1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_; }
193 // Return the instruction sequence type of this.
196 { return this->type_; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_; }
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
275 arm_stub_type_last = arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type, const Insn_template*, size_t);
294 { return this->type_; }
296 // Return an array of instruction templates.
299 { return this->insns_; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_; }
306 // Return size of template in bytes.
309 { return this->size_; }
311 // Return alignment of the stub template.
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian>
451 do_fixed_endian_write(unsigned char*, section_size_type);
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
576 // Functors for STL associative containers.
580 operator()(const Key& k) const
581 { return k.hash_value(); }
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol* symbol;
610 const Relobj* relobj;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
634 return this->destination_address_;
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
755 // Return the associated register.
758 { return this->reg_; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
785 // A template to implement do_write.
786 template<bool big_endian>
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory&
815 static Stub_factory singleton;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
882 { return this->owner_; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
981 // Write out section contents.
983 do_write(Output_file*);
985 // Return the required alignment.
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_; }
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1064 this->do_fixed_endian_write<false>(of);
1068 // Implement do_write for a given endianness.
1069 template<bool big_endian>
1071 do_fixed_endian_write(Output_file*);
1073 // The object containing the section pointed by this.
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1079 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section.
1083 typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1086 // Arm_exidx_merged_section class. This represents an EXIDX input section
1087 // with some of its entries merged.
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1113 // Write merged section into file OF.
1115 do_write(Output_file* of);
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1128 // A class to wrap an ordinary input section containing executable code.
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1139 ~Arm_input_section()
1146 // Whether this is a stub table owner.
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1154 { return this->stub_table_; }
1156 // Set the stub_table.
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1167 // Return the original size of the section.
1169 original_size() const
1170 { return this->original_size_; }
1173 // Write data to output file.
1175 do_write(Output_file*);
1177 // Return required alignment of this.
1179 do_addralign() const
1181 if (this->is_stub_table_owner())
1182 return std::max(this->stub_table_->addralign(),
1183 static_cast<uint64_t>(this->original_addralign_));
1185 return this->original_addralign_;
1188 // Finalize data size.
1190 set_final_data_size();
1192 // Reset address and file offset.
1194 do_reset_address_and_file_offset();
1198 do_output_offset(const Relobj* object, unsigned int shndx,
1199 section_offset_type offset,
1200 section_offset_type* poutput) const
1202 if ((object == this->relobj())
1203 && (shndx == this->shndx())
1206 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1216 // Copying is not allowed.
1217 Arm_input_section(const Arm_input_section&);
1218 Arm_input_section& operator=(const Arm_input_section&);
1220 // Address alignment of the original input section.
1221 uint32_t original_addralign_;
1222 // Section size of the original input section.
1223 uint32_t original_size_;
1225 Stub_table<big_endian>* stub_table_;
1228 // Arm_exidx_fixup class. This is used to define a number of methods
1229 // and keep states for fixing up EXIDX coverage.
1231 class Arm_exidx_fixup
1234 Arm_exidx_fixup(Output_section* exidx_output_section,
1235 bool merge_exidx_entries = true)
1236 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1237 last_inlined_entry_(0), last_input_section_(NULL),
1238 section_offset_map_(NULL), first_output_text_section_(NULL),
1239 merge_exidx_entries_(merge_exidx_entries)
1243 { delete this->section_offset_map_; }
1245 // Process an EXIDX section for entry merging. Return number of bytes to
1246 // be deleted in output. If parts of the input EXIDX section are merged
1247 // a heap allocated Arm_exidx_section_offset_map is store in the located
1248 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1250 template<bool big_endian>
1252 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1253 Arm_exidx_section_offset_map** psection_offset_map);
1255 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1256 // input section, if there is not one already.
1258 add_exidx_cantunwind_as_needed();
1260 // Return the output section for the text section which is linked to the
1261 // first exidx input in output.
1263 first_output_text_section() const
1264 { return this->first_output_text_section_; }
1267 // Copying is not allowed.
1268 Arm_exidx_fixup(const Arm_exidx_fixup&);
1269 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1271 // Type of EXIDX unwind entry.
1276 // EXIDX_CANTUNWIND.
1277 UT_EXIDX_CANTUNWIND,
1284 // Process an EXIDX entry. We only care about the second word of the
1285 // entry. Return true if the entry can be deleted.
1287 process_exidx_entry(uint32_t second_word);
1289 // Update the current section offset map during EXIDX section fix-up.
1290 // If there is no map, create one. INPUT_OFFSET is the offset of a
1291 // reference point, DELETED_BYTES is the number of deleted by in the
1292 // section so far. If DELETE_ENTRY is true, the reference point and
1293 // all offsets after the previous reference point are discarded.
1295 update_offset_map(section_offset_type input_offset,
1296 section_size_type deleted_bytes, bool delete_entry);
1298 // EXIDX output section.
1299 Output_section* exidx_output_section_;
1300 // Unwind type of the last EXIDX entry processed.
1301 Unwind_type last_unwind_type_;
1302 // Last seen inlined EXIDX entry.
1303 uint32_t last_inlined_entry_;
1304 // Last processed EXIDX input section.
1305 const Arm_exidx_input_section* last_input_section_;
1306 // Section offset map created in process_exidx_section.
1307 Arm_exidx_section_offset_map* section_offset_map_;
1308 // Output section for the text section which is linked to the first exidx
1310 Output_section* first_output_text_section_;
1312 bool merge_exidx_entries_;
1315 // Arm output section class. This is defined mainly to add a number of
1316 // stub generation methods.
1318 template<bool big_endian>
1319 class Arm_output_section : public Output_section
1322 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1324 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1325 elfcpp::Elf_Xword flags)
1326 : Output_section(name, type, flags)
1329 ~Arm_output_section()
1332 // Group input sections for stub generation.
1334 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1336 // Downcast a base pointer to an Arm_output_section pointer. This is
1337 // not type-safe but we only use Arm_output_section not the base class.
1338 static Arm_output_section<big_endian>*
1339 as_arm_output_section(Output_section* os)
1340 { return static_cast<Arm_output_section<big_endian>*>(os); }
1342 // Append all input text sections in this into LIST.
1344 append_text_sections_to_list(Text_section_list* list);
1346 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1347 // is a list of text input sections sorted in ascending order of their
1348 // output addresses.
1350 fix_exidx_coverage(Layout* layout,
1351 const Text_section_list& sorted_text_section,
1352 Symbol_table* symtab,
1353 bool merge_exidx_entries);
1357 typedef Output_section::Input_section Input_section;
1358 typedef Output_section::Input_section_list Input_section_list;
1360 // Create a stub group.
1361 void create_stub_group(Input_section_list::const_iterator,
1362 Input_section_list::const_iterator,
1363 Input_section_list::const_iterator,
1364 Target_arm<big_endian>*,
1365 std::vector<Output_relaxed_input_section*>*);
1368 // Arm_exidx_input_section class. This represents an EXIDX input section.
1370 class Arm_exidx_input_section
1373 static const section_offset_type invalid_offset =
1374 static_cast<section_offset_type>(-1);
1376 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1377 unsigned int link, uint32_t size, uint32_t addralign)
1378 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1379 addralign_(addralign)
1382 ~Arm_exidx_input_section()
1385 // Accessors: This is a read-only class.
1387 // Return the object containing this EXIDX input section.
1390 { return this->relobj_; }
1392 // Return the section index of this EXIDX input section.
1395 { return this->shndx_; }
1397 // Return the section index of linked text section in the same object.
1400 { return this->link_; }
1402 // Return size of the EXIDX input section.
1405 { return this->size_; }
1407 // Reutnr address alignment of EXIDX input section.
1410 { return this->addralign_; }
1413 // Object containing this.
1415 // Section index of this.
1416 unsigned int shndx_;
1417 // text section linked to this in the same object.
1419 // Size of this. For ARM 32-bit is sufficient.
1421 // Address alignment of this. For ARM 32-bit is sufficient.
1422 uint32_t addralign_;
1425 // Arm_relobj class.
1427 template<bool big_endian>
1428 class Arm_relobj : public Sized_relobj<32, big_endian>
1431 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1433 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1434 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1435 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1436 stub_tables_(), local_symbol_is_thumb_function_(),
1437 attributes_section_data_(NULL), mapping_symbols_info_(),
1438 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1439 output_local_symbol_count_needs_update_(false),
1440 merge_flags_and_attributes_(true)
1444 { delete this->attributes_section_data_; }
1446 // Return the stub table of the SHNDX-th section if there is one.
1447 Stub_table<big_endian>*
1448 stub_table(unsigned int shndx) const
1450 gold_assert(shndx < this->stub_tables_.size());
1451 return this->stub_tables_[shndx];
1454 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1456 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1458 gold_assert(shndx < this->stub_tables_.size());
1459 this->stub_tables_[shndx] = stub_table;
1462 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1463 // index. This is only valid after do_count_local_symbol is called.
1465 local_symbol_is_thumb_function(unsigned int r_sym) const
1467 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1468 return this->local_symbol_is_thumb_function_[r_sym];
1471 // Scan all relocation sections for stub generation.
1473 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1476 // Convert regular input section with index SHNDX to a relaxed section.
1478 convert_input_section_to_relaxed_section(unsigned shndx)
1480 // The stubs have relocations and we need to process them after writing
1481 // out the stubs. So relocation now must follow section write.
1482 this->set_section_offset(shndx, -1ULL);
1483 this->set_relocs_must_follow_section_writes();
1486 // Downcast a base pointer to an Arm_relobj pointer. This is
1487 // not type-safe but we only use Arm_relobj not the base class.
1488 static Arm_relobj<big_endian>*
1489 as_arm_relobj(Relobj* relobj)
1490 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1492 // Processor-specific flags in ELF file header. This is valid only after
1495 processor_specific_flags() const
1496 { return this->processor_specific_flags_; }
1498 // Attribute section data This is the contents of the .ARM.attribute section
1500 const Attributes_section_data*
1501 attributes_section_data() const
1502 { return this->attributes_section_data_; }
1504 // Mapping symbol location.
1505 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1507 // Functor for STL container.
1508 struct Mapping_symbol_position_less
1511 operator()(const Mapping_symbol_position& p1,
1512 const Mapping_symbol_position& p2) const
1514 return (p1.first < p2.first
1515 || (p1.first == p2.first && p1.second < p2.second));
1519 // We only care about the first character of a mapping symbol, so
1520 // we only store that instead of the whole symbol name.
1521 typedef std::map<Mapping_symbol_position, char,
1522 Mapping_symbol_position_less> Mapping_symbols_info;
1524 // Whether a section contains any Cortex-A8 workaround.
1526 section_has_cortex_a8_workaround(unsigned int shndx) const
1528 return (this->section_has_cortex_a8_workaround_ != NULL
1529 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1532 // Mark a section that has Cortex-A8 workaround.
1534 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1536 if (this->section_has_cortex_a8_workaround_ == NULL)
1537 this->section_has_cortex_a8_workaround_ =
1538 new std::vector<bool>(this->shnum(), false);
1539 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1542 // Return the EXIDX section of an text section with index SHNDX or NULL
1543 // if the text section has no associated EXIDX section.
1544 const Arm_exidx_input_section*
1545 exidx_input_section_by_link(unsigned int shndx) const
1547 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1548 return ((p != this->exidx_section_map_.end()
1549 && p->second->link() == shndx)
1554 // Return the EXIDX section with index SHNDX or NULL if there is none.
1555 const Arm_exidx_input_section*
1556 exidx_input_section_by_shndx(unsigned shndx) const
1558 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1559 return ((p != this->exidx_section_map_.end()
1560 && p->second->shndx() == shndx)
1565 // Whether output local symbol count needs updating.
1567 output_local_symbol_count_needs_update() const
1568 { return this->output_local_symbol_count_needs_update_; }
1570 // Set output_local_symbol_count_needs_update flag to be true.
1572 set_output_local_symbol_count_needs_update()
1573 { this->output_local_symbol_count_needs_update_ = true; }
1575 // Update output local symbol count at the end of relaxation.
1577 update_output_local_symbol_count();
1579 // Whether we want to merge processor-specific flags and attributes.
1581 merge_flags_and_attributes() const
1582 { return this->merge_flags_and_attributes_; }
1585 // Post constructor setup.
1589 // Call parent's setup method.
1590 Sized_relobj<32, big_endian>::do_setup();
1592 // Initialize look-up tables.
1593 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1594 this->stub_tables_.swap(empty_stub_table_list);
1597 // Count the local symbols.
1599 do_count_local_symbols(Stringpool_template<char>*,
1600 Stringpool_template<char>*);
1603 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1604 const unsigned char* pshdrs,
1605 typename Sized_relobj<32, big_endian>::Views* pivews);
1607 // Read the symbol information.
1609 do_read_symbols(Read_symbols_data* sd);
1611 // Process relocs for garbage collection.
1613 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1617 // Whether a section needs to be scanned for relocation stubs.
1619 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1620 const Relobj::Output_sections&,
1621 const Symbol_table *, const unsigned char*);
1623 // Whether a section is a scannable text section.
1625 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1626 const Output_section*, const Symbol_table *);
1628 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1630 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1631 unsigned int, Output_section*,
1632 const Symbol_table *);
1634 // Scan a section for the Cortex-A8 erratum.
1636 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1637 unsigned int, Output_section*,
1638 Target_arm<big_endian>*);
1640 // Find the linked text section of an EXIDX section by looking at the
1641 // first reloction of the EXIDX section. PSHDR points to the section
1642 // headers of a relocation section and PSYMS points to the local symbols.
1643 // PSHNDX points to a location storing the text section index if found.
1644 // Return whether we can find the linked section.
1646 find_linked_text_section(const unsigned char* pshdr,
1647 const unsigned char* psyms, unsigned int* pshndx);
1650 // Make a new Arm_exidx_input_section object for EXIDX section with
1651 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1652 // index of the linked text section.
1654 make_exidx_input_section(unsigned int shndx,
1655 const elfcpp::Shdr<32, big_endian>& shdr,
1656 unsigned int text_shndx);
1658 // Return the output address of either a plain input section or a
1659 // relaxed input section. SHNDX is the section index.
1661 simple_input_section_output_address(unsigned int, Output_section*);
1663 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1664 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1667 // List of stub tables.
1668 Stub_table_list stub_tables_;
1669 // Bit vector to tell if a local symbol is a thumb function or not.
1670 // This is only valid after do_count_local_symbol is called.
1671 std::vector<bool> local_symbol_is_thumb_function_;
1672 // processor-specific flags in ELF file header.
1673 elfcpp::Elf_Word processor_specific_flags_;
1674 // Object attributes if there is an .ARM.attributes section or NULL.
1675 Attributes_section_data* attributes_section_data_;
1676 // Mapping symbols information.
1677 Mapping_symbols_info mapping_symbols_info_;
1678 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1679 std::vector<bool>* section_has_cortex_a8_workaround_;
1680 // Map a text section to its associated .ARM.exidx section, if there is one.
1681 Exidx_section_map exidx_section_map_;
1682 // Whether output local symbol count needs updating.
1683 bool output_local_symbol_count_needs_update_;
1684 // Whether we merge processor flags and attributes of this object to
1686 bool merge_flags_and_attributes_;
1689 // Arm_dynobj class.
1691 template<bool big_endian>
1692 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1695 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1696 const elfcpp::Ehdr<32, big_endian>& ehdr)
1697 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1698 processor_specific_flags_(0), attributes_section_data_(NULL)
1702 { delete this->attributes_section_data_; }
1704 // Downcast a base pointer to an Arm_relobj pointer. This is
1705 // not type-safe but we only use Arm_relobj not the base class.
1706 static Arm_dynobj<big_endian>*
1707 as_arm_dynobj(Dynobj* dynobj)
1708 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1710 // Processor-specific flags in ELF file header. This is valid only after
1713 processor_specific_flags() const
1714 { return this->processor_specific_flags_; }
1716 // Attributes section data.
1717 const Attributes_section_data*
1718 attributes_section_data() const
1719 { return this->attributes_section_data_; }
1722 // Read the symbol information.
1724 do_read_symbols(Read_symbols_data* sd);
1727 // processor-specific flags in ELF file header.
1728 elfcpp::Elf_Word processor_specific_flags_;
1729 // Object attributes if there is an .ARM.attributes section or NULL.
1730 Attributes_section_data* attributes_section_data_;
1733 // Functor to read reloc addends during stub generation.
1735 template<int sh_type, bool big_endian>
1736 struct Stub_addend_reader
1738 // Return the addend for a relocation of a particular type. Depending
1739 // on whether this is a REL or RELA relocation, read the addend from a
1740 // view or from a Reloc object.
1741 elfcpp::Elf_types<32>::Elf_Swxword
1743 unsigned int /* r_type */,
1744 const unsigned char* /* view */,
1745 const typename Reloc_types<sh_type,
1746 32, big_endian>::Reloc& /* reloc */) const;
1749 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1751 template<bool big_endian>
1752 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1754 elfcpp::Elf_types<32>::Elf_Swxword
1757 const unsigned char*,
1758 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1761 // Specialized Stub_addend_reader for RELA type relocation sections.
1762 // We currently do not handle RELA type relocation sections but it is trivial
1763 // to implement the addend reader. This is provided for completeness and to
1764 // make it easier to add support for RELA relocation sections in the future.
1766 template<bool big_endian>
1767 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1769 elfcpp::Elf_types<32>::Elf_Swxword
1772 const unsigned char*,
1773 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1774 big_endian>::Reloc& reloc) const
1775 { return reloc.get_r_addend(); }
1778 // Cortex_a8_reloc class. We keep record of relocation that may need
1779 // the Cortex-A8 erratum workaround.
1781 class Cortex_a8_reloc
1784 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1785 Arm_address destination)
1786 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1792 // Accessors: This is a read-only class.
1794 // Return the relocation stub associated with this relocation if there is
1798 { return this->reloc_stub_; }
1800 // Return the relocation type.
1803 { return this->r_type_; }
1805 // Return the destination address of the relocation. LSB stores the THUMB
1809 { return this->destination_; }
1812 // Associated relocation stub if there is one, or NULL.
1813 const Reloc_stub* reloc_stub_;
1815 unsigned int r_type_;
1816 // Destination address of this relocation. LSB is used to distinguish
1818 Arm_address destination_;
1821 // Arm_output_data_got class. We derive this from Output_data_got to add
1822 // extra methods to handle TLS relocations in a static link.
1824 template<bool big_endian>
1825 class Arm_output_data_got : public Output_data_got<32, big_endian>
1828 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1829 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1832 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1833 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1834 // applied in a static link.
1836 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1837 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1839 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1840 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1841 // relocation that needs to be applied in a static link.
1843 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1844 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1846 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1850 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1851 // The first one is initialized to be 1, which is the module index for
1852 // the main executable and the second one 0. A reloc of the type
1853 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1854 // be applied by gold. GSYM is a global symbol.
1856 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1858 // Same as the above but for a local symbol in OBJECT with INDEX.
1860 add_tls_gd32_with_static_reloc(unsigned int got_type,
1861 Sized_relobj<32, big_endian>* object,
1862 unsigned int index);
1865 // Write out the GOT table.
1867 do_write(Output_file*);
1870 // This class represent dynamic relocations that need to be applied by
1871 // gold because we are using TLS relocations in a static link.
1875 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1876 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1877 { this->u_.global.symbol = gsym; }
1879 Static_reloc(unsigned int got_offset, unsigned int r_type,
1880 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1881 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1883 this->u_.local.relobj = relobj;
1884 this->u_.local.index = index;
1887 // Return the GOT offset.
1890 { return this->got_offset_; }
1895 { return this->r_type_; }
1897 // Whether the symbol is global or not.
1899 symbol_is_global() const
1900 { return this->symbol_is_global_; }
1902 // For a relocation against a global symbol, the global symbol.
1906 gold_assert(this->symbol_is_global_);
1907 return this->u_.global.symbol;
1910 // For a relocation against a local symbol, the defining object.
1911 Sized_relobj<32, big_endian>*
1914 gold_assert(!this->symbol_is_global_);
1915 return this->u_.local.relobj;
1918 // For a relocation against a local symbol, the local symbol index.
1922 gold_assert(!this->symbol_is_global_);
1923 return this->u_.local.index;
1927 // GOT offset of the entry to which this relocation is applied.
1928 unsigned int got_offset_;
1929 // Type of relocation.
1930 unsigned int r_type_;
1931 // Whether this relocation is against a global symbol.
1932 bool symbol_is_global_;
1933 // A global or local symbol.
1938 // For a global symbol, the symbol itself.
1943 // For a local symbol, the object defining object.
1944 Sized_relobj<32, big_endian>* relobj;
1945 // For a local symbol, the symbol index.
1951 // Symbol table of the output object.
1952 Symbol_table* symbol_table_;
1953 // Layout of the output object.
1955 // Static relocs to be applied to the GOT.
1956 std::vector<Static_reloc> static_relocs_;
1959 // The ARM target has many relocation types with odd-sizes or incontigious
1960 // bits. The default handling of relocatable relocation cannot process these
1961 // relocations. So we have to extend the default code.
1963 template<bool big_endian, int sh_type, typename Classify_reloc>
1964 class Arm_scan_relocatable_relocs :
1965 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
1968 // Return the strategy to use for a local symbol which is a section
1969 // symbol, given the relocation type.
1970 inline Relocatable_relocs::Reloc_strategy
1971 local_section_strategy(unsigned int r_type, Relobj*)
1973 if (sh_type == elfcpp::SHT_RELA)
1974 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
1977 if (r_type == elfcpp::R_ARM_TARGET1
1978 || r_type == elfcpp::R_ARM_TARGET2)
1980 const Target_arm<big_endian>* arm_target =
1981 Target_arm<big_endian>::default_target();
1982 r_type = arm_target->get_real_reloc_type(r_type);
1987 // Relocations that write nothing. These exclude R_ARM_TARGET1
1988 // and R_ARM_TARGET2.
1989 case elfcpp::R_ARM_NONE:
1990 case elfcpp::R_ARM_V4BX:
1991 case elfcpp::R_ARM_TLS_GOTDESC:
1992 case elfcpp::R_ARM_TLS_CALL:
1993 case elfcpp::R_ARM_TLS_DESCSEQ:
1994 case elfcpp::R_ARM_THM_TLS_CALL:
1995 case elfcpp::R_ARM_GOTRELAX:
1996 case elfcpp::R_ARM_GNU_VTENTRY:
1997 case elfcpp::R_ARM_GNU_VTINHERIT:
1998 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
1999 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2000 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2001 // These should have been converted to something else above.
2002 case elfcpp::R_ARM_TARGET1:
2003 case elfcpp::R_ARM_TARGET2:
2005 // Relocations that write full 32 bits.
2006 case elfcpp::R_ARM_ABS32:
2007 case elfcpp::R_ARM_REL32:
2008 case elfcpp::R_ARM_SBREL32:
2009 case elfcpp::R_ARM_GOTOFF32:
2010 case elfcpp::R_ARM_BASE_PREL:
2011 case elfcpp::R_ARM_GOT_BREL:
2012 case elfcpp::R_ARM_BASE_ABS:
2013 case elfcpp::R_ARM_ABS32_NOI:
2014 case elfcpp::R_ARM_REL32_NOI:
2015 case elfcpp::R_ARM_PLT32_ABS:
2016 case elfcpp::R_ARM_GOT_ABS:
2017 case elfcpp::R_ARM_GOT_PREL:
2018 case elfcpp::R_ARM_TLS_GD32:
2019 case elfcpp::R_ARM_TLS_LDM32:
2020 case elfcpp::R_ARM_TLS_LDO32:
2021 case elfcpp::R_ARM_TLS_IE32:
2022 case elfcpp::R_ARM_TLS_LE32:
2023 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2025 // For all other static relocations, return RELOC_SPECIAL.
2026 return Relocatable_relocs::RELOC_SPECIAL;
2032 // Utilities for manipulating integers of up to 32-bits
2036 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2037 // an int32_t. NO_BITS must be between 1 to 32.
2038 template<int no_bits>
2039 static inline int32_t
2040 sign_extend(uint32_t bits)
2042 gold_assert(no_bits >= 0 && no_bits <= 32);
2044 return static_cast<int32_t>(bits);
2045 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2047 uint32_t top_bit = 1U << (no_bits - 1);
2048 int32_t as_signed = static_cast<int32_t>(bits);
2049 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2052 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2053 template<int no_bits>
2055 has_overflow(uint32_t bits)
2057 gold_assert(no_bits >= 0 && no_bits <= 32);
2060 int32_t max = (1 << (no_bits - 1)) - 1;
2061 int32_t min = -(1 << (no_bits - 1));
2062 int32_t as_signed = static_cast<int32_t>(bits);
2063 return as_signed > max || as_signed < min;
2066 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2067 // fits in the given number of bits as either a signed or unsigned value.
2068 // For example, has_signed_unsigned_overflow<8> would check
2069 // -128 <= bits <= 255
2070 template<int no_bits>
2072 has_signed_unsigned_overflow(uint32_t bits)
2074 gold_assert(no_bits >= 2 && no_bits <= 32);
2077 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2078 int32_t min = -(1 << (no_bits - 1));
2079 int32_t as_signed = static_cast<int32_t>(bits);
2080 return as_signed > max || as_signed < min;
2083 // Select bits from A and B using bits in MASK. For each n in [0..31],
2084 // the n-th bit in the result is chosen from the n-th bits of A and B.
2085 // A zero selects A and a one selects B.
2086 static inline uint32_t
2087 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2088 { return (a & ~mask) | (b & mask); }
2091 template<bool big_endian>
2092 class Target_arm : public Sized_target<32, big_endian>
2095 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2098 // When were are relocating a stub, we pass this as the relocation number.
2099 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2102 : Sized_target<32, big_endian>(&arm_info),
2103 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2104 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2105 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2106 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2107 may_use_blx_(false), should_force_pic_veneer_(false),
2108 arm_input_section_map_(), attributes_section_data_(NULL),
2109 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2112 // Virtual function which is set to return true by a target if
2113 // it can use relocation types to determine if a function's
2114 // pointer is taken.
2116 can_check_for_function_pointers() const
2119 // Whether a section called SECTION_NAME may have function pointers to
2120 // sections not eligible for safe ICF folding.
2122 section_may_have_icf_unsafe_pointers(const char* section_name) const
2124 return (!is_prefix_of(".ARM.exidx", section_name)
2125 && !is_prefix_of(".ARM.extab", section_name)
2126 && Target::section_may_have_icf_unsafe_pointers(section_name));
2129 // Whether we can use BLX.
2132 { return this->may_use_blx_; }
2134 // Set use-BLX flag.
2136 set_may_use_blx(bool value)
2137 { this->may_use_blx_ = value; }
2139 // Whether we force PCI branch veneers.
2141 should_force_pic_veneer() const
2142 { return this->should_force_pic_veneer_; }
2144 // Set PIC veneer flag.
2146 set_should_force_pic_veneer(bool value)
2147 { this->should_force_pic_veneer_ = value; }
2149 // Whether we use THUMB-2 instructions.
2151 using_thumb2() const
2153 Object_attribute* attr =
2154 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2155 int arch = attr->int_value();
2156 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2159 // Whether we use THUMB/THUMB-2 instructions only.
2161 using_thumb_only() const
2163 Object_attribute* attr =
2164 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2166 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2167 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2169 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2170 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2172 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2173 return attr->int_value() == 'M';
2176 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2178 may_use_arm_nop() const
2180 Object_attribute* attr =
2181 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2182 int arch = attr->int_value();
2183 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2184 || arch == elfcpp::TAG_CPU_ARCH_V6K
2185 || arch == elfcpp::TAG_CPU_ARCH_V7
2186 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2189 // Whether we have THUMB-2 NOP.W instruction.
2191 may_use_thumb2_nop() const
2193 Object_attribute* attr =
2194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195 int arch = attr->int_value();
2196 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2197 || arch == elfcpp::TAG_CPU_ARCH_V7
2198 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2201 // Process the relocations to determine unreferenced sections for
2202 // garbage collection.
2204 gc_process_relocs(Symbol_table* symtab,
2206 Sized_relobj<32, big_endian>* object,
2207 unsigned int data_shndx,
2208 unsigned int sh_type,
2209 const unsigned char* prelocs,
2211 Output_section* output_section,
2212 bool needs_special_offset_handling,
2213 size_t local_symbol_count,
2214 const unsigned char* plocal_symbols);
2216 // Scan the relocations to look for symbol adjustments.
2218 scan_relocs(Symbol_table* symtab,
2220 Sized_relobj<32, big_endian>* object,
2221 unsigned int data_shndx,
2222 unsigned int sh_type,
2223 const unsigned char* prelocs,
2225 Output_section* output_section,
2226 bool needs_special_offset_handling,
2227 size_t local_symbol_count,
2228 const unsigned char* plocal_symbols);
2230 // Finalize the sections.
2232 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2234 // Return the value to use for a dynamic symbol which requires special
2237 do_dynsym_value(const Symbol*) const;
2239 // Relocate a section.
2241 relocate_section(const Relocate_info<32, big_endian>*,
2242 unsigned int sh_type,
2243 const unsigned char* prelocs,
2245 Output_section* output_section,
2246 bool needs_special_offset_handling,
2247 unsigned char* view,
2248 Arm_address view_address,
2249 section_size_type view_size,
2250 const Reloc_symbol_changes*);
2252 // Scan the relocs during a relocatable link.
2254 scan_relocatable_relocs(Symbol_table* symtab,
2256 Sized_relobj<32, big_endian>* object,
2257 unsigned int data_shndx,
2258 unsigned int sh_type,
2259 const unsigned char* prelocs,
2261 Output_section* output_section,
2262 bool needs_special_offset_handling,
2263 size_t local_symbol_count,
2264 const unsigned char* plocal_symbols,
2265 Relocatable_relocs*);
2267 // Relocate a section during a relocatable link.
2269 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2270 unsigned int sh_type,
2271 const unsigned char* prelocs,
2273 Output_section* output_section,
2274 off_t offset_in_output_section,
2275 const Relocatable_relocs*,
2276 unsigned char* view,
2277 Arm_address view_address,
2278 section_size_type view_size,
2279 unsigned char* reloc_view,
2280 section_size_type reloc_view_size);
2282 // Perform target-specific processing in a relocatable link. This is
2283 // only used if we use the relocation strategy RELOC_SPECIAL.
2285 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2286 unsigned int sh_type,
2287 const unsigned char* preloc_in,
2289 Output_section* output_section,
2290 off_t offset_in_output_section,
2291 unsigned char* view,
2292 typename elfcpp::Elf_types<32>::Elf_Addr
2294 section_size_type view_size,
2295 unsigned char* preloc_out);
2297 // Return whether SYM is defined by the ABI.
2299 do_is_defined_by_abi(Symbol* sym) const
2300 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2302 // Return whether there is a GOT section.
2304 has_got_section() const
2305 { return this->got_ != NULL; }
2307 // Return the size of the GOT section.
2311 gold_assert(this->got_ != NULL);
2312 return this->got_->data_size();
2315 // Map platform-specific reloc types
2317 get_real_reloc_type (unsigned int r_type);
2320 // Methods to support stub-generations.
2323 // Return the stub factory
2325 stub_factory() const
2326 { return this->stub_factory_; }
2328 // Make a new Arm_input_section object.
2329 Arm_input_section<big_endian>*
2330 new_arm_input_section(Relobj*, unsigned int);
2332 // Find the Arm_input_section object corresponding to the SHNDX-th input
2333 // section of RELOBJ.
2334 Arm_input_section<big_endian>*
2335 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2337 // Make a new Stub_table
2338 Stub_table<big_endian>*
2339 new_stub_table(Arm_input_section<big_endian>*);
2341 // Scan a section for stub generation.
2343 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2344 const unsigned char*, size_t, Output_section*,
2345 bool, const unsigned char*, Arm_address,
2350 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2351 Output_section*, unsigned char*, Arm_address,
2354 // Get the default ARM target.
2355 static Target_arm<big_endian>*
2358 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2359 && parameters->target().is_big_endian() == big_endian);
2360 return static_cast<Target_arm<big_endian>*>(
2361 parameters->sized_target<32, big_endian>());
2364 // Whether NAME belongs to a mapping symbol.
2366 is_mapping_symbol_name(const char* name)
2370 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2371 && (name[2] == '\0' || name[2] == '.'));
2374 // Whether we work around the Cortex-A8 erratum.
2376 fix_cortex_a8() const
2377 { return this->fix_cortex_a8_; }
2379 // Whether we merge exidx entries in debuginfo.
2381 merge_exidx_entries() const
2382 { return parameters->options().merge_exidx_entries(); }
2384 // Whether we fix R_ARM_V4BX relocation.
2386 // 1 - replace with MOV instruction (armv4 target)
2387 // 2 - make interworking veneer (>= armv4t targets only)
2388 General_options::Fix_v4bx
2390 { return parameters->options().fix_v4bx(); }
2392 // Scan a span of THUMB code section for Cortex-A8 erratum.
2394 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2395 section_size_type, section_size_type,
2396 const unsigned char*, Arm_address);
2398 // Apply Cortex-A8 workaround to a branch.
2400 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2401 unsigned char*, Arm_address);
2404 // Make an ELF object.
2406 do_make_elf_object(const std::string&, Input_file*, off_t,
2407 const elfcpp::Ehdr<32, big_endian>& ehdr);
2410 do_make_elf_object(const std::string&, Input_file*, off_t,
2411 const elfcpp::Ehdr<32, !big_endian>&)
2412 { gold_unreachable(); }
2415 do_make_elf_object(const std::string&, Input_file*, off_t,
2416 const elfcpp::Ehdr<64, false>&)
2417 { gold_unreachable(); }
2420 do_make_elf_object(const std::string&, Input_file*, off_t,
2421 const elfcpp::Ehdr<64, true>&)
2422 { gold_unreachable(); }
2424 // Make an output section.
