2011-06-24 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is an invalid index, this points to a global symbol.
602     // Otherwise, it points to a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj, in order to avoid making the stub class a template
605     // as most of the stub machinery is endianness-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB using KEY.  The caller is responsible for avoiding addition
899   // if a STUB with the same key has already been added.
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // The caller is responsible for avoiding addition if a STUB with the same
919   // address has already been added.
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067   // Write to a map file.
1068   void
1069   do_print_to_mapfile(Mapfile* mapfile) const
1070   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072  private:
1073   // Implement do_write for a given endianness.
1074   template<bool big_endian>
1075   void inline
1076   do_fixed_endian_write(Output_file*);
1077   
1078   // The object containing the section pointed by this.
1079   Relobj* relobj_;
1080   // The section index of the section pointed by this.
1081   unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section. 
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089         Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096  public:
1097   // Constructor for Arm_exidx_merged_section.
1098   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099   // SECTION_OFFSET_MAP points to a section offset map describing how
1100   // parts of the input section are mapped to output.  DELETED_BYTES is
1101   // the number of bytes deleted from the EXIDX input section.
1102   Arm_exidx_merged_section(
1103       const Arm_exidx_input_section& exidx_input_section,
1104       const Arm_exidx_section_offset_map& section_offset_map,
1105       uint32_t deleted_bytes);
1106
1107   // Build output contents.
1108   void
1109   build_contents(const unsigned char*, section_size_type);
1110
1111   // Return the original EXIDX input section.
1112   const Arm_exidx_input_section&
1113   exidx_input_section() const
1114   { return this->exidx_input_section_; }
1115
1116   // Return the section offset map.
1117   const Arm_exidx_section_offset_map&
1118   section_offset_map() const
1119   { return this->section_offset_map_; }
1120
1121  protected:
1122   // Write merged section into file OF.
1123   void
1124   do_write(Output_file* of);
1125
1126   bool
1127   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128                   section_offset_type*) const;
1129
1130  private:
1131   // Original EXIDX input section.
1132   const Arm_exidx_input_section& exidx_input_section_;
1133   // Section offset map.
1134   const Arm_exidx_section_offset_map& section_offset_map_;
1135   // Merged section contents.  We need to keep build the merged section 
1136   // and save it here to avoid accessing the original EXIDX section when
1137   // we cannot lock the sections' object.
1138   unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146  public:
1147   Arm_input_section(Relobj* relobj, unsigned int shndx)
1148     : Output_relaxed_input_section(relobj, shndx, 1),
1149       original_addralign_(1), original_size_(0), stub_table_(NULL),
1150       original_contents_(NULL)
1151   { }
1152
1153   ~Arm_input_section()
1154   { delete[] this->original_contents_; }
1155
1156   // Initialize.
1157   void
1158   init();
1159   
1160   // Whether this is a stub table owner.
1161   bool
1162   is_stub_table_owner() const
1163   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165   // Return the stub table.
1166   Stub_table<big_endian>*
1167   stub_table() const
1168   { return this->stub_table_; }
1169
1170   // Set the stub_table.
1171   void
1172   set_stub_table(Stub_table<big_endian>* stub_table)
1173   { this->stub_table_ = stub_table; }
1174
1175   // Downcast a base pointer to an Arm_input_section pointer.  This is
1176   // not type-safe but we only use Arm_input_section not the base class.
1177   static Arm_input_section<big_endian>*
1178   as_arm_input_section(Output_relaxed_input_section* poris)
1179   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181   // Return the original size of the section.
1182   uint32_t
1183   original_size() const
1184   { return this->original_size_; }
1185
1186  protected:
1187   // Write data to output file.
1188   void
1189   do_write(Output_file*);
1190
1191   // Return required alignment of this.
1192   uint64_t
1193   do_addralign() const
1194   {
1195     if (this->is_stub_table_owner())
1196       return std::max(this->stub_table_->addralign(),
1197                       static_cast<uint64_t>(this->original_addralign_));
1198     else
1199       return this->original_addralign_;
1200   }
1201
1202   // Finalize data size.
1203   void
1204   set_final_data_size();
1205
1206   // Reset address and file offset.
1207   void
1208   do_reset_address_and_file_offset();
1209
1210   // Output offset.
1211   bool
1212   do_output_offset(const Relobj* object, unsigned int shndx,
1213                    section_offset_type offset,
1214                    section_offset_type* poutput) const
1215   {
1216     if ((object == this->relobj())
1217         && (shndx == this->shndx())
1218         && (offset >= 0)
1219         && (offset <=
1220             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221       {
1222         *poutput = offset;
1223         return true;
1224       }
1225     else
1226       return false;
1227   }
1228
1229  private:
1230   // Copying is not allowed.
1231   Arm_input_section(const Arm_input_section&);
1232   Arm_input_section& operator=(const Arm_input_section&);
1233
1234   // Address alignment of the original input section.
1235   uint32_t original_addralign_;
1236   // Section size of the original input section.
1237   uint32_t original_size_;
1238   // Stub table.
1239   Stub_table<big_endian>* stub_table_;
1240   // Original section contents.  We have to make a copy here since the file
1241   // containing the original section may not be locked when we need to access
1242   // the contents.
1243   unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class.  This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251  public:
1252   Arm_exidx_fixup(Output_section* exidx_output_section,
1253                   bool merge_exidx_entries = true)
1254     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255       last_inlined_entry_(0), last_input_section_(NULL),
1256       section_offset_map_(NULL), first_output_text_section_(NULL),
1257       merge_exidx_entries_(merge_exidx_entries)
1258   { }
1259
1260   ~Arm_exidx_fixup()
1261   { delete this->section_offset_map_; }
1262
1263   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1264   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265   // number of bytes to be deleted in output.  If parts of the input EXIDX
1266   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1268   // responsible for releasing it.
1269   template<bool big_endian>
1270   uint32_t
1271   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272                         const unsigned char* section_contents,
1273                         section_size_type section_size,
1274                         Arm_exidx_section_offset_map** psection_offset_map);
1275   
1276   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277   // input section, if there is not one already.
1278   void
1279   add_exidx_cantunwind_as_needed();
1280
1281   // Return the output section for the text section which is linked to the
1282   // first exidx input in output.
1283   Output_section*
1284   first_output_text_section() const
1285   { return this->first_output_text_section_; }
1286
1287  private:
1288   // Copying is not allowed.
1289   Arm_exidx_fixup(const Arm_exidx_fixup&);
1290   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292   // Type of EXIDX unwind entry.
1293   enum Unwind_type
1294   {
1295     // No type.
1296     UT_NONE,
1297     // EXIDX_CANTUNWIND.
1298     UT_EXIDX_CANTUNWIND,
1299     // Inlined entry.
1300     UT_INLINED_ENTRY,
1301     // Normal entry.
1302     UT_NORMAL_ENTRY,
1303   };
1304
1305   // Process an EXIDX entry.  We only care about the second word of the
1306   // entry.  Return true if the entry can be deleted.
1307   bool
1308   process_exidx_entry(uint32_t second_word);
1309
1310   // Update the current section offset map during EXIDX section fix-up.
1311   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1312   // reference point, DELETED_BYTES is the number of deleted by in the
1313   // section so far.  If DELETE_ENTRY is true, the reference point and
1314   // all offsets after the previous reference point are discarded.
1315   void
1316   update_offset_map(section_offset_type input_offset,
1317                     section_size_type deleted_bytes, bool delete_entry);
1318
1319   // EXIDX output section.
1320   Output_section* exidx_output_section_;
1321   // Unwind type of the last EXIDX entry processed.
1322   Unwind_type last_unwind_type_;
1323   // Last seen inlined EXIDX entry.
1324   uint32_t last_inlined_entry_;
1325   // Last processed EXIDX input section.
1326   const Arm_exidx_input_section* last_input_section_;
1327   // Section offset map created in process_exidx_section.
1328   Arm_exidx_section_offset_map* section_offset_map_;
1329   // Output section for the text section which is linked to the first exidx
1330   // input in output.
1331   Output_section* first_output_text_section_;
1332
1333   bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class.  This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342  public:
1343   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347                      elfcpp::Elf_Xword flags)
1348     : Output_section(name, type,
1349                      (type == elfcpp::SHT_ARM_EXIDX
1350                       ? flags | elfcpp::SHF_LINK_ORDER
1351                       : flags))
1352   {
1353     if (type == elfcpp::SHT_ARM_EXIDX)
1354       this->set_always_keeps_input_sections();
1355   }
1356
1357   ~Arm_output_section()
1358   { }
1359   
1360   // Group input sections for stub generation.
