10844 && (address & 0xfffU) == 0xffeU)
10846 // Found a candidate. Note we haven't checked the destination is
10847 // within 4K here: if we do so (and don't create a record) we can't
10848 // tell that a branch should have been relocated when scanning later.
10849 this->cortex_a8_relocs_info_[address] =
10850 new Cortex_a8_reloc(stub, r_type,
10851 destination | (target_is_thumb ? 1 : 0));
10855 // This function scans a relocation sections for stub generation.
10856 // The template parameter Relocate must be a class type which provides
10857 // a single function, relocate(), which implements the machine
10858 // specific part of a relocation.
10860 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10861 // SHT_REL or SHT_RELA.
10863 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10864 // of relocs. OUTPUT_SECTION is the output section.
10865 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10866 // mapped to output offsets.
10868 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10869 // VIEW_SIZE is the size. These refer to the input section, unless
10870 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10871 // the output section.
10873 template<bool big_endian>
10874 template<int sh_type>
10876 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10877 const Relocate_info<32, big_endian>* relinfo,
10878 const unsigned char* prelocs,
10879 size_t reloc_count,
10880 Output_section* output_section,
10881 bool needs_special_offset_handling,
10882 const unsigned char* view,
10883 elfcpp::Elf_types<32>::Elf_Addr view_address,
10886 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10887 const int reloc_size =
10888 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10890 Arm_relobj<big_endian>* arm_object =
10891 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10892 unsigned int local_count = arm_object->local_symbol_count();
10894 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10896 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10898 Reltype reloc(prelocs);
10900 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10901 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10902 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10904 r_type = this->get_real_reloc_type(r_type);
10906 // Only a few relocation types need stubs.
10907 if ((r_type != elfcpp::R_ARM_CALL)
10908 && (r_type != elfcpp::R_ARM_JUMP24)
10909 && (r_type != elfcpp::R_ARM_PLT32)
10910 && (r_type != elfcpp::R_ARM_THM_CALL)
10911 && (r_type != elfcpp::R_ARM_THM_XPC22)
10912 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10913 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10914 && (r_type != elfcpp::R_ARM_V4BX))
10917 section_offset_type offset =
10918 convert_to_section_size_type(reloc.get_r_offset());
10920 if (needs_special_offset_handling)
10922 offset = output_section->output_offset(relinfo->object,
10923 relinfo->data_shndx,
10929 // Create a v4bx stub if --fix-v4bx-interworking is used.
10930 if (r_type == elfcpp::R_ARM_V4BX)
10932 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10934 // Get the BX instruction.
10935 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10936 const Valtype* wv =
10937 reinterpret_cast<const Valtype*>(view + offset);
10938 elfcpp::Elf_types<32>::Elf_Swxword insn =
10939 elfcpp::Swap<32, big_endian>::readval(wv);
10940 const uint32_t reg = (insn & 0xf);
10944 // Try looking up an existing stub from a stub table.
10945 Stub_table<big_endian>* stub_table =
10946 arm_object->stub_table(relinfo->data_shndx);
10947 gold_assert(stub_table != NULL);
10949 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10951 // create a new stub and add it to stub table.
10952 Arm_v4bx_stub* stub =
10953 this->stub_factory().make_arm_v4bx_stub(reg);
10954 gold_assert(stub != NULL);
10955 stub_table->add_arm_v4bx_stub(stub);
10963 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10964 elfcpp::Elf_types<32>::Elf_Swxword addend =
10965 stub_addend_reader(r_type, view + offset, reloc);
10967 const Sized_symbol<32>* sym;
10969 Symbol_value<32> symval;
10970 const Symbol_value<32> *psymval;
10971 bool is_defined_in_discarded_section;
10972 unsigned int shndx;
10973 if (r_sym < local_count)
10976 psymval = arm_object->local_symbol(r_sym);
10978 // If the local symbol belongs to a section we are discarding,
10979 // and that section is a debug section, try to find the
10980 // corresponding kept section and map this symbol to its
10981 // counterpart in the kept section. The symbol must not
10982 // correspond to a section we are folding.