2426 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2427 elfcpp::Elf_Xword flags)
2428 { return new Arm_output_section<big_endian>(name, type, flags); }
2431 do_adjust_elf_header(unsigned char* view, int len) const;
2433 // We only need to generate stubs, and hence perform relaxation if we are
2434 // not doing relocatable linking.
2436 do_may_relax() const
2437 { return !parameters->options().relocatable(); }
2440 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2442 // Determine whether an object attribute tag takes an integer, a
2445 do_attribute_arg_type(int tag) const;
2447 // Reorder tags during output.
2449 do_attributes_order(int num) const;
2451 // This is called when the target is selected as the default.
2453 do_select_as_default_target()
2455 // No locking is required since there should only be one default target.
2456 // We cannot have both the big-endian and little-endian ARM targets
2458 gold_assert(arm_reloc_property_table == NULL);
2459 arm_reloc_property_table = new Arm_reloc_property_table();
2463 // The class which scans relocations.
2468 : issued_non_pic_error_(false)
2472 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2473 Sized_relobj<32, big_endian>* object,
2474 unsigned int data_shndx,
2475 Output_section* output_section,
2476 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2477 const elfcpp::Sym<32, big_endian>& lsym);
2480 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2481 Sized_relobj<32, big_endian>* object,
2482 unsigned int data_shndx,
2483 Output_section* output_section,
2484 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2488 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2489 Sized_relobj<32, big_endian>* ,
2492 const elfcpp::Rel<32, big_endian>& ,
2494 const elfcpp::Sym<32, big_endian>&);
2497 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2498 Sized_relobj<32, big_endian>* ,
2501 const elfcpp::Rel<32, big_endian>& ,
2502 unsigned int , Symbol*);
2506 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2507 unsigned int r_type);
2510 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2511 unsigned int r_type, Symbol*);
2514 check_non_pic(Relobj*, unsigned int r_type);
2516 // Almost identical to Symbol::needs_plt_entry except that it also
2517 // handles STT_ARM_TFUNC.
2519 symbol_needs_plt_entry(const Symbol* sym)
2521 // An undefined symbol from an executable does not need a PLT entry.
2522 if (sym->is_undefined() && !parameters->options().shared())
2525 return (!parameters->doing_static_link()
2526 && (sym->type() == elfcpp::STT_FUNC
2527 || sym->type() == elfcpp::STT_ARM_TFUNC)
2528 && (sym->is_from_dynobj()
2529 || sym->is_undefined()
2530 || sym->is_preemptible()));
2534 possible_function_pointer_reloc(unsigned int r_type);
2536 // Whether we have issued an error about a non-PIC compilation.
2537 bool issued_non_pic_error_;
2540 // The class which implements relocation.
2550 // Return whether the static relocation needs to be applied.
2552 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2555 Output_section* output_section);
2557 // Do a relocation. Return false if the caller should not issue
2558 // any warnings about this relocation.
2560 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2561 Output_section*, size_t relnum,
2562 const elfcpp::Rel<32, big_endian>&,
2563 unsigned int r_type, const Sized_symbol<32>*,
2564 const Symbol_value<32>*,
2565 unsigned char*, Arm_address,
2568 // Return whether we want to pass flag NON_PIC_REF for this
2569 // reloc. This means the relocation type accesses a symbol not via
2572 reloc_is_non_pic (unsigned int r_type)
2576 // These relocation types reference GOT or PLT entries explicitly.
2577 case elfcpp::R_ARM_GOT_BREL:
2578 case elfcpp::R_ARM_GOT_ABS:
2579 case elfcpp::R_ARM_GOT_PREL:
2580 case elfcpp::R_ARM_GOT_BREL12:
2581 case elfcpp::R_ARM_PLT32_ABS:
2582 case elfcpp::R_ARM_TLS_GD32:
2583 case elfcpp::R_ARM_TLS_LDM32:
2584 case elfcpp::R_ARM_TLS_IE32:
2585 case elfcpp::R_ARM_TLS_IE12GP:
2587 // These relocate types may use PLT entries.
2588 case elfcpp::R_ARM_CALL:
2589 case elfcpp::R_ARM_THM_CALL:
2590 case elfcpp::R_ARM_JUMP24:
2591 case elfcpp::R_ARM_THM_JUMP24:
2592 case elfcpp::R_ARM_THM_JUMP19:
2593 case elfcpp::R_ARM_PLT32:
2594 case elfcpp::R_ARM_THM_XPC22:
2595 case elfcpp::R_ARM_PREL31:
2596 case elfcpp::R_ARM_SBREL31:
2605 // Do a TLS relocation.
2606 inline typename Arm_relocate_functions<big_endian>::Status
2607 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2608 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2609 const Sized_symbol<32>*, const Symbol_value<32>*,
2610 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2615 // A class which returns the size required for a relocation type,
2616 // used while scanning relocs during a relocatable link.
2617 class Relocatable_size_for_reloc
2621 get_size_for_reloc(unsigned int, Relobj*);
2624 // Adjust TLS relocation type based on the options and whether this
2625 // is a local symbol.
2626 static tls::Tls_optimization
2627 optimize_tls_reloc(bool is_final, int r_type);
2629 // Get the GOT section, creating it if necessary.
2630 Arm_output_data_got<big_endian>*
2631 got_section(Symbol_table*, Layout*);
2633 // Get the GOT PLT section.
2635 got_plt_section() const
2637 gold_assert(this->got_plt_ != NULL);
2638 return this->got_plt_;
2641 // Create a PLT entry for a global symbol.
2643 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2645 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2647 define_tls_base_symbol(Symbol_table*, Layout*);
2649 // Create a GOT entry for the TLS module index.
2651 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2652 Sized_relobj<32, big_endian>* object);
2654 // Get the PLT section.
2655 const Output_data_plt_arm<big_endian>*
2658 gold_assert(this->plt_ != NULL);
2662 // Get the dynamic reloc section, creating it if necessary.
2664 rel_dyn_section(Layout*);
2666 // Get the section to use for TLS_DESC relocations.
2668 rel_tls_desc_section(Layout*) const;
2670 // Return true if the symbol may need a COPY relocation.
2671 // References from an executable object to non-function symbols
2672 // defined in a dynamic object may need a COPY relocation.
2674 may_need_copy_reloc(Symbol* gsym)
2676 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2677 && gsym->may_need_copy_reloc());
2680 // Add a potential copy relocation.
2682 copy_reloc(Symbol_table* symtab, Layout* layout,
2683 Sized_relobj<32, big_endian>* object,
2684 unsigned int shndx, Output_section* output_section,
2685 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2687 this->copy_relocs_.copy_reloc(symtab, layout,
2688 symtab->get_sized_symbol<32>(sym),
2689 object, shndx, output_section, reloc,
2690 this->rel_dyn_section(layout));
2693 // Whether two EABI versions are compatible.
2695 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2697 // Merge processor-specific flags from input object and those in the ELF
2698 // header of the output.
2700 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2702 // Get the secondary compatible architecture.
2704 get_secondary_compatible_arch(const Attributes_section_data*);
2706 // Set the secondary compatible architecture.
2708 set_secondary_compatible_arch(Attributes_section_data*, int);
2711 tag_cpu_arch_combine(const char*, int, int*, int, int);
2713 // Helper to print AEABI enum tag value.
2715 aeabi_enum_name(unsigned int);
2717 // Return string value for TAG_CPU_name.
2719 tag_cpu_name_value(unsigned int);
2721 // Merge object attributes from input object and those in the output.
2723 merge_object_attributes(const char*, const Attributes_section_data*);
2725 // Helper to get an AEABI object attribute
2727 get_aeabi_object_attribute(int tag) const
2729 Attributes_section_data* pasd = this->attributes_section_data_;
2730 gold_assert(pasd != NULL);
2731 Object_attribute* attr =
2732 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2733 gold_assert(attr != NULL);
2738 // Methods to support stub-generations.
2741 // Group input sections for stub generation.
2743 group_sections(Layout*, section_size_type, bool);
2745 // Scan a relocation for stub generation.
2747 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2748 const Sized_symbol<32>*, unsigned int,
2749 const Symbol_value<32>*,
2750 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2752 // Scan a relocation section for stub.
2753 template<int sh_type>
2755 scan_reloc_section_for_stubs(
2756 const Relocate_info<32, big_endian>* relinfo,
2757 const unsigned char* prelocs,
2759 Output_section* output_section,
2760 bool needs_special_offset_handling,
2761 const unsigned char* view,
2762 elfcpp::Elf_types<32>::Elf_Addr view_address,
2765 // Fix .ARM.exidx section coverage.
2767 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2769 // Functors for STL set.
2770 struct output_section_address_less_than
2773 operator()(const Output_section* s1, const Output_section* s2) const
2774 { return s1->address() < s2->address(); }
2777 // Information about this specific target which we pass to the
2778 // general Target structure.
2779 static const Target::Target_info arm_info;
2781 // The types of GOT entries needed for this platform.
2784 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2785 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2786 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2787 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2788 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2791 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2793 // Map input section to Arm_input_section.
2794 typedef Unordered_map<Section_id,
2795 Arm_input_section<big_endian>*,
2797 Arm_input_section_map;
2799 // Map output addresses to relocs for Cortex-A8 erratum.
2800 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2801 Cortex_a8_relocs_info;
2804 Arm_output_data_got<big_endian>* got_;
2806 Output_data_plt_arm<big_endian>* plt_;
2807 // The GOT PLT section.
2808 Output_data_space* got_plt_;
2809 // The dynamic reloc section.
2810 Reloc_section* rel_dyn_;
2811 // Relocs saved to avoid a COPY reloc.
2812 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2813 // Space for variables copied with a COPY reloc.
2814 Output_data_space* dynbss_;
2815 // Offset of the GOT entry for the TLS module index.
2816 unsigned int got_mod_index_offset_;
2817 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2818 bool tls_base_symbol_defined_;
2819 // Vector of Stub_tables created.
2820 Stub_table_list stub_tables_;
2822 const Stub_factory &stub_factory_;
2823 // Whether we can use BLX.
2825 // Whether we force PIC branch veneers.
2826 bool should_force_pic_veneer_;
2827 // Map for locating Arm_input_sections.
2828 Arm_input_section_map arm_input_section_map_;
2829 // Attributes section data in output.
2830 Attributes_section_data* attributes_section_data_;
2831 // Whether we want to fix code for Cortex-A8 erratum.
2832 bool fix_cortex_a8_;
2833 // Map addresses to relocs for Cortex-A8 erratum.
2834 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2837 template<bool big_endian>
2838 const Target::Target_info Target_arm<big_endian>::arm_info =
2841 big_endian, // is_big_endian
2842 elfcpp::EM_ARM, // machine_code
2843 false, // has_make_symbol
2844 false, // has_resolve
2845 false, // has_code_fill
2846 true, // is_default_stack_executable
2848 "/usr/lib/libc.so.1", // dynamic_linker
2849 0x8000, // default_text_segment_address
2850 0x1000, // abi_pagesize (overridable by -z max-page-size)
2851 0x1000, // common_pagesize (overridable by -z common-page-size)
2852 elfcpp::SHN_UNDEF, // small_common_shndx
2853 elfcpp::SHN_UNDEF, // large_common_shndx
2854 0, // small_common_section_flags
2855 0, // large_common_section_flags
2856 ".ARM.attributes", // attributes_section
2857 "aeabi" // attributes_vendor
2860 // Arm relocate functions class
2863 template<bool big_endian>
2864 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2869 STATUS_OKAY, // No error during relocation.
2870 STATUS_OVERFLOW, // Relocation oveflow.
2871 STATUS_BAD_RELOC // Relocation cannot be applied.
2875 typedef Relocate_functions<32, big_endian> Base;
2876 typedef Arm_relocate_functions<big_endian> This;
2878 // Encoding of imm16 argument for movt and movw ARM instructions
2881 // imm16 := imm4 | imm12
2883 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2884 // +-------+---------------+-------+-------+-----------------------+
2885 // | | |imm4 | |imm12 |
2886 // +-------+---------------+-------+-------+-----------------------+
2888 // Extract the relocation addend from VAL based on the ARM
2889 // instruction encoding described above.
2890 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2891 extract_arm_movw_movt_addend(
2892 typename elfcpp::Swap<32, big_endian>::Valtype val)
2894 // According to the Elf ABI for ARM Architecture the immediate
2895 // field is sign-extended to form the addend.
2896 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2899 // Insert X into VAL based on the ARM instruction encoding described
2901 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2902 insert_val_arm_movw_movt(
2903 typename elfcpp::Swap<32, big_endian>::Valtype val,
2904 typename elfcpp::Swap<32, big_endian>::Valtype x)
2908 val |= (x & 0xf000) << 4;
2912 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2915 // imm16 := imm4 | i | imm3 | imm8
2917 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2918 // +---------+-+-----------+-------++-+-----+-------+---------------+
2919 // | |i| |imm4 || |imm3 | |imm8 |
2920 // +---------+-+-----------+-------++-+-----+-------+---------------+
2922 // Extract the relocation addend from VAL based on the Thumb2
2923 // instruction encoding described above.
2924 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2925 extract_thumb_movw_movt_addend(
2926 typename elfcpp::Swap<32, big_endian>::Valtype val)
2928 // According to the Elf ABI for ARM Architecture the immediate
2929 // field is sign-extended to form the addend.
2930 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2931 | ((val >> 15) & 0x0800)
2932 | ((val >> 4) & 0x0700)
2936 // Insert X into VAL based on the Thumb2 instruction encoding
2938 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2939 insert_val_thumb_movw_movt(
2940 typename elfcpp::Swap<32, big_endian>::Valtype val,
2941 typename elfcpp::Swap<32, big_endian>::Valtype x)
2944 val |= (x & 0xf000) << 4;
2945 val |= (x & 0x0800) << 15;
2946 val |= (x & 0x0700) << 4;
2947 val |= (x & 0x00ff);
2951 // Calculate the smallest constant Kn for the specified residual.
2952 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2954 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2960 // Determine the most significant bit in the residual and
2961 // align the resulting value to a 2-bit boundary.
2962 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2964 // The desired shift is now (msb - 6), or zero, whichever
2966 return (((msb - 6) < 0) ? 0 : (msb - 6));
2969 // Calculate the final residual for the specified group index.
2970 // If the passed group index is less than zero, the method will return
2971 // the value of the specified residual without any change.
2972 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2973 static typename elfcpp::Swap<32, big_endian>::Valtype
2974 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2977 for (int n = 0; n <= group; n++)
2979 // Calculate which part of the value to mask.
2980 uint32_t shift = calc_grp_kn(residual);
2981 // Calculate the residual for the next time around.
2982 residual &= ~(residual & (0xff << shift));
2988 // Calculate the value of Gn for the specified group index.
2989 // We return it in the form of an encoded constant-and-rotation.
2990 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2991 static typename elfcpp::Swap<32, big_endian>::Valtype
2992 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2995 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2998 for (int n = 0; n <= group; n++)
3000 // Calculate which part of the value to mask.
3001 shift = calc_grp_kn(residual);
3002 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3003 gn = residual & (0xff << shift);
3004 // Calculate the residual for the next time around.
3007 // Return Gn in the form of an encoded constant-and-rotation.
3008 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3012 // Handle ARM long branches.
3013 static typename This::Status
3014 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3015 unsigned char *, const Sized_symbol<32>*,
3016 const Arm_relobj<big_endian>*, unsigned int,
3017 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3019 // Handle THUMB long branches.
3020 static typename This::Status
3021 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3022 unsigned char *, const Sized_symbol<32>*,
3023 const Arm_relobj<big_endian>*, unsigned int,
3024 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3027 // Return the branch offset of a 32-bit THUMB branch.
3028 static inline int32_t
3029 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3031 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3032 // involving the J1 and J2 bits.
3033 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3034 uint32_t upper = upper_insn & 0x3ffU;
3035 uint32_t lower = lower_insn & 0x7ffU;
3036 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3037 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3038 uint32_t i1 = j1 ^ s ? 0 : 1;
3039 uint32_t i2 = j2 ^ s ? 0 : 1;
3041 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3042 | (upper << 12) | (lower << 1));
3045 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3046 // UPPER_INSN is the original upper instruction of the branch. Caller is
3047 // responsible for overflow checking and BLX offset adjustment.
3048 static inline uint16_t
3049 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3051 uint32_t s = offset < 0 ? 1 : 0;
3052 uint32_t bits = static_cast<uint32_t>(offset);
3053 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3056 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3057 // LOWER_INSN is the original lower instruction of the branch. Caller is
3058 // responsible for overflow checking and BLX offset adjustment.
3059 static inline uint16_t
3060 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3062 uint32_t s = offset < 0 ? 1 : 0;
3063 uint32_t bits = static_cast<uint32_t>(offset);
3064 return ((lower_insn & ~0x2fffU)
3065 | ((((bits >> 23) & 1) ^ !s) << 13)
3066 | ((((bits >> 22) & 1) ^ !s) << 11)
3067 | ((bits >> 1) & 0x7ffU));
3070 // Return the branch offset of a 32-bit THUMB conditional branch.
3071 static inline int32_t
3072 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3074 uint32_t s = (upper_insn & 0x0400U) >> 10;
3075 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3076 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3077 uint32_t lower = (lower_insn & 0x07ffU);
3078 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3080 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3083 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3084 // instruction. UPPER_INSN is the original upper instruction of the branch.
3085 // Caller is responsible for overflow checking.
3086 static inline uint16_t
3087 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3089 uint32_t s = offset < 0 ? 1 : 0;
3090 uint32_t bits = static_cast<uint32_t>(offset);
3091 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3094 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3095 // instruction. LOWER_INSN is the original lower instruction of the branch.
3096 // Caller is reponsible for overflow checking.
3097 static inline uint16_t
3098 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3100 uint32_t bits = static_cast<uint32_t>(offset);
3101 uint32_t j2 = (bits & 0x00080000U) >> 19;
3102 uint32_t j1 = (bits & 0x00040000U) >> 18;
3103 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3105 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3108 // R_ARM_ABS8: S + A
3109 static inline typename This::Status
3110 abs8(unsigned char *view,
3111 const Sized_relobj<32, big_endian>* object,
3112 const Symbol_value<32>* psymval)
3114 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3115 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3116 Valtype* wv = reinterpret_cast<Valtype*>(view);
3117 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3118 Reltype addend = utils::sign_extend<8>(val);
3119 Reltype x = psymval->value(object, addend);
3120 val = utils::bit_select(val, x, 0xffU);
3121 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3123 // R_ARM_ABS8 permits signed or unsigned results.
3124 int signed_x = static_cast<int32_t>(x);
3125 return ((signed_x < -128 || signed_x > 255)
3126 ? This::STATUS_OVERFLOW
3127 : This::STATUS_OKAY);
3130 // R_ARM_THM_ABS5: S + A
3131 static inline typename This::Status
3132 thm_abs5(unsigned char *view,
3133 const Sized_relobj<32, big_endian>* object,
3134 const Symbol_value<32>* psymval)
3136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3137 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3138 Valtype* wv = reinterpret_cast<Valtype*>(view);
3139 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3140 Reltype addend = (val & 0x7e0U) >> 6;
3141 Reltype x = psymval->value(object, addend);
3142 val = utils::bit_select(val, x << 6, 0x7e0U);
3143 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3145 // R_ARM_ABS16 permits signed or unsigned results.
3146 int signed_x = static_cast<int32_t>(x);
3147 return ((signed_x < -32768 || signed_x > 65535)
3148 ? This::STATUS_OVERFLOW
3149 : This::STATUS_OKAY);
3152 // R_ARM_ABS12: S + A
3153 static inline typename This::Status
3154 abs12(unsigned char *view,
3155 const Sized_relobj<32, big_endian>* object,
3156 const Symbol_value<32>* psymval)
3158 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3159 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3160 Valtype* wv = reinterpret_cast<Valtype*>(view);
3161 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3162 Reltype addend = val & 0x0fffU;
3163 Reltype x = psymval->value(object, addend);
3164 val = utils::bit_select(val, x, 0x0fffU);
3165 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3166 return (utils::has_overflow<12>(x)
3167 ? This::STATUS_OVERFLOW
3168 : This::STATUS_OKAY);
3171 // R_ARM_ABS16: S + A
3172 static inline typename This::Status
3173 abs16(unsigned char *view,
3174 const Sized_relobj<32, big_endian>* object,
3175 const Symbol_value<32>* psymval)
3177 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3178 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3179 Valtype* wv = reinterpret_cast<Valtype*>(view);
3180 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3181 Reltype addend = utils::sign_extend<16>(val);
3182 Reltype x = psymval->value(object, addend);
3183 val = utils::bit_select(val, x, 0xffffU);
3184 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3185 return (utils::has_signed_unsigned_overflow<16>(x)
3186 ? This::STATUS_OVERFLOW
3187 : This::STATUS_OKAY);
3190 // R_ARM_ABS32: (S + A) | T
3191 static inline typename This::Status
3192 abs32(unsigned char *view,
3193 const Sized_relobj<32, big_endian>* object,
3194 const Symbol_value<32>* psymval,
3195 Arm_address thumb_bit)
3197 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3198 Valtype* wv = reinterpret_cast<Valtype*>(view);
3199 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3200 Valtype x = psymval->value(object, addend) | thumb_bit;
3201 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3202 return This::STATUS_OKAY;
3205 // R_ARM_REL32: (S + A) | T - P
3206 static inline typename This::Status
3207 rel32(unsigned char *view,
3208 const Sized_relobj<32, big_endian>* object,
3209 const Symbol_value<32>* psymval,
3210 Arm_address address,
3211 Arm_address thumb_bit)
3213 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3214 Valtype* wv = reinterpret_cast<Valtype*>(view);
3215 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3216 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3217 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3218 return This::STATUS_OKAY;
3221 // R_ARM_THM_JUMP24: (S + A) | T - P
3222 static typename This::Status
3223 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3224 const Symbol_value<32>* psymval, Arm_address address,
3225 Arm_address thumb_bit);
3227 // R_ARM_THM_JUMP6: S + A – P
3228 static inline typename This::Status
3229 thm_jump6(unsigned char *view,
3230 const Sized_relobj<32, big_endian>* object,
3231 const Symbol_value<32>* psymval,
3232 Arm_address address)
3234 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3235 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3236 Valtype* wv = reinterpret_cast<Valtype*>(view);
3237 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3238 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3239 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3240 Reltype x = (psymval->value(object, addend) - address);
3241 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3242 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3243 // CZB does only forward jumps.
3244 return ((x > 0x007e)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3249 // R_ARM_THM_JUMP8: S + A – P
3250 static inline typename This::Status
3251 thm_jump8(unsigned char *view,
3252 const Sized_relobj<32, big_endian>* object,
3253 const Symbol_value<32>* psymval,
3254 Arm_address address)
3256 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3257 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3260 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3261 Reltype x = (psymval->value(object, addend) - address);
3262 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3263 return (utils::has_overflow<8>(x)
3264 ? This::STATUS_OVERFLOW
3265 : This::STATUS_OKAY);
3268 // R_ARM_THM_JUMP11: S + A – P
3269 static inline typename This::Status
3270 thm_jump11(unsigned char *view,
3271 const Sized_relobj<32, big_endian>* object,
3272 const Symbol_value<32>* psymval,
3273 Arm_address address)
3275 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3276 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3277 Valtype* wv = reinterpret_cast<Valtype*>(view);
3278 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3279 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3280 Reltype x = (psymval->value(object, addend) - address);
3281 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3282 return (utils::has_overflow<11>(x)
3283 ? This::STATUS_OVERFLOW
3284 : This::STATUS_OKAY);
3287 // R_ARM_BASE_PREL: B(S) + A - P
3288 static inline typename This::Status
3289 base_prel(unsigned char* view,
3291 Arm_address address)
3293 Base::rel32(view, origin - address);
3297 // R_ARM_BASE_ABS: B(S) + A
3298 static inline typename This::Status
3299 base_abs(unsigned char* view,
3302 Base::rel32(view, origin);
3306 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3307 static inline typename This::Status
3308 got_brel(unsigned char* view,
3309 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3311 Base::rel32(view, got_offset);
3312 return This::STATUS_OKAY;
3315 // R_ARM_GOT_PREL: GOT(S) + A - P
3316 static inline typename This::Status
3317 got_prel(unsigned char *view,
3318 Arm_address got_entry,
3319 Arm_address address)
3321 Base::rel32(view, got_entry - address);
3322 return This::STATUS_OKAY;
3325 // R_ARM_PREL: (S + A) | T - P
3326 static inline typename This::Status
3327 prel31(unsigned char *view,
3328 const Sized_relobj<32, big_endian>* object,
3329 const Symbol_value<32>* psymval,
3330 Arm_address address,
3331 Arm_address thumb_bit)
3333 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3334 Valtype* wv = reinterpret_cast<Valtype*>(view);
3335 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3336 Valtype addend = utils::sign_extend<31>(val);
3337 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3338 val = utils::bit_select(val, x, 0x7fffffffU);
3339 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3340 return (utils::has_overflow<31>(x) ?
3341 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3344 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3345 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3346 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3347 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3348 static inline typename This::Status
3349 movw(unsigned char* view,
3350 const Sized_relobj<32, big_endian>* object,
3351 const Symbol_value<32>* psymval,
3352 Arm_address relative_address_base,
3353 Arm_address thumb_bit,
3354 bool check_overflow)
3356 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3357 Valtype* wv = reinterpret_cast<Valtype*>(view);
3358 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3359 Valtype addend = This::extract_arm_movw_movt_addend(val);
3360 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3361 - relative_address_base);
3362 val = This::insert_val_arm_movw_movt(val, x);
3363 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3364 return ((check_overflow && utils::has_overflow<16>(x))
3365 ? This::STATUS_OVERFLOW
3366 : This::STATUS_OKAY);
3369 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3370 // R_ARM_MOVT_PREL: S + A - P
3371 // R_ARM_MOVT_BREL: S + A - B(S)
3372 static inline typename This::Status
3373 movt(unsigned char* view,
3374 const Sized_relobj<32, big_endian>* object,
3375 const Symbol_value<32>* psymval,
3376 Arm_address relative_address_base)
3378 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3379 Valtype* wv = reinterpret_cast<Valtype*>(view);
3380 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3381 Valtype addend = This::extract_arm_movw_movt_addend(val);
3382 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3383 val = This::insert_val_arm_movw_movt(val, x);
3384 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3385 // FIXME: IHI0044D says that we should check for overflow.
3386 return This::STATUS_OKAY;
3389 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3390 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3391 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3392 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3393 static inline typename This::Status
3394 thm_movw(unsigned char *view,
3395 const Sized_relobj<32, big_endian>* object,
3396 const Symbol_value<32>* psymval,
3397 Arm_address relative_address_base,
3398 Arm_address thumb_bit,
3399 bool check_overflow)
3401 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403 Valtype* wv = reinterpret_cast<Valtype*>(view);
3404 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3408 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3409 val = This::insert_val_thumb_movw_movt(val, x);
3410 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3411 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3412 return ((check_overflow && utils::has_overflow<16>(x))
3413 ? This::STATUS_OVERFLOW
3414 : This::STATUS_OKAY);
3417 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3418 // R_ARM_THM_MOVT_PREL: S + A - P
3419 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3420 static inline typename This::Status
3421 thm_movt(unsigned char* view,
3422 const Sized_relobj<32, big_endian>* object,
3423 const Symbol_value<32>* psymval,
3424 Arm_address relative_address_base)
3426 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3427 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3428 Valtype* wv = reinterpret_cast<Valtype*>(view);
3429 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3430 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3431 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3432 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3433 val = This::insert_val_thumb_movw_movt(val, x);
3434 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3435 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3436 return This::STATUS_OKAY;
3439 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3440 static inline typename This::Status
3441 thm_alu11(unsigned char* view,
3442 const Sized_relobj<32, big_endian>* object,
3443 const Symbol_value<32>* psymval,
3444 Arm_address address,
3445 Arm_address thumb_bit)
3447 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3448 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3449 Valtype* wv = reinterpret_cast<Valtype*>(view);
3450 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3451 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3453 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3454 // -----------------------------------------------------------------------
3455 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3456 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3457 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3458 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3459 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3460 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3462 // Determine a sign for the addend.
3463 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3464 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3465 // Thumb2 addend encoding:
3466 // imm12 := i | imm3 | imm8
3467 int32_t addend = (insn & 0xff)
3468 | ((insn & 0x00007000) >> 4)
3469 | ((insn & 0x04000000) >> 15);
3470 // Apply a sign to the added.
3473 int32_t x = (psymval->value(object, addend) | thumb_bit)
3474 - (address & 0xfffffffc);
3475 Reltype val = abs(x);
3476 // Mask out the value and a distinct part of the ADD/SUB opcode
3477 // (bits 7:5 of opword).
3478 insn = (insn & 0xfb0f8f00)
3480 | ((val & 0x700) << 4)
3481 | ((val & 0x800) << 15);
3482 // Set the opcode according to whether the value to go in the
3483 // place is negative.
3487 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3488 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3489 return ((val > 0xfff) ?
3490 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3493 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3494 static inline typename This::Status
3495 thm_pc8(unsigned char* view,
3496 const Sized_relobj<32, big_endian>* object,
3497 const Symbol_value<32>* psymval,
3498 Arm_address address)
3500 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3501 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3502 Valtype* wv = reinterpret_cast<Valtype*>(view);
3503 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3504 Reltype addend = ((insn & 0x00ff) << 2);
3505 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3506 Reltype val = abs(x);
3507 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3509 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3510 return ((val > 0x03fc)
3511 ? This::STATUS_OVERFLOW
3512 : This::STATUS_OKAY);
3515 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3516 static inline typename This::Status
3517 thm_pc12(unsigned char* view,
3518 const Sized_relobj<32, big_endian>* object,
3519 const Symbol_value<32>* psymval,
3520 Arm_address address)
3522 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3523 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3524 Valtype* wv = reinterpret_cast<Valtype*>(view);
3525 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3526 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3527 // Determine a sign for the addend (positive if the U bit is 1).
3528 const int sign = (insn & 0x00800000) ? 1 : -1;
3529 int32_t addend = (insn & 0xfff);
3530 // Apply a sign to the added.
3533 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3534 Reltype val = abs(x);
3535 // Mask out and apply the value and the U bit.
3536 insn = (insn & 0xff7ff000) | (val & 0xfff);
3537 // Set the U bit according to whether the value to go in the
3538 // place is positive.
3542 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3543 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3544 return ((val > 0xfff) ?
3545 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3549 static inline typename This::Status
3550 v4bx(const Relocate_info<32, big_endian>* relinfo,
3551 unsigned char *view,
3552 const Arm_relobj<big_endian>* object,
3553 const Arm_address address,
3554 const bool is_interworking)
3557 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3558 Valtype* wv = reinterpret_cast<Valtype*>(view);
3559 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3561 // Ensure that we have a BX instruction.
3562 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3563 const uint32_t reg = (val & 0xf);
3564 if (is_interworking && reg != 0xf)
3566 Stub_table<big_endian>* stub_table =
3567 object->stub_table(relinfo->data_shndx);
3568 gold_assert(stub_table != NULL);
3570 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3571 gold_assert(stub != NULL);
3573 int32_t veneer_address =
3574 stub_table->address() + stub->offset() - 8 - address;
3575 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3576 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3577 // Replace with a branch to veneer (B <addr>)
3578 val = (val & 0xf0000000) | 0x0a000000
3579 | ((veneer_address >> 2) & 0x00ffffff);
3583 // Preserve Rm (lowest four bits) and the condition code
3584 // (highest four bits). Other bits encode MOV PC,Rm.
3585 val = (val & 0xf000000f) | 0x01a0f000;
3587 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3588 return This::STATUS_OKAY;
3591 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3592 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3593 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3594 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3595 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3596 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3597 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3598 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3599 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3600 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3601 static inline typename This::Status
3602 arm_grp_alu(unsigned char* view,
3603 const Sized_relobj<32, big_endian>* object,
3604 const Symbol_value<32>* psymval,
3606 Arm_address address,
3607 Arm_address thumb_bit,
3608 bool check_overflow)
3610 gold_assert(group >= 0 && group < 3);
3611 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3612 Valtype* wv = reinterpret_cast<Valtype*>(view);
3613 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3615 // ALU group relocations are allowed only for the ADD/SUB instructions.
3616 // (0x00800000 - ADD, 0x00400000 - SUB)
3617 const Valtype opcode = insn & 0x01e00000;
3618 if (opcode != 0x00800000 && opcode != 0x00400000)
3619 return This::STATUS_BAD_RELOC;
3621 // Determine a sign for the addend.
3622 const int sign = (opcode == 0x00800000) ? 1 : -1;
3623 // shifter = rotate_imm * 2
3624 const uint32_t shifter = (insn & 0xf00) >> 7;
3625 // Initial addend value.
3626 int32_t addend = insn & 0xff;
3627 // Rotate addend right by shifter.
3628 addend = (addend >> shifter) | (addend << (32 - shifter));
3629 // Apply a sign to the added.
3632 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3633 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3634 // Check for overflow if required
3636 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3637 return This::STATUS_OVERFLOW;
3639 // Mask out the value and the ADD/SUB part of the opcode; take care
3640 // not to destroy the S bit.
3642 // Set the opcode according to whether the value to go in the
3643 // place is negative.
3644 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3645 // Encode the offset (encoded Gn).
3648 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3649 return This::STATUS_OKAY;
3652 // R_ARM_LDR_PC_G0: S + A - P
3653 // R_ARM_LDR_PC_G1: S + A - P
3654 // R_ARM_LDR_PC_G2: S + A - P
3655 // R_ARM_LDR_SB_G0: S + A - B(S)
3656 // R_ARM_LDR_SB_G1: S + A - B(S)
3657 // R_ARM_LDR_SB_G2: S + A - B(S)
3658 static inline typename This::Status
3659 arm_grp_ldr(unsigned char* view,
3660 const Sized_relobj<32, big_endian>* object,
3661 const Symbol_value<32>* psymval,
3663 Arm_address address)
3665 gold_assert(group >= 0 && group < 3);
3666 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667 Valtype* wv = reinterpret_cast<Valtype*>(view);
3668 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3670 const int sign = (insn & 0x00800000) ? 1 : -1;
3671 int32_t addend = (insn & 0xfff) * sign;
3672 int32_t x = (psymval->value(object, addend) - address);
3673 // Calculate the relevant G(n-1) value to obtain this stage residual.