1361   void
1362   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364   // Downcast a base pointer to an Arm_output_section pointer.  This is
1365   // not type-safe but we only use Arm_output_section not the base class.
1366   static Arm_output_section<big_endian>*
1367   as_arm_output_section(Output_section* os)
1368   { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370   // Append all input text sections in this into LIST.
1371   void
1372   append_text_sections_to_list(Text_section_list* list);
1373
1374   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1375   // is a list of text input sections sorted in ascending order of their
1376   // output addresses.
1377   void
1378   fix_exidx_coverage(Layout* layout,
1379                      const Text_section_list& sorted_text_section,
1380                      Symbol_table* symtab,
1381                      bool merge_exidx_entries,
1382                      const Task* task);
1383
1384   // Link an EXIDX section into its corresponding text section.
1385   void
1386   set_exidx_section_link();
1387
1388  private:
1389   // For convenience.
1390   typedef Output_section::Input_section Input_section;
1391   typedef Output_section::Input_section_list Input_section_list;
1392
1393   // Create a stub group.
1394   void create_stub_group(Input_section_list::const_iterator,
1395                          Input_section_list::const_iterator,
1396                          Input_section_list::const_iterator,
1397                          Target_arm<big_endian>*,
1398                          std::vector<Output_relaxed_input_section*>*,
1399                          const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406  public:
1407   static const section_offset_type invalid_offset =
1408     static_cast<section_offset_type>(-1);
1409
1410   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411                           unsigned int link, uint32_t size,
1412                           uint32_t addralign, uint32_t text_size)
1413     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414       addralign_(addralign), text_size_(text_size), has_errors_(false)
1415   { }
1416
1417   ~Arm_exidx_input_section()
1418   { }
1419         
1420   // Accessors:  This is a read-only class.
1421
1422   // Return the object containing this EXIDX input section.
1423   Relobj*
1424   relobj() const
1425   { return this->relobj_; }
1426
1427   // Return the section index of this EXIDX input section.
1428   unsigned int
1429   shndx() const
1430   { return this->shndx_; }
1431
1432   // Return the section index of linked text section in the same object.
1433   unsigned int
1434   link() const
1435   { return this->link_; }
1436
1437   // Return size of the EXIDX input section.
1438   uint32_t
1439   size() const
1440   { return this->size_; }
1441
1442   // Return address alignment of EXIDX input section.
1443   uint32_t
1444   addralign() const
1445   { return this->addralign_; }
1446
1447   // Return size of the associated text input section.
1448   uint32_t
1449   text_size() const
1450   { return this->text_size_; }
1451
1452   // Whether there are any errors in the EXIDX input section.
1453   bool
1454   has_errors() const
1455   { return this->has_errors_; }
1456
1457   // Set has-errors flag.
1458   void
1459   set_has_errors()
1460   { this->has_errors_ = true; }
1461
1462  private:
1463   // Object containing this.
1464   Relobj* relobj_;
1465   // Section index of this.
1466   unsigned int shndx_;
1467   // text section linked to this in the same object.
1468   unsigned int link_;
1469   // Size of this.  For ARM 32-bit is sufficient.
1470   uint32_t size_;
1471   // Address alignment of this.  For ARM 32-bit is sufficient.
1472   uint32_t addralign_;
1473   // Size of associated text section.
1474   uint32_t text_size_;
1475   // Whether this has any errors.
1476   bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484  public:
1485   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490       stub_tables_(), local_symbol_is_thumb_function_(),
1491       attributes_section_data_(NULL), mapping_symbols_info_(),
1492       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493       output_local_symbol_count_needs_update_(false),
1494       merge_flags_and_attributes_(true)
1495   { }
1496
1497   ~Arm_relobj()
1498   { delete this->attributes_section_data_; }
1499  
1500   // Return the stub table of the SHNDX-th section if there is one.
1501   Stub_table<big_endian>*
1502   stub_table(unsigned int shndx) const
1503   {
1504     gold_assert(shndx < this->stub_tables_.size());
1505     return this->stub_tables_[shndx];
1506   }
1507
1508   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509   void
1510   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511   {
1512     gold_assert(shndx < this->stub_tables_.size());
1513     this->stub_tables_[shndx] = stub_table;
1514   }
1515
1516   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1517   // index.  This is only valid after do_count_local_symbol is called.
1518   bool
1519   local_symbol_is_thumb_function(unsigned int r_sym) const
1520   {
1521     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522     return this->local_symbol_is_thumb_function_[r_sym];
1523   }
1524   
1525   // Scan all relocation sections for stub generation.
1526   void
1527   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528                           const Layout*);
1529
1530   // Convert regular input section with index SHNDX to a relaxed section.
1531   void
1532   convert_input_section_to_relaxed_section(unsigned shndx)
1533   {
1534     // The stubs have relocations and we need to process them after writing
1535     // out the stubs.  So relocation now must follow section write.
1536     this->set_section_offset(shndx, -1ULL);
1537     this->set_relocs_must_follow_section_writes();
1538   }
1539
1540   // Downcast a base pointer to an Arm_relobj pointer.  This is
1541   // not type-safe but we only use Arm_relobj not the base class.
1542   static Arm_relobj<big_endian>*
1543   as_arm_relobj(Relobj* relobj)
1544   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546   // Processor-specific flags in ELF file header.  This is valid only after
1547   // reading symbols.
1548   elfcpp::Elf_Word
1549   processor_specific_flags() const
1550   { return this->processor_specific_flags_; }
1551
1552   // Attribute section data  This is the contents of the .ARM.attribute section
1553   // if there is one.
1554   const Attributes_section_data*
1555   attributes_section_data() const
1556   { return this->attributes_section_data_; }
1557
1558   // Mapping symbol location.
1559   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561   // Functor for STL container.
1562   struct Mapping_symbol_position_less
1563   {
1564     bool
1565     operator()(const Mapping_symbol_position& p1,
1566                const Mapping_symbol_position& p2) const
1567     {
1568       return (p1.first < p2.first
1569               || (p1.first == p2.first && p1.second < p2.second));
1570     }
1571   };
1572   
1573   // We only care about the first character of a mapping symbol, so
1574   // we only store that instead of the whole symbol name.
1575   typedef std::map<Mapping_symbol_position, char,
1576                    Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578   // Whether a section contains any Cortex-A8 workaround.
1579   bool
1580   section_has_cortex_a8_workaround(unsigned int shndx) const
1581   { 
1582     return (this->section_has_cortex_a8_workaround_ != NULL
1583             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584   }
1585   
1586   // Mark a section that has Cortex-A8 workaround.
1587   void
1588   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589   {
1590     if (this->section_has_cortex_a8_workaround_ == NULL)
1591       this->section_has_cortex_a8_workaround_ =
1592         new std::vector<bool>(this->shnum(), false);
1593     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594   }
1595
1596   // Return the EXIDX section of an text section with index SHNDX or NULL
1597   // if the text section has no associated EXIDX section.
1598   const Arm_exidx_input_section*
1599   exidx_input_section_by_link(unsigned int shndx) const
1600   {
1601     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602     return ((p != this->exidx_section_map_.end()
1603              && p->second->link() == shndx)
1604             ? p->second
1605             : NULL);
1606   }
1607
1608   // Return the EXIDX section with index SHNDX or NULL if there is none.
1609   const Arm_exidx_input_section*
1610   exidx_input_section_by_shndx(unsigned shndx) const
1611   {
1612     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613     return ((p != this->exidx_section_map_.end()
1614              && p->second->shndx() == shndx)
1615             ? p->second
1616             : NULL);
1617   }
1618
1619   // Whether output local symbol count needs updating.
1620   bool
1621   output_local_symbol_count_needs_update() const
1622   { return this->output_local_symbol_count_needs_update_; }
1623
1624   // Set output_local_symbol_count_needs_update flag to be true.
1625   void
1626   set_output_local_symbol_count_needs_update()
1627   { this->output_local_symbol_count_needs_update_ = true; }
1628   
1629   // Update output local symbol count at the end of relaxation.
1630   void
1631   update_output_local_symbol_count();
1632
1633   // Whether we want to merge processor-specific flags and attributes.
1634   bool
1635   merge_flags_and_attributes() const
1636   { return this->merge_flags_and_attributes_; }
1637   
1638   // Export list of EXIDX section indices.