10984 shndx = psymval->input_shndx(&is_ordinary);
10985 is_defined_in_discarded_section =
10987 && shndx != elfcpp::SHN_UNDEF
10988 && !arm_object->is_section_included(shndx)
10989 && !relinfo->symtab->is_section_folded(arm_object, shndx));
10991 // We need to compute the would-be final value of this local
10993 if (!is_defined_in_discarded_section)
10995 typedef Sized_relobj<32, big_endian> ObjType;
10996 typename ObjType::Compute_final_local_value_status status =
10997 arm_object->compute_final_local_value(r_sym, psymval, &symval,
10999 if (status == ObjType::CFLV_OK)
11001 // Currently we cannot handle a branch to a target in
11002 // a merged section. If this is the case, issue an error
11003 // and also free the merge symbol value.
11004 if (!symval.has_output_value())
11006 const std::string& section_name =
11007 arm_object->section_name(shndx);
11008 arm_object->error(_("cannot handle branch to local %u "
11009 "in a merged section %s"),
11010 r_sym, section_name.c_str());
11016 // We cannot determine the final value.
11023 const Symbol* gsym;
11024 gsym = arm_object->global_symbol(r_sym);
11025 gold_assert(gsym != NULL);
11026 if (gsym->is_forwarder())
11027 gsym = relinfo->symtab->resolve_forwards(gsym);
11029 sym = static_cast<const Sized_symbol<32>*>(gsym);
11030 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11031 symval.set_output_symtab_index(sym->symtab_index());
11033 symval.set_no_output_symtab_entry();
11035 // We need to compute the would-be final value of this global
11037 const Symbol_table* symtab = relinfo->symtab;
11038 const Sized_symbol<32>* sized_symbol =
11039 symtab->get_sized_symbol<32>(gsym);
11040 Symbol_table::Compute_final_value_status status;
11041 Arm_address value =
11042 symtab->compute_final_value<32>(sized_symbol, &status);
11044 // Skip this if the symbol has not output section.
11045 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11047 symval.set_output_value(value);
11049 if (gsym->type() == elfcpp::STT_TLS)
11050 symval.set_is_tls_symbol();
11051 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11052 symval.set_is_ifunc_symbol();
11055 is_defined_in_discarded_section =
11056 (gsym->is_defined_in_discarded_section()
11057 && gsym->is_undefined());
11061 Symbol_value<32> symval2;
11062 if (is_defined_in_discarded_section)
11064 if (comdat_behavior == CB_UNDETERMINED)
11066 std::string name = arm_object->section_name(relinfo->data_shndx);
11067 comdat_behavior = get_comdat_behavior(name.c_str());
11069 if (comdat_behavior == CB_PRETEND)
11071 // FIXME: This case does not work for global symbols.
11072 // We have no place to store the original section index.
11073 // Fortunately this does not matter for comdat sections,
11074 // only for sections explicitly discarded by a linker
11077 typename elfcpp::Elf_types<32>::Elf_Addr value =
11078 arm_object->map_to_kept_section(shndx, &found);
11080 symval2.set_output_value(value + psymval->input_value());
11082 symval2.set_output_value(0);
11086 if (comdat_behavior == CB_WARNING)
11087 gold_warning_at_location(relinfo, i, offset,
11088 _("relocation refers to discarded "
11090 symval2.set_output_value(0);
11092 symval2.set_no_output_symtab_entry();
11093 psymval = &symval2;
11096 // If symbol is a section symbol, we don't know the actual type of
11097 // destination. Give up.
11098 if (psymval->is_section_symbol())
11101 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11102 addend, view_address + offset);
11106 // Scan an input section for stub generation.
11108 template<bool big_endian>
11110 Target_arm<big_endian>::scan_section_for_stubs(
11111 const Relocate_info<32, big_endian>* relinfo,
11112 unsigned int sh_type,
11113 const unsigned char* prelocs,
11114 size_t reloc_count,
11115 Output_section* output_section,
11116 bool needs_special_offset_handling,
11117 const unsigned char* view,
11118 Arm_address view_address,
11119 section_size_type view_size)
11121 if (sh_type == elfcpp::SHT_REL)
11122 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11127 needs_special_offset_handling,
11131 else if (sh_type == elfcpp::SHT_RELA)
11132 // We do not support RELA type relocations yet. This is provided for
11134 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11139 needs_special_offset_handling,
11144 gold_unreachable();
11147 // Group input sections for stub generation.
11149 // We goup input sections in an output sections so that the total size,
11150 // including any padding space due to alignment is smaller than GROUP_SIZE
11151 // unless the only input section in group is bigger than GROUP_SIZE already.