3675 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3676 if (residual >= 0x1000)
3677 return This::STATUS_OVERFLOW;
3679 // Mask out the value and U bit.
3681 // Set the U bit for non-negative values.
3686 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3687 return This::STATUS_OKAY;
3690 // R_ARM_LDRS_PC_G0: S + A - P
3691 // R_ARM_LDRS_PC_G1: S + A - P
3692 // R_ARM_LDRS_PC_G2: S + A - P
3693 // R_ARM_LDRS_SB_G0: S + A - B(S)
3694 // R_ARM_LDRS_SB_G1: S + A - B(S)
3695 // R_ARM_LDRS_SB_G2: S + A - B(S)
3696 static inline typename This::Status
3697 arm_grp_ldrs(unsigned char* view,
3698 const Sized_relobj<32, big_endian>* object,
3699 const Symbol_value<32>* psymval,
3701 Arm_address address)
3703 gold_assert(group >= 0 && group < 3);
3704 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3705 Valtype* wv = reinterpret_cast<Valtype*>(view);
3706 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3708 const int sign = (insn & 0x00800000) ? 1 : -1;
3709 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3710 int32_t x = (psymval->value(object, addend) - address);
3711 // Calculate the relevant G(n-1) value to obtain this stage residual.
3713 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3714 if (residual >= 0x100)
3715 return This::STATUS_OVERFLOW;
3717 // Mask out the value and U bit.
3719 // Set the U bit for non-negative values.
3722 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3724 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3725 return This::STATUS_OKAY;
3728 // R_ARM_LDC_PC_G0: S + A - P
3729 // R_ARM_LDC_PC_G1: S + A - P
3730 // R_ARM_LDC_PC_G2: S + A - P
3731 // R_ARM_LDC_SB_G0: S + A - B(S)
3732 // R_ARM_LDC_SB_G1: S + A - B(S)
3733 // R_ARM_LDC_SB_G2: S + A - B(S)
3734 static inline typename This::Status
3735 arm_grp_ldc(unsigned char* view,
3736 const Sized_relobj<32, big_endian>* object,
3737 const Symbol_value<32>* psymval,
3739 Arm_address address)
3741 gold_assert(group >= 0 && group < 3);
3742 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3743 Valtype* wv = reinterpret_cast<Valtype*>(view);
3744 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3746 const int sign = (insn & 0x00800000) ? 1 : -1;
3747 int32_t addend = ((insn & 0xff) << 2) * sign;
3748 int32_t x = (psymval->value(object, addend) - address);
3749 // Calculate the relevant G(n-1) value to obtain this stage residual.
3751 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3752 if ((residual & 0x3) != 0 || residual >= 0x400)
3753 return This::STATUS_OVERFLOW;
3755 // Mask out the value and U bit.
3757 // Set the U bit for non-negative values.
3760 insn |= (residual >> 2);
3762 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3763 return This::STATUS_OKAY;
3767 // Relocate ARM long branches. This handles relocation types
3768 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3769 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3770 // undefined and we do not use PLT in this relocation. In such a case,
3771 // the branch is converted into an NOP.
3773 template<bool big_endian>
3774 typename Arm_relocate_functions<big_endian>::Status
3775 Arm_relocate_functions<big_endian>::arm_branch_common(
3776 unsigned int r_type,
3777 const Relocate_info<32, big_endian>* relinfo,
3778 unsigned char *view,
3779 const Sized_symbol<32>* gsym,
3780 const Arm_relobj<big_endian>* object,
3782 const Symbol_value<32>* psymval,
3783 Arm_address address,
3784 Arm_address thumb_bit,
3785 bool is_weakly_undefined_without_plt)
3787 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3788 Valtype* wv = reinterpret_cast<Valtype*>(view);
3789 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3791 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3792 && ((val & 0x0f000000UL) == 0x0a000000UL);
3793 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3794 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3795 && ((val & 0x0f000000UL) == 0x0b000000UL);
3796 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3797 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3799 // Check that the instruction is valid.
3800 if (r_type == elfcpp::R_ARM_CALL)
3802 if (!insn_is_uncond_bl && !insn_is_blx)
3803 return This::STATUS_BAD_RELOC;
3805 else if (r_type == elfcpp::R_ARM_JUMP24)
3807 if (!insn_is_b && !insn_is_cond_bl)
3808 return This::STATUS_BAD_RELOC;
3810 else if (r_type == elfcpp::R_ARM_PLT32)
3812 if (!insn_is_any_branch)
3813 return This::STATUS_BAD_RELOC;
3815 else if (r_type == elfcpp::R_ARM_XPC25)
3817 // FIXME: AAELF document IH0044C does not say much about it other
3818 // than it being obsolete.
3819 if (!insn_is_any_branch)
3820 return This::STATUS_BAD_RELOC;
3825 // A branch to an undefined weak symbol is turned into a jump to
3826 // the next instruction unless a PLT entry will be created.
3827 // Do the same for local undefined symbols.
3828 // The jump to the next instruction is optimized as a NOP depending
3829 // on the architecture.
3830 const Target_arm<big_endian>* arm_target =
3831 Target_arm<big_endian>::default_target();
3832 if (is_weakly_undefined_without_plt)
3834 gold_assert(!parameters->options().relocatable());
3835 Valtype cond = val & 0xf0000000U;
3836 if (arm_target->may_use_arm_nop())
3837 val = cond | 0x0320f000;
3839 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3840 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3841 return This::STATUS_OKAY;
3844 Valtype addend = utils::sign_extend<26>(val << 2);
3845 Valtype branch_target = psymval->value(object, addend);
3846 int32_t branch_offset = branch_target - address;
3848 // We need a stub if the branch offset is too large or if we need
3850 bool may_use_blx = arm_target->may_use_blx();
3851 Reloc_stub* stub = NULL;
3853 if (!parameters->options().relocatable()
3854 && (utils::has_overflow<26>(branch_offset)
3855 || ((thumb_bit != 0)
3856 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3858 Valtype unadjusted_branch_target = psymval->value(object, 0);
3860 Stub_type stub_type =
3861 Reloc_stub::stub_type_for_reloc(r_type, address,
3862 unadjusted_branch_target,
3864 if (stub_type != arm_stub_none)
3866 Stub_table<big_endian>* stub_table =
3867 object->stub_table(relinfo->data_shndx);
3868 gold_assert(stub_table != NULL);
3870 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3871 stub = stub_table->find_reloc_stub(stub_key);
3872 gold_assert(stub != NULL);
3873 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3874 branch_target = stub_table->address() + stub->offset() + addend;
3875 branch_offset = branch_target - address;
3876 gold_assert(!utils::has_overflow<26>(branch_offset));
3880 // At this point, if we still need to switch mode, the instruction
3881 // must either be a BLX or a BL that can be converted to a BLX.
3885 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3886 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3889 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3890 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3891 return (utils::has_overflow<26>(branch_offset)
3892 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3895 // Relocate THUMB long branches. This handles relocation types
3896 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3897 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3898 // undefined and we do not use PLT in this relocation. In such a case,
3899 // the branch is converted into an NOP.
3901 template<bool big_endian>
3902 typename Arm_relocate_functions<big_endian>::Status
3903 Arm_relocate_functions<big_endian>::thumb_branch_common(
3904 unsigned int r_type,
3905 const Relocate_info<32, big_endian>* relinfo,
3906 unsigned char *view,
3907 const Sized_symbol<32>* gsym,
3908 const Arm_relobj<big_endian>* object,
3910 const Symbol_value<32>* psymval,
3911 Arm_address address,
3912 Arm_address thumb_bit,
3913 bool is_weakly_undefined_without_plt)
3915 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3916 Valtype* wv = reinterpret_cast<Valtype*>(view);
3917 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3918 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3920 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3922 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3923 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3925 // Check that the instruction is valid.
3926 if (r_type == elfcpp::R_ARM_THM_CALL)
3928 if (!is_bl_insn && !is_blx_insn)
3929 return This::STATUS_BAD_RELOC;
3931 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3933 // This cannot be a BLX.
3935 return This::STATUS_BAD_RELOC;
3937 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3939 // Check for Thumb to Thumb call.
3941 return This::STATUS_BAD_RELOC;
3944 gold_warning(_("%s: Thumb BLX instruction targets "
3945 "thumb function '%s'."),
3946 object->name().c_str(),
3947 (gsym ? gsym->name() : "(local)"));
3948 // Convert BLX to BL.
3949 lower_insn |= 0x1000U;
3955 // A branch to an undefined weak symbol is turned into a jump to
3956 // the next instruction unless a PLT entry will be created.
3957 // The jump to the next instruction is optimized as a NOP.W for
3958 // Thumb-2 enabled architectures.
3959 const Target_arm<big_endian>* arm_target =
3960 Target_arm<big_endian>::default_target();
3961 if (is_weakly_undefined_without_plt)
3963 gold_assert(!parameters->options().relocatable());
3964 if (arm_target->may_use_thumb2_nop())
3966 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3967 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3971 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3972 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3974 return This::STATUS_OKAY;
3977 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3978 Arm_address branch_target = psymval->value(object, addend);
3980 // For BLX, bit 1 of target address comes from bit 1 of base address.
3981 bool may_use_blx = arm_target->may_use_blx();
3982 if (thumb_bit == 0 && may_use_blx)
3983 branch_target = utils::bit_select(branch_target, address, 0x2);
3985 int32_t branch_offset = branch_target - address;
3987 // We need a stub if the branch offset is too large or if we need
3989 bool thumb2 = arm_target->using_thumb2();
3990 if (!parameters->options().relocatable()
3991 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
3992 || (thumb2 && utils::has_overflow<25>(branch_offset))
3993 || ((thumb_bit == 0)
3994 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3995 || r_type == elfcpp::R_ARM_THM_JUMP24))))
3997 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3999 Stub_type stub_type =
4000 Reloc_stub::stub_type_for_reloc(r_type, address,
4001 unadjusted_branch_target,
4004 if (stub_type != arm_stub_none)
4006 Stub_table<big_endian>* stub_table =
4007 object->stub_table(relinfo->data_shndx);
4008 gold_assert(stub_table != NULL);
4010 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4011 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4012 gold_assert(stub != NULL);
4013 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4014 branch_target = stub_table->address() + stub->offset() + addend;
4015 if (thumb_bit == 0 && may_use_blx)
4016 branch_target = utils::bit_select(branch_target, address, 0x2);
4017 branch_offset = branch_target - address;
4021 // At this point, if we still need to switch mode, the instruction
4022 // must either be a BLX or a BL that can be converted to a BLX.
4025 gold_assert(may_use_blx
4026 && (r_type == elfcpp::R_ARM_THM_CALL
4027 || r_type == elfcpp::R_ARM_THM_XPC22));
4028 // Make sure this is a BLX.
4029 lower_insn &= ~0x1000U;
4033 // Make sure this is a BL.
4034 lower_insn |= 0x1000U;
4037 // For a BLX instruction, make sure that the relocation is rounded up
4038 // to a word boundary. This follows the semantics of the instruction
4039 // which specifies that bit 1 of the target address will come from bit
4040 // 1 of the base address.
4041 if ((lower_insn & 0x5000U) == 0x4000U)
4042 gold_assert((branch_offset & 3) == 0);
4044 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4045 // We use the Thumb-2 encoding, which is safe even if dealing with
4046 // a Thumb-1 instruction by virtue of our overflow check above. */
4047 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4048 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4050 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4051 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4053 gold_assert(!utils::has_overflow<25>(branch_offset));
4056 ? utils::has_overflow<25>(branch_offset)
4057 : utils::has_overflow<23>(branch_offset))
4058 ? This::STATUS_OVERFLOW
4059 : This::STATUS_OKAY);
4062 // Relocate THUMB-2 long conditional branches.
4063 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4064 // undefined and we do not use PLT in this relocation. In such a case,
4065 // the branch is converted into an NOP.
4067 template<bool big_endian>
4068 typename Arm_relocate_functions<big_endian>::Status
4069 Arm_relocate_functions<big_endian>::thm_jump19(
4070 unsigned char *view,
4071 const Arm_relobj<big_endian>* object,
4072 const Symbol_value<32>* psymval,
4073 Arm_address address,
4074 Arm_address thumb_bit)
4076 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4077 Valtype* wv = reinterpret_cast<Valtype*>(view);
4078 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4079 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4080 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4082 Arm_address branch_target = psymval->value(object, addend);
4083 int32_t branch_offset = branch_target - address;
4085 // ??? Should handle interworking? GCC might someday try to
4086 // use this for tail calls.
4087 // FIXME: We do support thumb entry to PLT yet.
4090 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4091 return This::STATUS_BAD_RELOC;
4094 // Put RELOCATION back into the insn.
4095 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4096 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4098 // Put the relocated value back in the object file:
4099 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4100 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4102 return (utils::has_overflow<21>(branch_offset)
4103 ? This::STATUS_OVERFLOW
4104 : This::STATUS_OKAY);
4107 // Get the GOT section, creating it if necessary.
4109 template<bool big_endian>
4110 Arm_output_data_got<big_endian>*
4111 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4113 if (this->got_ == NULL)
4115 gold_assert(symtab != NULL && layout != NULL);
4117 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4120 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4122 | elfcpp::SHF_WRITE),
4123 this->got_, false, false, false,
4125 // The old GNU linker creates a .got.plt section. We just
4126 // create another set of data in the .got section. Note that we
4127 // always create a PLT if we create a GOT, although the PLT
4129 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4130 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4132 | elfcpp::SHF_WRITE),
4133 this->got_plt_, false, false,
4136 // The first three entries are reserved.
4137 this->got_plt_->set_current_data_size(3 * 4);
4139 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4140 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4141 Symbol_table::PREDEFINED,
4143 0, 0, elfcpp::STT_OBJECT,
4145 elfcpp::STV_HIDDEN, 0,
4151 // Get the dynamic reloc section, creating it if necessary.
4153 template<bool big_endian>
4154 typename Target_arm<big_endian>::Reloc_section*
4155 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4157 if (this->rel_dyn_ == NULL)
4159 gold_assert(layout != NULL);
4160 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4161 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4162 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4163 false, false, false);
4165 return this->rel_dyn_;
4168 // Insn_template methods.
4170 // Return byte size of an instruction template.
4173 Insn_template::size() const
4175 switch (this->type())
4178 case THUMB16_SPECIAL_TYPE:
4189 // Return alignment of an instruction template.
4192 Insn_template::alignment() const
4194 switch (this->type())
4197 case THUMB16_SPECIAL_TYPE:
4208 // Stub_template methods.
4210 Stub_template::Stub_template(
4211 Stub_type type, const Insn_template* insns,
4213 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4214 entry_in_thumb_mode_(false), relocs_()
4218 // Compute byte size and alignment of stub template.
4219 for (size_t i = 0; i < insn_count; i++)
4221 unsigned insn_alignment = insns[i].alignment();
4222 size_t insn_size = insns[i].size();
4223 gold_assert((offset & (insn_alignment - 1)) == 0);
4224 this->alignment_ = std::max(this->alignment_, insn_alignment);
4225 switch (insns[i].type())
4227 case Insn_template::THUMB16_TYPE:
4228 case Insn_template::THUMB16_SPECIAL_TYPE:
4230 this->entry_in_thumb_mode_ = true;
4233 case Insn_template::THUMB32_TYPE:
4234 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4235 this->relocs_.push_back(Reloc(i, offset));
4237 this->entry_in_thumb_mode_ = true;
4240 case Insn_template::ARM_TYPE:
4241 // Handle cases where the target is encoded within the
4243 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4244 this->relocs_.push_back(Reloc(i, offset));
4247 case Insn_template::DATA_TYPE:
4248 // Entry point cannot be data.
4249 gold_assert(i != 0);
4250 this->relocs_.push_back(Reloc(i, offset));
4256 offset += insn_size;
4258 this->size_ = offset;
4263 // Template to implement do_write for a specific target endianness.
4265 template<bool big_endian>
4267 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4269 const Stub_template* stub_template = this->stub_template();
4270 const Insn_template* insns = stub_template->insns();
4272 // FIXME: We do not handle BE8 encoding yet.
4273 unsigned char* pov = view;
4274 for (size_t i = 0; i < stub_template->insn_count(); i++)
4276 switch (insns[i].type())
4278 case Insn_template::THUMB16_TYPE:
4279 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4281 case Insn_template::THUMB16_SPECIAL_TYPE:
4282 elfcpp::Swap<16, big_endian>::writeval(
4284 this->thumb16_special(i));
4286 case Insn_template::THUMB32_TYPE:
4288 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4289 uint32_t lo = insns[i].data() & 0xffff;
4290 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4291 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4294 case Insn_template::ARM_TYPE:
4295 case Insn_template::DATA_TYPE:
4296 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4301 pov += insns[i].size();
4303 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4306 // Reloc_stub::Key methods.
4308 // Dump a Key as a string for debugging.
4311 Reloc_stub::Key::name() const
4313 if (this->r_sym_ == invalid_index)
4315 // Global symbol key name
4316 // <stub-type>:<symbol name>:<addend>.
4317 const std::string sym_name = this->u_.symbol->name();
4318 // We need to print two hex number and two colons. So just add 100 bytes
4319 // to the symbol name size.
4320 size_t len = sym_name.size() + 100;
4321 char* buffer = new char[len];
4322 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4323 sym_name.c_str(), this->addend_);
4324 gold_assert(c > 0 && c < static_cast<int>(len));
4326 return std::string(buffer);
4330 // local symbol key name
4331 // <stub-type>:<object>:<r_sym>:<addend>.
4332 const size_t len = 200;
4334 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4335 this->u_.relobj, this->r_sym_, this->addend_);
4336 gold_assert(c > 0 && c < static_cast<int>(len));
4337 return std::string(buffer);
4341 // Reloc_stub methods.
4343 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4344 // LOCATION to DESTINATION.
4345 // This code is based on the arm_type_of_stub function in
4346 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4350 Reloc_stub::stub_type_for_reloc(
4351 unsigned int r_type,
4352 Arm_address location,
4353 Arm_address destination,
4354 bool target_is_thumb)
4356 Stub_type stub_type = arm_stub_none;
4358 // This is a bit ugly but we want to avoid using a templated class for
4359 // big and little endianities.
4361 bool should_force_pic_veneer;
4364 if (parameters->target().is_big_endian())
4366 const Target_arm<true>* big_endian_target =
4367 Target_arm<true>::default_target();
4368 may_use_blx = big_endian_target->may_use_blx();
4369 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4370 thumb2 = big_endian_target->using_thumb2();
4371 thumb_only = big_endian_target->using_thumb_only();
4375 const Target_arm<false>* little_endian_target =
4376 Target_arm<false>::default_target();
4377 may_use_blx = little_endian_target->may_use_blx();
4378 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4379 thumb2 = little_endian_target->using_thumb2();
4380 thumb_only = little_endian_target->using_thumb_only();
4383 int64_t branch_offset;
4384 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4386 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4387 // base address (instruction address + 4).
4388 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4389 destination = utils::bit_select(destination, location, 0x2);
4390 branch_offset = static_cast<int64_t>(destination) - location;
4392 // Handle cases where:
4393 // - this call goes too far (different Thumb/Thumb2 max
4395 // - it's a Thumb->Arm call and blx is not available, or it's a
4396 // Thumb->Arm branch (not bl). A stub is needed in this case.
4398 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4399 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4401 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4402 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4403 || ((!target_is_thumb)
4404 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4405 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4407 if (target_is_thumb)
4412 stub_type = (parameters->options().shared()
4413 || should_force_pic_veneer)
4416 && (r_type == elfcpp::R_ARM_THM_CALL))
4417 // V5T and above. Stub starts with ARM code, so
4418 // we must be able to switch mode before
4419 // reaching it, which is only possible for 'bl'
4420 // (ie R_ARM_THM_CALL relocation).
4421 ? arm_stub_long_branch_any_thumb_pic
4422 // On V4T, use Thumb code only.
4423 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4427 && (r_type == elfcpp::R_ARM_THM_CALL))
4428 ? arm_stub_long_branch_any_any // V5T and above.
4429 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4433 stub_type = (parameters->options().shared()
4434 || should_force_pic_veneer)
4435 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4436 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4443 // FIXME: We should check that the input section is from an
4444 // object that has interwork enabled.
4446 stub_type = (parameters->options().shared()
4447 || should_force_pic_veneer)
4450 && (r_type == elfcpp::R_ARM_THM_CALL))
4451 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4452 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4456 && (r_type == elfcpp::R_ARM_THM_CALL))
4457 ? arm_stub_long_branch_any_any // V5T and above.
4458 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4460 // Handle v4t short branches.
4461 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4462 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4463 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4464 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4468 else if (r_type == elfcpp::R_ARM_CALL
4469 || r_type == elfcpp::R_ARM_JUMP24
4470 || r_type == elfcpp::R_ARM_PLT32)
4472 branch_offset = static_cast<int64_t>(destination) - location;
4473 if (target_is_thumb)
4477 // FIXME: We should check that the input section is from an
4478 // object that has interwork enabled.
4480 // We have an extra 2-bytes reach because of
4481 // the mode change (bit 24 (H) of BLX encoding).
4482 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4483 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4484 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4485 || (r_type == elfcpp::R_ARM_JUMP24)
4486 || (r_type == elfcpp::R_ARM_PLT32))
4488 stub_type = (parameters->options().shared()
4489 || should_force_pic_veneer)
4492 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4493 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4497 ? arm_stub_long_branch_any_any // V5T and above.
4498 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4504 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4505 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4507 stub_type = (parameters->options().shared()
4508 || should_force_pic_veneer)
4509 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4510 : arm_stub_long_branch_any_any; /// non-PIC.
4518 // Cortex_a8_stub methods.
4520 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4521 // I is the position of the instruction template in the stub template.
4524 Cortex_a8_stub::do_thumb16_special(size_t i)
4526 // The only use of this is to copy condition code from a conditional
4527 // branch being worked around to the corresponding conditional branch in
4529 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4531 uint16_t data = this->stub_template()->insns()[i].data();
4532 gold_assert((data & 0xff00U) == 0xd000U);
4533 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4537 // Stub_factory methods.
4539 Stub_factory::Stub_factory()
4541 // The instruction template sequences are declared as static
4542 // objects and initialized first time the constructor runs.
4544 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4545 // to reach the stub if necessary.
4546 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4548 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4549 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4550 // dcd R_ARM_ABS32(X)
4553 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4555 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4557 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4558 Insn_template::arm_insn(0xe12fff1c), // bx ip
4559 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4560 // dcd R_ARM_ABS32(X)
4563 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4564 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4566 Insn_template::thumb16_insn(0xb401), // push {r0}
4567 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4568 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4569 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4570 Insn_template::thumb16_insn(0x4760), // bx ip
4571 Insn_template::thumb16_insn(0xbf00), // nop
4572 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4573 // dcd R_ARM_ABS32(X)
4576 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4578 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4580 Insn_template::thumb16_insn(0x4778), // bx pc
4581 Insn_template::thumb16_insn(0x46c0), // nop
4582 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4583 Insn_template::arm_insn(0xe12fff1c), // bx ip
4584 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4585 // dcd R_ARM_ABS32(X)
4588 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4590 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4592 Insn_template::thumb16_insn(0x4778), // bx pc
4593 Insn_template::thumb16_insn(0x46c0), // nop
4594 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4595 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4596 // dcd R_ARM_ABS32(X)
4599 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4600 // one, when the destination is close enough.
4601 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4603 Insn_template::thumb16_insn(0x4778), // bx pc
4604 Insn_template::thumb16_insn(0x46c0), // nop
4605 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4608 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4609 // blx to reach the stub if necessary.
4610 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4612 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4613 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4614 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4615 // dcd R_ARM_REL32(X-4)
4618 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4619 // blx to reach the stub if necessary. We can not add into pc;
4620 // it is not guaranteed to mode switch (different in ARMv6 and
4622 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4624 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4625 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4626 Insn_template::arm_insn(0xe12fff1c), // bx ip
4627 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4628 // dcd R_ARM_REL32(X)
4631 // V4T ARM -> ARM long branch stub, PIC.
4632 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4634 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4635 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4636 Insn_template::arm_insn(0xe12fff1c), // bx ip
4637 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4638 // dcd R_ARM_REL32(X)
4641 // V4T Thumb -> ARM long branch stub, PIC.
4642 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4644 Insn_template::thumb16_insn(0x4778), // bx pc
4645 Insn_template::thumb16_insn(0x46c0), // nop
4646 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4647 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4648 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4649 // dcd R_ARM_REL32(X)
4652 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4654 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4656 Insn_template::thumb16_insn(0xb401), // push {r0}
4657 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4658 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4659 Insn_template::thumb16_insn(0x4484), // add ip, r0
4660 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4661 Insn_template::thumb16_insn(0x4760), // bx ip
4662 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4663 // dcd R_ARM_REL32(X)
4666 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4668 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4670 Insn_template::thumb16_insn(0x4778), // bx pc
4671 Insn_template::thumb16_insn(0x46c0), // nop
4672 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4673 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4674 Insn_template::arm_insn(0xe12fff1c), // bx ip
4675 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4676 // dcd R_ARM_REL32(X)
4679 // Cortex-A8 erratum-workaround stubs.
4681 // Stub used for conditional branches (which may be beyond +/-1MB away,
4682 // so we can't use a conditional branch to reach this stub).
4689 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4691 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4692 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4693 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4697 // Stub used for b.w and bl.w instructions.
4699 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4701 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4704 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4706 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4709 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4710 // instruction (which switches to ARM mode) to point to this stub. Jump to
4711 // the real destination using an ARM-mode branch.
4712 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4714 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4717 // Stub used to provide an interworking for R_ARM_V4BX relocation
4718 // (bx r[n] instruction).
4719 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4721 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4722 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4723 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4726 // Fill in the stub template look-up table. Stub templates are constructed
4727 // per instance of Stub_factory for fast look-up without locking
4728 // in a thread-enabled environment.
4730 this->stub_templates_[arm_stub_none] =
4731 new Stub_template(arm_stub_none, NULL, 0);
4733 #define DEF_STUB(x) \
4737 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4738 Stub_type type = arm_stub_##x; \
4739 this->stub_templates_[type] = \
4740 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4748 // Stub_table methods.
4750 // Removel all Cortex-A8 stub.
4752 template<bool big_endian>
4754 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4756 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4757 p != this->cortex_a8_stubs_.end();
4760 this->cortex_a8_stubs_.clear();
4763 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4765 template<bool big_endian>
4767 Stub_table<big_endian>::relocate_stub(
4769 const Relocate_info<32, big_endian>* relinfo,
4770 Target_arm<big_endian>* arm_target,
4771 Output_section* output_section,
4772 unsigned char* view,
4773 Arm_address address,
4774 section_size_type view_size)
4776 const Stub_template* stub_template = stub->stub_template();
4777 if (stub_template->reloc_count() != 0)
4779 // Adjust view to cover the stub only.
4780 section_size_type offset = stub->offset();
4781 section_size_type stub_size = stub_template->size();
4782 gold_assert(offset + stub_size <= view_size);
4784 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4785 address + offset, stub_size);
4789 // Relocate all stubs in this stub table.
4791 template<bool big_endian>
4793 Stub_table<big_endian>::relocate_stubs(
4794 const Relocate_info<32, big_endian>* relinfo,
4795 Target_arm<big_endian>* arm_target,
4796 Output_section* output_section,
4797 unsigned char* view,
4798 Arm_address address,
4799 section_size_type view_size)
4801 // If we are passed a view bigger than the stub table's. we need to
4803 gold_assert(address == this->address()
4805 == static_cast<section_size_type>(this->data_size())));
4807 // Relocate all relocation stubs.
4808 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4809 p != this->reloc_stubs_.end();
4811 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4812 address, view_size);
4814 // Relocate all Cortex-A8 stubs.
4815 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4816 p != this->cortex_a8_stubs_.end();
4818 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4819 address, view_size);
4821 // Relocate all ARM V4BX stubs.
4822 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4823 p != this->arm_v4bx_stubs_.end();
4827 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4828 address, view_size);
4832 // Write out the stubs to file.
4834 template<bool big_endian>
4836 Stub_table<big_endian>::do_write(Output_file* of)
4838 off_t offset = this->offset();
4839 const section_size_type oview_size =
4840 convert_to_section_size_type(this->data_size());
4841 unsigned char* const oview = of->get_output_view(offset, oview_size);
4843 // Write relocation stubs.
4844 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4845 p != this->reloc_stubs_.end();
4848 Reloc_stub* stub = p->second;
4849 Arm_address address = this->address() + stub->offset();
4851 == align_address(address,
4852 stub->stub_template()->alignment()));
4853 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4857 // Write Cortex-A8 stubs.
4858 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4859 p != this->cortex_a8_stubs_.end();
4862 Cortex_a8_stub* stub = p->second;
4863 Arm_address address = this->address() + stub->offset();
4865 == align_address(address,
4866 stub->stub_template()->alignment()));
4867 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4871 // Write ARM V4BX relocation stubs.
4872 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4873 p != this->arm_v4bx_stubs_.end();
4879 Arm_address address = this->address() + (*p)->offset();
4881 == align_address(address,
4882 (*p)->stub_template()->alignment()));
4883 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4887 of->write_output_view(this->offset(), oview_size, oview);
4890 // Update the data size and address alignment of the stub table at the end
4891 // of a relaxation pass. Return true if either the data size or the
4892 // alignment changed in this relaxation pass.
4894 template<bool big_endian>
4896 Stub_table<big_endian>::update_data_size_and_addralign()
4898 // Go over all stubs in table to compute data size and address alignment.
4899 off_t size = this->reloc_stubs_size_;
4900 unsigned addralign = this->reloc_stubs_addralign_;
4902 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4903 p != this->cortex_a8_stubs_.end();
4906 const Stub_template* stub_template = p->second->stub_template();
4907 addralign = std::max(addralign, stub_template->alignment());
4908 size = (align_address(size, stub_template->alignment())
4909 + stub_template->size());
4912 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4913 p != this->arm_v4bx_stubs_.end();
4919 const Stub_template* stub_template = (*p)->stub_template();
4920 addralign = std::max(addralign, stub_template->alignment());
4921 size = (align_address(size, stub_template->alignment())
4922 + stub_template->size());
4925 // Check if either data size or alignment changed in this pass.
4926 // Update prev_data_size_ and prev_addralign_. These will be used
4927 // as the current data size and address alignment for the next pass.
4928 bool changed = size != this->prev_data_size_;
4929 this->prev_data_size_ = size;
4931 if (addralign != this->prev_addralign_)
4933 this->prev_addralign_ = addralign;
4938 // Finalize the stubs. This sets the offsets of the stubs within the stub
4939 // table. It also marks all input sections needing Cortex-A8 workaround.
4941 template<bool big_endian>
4943 Stub_table<big_endian>::finalize_stubs()
4945 off_t off = this->reloc_stubs_size_;
4946 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4947 p != this->cortex_a8_stubs_.end();
4950 Cortex_a8_stub* stub = p->second;
4951 const Stub_template* stub_template = stub->stub_template();
4952 uint64_t stub_addralign = stub_template->alignment();
4953 off = align_address(off, stub_addralign);
4954 stub->set_offset(off);
4955 off += stub_template->size();
4957 // Mark input section so that we can determine later if a code section
4958 // needs the Cortex-A8 workaround quickly.
4959 Arm_relobj<big_endian>* arm_relobj =
4960 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4961 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4964 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4965 p != this->arm_v4bx_stubs_.end();
4971 const Stub_template* stub_template = (*p)->stub_template();
4972 uint64_t stub_addralign = stub_template->alignment();
4973 off = align_address(off, stub_addralign);
4974 (*p)->set_offset(off);
4975 off += stub_template->size();
4978 gold_assert(off <= this->prev_data_size_);
4981 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4982 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4983 // of the address range seen by the linker.
4985 template<bool big_endian>
4987 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4988 Target_arm<big_endian>* arm_target,
4989 unsigned char* view,
4990 Arm_address view_address,
4991 section_size_type view_size)
4993 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4994 for (Cortex_a8_stub_list::const_iterator p =
4995 this->cortex_a8_stubs_.lower_bound(view_address);
4996 ((p != this->cortex_a8_stubs_.end())
4997 && (p->first < (view_address + view_size)));
5000 // We do not store the THUMB bit in the LSB of either the branch address
5001 // or the stub offset. There is no need to strip the LSB.
5002 Arm_address branch_address = p->first;
5003 const Cortex_a8_stub* stub = p->second;
5004 Arm_address stub_address = this->address() + stub->offset();
5006 // Offset of the branch instruction relative to this view.
5007 section_size_type offset =
5008 convert_to_section_size_type(branch_address - view_address);
5009 gold_assert((offset + 4) <= view_size);
5011 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5012 view + offset, branch_address);
5016 // Arm_input_section methods.
5018 // Initialize an Arm_input_section.
5020 template<bool big_endian>
5022 Arm_input_section<big_endian>::init()
5024 Relobj* relobj = this->relobj();
5025 unsigned int shndx = this->shndx();
5027 // Cache these to speed up size and alignment queries. It is too slow
5028 // to call section_addraglin and section_size every time.
5029 this->original_addralign_ =
5030 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5031 this->original_size_ =
5032 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5034 // We want to make this look like the original input section after
5035 // output sections are finalized.