1639   void
1640   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641   {
1642     list->clear();
1643     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644          p != this->exidx_section_map_.end();
1645          ++p)
1646       {
1647         if (p->second->shndx() == p->first)
1648           list->push_back(p->first);
1649       }
1650     // Sort list to make result independent of implementation of map. 
1651     std::sort(list->begin(), list->end());
1652   }
1653
1654  protected:
1655   // Post constructor setup.
1656   void
1657   do_setup()
1658   {
1659     // Call parent's setup method.
1660     Sized_relobj_file<32, big_endian>::do_setup();
1661
1662     // Initialize look-up tables.
1663     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664     this->stub_tables_.swap(empty_stub_table_list);
1665   }
1666
1667   // Count the local symbols.
1668   void
1669   do_count_local_symbols(Stringpool_template<char>*,
1670                          Stringpool_template<char>*);
1671
1672   void
1673   do_relocate_sections(
1674       const Symbol_table* symtab, const Layout* layout,
1675       const unsigned char* pshdrs, Output_file* of,
1676       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678   // Read the symbol information.
1679   void
1680   do_read_symbols(Read_symbols_data* sd);
1681
1682   // Process relocs for garbage collection.
1683   void
1684   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686  private:
1687
1688   // Whether a section needs to be scanned for relocation stubs.
1689   bool
1690   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691                                     const Relobj::Output_sections&,
1692                                     const Symbol_table*, const unsigned char*);
1693
1694   // Whether a section is a scannable text section.
1695   bool
1696   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697                        const Output_section*, const Symbol_table*);
1698
1699   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700   bool
1701   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702                                         unsigned int, Output_section*,
1703                                         const Symbol_table*);
1704
1705   // Scan a section for the Cortex-A8 erratum.
1706   void
1707   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708                                      unsigned int, Output_section*,
1709                                      Target_arm<big_endian>*);
1710
1711   // Find the linked text section of an EXIDX section by looking at the
1712   // first relocation of the EXIDX section.  PSHDR points to the section
1713   // headers of a relocation section and PSYMS points to the local symbols.
1714   // PSHNDX points to a location storing the text section index if found.
1715   // Return whether we can find the linked section.
1716   bool
1717   find_linked_text_section(const unsigned char* pshdr,
1718                            const unsigned char* psyms, unsigned int* pshndx);
1719
1720   //
1721   // Make a new Arm_exidx_input_section object for EXIDX section with
1722   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1723   // index of the linked text section.
1724   void
1725   make_exidx_input_section(unsigned int shndx,
1726                            const elfcpp::Shdr<32, big_endian>& shdr,
1727                            unsigned int text_shndx,
1728                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730   // Return the output address of either a plain input section or a
1731   // relaxed input section.  SHNDX is the section index.
1732   Arm_address
1733   simple_input_section_output_address(unsigned int, Output_section*);
1734
1735   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737     Exidx_section_map;
1738
1739   // List of stub tables.
1740   Stub_table_list stub_tables_;
1741   // Bit vector to tell if a local symbol is a thumb function or not.
1742   // This is only valid after do_count_local_symbol is called.
1743   std::vector<bool> local_symbol_is_thumb_function_;
1744   // processor-specific flags in ELF file header.
1745   elfcpp::Elf_Word processor_specific_flags_;
1746   // Object attributes if there is an .ARM.attributes section or NULL.
1747   Attributes_section_data* attributes_section_data_;
1748   // Mapping symbols information.
1749   Mapping_symbols_info mapping_symbols_info_;
1750   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751   std::vector<bool>* section_has_cortex_a8_workaround_;
1752   // Map a text section to its associated .ARM.exidx section, if there is one.
1753   Exidx_section_map exidx_section_map_;
1754   // Whether output local symbol count needs updating.
1755   bool output_local_symbol_count_needs_update_;
1756   // Whether we merge processor flags and attributes of this object to
1757   // output.
1758   bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766  public:
1767   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768              const elfcpp::Ehdr<32, big_endian>& ehdr)
1769     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770       processor_specific_flags_(0), attributes_section_data_(NULL)
1771   { }
1772  
1773   ~Arm_dynobj()
1774   { delete this->attributes_section_data_; }
1775
1776   // Downcast a base pointer to an Arm_relobj pointer.  This is
1777   // not type-safe but we only use Arm_relobj not the base class.
1778   static Arm_dynobj<big_endian>*
1779   as_arm_dynobj(Dynobj* dynobj)
1780   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782   // Processor-specific flags in ELF file header.  This is valid only after
1783   // reading symbols.
1784   elfcpp::Elf_Word
1785   processor_specific_flags() const
1786   { return this->processor_specific_flags_; }
1787
1788   // Attributes section data.
1789   const Attributes_section_data*
1790   attributes_section_data() const
1791   { return this->attributes_section_data_; }
1792
1793  protected:
1794   // Read the symbol information.
1795   void
1796   do_read_symbols(Read_symbols_data* sd);
1797
1798  private:
1799   // processor-specific flags in ELF file header.
1800   elfcpp::Elf_Word processor_specific_flags_;
1801   // Object attributes if there is an .ARM.attributes section or NULL.
1802   Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810   // Return the addend for a relocation of a particular type.  Depending
1811   // on whether this is a REL or RELA relocation, read the addend from a
1812   // view or from a Reloc object.
1813   elfcpp::Elf_types<32>::Elf_Swxword
1814   operator()(
1815     unsigned int /* r_type */,
1816     const unsigned char* /* view */,
1817     const typename Reloc_types<sh_type,
1818                                32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826   elfcpp::Elf_types<32>::Elf_Swxword
1827   operator()(
1828     unsigned int,
1829     const unsigned char*,
1830     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader.  This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841   elfcpp::Elf_types<32>::Elf_Swxword
1842   operator()(
1843     unsigned int,
1844     const unsigned char*,
1845     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846                                big_endian>::Reloc& reloc) const
1847   { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class.  We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855  public:
1856   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857                   Arm_address destination)
1858     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859   { }
1860
1861   ~Cortex_a8_reloc()
1862   { }
1863
1864   // Accessors:  This is a read-only class.
1865   
1866   // Return the relocation stub associated with this relocation if there is
1867   // one.
1868   const Reloc_stub*
1869   reloc_stub() const
1870   { return this->reloc_stub_; } 
1871   
1872   // Return the relocation type.
1873   unsigned int
1874   r_type() const
1875   { return this->r_type_; }
1876
1877   // Return the destination address of the relocation.  LSB stores the THUMB
1878   // bit.
1879   Arm_address
1880   destination() const
1881   { return this->destination_; }
1882
1883  private:
1884   // Associated relocation stub if there is one, or NULL.
1885   const Reloc_stub* reloc_stub_;
1886   // Relocation type.
1887   unsigned int r_type_;
1888   // Destination address of this relocation.  LSB is used to distinguish
1889   // ARM/THUMB mode.
1890   Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class.  We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899  public:
1900   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902   { }
1903
1904   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1905   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906   // applied in a static link.
1907   void
1908   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1912   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1913   // relocation that needs to be applied in a static link.
1914   void
1915   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916                    Sized_relobj_file<32, big_endian>* relobj,
1917                    unsigned int index)
1918   {
1919     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920                                                 index));
1921   }
1922
1923   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1924   // The first one is initialized to be 1, which is the module index for
1925   // the main executable and the second one 0.  A reloc of the type
1926   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927   // be applied by gold.  GSYM is a global symbol.
1928   void
1929   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931   // Same as the above but for a local symbol in OBJECT with INDEX.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type,
1934                                  Sized_relobj_file<32, big_endian>* object,
1935                                  unsigned int index);
1936
1937  protected:
1938   // Write out the GOT table.
1939   void
1940   do_write(Output_file*);
1941
1942  private:
1943   // This class represent dynamic relocations that need to be applied by
1944   // gold because we are using TLS relocations in a static link.
1945   class Static_reloc
1946   {
1947    public:
1948     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950     { this->u_.global.symbol = gsym; }
1951
1952     Static_reloc(unsigned int got_offset, unsigned int r_type,
1953           Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955     {
1956       this->u_.local.relobj = relobj;
1957       this->u_.local.index = index;
1958     }
1959
1960     // Return the GOT offset.
1961     unsigned int
1962     got_offset() const
1963     { return this->got_offset_; }
1964
1965     // Relocation type.
1966     unsigned int
1967     r_type() const
1968     { return this->r_type_; }
1969
1970     // Whether the symbol is global or not.
1971     bool
1972     symbol_is_global() const
1973     { return this->symbol_is_global_; }
1974
1975     // For a relocation against a global symbol, the global symbol.