11152 // Then an ARM stub table is created to follow the last input section
11153 // in group. For each group an ARM stub table is created an is placed
11154 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
11155 // extend the group after the stub table.
11157 template<bool big_endian>
11159 Target_arm<big_endian>::group_sections(
11161 section_size_type group_size,
11162 bool stubs_always_after_branch)
11164 // Group input sections and insert stub table
11165 Layout::Section_list section_list;
11166 layout->get_allocated_sections(§ion_list);
11167 for (Layout::Section_list::const_iterator p = section_list.begin();
11168 p != section_list.end();
11171 Arm_output_section<big_endian>* output_section =
11172 Arm_output_section<big_endian>::as_arm_output_section(*p);
11173 output_section->group_sections(group_size, stubs_always_after_branch,
11178 // Relaxation hook. This is where we do stub generation.
11180 template<bool big_endian>
11182 Target_arm<big_endian>::do_relax(
11184 const Input_objects* input_objects,
11185 Symbol_table* symtab,
11188 // No need to generate stubs if this is a relocatable link.
11189 gold_assert(!parameters->options().relocatable());
11191 // If this is the first pass, we need to group input sections into
11193 bool done_exidx_fixup = false;
11194 typedef typename Stub_table_list::iterator Stub_table_iterator;
11197 // Determine the stub group size. The group size is the absolute
11198 // value of the parameter --stub-group-size. If --stub-group-size
11199 // is passed a negative value, we restict stubs to be always after
11200 // the stubbed branches.
11201 int32_t stub_group_size_param =
11202 parameters->options().stub_group_size();
11203 bool stubs_always_after_branch = stub_group_size_param < 0;
11204 section_size_type stub_group_size = abs(stub_group_size_param);
11206 if (stub_group_size == 1)
11209 // Thumb branch range is +-4MB has to be used as the default
11210 // maximum size (a given section can contain both ARM and Thumb
11211 // code, so the worst case has to be taken into account). If we are
11212 // fixing cortex-a8 errata, the branch range has to be even smaller,
11213 // since wide conditional branch has a range of +-1MB only.
11215 // This value is 48K less than that, which allows for 4096
11216 // 12-byte stubs. If we exceed that, then we will fail to link.
11217 // The user will have to relink with an explicit group size
11219 stub_group_size = 4145152;
11222 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11223 // page as the first half of a 32-bit branch straddling two 4K pages.
11224 // This is a crude way of enforcing that. In addition, long conditional
11225 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11226 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11227 // cortex-A8 stubs from long conditional branches.
11228 if (this->fix_cortex_a8_)
11230 stubs_always_after_branch = true;
11231 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11232 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11235 group_sections(layout, stub_group_size, stubs_always_after_branch);
11237 // Also fix .ARM.exidx section coverage.
11238 Arm_output_section<big_endian>* exidx_output_section = NULL;
11239 for (Layout::Section_list::const_iterator p =
11240 layout->section_list().begin();
11241 p != layout->section_list().end();
11243 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11245 if (exidx_output_section == NULL)
11246 exidx_output_section =
11247 Arm_output_section<big_endian>::as_arm_output_section(*p);
11249 // We cannot handle this now.
11250 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11251 "non-relocatable link"),
11252 exidx_output_section->name(),
11256 if (exidx_output_section != NULL)
11258 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11260 done_exidx_fixup = true;
11265 // If this is not the first pass, addresses and file offsets have
11266 // been reset at this point, set them here.
11267 for (Stub_table_iterator sp = this->stub_tables_.begin();
11268 sp != this->stub_tables_.end();
11271 Arm_input_section<big_endian>* owner = (*sp)->owner();
11272 off_t off = align_address(owner->original_size(),
11273 (*sp)->addralign());
11274 (*sp)->set_address_and_file_offset(owner->address() + off,
11275 owner->offset() + off);
11279 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11280 // beginning of each relaxation pass, just blow away all the stubs.
11281 // Alternatively, we could selectively remove only the stubs and reloc
11282 // information for code sections that have moved since the last pass.
11283 // That would require more book-keeping.
11284 if (this->fix_cortex_a8_)
11286 // Clear all Cortex-A8 reloc information.
11287 for (typename Cortex_a8_relocs_info::const_iterator p =
11288 this->cortex_a8_relocs_info_.begin();
11289 p != this->cortex_a8_relocs_info_.end();
11292 this->cortex_a8_relocs_info_.clear();
11294 // Remove all Cortex-A8 stubs.