5036 Output_section* os = relobj->output_section(shndx);
5037 off_t offset = relobj->output_section_offset(shndx);
5038 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5039 this->set_address(os->address() + offset);
5040 this->set_file_offset(os->offset() + offset);
5042 this->set_current_data_size(this->original_size_);
5043 this->finalize_data_size();
5046 template<bool big_endian>
5048 Arm_input_section<big_endian>::do_write(Output_file* of)
5050 // We have to write out the original section content.
5051 section_size_type section_size;
5052 const unsigned char* section_contents =
5053 this->relobj()->section_contents(this->shndx(), §ion_size, false);
5054 of->write(this->offset(), section_contents, section_size);
5056 // If this owns a stub table and it is not empty, write it.
5057 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5058 this->stub_table_->write(of);
5061 // Finalize data size.
5063 template<bool big_endian>
5065 Arm_input_section<big_endian>::set_final_data_size()
5067 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5069 if (this->is_stub_table_owner())
5071 this->stub_table_->finalize_data_size();
5072 off = align_address(off, this->stub_table_->addralign());
5073 off += this->stub_table_->data_size();
5075 this->set_data_size(off);
5078 // Reset address and file offset.
5080 template<bool big_endian>
5082 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5084 // Size of the original input section contents.
5085 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5087 // If this is a stub table owner, account for the stub table size.
5088 if (this->is_stub_table_owner())
5090 Stub_table<big_endian>* stub_table = this->stub_table_;
5092 // Reset the stub table's address and file offset. The
5093 // current data size for child will be updated after that.
5094 stub_table_->reset_address_and_file_offset();
5095 off = align_address(off, stub_table_->addralign());
5096 off += stub_table->current_data_size();
5099 this->set_current_data_size(off);
5102 // Arm_exidx_cantunwind methods.
5104 // Write this to Output file OF for a fixed endianness.
5106 template<bool big_endian>
5108 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5110 off_t offset = this->offset();
5111 const section_size_type oview_size = 8;
5112 unsigned char* const oview = of->get_output_view(offset, oview_size);
5114 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5115 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5117 Output_section* os = this->relobj_->output_section(this->shndx_);
5118 gold_assert(os != NULL);
5120 Arm_relobj<big_endian>* arm_relobj =
5121 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5122 Arm_address output_offset =
5123 arm_relobj->get_output_section_offset(this->shndx_);
5124 Arm_address section_start;
5125 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5126 section_start = os->address() + output_offset;
5129 // Currently this only happens for a relaxed section.
5130 const Output_relaxed_input_section* poris =
5131 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5132 gold_assert(poris != NULL);
5133 section_start = poris->address();
5136 // We always append this to the end of an EXIDX section.
5137 Arm_address output_address =
5138 section_start + this->relobj_->section_size(this->shndx_);
5140 // Write out the entry. The first word either points to the beginning
5141 // or after the end of a text section. The second word is the special
5142 // EXIDX_CANTUNWIND value.
5143 uint32_t prel31_offset = output_address - this->address();
5144 if (utils::has_overflow<31>(offset))
5145 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5146 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5147 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5149 of->write_output_view(this->offset(), oview_size, oview);
5152 // Arm_exidx_merged_section methods.
5154 // Constructor for Arm_exidx_merged_section.
5155 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5156 // SECTION_OFFSET_MAP points to a section offset map describing how
5157 // parts of the input section are mapped to output. DELETED_BYTES is
5158 // the number of bytes deleted from the EXIDX input section.
5160 Arm_exidx_merged_section::Arm_exidx_merged_section(
5161 const Arm_exidx_input_section& exidx_input_section,
5162 const Arm_exidx_section_offset_map& section_offset_map,
5163 uint32_t deleted_bytes)
5164 : Output_relaxed_input_section(exidx_input_section.relobj(),
5165 exidx_input_section.shndx(),
5166 exidx_input_section.addralign()),
5167 exidx_input_section_(exidx_input_section),
5168 section_offset_map_(section_offset_map)
5170 // Fix size here so that we do not need to implement set_final_data_size.
5171 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5172 this->fix_data_size();
5175 // Given an input OBJECT, an input section index SHNDX within that
5176 // object, and an OFFSET relative to the start of that input
5177 // section, return whether or not the corresponding offset within
5178 // the output section is known. If this function returns true, it
5179 // sets *POUTPUT to the output offset. The value -1 indicates that
5180 // this input offset is being discarded.
5183 Arm_exidx_merged_section::do_output_offset(
5184 const Relobj* relobj,
5186 section_offset_type offset,
5187 section_offset_type* poutput) const
5189 // We only handle offsets for the original EXIDX input section.
5190 if (relobj != this->exidx_input_section_.relobj()
5191 || shndx != this->exidx_input_section_.shndx())
5194 section_offset_type section_size =
5195 convert_types<section_offset_type>(this->exidx_input_section_.size());
5196 if (offset < 0 || offset >= section_size)
5197 // Input offset is out of valid range.
5201 // We need to look up the section offset map to determine the output
5202 // offset. Find the reference point in map that is first offset
5203 // bigger than or equal to this offset.
5204 Arm_exidx_section_offset_map::const_iterator p =
5205 this->section_offset_map_.lower_bound(offset);
5207 // The section offset maps are build such that this should not happen if
5208 // input offset is in the valid range.
5209 gold_assert(p != this->section_offset_map_.end());
5211 // We need to check if this is dropped.
5212 section_offset_type ref = p->first;
5213 section_offset_type mapped_ref = p->second;
5215 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5216 // Offset is present in output.
5217 *poutput = mapped_ref + (offset - ref);
5219 // Offset is discarded owing to EXIDX entry merging.
5226 // Write this to output file OF.
5229 Arm_exidx_merged_section::do_write(Output_file* of)
5231 // If we retain or discard the whole EXIDX input section, we would
5233 gold_assert(this->data_size() != this->exidx_input_section_.size()
5234 && this->data_size() != 0);
5236 off_t offset = this->offset();
5237 const section_size_type oview_size = this->data_size();
5238 unsigned char* const oview = of->get_output_view(offset, oview_size);
5240 Output_section* os = this->relobj()->output_section(this->shndx());
5241 gold_assert(os != NULL);
5243 // Get contents of EXIDX input section.
5244 section_size_type section_size;
5245 const unsigned char* section_contents =
5246 this->relobj()->section_contents(this->shndx(), §ion_size, false);
5247 gold_assert(section_size == this->exidx_input_section_.size());
5249 // Go over spans of input offsets and write only those that are not
5251 section_offset_type in_start = 0;
5252 section_offset_type out_start = 0;
5253 for(Arm_exidx_section_offset_map::const_iterator p =
5254 this->section_offset_map_.begin();
5255 p != this->section_offset_map_.end();
5258 section_offset_type in_end = p->first;
5259 gold_assert(in_end >= in_start);
5260 section_offset_type out_end = p->second;
5261 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5264 size_t out_chunk_size =
5265 convert_types<size_t>(out_end - out_start + 1);
5266 gold_assert(out_chunk_size == in_chunk_size);
5267 memcpy(oview + out_start, section_contents + in_start,
5269 out_start += out_chunk_size;
5271 in_start += in_chunk_size;
5274 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5275 of->write_output_view(this->offset(), oview_size, oview);
5278 // Arm_exidx_fixup methods.
5280 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5281 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5282 // points to the end of the last seen EXIDX section.
5285 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5287 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5288 && this->last_input_section_ != NULL)
5290 Relobj* relobj = this->last_input_section_->relobj();
5291 unsigned int text_shndx = this->last_input_section_->link();
5292 Arm_exidx_cantunwind* cantunwind =
5293 new Arm_exidx_cantunwind(relobj, text_shndx);
5294 this->exidx_output_section_->add_output_section_data(cantunwind);
5295 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5299 // Process an EXIDX section entry in input. Return whether this entry
5300 // can be deleted in the output. SECOND_WORD in the second word of the
5304 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5307 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5309 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5310 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5311 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5313 else if ((second_word & 0x80000000) != 0)
5315 // Inlined unwinding data. Merge if equal to previous.
5316 delete_entry = (merge_exidx_entries_
5317 && this->last_unwind_type_ == UT_INLINED_ENTRY
5318 && this->last_inlined_entry_ == second_word);
5319 this->last_unwind_type_ = UT_INLINED_ENTRY;
5320 this->last_inlined_entry_ = second_word;
5324 // Normal table entry. In theory we could merge these too,
5325 // but duplicate entries are likely to be much less common.
5326 delete_entry = false;
5327 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5329 return delete_entry;
5332 // Update the current section offset map during EXIDX section fix-up.
5333 // If there is no map, create one. INPUT_OFFSET is the offset of a
5334 // reference point, DELETED_BYTES is the number of deleted by in the
5335 // section so far. If DELETE_ENTRY is true, the reference point and
5336 // all offsets after the previous reference point are discarded.
5339 Arm_exidx_fixup::update_offset_map(
5340 section_offset_type input_offset,
5341 section_size_type deleted_bytes,
5344 if (this->section_offset_map_ == NULL)
5345 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5346 section_offset_type output_offset;
5348 output_offset = Arm_exidx_input_section::invalid_offset;
5350 output_offset = input_offset - deleted_bytes;
5351 (*this->section_offset_map_)[input_offset] = output_offset;
5354 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5355 // bytes deleted. If some entries are merged, also store a pointer to a newly
5356 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5357 // caller owns the map and is responsible for releasing it after use.
5359 template<bool big_endian>
5361 Arm_exidx_fixup::process_exidx_section(
5362 const Arm_exidx_input_section* exidx_input_section,
5363 Arm_exidx_section_offset_map** psection_offset_map)
5365 Relobj* relobj = exidx_input_section->relobj();
5366 unsigned shndx = exidx_input_section->shndx();
5367 section_size_type section_size;
5368 const unsigned char* section_contents =
5369 relobj->section_contents(shndx, §ion_size, false);
5371 if ((section_size % 8) != 0)
5373 // Something is wrong with this section. Better not touch it.
5374 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5375 relobj->name().c_str(), shndx);
5376 this->last_input_section_ = exidx_input_section;
5377 this->last_unwind_type_ = UT_NONE;
5381 uint32_t deleted_bytes = 0;
5382 bool prev_delete_entry = false;
5383 gold_assert(this->section_offset_map_ == NULL);
5385 for (section_size_type i = 0; i < section_size; i += 8)
5387 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5389 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5390 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5392 bool delete_entry = this->process_exidx_entry(second_word);
5394 // Entry deletion causes changes in output offsets. We use a std::map
5395 // to record these. And entry (x, y) means input offset x
5396 // is mapped to output offset y. If y is invalid_offset, then x is
5397 // dropped in the output. Because of the way std::map::lower_bound
5398 // works, we record the last offset in a region w.r.t to keeping or
5399 // dropping. If there is no entry (x0, y0) for an input offset x0,
5400 // the output offset y0 of it is determined by the output offset y1 of
5401 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5402 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5404 if (delete_entry != prev_delete_entry && i != 0)
5405 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5407 // Update total deleted bytes for this entry.
5411 prev_delete_entry = delete_entry;
5414 // If section offset map is not NULL, make an entry for the end of
5416 if (this->section_offset_map_ != NULL)
5417 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5419 *psection_offset_map = this->section_offset_map_;
5420 this->section_offset_map_ = NULL;
5421 this->last_input_section_ = exidx_input_section;
5423 // Set the first output text section so that we can link the EXIDX output
5424 // section to it. Ignore any EXIDX input section that is completely merged.
5425 if (this->first_output_text_section_ == NULL
5426 && deleted_bytes != section_size)
5428 unsigned int link = exidx_input_section->link();
5429 Output_section* os = relobj->output_section(link);
5430 gold_assert(os != NULL);
5431 this->first_output_text_section_ = os;
5434 return deleted_bytes;
5437 // Arm_output_section methods.
5439 // Create a stub group for input sections from BEGIN to END. OWNER
5440 // points to the input section to be the owner a new stub table.
5442 template<bool big_endian>
5444 Arm_output_section<big_endian>::create_stub_group(
5445 Input_section_list::const_iterator begin,
5446 Input_section_list::const_iterator end,
5447 Input_section_list::const_iterator owner,
5448 Target_arm<big_endian>* target,
5449 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5451 // We use a different kind of relaxed section in an EXIDX section.
5452 // The static casting from Output_relaxed_input_section to
5453 // Arm_input_section is invalid in an EXIDX section. We are okay
5454 // because we should not be calling this for an EXIDX section.
5455 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5457 // Currently we convert ordinary input sections into relaxed sections only
5458 // at this point but we may want to support creating relaxed input section
5459 // very early. So we check here to see if owner is already a relaxed
5462 Arm_input_section<big_endian>* arm_input_section;
5463 if (owner->is_relaxed_input_section())
5466 Arm_input_section<big_endian>::as_arm_input_section(
5467 owner->relaxed_input_section());
5471 gold_assert(owner->is_input_section());
5472 // Create a new relaxed input section.
5474 target->new_arm_input_section(owner->relobj(), owner->shndx());
5475 new_relaxed_sections->push_back(arm_input_section);
5478 // Create a stub table.
5479 Stub_table<big_endian>* stub_table =
5480 target->new_stub_table(arm_input_section);
5482 arm_input_section->set_stub_table(stub_table);
5484 Input_section_list::const_iterator p = begin;
5485 Input_section_list::const_iterator prev_p;
5487 // Look for input sections or relaxed input sections in [begin ... end].
5490 if (p->is_input_section() || p->is_relaxed_input_section())
5492 // The stub table information for input sections live
5493 // in their objects.
5494 Arm_relobj<big_endian>* arm_relobj =
5495 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5496 arm_relobj->set_stub_table(p->shndx(), stub_table);
5500 while (prev_p != end);
5503 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5504 // of stub groups. We grow a stub group by adding input section until the
5505 // size is just below GROUP_SIZE. The last input section will be converted
5506 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5507 // input section after the stub table, effectively double the group size.
5509 // This is similar to the group_sections() function in elf32-arm.c but is
5510 // implemented differently.
5512 template<bool big_endian>
5514 Arm_output_section<big_endian>::group_sections(
5515 section_size_type group_size,
5516 bool stubs_always_after_branch,
5517 Target_arm<big_endian>* target)
5519 // We only care about sections containing code.
5520 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5523 // States for grouping.
5526 // No group is being built.
5528 // A group is being built but the stub table is not found yet.
5529 // We keep group a stub group until the size is just under GROUP_SIZE.
5530 // The last input section in the group will be used as the stub table.
5531 FINDING_STUB_SECTION,
5532 // A group is being built and we have already found a stub table.
5533 // We enter this state to grow a stub group by adding input section
5534 // after the stub table. This effectively doubles the group size.
5538 // Any newly created relaxed sections are stored here.
5539 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5541 State state = NO_GROUP;
5542 section_size_type off = 0;
5543 section_size_type group_begin_offset = 0;
5544 section_size_type group_end_offset = 0;
5545 section_size_type stub_table_end_offset = 0;
5546 Input_section_list::const_iterator group_begin =
5547 this->input_sections().end();
5548 Input_section_list::const_iterator stub_table =
5549 this->input_sections().end();
5550 Input_section_list::const_iterator group_end = this->input_sections().end();
5551 for (Input_section_list::const_iterator p = this->input_sections().begin();
5552 p != this->input_sections().end();
5555 section_size_type section_begin_offset =
5556 align_address(off, p->addralign());
5557 section_size_type section_end_offset =
5558 section_begin_offset + p->data_size();
5560 // Check to see if we should group the previously seens sections.
5566 case FINDING_STUB_SECTION:
5567 // Adding this section makes the group larger than GROUP_SIZE.
5568 if (section_end_offset - group_begin_offset >= group_size)
5570 if (stubs_always_after_branch)
5572 gold_assert(group_end != this->input_sections().end());
5573 this->create_stub_group(group_begin, group_end, group_end,
5574 target, &new_relaxed_sections);
5579 // But wait, there's more! Input sections up to
5580 // stub_group_size bytes after the stub table can be
5581 // handled by it too.
5582 state = HAS_STUB_SECTION;
5583 stub_table = group_end;
5584 stub_table_end_offset = group_end_offset;
5589 case HAS_STUB_SECTION:
5590 // Adding this section makes the post stub-section group larger
5592 if (section_end_offset - stub_table_end_offset >= group_size)
5594 gold_assert(group_end != this->input_sections().end());
5595 this->create_stub_group(group_begin, group_end, stub_table,
5596 target, &new_relaxed_sections);
5605 // If we see an input section and currently there is no group, start
5606 // a new one. Skip any empty sections.
5607 if ((p->is_input_section() || p->is_relaxed_input_section())
5608 && (p->relobj()->section_size(p->shndx()) != 0))
5610 if (state == NO_GROUP)
5612 state = FINDING_STUB_SECTION;
5614 group_begin_offset = section_begin_offset;
5617 // Keep track of the last input section seen.
5619 group_end_offset = section_end_offset;
5622 off = section_end_offset;
5625 // Create a stub group for any ungrouped sections.
5626 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5628 gold_assert(group_end != this->input_sections().end());
5629 this->create_stub_group(group_begin, group_end,
5630 (state == FINDING_STUB_SECTION
5633 target, &new_relaxed_sections);
5636 // Convert input section into relaxed input section in a batch.
5637 if (!new_relaxed_sections.empty())
5638 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5640 // Update the section offsets
5641 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5643 Arm_relobj<big_endian>* arm_relobj =
5644 Arm_relobj<big_endian>::as_arm_relobj(
5645 new_relaxed_sections[i]->relobj());
5646 unsigned int shndx = new_relaxed_sections[i]->shndx();
5647 // Tell Arm_relobj that this input section is converted.
5648 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5652 // Append non empty text sections in this to LIST in ascending
5653 // order of their position in this.
5655 template<bool big_endian>
5657 Arm_output_section<big_endian>::append_text_sections_to_list(
5658 Text_section_list* list)
5660 // We only care about text sections.
5661 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5664 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5666 for (Input_section_list::const_iterator p = this->input_sections().begin();
5667 p != this->input_sections().end();
5670 // We only care about plain or relaxed input sections. We also
5671 // ignore any merged sections.
5672 if ((p->is_input_section() || p->is_relaxed_input_section())
5673 && p->data_size() != 0)
5674 list->push_back(Text_section_list::value_type(p->relobj(),
5679 template<bool big_endian>
5681 Arm_output_section<big_endian>::fix_exidx_coverage(
5683 const Text_section_list& sorted_text_sections,
5684 Symbol_table* symtab,
5685 bool merge_exidx_entries)
5687 // We should only do this for the EXIDX output section.
5688 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5690 // We don't want the relaxation loop to undo these changes, so we discard
5691 // the current saved states and take another one after the fix-up.
5692 this->discard_states();
5694 // Remove all input sections.
5695 uint64_t address = this->address();
5696 typedef std::list<Output_section::Input_section> Input_section_list;
5697 Input_section_list input_sections;
5698 this->reset_address_and_file_offset();
5699 this->get_input_sections(address, std::string(""), &input_sections);
5701 if (!this->input_sections().empty())
5702 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5704 // Go through all the known input sections and record them.
5705 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5706 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5707 Section_id_hash> Text_to_exidx_map;
5708 Text_to_exidx_map text_to_exidx_map;
5709 for (Input_section_list::const_iterator p = input_sections.begin();
5710 p != input_sections.end();
5713 // This should never happen. At this point, we should only see
5714 // plain EXIDX input sections.
5715 gold_assert(!p->is_relaxed_input_section());
5716 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5719 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5721 // Go over the sorted text sections.
5722 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5723 Section_id_set processed_input_sections;
5724 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5725 p != sorted_text_sections.end();
5728 Relobj* relobj = p->first;
5729 unsigned int shndx = p->second;
5731 Arm_relobj<big_endian>* arm_relobj =
5732 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5733 const Arm_exidx_input_section* exidx_input_section =
5734 arm_relobj->exidx_input_section_by_link(shndx);
5736 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5737 // entry pointing to the end of the last seen EXIDX section.
5738 if (exidx_input_section == NULL)
5740 exidx_fixup.add_exidx_cantunwind_as_needed();
5744 Relobj* exidx_relobj = exidx_input_section->relobj();
5745 unsigned int exidx_shndx = exidx_input_section->shndx();
5746 Section_id sid(exidx_relobj, exidx_shndx);
5747 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5748 if (iter == text_to_exidx_map.end())
5750 // This is odd. We have not seen this EXIDX input section before.
5751 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5752 // issue a warning instead. We assume the user knows what he
5753 // or she is doing. Otherwise, this is an error.
5754 if (layout->script_options()->saw_sections_clause())
5755 gold_warning(_("unwinding may not work because EXIDX input section"
5756 " %u of %s is not in EXIDX output section"),
5757 exidx_shndx, exidx_relobj->name().c_str());
5759 gold_error(_("unwinding may not work because EXIDX input section"
5760 " %u of %s is not in EXIDX output section"),
5761 exidx_shndx, exidx_relobj->name().c_str());
5763 exidx_fixup.add_exidx_cantunwind_as_needed();
5767 // Fix up coverage and append input section to output data list.
5768 Arm_exidx_section_offset_map* section_offset_map = NULL;
5769 uint32_t deleted_bytes =
5770 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5771 §ion_offset_map);
5773 if (deleted_bytes == exidx_input_section->size())
5775 // The whole EXIDX section got merged. Remove it from output.
5776 gold_assert(section_offset_map == NULL);
5777 exidx_relobj->set_output_section(exidx_shndx, NULL);
5779 // All local symbols defined in this input section will be dropped.
5780 // We need to adjust output local symbol count.
5781 arm_relobj->set_output_local_symbol_count_needs_update();
5783 else if (deleted_bytes > 0)
5785 // Some entries are merged. We need to convert this EXIDX input
5786 // section into a relaxed section.
5787 gold_assert(section_offset_map != NULL);
5788 Arm_exidx_merged_section* merged_section =
5789 new Arm_exidx_merged_section(*exidx_input_section,
5790 *section_offset_map, deleted_bytes);
5791 this->add_relaxed_input_section(merged_section);
5792 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5794 // All local symbols defined in discarded portions of this input
5795 // section will be dropped. We need to adjust output local symbol
5797 arm_relobj->set_output_local_symbol_count_needs_update();
5801 // Just add back the EXIDX input section.
5802 gold_assert(section_offset_map == NULL);
5803 const Output_section::Input_section* pis = iter->second;
5804 gold_assert(pis->is_input_section());
5805 this->add_script_input_section(*pis);
5808 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5811 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5812 exidx_fixup.add_exidx_cantunwind_as_needed();
5814 // Remove any known EXIDX input sections that are not processed.
5815 for (Input_section_list::const_iterator p = input_sections.begin();
5816 p != input_sections.end();
5819 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5820 == processed_input_sections.end())
5822 // We only discard a known EXIDX section because its linked
5823 // text section has been folded by ICF.
5824 Arm_relobj<big_endian>* arm_relobj =
5825 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5826 const Arm_exidx_input_section* exidx_input_section =
5827 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5828 gold_assert(exidx_input_section != NULL);
5829 unsigned int text_shndx = exidx_input_section->link();
5830 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5832 // Remove this from link. We also need to recount the
5834 p->relobj()->set_output_section(p->shndx(), NULL);
5835 arm_relobj->set_output_local_symbol_count_needs_update();
5839 // Link exidx output section to the first seen output section and
5840 // set correct entry size.
5841 this->set_link_section(exidx_fixup.first_output_text_section());
5842 this->set_entsize(8);
5844 // Make changes permanent.
5845 this->save_states();
5846 this->set_section_offsets_need_adjustment();
5849 // Arm_relobj methods.
5851 // Determine if an input section is scannable for stub processing. SHDR is
5852 // the header of the section and SHNDX is the section index. OS is the output
5853 // section for the input section and SYMTAB is the global symbol table used to
5854 // look up ICF information.
5856 template<bool big_endian>
5858 Arm_relobj<big_endian>::section_is_scannable(
5859 const elfcpp::Shdr<32, big_endian>& shdr,
5861 const Output_section* os,
5862 const Symbol_table *symtab)
5864 // Skip any empty sections, unallocated sections or sections whose
5865 // type are not SHT_PROGBITS.
5866 if (shdr.get_sh_size() == 0
5867 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5868 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5871 // Skip any discarded or ICF'ed sections.
5872 if (os == NULL || symtab->is_section_folded(this, shndx))
5875 // If this requires special offset handling, check to see if it is
5876 // a relaxed section. If this is not, then it is a merged section that
5877 // we cannot handle.
5878 if (this->is_output_section_offset_invalid(shndx))
5880 const Output_relaxed_input_section* poris =
5881 os->find_relaxed_input_section(this, shndx);
5889 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5890 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5892 template<bool big_endian>
5894 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5895 const elfcpp::Shdr<32, big_endian>& shdr,
5896 const Relobj::Output_sections& out_sections,
5897 const Symbol_table *symtab,
5898 const unsigned char* pshdrs)
5900 unsigned int sh_type = shdr.get_sh_type();
5901 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5904 // Ignore empty section.
5905 off_t sh_size = shdr.get_sh_size();
5909 // Ignore reloc section with unexpected symbol table. The
5910 // error will be reported in the final link.
5911 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5914 unsigned int reloc_size;
5915 if (sh_type == elfcpp::SHT_REL)
5916 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5918 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5920 // Ignore reloc section with unexpected entsize or uneven size.
5921 // The error will be reported in the final link.
5922 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5925 // Ignore reloc section with bad info. This error will be
5926 // reported in the final link.
5927 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5928 if (index >= this->shnum())
5931 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5932 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5933 return this->section_is_scannable(text_shdr, index,
5934 out_sections[index], symtab);
5937 // Return the output address of either a plain input section or a relaxed
5938 // input section. SHNDX is the section index. We define and use this
5939 // instead of calling Output_section::output_address because that is slow
5940 // for large output.
5942 template<bool big_endian>
5944 Arm_relobj<big_endian>::simple_input_section_output_address(
5948 if (this->is_output_section_offset_invalid(shndx))
5950 const Output_relaxed_input_section* poris =
5951 os->find_relaxed_input_section(this, shndx);
5952 // We do not handle merged sections here.
5953 gold_assert(poris != NULL);
5954 return poris->address();
5957 return os->address() + this->get_output_section_offset(shndx);
5960 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5961 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5963 template<bool big_endian>
5965 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5966 const elfcpp::Shdr<32, big_endian>& shdr,
5969 const Symbol_table* symtab)
5971 if (!this->section_is_scannable(shdr, shndx, os, symtab))
5974 // If the section does not cross any 4K-boundaries, it does not need to
5976 Arm_address address = this->simple_input_section_output_address(shndx, os);
5977 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5983 // Scan a section for Cortex-A8 workaround.
5985 template<bool big_endian>
5987 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5988 const elfcpp::Shdr<32, big_endian>& shdr,
5991 Target_arm<big_endian>* arm_target)
5993 // Look for the first mapping symbol in this section. It should be
5995 Mapping_symbol_position section_start(shndx, 0);
5996 typename Mapping_symbols_info::const_iterator p =
5997 this->mapping_symbols_info_.lower_bound(section_start);
5999 // There are no mapping symbols for this section. Treat it as a data-only
6000 // section. Issue a warning if section is marked as containing
6002 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6004 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6005 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6006 "erratum because it has no mapping symbols."),
6007 shndx, this->name().c_str());
6011 Arm_address output_address =
6012 this->simple_input_section_output_address(shndx, os);
6014 // Get the section contents.
6015 section_size_type input_view_size = 0;
6016 const unsigned char* input_view =
6017 this->section_contents(shndx, &input_view_size, false);
6019 // We need to go through the mapping symbols to determine what to
6020 // scan. There are two reasons. First, we should look at THUMB code and
6021 // THUMB code only. Second, we only want to look at the 4K-page boundary
6022 // to speed up the scanning.
6024 while (p != this->mapping_symbols_info_.end()
6025 && p->first.first == shndx)
6027 typename Mapping_symbols_info::const_iterator next =
6028 this->mapping_symbols_info_.upper_bound(p->first);
6030 // Only scan part of a section with THUMB code.
6031 if (p->second == 't')
6033 // Determine the end of this range.
6034 section_size_type span_start =
6035 convert_to_section_size_type(p->first.second);
6036 section_size_type span_end;
6037 if (next != this->mapping_symbols_info_.end()
6038 && next->first.first == shndx)
6039 span_end = convert_to_section_size_type(next->first.second);
6041 span_end = convert_to_section_size_type(shdr.get_sh_size());
6043 if (((span_start + output_address) & ~0xfffUL)
6044 != ((span_end + output_address - 1) & ~0xfffUL))
6046 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6047 span_start, span_end,
6057 // Scan relocations for stub generation.
6059 template<bool big_endian>
6061 Arm_relobj<big_endian>::scan_sections_for_stubs(
6062 Target_arm<big_endian>* arm_target,
6063 const Symbol_table* symtab,
6064 const Layout* layout)
6066 unsigned int shnum = this->shnum();
6067 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6069 // Read the section headers.
6070 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6074 // To speed up processing, we set up hash tables for fast lookup of
6075 // input offsets to output addresses.
6076 this->initialize_input_to_output_maps();
6078 const Relobj::Output_sections& out_sections(this->output_sections());
6080 Relocate_info<32, big_endian> relinfo;
6081 relinfo.symtab = symtab;
6082 relinfo.layout = layout;
6083 relinfo.object = this;
6085 // Do relocation stubs scanning.
6086 const unsigned char* p = pshdrs + shdr_size;
6087 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6089 const elfcpp::Shdr<32, big_endian> shdr(p);
6090 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6093 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6094 Arm_address output_offset = this->get_output_section_offset(index);
6095 Arm_address output_address;
6096 if (output_offset != invalid_address)
6097 output_address = out_sections[index]->address() + output_offset;
6100 // Currently this only happens for a relaxed section.
6101 const Output_relaxed_input_section* poris =
6102 out_sections[index]->find_relaxed_input_section(this, index);
6103 gold_assert(poris != NULL);
6104 output_address = poris->address();
6107 // Get the relocations.
6108 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6112 // Get the section contents. This does work for the case in which
6113 // we modify the contents of an input section. We need to pass the
6114 // output view under such circumstances.
6115 section_size_type input_view_size = 0;
6116 const unsigned char* input_view =
6117 this->section_contents(index, &input_view_size, false);
6119 relinfo.reloc_shndx = i;
6120 relinfo.data_shndx = index;
6121 unsigned int sh_type = shdr.get_sh_type();
6122 unsigned int reloc_size;
6123 if (sh_type == elfcpp::SHT_REL)
6124 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6126 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6128 Output_section* os = out_sections[index];
6129 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6130 shdr.get_sh_size() / reloc_size,
6132 output_offset == invalid_address,
6133 input_view, output_address,
6138 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6139 // after its relocation section, if there is one, is processed for
6140 // relocation stubs. Merging this loop with the one above would have been
6141 // complicated since we would have had to make sure that relocation stub
6142 // scanning is done first.
6143 if (arm_target->fix_cortex_a8())
6145 const unsigned char* p = pshdrs + shdr_size;
6146 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6148 const elfcpp::Shdr<32, big_endian> shdr(p);
6149 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6152 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6157 // After we've done the relocations, we release the hash tables,
6158 // since we no longer need them.
6159 this->free_input_to_output_maps();
6162 // Count the local symbols. The ARM backend needs to know if a symbol
6163 // is a THUMB function or not. For global symbols, it is easy because
6164 // the Symbol object keeps the ELF symbol type. For local symbol it is
6165 // harder because we cannot access this information. So we override the
6166 // do_count_local_symbol in parent and scan local symbols to mark
6167 // THUMB functions. This is not the most efficient way but I do not want to
6168 // slow down other ports by calling a per symbol targer hook inside
6169 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6171 template<bool big_endian>
6173 Arm_relobj<big_endian>::do_count_local_symbols(
6174 Stringpool_template<char>* pool,
6175 Stringpool_template<char>* dynpool)
6177 // We need to fix-up the values of any local symbols whose type are
6180 // Ask parent to count the local symbols.
6181 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6182 const unsigned int loccount = this->local_symbol_count();
6186 // Intialize the thumb function bit-vector.
6187 std::vector<bool> empty_vector(loccount, false);
6188 this->local_symbol_is_thumb_function_.swap(empty_vector);
6190 // Read the symbol table section header.
6191 const unsigned int symtab_shndx = this->symtab_shndx();
6192 elfcpp::Shdr<32, big_endian>
6193 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6194 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6196 // Read the local symbols.
6197 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6198 gold_assert(loccount == symtabshdr.get_sh_info());
6199 off_t locsize = loccount * sym_size;
6200 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6201 locsize, true, true);
6203 // For mapping symbol processing, we need to read the symbol names.
6204 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6205 if (strtab_shndx >= this->shnum())
6207 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6211 elfcpp::Shdr<32, big_endian>
6212 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6213 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6215 this->error(_("symbol table name section has wrong type: %u"),
6216 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6219 const char* pnames =
6220 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6221 strtabshdr.get_sh_size(),
6224 // Loop over the local symbols and mark any local symbols pointing
6225 // to THUMB functions.
6227 // Skip the first dummy symbol.
6229 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6230 this->local_values();
6231 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6233 elfcpp::Sym<32, big_endian> sym(psyms);
6234 elfcpp::STT st_type = sym.get_st_type();
6235 Symbol_value<32>& lv((*plocal_values)[i]);
6236 Arm_address input_value = lv.input_value();
6238 // Check to see if this is a mapping symbol.
6239 const char* sym_name = pnames + sym.get_st_name();
6240 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6243 unsigned int input_shndx =
6244 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6245 gold_assert(is_ordinary);
6247 // Strip of LSB in case this is a THUMB symbol.
6248 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6249 this->mapping_symbols_info_[msp] = sym_name[1];
6252 if (st_type == elfcpp::STT_ARM_TFUNC
6253 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6255 // This is a THUMB function. Mark this and canonicalize the
6256 // symbol value by setting LSB.