1976     Symbol*
1977     symbol() const
1978     {
1979       gold_assert(this->symbol_is_global_);
1980       return this->u_.global.symbol;
1981     }
1982
1983     // For a relocation against a local symbol, the defining object.
1984     Sized_relobj_file<32, big_endian>*
1985     relobj() const
1986     {
1987       gold_assert(!this->symbol_is_global_);
1988       return this->u_.local.relobj;
1989     }
1990
1991     // For a relocation against a local symbol, the local symbol index.
1992     unsigned int
1993     index() const
1994     {
1995       gold_assert(!this->symbol_is_global_);
1996       return this->u_.local.index;
1997     }
1998
1999    private:
2000     // GOT offset of the entry to which this relocation is applied.
2001     unsigned int got_offset_;
2002     // Type of relocation.
2003     unsigned int r_type_;
2004     // Whether this relocation is against a global symbol.
2005     bool symbol_is_global_;
2006     // A global or local symbol.
2007     union
2008     {
2009       struct
2010       {
2011         // For a global symbol, the symbol itself.
2012         Symbol* symbol;
2013       } global;
2014       struct
2015       {
2016         // For a local symbol, the object defining object.
2017         Sized_relobj_file<32, big_endian>* relobj;
2018         // For a local symbol, the symbol index.
2019         unsigned int index;
2020       } local;
2021     } u_;
2022   };
2023
2024   // Symbol table of the output object.
2025   Symbol_table* symbol_table_;
2026   // Layout of the output object.
2027   Layout* layout_;
2028   // Static relocs to be applied to the GOT.
2029   std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits.  The default handling of relocatable relocation cannot process these
2034 // relocations.  So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040  public:
2041   // Return the strategy to use for a local symbol which is a section
2042   // symbol, given the relocation type.
2043   inline Relocatable_relocs::Reloc_strategy
2044   local_section_strategy(unsigned int r_type, Relobj*)
2045   {
2046     if (sh_type == elfcpp::SHT_RELA)
2047       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048     else
2049       {
2050         if (r_type == elfcpp::R_ARM_TARGET1
2051             || r_type == elfcpp::R_ARM_TARGET2)
2052           {
2053             const Target_arm<big_endian>* arm_target =
2054               Target_arm<big_endian>::default_target();
2055             r_type = arm_target->get_real_reloc_type(r_type);
2056           }
2057
2058         switch(r_type)
2059           {
2060           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2061           // and R_ARM_TARGET2.
2062           case elfcpp::R_ARM_NONE:
2063           case elfcpp::R_ARM_V4BX:
2064           case elfcpp::R_ARM_TLS_GOTDESC:
2065           case elfcpp::R_ARM_TLS_CALL:
2066           case elfcpp::R_ARM_TLS_DESCSEQ:
2067           case elfcpp::R_ARM_THM_TLS_CALL:
2068           case elfcpp::R_ARM_GOTRELAX:
2069           case elfcpp::R_ARM_GNU_VTENTRY:
2070           case elfcpp::R_ARM_GNU_VTINHERIT:
2071           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074           // These should have been converted to something else above.
2075           case elfcpp::R_ARM_TARGET1:
2076           case elfcpp::R_ARM_TARGET2:
2077             gold_unreachable();
2078           // Relocations that write full 32 bits.
2079           case elfcpp::R_ARM_ABS32:
2080           case elfcpp::R_ARM_REL32:
2081           case elfcpp::R_ARM_SBREL32:
2082           case elfcpp::R_ARM_GOTOFF32:
2083           case elfcpp::R_ARM_BASE_PREL:
2084           case elfcpp::R_ARM_GOT_BREL:
2085           case elfcpp::R_ARM_BASE_ABS:
2086           case elfcpp::R_ARM_ABS32_NOI:
2087           case elfcpp::R_ARM_REL32_NOI:
2088           case elfcpp::R_ARM_PLT32_ABS:
2089           case elfcpp::R_ARM_GOT_ABS:
2090           case elfcpp::R_ARM_GOT_PREL:
2091           case elfcpp::R_ARM_TLS_GD32:
2092           case elfcpp::R_ARM_TLS_LDM32:
2093           case elfcpp::R_ARM_TLS_LDO32:
2094           case elfcpp::R_ARM_TLS_IE32:
2095           case elfcpp::R_ARM_TLS_LE32:
2096             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097           default:
2098             // For all other static relocations, return RELOC_SPECIAL.
2099             return Relocatable_relocs::RELOC_SPECIAL;
2100           }
2101       }
2102   }
2103 };
2104
2105 // Utilities for manipulating integers of up to 32-bits
2106
2107 namespace utils
2108 {
2109   // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110   // an int32_t.  NO_BITS must be between 1 to 32.
2111   template<int no_bits>
2112   static inline int32_t
2113   sign_extend(uint32_t bits)
2114   {
2115     gold_assert(no_bits >= 0 && no_bits <= 32);
2116     if (no_bits == 32)
2117       return static_cast<int32_t>(bits);
2118     uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119     bits &= mask;
2120     uint32_t top_bit = 1U << (no_bits - 1);
2121     int32_t as_signed = static_cast<int32_t>(bits);
2122     return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123   }
2124
2125   // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126   template<int no_bits>
2127   static inline bool
2128   has_overflow(uint32_t bits)
2129   {
2130     gold_assert(no_bits >= 0 && no_bits <= 32);
2131     if (no_bits == 32)
2132       return false;
2133     int32_t max = (1 << (no_bits - 1)) - 1;
2134     int32_t min = -(1 << (no_bits - 1));
2135     int32_t as_signed = static_cast<int32_t>(bits);
2136     return as_signed > max || as_signed < min;
2137   }
2138
2139   // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140   // fits in the given number of bits as either a signed or unsigned value.
2141   // For example, has_signed_unsigned_overflow<8> would check
2142   // -128 <= bits <= 255
2143   template<int no_bits>
2144   static inline bool
2145   has_signed_unsigned_overflow(uint32_t bits)
2146   {
2147     gold_assert(no_bits >= 2 && no_bits <= 32);
2148     if (no_bits == 32)
2149       return false;
2150     int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151     int32_t min = -(1 << (no_bits - 1));
2152     int32_t as_signed = static_cast<int32_t>(bits);
2153     return as_signed > max || as_signed < min;
2154   }
2155
2156   // Select bits from A and B using bits in MASK.  For each n in [0..31],
2157   // the n-th bit in the result is chosen from the n-th bits of A and B.
2158   // A zero selects A and a one selects B.
2159   static inline uint32_t
2160   bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161   { return (a & ~mask) | (b & mask); }
2162 };
2163
2164 template<bool big_endian>
2165 class Target_arm : public Sized_target<32, big_endian>
2166 {
2167  public:
2168   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169     Reloc_section;
2170
2171   // When were are relocating a stub, we pass this as the relocation number.
2172   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
2174   Target_arm()
2175     : Sized_target<32, big_endian>(&arm_info),
2176       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2178       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180       may_use_blx_(false), should_force_pic_veneer_(false),
2181       arm_input_section_map_(), attributes_section_data_(NULL),
2182       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2183   { }
2184
2185   // Virtual function which is set to return true by a target if
2186   // it can use relocation types to determine if a function's
2187   // pointer is taken.
2188   virtual bool
2189   can_check_for_function_pointers() const
2190   { return true; }
2191
2192   // Whether a section called SECTION_NAME may have function pointers to
2193   // sections not eligible for safe ICF folding.
2194   virtual bool
2195   section_may_have_icf_unsafe_pointers(const char* section_name) const
2196   {
2197     return (!is_prefix_of(".ARM.exidx", section_name)
2198             && !is_prefix_of(".ARM.extab", section_name)
2199             && Target::section_may_have_icf_unsafe_pointers(section_name));
2200   }
2201   
2202   // Whether we can use BLX.
2203   bool
2204   may_use_blx() const
2205   { return this->may_use_blx_; }
2206
2207   // Set use-BLX flag.
2208   void
2209   set_may_use_blx(bool value)
2210   { this->may_use_blx_ = value; }
2211   
2212   // Whether we force PCI branch veneers.
2213   bool
2214   should_force_pic_veneer() const
2215   { return this->should_force_pic_veneer_; }
2216
2217   // Set PIC veneer flag.
2218   void
2219   set_should_force_pic_veneer(bool value)
2220   { this->should_force_pic_veneer_ = value; }
2221   
2222   // Whether we use THUMB-2 instructions.