11295 for (Stub_table_iterator sp = this->stub_tables_.begin();
11296 sp != this->stub_tables_.end();
11298 (*sp)->remove_all_cortex_a8_stubs();
11301 // Scan relocs for relocation stubs
11302 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11303 op != input_objects->relobj_end();
11306 Arm_relobj<big_endian>* arm_relobj =
11307 Arm_relobj<big_endian>::as_arm_relobj(*op);
11308 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11311 // Check all stub tables to see if any of them have their data sizes
11312 // or addresses alignments changed. These are the only things that
11314 bool any_stub_table_changed = false;
11315 Unordered_set<const Output_section*> sections_needing_adjustment;
11316 for (Stub_table_iterator sp = this->stub_tables_.begin();
11317 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11320 if ((*sp)->update_data_size_and_addralign())
11322 // Update data size of stub table owner.
11323 Arm_input_section<big_endian>* owner = (*sp)->owner();
11324 uint64_t address = owner->address();
11325 off_t offset = owner->offset();
11326 owner->reset_address_and_file_offset();
11327 owner->set_address_and_file_offset(address, offset);
11329 sections_needing_adjustment.insert(owner->output_section());
11330 any_stub_table_changed = true;
11334 // Output_section_data::output_section() returns a const pointer but we
11335 // need to update output sections, so we record all output sections needing
11336 // update above and scan the sections here to find out what sections need
11338 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
11339 p != layout->section_list().end();
11342 if (sections_needing_adjustment.find(*p)
11343 != sections_needing_adjustment.end())
11344 (*p)->set_section_offsets_need_adjustment();
11347 // Stop relaxation if no EXIDX fix-up and no stub table change.
11348 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11350 // Finalize the stubs in the last relaxation pass.
11351 if (!continue_relaxation)
11353 for (Stub_table_iterator sp = this->stub_tables_.begin();
11354 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11356 (*sp)->finalize_stubs();
11358 // Update output local symbol counts of objects if necessary.
11359 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11360 op != input_objects->relobj_end();
11363 Arm_relobj<big_endian>* arm_relobj =
11364 Arm_relobj<big_endian>::as_arm_relobj(*op);
11366 // Update output local symbol counts. We need to discard local
11367 // symbols defined in parts of input sections that are discarded by
11369 if (arm_relobj->output_local_symbol_count_needs_update())
11370 arm_relobj->update_output_local_symbol_count();
11374 return continue_relaxation;
11377 // Relocate a stub.
11379 template<bool big_endian>
11381 Target_arm<big_endian>::relocate_stub(
11383 const Relocate_info<32, big_endian>* relinfo,
11384 Output_section* output_section,
11385 unsigned char* view,
11386 Arm_address address,
11387 section_size_type view_size)
11390 const Stub_template* stub_template = stub->stub_template();
11391 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11393 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11394 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11396 unsigned int r_type = insn->r_type();
11397 section_size_type reloc_offset = stub_template->reloc_offset(i);
11398 section_size_type reloc_size = insn->size();
11399 gold_assert(reloc_offset + reloc_size <= view_size);
11401 // This is the address of the stub destination.
11402 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11403 Symbol_value<32> symval;
11404 symval.set_output_value(target);
11406 // Synthesize a fake reloc just in case. We don't have a symbol so
11408 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11409 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11410 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11411 reloc_write.put_r_offset(reloc_offset);
11412 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11413 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11415 relocate.relocate(relinfo, this, output_section,
11416 this->fake_relnum_for_stubs, rel, r_type,
11417 NULL, &symval, view + reloc_offset,
11418 address + reloc_offset, reloc_size);
11422 // Determine whether an object attribute tag takes an integer, a
11425 template<bool big_endian>
11427 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11429 if (tag == Object_attribute::Tag_compatibility)
11430 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11431 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11432 else if (tag == elfcpp::Tag_nodefaults)
11433 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11434 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11435 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11436 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11438 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11440 return ((tag & 1) != 0
11441 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11442 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11445 // Reorder attributes.