6257 this->local_symbol_is_thumb_function_[i] = true;
6258 if ((input_value & 1) == 0)
6259 lv.set_input_value(input_value | 1);
6264 // Relocate sections.
6265 template<bool big_endian>
6267 Arm_relobj<big_endian>::do_relocate_sections(
6268 const Symbol_table* symtab,
6269 const Layout* layout,
6270 const unsigned char* pshdrs,
6271 typename Sized_relobj<32, big_endian>::Views* pviews)
6273 // Call parent to relocate sections.
6274 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6277 // We do not generate stubs if doing a relocatable link.
6278 if (parameters->options().relocatable())
6281 // Relocate stub tables.
6282 unsigned int shnum = this->shnum();
6284 Target_arm<big_endian>* arm_target =
6285 Target_arm<big_endian>::default_target();
6287 Relocate_info<32, big_endian> relinfo;
6288 relinfo.symtab = symtab;
6289 relinfo.layout = layout;
6290 relinfo.object = this;
6292 for (unsigned int i = 1; i < shnum; ++i)
6294 Arm_input_section<big_endian>* arm_input_section =
6295 arm_target->find_arm_input_section(this, i);
6297 if (arm_input_section != NULL
6298 && arm_input_section->is_stub_table_owner()
6299 && !arm_input_section->stub_table()->empty())
6301 // We cannot discard a section if it owns a stub table.
6302 Output_section* os = this->output_section(i);
6303 gold_assert(os != NULL);
6305 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6306 relinfo.reloc_shdr = NULL;
6307 relinfo.data_shndx = i;
6308 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6310 gold_assert((*pviews)[i].view != NULL);
6312 // We are passed the output section view. Adjust it to cover the
6314 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6315 gold_assert((stub_table->address() >= (*pviews)[i].address)
6316 && ((stub_table->address() + stub_table->data_size())
6317 <= (*pviews)[i].address + (*pviews)[i].view_size));
6319 off_t offset = stub_table->address() - (*pviews)[i].address;
6320 unsigned char* view = (*pviews)[i].view + offset;
6321 Arm_address address = stub_table->address();
6322 section_size_type view_size = stub_table->data_size();
6324 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6328 // Apply Cortex A8 workaround if applicable.
6329 if (this->section_has_cortex_a8_workaround(i))
6331 unsigned char* view = (*pviews)[i].view;
6332 Arm_address view_address = (*pviews)[i].address;
6333 section_size_type view_size = (*pviews)[i].view_size;
6334 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6336 // Adjust view to cover section.
6337 Output_section* os = this->output_section(i);
6338 gold_assert(os != NULL);
6339 Arm_address section_address =
6340 this->simple_input_section_output_address(i, os);
6341 uint64_t section_size = this->section_size(i);
6343 gold_assert(section_address >= view_address
6344 && ((section_address + section_size)
6345 <= (view_address + view_size)));
6347 unsigned char* section_view = view + (section_address - view_address);
6349 // Apply the Cortex-A8 workaround to the output address range
6350 // corresponding to this input section.
6351 stub_table->apply_cortex_a8_workaround_to_address_range(
6360 // Find the linked text section of an EXIDX section by looking the the first
6361 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6362 // must be linked to to its associated code section via the sh_link field of
6363 // its section header. However, some tools are broken and the link is not
6364 // always set. LD just drops such an EXIDX section silently, causing the
6365 // associated code not unwindabled. Here we try a little bit harder to
6366 // discover the linked code section.
6368 // PSHDR points to the section header of a relocation section of an EXIDX
6369 // section. If we can find a linked text section, return true and
6370 // store the text section index in the location PSHNDX. Otherwise
6373 template<bool big_endian>
6375 Arm_relobj<big_endian>::find_linked_text_section(
6376 const unsigned char* pshdr,
6377 const unsigned char* psyms,
6378 unsigned int* pshndx)
6380 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6382 // If there is no relocation, we cannot find the linked text section.
6384 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6385 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6387 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6388 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6390 // Get the relocations.
6391 const unsigned char* prelocs =
6392 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6394 // Find the REL31 relocation for the first word of the first EXIDX entry.
6395 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6397 Arm_address r_offset;
6398 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6399 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6401 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6402 r_info = reloc.get_r_info();
6403 r_offset = reloc.get_r_offset();
6407 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6408 r_info = reloc.get_r_info();
6409 r_offset = reloc.get_r_offset();
6412 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6413 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6416 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6418 || r_sym >= this->local_symbol_count()
6422 // This is the relocation for the first word of the first EXIDX entry.
6423 // We expect to see a local section symbol.
6424 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6425 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6426 if (sym.get_st_type() == elfcpp::STT_SECTION)
6430 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6431 gold_assert(is_ordinary);
6441 // Make an EXIDX input section object for an EXIDX section whose index is
6442 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6443 // is the section index of the linked text section.
6445 template<bool big_endian>
6447 Arm_relobj<big_endian>::make_exidx_input_section(
6449 const elfcpp::Shdr<32, big_endian>& shdr,
6450 unsigned int text_shndx)
6452 // Issue an error and ignore this EXIDX section if it points to a text
6453 // section already has an EXIDX section.
6454 if (this->exidx_section_map_[text_shndx] != NULL)
6456 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6458 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6459 text_shndx, this->name().c_str());
6463 // Create an Arm_exidx_input_section object for this EXIDX section.
6464 Arm_exidx_input_section* exidx_input_section =
6465 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6466 shdr.get_sh_addralign());
6467 this->exidx_section_map_[text_shndx] = exidx_input_section;
6469 // Also map the EXIDX section index to this.
6470 gold_assert(this->exidx_section_map_[shndx] == NULL);
6471 this->exidx_section_map_[shndx] = exidx_input_section;
6474 // Read the symbol information.
6476 template<bool big_endian>
6478 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6480 // Call parent class to read symbol information.
6481 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6483 // If this input file is a binary file, it has no processor
6484 // specific flags and attributes section.
6485 Input_file::Format format = this->input_file()->format();
6486 if (format != Input_file::FORMAT_ELF)
6488 gold_assert(format == Input_file::FORMAT_BINARY);
6489 this->merge_flags_and_attributes_ = false;
6493 // Read processor-specific flags in ELF file header.
6494 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6495 elfcpp::Elf_sizes<32>::ehdr_size,
6497 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6498 this->processor_specific_flags_ = ehdr.get_e_flags();
6500 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6502 std::vector<unsigned int> deferred_exidx_sections;
6503 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6504 const unsigned char* pshdrs = sd->section_headers->data();
6505 const unsigned char *ps = pshdrs + shdr_size;
6506 bool must_merge_flags_and_attributes = false;
6507 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6509 elfcpp::Shdr<32, big_endian> shdr(ps);
6511 // Sometimes an object has no contents except the section name string
6512 // table and an empty symbol table with the undefined symbol. We
6513 // don't want to merge processor-specific flags from such an object.
6514 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6516 // Symbol table is not empty.
6517 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6518 elfcpp::Elf_sizes<32>::sym_size;
6519 if (shdr.get_sh_size() > sym_size)
6520 must_merge_flags_and_attributes = true;
6522 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6523 // If this is neither an empty symbol table nor a string table,
6525 must_merge_flags_and_attributes = true;
6527 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6529 gold_assert(this->attributes_section_data_ == NULL);
6530 section_offset_type section_offset = shdr.get_sh_offset();
6531 section_size_type section_size =
6532 convert_to_section_size_type(shdr.get_sh_size());
6533 File_view* view = this->get_lasting_view(section_offset,
6534 section_size, true, false);
6535 this->attributes_section_data_ =
6536 new Attributes_section_data(view->data(), section_size);
6538 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6540 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6541 if (text_shndx >= this->shnum())
6542 gold_error(_("EXIDX section %u linked to invalid section %u"),
6544 else if (text_shndx == elfcpp::SHN_UNDEF)
6545 deferred_exidx_sections.push_back(i);
6547 this->make_exidx_input_section(i, shdr, text_shndx);
6552 if (!must_merge_flags_and_attributes)
6554 this->merge_flags_and_attributes_ = false;
6558 // Some tools are broken and they do not set the link of EXIDX sections.
6559 // We look at the first relocation to figure out the linked sections.
6560 if (!deferred_exidx_sections.empty())
6562 // We need to go over the section headers again to find the mapping
6563 // from sections being relocated to their relocation sections. This is
6564 // a bit inefficient as we could do that in the loop above. However,
6565 // we do not expect any deferred EXIDX sections normally. So we do not
6566 // want to slow down the most common path.
6567 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6568 Reloc_map reloc_map;
6569 ps = pshdrs + shdr_size;
6570 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6572 elfcpp::Shdr<32, big_endian> shdr(ps);
6573 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6574 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6576 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6577 if (info_shndx >= this->shnum())
6578 gold_error(_("relocation section %u has invalid info %u"),
6580 Reloc_map::value_type value(info_shndx, i);
6581 std::pair<Reloc_map::iterator, bool> result =
6582 reloc_map.insert(value);
6584 gold_error(_("section %u has multiple relocation sections "
6586 info_shndx, i, reloc_map[info_shndx]);
6590 // Read the symbol table section header.
6591 const unsigned int symtab_shndx = this->symtab_shndx();
6592 elfcpp::Shdr<32, big_endian>
6593 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6594 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6596 // Read the local symbols.
6597 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6598 const unsigned int loccount = this->local_symbol_count();
6599 gold_assert(loccount == symtabshdr.get_sh_info());
6600 off_t locsize = loccount * sym_size;
6601 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6602 locsize, true, true);
6604 // Process the deferred EXIDX sections.
6605 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6607 unsigned int shndx = deferred_exidx_sections[i];
6608 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6609 unsigned int text_shndx;
6610 Reloc_map::const_iterator it = reloc_map.find(shndx);
6611 if (it != reloc_map.end()
6612 && find_linked_text_section(pshdrs + it->second * shdr_size,
6613 psyms, &text_shndx))
6614 this->make_exidx_input_section(shndx, shdr, text_shndx);
6616 gold_error(_("EXIDX section %u has no linked text section."),
6622 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6623 // sections for unwinding. These sections are referenced implicitly by
6624 // text sections linked in the section headers. If we ignore these implict
6625 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6626 // will be garbage-collected incorrectly. Hence we override the same function
6627 // in the base class to handle these implicit references.
6629 template<bool big_endian>
6631 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6633 Read_relocs_data* rd)
6635 // First, call base class method to process relocations in this object.
6636 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6638 // If --gc-sections is not specified, there is nothing more to do.
6639 // This happens when --icf is used but --gc-sections is not.
6640 if (!parameters->options().gc_sections())
6643 unsigned int shnum = this->shnum();
6644 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6645 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6649 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6650 // to these from the linked text sections.
6651 const unsigned char* ps = pshdrs + shdr_size;
6652 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6654 elfcpp::Shdr<32, big_endian> shdr(ps);
6655 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6657 // Found an .ARM.exidx section, add it to the set of reachable
6658 // sections from its linked text section.
6659 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6660 symtab->gc()->add_reference(this, text_shndx, this, i);
6665 // Update output local symbol count. Owing to EXIDX entry merging, some local
6666 // symbols will be removed in output. Adjust output local symbol count
6667 // accordingly. We can only changed the static output local symbol count. It
6668 // is too late to change the dynamic symbols.
6670 template<bool big_endian>
6672 Arm_relobj<big_endian>::update_output_local_symbol_count()
6674 // Caller should check that this needs updating. We want caller checking
6675 // because output_local_symbol_count_needs_update() is most likely inlined.
6676 gold_assert(this->output_local_symbol_count_needs_update_);
6678 gold_assert(this->symtab_shndx() != -1U);
6679 if (this->symtab_shndx() == 0)
6681 // This object has no symbols. Weird but legal.
6685 // Read the symbol table section header.
6686 const unsigned int symtab_shndx = this->symtab_shndx();
6687 elfcpp::Shdr<32, big_endian>
6688 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6689 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6691 // Read the local symbols.
6692 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6693 const unsigned int loccount = this->local_symbol_count();
6694 gold_assert(loccount == symtabshdr.get_sh_info());
6695 off_t locsize = loccount * sym_size;
6696 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6697 locsize, true, true);
6699 // Loop over the local symbols.
6701 typedef typename Sized_relobj<32, big_endian>::Output_sections
6703 const Output_sections& out_sections(this->output_sections());
6704 unsigned int shnum = this->shnum();
6705 unsigned int count = 0;
6706 // Skip the first, dummy, symbol.
6708 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6710 elfcpp::Sym<32, big_endian> sym(psyms);
6712 Symbol_value<32>& lv((*this->local_values())[i]);
6714 // This local symbol was already discarded by do_count_local_symbols.
6715 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6719 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6724 Output_section* os = out_sections[shndx];
6726 // This local symbol no longer has an output section. Discard it.
6729 lv.set_no_output_symtab_entry();
6733 // Currently we only discard parts of EXIDX input sections.
6734 // We explicitly check for a merged EXIDX input section to avoid
6735 // calling Output_section_data::output_offset unless necessary.
6736 if ((this->get_output_section_offset(shndx) == invalid_address)
6737 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6739 section_offset_type output_offset =
6740 os->output_offset(this, shndx, lv.input_value());
6741 if (output_offset == -1)
6743 // This symbol is defined in a part of an EXIDX input section
6744 // that is discarded due to entry merging.
6745 lv.set_no_output_symtab_entry();
6754 this->set_output_local_symbol_count(count);
6755 this->output_local_symbol_count_needs_update_ = false;
6758 // Arm_dynobj methods.
6760 // Read the symbol information.
6762 template<bool big_endian>
6764 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6766 // Call parent class to read symbol information.
6767 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6769 // Read processor-specific flags in ELF file header.
6770 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6771 elfcpp::Elf_sizes<32>::ehdr_size,
6773 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6774 this->processor_specific_flags_ = ehdr.get_e_flags();
6776 // Read the attributes section if there is one.
6777 // We read from the end because gas seems to put it near the end of
6778 // the section headers.
6779 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6780 const unsigned char *ps =
6781 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6782 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6784 elfcpp::Shdr<32, big_endian> shdr(ps);
6785 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6787 section_offset_type section_offset = shdr.get_sh_offset();
6788 section_size_type section_size =
6789 convert_to_section_size_type(shdr.get_sh_size());
6790 File_view* view = this->get_lasting_view(section_offset,
6791 section_size, true, false);
6792 this->attributes_section_data_ =
6793 new Attributes_section_data(view->data(), section_size);
6799 // Stub_addend_reader methods.
6801 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6803 template<bool big_endian>
6804 elfcpp::Elf_types<32>::Elf_Swxword
6805 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6806 unsigned int r_type,
6807 const unsigned char* view,
6808 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6810 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6814 case elfcpp::R_ARM_CALL:
6815 case elfcpp::R_ARM_JUMP24:
6816 case elfcpp::R_ARM_PLT32:
6818 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6819 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6820 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6821 return utils::sign_extend<26>(val << 2);
6824 case elfcpp::R_ARM_THM_CALL:
6825 case elfcpp::R_ARM_THM_JUMP24:
6826 case elfcpp::R_ARM_THM_XPC22:
6828 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6829 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6830 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6831 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6832 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6835 case elfcpp::R_ARM_THM_JUMP19:
6837 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6838 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6839 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6840 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6841 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6849 // Arm_output_data_got methods.
6851 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6852 // The first one is initialized to be 1, which is the module index for
6853 // the main executable and the second one 0. A reloc of the type
6854 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6855 // be applied by gold. GSYM is a global symbol.
6857 template<bool big_endian>
6859 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6860 unsigned int got_type,
6863 if (gsym->has_got_offset(got_type))
6866 // We are doing a static link. Just mark it as belong to module 1,
6868 unsigned int got_offset = this->add_constant(1);
6869 gsym->set_got_offset(got_type, got_offset);
6870 got_offset = this->add_constant(0);
6871 this->static_relocs_.push_back(Static_reloc(got_offset,
6872 elfcpp::R_ARM_TLS_DTPOFF32,
6876 // Same as the above but for a local symbol.
6878 template<bool big_endian>
6880 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6881 unsigned int got_type,
6882 Sized_relobj<32, big_endian>* object,
6885 if (object->local_has_got_offset(index, got_type))
6888 // We are doing a static link. Just mark it as belong to module 1,
6890 unsigned int got_offset = this->add_constant(1);
6891 object->set_local_got_offset(index, got_type, got_offset);
6892 got_offset = this->add_constant(0);
6893 this->static_relocs_.push_back(Static_reloc(got_offset,
6894 elfcpp::R_ARM_TLS_DTPOFF32,
6898 template<bool big_endian>
6900 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6902 // Call parent to write out GOT.
6903 Output_data_got<32, big_endian>::do_write(of);
6905 // We are done if there is no fix up.
6906 if (this->static_relocs_.empty())
6909 gold_assert(parameters->doing_static_link());
6911 const off_t offset = this->offset();
6912 const section_size_type oview_size =
6913 convert_to_section_size_type(this->data_size());
6914 unsigned char* const oview = of->get_output_view(offset, oview_size);
6916 Output_segment* tls_segment = this->layout_->tls_segment();
6917 gold_assert(tls_segment != NULL);
6919 // The thread pointer $tp points to the TCB, which is followed by the
6920 // TLS. So we need to adjust $tp relative addressing by this amount.
6921 Arm_address aligned_tcb_size =
6922 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6924 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6926 Static_reloc& reloc(this->static_relocs_[i]);
6929 if (!reloc.symbol_is_global())
6931 Sized_relobj<32, big_endian>* object = reloc.relobj();
6932 const Symbol_value<32>* psymval =
6933 reloc.relobj()->local_symbol(reloc.index());
6935 // We are doing static linking. Issue an error and skip this
6936 // relocation if the symbol is undefined or in a discarded_section.
6938 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6939 if ((shndx == elfcpp::SHN_UNDEF)
6941 && shndx != elfcpp::SHN_UNDEF
6942 && !object->is_section_included(shndx)
6943 && !this->symbol_table_->is_section_folded(object, shndx)))
6945 gold_error(_("undefined or discarded local symbol %u from "
6946 " object %s in GOT"),
6947 reloc.index(), reloc.relobj()->name().c_str());
6951 value = psymval->value(object, 0);
6955 const Symbol* gsym = reloc.symbol();
6956 gold_assert(gsym != NULL);
6957 if (gsym->is_forwarder())
6958 gsym = this->symbol_table_->resolve_forwards(gsym);
6960 // We are doing static linking. Issue an error and skip this
6961 // relocation if the symbol is undefined or in a discarded_section
6962 // unless it is a weakly_undefined symbol.
6963 if ((gsym->is_defined_in_discarded_section()
6964 || gsym->is_undefined())
6965 && !gsym->is_weak_undefined())
6967 gold_error(_("undefined or discarded symbol %s in GOT"),
6972 if (!gsym->is_weak_undefined())
6974 const Sized_symbol<32>* sym =
6975 static_cast<const Sized_symbol<32>*>(gsym);
6976 value = sym->value();
6982 unsigned got_offset = reloc.got_offset();
6983 gold_assert(got_offset < oview_size);
6985 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6986 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6988 switch (reloc.r_type())
6990 case elfcpp::R_ARM_TLS_DTPOFF32:
6993 case elfcpp::R_ARM_TLS_TPOFF32:
6994 x = value + aligned_tcb_size;
6999 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7002 of->write_output_view(offset, oview_size, oview);
7005 // A class to handle the PLT data.
7007 template<bool big_endian>
7008 class Output_data_plt_arm : public Output_section_data
7011 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7014 Output_data_plt_arm(Layout*, Output_data_space*);
7016 // Add an entry to the PLT.
7018 add_entry(Symbol* gsym);
7020 // Return the .rel.plt section data.
7021 const Reloc_section*
7023 { return this->rel_; }
7027 do_adjust_output_section(Output_section* os);
7029 // Write to a map file.
7031 do_print_to_mapfile(Mapfile* mapfile) const
7032 { mapfile->print_output_data(this, _("** PLT")); }
7035 // Template for the first PLT entry.
7036 static const uint32_t first_plt_entry[5];
7038 // Template for subsequent PLT entries.
7039 static const uint32_t plt_entry[3];
7041 // Set the final size.
7043 set_final_data_size()
7045 this->set_data_size(sizeof(first_plt_entry)
7046 + this->count_ * sizeof(plt_entry));
7049 // Write out the PLT data.
7051 do_write(Output_file*);
7053 // The reloc section.
7054 Reloc_section* rel_;
7055 // The .got.plt section.
7056 Output_data_space* got_plt_;
7057 // The number of PLT entries.
7058 unsigned int count_;
7061 // Create the PLT section. The ordinary .got section is an argument,
7062 // since we need to refer to the start. We also create our own .got
7063 // section just for PLT entries.
7065 template<bool big_endian>
7066 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7067 Output_data_space* got_plt)
7068 : Output_section_data(4), got_plt_(got_plt), count_(0)
7070 this->rel_ = new Reloc_section(false);
7071 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7072 elfcpp::SHF_ALLOC, this->rel_, true, false,
7076 template<bool big_endian>
7078 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7083 // Add an entry to the PLT.
7085 template<bool big_endian>
7087 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7089 gold_assert(!gsym->has_plt_offset());
7091 // Note that when setting the PLT offset we skip the initial
7092 // reserved PLT entry.
7093 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7094 + sizeof(first_plt_entry));
7098 section_offset_type got_offset = this->got_plt_->current_data_size();
7100 // Every PLT entry needs a GOT entry which points back to the PLT
7101 // entry (this will be changed by the dynamic linker, normally
7102 // lazily when the function is called).
7103 this->got_plt_->set_current_data_size(got_offset + 4);
7105 // Every PLT entry needs a reloc.
7106 gsym->set_needs_dynsym_entry();
7107 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7110 // Note that we don't need to save the symbol. The contents of the
7111 // PLT are independent of which symbols are used. The symbols only
7112 // appear in the relocations.
7116 // FIXME: This is not very flexible. Right now this has only been tested
7117 // on armv5te. If we are to support additional architecture features like
7118 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7120 // The first entry in the PLT.
7121 template<bool big_endian>
7122 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7124 0xe52de004, // str lr, [sp, #-4]!
7125 0xe59fe004, // ldr lr, [pc, #4]
7126 0xe08fe00e, // add lr, pc, lr
7127 0xe5bef008, // ldr pc, [lr, #8]!
7128 0x00000000, // &GOT[0] - .
7131 // Subsequent entries in the PLT.
7133 template<bool big_endian>
7134 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7136 0xe28fc600, // add ip, pc, #0xNN00000
7137 0xe28cca00, // add ip, ip, #0xNN000
7138 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7141 // Write out the PLT. This uses the hand-coded instructions above,
7142 // and adjusts them as needed. This is all specified by the arm ELF
7143 // Processor Supplement.
7145 template<bool big_endian>
7147 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7149 const off_t offset = this->offset();
7150 const section_size_type oview_size =
7151 convert_to_section_size_type(this->data_size());
7152 unsigned char* const oview = of->get_output_view(offset, oview_size);
7154 const off_t got_file_offset = this->got_plt_->offset();
7155 const section_size_type got_size =
7156 convert_to_section_size_type(this->got_plt_->data_size());
7157 unsigned char* const got_view = of->get_output_view(got_file_offset,
7159 unsigned char* pov = oview;
7161 Arm_address plt_address = this->address();
7162 Arm_address got_address = this->got_plt_->address();
7164 // Write first PLT entry. All but the last word are constants.
7165 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7166 / sizeof(plt_entry[0]));
7167 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7168 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7169 // Last word in first PLT entry is &GOT[0] - .
7170 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7171 got_address - (plt_address + 16));
7172 pov += sizeof(first_plt_entry);
7174 unsigned char* got_pov = got_view;
7176 memset(got_pov, 0, 12);
7179 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7180 unsigned int plt_offset = sizeof(first_plt_entry);
7181 unsigned int plt_rel_offset = 0;
7182 unsigned int got_offset = 12;
7183 const unsigned int count = this->count_;
7184 for (unsigned int i = 0;
7187 pov += sizeof(plt_entry),
7189 plt_offset += sizeof(plt_entry),
7190 plt_rel_offset += rel_size,
7193 // Set and adjust the PLT entry itself.
7194 int32_t offset = ((got_address + got_offset)
7195 - (plt_address + plt_offset + 8));
7197 gold_assert(offset >= 0 && offset < 0x0fffffff);
7198 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7199 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7200 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7201 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7202 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7203 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7205 // Set the entry in the GOT.
7206 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7209 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7210 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7212 of->write_output_view(offset, oview_size, oview);
7213 of->write_output_view(got_file_offset, got_size, got_view);
7216 // Create a PLT entry for a global symbol.
7218 template<bool big_endian>
7220 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7223 if (gsym->has_plt_offset())
7226 if (this->plt_ == NULL)
7228 // Create the GOT sections first.
7229 this->got_section(symtab, layout);
7231 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7232 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7234 | elfcpp::SHF_EXECINSTR),
7235 this->plt_, false, false, false, false);
7237 this->plt_->add_entry(gsym);
7240 // Get the section to use for TLS_DESC relocations.
7242 template<bool big_endian>
7243 typename Target_arm<big_endian>::Reloc_section*
7244 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7246 return this->plt_section()->rel_tls_desc(layout);
7249 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7251 template<bool big_endian>
7253 Target_arm<big_endian>::define_tls_base_symbol(
7254 Symbol_table* symtab,
7257 if (this->tls_base_symbol_defined_)
7260 Output_segment* tls_segment = layout->tls_segment();
7261 if (tls_segment != NULL)
7263 bool is_exec = parameters->options().output_is_executable();
7264 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7265 Symbol_table::PREDEFINED,
7269 elfcpp::STV_HIDDEN, 0,
7271 ? Symbol::SEGMENT_END
7272 : Symbol::SEGMENT_START),
7275 this->tls_base_symbol_defined_ = true;
7278 // Create a GOT entry for the TLS module index.
7280 template<bool big_endian>
7282 Target_arm<big_endian>::got_mod_index_entry(
7283 Symbol_table* symtab,
7285 Sized_relobj<32, big_endian>* object)
7287 if (this->got_mod_index_offset_ == -1U)
7289 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7290 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7291 unsigned int got_offset;
7292 if (!parameters->doing_static_link())
7294 got_offset = got->add_constant(0);
7295 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7296 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7301 // We are doing a static link. Just mark it as belong to module 1,
7303 got_offset = got->add_constant(1);
7306 got->add_constant(0);
7307 this->got_mod_index_offset_ = got_offset;
7309 return this->got_mod_index_offset_;
7312 // Optimize the TLS relocation type based on what we know about the
7313 // symbol. IS_FINAL is true if the final address of this symbol is
7314 // known at link time.
7316 template<bool big_endian>
7317 tls::Tls_optimization
7318 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7320 // FIXME: Currently we do not do any TLS optimization.
7321 return tls::TLSOPT_NONE;
7324 // Report an unsupported relocation against a local symbol.
7326 template<bool big_endian>
7328 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7329 Sized_relobj<32, big_endian>* object,
7330 unsigned int r_type)
7332 gold_error(_("%s: unsupported reloc %u against local symbol"),
7333 object->name().c_str(), r_type);
7336 // We are about to emit a dynamic relocation of type R_TYPE. If the
7337 // dynamic linker does not support it, issue an error. The GNU linker
7338 // only issues a non-PIC error for an allocated read-only section.
7339 // Here we know the section is allocated, but we don't know that it is
7340 // read-only. But we check for all the relocation types which the
7341 // glibc dynamic linker supports, so it seems appropriate to issue an
7342 // error even if the section is not read-only.
7344 template<bool big_endian>
7346 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7347 unsigned int r_type)
7351 // These are the relocation types supported by glibc for ARM.
7352 case elfcpp::R_ARM_RELATIVE:
7353 case elfcpp::R_ARM_COPY:
7354 case elfcpp::R_ARM_GLOB_DAT:
7355 case elfcpp::R_ARM_JUMP_SLOT:
7356 case elfcpp::R_ARM_ABS32:
7357 case elfcpp::R_ARM_ABS32_NOI:
7358 case elfcpp::R_ARM_PC24:
7359 // FIXME: The following 3 types are not supported by Android's dynamic
7361 case elfcpp::R_ARM_TLS_DTPMOD32:
7362 case elfcpp::R_ARM_TLS_DTPOFF32:
7363 case elfcpp::R_ARM_TLS_TPOFF32:
7368 // This prevents us from issuing more than one error per reloc
7369 // section. But we can still wind up issuing more than one
7370 // error per object file.
7371 if (this->issued_non_pic_error_)
7373 const Arm_reloc_property* reloc_property =
7374 arm_reloc_property_table->get_reloc_property(r_type);
7375 gold_assert(reloc_property != NULL);
7376 object->error(_("requires unsupported dynamic reloc %s; "
7377 "recompile with -fPIC"),
7378 reloc_property->name().c_str());
7379 this->issued_non_pic_error_ = true;
7383 case elfcpp::R_ARM_NONE:
7388 // Scan a relocation for a local symbol.
7389 // FIXME: This only handles a subset of relocation types used by Android
7390 // on ARM v5te devices.
7392 template<bool big_endian>
7394 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7397 Sized_relobj<32, big_endian>* object,
7398 unsigned int data_shndx,
7399 Output_section* output_section,
7400 const elfcpp::Rel<32, big_endian>& reloc,
7401 unsigned int r_type,
7402 const elfcpp::Sym<32, big_endian>& lsym)
7404 r_type = get_real_reloc_type(r_type);
7407 case elfcpp::R_ARM_NONE:
7408 case elfcpp::R_ARM_V4BX:
7409 case elfcpp::R_ARM_GNU_VTENTRY:
7410 case elfcpp::R_ARM_GNU_VTINHERIT:
7413 case elfcpp::R_ARM_ABS32:
7414 case elfcpp::R_ARM_ABS32_NOI:
7415 // If building a shared library (or a position-independent
7416 // executable), we need to create a dynamic relocation for
7417 // this location. The relocation applied at link time will
7418 // apply the link-time value, so we flag the location with
7419 // an R_ARM_RELATIVE relocation so the dynamic loader can
7420 // relocate it easily.
7421 if (parameters->options().output_is_position_independent())
7423 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7424 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7425 // If we are to add more other reloc types than R_ARM_ABS32,
7426 // we need to add check_non_pic(object, r_type) here.
7427 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7428 output_section, data_shndx,
7429 reloc.get_r_offset());
7433 case elfcpp::R_ARM_ABS16:
7434 case elfcpp::R_ARM_ABS12:
7435 case elfcpp::R_ARM_THM_ABS5:
7436 case elfcpp::R_ARM_ABS8:
7437 case elfcpp::R_ARM_BASE_ABS:
7438 case elfcpp::R_ARM_MOVW_ABS_NC:
7439 case elfcpp::R_ARM_MOVT_ABS:
7440 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7441 case elfcpp::R_ARM_THM_MOVT_ABS:
7442 // If building a shared library (or a position-independent
7443 // executable), we need to create a dynamic relocation for
7444 // this location. Because the addend needs to remain in the
7445 // data section, we need to be careful not to apply this
7446 // relocation statically.
7447 if (parameters->options().output_is_position_independent())
7449 check_non_pic(object, r_type);
7450 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7451 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7452 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7453 rel_dyn->add_local(object, r_sym, r_type, output_section,
7454 data_shndx, reloc.get_r_offset());
7457 gold_assert(lsym.get_st_value() == 0);
7458 unsigned int shndx = lsym.get_st_shndx();
7460 shndx = object->adjust_sym_shndx(r_sym, shndx,
7463 object->error(_("section symbol %u has bad shndx %u"),
7466 rel_dyn->add_local_section(object, shndx,
7467 r_type, output_section,
7468 data_shndx, reloc.get_r_offset());
7473 case elfcpp::R_ARM_PC24:
7474 case elfcpp::R_ARM_REL32:
7475 case elfcpp::R_ARM_LDR_PC_G0:
7476 case elfcpp::R_ARM_SBREL32:
7477 case elfcpp::R_ARM_THM_CALL:
7478 case elfcpp::R_ARM_THM_PC8:
7479 case elfcpp::R_ARM_BASE_PREL:
7480 case elfcpp::R_ARM_PLT32:
7481 case elfcpp::R_ARM_CALL:
7482 case elfcpp::R_ARM_JUMP24:
7483 case elfcpp::R_ARM_THM_JUMP24:
7484 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7485 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7486 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7487 case elfcpp::R_ARM_SBREL31:
7488 case elfcpp::R_ARM_PREL31:
7489 case elfcpp::R_ARM_MOVW_PREL_NC:
7490 case elfcpp::R_ARM_MOVT_PREL:
7491 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7492 case elfcpp::R_ARM_THM_MOVT_PREL:
7493 case elfcpp::R_ARM_THM_JUMP19:
7494 case elfcpp::R_ARM_THM_JUMP6:
7495 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7496 case elfcpp::R_ARM_THM_PC12:
7497 case elfcpp::R_ARM_REL32_NOI:
7498 case elfcpp::R_ARM_ALU_PC_G0_NC:
7499 case elfcpp::R_ARM_ALU_PC_G0:
7500 case elfcpp::R_ARM_ALU_PC_G1_NC:
7501 case elfcpp::R_ARM_ALU_PC_G1:
7502 case elfcpp::R_ARM_ALU_PC_G2:
7503 case elfcpp::R_ARM_LDR_PC_G1:
7504 case elfcpp::R_ARM_LDR_PC_G2:
7505 case elfcpp::R_ARM_LDRS_PC_G0:
7506 case elfcpp::R_ARM_LDRS_PC_G1:
7507 case elfcpp::R_ARM_LDRS_PC_G2:
7508 case elfcpp::R_ARM_LDC_PC_G0:
7509 case elfcpp::R_ARM_LDC_PC_G1:
7510 case elfcpp::R_ARM_LDC_PC_G2:
7511 case elfcpp::R_ARM_ALU_SB_G0_NC:
7512 case elfcpp::R_ARM_ALU_SB_G0:
7513 case elfcpp::R_ARM_ALU_SB_G1_NC:
7514 case elfcpp::R_ARM_ALU_SB_G1:
7515 case elfcpp::R_ARM_ALU_SB_G2:
7516 case elfcpp::R_ARM_LDR_SB_G0:
7517 case elfcpp::R_ARM_LDR_SB_G1:
7518 case elfcpp::R_ARM_LDR_SB_G2:
7519 case elfcpp::R_ARM_LDRS_SB_G0:
7520 case elfcpp::R_ARM_LDRS_SB_G1:
7521 case elfcpp::R_ARM_LDRS_SB_G2:
7522 case elfcpp::R_ARM_LDC_SB_G0:
7523 case elfcpp::R_ARM_LDC_SB_G1:
7524 case elfcpp::R_ARM_LDC_SB_G2:
7525 case elfcpp::R_ARM_MOVW_BREL_NC:
7526 case elfcpp::R_ARM_MOVT_BREL:
7527 case elfcpp::R_ARM_MOVW_BREL:
7528 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7529 case elfcpp::R_ARM_THM_MOVT_BREL:
7530 case elfcpp::R_ARM_THM_MOVW_BREL:
7531 case elfcpp::R_ARM_THM_JUMP11:
7532 case elfcpp::R_ARM_THM_JUMP8:
7533 // We don't need to do anything for a relative addressing relocation
7534 // against a local symbol if it does not reference the GOT.