2223   bool
2224   using_thumb2() const
2225   {
2226     Object_attribute* attr =
2227       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2228     int arch = attr->int_value();
2229     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2230   }
2231
2232   // Whether we use THUMB/THUMB-2 instructions only.
2233   bool
2234   using_thumb_only() const
2235   {
2236     Object_attribute* attr =
2237       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2238
2239     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2240         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2241       return true;
2242     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2243         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2244       return false;
2245     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2246     return attr->int_value() == 'M';
2247   }
2248
2249   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2250   bool
2251   may_use_arm_nop() const
2252   {
2253     Object_attribute* attr =
2254       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2255     int arch = attr->int_value();
2256     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2257             || arch == elfcpp::TAG_CPU_ARCH_V6K
2258             || arch == elfcpp::TAG_CPU_ARCH_V7
2259             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2260   }
2261
2262   // Whether we have THUMB-2 NOP.W instruction.
2263   bool
2264   may_use_thumb2_nop() const
2265   {
2266     Object_attribute* attr =
2267       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2268     int arch = attr->int_value();
2269     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2270             || arch == elfcpp::TAG_CPU_ARCH_V7
2271             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2272   }
2273   
2274   // Process the relocations to determine unreferenced sections for 
2275   // garbage collection.
2276   void
2277   gc_process_relocs(Symbol_table* symtab,
2278                     Layout* layout,
2279                     Sized_relobj_file<32, big_endian>* object,
2280                     unsigned int data_shndx,
2281                     unsigned int sh_type,
2282                     const unsigned char* prelocs,
2283                     size_t reloc_count,
2284                     Output_section* output_section,
2285                     bool needs_special_offset_handling,
2286                     size_t local_symbol_count,
2287                     const unsigned char* plocal_symbols);
2288
2289   // Scan the relocations to look for symbol adjustments.
2290   void
2291   scan_relocs(Symbol_table* symtab,
2292               Layout* layout,
2293               Sized_relobj_file<32, big_endian>* object,
2294               unsigned int data_shndx,
2295               unsigned int sh_type,
2296               const unsigned char* prelocs,
2297               size_t reloc_count,
2298               Output_section* output_section,
2299               bool needs_special_offset_handling,
2300               size_t local_symbol_count,
2301               const unsigned char* plocal_symbols);
2302
2303   // Finalize the sections.
2304   void
2305   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2306
2307   // Return the value to use for a dynamic symbol which requires special
2308   // treatment.
2309   uint64_t
2310   do_dynsym_value(const Symbol*) const;
2311
2312   // Relocate a section.
2313   void
2314   relocate_section(const Relocate_info<32, big_endian>*,
2315                    unsigned int sh_type,
2316                    const unsigned char* prelocs,
2317                    size_t reloc_count,
2318                    Output_section* output_section,
2319                    bool needs_special_offset_handling,
2320                    unsigned char* view,
2321                    Arm_address view_address,
2322                    section_size_type view_size,
2323                    const Reloc_symbol_changes*);
2324
2325   // Scan the relocs during a relocatable link.
2326   void
2327   scan_relocatable_relocs(Symbol_table* symtab,
2328                           Layout* layout,
2329                           Sized_relobj_file<32, big_endian>* object,
2330                           unsigned int data_shndx,
2331                           unsigned int sh_type,
2332                           const unsigned char* prelocs,
2333                           size_t reloc_count,
2334                           Output_section* output_section,
2335                           bool needs_special_offset_handling,
2336                           size_t local_symbol_count,
2337                           const unsigned char* plocal_symbols,
2338                           Relocatable_relocs*);
2339
2340   // Relocate a section during a relocatable link.
2341   void
2342   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2343                            unsigned int sh_type,
2344                            const unsigned char* prelocs,
2345                            size_t reloc_count,
2346                            Output_section* output_section,
2347                            off_t offset_in_output_section,
2348                            const Relocatable_relocs*,
2349                            unsigned char* view,
2350                            Arm_address view_address,
2351                            section_size_type view_size,
2352                            unsigned char* reloc_view,
2353                            section_size_type reloc_view_size);
2354
2355   // Perform target-specific processing in a relocatable link.  This is
2356   // only used if we use the relocation strategy RELOC_SPECIAL.
2357   void
2358   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2359                                unsigned int sh_type,
2360                                const unsigned char* preloc_in,
2361                                size_t relnum,
2362                                Output_section* output_section,
2363                                off_t offset_in_output_section,
2364                                unsigned char* view,
2365                                typename elfcpp::Elf_types<32>::Elf_Addr
2366                                  view_address,
2367                                section_size_type view_size,
2368                                unsigned char* preloc_out);
2369  
2370   // Return whether SYM is defined by the ABI.
2371   bool
2372   do_is_defined_by_abi(Symbol* sym) const
2373   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2374
2375   // Return whether there is a GOT section.
2376   bool
2377   has_got_section() const
2378   { return this->got_ != NULL; }
2379
2380   // Return the size of the GOT section.
2381   section_size_type
2382   got_size() const
2383   {
2384     gold_assert(this->got_ != NULL);
2385     return this->got_->data_size();
2386   }
2387
2388   // Return the number of entries in the GOT.
2389   unsigned int
2390   got_entry_count() const
2391   {
2392     if (!this->has_got_section())
2393       return 0;
2394     return this->got_size() / 4;
2395   }
2396
2397   // Return the number of entries in the PLT.
2398   unsigned int
2399   plt_entry_count() const;
2400
2401   // Return the offset of the first non-reserved PLT entry.
2402   unsigned int
2403   first_plt_entry_offset() const;
2404
2405   // Return the size of each PLT entry.
2406   unsigned int
2407   plt_entry_size() const;
2408
2409   // Map platform-specific reloc types
2410   static unsigned int
2411   get_real_reloc_type(unsigned int r_type);
2412
2413   //
2414   // Methods to support stub-generations.
2415   //
2416   
2417   // Return the stub factory
2418   const Stub_factory&
2419   stub_factory() const
2420   { return this->stub_factory_; }
2421
2422   // Make a new Arm_input_section object.
2423   Arm_input_section<big_endian>*
2424   new_arm_input_section(Relobj*, unsigned int);
2425
2426   // Find the Arm_input_section object corresponding to the SHNDX-th input
2427   // section of RELOBJ.
2428   Arm_input_section<big_endian>*
2429   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2430
2431   // Make a new Stub_table
2432   Stub_table<big_endian>*
2433   new_stub_table(Arm_input_section<big_endian>*);
2434
2435   // Scan a section for stub generation.
2436   void
2437   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2438                          const unsigned char*, size_t, Output_section*,
2439                          bool, const unsigned char*, Arm_address,
2440                          section_size_type);
2441
2442   // Relocate a stub. 
2443   void
2444   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2445                 Output_section*, unsigned char*, Arm_address,
2446                 section_size_type);
2447  
2448   // Get the default ARM target.
2449   static Target_arm<big_endian>*
2450   default_target()
2451   {
2452     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2453                 && parameters->target().is_big_endian() == big_endian);
2454     return static_cast<Target_arm<big_endian>*>(
2455              parameters->sized_target<32, big_endian>());
2456   }
2457
2458   // Whether NAME belongs to a mapping symbol.
2459   static bool
2460   is_mapping_symbol_name(const char* name)
2461   {
2462     return (name
2463             && name[0] == '$'
2464             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2465             && (name[2] == '\0' || name[2] == '.'));
2466   }
2467
2468   // Whether we work around the Cortex-A8 erratum.
2469   bool
2470   fix_cortex_a8() const
2471   { return this->fix_cortex_a8_; }
2472
2473   // Whether we merge exidx entries in debuginfo.
2474   bool
2475   merge_exidx_entries() const
2476   { return parameters->options().merge_exidx_entries(); }
2477
2478   // Whether we fix R_ARM_V4BX relocation.
2479   // 0 - do not fix
2480   // 1 - replace with MOV instruction (armv4 target)
2481   // 2 - make interworking veneer (>= armv4t targets only)
2482   General_options::Fix_v4bx
2483   fix_v4bx() const
2484   { return parameters->options().fix_v4bx(); }
2485
2486   // Scan a span of THUMB code section for Cortex-A8 erratum.
2487   void
2488   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2489                                   section_size_type, section_size_type,
2490                                   const unsigned char*, Arm_address);
2491
2492   // Apply Cortex-A8 workaround to a branch.
2493   void
2494   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2495                              unsigned char*, Arm_address);
2496
2497  protected:
2498   // Make an ELF object.