11447 // The ABI defines that Tag_conformance should be emitted first, and that
11448 // Tag_nodefaults should be second (if either is defined). This sets those
11449 // two positions, and bumps up the position of all the remaining tags to
11452 template<bool big_endian>
11454 Target_arm<big_endian>::do_attributes_order(int num) const
11456 // Reorder the known object attributes in output. We want to move
11457 // Tag_conformance to position 4 and Tag_conformance to position 5
11458 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11460 return elfcpp::Tag_conformance;
11462 return elfcpp::Tag_nodefaults;
11463 if ((num - 2) < elfcpp::Tag_nodefaults)
11465 if ((num - 1) < elfcpp::Tag_conformance)
11470 // Scan a span of THUMB code for Cortex-A8 erratum.
11472 template<bool big_endian>
11474 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11475 Arm_relobj<big_endian>* arm_relobj,
11476 unsigned int shndx,
11477 section_size_type span_start,
11478 section_size_type span_end,
11479 const unsigned char* view,
11480 Arm_address address)
11482 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11484 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11485 // The branch target is in the same 4KB region as the
11486 // first half of the branch.
11487 // The instruction before the branch is a 32-bit
11488 // length non-branch instruction.
11489 section_size_type i = span_start;
11490 bool last_was_32bit = false;
11491 bool last_was_branch = false;
11492 while (i < span_end)
11494 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11495 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11496 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11497 bool is_blx = false, is_b = false;
11498 bool is_bl = false, is_bcc = false;
11500 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11503 // Load the rest of the insn (in manual-friendly order).
11504 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11506 // Encoding T4: B<c>.W.
11507 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11508 // Encoding T1: BL<c>.W.
11509 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11510 // Encoding T2: BLX<c>.W.
11511 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11512 // Encoding T3: B<c>.W (not permitted in IT block).
11513 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11514 && (insn & 0x07f00000U) != 0x03800000U);
11517 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11519 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11520 // page boundary and it follows 32-bit non-branch instruction,
11521 // we need to work around.
11522 if (is_32bit_branch
11523 && ((address + i) & 0xfffU) == 0xffeU
11525 && !last_was_branch)
11527 // Check to see if there is a relocation stub for this branch.
11528 bool force_target_arm = false;
11529 bool force_target_thumb = false;
11530 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11531 Cortex_a8_relocs_info::const_iterator p =
11532 this->cortex_a8_relocs_info_.find(address + i);
11534 if (p != this->cortex_a8_relocs_info_.end())
11536 cortex_a8_reloc = p->second;
11537 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11539 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11540 && !target_is_thumb)
11541 force_target_arm = true;
11542 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11543 && target_is_thumb)
11544 force_target_thumb = true;
11548 Stub_type stub_type = arm_stub_none;
11550 // Check if we have an offending branch instruction.
11551 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11552 uint16_t lower_insn = insn & 0xffffU;
11553 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11555 if (cortex_a8_reloc != NULL
11556 && cortex_a8_reloc->reloc_stub() != NULL)
11557 // We've already made a stub for this instruction, e.g.
11558 // it's a long branch or a Thumb->ARM stub. Assume that
11559 // stub will suffice to work around the A8 erratum (see
11560 // setting of always_after_branch above).
11564 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11566 stub_type = arm_stub_a8_veneer_b_cond;
11568 else if (is_b || is_bl || is_blx)
11570 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11575 stub_type = (is_blx
11576 ? arm_stub_a8_veneer_blx
11578 ? arm_stub_a8_veneer_bl
11579 : arm_stub_a8_veneer_b));
11582 if (stub_type != arm_stub_none)
11584 Arm_address pc_for_insn = address + i + 4;
11586 // The original instruction is a BL, but the target is
11587 // an ARM instruction. If we were not making a stub,
11588 // the BL would have been converted to a BLX. Use the
11589 // BLX stub instead in that case.
11590 if (this->may_use_blx() && force_target_arm
11591 && stub_type == arm_stub_a8_veneer_bl)
11593 stub_type = arm_stub_a8_veneer_blx;
11597 // Conversely, if the original instruction was
11598 // BLX but the target is Thumb mode, use the BL stub.
11599 else if (force_target_thumb
11600 && stub_type == arm_stub_a8_veneer_blx)
11602 stub_type = arm_stub_a8_veneer_bl;
11610 // If we found a relocation, use the proper destination,
11611 // not the offset in the (unrelocated) instruction.
11612 // Note this is always done if we switched the stub type above.
11613 if (cortex_a8_reloc != NULL)
11614 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11616 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11618 // Add a new stub if destination address in in the same page.