7537 case elfcpp::R_ARM_GOTOFF32:
7538 case elfcpp::R_ARM_GOTOFF12:
7539 // We need a GOT section:
7540 target->got_section(symtab, layout);
7543 case elfcpp::R_ARM_GOT_BREL:
7544 case elfcpp::R_ARM_GOT_PREL:
7546 // The symbol requires a GOT entry.
7547 Arm_output_data_got<big_endian>* got =
7548 target->got_section(symtab, layout);
7549 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7550 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7552 // If we are generating a shared object, we need to add a
7553 // dynamic RELATIVE relocation for this symbol's GOT entry.
7554 if (parameters->options().output_is_position_independent())
7556 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7557 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7558 rel_dyn->add_local_relative(
7559 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7560 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7566 case elfcpp::R_ARM_TARGET1:
7567 case elfcpp::R_ARM_TARGET2:
7568 // This should have been mapped to another type already.
7570 case elfcpp::R_ARM_COPY:
7571 case elfcpp::R_ARM_GLOB_DAT:
7572 case elfcpp::R_ARM_JUMP_SLOT:
7573 case elfcpp::R_ARM_RELATIVE:
7574 // These are relocations which should only be seen by the
7575 // dynamic linker, and should never be seen here.
7576 gold_error(_("%s: unexpected reloc %u in object file"),
7577 object->name().c_str(), r_type);
7581 // These are initial TLS relocs, which are expected when
7583 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7584 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7585 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7586 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7587 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7589 bool output_is_shared = parameters->options().shared();
7590 const tls::Tls_optimization optimized_type
7591 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7595 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7596 if (optimized_type == tls::TLSOPT_NONE)
7598 // Create a pair of GOT entries for the module index and
7599 // dtv-relative offset.
7600 Arm_output_data_got<big_endian>* got
7601 = target->got_section(symtab, layout);
7602 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7603 unsigned int shndx = lsym.get_st_shndx();
7605 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7608 object->error(_("local symbol %u has bad shndx %u"),
7613 if (!parameters->doing_static_link())
7614 got->add_local_pair_with_rel(object, r_sym, shndx,
7616 target->rel_dyn_section(layout),
7617 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7619 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7623 // FIXME: TLS optimization not supported yet.
7627 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7628 if (optimized_type == tls::TLSOPT_NONE)
7630 // Create a GOT entry for the module index.
7631 target->got_mod_index_entry(symtab, layout, object);
7634 // FIXME: TLS optimization not supported yet.
7638 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7641 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7642 layout->set_has_static_tls();
7643 if (optimized_type == tls::TLSOPT_NONE)
7645 // Create a GOT entry for the tp-relative offset.
7646 Arm_output_data_got<big_endian>* got
7647 = target->got_section(symtab, layout);
7648 unsigned int r_sym =
7649 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7650 if (!parameters->doing_static_link())
7651 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7652 target->rel_dyn_section(layout),
7653 elfcpp::R_ARM_TLS_TPOFF32);
7654 else if (!object->local_has_got_offset(r_sym,
7655 GOT_TYPE_TLS_OFFSET))
7657 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7658 unsigned int got_offset =
7659 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7660 got->add_static_reloc(got_offset,
7661 elfcpp::R_ARM_TLS_TPOFF32, object,
7666 // FIXME: TLS optimization not supported yet.
7670 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7671 layout->set_has_static_tls();
7672 if (output_is_shared)
7674 // We need to create a dynamic relocation.
7675 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7676 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7677 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7678 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7679 output_section, data_shndx,
7680 reloc.get_r_offset());
7691 unsupported_reloc_local(object, r_type);
7696 // Report an unsupported relocation against a global symbol.
7698 template<bool big_endian>
7700 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7701 Sized_relobj<32, big_endian>* object,
7702 unsigned int r_type,
7705 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7706 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7709 template<bool big_endian>
7711 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
7712 unsigned int r_type)
7716 case elfcpp::R_ARM_PC24:
7717 case elfcpp::R_ARM_THM_CALL:
7718 case elfcpp::R_ARM_PLT32:
7719 case elfcpp::R_ARM_CALL:
7720 case elfcpp::R_ARM_JUMP24:
7721 case elfcpp::R_ARM_THM_JUMP24:
7722 case elfcpp::R_ARM_SBREL31:
7723 case elfcpp::R_ARM_PREL31:
7724 case elfcpp::R_ARM_THM_JUMP19:
7725 case elfcpp::R_ARM_THM_JUMP6:
7726 case elfcpp::R_ARM_THM_JUMP11:
7727 case elfcpp::R_ARM_THM_JUMP8:
7728 // All the relocations above are branches except SBREL31 and PREL31.
7732 // Be conservative and assume this is a function pointer.
7737 template<bool big_endian>
7739 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
7742 Target_arm<big_endian>* target,
7743 Sized_relobj<32, big_endian>*,
7746 const elfcpp::Rel<32, big_endian>&,
7747 unsigned int r_type,
7748 const elfcpp::Sym<32, big_endian>&)
7750 r_type = target->get_real_reloc_type(r_type);
7751 return possible_function_pointer_reloc(r_type);
7754 template<bool big_endian>
7756 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
7759 Target_arm<big_endian>* target,
7760 Sized_relobj<32, big_endian>*,
7763 const elfcpp::Rel<32, big_endian>&,
7764 unsigned int r_type,
7767 // GOT is not a function.
7768 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7771 r_type = target->get_real_reloc_type(r_type);
7772 return possible_function_pointer_reloc(r_type);
7775 // Scan a relocation for a global symbol.
7777 template<bool big_endian>
7779 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7782 Sized_relobj<32, big_endian>* object,
7783 unsigned int data_shndx,
7784 Output_section* output_section,
7785 const elfcpp::Rel<32, big_endian>& reloc,
7786 unsigned int r_type,
7789 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7790 // section. We check here to avoid creating a dynamic reloc against
7791 // _GLOBAL_OFFSET_TABLE_.
7792 if (!target->has_got_section()
7793 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7794 target->got_section(symtab, layout);
7796 r_type = get_real_reloc_type(r_type);
7799 case elfcpp::R_ARM_NONE:
7800 case elfcpp::R_ARM_V4BX:
7801 case elfcpp::R_ARM_GNU_VTENTRY:
7802 case elfcpp::R_ARM_GNU_VTINHERIT:
7805 case elfcpp::R_ARM_ABS32:
7806 case elfcpp::R_ARM_ABS16:
7807 case elfcpp::R_ARM_ABS12:
7808 case elfcpp::R_ARM_THM_ABS5:
7809 case elfcpp::R_ARM_ABS8:
7810 case elfcpp::R_ARM_BASE_ABS:
7811 case elfcpp::R_ARM_MOVW_ABS_NC:
7812 case elfcpp::R_ARM_MOVT_ABS:
7813 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7814 case elfcpp::R_ARM_THM_MOVT_ABS:
7815 case elfcpp::R_ARM_ABS32_NOI:
7816 // Absolute addressing relocations.
7818 // Make a PLT entry if necessary.
7819 if (this->symbol_needs_plt_entry(gsym))
7821 target->make_plt_entry(symtab, layout, gsym);
7822 // Since this is not a PC-relative relocation, we may be
7823 // taking the address of a function. In that case we need to
7824 // set the entry in the dynamic symbol table to the address of
7826 if (gsym->is_from_dynobj() && !parameters->options().shared())
7827 gsym->set_needs_dynsym_value();
7829 // Make a dynamic relocation if necessary.
7830 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7832 if (gsym->may_need_copy_reloc())
7834 target->copy_reloc(symtab, layout, object,
7835 data_shndx, output_section, gsym, reloc);
7837 else if ((r_type == elfcpp::R_ARM_ABS32
7838 || r_type == elfcpp::R_ARM_ABS32_NOI)
7839 && gsym->can_use_relative_reloc(false))
7841 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7842 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7843 output_section, object,
7844 data_shndx, reloc.get_r_offset());
7848 check_non_pic(object, r_type);
7849 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7850 rel_dyn->add_global(gsym, r_type, output_section, object,
7851 data_shndx, reloc.get_r_offset());
7857 case elfcpp::R_ARM_GOTOFF32:
7858 case elfcpp::R_ARM_GOTOFF12:
7859 // We need a GOT section.
7860 target->got_section(symtab, layout);
7863 case elfcpp::R_ARM_REL32:
7864 case elfcpp::R_ARM_LDR_PC_G0:
7865 case elfcpp::R_ARM_SBREL32:
7866 case elfcpp::R_ARM_THM_PC8:
7867 case elfcpp::R_ARM_BASE_PREL:
7868 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7869 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7870 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7871 case elfcpp::R_ARM_MOVW_PREL_NC:
7872 case elfcpp::R_ARM_MOVT_PREL:
7873 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7874 case elfcpp::R_ARM_THM_MOVT_PREL:
7875 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7876 case elfcpp::R_ARM_THM_PC12:
7877 case elfcpp::R_ARM_REL32_NOI:
7878 case elfcpp::R_ARM_ALU_PC_G0_NC:
7879 case elfcpp::R_ARM_ALU_PC_G0:
7880 case elfcpp::R_ARM_ALU_PC_G1_NC:
7881 case elfcpp::R_ARM_ALU_PC_G1:
7882 case elfcpp::R_ARM_ALU_PC_G2:
7883 case elfcpp::R_ARM_LDR_PC_G1:
7884 case elfcpp::R_ARM_LDR_PC_G2:
7885 case elfcpp::R_ARM_LDRS_PC_G0:
7886 case elfcpp::R_ARM_LDRS_PC_G1:
7887 case elfcpp::R_ARM_LDRS_PC_G2:
7888 case elfcpp::R_ARM_LDC_PC_G0:
7889 case elfcpp::R_ARM_LDC_PC_G1:
7890 case elfcpp::R_ARM_LDC_PC_G2:
7891 case elfcpp::R_ARM_ALU_SB_G0_NC:
7892 case elfcpp::R_ARM_ALU_SB_G0:
7893 case elfcpp::R_ARM_ALU_SB_G1_NC:
7894 case elfcpp::R_ARM_ALU_SB_G1:
7895 case elfcpp::R_ARM_ALU_SB_G2:
7896 case elfcpp::R_ARM_LDR_SB_G0:
7897 case elfcpp::R_ARM_LDR_SB_G1:
7898 case elfcpp::R_ARM_LDR_SB_G2:
7899 case elfcpp::R_ARM_LDRS_SB_G0:
7900 case elfcpp::R_ARM_LDRS_SB_G1:
7901 case elfcpp::R_ARM_LDRS_SB_G2:
7902 case elfcpp::R_ARM_LDC_SB_G0:
7903 case elfcpp::R_ARM_LDC_SB_G1:
7904 case elfcpp::R_ARM_LDC_SB_G2:
7905 case elfcpp::R_ARM_MOVW_BREL_NC:
7906 case elfcpp::R_ARM_MOVT_BREL:
7907 case elfcpp::R_ARM_MOVW_BREL:
7908 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7909 case elfcpp::R_ARM_THM_MOVT_BREL:
7910 case elfcpp::R_ARM_THM_MOVW_BREL:
7911 // Relative addressing relocations.
7913 // Make a dynamic relocation if necessary.
7914 int flags = Symbol::NON_PIC_REF;
7915 if (gsym->needs_dynamic_reloc(flags))
7917 if (target->may_need_copy_reloc(gsym))
7919 target->copy_reloc(symtab, layout, object,
7920 data_shndx, output_section, gsym, reloc);
7924 check_non_pic(object, r_type);
7925 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7926 rel_dyn->add_global(gsym, r_type, output_section, object,
7927 data_shndx, reloc.get_r_offset());
7933 case elfcpp::R_ARM_PC24:
7934 case elfcpp::R_ARM_THM_CALL:
7935 case elfcpp::R_ARM_PLT32:
7936 case elfcpp::R_ARM_CALL:
7937 case elfcpp::R_ARM_JUMP24:
7938 case elfcpp::R_ARM_THM_JUMP24:
7939 case elfcpp::R_ARM_SBREL31:
7940 case elfcpp::R_ARM_PREL31:
7941 case elfcpp::R_ARM_THM_JUMP19:
7942 case elfcpp::R_ARM_THM_JUMP6:
7943 case elfcpp::R_ARM_THM_JUMP11:
7944 case elfcpp::R_ARM_THM_JUMP8:
7945 // All the relocation above are branches except for the PREL31 ones.
7946 // A PREL31 relocation can point to a personality function in a shared
7947 // library. In that case we want to use a PLT because we want to
7948 // call the personality routine and the dyanmic linkers we care about
7949 // do not support dynamic PREL31 relocations. An REL31 relocation may
7950 // point to a function whose unwinding behaviour is being described but
7951 // we will not mistakenly generate a PLT for that because we should use
7952 // a local section symbol.
7954 // If the symbol is fully resolved, this is just a relative
7955 // local reloc. Otherwise we need a PLT entry.
7956 if (gsym->final_value_is_known())
7958 // If building a shared library, we can also skip the PLT entry
7959 // if the symbol is defined in the output file and is protected
7961 if (gsym->is_defined()
7962 && !gsym->is_from_dynobj()
7963 && !gsym->is_preemptible())
7965 target->make_plt_entry(symtab, layout, gsym);
7968 case elfcpp::R_ARM_GOT_BREL:
7969 case elfcpp::R_ARM_GOT_ABS:
7970 case elfcpp::R_ARM_GOT_PREL:
7972 // The symbol requires a GOT entry.
7973 Arm_output_data_got<big_endian>* got =
7974 target->got_section(symtab, layout);
7975 if (gsym->final_value_is_known())
7976 got->add_global(gsym, GOT_TYPE_STANDARD);
7979 // If this symbol is not fully resolved, we need to add a
7980 // GOT entry with a dynamic relocation.
7981 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7982 if (gsym->is_from_dynobj()
7983 || gsym->is_undefined()
7984 || gsym->is_preemptible())
7985 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7986 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7989 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7990 rel_dyn->add_global_relative(
7991 gsym, elfcpp::R_ARM_RELATIVE, got,
7992 gsym->got_offset(GOT_TYPE_STANDARD));
7998 case elfcpp::R_ARM_TARGET1:
7999 case elfcpp::R_ARM_TARGET2:
8000 // These should have been mapped to other types already.
8002 case elfcpp::R_ARM_COPY:
8003 case elfcpp::R_ARM_GLOB_DAT:
8004 case elfcpp::R_ARM_JUMP_SLOT:
8005 case elfcpp::R_ARM_RELATIVE:
8006 // These are relocations which should only be seen by the
8007 // dynamic linker, and should never be seen here.
8008 gold_error(_("%s: unexpected reloc %u in object file"),
8009 object->name().c_str(), r_type);
8012 // These are initial tls relocs, which are expected when
8014 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8015 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8016 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8017 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8018 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8020 const bool is_final = gsym->final_value_is_known();
8021 const tls::Tls_optimization optimized_type
8022 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8025 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8026 if (optimized_type == tls::TLSOPT_NONE)
8028 // Create a pair of GOT entries for the module index and
8029 // dtv-relative offset.
8030 Arm_output_data_got<big_endian>* got
8031 = target->got_section(symtab, layout);
8032 if (!parameters->doing_static_link())
8033 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8034 target->rel_dyn_section(layout),
8035 elfcpp::R_ARM_TLS_DTPMOD32,
8036 elfcpp::R_ARM_TLS_DTPOFF32);
8038 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8041 // FIXME: TLS optimization not supported yet.
8045 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8046 if (optimized_type == tls::TLSOPT_NONE)
8048 // Create a GOT entry for the module index.
8049 target->got_mod_index_entry(symtab, layout, object);
8052 // FIXME: TLS optimization not supported yet.
8056 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8059 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8060 layout->set_has_static_tls();
8061 if (optimized_type == tls::TLSOPT_NONE)
8063 // Create a GOT entry for the tp-relative offset.
8064 Arm_output_data_got<big_endian>* got
8065 = target->got_section(symtab, layout);
8066 if (!parameters->doing_static_link())
8067 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8068 target->rel_dyn_section(layout),
8069 elfcpp::R_ARM_TLS_TPOFF32);
8070 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8072 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8073 unsigned int got_offset =
8074 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8075 got->add_static_reloc(got_offset,
8076 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8080 // FIXME: TLS optimization not supported yet.
8084 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8085 layout->set_has_static_tls();
8086 if (parameters->options().shared())
8088 // We need to create a dynamic relocation.
8089 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8090 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8091 output_section, object,
8092 data_shndx, reloc.get_r_offset());
8103 unsupported_reloc_global(object, r_type, gsym);
8108 // Process relocations for gc.
8110 template<bool big_endian>
8112 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8114 Sized_relobj<32, big_endian>* object,
8115 unsigned int data_shndx,
8117 const unsigned char* prelocs,
8119 Output_section* output_section,
8120 bool needs_special_offset_handling,
8121 size_t local_symbol_count,
8122 const unsigned char* plocal_symbols)
8124 typedef Target_arm<big_endian> Arm;
8125 typedef typename Target_arm<big_endian>::Scan Scan;
8127 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
8136 needs_special_offset_handling,
8141 // Scan relocations for a section.
8143 template<bool big_endian>
8145 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8147 Sized_relobj<32, big_endian>* object,
8148 unsigned int data_shndx,
8149 unsigned int sh_type,
8150 const unsigned char* prelocs,
8152 Output_section* output_section,
8153 bool needs_special_offset_handling,
8154 size_t local_symbol_count,
8155 const unsigned char* plocal_symbols)
8157 typedef typename Target_arm<big_endian>::Scan Scan;
8158 if (sh_type == elfcpp::SHT_RELA)
8160 gold_error(_("%s: unsupported RELA reloc section"),
8161 object->name().c_str());
8165 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8174 needs_special_offset_handling,
8179 // Finalize the sections.
8181 template<bool big_endian>
8183 Target_arm<big_endian>::do_finalize_sections(
8185 const Input_objects* input_objects,
8186 Symbol_table* symtab)
8188 bool merged_any_attributes = false;
8189 // Merge processor-specific flags.
8190 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8191 p != input_objects->relobj_end();
8194 Arm_relobj<big_endian>* arm_relobj =
8195 Arm_relobj<big_endian>::as_arm_relobj(*p);
8196 if (arm_relobj->merge_flags_and_attributes())
8198 this->merge_processor_specific_flags(
8200 arm_relobj->processor_specific_flags());
8201 this->merge_object_attributes(arm_relobj->name().c_str(),
8202 arm_relobj->attributes_section_data());
8203 merged_any_attributes = true;
8207 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8208 p != input_objects->dynobj_end();
8211 Arm_dynobj<big_endian>* arm_dynobj =
8212 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8213 this->merge_processor_specific_flags(
8215 arm_dynobj->processor_specific_flags());
8216 this->merge_object_attributes(arm_dynobj->name().c_str(),
8217 arm_dynobj->attributes_section_data());
8218 merged_any_attributes = true;
8221 // Create an empty uninitialized attribute section if we still don't have it
8222 // at this moment. This happens if there is no attributes sections in all
8224 if (this->attributes_section_data_ == NULL)
8225 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8228 const Object_attribute* cpu_arch_attr =
8229 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8230 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8231 this->set_may_use_blx(true);
8233 // Check if we need to use Cortex-A8 workaround.
8234 if (parameters->options().user_set_fix_cortex_a8())
8235 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8238 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8239 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8241 const Object_attribute* cpu_arch_profile_attr =
8242 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8243 this->fix_cortex_a8_ =
8244 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8245 && (cpu_arch_profile_attr->int_value() == 'A'
8246 || cpu_arch_profile_attr->int_value() == 0));
8249 // Check if we can use V4BX interworking.
8250 // The V4BX interworking stub contains BX instruction,
8251 // which is not specified for some profiles.
8252 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8253 && !this->may_use_blx())
8254 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8255 "the target profile does not support BX instruction"));
8257 // Fill in some more dynamic tags.
8258 const Reloc_section* rel_plt = (this->plt_ == NULL
8260 : this->plt_->rel_plt());
8261 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8262 this->rel_dyn_, true, false);
8264 // Emit any relocs we saved in an attempt to avoid generating COPY
8266 if (this->copy_relocs_.any_saved_relocs())
8267 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8269 // Handle the .ARM.exidx section.
8270 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8271 if (exidx_section != NULL
8272 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8273 && !parameters->options().relocatable())
8275 // Create __exidx_start and __exdix_end symbols.
8276 symtab->define_in_output_data("__exidx_start", NULL,
8277 Symbol_table::PREDEFINED,
8278 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8279 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8281 symtab->define_in_output_data("__exidx_end", NULL,
8282 Symbol_table::PREDEFINED,
8283 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8284 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8287 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8288 // the .ARM.exidx section.
8289 if (!layout->script_options()->saw_phdrs_clause())
8291 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8293 Output_segment* exidx_segment =
8294 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8295 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8300 // Create an .ARM.attributes section if we have merged any attributes
8302 if (merged_any_attributes)
8304 Output_attributes_section_data* attributes_section =
8305 new Output_attributes_section_data(*this->attributes_section_data_);
8306 layout->add_output_section_data(".ARM.attributes",
8307 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8308 attributes_section, false, false, false,
8313 // Return whether a direct absolute static relocation needs to be applied.
8314 // In cases where Scan::local() or Scan::global() has created
8315 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8316 // of the relocation is carried in the data, and we must not
8317 // apply the static relocation.
8319 template<bool big_endian>
8321 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8322 const Sized_symbol<32>* gsym,
8325 Output_section* output_section)
8327 // If the output section is not allocated, then we didn't call
8328 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8330 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8333 // For local symbols, we will have created a non-RELATIVE dynamic
8334 // relocation only if (a) the output is position independent,
8335 // (b) the relocation is absolute (not pc- or segment-relative), and
8336 // (c) the relocation is not 32 bits wide.
8338 return !(parameters->options().output_is_position_independent()
8339 && (ref_flags & Symbol::ABSOLUTE_REF)
8342 // For global symbols, we use the same helper routines used in the
8343 // scan pass. If we did not create a dynamic relocation, or if we
8344 // created a RELATIVE dynamic relocation, we should apply the static
8346 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8347 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8348 && gsym->can_use_relative_reloc(ref_flags
8349 & Symbol::FUNCTION_CALL);
8350 return !has_dyn || is_rel;
8353 // Perform a relocation.
8355 template<bool big_endian>
8357 Target_arm<big_endian>::Relocate::relocate(
8358 const Relocate_info<32, big_endian>* relinfo,
8360 Output_section *output_section,
8362 const elfcpp::Rel<32, big_endian>& rel,
8363 unsigned int r_type,
8364 const Sized_symbol<32>* gsym,
8365 const Symbol_value<32>* psymval,
8366 unsigned char* view,
8367 Arm_address address,
8368 section_size_type view_size)
8370 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8372 r_type = get_real_reloc_type(r_type);
8373 const Arm_reloc_property* reloc_property =
8374 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8375 if (reloc_property == NULL)
8377 std::string reloc_name =
8378 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8379 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8380 _("cannot relocate %s in object file"),
8381 reloc_name.c_str());
8385 const Arm_relobj<big_endian>* object =
8386 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8388 // If the final branch target of a relocation is THUMB instruction, this
8389 // is 1. Otherwise it is 0.
8390 Arm_address thumb_bit = 0;
8391 Symbol_value<32> symval;
8392 bool is_weakly_undefined_without_plt = false;
8393 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8397 // This is a global symbol. Determine if we use PLT and if the
8398 // final target is THUMB.
8399 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8401 // This uses a PLT, change the symbol value.
8402 symval.set_output_value(target->plt_section()->address()
8403 + gsym->plt_offset());
8406 else if (gsym->is_weak_undefined())
8408 // This is a weakly undefined symbol and we do not use PLT
8409 // for this relocation. A branch targeting this symbol will
8410 // be converted into an NOP.
8411 is_weakly_undefined_without_plt = true;
8413 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8415 // This relocation uses the symbol value but the symbol is
8416 // undefined. Exit early and have the caller reporting an
8422 // Set thumb bit if symbol:
8423 // -Has type STT_ARM_TFUNC or
8424 // -Has type STT_FUNC, is defined and with LSB in value set.
8426 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8427 || (gsym->type() == elfcpp::STT_FUNC
8428 && !gsym->is_undefined()
8429 && ((psymval->value(object, 0) & 1) != 0)))
8436 // This is a local symbol. Determine if the final target is THUMB.
8437 // We saved this information when all the local symbols were read.
8438 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8439 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8440 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8445 // This is a fake relocation synthesized for a stub. It does not have
8446 // a real symbol. We just look at the LSB of the symbol value to
8447 // determine if the target is THUMB or not.
8448 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8451 // Strip LSB if this points to a THUMB target.
8453 && reloc_property->uses_thumb_bit()
8454 && ((psymval->value(object, 0) & 1) != 0))
8456 Arm_address stripped_value =
8457 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8458 symval.set_output_value(stripped_value);
8462 // Get the GOT offset if needed.
8463 // The GOT pointer points to the end of the GOT section.
8464 // We need to subtract the size of the GOT section to get
8465 // the actual offset to use in the relocation.
8466 bool have_got_offset = false;
8467 unsigned int got_offset = 0;
8470 case elfcpp::R_ARM_GOT_BREL:
8471 case elfcpp::R_ARM_GOT_PREL:
8474 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8475 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8476 - target->got_size());
8480 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8481 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8482 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8483 - target->got_size());
8485 have_got_offset = true;
8492 // To look up relocation stubs, we need to pass the symbol table index of
8494 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8496 // Get the addressing origin of the output segment defining the
8497 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8498 Arm_address sym_origin = 0;
8499 if (reloc_property->uses_symbol_base())
8501 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8502 // R_ARM_BASE_ABS with the NULL symbol will give the
8503 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8504 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8505 sym_origin = target->got_plt_section()->address();
8506 else if (gsym == NULL)
8508 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8509 sym_origin = gsym->output_segment()->vaddr();
8510 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8511 sym_origin = gsym->output_data()->address();
8513 // TODO: Assumes the segment base to be zero for the global symbols
8514 // till the proper support for the segment-base-relative addressing
8515 // will be implemented. This is consistent with GNU ld.
8518 // For relative addressing relocation, find out the relative address base.
8519 Arm_address relative_address_base = 0;
8520 switch(reloc_property->relative_address_base())
8522 case Arm_reloc_property::RAB_NONE:
8523 // Relocations with relative address bases RAB_TLS and RAB_tp are
8524 // handled by relocate_tls. So we do not need to do anything here.
8525 case Arm_reloc_property::RAB_TLS:
8526 case Arm_reloc_property::RAB_tp:
8528 case Arm_reloc_property::RAB_B_S:
8529 relative_address_base = sym_origin;
8531 case Arm_reloc_property::RAB_GOT_ORG:
8532 relative_address_base = target->got_plt_section()->address();
8534 case Arm_reloc_property::RAB_P:
8535 relative_address_base = address;
8537 case Arm_reloc_property::RAB_Pa:
8538 relative_address_base = address & 0xfffffffcU;
8544 typename Arm_relocate_functions::Status reloc_status =
8545 Arm_relocate_functions::STATUS_OKAY;
8546 bool check_overflow = reloc_property->checks_overflow();
8549 case elfcpp::R_ARM_NONE:
8552 case elfcpp::R_ARM_ABS8:
8553 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8555 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8558 case elfcpp::R_ARM_ABS12:
8559 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8561 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8564 case elfcpp::R_ARM_ABS16:
8565 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8567 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8570 case elfcpp::R_ARM_ABS32:
8571 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8573 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8577 case elfcpp::R_ARM_ABS32_NOI:
8578 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8580 // No thumb bit for this relocation: (S + A)
8581 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8585 case elfcpp::R_ARM_MOVW_ABS_NC:
8586 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8588 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8593 case elfcpp::R_ARM_MOVT_ABS:
8594 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8596 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8599 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8600 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8602 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8603 0, thumb_bit, false);
8606 case elfcpp::R_ARM_THM_MOVT_ABS:
8607 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8609 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8613 case elfcpp::R_ARM_MOVW_PREL_NC:
8614 case elfcpp::R_ARM_MOVW_BREL_NC:
8615 case elfcpp::R_ARM_MOVW_BREL:
8617 Arm_relocate_functions::movw(view, object, psymval,
8618 relative_address_base, thumb_bit,
8622 case elfcpp::R_ARM_MOVT_PREL:
8623 case elfcpp::R_ARM_MOVT_BREL:
8625 Arm_relocate_functions::movt(view, object, psymval,
8626 relative_address_base);
8629 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8630 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8631 case elfcpp::R_ARM_THM_MOVW_BREL:
8633 Arm_relocate_functions::thm_movw(view, object, psymval,
8634 relative_address_base,
8635 thumb_bit, check_overflow);
8638 case elfcpp::R_ARM_THM_MOVT_PREL:
8639 case elfcpp::R_ARM_THM_MOVT_BREL:
8641 Arm_relocate_functions::thm_movt(view, object, psymval,
8642 relative_address_base);
8645 case elfcpp::R_ARM_REL32:
8646 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8647 address, thumb_bit);
8650 case elfcpp::R_ARM_THM_ABS5:
8651 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8653 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8656 // Thumb long branches.
8657 case elfcpp::R_ARM_THM_CALL:
8658 case elfcpp::R_ARM_THM_XPC22:
8659 case elfcpp::R_ARM_THM_JUMP24:
8661 Arm_relocate_functions::thumb_branch_common(
8662 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8663 thumb_bit, is_weakly_undefined_without_plt);
8666 case elfcpp::R_ARM_GOTOFF32:
8668 Arm_address got_origin;
8669 got_origin = target->got_plt_section()->address();
8670 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8671 got_origin, thumb_bit);
8675 case elfcpp::R_ARM_BASE_PREL:
8676 gold_assert(gsym != NULL);
8678 Arm_relocate_functions::base_prel(view, sym_origin, address);
8681 case elfcpp::R_ARM_BASE_ABS:
8683 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8687 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8691 case elfcpp::R_ARM_GOT_BREL:
8692 gold_assert(have_got_offset);
8693 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8696 case elfcpp::R_ARM_GOT_PREL:
8697 gold_assert(have_got_offset);
8698 // Get the address origin for GOT PLT, which is allocated right
8699 // after the GOT section, to calculate an absolute address of
8700 // the symbol GOT entry (got_origin + got_offset).
8701 Arm_address got_origin;
8702 got_origin = target->got_plt_section()->address();
8703 reloc_status = Arm_relocate_functions::got_prel(view,
8704 got_origin + got_offset,
8708 case elfcpp::R_ARM_PLT32:
8709 case elfcpp::R_ARM_CALL:
8710 case elfcpp::R_ARM_JUMP24:
8711 case elfcpp::R_ARM_XPC25:
8712 gold_assert(gsym == NULL
8713 || gsym->has_plt_offset()
8714 || gsym->final_value_is_known()
8715 || (gsym->is_defined()
8716 && !gsym->is_from_dynobj()
8717 && !gsym->is_preemptible()));
8719 Arm_relocate_functions::arm_branch_common(
8720 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8721 thumb_bit, is_weakly_undefined_without_plt);
8724 case elfcpp::R_ARM_THM_JUMP19:
8726 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8730 case elfcpp::R_ARM_THM_JUMP6:
8732 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8735 case elfcpp::R_ARM_THM_JUMP8:
8737 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8740 case elfcpp::R_ARM_THM_JUMP11:
8742 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8745 case elfcpp::R_ARM_PREL31:
8746 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8747 address, thumb_bit);
8750 case elfcpp::R_ARM_V4BX:
8751 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8753 const bool is_v4bx_interworking =
8754 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8756 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8757 is_v4bx_interworking);
8761 case elfcpp::R_ARM_THM_PC8:
8763 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8766 case elfcpp::R_ARM_THM_PC12:
8768 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8771 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8773 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8777 case elfcpp::R_ARM_ALU_PC_G0_NC:
8778 case elfcpp::R_ARM_ALU_PC_G0:
8779 case elfcpp::R_ARM_ALU_PC_G1_NC:
8780 case elfcpp::R_ARM_ALU_PC_G1:
8781 case elfcpp::R_ARM_ALU_PC_G2:
8782 case elfcpp::R_ARM_ALU_SB_G0_NC:
8783 case elfcpp::R_ARM_ALU_SB_G0:
8784 case elfcpp::R_ARM_ALU_SB_G1_NC:
8785 case elfcpp::R_ARM_ALU_SB_G1:
8786 case elfcpp::R_ARM_ALU_SB_G2:
8788 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8789 reloc_property->group_index(),
8790 relative_address_base,
8791 thumb_bit, check_overflow);
8794 case elfcpp::R_ARM_LDR_PC_G0:
8795 case elfcpp::R_ARM_LDR_PC_G1:
8796 case elfcpp::R_ARM_LDR_PC_G2:
8797 case elfcpp::R_ARM_LDR_SB_G0:
8798 case elfcpp::R_ARM_LDR_SB_G1:
8799 case elfcpp::R_ARM_LDR_SB_G2:
8801 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8802 reloc_property->group_index(),
8803 relative_address_base);
8806 case elfcpp::R_ARM_LDRS_PC_G0:
8807 case elfcpp::R_ARM_LDRS_PC_G1:
8808 case elfcpp::R_ARM_LDRS_PC_G2:
8809 case elfcpp::R_ARM_LDRS_SB_G0:
8810 case elfcpp::R_ARM_LDRS_SB_G1:
8811 case elfcpp::R_ARM_LDRS_SB_G2:
8813 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8814 reloc_property->group_index(),
8815 relative_address_base);
8818 case elfcpp::R_ARM_LDC_PC_G0:
8819 case elfcpp::R_ARM_LDC_PC_G1:
8820 case elfcpp::R_ARM_LDC_PC_G2:
8821 case elfcpp::R_ARM_LDC_SB_G0:
8822 case elfcpp::R_ARM_LDC_SB_G1:
8823 case elfcpp::R_ARM_LDC_SB_G2:
8825 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8826 reloc_property->group_index(),
8827 relative_address_base);
8830 // These are initial tls relocs, which are expected when
8832 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8833 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8834 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8835 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8836 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8838 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8839 view, address, view_size);
8846 // Report any errors.