2499   Object*
2500   do_make_elf_object(const std::string&, Input_file*, off_t,
2501                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2502
2503   Object*
2504   do_make_elf_object(const std::string&, Input_file*, off_t,
2505                      const elfcpp::Ehdr<32, !big_endian>&)
2506   { gold_unreachable(); }
2507
2508   Object*
2509   do_make_elf_object(const std::string&, Input_file*, off_t,
2510                       const elfcpp::Ehdr<64, false>&)
2511   { gold_unreachable(); }
2512
2513   Object*
2514   do_make_elf_object(const std::string&, Input_file*, off_t,
2515                      const elfcpp::Ehdr<64, true>&)
2516   { gold_unreachable(); }
2517
2518   // Make an output section.
2519   Output_section*
2520   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2521                          elfcpp::Elf_Xword flags)
2522   { return new Arm_output_section<big_endian>(name, type, flags); }
2523
2524   void
2525   do_adjust_elf_header(unsigned char* view, int len) const;
2526
2527   // We only need to generate stubs, and hence perform relaxation if we are
2528   // not doing relocatable linking.
2529   bool
2530   do_may_relax() const
2531   { return !parameters->options().relocatable(); }
2532
2533   bool
2534   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2535
2536   // Determine whether an object attribute tag takes an integer, a
2537   // string or both.
2538   int
2539   do_attribute_arg_type(int tag) const;
2540
2541   // Reorder tags during output.
2542   int
2543   do_attributes_order(int num) const;
2544
2545   // This is called when the target is selected as the default.
2546   void
2547   do_select_as_default_target()
2548   {
2549     // No locking is required since there should only be one default target.
2550     // We cannot have both the big-endian and little-endian ARM targets
2551     // as the default.
2552     gold_assert(arm_reloc_property_table == NULL);
2553     arm_reloc_property_table = new Arm_reloc_property_table();
2554   }
2555
2556  private:
2557   // The class which scans relocations.
2558   class Scan
2559   {
2560    public:
2561     Scan()
2562       : issued_non_pic_error_(false)
2563     { }
2564
2565     static inline int
2566     get_reference_flags(unsigned int r_type);
2567
2568     inline void
2569     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2570           Sized_relobj_file<32, big_endian>* object,
2571           unsigned int data_shndx,
2572           Output_section* output_section,
2573           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2574           const elfcpp::Sym<32, big_endian>& lsym);
2575
2576     inline void
2577     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2578            Sized_relobj_file<32, big_endian>* object,
2579            unsigned int data_shndx,
2580            Output_section* output_section,
2581            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2582            Symbol* gsym);
2583
2584     inline bool
2585     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2586                                         Sized_relobj_file<32, big_endian>* ,
2587                                         unsigned int ,
2588                                         Output_section* ,
2589                                         const elfcpp::Rel<32, big_endian>& ,
2590                                         unsigned int ,
2591                                         const elfcpp::Sym<32, big_endian>&);
2592
2593     inline bool
2594     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2595                                          Sized_relobj_file<32, big_endian>* ,
2596                                          unsigned int ,
2597                                          Output_section* ,
2598                                          const elfcpp::Rel<32, big_endian>& ,
2599                                          unsigned int , Symbol*);
2600
2601    private:
2602     static void
2603     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2604                             unsigned int r_type);
2605
2606     static void
2607     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2608                              unsigned int r_type, Symbol*);
2609
2610     void
2611     check_non_pic(Relobj*, unsigned int r_type);
2612
2613     // Almost identical to Symbol::needs_plt_entry except that it also
2614     // handles STT_ARM_TFUNC.
2615     static bool
2616     symbol_needs_plt_entry(const Symbol* sym)
2617     {
2618       // An undefined symbol from an executable does not need a PLT entry.
2619       if (sym->is_undefined() && !parameters->options().shared())
2620         return false;
2621
2622       return (!parameters->doing_static_link()
2623               && (sym->type() == elfcpp::STT_FUNC
2624                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2625               && (sym->is_from_dynobj()
2626                   || sym->is_undefined()
2627                   || sym->is_preemptible()));
2628     }
2629
2630     inline bool
2631     possible_function_pointer_reloc(unsigned int r_type);
2632
2633     // Whether we have issued an error about a non-PIC compilation.
2634     bool issued_non_pic_error_;
2635   };
2636
2637   // The class which implements relocation.
2638   class Relocate
2639   {
2640    public:
2641     Relocate()
2642     { }
2643
2644     ~Relocate()
2645     { }
2646
2647     // Return whether the static relocation needs to be applied.
2648     inline bool
2649     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2650                               unsigned int r_type,
2651                               bool is_32bit,
2652                               Output_section* output_section);
2653
2654     // Do a relocation.  Return false if the caller should not issue
2655     // any warnings about this relocation.
2656     inline bool
2657     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2658              Output_section*,  size_t relnum,
2659              const elfcpp::Rel<32, big_endian>&,
2660              unsigned int r_type, const Sized_symbol<32>*,
2661              const Symbol_value<32>*,
2662              unsigned char*, Arm_address,
2663              section_size_type);
2664
2665     // Return whether we want to pass flag NON_PIC_REF for this
2666     // reloc.  This means the relocation type accesses a symbol not via
2667     // GOT or PLT.
2668     static inline bool
2669     reloc_is_non_pic(unsigned int r_type)
2670     {
2671       switch (r_type)
2672         {
2673         // These relocation types reference GOT or PLT entries explicitly.
2674         case elfcpp::R_ARM_GOT_BREL:
2675         case elfcpp::R_ARM_GOT_ABS:
2676         case elfcpp::R_ARM_GOT_PREL:
2677         case elfcpp::R_ARM_GOT_BREL12:
2678         case elfcpp::R_ARM_PLT32_ABS:
2679         case elfcpp::R_ARM_TLS_GD32:
2680         case elfcpp::R_ARM_TLS_LDM32:
2681         case elfcpp::R_ARM_TLS_IE32:
2682         case elfcpp::R_ARM_TLS_IE12GP:
2683
2684         // These relocate types may use PLT entries.
2685         case elfcpp::R_ARM_CALL:
2686         case elfcpp::R_ARM_THM_CALL:
2687         case elfcpp::R_ARM_JUMP24:
2688         case elfcpp::R_ARM_THM_JUMP24:
2689         case elfcpp::R_ARM_THM_JUMP19:
2690         case elfcpp::R_ARM_PLT32:
2691         case elfcpp::R_ARM_THM_XPC22:
2692         case elfcpp::R_ARM_PREL31:
2693         case elfcpp::R_ARM_SBREL31:
2694           return false;
2695
2696         default:
2697           return true;
2698         }
2699     }
2700
2701    private:
2702     // Do a TLS relocation.
2703     inline typename Arm_relocate_functions<big_endian>::Status
2704     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2705                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2706                  const Sized_symbol<32>*, const Symbol_value<32>*,
2707                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2708                  section_size_type);
2709
2710   };
2711
2712   // A class which returns the size required for a relocation type,
2713   // used while scanning relocs during a relocatable link.
2714   class Relocatable_size_for_reloc
2715   {
2716    public:
2717     unsigned int
2718     get_size_for_reloc(unsigned int, Relobj*);
2719   };
2720
2721   // Adjust TLS relocation type based on the options and whether this
2722   // is a local symbol.
2723   static tls::Tls_optimization
2724   optimize_tls_reloc(bool is_final, int r_type);
2725
2726   // Get the GOT section, creating it if necessary.
2727   Arm_output_data_got<big_endian>*
2728   got_section(Symbol_table*, Layout*);
2729
2730   // Get the GOT PLT section.
2731   Output_data_space*
2732   got_plt_section() const
2733   {
2734     gold_assert(this->got_plt_ != NULL);
2735     return this->got_plt_;
2736   }
2737
2738   // Create a PLT entry for a global symbol.
2739   void
2740   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2741
2742   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2743   void
2744   define_tls_base_symbol(Symbol_table*, Layout*);
2745
2746   // Create a GOT entry for the TLS module index.
2747   unsigned int
2748   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2749                       Sized_relobj_file<32, big_endian>* object);
2750
2751   // Get the PLT section.
2752   const Output_data_plt_arm<big_endian>*
2753   plt_section() const
2754   {
2755     gold_assert(this->plt_ != NULL);
2756     return this->plt_;
2757   }
2758
2759   // Get the dynamic reloc section, creating it if necessary.