11619 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11621 Cortex_a8_stub* stub =
11622 this->stub_factory_.make_cortex_a8_stub(stub_type,
11626 Stub_table<big_endian>* stub_table =
11627 arm_relobj->stub_table(shndx);
11628 gold_assert(stub_table != NULL);
11629 stub_table->add_cortex_a8_stub(address + i, stub);
11634 i += insn_32bit ? 4 : 2;
11635 last_was_32bit = insn_32bit;
11636 last_was_branch = is_32bit_branch;
11640 // Apply the Cortex-A8 workaround.
11642 template<bool big_endian>
11644 Target_arm<big_endian>::apply_cortex_a8_workaround(
11645 const Cortex_a8_stub* stub,
11646 Arm_address stub_address,
11647 unsigned char* insn_view,
11648 Arm_address insn_address)
11650 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11651 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11652 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11653 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11654 off_t branch_offset = stub_address - (insn_address + 4);
11656 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11657 switch (stub->stub_template()->type())
11659 case arm_stub_a8_veneer_b_cond:
11660 // For a conditional branch, we re-write it to be a uncondition
11661 // branch to the stub. We use the THUMB-2 encoding here.
11662 upper_insn = 0xf000U;
11663 lower_insn = 0xb800U;
11665 case arm_stub_a8_veneer_b:
11666 case arm_stub_a8_veneer_bl:
11667 case arm_stub_a8_veneer_blx:
11668 if ((lower_insn & 0x5000U) == 0x4000U)
11669 // For a BLX instruction, make sure that the relocation is
11670 // rounded up to a word boundary. This follows the semantics of
11671 // the instruction which specifies that bit 1 of the target
11672 // address will come from bit 1 of the base address.
11673 branch_offset = (branch_offset + 2) & ~3;
11675 // Put BRANCH_OFFSET back into the insn.
11676 gold_assert(!utils::has_overflow<25>(branch_offset));
11677 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11678 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11682 gold_unreachable();
11685 // Put the relocated value back in the object file:
11686 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11687 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11690 template<bool big_endian>
11691 class Target_selector_arm : public Target_selector
11694 Target_selector_arm()
11695 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11696 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11700 do_instantiate_target()
11701 { return new Target_arm<big_endian>(); }
11704 // Fix .ARM.exidx section coverage.
11706 template<bool big_endian>
11708 Target_arm<big_endian>::fix_exidx_coverage(
11710 const Input_objects* input_objects,
11711 Arm_output_section<big_endian>* exidx_section,
11712 Symbol_table* symtab)
11714 // We need to look at all the input sections in output in ascending
11715 // order of of output address. We do that by building a sorted list
11716 // of output sections by addresses. Then we looks at the output sections
11717 // in order. The input sections in an output section are already sorted
11718 // by addresses within the output section.
11720 typedef std::set<Output_section*, output_section_address_less_than>
11721 Sorted_output_section_list;
11722 Sorted_output_section_list sorted_output_sections;
11724 // Find out all the output sections of input sections pointed by
11725 // EXIDX input sections.
11726 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11727 p != input_objects->relobj_end();
11730 Arm_relobj<big_endian>* arm_relobj =
11731 Arm_relobj<big_endian>::as_arm_relobj(*p);
11732 std::vector<unsigned int> shndx_list;
11733 arm_relobj->get_exidx_shndx_list(&shndx_list);
11734 for (size_t i = 0; i < shndx_list.size(); ++i)
11736 const Arm_exidx_input_section* exidx_input_section =
11737 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11738 gold_assert(exidx_input_section != NULL);
11739 if (!exidx_input_section->has_errors())
11741 unsigned int text_shndx = exidx_input_section->link();
11742 Output_section* os = arm_relobj->output_section(text_shndx);
11743 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11744 sorted_output_sections.insert(os);
11749 // Go over the output sections in ascending order of output addresses.
11750 typedef typename Arm_output_section<big_endian>::Text_section_list
11752 Text_section_list sorted_text_sections;
11753 for(typename Sorted_output_section_list::iterator p =
11754 sorted_output_sections.begin();
11755 p != sorted_output_sections.end();
11758 Arm_output_section<big_endian>* arm_output_section =
11759 Arm_output_section<big_endian>::as_arm_output_section(*p);
11760 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11763 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11764 merge_exidx_entries());
11767 Target_selector_arm<false> target_selector_arm;
11768 Target_selector_arm<true> target_selector_armbe;
11770 } // End anonymous namespace.