8847 switch (reloc_status)
8849 case Arm_relocate_functions::STATUS_OKAY:
8851 case Arm_relocate_functions::STATUS_OVERFLOW:
8852 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8853 _("relocation overflow in %s"),
8854 reloc_property->name().c_str());
8856 case Arm_relocate_functions::STATUS_BAD_RELOC:
8857 gold_error_at_location(
8861 _("unexpected opcode while processing relocation %s"),
8862 reloc_property->name().c_str());
8871 // Perform a TLS relocation.
8873 template<bool big_endian>
8874 inline typename Arm_relocate_functions<big_endian>::Status
8875 Target_arm<big_endian>::Relocate::relocate_tls(
8876 const Relocate_info<32, big_endian>* relinfo,
8877 Target_arm<big_endian>* target,
8879 const elfcpp::Rel<32, big_endian>& rel,
8880 unsigned int r_type,
8881 const Sized_symbol<32>* gsym,
8882 const Symbol_value<32>* psymval,
8883 unsigned char* view,
8884 elfcpp::Elf_types<32>::Elf_Addr address,
8885 section_size_type /*view_size*/ )
8887 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8888 typedef Relocate_functions<32, big_endian> RelocFuncs;
8889 Output_segment* tls_segment = relinfo->layout->tls_segment();
8891 const Sized_relobj<32, big_endian>* object = relinfo->object;
8893 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8895 const bool is_final = (gsym == NULL
8896 ? !parameters->options().shared()
8897 : gsym->final_value_is_known());
8898 const tls::Tls_optimization optimized_type
8899 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8902 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8904 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8905 unsigned int got_offset;
8908 gold_assert(gsym->has_got_offset(got_type));
8909 got_offset = gsym->got_offset(got_type) - target->got_size();
8913 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8914 gold_assert(object->local_has_got_offset(r_sym, got_type));
8915 got_offset = (object->local_got_offset(r_sym, got_type)
8916 - target->got_size());
8918 if (optimized_type == tls::TLSOPT_NONE)
8920 Arm_address got_entry =
8921 target->got_plt_section()->address() + got_offset;
8923 // Relocate the field with the PC relative offset of the pair of
8925 RelocFuncs::pcrel32(view, got_entry, address);
8926 return ArmRelocFuncs::STATUS_OKAY;
8931 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8932 if (optimized_type == tls::TLSOPT_NONE)
8934 // Relocate the field with the offset of the GOT entry for
8935 // the module index.
8936 unsigned int got_offset;
8937 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8938 - target->got_size());
8939 Arm_address got_entry =
8940 target->got_plt_section()->address() + got_offset;
8942 // Relocate the field with the PC relative offset of the pair of
8944 RelocFuncs::pcrel32(view, got_entry, address);
8945 return ArmRelocFuncs::STATUS_OKAY;
8949 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8950 RelocFuncs::rel32(view, value);
8951 return ArmRelocFuncs::STATUS_OKAY;
8953 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8954 if (optimized_type == tls::TLSOPT_NONE)
8956 // Relocate the field with the offset of the GOT entry for
8957 // the tp-relative offset of the symbol.
8958 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8959 unsigned int got_offset;
8962 gold_assert(gsym->has_got_offset(got_type));
8963 got_offset = gsym->got_offset(got_type);
8967 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8968 gold_assert(object->local_has_got_offset(r_sym, got_type));
8969 got_offset = object->local_got_offset(r_sym, got_type);
8972 // All GOT offsets are relative to the end of the GOT.
8973 got_offset -= target->got_size();
8975 Arm_address got_entry =
8976 target->got_plt_section()->address() + got_offset;
8978 // Relocate the field with the PC relative offset of the GOT entry.
8979 RelocFuncs::pcrel32(view, got_entry, address);
8980 return ArmRelocFuncs::STATUS_OKAY;
8984 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8985 // If we're creating a shared library, a dynamic relocation will
8986 // have been created for this location, so do not apply it now.
8987 if (!parameters->options().shared())
8989 gold_assert(tls_segment != NULL);
8991 // $tp points to the TCB, which is followed by the TLS, so we
8992 // need to add TCB size to the offset.
8993 Arm_address aligned_tcb_size =
8994 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8995 RelocFuncs::rel32(view, value + aligned_tcb_size);
8998 return ArmRelocFuncs::STATUS_OKAY;
9004 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9005 _("unsupported reloc %u"),
9007 return ArmRelocFuncs::STATUS_BAD_RELOC;
9010 // Relocate section data.
9012 template<bool big_endian>
9014 Target_arm<big_endian>::relocate_section(
9015 const Relocate_info<32, big_endian>* relinfo,
9016 unsigned int sh_type,
9017 const unsigned char* prelocs,
9019 Output_section* output_section,
9020 bool needs_special_offset_handling,
9021 unsigned char* view,
9022 Arm_address address,
9023 section_size_type view_size,
9024 const Reloc_symbol_changes* reloc_symbol_changes)
9026 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9027 gold_assert(sh_type == elfcpp::SHT_REL);
9029 // See if we are relocating a relaxed input section. If so, the view
9030 // covers the whole output section and we need to adjust accordingly.
9031 if (needs_special_offset_handling)
9033 const Output_relaxed_input_section* poris =
9034 output_section->find_relaxed_input_section(relinfo->object,
9035 relinfo->data_shndx);
9038 Arm_address section_address = poris->address();
9039 section_size_type section_size = poris->data_size();
9041 gold_assert((section_address >= address)
9042 && ((section_address + section_size)
9043 <= (address + view_size)));
9045 off_t offset = section_address - address;
9048 view_size = section_size;
9052 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9059 needs_special_offset_handling,
9063 reloc_symbol_changes);
9066 // Return the size of a relocation while scanning during a relocatable
9069 template<bool big_endian>
9071 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9072 unsigned int r_type,
9075 r_type = get_real_reloc_type(r_type);
9076 const Arm_reloc_property* arp =
9077 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9082 std::string reloc_name =
9083 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9084 gold_error(_("%s: unexpected %s in object file"),
9085 object->name().c_str(), reloc_name.c_str());
9090 // Scan the relocs during a relocatable link.
9092 template<bool big_endian>
9094 Target_arm<big_endian>::scan_relocatable_relocs(
9095 Symbol_table* symtab,
9097 Sized_relobj<32, big_endian>* object,
9098 unsigned int data_shndx,
9099 unsigned int sh_type,
9100 const unsigned char* prelocs,
9102 Output_section* output_section,
9103 bool needs_special_offset_handling,
9104 size_t local_symbol_count,
9105 const unsigned char* plocal_symbols,
9106 Relocatable_relocs* rr)
9108 gold_assert(sh_type == elfcpp::SHT_REL);
9110 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9111 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9113 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9114 Scan_relocatable_relocs>(
9122 needs_special_offset_handling,
9128 // Relocate a section during a relocatable link.
9130 template<bool big_endian>
9132 Target_arm<big_endian>::relocate_for_relocatable(
9133 const Relocate_info<32, big_endian>* relinfo,
9134 unsigned int sh_type,
9135 const unsigned char* prelocs,
9137 Output_section* output_section,
9138 off_t offset_in_output_section,
9139 const Relocatable_relocs* rr,
9140 unsigned char* view,
9141 Arm_address view_address,
9142 section_size_type view_size,
9143 unsigned char* reloc_view,
9144 section_size_type reloc_view_size)
9146 gold_assert(sh_type == elfcpp::SHT_REL);
9148 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9153 offset_in_output_section,
9162 // Perform target-specific processing in a relocatable link. This is
9163 // only used if we use the relocation strategy RELOC_SPECIAL.
9165 template<bool big_endian>
9167 Target_arm<big_endian>::relocate_special_relocatable(
9168 const Relocate_info<32, big_endian>* relinfo,
9169 unsigned int sh_type,
9170 const unsigned char* preloc_in,
9172 Output_section* output_section,
9173 off_t offset_in_output_section,
9174 unsigned char* view,
9175 elfcpp::Elf_types<32>::Elf_Addr view_address,
9177 unsigned char* preloc_out)
9179 // We can only handle REL type relocation sections.
9180 gold_assert(sh_type == elfcpp::SHT_REL);
9182 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9183 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9185 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9187 const Arm_relobj<big_endian>* object =
9188 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9189 const unsigned int local_count = object->local_symbol_count();
9191 Reltype reloc(preloc_in);
9192 Reltype_write reloc_write(preloc_out);
9194 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9195 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9196 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9198 const Arm_reloc_property* arp =
9199 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9200 gold_assert(arp != NULL);
9202 // Get the new symbol index.
9203 // We only use RELOC_SPECIAL strategy in local relocations.
9204 gold_assert(r_sym < local_count);
9206 // We are adjusting a section symbol. We need to find
9207 // the symbol table index of the section symbol for
9208 // the output section corresponding to input section
9209 // in which this symbol is defined.
9211 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9212 gold_assert(is_ordinary);
9213 Output_section* os = object->output_section(shndx);
9214 gold_assert(os != NULL);
9215 gold_assert(os->needs_symtab_index());
9216 unsigned int new_symndx = os->symtab_index();
9218 // Get the new offset--the location in the output section where
9219 // this relocation should be applied.
9221 Arm_address offset = reloc.get_r_offset();
9222 Arm_address new_offset;
9223 if (offset_in_output_section != invalid_address)
9224 new_offset = offset + offset_in_output_section;
9227 section_offset_type sot_offset =
9228 convert_types<section_offset_type, Arm_address>(offset);
9229 section_offset_type new_sot_offset =
9230 output_section->output_offset(object, relinfo->data_shndx,
9232 gold_assert(new_sot_offset != -1);
9233 new_offset = new_sot_offset;
9236 // In an object file, r_offset is an offset within the section.
9237 // In an executable or dynamic object, generated by
9238 // --emit-relocs, r_offset is an absolute address.
9239 if (!parameters->options().relocatable())
9241 new_offset += view_address;
9242 if (offset_in_output_section != invalid_address)
9243 new_offset -= offset_in_output_section;
9246 reloc_write.put_r_offset(new_offset);
9247 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9249 // Handle the reloc addend.
9250 // The relocation uses a section symbol in the input file.
9251 // We are adjusting it to use a section symbol in the output
9252 // file. The input section symbol refers to some address in
9253 // the input section. We need the relocation in the output
9254 // file to refer to that same address. This adjustment to
9255 // the addend is the same calculation we use for a simple
9256 // absolute relocation for the input section symbol.
9258 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9260 // Handle THUMB bit.
9261 Symbol_value<32> symval;
9262 Arm_address thumb_bit =
9263 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9265 && arp->uses_thumb_bit()
9266 && ((psymval->value(object, 0) & 1) != 0))
9268 Arm_address stripped_value =
9269 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9270 symval.set_output_value(stripped_value);
9274 unsigned char* paddend = view + offset;
9275 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9276 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9279 case elfcpp::R_ARM_ABS8:
9280 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9284 case elfcpp::R_ARM_ABS12:
9285 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9289 case elfcpp::R_ARM_ABS16:
9290 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9294 case elfcpp::R_ARM_THM_ABS5:
9295 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9300 case elfcpp::R_ARM_MOVW_ABS_NC:
9301 case elfcpp::R_ARM_MOVW_PREL_NC:
9302 case elfcpp::R_ARM_MOVW_BREL_NC:
9303 case elfcpp::R_ARM_MOVW_BREL:
9304 reloc_status = Arm_relocate_functions<big_endian>::movw(
9305 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9308 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9309 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9310 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9311 case elfcpp::R_ARM_THM_MOVW_BREL:
9312 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9313 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9316 case elfcpp::R_ARM_THM_CALL:
9317 case elfcpp::R_ARM_THM_XPC22:
9318 case elfcpp::R_ARM_THM_JUMP24:
9320 Arm_relocate_functions<big_endian>::thumb_branch_common(
9321 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9325 case elfcpp::R_ARM_PLT32:
9326 case elfcpp::R_ARM_CALL:
9327 case elfcpp::R_ARM_JUMP24:
9328 case elfcpp::R_ARM_XPC25:
9330 Arm_relocate_functions<big_endian>::arm_branch_common(
9331 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9335 case elfcpp::R_ARM_THM_JUMP19:
9337 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9338 psymval, 0, thumb_bit);
9341 case elfcpp::R_ARM_THM_JUMP6:
9343 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9347 case elfcpp::R_ARM_THM_JUMP8:
9349 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9353 case elfcpp::R_ARM_THM_JUMP11:
9355 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9359 case elfcpp::R_ARM_PREL31:
9361 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9365 case elfcpp::R_ARM_THM_PC8:
9367 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9371 case elfcpp::R_ARM_THM_PC12:
9373 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9377 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9379 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9383 // These relocation truncate relocation results so we cannot handle them
9384 // in a relocatable link.
9385 case elfcpp::R_ARM_MOVT_ABS:
9386 case elfcpp::R_ARM_THM_MOVT_ABS:
9387 case elfcpp::R_ARM_MOVT_PREL:
9388 case elfcpp::R_ARM_MOVT_BREL:
9389 case elfcpp::R_ARM_THM_MOVT_PREL:
9390 case elfcpp::R_ARM_THM_MOVT_BREL:
9391 case elfcpp::R_ARM_ALU_PC_G0_NC:
9392 case elfcpp::R_ARM_ALU_PC_G0:
9393 case elfcpp::R_ARM_ALU_PC_G1_NC:
9394 case elfcpp::R_ARM_ALU_PC_G1:
9395 case elfcpp::R_ARM_ALU_PC_G2:
9396 case elfcpp::R_ARM_ALU_SB_G0_NC:
9397 case elfcpp::R_ARM_ALU_SB_G0:
9398 case elfcpp::R_ARM_ALU_SB_G1_NC:
9399 case elfcpp::R_ARM_ALU_SB_G1:
9400 case elfcpp::R_ARM_ALU_SB_G2:
9401 case elfcpp::R_ARM_LDR_PC_G0:
9402 case elfcpp::R_ARM_LDR_PC_G1:
9403 case elfcpp::R_ARM_LDR_PC_G2:
9404 case elfcpp::R_ARM_LDR_SB_G0:
9405 case elfcpp::R_ARM_LDR_SB_G1:
9406 case elfcpp::R_ARM_LDR_SB_G2:
9407 case elfcpp::R_ARM_LDRS_PC_G0:
9408 case elfcpp::R_ARM_LDRS_PC_G1:
9409 case elfcpp::R_ARM_LDRS_PC_G2:
9410 case elfcpp::R_ARM_LDRS_SB_G0:
9411 case elfcpp::R_ARM_LDRS_SB_G1:
9412 case elfcpp::R_ARM_LDRS_SB_G2:
9413 case elfcpp::R_ARM_LDC_PC_G0:
9414 case elfcpp::R_ARM_LDC_PC_G1:
9415 case elfcpp::R_ARM_LDC_PC_G2:
9416 case elfcpp::R_ARM_LDC_SB_G0:
9417 case elfcpp::R_ARM_LDC_SB_G1:
9418 case elfcpp::R_ARM_LDC_SB_G2:
9419 gold_error(_("cannot handle %s in a relocatable link"),
9420 arp->name().c_str());
9427 // Report any errors.
9428 switch (reloc_status)
9430 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9432 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9433 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9434 _("relocation overflow in %s"),
9435 arp->name().c_str());
9437 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9438 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9439 _("unexpected opcode while processing relocation %s"),
9440 arp->name().c_str());
9447 // Return the value to use for a dynamic symbol which requires special
9448 // treatment. This is how we support equality comparisons of function
9449 // pointers across shared library boundaries, as described in the
9450 // processor specific ABI supplement.
9452 template<bool big_endian>
9454 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9456 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9457 return this->plt_section()->address() + gsym->plt_offset();
9460 // Map platform-specific relocs to real relocs
9462 template<bool big_endian>
9464 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
9468 case elfcpp::R_ARM_TARGET1:
9469 // This is either R_ARM_ABS32 or R_ARM_REL32;
9470 return elfcpp::R_ARM_ABS32;
9472 case elfcpp::R_ARM_TARGET2:
9473 // This can be any reloc type but ususally is R_ARM_GOT_PREL
9474 return elfcpp::R_ARM_GOT_PREL;
9481 // Whether if two EABI versions V1 and V2 are compatible.
9483 template<bool big_endian>
9485 Target_arm<big_endian>::are_eabi_versions_compatible(
9486 elfcpp::Elf_Word v1,
9487 elfcpp::Elf_Word v2)
9489 // v4 and v5 are the same spec before and after it was released,
9490 // so allow mixing them.
9491 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9492 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9493 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9499 // Combine FLAGS from an input object called NAME and the processor-specific
9500 // flags in the ELF header of the output. Much of this is adapted from the
9501 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9502 // in bfd/elf32-arm.c.
9504 template<bool big_endian>
9506 Target_arm<big_endian>::merge_processor_specific_flags(
9507 const std::string& name,
9508 elfcpp::Elf_Word flags)
9510 if (this->are_processor_specific_flags_set())
9512 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9514 // Nothing to merge if flags equal to those in output.
9515 if (flags == out_flags)
9518 // Complain about various flag mismatches.
9519 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9520 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9521 if (!this->are_eabi_versions_compatible(version1, version2)
9522 && parameters->options().warn_mismatch())
9523 gold_error(_("Source object %s has EABI version %d but output has "
9524 "EABI version %d."),
9526 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9527 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9531 // If the input is the default architecture and had the default
9532 // flags then do not bother setting the flags for the output
9533 // architecture, instead allow future merges to do this. If no
9534 // future merges ever set these flags then they will retain their
9535 // uninitialised values, which surprise surprise, correspond
9536 // to the default values.
9540 // This is the first time, just copy the flags.
9541 // We only copy the EABI version for now.
9542 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9546 // Adjust ELF file header.
9547 template<bool big_endian>
9549 Target_arm<big_endian>::do_adjust_elf_header(
9550 unsigned char* view,
9553 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9555 elfcpp::Ehdr<32, big_endian> ehdr(view);
9556 unsigned char e_ident[elfcpp::EI_NIDENT];
9557 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9559 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9560 == elfcpp::EF_ARM_EABI_UNKNOWN)
9561 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9563 e_ident[elfcpp::EI_OSABI] = 0;
9564 e_ident[elfcpp::EI_ABIVERSION] = 0;
9566 // FIXME: Do EF_ARM_BE8 adjustment.
9568 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9569 oehdr.put_e_ident(e_ident);
9572 // do_make_elf_object to override the same function in the base class.
9573 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9574 // to store ARM specific information. Hence we need to have our own
9575 // ELF object creation.
9577 template<bool big_endian>
9579 Target_arm<big_endian>::do_make_elf_object(
9580 const std::string& name,
9581 Input_file* input_file,
9582 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9584 int et = ehdr.get_e_type();
9585 if (et == elfcpp::ET_REL)
9587 Arm_relobj<big_endian>* obj =
9588 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9592 else if (et == elfcpp::ET_DYN)
9594 Sized_dynobj<32, big_endian>* obj =
9595 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9601 gold_error(_("%s: unsupported ELF file type %d"),
9607 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9608 // Returns -1 if no architecture could be read.
9609 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9611 template<bool big_endian>
9613 Target_arm<big_endian>::get_secondary_compatible_arch(
9614 const Attributes_section_data* pasd)
9616 const Object_attribute *known_attributes =
9617 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9619 // Note: the tag and its argument below are uleb128 values, though
9620 // currently-defined values fit in one byte for each.
9621 const std::string& sv =
9622 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9624 && sv.data()[0] == elfcpp::Tag_CPU_arch
9625 && (sv.data()[1] & 128) != 128)
9626 return sv.data()[1];
9628 // This tag is "safely ignorable", so don't complain if it looks funny.
9632 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9633 // The tag is removed if ARCH is -1.
9634 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9636 template<bool big_endian>
9638 Target_arm<big_endian>::set_secondary_compatible_arch(
9639 Attributes_section_data* pasd,
9642 Object_attribute *known_attributes =
9643 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9647 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9651 // Note: the tag and its argument below are uleb128 values, though
9652 // currently-defined values fit in one byte for each.
9654 sv[0] = elfcpp::Tag_CPU_arch;
9655 gold_assert(arch != 0);
9659 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9662 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9664 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9666 template<bool big_endian>
9668 Target_arm<big_endian>::tag_cpu_arch_combine(
9671 int* secondary_compat_out,
9673 int secondary_compat)
9675 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9676 static const int v6t2[] =
9688 static const int v6k[] =
9701 static const int v7[] =
9715 static const int v6_m[] =
9730 static const int v6s_m[] =
9746 static const int v7e_m[] =
9763 static const int v4t_plus_v6_m[] =
9779 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9781 static const int *comb[] =
9789 // Pseudo-architecture.
9793 // Check we've not got a higher architecture than we know about.
9795 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9797 gold_error(_("%s: unknown CPU architecture"), name);
9801 // Override old tag if we have a Tag_also_compatible_with on the output.
9803 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9804 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9805 oldtag = T(V4T_PLUS_V6_M);
9807 // And override the new tag if we have a Tag_also_compatible_with on the
9810 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9811 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9812 newtag = T(V4T_PLUS_V6_M);
9814 // Architectures before V6KZ add features monotonically.
9815 int tagh = std::max(oldtag, newtag);
9816 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9819 int tagl = std::min(oldtag, newtag);
9820 int result = comb[tagh - T(V6T2)][tagl];
9822 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9823 // as the canonical version.
9824 if (result == T(V4T_PLUS_V6_M))
9827 *secondary_compat_out = T(V6_M);
9830 *secondary_compat_out = -1;
9834 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9835 name, oldtag, newtag);
9843 // Helper to print AEABI enum tag value.
9845 template<bool big_endian>
9847 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9849 static const char *aeabi_enum_names[] =
9850 { "", "variable-size", "32-bit", "" };
9851 const size_t aeabi_enum_names_size =
9852 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9854 if (value < aeabi_enum_names_size)
9855 return std::string(aeabi_enum_names[value]);
9859 sprintf(buffer, "<unknown value %u>", value);
9860 return std::string(buffer);
9864 // Return the string value to store in TAG_CPU_name.
9866 template<bool big_endian>
9868 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9870 static const char *name_table[] = {
9871 // These aren't real CPU names, but we can't guess
9872 // that from the architecture version alone.
9888 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9890 if (value < name_table_size)
9891 return std::string(name_table[value]);
9895 sprintf(buffer, "<unknown CPU value %u>", value);
9896 return std::string(buffer);
9900 // Merge object attributes from input file called NAME with those of the
9901 // output. The input object attributes are in the object pointed by PASD.
9903 template<bool big_endian>
9905 Target_arm<big_endian>::merge_object_attributes(
9907 const Attributes_section_data* pasd)
9909 // Return if there is no attributes section data.
9913 // If output has no object attributes, just copy.
9914 const int vendor = Object_attribute::OBJ_ATTR_PROC;
9915 if (this->attributes_section_data_ == NULL)
9917 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9918 Object_attribute* out_attr =
9919 this->attributes_section_data_->known_attributes(vendor);
9921 // We do not output objects with Tag_MPextension_use_legacy - we move
9922 // the attribute's value to Tag_MPextension_use. */
9923 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
9925 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
9926 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
9927 != out_attr[elfcpp::Tag_MPextension_use].int_value())
9929 gold_error(_("%s has both the current and legacy "
9930 "Tag_MPextension_use attributes"),
9934 out_attr[elfcpp::Tag_MPextension_use] =
9935 out_attr[elfcpp::Tag_MPextension_use_legacy];
9936 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
9937 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
9943 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9944 Object_attribute* out_attr =
9945 this->attributes_section_data_->known_attributes(vendor);
9947 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9948 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9949 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9951 // Ignore mismatches if the object doesn't use floating point. */
9952 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9953 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9954 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9955 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9956 && parameters->options().warn_mismatch())
9957 gold_error(_("%s uses VFP register arguments, output does not"),
9961 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9963 // Merge this attribute with existing attributes.
9966 case elfcpp::Tag_CPU_raw_name:
9967 case elfcpp::Tag_CPU_name:
9968 // These are merged after Tag_CPU_arch.
9971 case elfcpp::Tag_ABI_optimization_goals:
9972 case elfcpp::Tag_ABI_FP_optimization_goals:
9973 // Use the first value seen.
9976 case elfcpp::Tag_CPU_arch:
9978 unsigned int saved_out_attr = out_attr->int_value();
9979 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9980 int secondary_compat =
9981 this->get_secondary_compatible_arch(pasd);
9982 int secondary_compat_out =
9983 this->get_secondary_compatible_arch(
9984 this->attributes_section_data_);
9985 out_attr[i].set_int_value(
9986 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9987 &secondary_compat_out,
9988 in_attr[i].int_value(),
9990 this->set_secondary_compatible_arch(this->attributes_section_data_,
9991 secondary_compat_out);
9993 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9994 if (out_attr[i].int_value() == saved_out_attr)
9995 ; // Leave the names alone.
9996 else if (out_attr[i].int_value() == in_attr[i].int_value())
9998 // The output architecture has been changed to match the
9999 // input architecture. Use the input names.
10000 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10001 in_attr[elfcpp::Tag_CPU_name].string_value());
10002 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10003 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10007 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10008 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10011 // If we still don't have a value for Tag_CPU_name,
10012 // make one up now. Tag_CPU_raw_name remains blank.
10013 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10015 const std::string cpu_name =
10016 this->tag_cpu_name_value(out_attr[i].int_value());
10017 // FIXME: If we see an unknown CPU, this will be set
10018 // to "<unknown CPU n>", where n is the attribute value.
10019 // This is different from BFD, which leaves the name alone.
10020 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10025 case elfcpp::Tag_ARM_ISA_use:
10026 case elfcpp::Tag_THUMB_ISA_use:
10027 case elfcpp::Tag_WMMX_arch:
10028 case elfcpp::Tag_Advanced_SIMD_arch:
10029 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10030 case elfcpp::Tag_ABI_FP_rounding:
10031 case elfcpp::Tag_ABI_FP_exceptions:
10032 case elfcpp::Tag_ABI_FP_user_exceptions:
10033 case elfcpp::Tag_ABI_FP_number_model:
10034 case elfcpp::Tag_VFP_HP_extension:
10035 case elfcpp::Tag_CPU_unaligned_access:
10036 case elfcpp::Tag_T2EE_use:
10037 case elfcpp::Tag_Virtualization_use:
10038 case elfcpp::Tag_MPextension_use:
10039 // Use the largest value specified.
10040 if (in_attr[i].int_value() > out_attr[i].int_value())
10041 out_attr[i].set_int_value(in_attr[i].int_value());
10044 case elfcpp::Tag_ABI_align8_preserved:
10045 case elfcpp::Tag_ABI_PCS_RO_data:
10046 // Use the smallest value specified.
10047 if (in_attr[i].int_value() < out_attr[i].int_value())
10048 out_attr[i].set_int_value(in_attr[i].int_value());
10051 case elfcpp::Tag_ABI_align8_needed:
10052 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10053 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10054 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10057 // This error message should be enabled once all non-conformant
10058 // binaries in the toolchain have had the attributes set
10060 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10064 case elfcpp::Tag_ABI_FP_denormal:
10065 case elfcpp::Tag_ABI_PCS_GOT_use:
10067 // These tags have 0 = don't care, 1 = strong requirement,
10068 // 2 = weak requirement.
10069 static const int order_021[3] = {0, 2, 1};
10071 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10072 // value if greater than 2 (for future-proofing).
10073 if ((in_attr[i].int_value() > 2
10074 && in_attr[i].int_value() > out_attr[i].int_value())
10075 || (in_attr[i].int_value() <= 2
10076 && out_attr[i].int_value() <= 2
10077 && (order_021[in_attr[i].int_value()]
10078 > order_021[out_attr[i].int_value()])))
10079 out_attr[i].set_int_value(in_attr[i].int_value());
10083 case elfcpp::Tag_CPU_arch_profile:
10084 if (out_attr[i].int_value() != in_attr[i].int_value())
10086 // 0 will merge with anything.
10087 // 'A' and 'S' merge to 'A'.
10088 // 'R' and 'S' merge to 'R'.
10089 // 'M' and 'A|R|S' is an error.
10090 if (out_attr[i].int_value() == 0
10091 || (out_attr[i].int_value() == 'S'
10092 && (in_attr[i].int_value() == 'A'
10093 || in_attr[i].int_value() == 'R')))
10094 out_attr[i].set_int_value(in_attr[i].int_value());
10095 else if (in_attr[i].int_value() == 0
10096 || (in_attr[i].int_value() == 'S'
10097 && (out_attr[i].int_value() == 'A'
10098 || out_attr[i].int_value() == 'R')))
10100 else if (parameters->options().warn_mismatch())
10103 (_("conflicting architecture profiles %c/%c"),
10104 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10105 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10109 case elfcpp::Tag_VFP_arch:
10111 static const struct
10115 } vfp_versions[7] =
10126 // Values greater than 6 aren't defined, so just pick the
10128 if (in_attr[i].int_value() > 6
10129 && in_attr[i].int_value() > out_attr[i].int_value())
10131 *out_attr = *in_attr;
10134 // The output uses the superset of input features
10135 // (ISA version) and registers.
10136 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10137 vfp_versions[out_attr[i].int_value()].ver);
10138 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10139 vfp_versions[out_attr[i].int_value()].regs);
10140 // This assumes all possible supersets are also a valid
10143 for (newval = 6; newval > 0; newval--)
10145 if (regs == vfp_versions[newval].regs
10146 && ver == vfp_versions[newval].ver)
10149 out_attr[i].set_int_value(newval);
10152 case elfcpp::Tag_PCS_config:
10153 if (out_attr[i].int_value() == 0)
10154 out_attr[i].set_int_value(in_attr[i].int_value());
10155 else if (in_attr[i].int_value() != 0
10156 && out_attr[i].int_value() != 0
10157 && parameters->options().warn_mismatch())
10159 // It's sometimes ok to mix different configs, so this is only
10161 gold_warning(_("%s: conflicting platform configuration"), name);
10164 case elfcpp::Tag_ABI_PCS_R9_use:
10165 if (in_attr[i].int_value() != out_attr[i].int_value()
10166 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10167 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10168 && parameters->options().warn_mismatch())
10170 gold_error(_("%s: conflicting use of R9"), name);
10172 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10173 out_attr[i].set_int_value(in_attr[i].int_value());
10175 case elfcpp::Tag_ABI_PCS_RW_data:
10176 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10177 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10178 != elfcpp::AEABI_R9_SB)
10179 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10180 != elfcpp::AEABI_R9_unused)
10181 && parameters->options().warn_mismatch())
10183 gold_error(_("%s: SB relative addressing conflicts with use "
10187 // Use the smallest value specified.
10188 if (in_attr[i].int_value() < out_attr[i].int_value())
10189 out_attr[i].set_int_value(in_attr[i].int_value());
10191 case elfcpp::Tag_ABI_PCS_wchar_t:
10192 // FIXME: Make it possible to turn off this warning.
10193 if (out_attr[i].int_value()
10194 && in_attr[i].int_value()
10195 && out_attr[i].int_value() != in_attr[i].int_value()
10196 && parameters->options().warn_mismatch())
10198 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10199 "use %u-byte wchar_t; use of wchar_t values "
10200 "across objects may fail"),
10201 name, in_attr[i].int_value(),
10202 out_attr[i].int_value());
10204 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10205 out_attr[i].set_int_value(in_attr[i].int_value());
10207 case elfcpp::Tag_ABI_enum_size:
10208 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10210 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10211 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10213 // The existing object is compatible with anything.
10214 // Use whatever requirements the new object has.
10215 out_attr[i].set_int_value(in_attr[i].int_value());
10217 // FIXME: Make it possible to turn off this warning.