2760   Reloc_section*
2761   rel_dyn_section(Layout*);
2762
2763   // Get the section to use for TLS_DESC relocations.
2764   Reloc_section*
2765   rel_tls_desc_section(Layout*) const;
2766
2767   // Return true if the symbol may need a COPY relocation.
2768   // References from an executable object to non-function symbols
2769   // defined in a dynamic object may need a COPY relocation.
2770   bool
2771   may_need_copy_reloc(Symbol* gsym)
2772   {
2773     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2774             && gsym->may_need_copy_reloc());
2775   }
2776
2777   // Add a potential copy relocation.
2778   void
2779   copy_reloc(Symbol_table* symtab, Layout* layout,
2780              Sized_relobj_file<32, big_endian>* object,
2781              unsigned int shndx, Output_section* output_section,
2782              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2783   {
2784     this->copy_relocs_.copy_reloc(symtab, layout,
2785                                   symtab->get_sized_symbol<32>(sym),
2786                                   object, shndx, output_section, reloc,
2787                                   this->rel_dyn_section(layout));
2788   }
2789
2790   // Whether two EABI versions are compatible.
2791   static bool
2792   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2793
2794   // Merge processor-specific flags from input object and those in the ELF
2795   // header of the output.
2796   void
2797   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2798
2799   // Get the secondary compatible architecture.
2800   static int
2801   get_secondary_compatible_arch(const Attributes_section_data*);
2802
2803   // Set the secondary compatible architecture.
2804   static void
2805   set_secondary_compatible_arch(Attributes_section_data*, int);
2806
2807   static int
2808   tag_cpu_arch_combine(const char*, int, int*, int, int);
2809
2810   // Helper to print AEABI enum tag value.
2811   static std::string
2812   aeabi_enum_name(unsigned int);
2813
2814   // Return string value for TAG_CPU_name.
2815   static std::string
2816   tag_cpu_name_value(unsigned int);
2817
2818   // Merge object attributes from input object and those in the output.
2819   void
2820   merge_object_attributes(const char*, const Attributes_section_data*);
2821
2822   // Helper to get an AEABI object attribute
2823   Object_attribute*
2824   get_aeabi_object_attribute(int tag) const
2825   {
2826     Attributes_section_data* pasd = this->attributes_section_data_;
2827     gold_assert(pasd != NULL);
2828     Object_attribute* attr =
2829       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2830     gold_assert(attr != NULL);
2831     return attr;
2832   }
2833
2834   //
2835   // Methods to support stub-generations.
2836   //
2837
2838   // Group input sections for stub generation.
2839   void
2840   group_sections(Layout*, section_size_type, bool, const Task*);
2841
2842   // Scan a relocation for stub generation.
2843   void
2844   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2845                       const Sized_symbol<32>*, unsigned int,
2846                       const Symbol_value<32>*,
2847                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2848
2849   // Scan a relocation section for stub.
2850   template<int sh_type>
2851   void
2852   scan_reloc_section_for_stubs(
2853       const Relocate_info<32, big_endian>* relinfo,
2854       const unsigned char* prelocs,
2855       size_t reloc_count,
2856       Output_section* output_section,
2857       bool needs_special_offset_handling,
2858       const unsigned char* view,
2859       elfcpp::Elf_types<32>::Elf_Addr view_address,
2860       section_size_type);
2861
2862   // Fix .ARM.exidx section coverage.
2863   void
2864   fix_exidx_coverage(Layout*, const Input_objects*,
2865                      Arm_output_section<big_endian>*, Symbol_table*,
2866                      const Task*);
2867
2868   // Functors for STL set.
2869   struct output_section_address_less_than
2870   {
2871     bool
2872     operator()(const Output_section* s1, const Output_section* s2) const
2873     { return s1->address() < s2->address(); }
2874   };
2875
2876   // Information about this specific target which we pass to the
2877   // general Target structure.
2878   static const Target::Target_info arm_info;
2879
2880   // The types of GOT entries needed for this platform.
2881   // These values are exposed to the ABI in an incremental link.
2882   // Do not renumber existing values without changing the version
2883   // number of the .gnu_incremental_inputs section.
2884   enum Got_type
2885   {
2886     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2887     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2888     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2889     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2890     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2891   };
2892
2893   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2894
2895   // Map input section to Arm_input_section.
2896   typedef Unordered_map<Section_id,
2897                         Arm_input_section<big_endian>*,
2898                         Section_id_hash>
2899           Arm_input_section_map;
2900     
2901   // Map output addresses to relocs for Cortex-A8 erratum.
2902   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2903           Cortex_a8_relocs_info;
2904
2905   // The GOT section.
2906   Arm_output_data_got<big_endian>* got_;
2907   // The PLT section.
2908   Output_data_plt_arm<big_endian>* plt_;
2909   // The GOT PLT section.
2910   Output_data_space* got_plt_;
2911   // The dynamic reloc section.
2912   Reloc_section* rel_dyn_;
2913   // Relocs saved to avoid a COPY reloc.
2914   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2915   // Space for variables copied with a COPY reloc.
2916   Output_data_space* dynbss_;
2917   // Offset of the GOT entry for the TLS module index.
2918   unsigned int got_mod_index_offset_;
2919   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2920   bool tls_base_symbol_defined_;
2921   // Vector of Stub_tables created.
2922   Stub_table_list stub_tables_;
2923   // Stub factory.
2924   const Stub_factory &stub_factory_;
2925   // Whether we can use BLX.
2926   bool may_use_blx_;
2927   // Whether we force PIC branch veneers.
2928   bool should_force_pic_veneer_;
2929   // Map for locating Arm_input_sections.
2930   Arm_input_section_map arm_input_section_map_;
2931   // Attributes section data in output.
2932   Attributes_section_data* attributes_section_data_;
2933   // Whether we want to fix code for Cortex-A8 erratum.
2934   bool fix_cortex_a8_;
2935   // Map addresses to relocs for Cortex-A8 erratum.
2936   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2937 };
2938
2939 template<bool big_endian>
2940 const Target::Target_info Target_arm<big_endian>::arm_info =
2941 {
2942   32,                   // size
2943   big_endian,           // is_big_endian
2944   elfcpp::EM_ARM,       // machine_code
2945   false,                // has_make_symbol
2946   false,                // has_resolve
2947   false,                // has_code_fill
2948   true,                 // is_default_stack_executable
2949   '\0',                 // wrap_char
2950   "/usr/lib/libc.so.1", // dynamic_linker
2951   0x8000,               // default_text_segment_address
2952   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2953   0x1000,               // common_pagesize (overridable by -z common-page-size)
2954   elfcpp::SHN_UNDEF,    // small_common_shndx
2955   elfcpp::SHN_UNDEF,    // large_common_shndx
2956   0,                    // small_common_section_flags
2957   0,                    // large_common_section_flags
2958   ".ARM.attributes",    // attributes_section
2959   "aeabi"               // attributes_vendor
2960 };
2961
2962 // Arm relocate functions class
2963 //
2964
2965 template<bool big_endian>
2966 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2967 {
2968  public:
2969   typedef enum
2970   {
2971     STATUS_OKAY,        // No error during relocation.
2972     STATUS_OVERFLOW,    // Relocation overflow.
2973     STATUS_BAD_RELOC    // Relocation cannot be applied.
2974   } Status;
2975
2976  private:
2977   typedef Relocate_functions<32, big_endian> Base;
2978   typedef Arm_relocate_functions<big_endian> This;
2979
2980   // Encoding of imm16 argument for movt and movw ARM instructions
2981   // from ARM ARM:
2982   //     
2983   //     imm16 := imm4 | imm12
2984   //
2985   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2986   // +-------+---------------+-------+-------+-----------------------+
2987   // |       |               |imm4   |       |imm12                  |
2988   // +-------+---------------+-------+-------+-----------------------+
2989
2990   // Extract the relocation addend from VAL based on the ARM
2991   // instruction encoding described above.
2992   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2993   extract_arm_movw_movt_addend(
2994       typename elfcpp::Swap<32, big_endian>::Valtype val)
2995   {
2996     // According to the Elf ABI for ARM Architecture the immediate
2997     // field is sign-extended to form the addend.
2998     return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2999   }
3000
3001   // Insert X into VAL based on the ARM instruction encoding described
3002   // above.