10218 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10219 && out_attr[i].int_value() != in_attr[i].int_value()
10220 && parameters->options().warn_mismatch())
10222 unsigned int in_value = in_attr[i].int_value();
10223 unsigned int out_value = out_attr[i].int_value();
10224 gold_warning(_("%s uses %s enums yet the output is to use "
10225 "%s enums; use of enum values across objects "
10228 this->aeabi_enum_name(in_value).c_str(),
10229 this->aeabi_enum_name(out_value).c_str());
10233 case elfcpp::Tag_ABI_VFP_args:
10236 case elfcpp::Tag_ABI_WMMX_args:
10237 if (in_attr[i].int_value() != out_attr[i].int_value()
10238 && parameters->options().warn_mismatch())
10240 gold_error(_("%s uses iWMMXt register arguments, output does "
10245 case Object_attribute::Tag_compatibility:
10246 // Merged in target-independent code.
10248 case elfcpp::Tag_ABI_HardFP_use:
10249 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10250 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10251 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10252 out_attr[i].set_int_value(3);
10253 else if (in_attr[i].int_value() > out_attr[i].int_value())
10254 out_attr[i].set_int_value(in_attr[i].int_value());
10256 case elfcpp::Tag_ABI_FP_16bit_format:
10257 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10259 if (in_attr[i].int_value() != out_attr[i].int_value()
10260 && parameters->options().warn_mismatch())
10261 gold_error(_("fp16 format mismatch between %s and output"),
10264 if (in_attr[i].int_value() != 0)
10265 out_attr[i].set_int_value(in_attr[i].int_value());
10268 case elfcpp::Tag_DIV_use:
10269 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10270 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10271 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10272 // CPU. We will merge as follows: If the input attribute's value
10273 // is one then the output attribute's value remains unchanged. If
10274 // the input attribute's value is zero or two then if the output
10275 // attribute's value is one the output value is set to the input
10276 // value, otherwise the output value must be the same as the
10278 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10280 if (in_attr[i].int_value() != out_attr[i].int_value())
10282 gold_error(_("DIV usage mismatch between %s and output"),
10287 if (in_attr[i].int_value() != 1)
10288 out_attr[i].set_int_value(in_attr[i].int_value());
10292 case elfcpp::Tag_MPextension_use_legacy:
10293 // We don't output objects with Tag_MPextension_use_legacy - we
10294 // move the value to Tag_MPextension_use.
10295 if (in_attr[i].int_value() != 0
10296 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10298 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10299 != in_attr[i].int_value())
10301 gold_error(_("%s has has both the current and legacy "
10302 "Tag_MPextension_use attributes"),
10307 if (in_attr[i].int_value()
10308 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10309 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10313 case elfcpp::Tag_nodefaults:
10314 // This tag is set if it exists, but the value is unused (and is
10315 // typically zero). We don't actually need to do anything here -
10316 // the merge happens automatically when the type flags are merged
10319 case elfcpp::Tag_also_compatible_with:
10320 // Already done in Tag_CPU_arch.
10322 case elfcpp::Tag_conformance:
10323 // Keep the attribute if it matches. Throw it away otherwise.
10324 // No attribute means no claim to conform.
10325 if (in_attr[i].string_value() != out_attr[i].string_value())
10326 out_attr[i].set_string_value("");
10331 const char* err_object = NULL;
10333 // The "known_obj_attributes" table does contain some undefined
10334 // attributes. Ensure that there are unused.
10335 if (out_attr[i].int_value() != 0
10336 || out_attr[i].string_value() != "")
10337 err_object = "output";
10338 else if (in_attr[i].int_value() != 0
10339 || in_attr[i].string_value() != "")
10342 if (err_object != NULL
10343 && parameters->options().warn_mismatch())
10345 // Attribute numbers >=64 (mod 128) can be safely ignored.
10346 if ((i & 127) < 64)
10347 gold_error(_("%s: unknown mandatory EABI object attribute "
10351 gold_warning(_("%s: unknown EABI object attribute %d"),
10355 // Only pass on attributes that match in both inputs.
10356 if (!in_attr[i].matches(out_attr[i]))
10358 out_attr[i].set_int_value(0);
10359 out_attr[i].set_string_value("");
10364 // If out_attr was copied from in_attr then it won't have a type yet.
10365 if (in_attr[i].type() && !out_attr[i].type())
10366 out_attr[i].set_type(in_attr[i].type());
10369 // Merge Tag_compatibility attributes and any common GNU ones.
10370 this->attributes_section_data_->merge(name, pasd);
10372 // Check for any attributes not known on ARM.
10373 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10374 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10375 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10376 Other_attributes* out_other_attributes =
10377 this->attributes_section_data_->other_attributes(vendor);
10378 Other_attributes::iterator out_iter = out_other_attributes->begin();
10380 while (in_iter != in_other_attributes->end()
10381 || out_iter != out_other_attributes->end())
10383 const char* err_object = NULL;
10386 // The tags for each list are in numerical order.
10387 // If the tags are equal, then merge.
10388 if (out_iter != out_other_attributes->end()
10389 && (in_iter == in_other_attributes->end()
10390 || in_iter->first > out_iter->first))
10392 // This attribute only exists in output. We can't merge, and we
10393 // don't know what the tag means, so delete it.
10394 err_object = "output";
10395 err_tag = out_iter->first;
10396 int saved_tag = out_iter->first;
10397 delete out_iter->second;
10398 out_other_attributes->erase(out_iter);
10399 out_iter = out_other_attributes->upper_bound(saved_tag);
10401 else if (in_iter != in_other_attributes->end()
10402 && (out_iter != out_other_attributes->end()
10403 || in_iter->first < out_iter->first))
10405 // This attribute only exists in input. We can't merge, and we
10406 // don't know what the tag means, so ignore it.
10408 err_tag = in_iter->first;
10411 else // The tags are equal.
10413 // As present, all attributes in the list are unknown, and
10414 // therefore can't be merged meaningfully.
10415 err_object = "output";
10416 err_tag = out_iter->first;
10418 // Only pass on attributes that match in both inputs.
10419 if (!in_iter->second->matches(*(out_iter->second)))
10421 // No match. Delete the attribute.
10422 int saved_tag = out_iter->first;
10423 delete out_iter->second;
10424 out_other_attributes->erase(out_iter);
10425 out_iter = out_other_attributes->upper_bound(saved_tag);
10429 // Matched. Keep the attribute and move to the next.
10435 if (err_object && parameters->options().warn_mismatch())
10437 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10438 if ((err_tag & 127) < 64)
10440 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10441 err_object, err_tag);
10445 gold_warning(_("%s: unknown EABI object attribute %d"),
10446 err_object, err_tag);
10452 // Stub-generation methods for Target_arm.
10454 // Make a new Arm_input_section object.
10456 template<bool big_endian>
10457 Arm_input_section<big_endian>*
10458 Target_arm<big_endian>::new_arm_input_section(
10460 unsigned int shndx)
10462 Section_id sid(relobj, shndx);
10464 Arm_input_section<big_endian>* arm_input_section =
10465 new Arm_input_section<big_endian>(relobj, shndx);
10466 arm_input_section->init();
10468 // Register new Arm_input_section in map for look-up.
10469 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10470 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10472 // Make sure that it we have not created another Arm_input_section
10473 // for this input section already.
10474 gold_assert(ins.second);
10476 return arm_input_section;
10479 // Find the Arm_input_section object corresponding to the SHNDX-th input
10480 // section of RELOBJ.
10482 template<bool big_endian>
10483 Arm_input_section<big_endian>*
10484 Target_arm<big_endian>::find_arm_input_section(
10486 unsigned int shndx) const
10488 Section_id sid(relobj, shndx);
10489 typename Arm_input_section_map::const_iterator p =
10490 this->arm_input_section_map_.find(sid);
10491 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10494 // Make a new stub table.
10496 template<bool big_endian>
10497 Stub_table<big_endian>*
10498 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10500 Stub_table<big_endian>* stub_table =
10501 new Stub_table<big_endian>(owner);
10502 this->stub_tables_.push_back(stub_table);
10504 stub_table->set_address(owner->address() + owner->data_size());
10505 stub_table->set_file_offset(owner->offset() + owner->data_size());
10506 stub_table->finalize_data_size();
10511 // Scan a relocation for stub generation.
10513 template<bool big_endian>
10515 Target_arm<big_endian>::scan_reloc_for_stub(
10516 const Relocate_info<32, big_endian>* relinfo,
10517 unsigned int r_type,
10518 const Sized_symbol<32>* gsym,
10519 unsigned int r_sym,
10520 const Symbol_value<32>* psymval,
10521 elfcpp::Elf_types<32>::Elf_Swxword addend,
10522 Arm_address address)
10524 typedef typename Target_arm<big_endian>::Relocate Relocate;
10526 const Arm_relobj<big_endian>* arm_relobj =
10527 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10529 bool target_is_thumb;
10530 Symbol_value<32> symval;
10533 // This is a global symbol. Determine if we use PLT and if the
10534 // final target is THUMB.
10535 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
10537 // This uses a PLT, change the symbol value.
10538 symval.set_output_value(this->plt_section()->address()
10539 + gsym->plt_offset());
10541 target_is_thumb = false;
10543 else if (gsym->is_undefined())
10544 // There is no need to generate a stub symbol is undefined.
10549 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10550 || (gsym->type() == elfcpp::STT_FUNC
10551 && !gsym->is_undefined()
10552 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10557 // This is a local symbol. Determine if the final target is THUMB.
10558 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10561 // Strip LSB if this points to a THUMB target.
10562 const Arm_reloc_property* reloc_property =
10563 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10564 gold_assert(reloc_property != NULL);
10565 if (target_is_thumb
10566 && reloc_property->uses_thumb_bit()
10567 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10569 Arm_address stripped_value =
10570 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10571 symval.set_output_value(stripped_value);
10575 // Get the symbol value.
10576 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10578 // Owing to pipelining, the PC relative branches below actually skip
10579 // two instructions when the branch offset is 0.
10580 Arm_address destination;
10583 case elfcpp::R_ARM_CALL:
10584 case elfcpp::R_ARM_JUMP24:
10585 case elfcpp::R_ARM_PLT32:
10587 destination = value + addend + 8;
10589 case elfcpp::R_ARM_THM_CALL:
10590 case elfcpp::R_ARM_THM_XPC22:
10591 case elfcpp::R_ARM_THM_JUMP24:
10592 case elfcpp::R_ARM_THM_JUMP19:
10594 destination = value + addend + 4;
10597 gold_unreachable();
10600 Reloc_stub* stub = NULL;
10601 Stub_type stub_type =
10602 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10604 if (stub_type != arm_stub_none)
10606 // Try looking up an existing stub from a stub table.
10607 Stub_table<big_endian>* stub_table =
10608 arm_relobj->stub_table(relinfo->data_shndx);
10609 gold_assert(stub_table != NULL);
10611 // Locate stub by destination.
10612 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10614 // Create a stub if there is not one already
10615 stub = stub_table->find_reloc_stub(stub_key);
10618 // create a new stub and add it to stub table.
10619 stub = this->stub_factory().make_reloc_stub(stub_type);
10620 stub_table->add_reloc_stub(stub, stub_key);
10623 // Record the destination address.
10624 stub->set_destination_address(destination
10625 | (target_is_thumb ? 1 : 0));
10628 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10629 if (this->fix_cortex_a8_
10630 && (r_type == elfcpp::R_ARM_THM_JUMP24
10631 || r_type == elfcpp::R_ARM_THM_JUMP19
10632 || r_type == elfcpp::R_ARM_THM_CALL
10633 || r_type == elfcpp::R_ARM_THM_XPC22)
10634 && (address & 0xfffU) == 0xffeU)
10636 // Found a candidate. Note we haven't checked the destination is
10637 // within 4K here: if we do so (and don't create a record) we can't
10638 // tell that a branch should have been relocated when scanning later.
10639 this->cortex_a8_relocs_info_[address] =
10640 new Cortex_a8_reloc(stub, r_type,
10641 destination | (target_is_thumb ? 1 : 0));
10645 // This function scans a relocation sections for stub generation.
10646 // The template parameter Relocate must be a class type which provides
10647 // a single function, relocate(), which implements the machine
10648 // specific part of a relocation.
10650 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10651 // SHT_REL or SHT_RELA.
10653 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10654 // of relocs. OUTPUT_SECTION is the output section.
10655 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10656 // mapped to output offsets.
10658 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10659 // VIEW_SIZE is the size. These refer to the input section, unless
10660 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10661 // the output section.
10663 template<bool big_endian>
10664 template<int sh_type>
10666 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10667 const Relocate_info<32, big_endian>* relinfo,
10668 const unsigned char* prelocs,
10669 size_t reloc_count,
10670 Output_section* output_section,
10671 bool needs_special_offset_handling,
10672 const unsigned char* view,
10673 elfcpp::Elf_types<32>::Elf_Addr view_address,
10676 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10677 const int reloc_size =
10678 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10680 Arm_relobj<big_endian>* arm_object =
10681 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10682 unsigned int local_count = arm_object->local_symbol_count();
10684 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10686 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10688 Reltype reloc(prelocs);
10690 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10691 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10692 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10694 r_type = this->get_real_reloc_type(r_type);
10696 // Only a few relocation types need stubs.
10697 if ((r_type != elfcpp::R_ARM_CALL)
10698 && (r_type != elfcpp::R_ARM_JUMP24)
10699 && (r_type != elfcpp::R_ARM_PLT32)
10700 && (r_type != elfcpp::R_ARM_THM_CALL)
10701 && (r_type != elfcpp::R_ARM_THM_XPC22)
10702 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10703 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10704 && (r_type != elfcpp::R_ARM_V4BX))
10707 section_offset_type offset =
10708 convert_to_section_size_type(reloc.get_r_offset());
10710 if (needs_special_offset_handling)
10712 offset = output_section->output_offset(relinfo->object,
10713 relinfo->data_shndx,
10719 // Create a v4bx stub if --fix-v4bx-interworking is used.
10720 if (r_type == elfcpp::R_ARM_V4BX)
10722 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10724 // Get the BX instruction.
10725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10726 const Valtype* wv =
10727 reinterpret_cast<const Valtype*>(view + offset);
10728 elfcpp::Elf_types<32>::Elf_Swxword insn =
10729 elfcpp::Swap<32, big_endian>::readval(wv);
10730 const uint32_t reg = (insn & 0xf);
10734 // Try looking up an existing stub from a stub table.
10735 Stub_table<big_endian>* stub_table =
10736 arm_object->stub_table(relinfo->data_shndx);
10737 gold_assert(stub_table != NULL);
10739 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10741 // create a new stub and add it to stub table.
10742 Arm_v4bx_stub* stub =
10743 this->stub_factory().make_arm_v4bx_stub(reg);
10744 gold_assert(stub != NULL);
10745 stub_table->add_arm_v4bx_stub(stub);
10753 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10754 elfcpp::Elf_types<32>::Elf_Swxword addend =
10755 stub_addend_reader(r_type, view + offset, reloc);
10757 const Sized_symbol<32>* sym;
10759 Symbol_value<32> symval;
10760 const Symbol_value<32> *psymval;
10761 if (r_sym < local_count)
10764 psymval = arm_object->local_symbol(r_sym);
10766 // If the local symbol belongs to a section we are discarding,
10767 // and that section is a debug section, try to find the
10768 // corresponding kept section and map this symbol to its
10769 // counterpart in the kept section. The symbol must not
10770 // correspond to a section we are folding.
10772 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10774 && shndx != elfcpp::SHN_UNDEF
10775 && !arm_object->is_section_included(shndx)
10776 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10778 if (comdat_behavior == CB_UNDETERMINED)
10781 arm_object->section_name(relinfo->data_shndx);
10782 comdat_behavior = get_comdat_behavior(name.c_str());
10784 if (comdat_behavior == CB_PRETEND)
10787 typename elfcpp::Elf_types<32>::Elf_Addr value =
10788 arm_object->map_to_kept_section(shndx, &found);
10790 symval.set_output_value(value + psymval->input_value());
10792 symval.set_output_value(0);
10796 symval.set_output_value(0);
10798 symval.set_no_output_symtab_entry();
10804 const Symbol* gsym = arm_object->global_symbol(r_sym);
10805 gold_assert(gsym != NULL);
10806 if (gsym->is_forwarder())
10807 gsym = relinfo->symtab->resolve_forwards(gsym);
10809 sym = static_cast<const Sized_symbol<32>*>(gsym);
10810 if (sym->has_symtab_index())
10811 symval.set_output_symtab_index(sym->symtab_index());
10813 symval.set_no_output_symtab_entry();
10815 // We need to compute the would-be final value of this global
10817 const Symbol_table* symtab = relinfo->symtab;
10818 const Sized_symbol<32>* sized_symbol =
10819 symtab->get_sized_symbol<32>(gsym);
10820 Symbol_table::Compute_final_value_status status;
10821 Arm_address value =
10822 symtab->compute_final_value<32>(sized_symbol, &status);
10824 // Skip this if the symbol has not output section.
10825 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10828 symval.set_output_value(value);
10832 // If symbol is a section symbol, we don't know the actual type of
10833 // destination. Give up.
10834 if (psymval->is_section_symbol())
10837 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10838 addend, view_address + offset);
10842 // Scan an input section for stub generation.
10844 template<bool big_endian>
10846 Target_arm<big_endian>::scan_section_for_stubs(
10847 const Relocate_info<32, big_endian>* relinfo,
10848 unsigned int sh_type,
10849 const unsigned char* prelocs,
10850 size_t reloc_count,
10851 Output_section* output_section,
10852 bool needs_special_offset_handling,
10853 const unsigned char* view,
10854 Arm_address view_address,
10855 section_size_type view_size)
10857 if (sh_type == elfcpp::SHT_REL)
10858 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10863 needs_special_offset_handling,
10867 else if (sh_type == elfcpp::SHT_RELA)
10868 // We do not support RELA type relocations yet. This is provided for
10870 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10875 needs_special_offset_handling,
10880 gold_unreachable();
10883 // Group input sections for stub generation.
10885 // We goup input sections in an output sections so that the total size,
10886 // including any padding space due to alignment is smaller than GROUP_SIZE
10887 // unless the only input section in group is bigger than GROUP_SIZE already.
10888 // Then an ARM stub table is created to follow the last input section
10889 // in group. For each group an ARM stub table is created an is placed
10890 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10891 // extend the group after the stub table.
10893 template<bool big_endian>
10895 Target_arm<big_endian>::group_sections(
10897 section_size_type group_size,
10898 bool stubs_always_after_branch)
10900 // Group input sections and insert stub table
10901 Layout::Section_list section_list;
10902 layout->get_allocated_sections(§ion_list);
10903 for (Layout::Section_list::const_iterator p = section_list.begin();
10904 p != section_list.end();
10907 Arm_output_section<big_endian>* output_section =
10908 Arm_output_section<big_endian>::as_arm_output_section(*p);
10909 output_section->group_sections(group_size, stubs_always_after_branch,
10914 // Relaxation hook. This is where we do stub generation.
10916 template<bool big_endian>
10918 Target_arm<big_endian>::do_relax(
10920 const Input_objects* input_objects,
10921 Symbol_table* symtab,
10924 // No need to generate stubs if this is a relocatable link.
10925 gold_assert(!parameters->options().relocatable());
10927 // If this is the first pass, we need to group input sections into
10929 bool done_exidx_fixup = false;
10930 typedef typename Stub_table_list::iterator Stub_table_iterator;
10933 // Determine the stub group size. The group size is the absolute
10934 // value of the parameter --stub-group-size. If --stub-group-size
10935 // is passed a negative value, we restict stubs to be always after
10936 // the stubbed branches.
10937 int32_t stub_group_size_param =
10938 parameters->options().stub_group_size();
10939 bool stubs_always_after_branch = stub_group_size_param < 0;
10940 section_size_type stub_group_size = abs(stub_group_size_param);
10942 if (stub_group_size == 1)
10945 // Thumb branch range is +-4MB has to be used as the default
10946 // maximum size (a given section can contain both ARM and Thumb
10947 // code, so the worst case has to be taken into account). If we are
10948 // fixing cortex-a8 errata, the branch range has to be even smaller,
10949 // since wide conditional branch has a range of +-1MB only.
10951 // This value is 48K less than that, which allows for 4096
10952 // 12-byte stubs. If we exceed that, then we will fail to link.
10953 // The user will have to relink with an explicit group size
10955 stub_group_size = 4145152;
10958 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10959 // page as the first half of a 32-bit branch straddling two 4K pages.
10960 // This is a crude way of enforcing that. In addition, long conditional
10961 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
10962 // erratum, limit the group size to (1M - 12k) to avoid unreachable
10963 // cortex-A8 stubs from long conditional branches.
10964 if (this->fix_cortex_a8_)
10966 stubs_always_after_branch = true;
10967 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
10968 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
10971 group_sections(layout, stub_group_size, stubs_always_after_branch);
10973 // Also fix .ARM.exidx section coverage.
10974 Output_section* os = layout->find_output_section(".ARM.exidx");
10975 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10977 Arm_output_section<big_endian>* exidx_output_section =
10978 Arm_output_section<big_endian>::as_arm_output_section(os);
10979 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10980 done_exidx_fixup = true;
10985 // If this is not the first pass, addresses and file offsets have
10986 // been reset at this point, set them here.
10987 for (Stub_table_iterator sp = this->stub_tables_.begin();
10988 sp != this->stub_tables_.end();
10991 Arm_input_section<big_endian>* owner = (*sp)->owner();
10992 off_t off = align_address(owner->original_size(),
10993 (*sp)->addralign());
10994 (*sp)->set_address_and_file_offset(owner->address() + off,
10995 owner->offset() + off);
10999 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11000 // beginning of each relaxation pass, just blow away all the stubs.
11001 // Alternatively, we could selectively remove only the stubs and reloc
11002 // information for code sections that have moved since the last pass.
11003 // That would require more book-keeping.
11004 if (this->fix_cortex_a8_)
11006 // Clear all Cortex-A8 reloc information.
11007 for (typename Cortex_a8_relocs_info::const_iterator p =
11008 this->cortex_a8_relocs_info_.begin();
11009 p != this->cortex_a8_relocs_info_.end();
11012 this->cortex_a8_relocs_info_.clear();
11014 // Remove all Cortex-A8 stubs.
11015 for (Stub_table_iterator sp = this->stub_tables_.begin();
11016 sp != this->stub_tables_.end();
11018 (*sp)->remove_all_cortex_a8_stubs();
11021 // Scan relocs for relocation stubs
11022 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11023 op != input_objects->relobj_end();
11026 Arm_relobj<big_endian>* arm_relobj =
11027 Arm_relobj<big_endian>::as_arm_relobj(*op);
11028 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11031 // Check all stub tables to see if any of them have their data sizes
11032 // or addresses alignments changed. These are the only things that
11034 bool any_stub_table_changed = false;
11035 Unordered_set<const Output_section*> sections_needing_adjustment;
11036 for (Stub_table_iterator sp = this->stub_tables_.begin();
11037 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11040 if ((*sp)->update_data_size_and_addralign())
11042 // Update data size of stub table owner.
11043 Arm_input_section<big_endian>* owner = (*sp)->owner();
11044 uint64_t address = owner->address();
11045 off_t offset = owner->offset();
11046 owner->reset_address_and_file_offset();
11047 owner->set_address_and_file_offset(address, offset);
11049 sections_needing_adjustment.insert(owner->output_section());
11050 any_stub_table_changed = true;
11054 // Output_section_data::output_section() returns a const pointer but we
11055 // need to update output sections, so we record all output sections needing
11056 // update above and scan the sections here to find out what sections need
11058 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
11059 p != layout->section_list().end();
11062 if (sections_needing_adjustment.find(*p)
11063 != sections_needing_adjustment.end())
11064 (*p)->set_section_offsets_need_adjustment();
11067 // Stop relaxation if no EXIDX fix-up and no stub table change.
11068 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11070 // Finalize the stubs in the last relaxation pass.
11071 if (!continue_relaxation)
11073 for (Stub_table_iterator sp = this->stub_tables_.begin();
11074 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11076 (*sp)->finalize_stubs();
11078 // Update output local symbol counts of objects if necessary.
11079 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11080 op != input_objects->relobj_end();
11083 Arm_relobj<big_endian>* arm_relobj =
11084 Arm_relobj<big_endian>::as_arm_relobj(*op);
11086 // Update output local symbol counts. We need to discard local
11087 // symbols defined in parts of input sections that are discarded by
11089 if (arm_relobj->output_local_symbol_count_needs_update())
11090 arm_relobj->update_output_local_symbol_count();
11094 return continue_relaxation;
11097 // Relocate a stub.
11099 template<bool big_endian>
11101 Target_arm<big_endian>::relocate_stub(
11103 const Relocate_info<32, big_endian>* relinfo,
11104 Output_section* output_section,
11105 unsigned char* view,
11106 Arm_address address,
11107 section_size_type view_size)
11110 const Stub_template* stub_template = stub->stub_template();
11111 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11113 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11114 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11116 unsigned int r_type = insn->r_type();
11117 section_size_type reloc_offset = stub_template->reloc_offset(i);
11118 section_size_type reloc_size = insn->size();
11119 gold_assert(reloc_offset + reloc_size <= view_size);
11121 // This is the address of the stub destination.
11122 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11123 Symbol_value<32> symval;
11124 symval.set_output_value(target);
11126 // Synthesize a fake reloc just in case. We don't have a symbol so
11128 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11129 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11130 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11131 reloc_write.put_r_offset(reloc_offset);
11132 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11133 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11135 relocate.relocate(relinfo, this, output_section,
11136 this->fake_relnum_for_stubs, rel, r_type,
11137 NULL, &symval, view + reloc_offset,
11138 address + reloc_offset, reloc_size);
11142 // Determine whether an object attribute tag takes an integer, a
11145 template<bool big_endian>
11147 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11149 if (tag == Object_attribute::Tag_compatibility)
11150 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11151 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11152 else if (tag == elfcpp::Tag_nodefaults)
11153 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11154 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11155 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11156 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11158 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11160 return ((tag & 1) != 0
11161 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11162 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11165 // Reorder attributes.
11167 // The ABI defines that Tag_conformance should be emitted first, and that
11168 // Tag_nodefaults should be second (if either is defined). This sets those
11169 // two positions, and bumps up the position of all the remaining tags to
11172 template<bool big_endian>
11174 Target_arm<big_endian>::do_attributes_order(int num) const
11176 // Reorder the known object attributes in output. We want to move
11177 // Tag_conformance to position 4 and Tag_conformance to position 5
11178 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11180 return elfcpp::Tag_conformance;
11182 return elfcpp::Tag_nodefaults;
11183 if ((num - 2) < elfcpp::Tag_nodefaults)
11185 if ((num - 1) < elfcpp::Tag_conformance)
11190 // Scan a span of THUMB code for Cortex-A8 erratum.
11192 template<bool big_endian>
11194 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11195 Arm_relobj<big_endian>* arm_relobj,
11196 unsigned int shndx,
11197 section_size_type span_start,
11198 section_size_type span_end,
11199 const unsigned char* view,
11200 Arm_address address)
11202 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11204 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11205 // The branch target is in the same 4KB region as the
11206 // first half of the branch.
11207 // The instruction before the branch is a 32-bit
11208 // length non-branch instruction.
11209 section_size_type i = span_start;
11210 bool last_was_32bit = false;
11211 bool last_was_branch = false;
11212 while (i < span_end)
11214 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11215 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11216 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11217 bool is_blx = false, is_b = false;
11218 bool is_bl = false, is_bcc = false;
11220 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11223 // Load the rest of the insn (in manual-friendly order).
11224 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11226 // Encoding T4: B<c>.W.
11227 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11228 // Encoding T1: BL<c>.W.
11229 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11230 // Encoding T2: BLX<c>.W.
11231 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11232 // Encoding T3: B<c>.W (not permitted in IT block).
11233 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11234 && (insn & 0x07f00000U) != 0x03800000U);
11237 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11239 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11240 // page boundary and it follows 32-bit non-branch instruction,
11241 // we need to work around.
11242 if (is_32bit_branch
11243 && ((address + i) & 0xfffU) == 0xffeU
11245 && !last_was_branch)
11247 // Check to see if there is a relocation stub for this branch.
11248 bool force_target_arm = false;
11249 bool force_target_thumb = false;
11250 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11251 Cortex_a8_relocs_info::const_iterator p =
11252 this->cortex_a8_relocs_info_.find(address + i);
11254 if (p != this->cortex_a8_relocs_info_.end())
11256 cortex_a8_reloc = p->second;
11257 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11259 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11260 && !target_is_thumb)
11261 force_target_arm = true;
11262 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11263 && target_is_thumb)
11264 force_target_thumb = true;
11268 Stub_type stub_type = arm_stub_none;
11270 // Check if we have an offending branch instruction.
11271 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11272 uint16_t lower_insn = insn & 0xffffU;
11273 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11275 if (cortex_a8_reloc != NULL
11276 && cortex_a8_reloc->reloc_stub() != NULL)
11277 // We've already made a stub for this instruction, e.g.
11278 // it's a long branch or a Thumb->ARM stub. Assume that
11279 // stub will suffice to work around the A8 erratum (see
11280 // setting of always_after_branch above).
11284 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11286 stub_type = arm_stub_a8_veneer_b_cond;
11288 else if (is_b || is_bl || is_blx)
11290 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11295 stub_type = (is_blx
11296 ? arm_stub_a8_veneer_blx
11298 ? arm_stub_a8_veneer_bl
11299 : arm_stub_a8_veneer_b));
11302 if (stub_type != arm_stub_none)
11304 Arm_address pc_for_insn = address + i + 4;
11306 // The original instruction is a BL, but the target is
11307 // an ARM instruction. If we were not making a stub,
11308 // the BL would have been converted to a BLX. Use the
11309 // BLX stub instead in that case.
11310 if (this->may_use_blx() && force_target_arm
11311 && stub_type == arm_stub_a8_veneer_bl)
11313 stub_type = arm_stub_a8_veneer_blx;
11317 // Conversely, if the original instruction was
11318 // BLX but the target is Thumb mode, use the BL stub.
11319 else if (force_target_thumb
11320 && stub_type == arm_stub_a8_veneer_blx)
11322 stub_type = arm_stub_a8_veneer_bl;
11330 // If we found a relocation, use the proper destination,
11331 // not the offset in the (unrelocated) instruction.
11332 // Note this is always done if we switched the stub type above.
11333 if (cortex_a8_reloc != NULL)
11334 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11336 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11338 // Add a new stub if destination address in in the same page.
11339 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11341 Cortex_a8_stub* stub =
11342 this->stub_factory_.make_cortex_a8_stub(stub_type,
11346 Stub_table<big_endian>* stub_table =
11347 arm_relobj->stub_table(shndx);
11348 gold_assert(stub_table != NULL);
11349 stub_table->add_cortex_a8_stub(address + i, stub);
11354 i += insn_32bit ? 4 : 2;
11355 last_was_32bit = insn_32bit;
11356 last_was_branch = is_32bit_branch;
11360 // Apply the Cortex-A8 workaround.
11362 template<bool big_endian>
11364 Target_arm<big_endian>::apply_cortex_a8_workaround(
11365 const Cortex_a8_stub* stub,
11366 Arm_address stub_address,
11367 unsigned char* insn_view,
11368 Arm_address insn_address)
11370 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11371 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11372 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11373 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11374 off_t branch_offset = stub_address - (insn_address + 4);
11376 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11377 switch (stub->stub_template()->type())
11379 case arm_stub_a8_veneer_b_cond:
11380 // For a conditional branch, we re-write it to be a uncondition
11381 // branch to the stub. We use the THUMB-2 encoding here.
11382 upper_insn = 0xf000U;
11383 lower_insn = 0xb800U;
11385 case arm_stub_a8_veneer_b:
11386 case arm_stub_a8_veneer_bl:
11387 case arm_stub_a8_veneer_blx:
11388 if ((lower_insn & 0x5000U) == 0x4000U)
11389 // For a BLX instruction, make sure that the relocation is
11390 // rounded up to a word boundary. This follows the semantics of
11391 // the instruction which specifies that bit 1 of the target
11392 // address will come from bit 1 of the base address.
11393 branch_offset = (branch_offset + 2) & ~3;
11395 // Put BRANCH_OFFSET back into the insn.
11396 gold_assert(!utils::has_overflow<25>(branch_offset));
11397 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11398 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11402 gold_unreachable();
11405 // Put the relocated value back in the object file:
11406 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11407 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11410 template<bool big_endian>
11411 class Target_selector_arm : public Target_selector
11414 Target_selector_arm()
11415 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11416 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11420 do_instantiate_target()
11421 { return new Target_arm<big_endian>(); }
11424 // Fix .ARM.exidx section coverage.
11426 template<bool big_endian>
11428 Target_arm<big_endian>::fix_exidx_coverage(
11430 Arm_output_section<big_endian>* exidx_section,
11431 Symbol_table* symtab)
11433 // We need to look at all the input sections in output in ascending
11434 // order of of output address. We do that by building a sorted list
11435 // of output sections by addresses. Then we looks at the output sections
11436 // in order. The input sections in an output section are already sorted
11437 // by addresses within the output section.
11439 typedef std::set<Output_section*, output_section_address_less_than>
11440 Sorted_output_section_list;
11441 Sorted_output_section_list sorted_output_sections;
11442 Layout::Section_list section_list;
11443 layout->get_allocated_sections(§ion_list);
11444 for (Layout::Section_list::const_iterator p = section_list.begin();
11445 p != section_list.end();
11448 // We only care about output sections that contain executable code.
11449 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
11450 sorted_output_sections.insert(*p);
11453 // Go over the output sections in ascending order of output addresses.
11454 typedef typename Arm_output_section<big_endian>::Text_section_list
11456 Text_section_list sorted_text_sections;
11457 for(typename Sorted_output_section_list::iterator p =
11458 sorted_output_sections.begin();
11459 p != sorted_output_sections.end();
11462 Arm_output_section<big_endian>* arm_output_section =
11463 Arm_output_section<big_endian>::as_arm_output_section(*p);
11464 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11467 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11468 merge_exidx_entries());
11471 Target_selector_arm<false> target_selector_arm;
11472 Target_selector_arm<true> target_selector_armbe;
11474 } // End anonymous namespace.