3003   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3004   insert_val_arm_movw_movt(
3005       typename elfcpp::Swap<32, big_endian>::Valtype val,
3006       typename elfcpp::Swap<32, big_endian>::Valtype x)
3007   {
3008     val &= 0xfff0f000;
3009     val |= x & 0x0fff;
3010     val |= (x & 0xf000) << 4;
3011     return val;
3012   }
3013
3014   // Encoding of imm16 argument for movt and movw Thumb2 instructions
3015   // from ARM ARM:
3016   //     
3017   //     imm16 := imm4 | i | imm3 | imm8
3018   //
3019   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
3020   // +---------+-+-----------+-------++-+-----+-------+---------------+
3021   // |         |i|           |imm4   || |imm3 |       |imm8           |
3022   // +---------+-+-----------+-------++-+-----+-------+---------------+
3023
3024   // Extract the relocation addend from VAL based on the Thumb2
3025   // instruction encoding described above.
3026   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3027   extract_thumb_movw_movt_addend(
3028       typename elfcpp::Swap<32, big_endian>::Valtype val)
3029   {
3030     // According to the Elf ABI for ARM Architecture the immediate
3031     // field is sign-extended to form the addend.
3032     return utils::sign_extend<16>(((val >> 4) & 0xf000)
3033                                   | ((val >> 15) & 0x0800)
3034                                   | ((val >> 4) & 0x0700)
3035                                   | (val & 0x00ff));
3036   }
3037
3038   // Insert X into VAL based on the Thumb2 instruction encoding
3039   // described above.
3040   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3041   insert_val_thumb_movw_movt(
3042       typename elfcpp::Swap<32, big_endian>::Valtype val,
3043       typename elfcpp::Swap<32, big_endian>::Valtype x)
3044   {
3045     val &= 0xfbf08f00;
3046     val |= (x & 0xf000) << 4;
3047     val |= (x & 0x0800) << 15;
3048     val |= (x & 0x0700) << 4;
3049     val |= (x & 0x00ff);
3050     return val;
3051   }
3052
3053   // Calculate the smallest constant Kn for the specified residual.
3054   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3055   static uint32_t
3056   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3057   {
3058     int32_t msb;
3059
3060     if (residual == 0)
3061       return 0;
3062     // Determine the most significant bit in the residual and
3063     // align the resulting value to a 2-bit boundary.
3064     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3065       ;
3066     // The desired shift is now (msb - 6), or zero, whichever
3067     // is the greater.
3068     return (((msb - 6) < 0) ? 0 : (msb - 6));
3069   }
3070
3071   // Calculate the final residual for the specified group index.
3072   // If the passed group index is less than zero, the method will return
3073   // the value of the specified residual without any change.
3074   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3075   static typename elfcpp::Swap<32, big_endian>::Valtype
3076   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3077                     const int group)
3078   {
3079     for (int n = 0; n <= group; n++)
3080       {
3081         // Calculate which part of the value to mask.
3082         uint32_t shift = calc_grp_kn(residual);
3083         // Calculate the residual for the next time around.
3084         residual &= ~(residual & (0xff << shift));
3085       }
3086
3087     return residual;
3088   }
3089
3090   // Calculate the value of Gn for the specified group index.
3091   // We return it in the form of an encoded constant-and-rotation.
3092   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3093   static typename elfcpp::Swap<32, big_endian>::Valtype
3094   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3095               const int group)
3096   {
3097     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3098     uint32_t shift = 0;
3099
3100     for (int n = 0; n <= group; n++)
3101       {
3102         // Calculate which part of the value to mask.
3103         shift = calc_grp_kn(residual);
3104         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3105         gn = residual & (0xff << shift);
3106         // Calculate the residual for the next time around.
3107         residual &= ~gn;
3108       }
3109     // Return Gn in the form of an encoded constant-and-rotation.
3110     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3111   }
3112
3113  public:
3114   // Handle ARM long branches.
3115   static typename This::Status
3116   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3117                     unsigned char*, const Sized_symbol<32>*,
3118                     const Arm_relobj<big_endian>*, unsigned int,
3119                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3120
3121   // Handle THUMB long branches.
3122   static typename This::Status
3123   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3124                       unsigned char*, const Sized_symbol<32>*,
3125                       const Arm_relobj<big_endian>*, unsigned int,
3126                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3127
3128
3129   // Return the branch offset of a 32-bit THUMB branch.
3130   static inline int32_t
3131   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3132   {
3133     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3134     // involving the J1 and J2 bits.
3135     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3136     uint32_t upper = upper_insn & 0x3ffU;
3137     uint32_t lower = lower_insn & 0x7ffU;
3138     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3139     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3140     uint32_t i1 = j1 ^ s ? 0 : 1;
3141     uint32_t i2 = j2 ^ s ? 0 : 1;
3142
3143     return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3144                                   | (upper << 12) | (lower << 1));
3145   }
3146
3147   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3148   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3149   // responsible for overflow checking and BLX offset adjustment.
3150   static inline uint16_t
3151   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3152   {
3153     uint32_t s = offset < 0 ? 1 : 0;
3154     uint32_t bits = static_cast<uint32_t>(offset);
3155     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3156   }
3157
3158   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3159   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3160   // responsible for overflow checking and BLX offset adjustment.
3161   static inline uint16_t
3162   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3163   {
3164     uint32_t s = offset < 0 ? 1 : 0;
3165     uint32_t bits = static_cast<uint32_t>(offset);
3166     return ((lower_insn & ~0x2fffU)
3167             | ((((bits >> 23) & 1) ^ !s) << 13)
3168             | ((((bits >> 22) & 1) ^ !s) << 11)
3169             | ((bits >> 1) & 0x7ffU));
3170   }
3171
3172   // Return the branch offset of a 32-bit THUMB conditional branch.
3173   static inline int32_t
3174   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3175   {
3176     uint32_t s = (upper_insn & 0x0400U) >> 10;
3177     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3178     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3179     uint32_t lower = (lower_insn & 0x07ffU);
3180     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3181
3182     return utils::sign_extend<21>((upper << 12) | (lower << 1));
3183   }
3184
3185   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3186   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3187   // Caller is responsible for overflow checking.
3188   static inline uint16_t
3189   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3190   {
3191     uint32_t s = offset < 0 ? 1 : 0;
3192     uint32_t bits = static_cast<uint32_t>(offset);
3193     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3194   }
3195
3196   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3197   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3198   // The caller is responsible for overflow checking.
3199   static inline uint16_t
3200   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3201   {
3202     uint32_t bits = static_cast<uint32_t>(offset);
3203     uint32_t j2 = (bits & 0x00080000U) >> 19;
3204     uint32_t j1 = (bits & 0x00040000U) >> 18;
3205     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3206
3207     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3208   }
3209
3210   // R_ARM_ABS8: S + A
3211   static inline typename This::Status
3212   abs8(unsigned char* view,
3213        const Sized_relobj_file<32, big_endian>* object,
3214        const Symbol_value<32>* psymval)
3215   {
3216     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3217     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3218     Valtype* wv = reinterpret_cast<Valtype*>(view);
3219     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3220     Reltype addend = utils::sign_extend<8>(val);
3221     Reltype x = psymval->value(object, addend);
3222     val = utils::bit_select(val, x, 0xffU);
3223     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3224
3225     // R_ARM_ABS8 permits signed or unsigned results.
3226     int signed_x = static_cast<int32_t>(x);
3227     return ((signed_x < -128 || signed_x > 255)
3228             ? This::STATUS_OVERFLOW
3229             : This::STATUS_OKAY);
3230   }
3231
3232   // R_ARM_THM_ABS5: S + A
3233   static inline typename This::Status
3234   thm_abs5(unsigned char* view,
3235        const Sized_relobj_file<32, big_endian>* object,
3236        const Symbol_value<32>* psymval)
3237   {
3238     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3239     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240     Valtype* wv = reinterpret_cast<Valtype*>(view);
3241     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3242     Reltype addend = (val & 0x7e0U) >> 6;
3243     Reltype x = psymval->value(object, addend);
3244     val = utils::bit_select(val, x << 6, 0x7e0U);
3245     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3246
3247     // R_ARM_ABS16 permits signed or unsigned results.
3248     int signed_x = static_cast<int32_t>(x);
3249     return ((signed_x < -32768 || signed_x > 65535)
3250             ? This::STATUS_OVERFLOW
3251             : This::STATUS_OKAY);
3252   }
3253
3254   // R_ARM_ABS12: S + A
3255   static inline typename This::Status
3256   abs12(unsigned char* view,
3257         const Sized_relobj_file<32, big_endian>* object,
3258         const Symbol_value<32>* psymval)
3259   {
3260     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3261     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3262     Valtype* wv = reinterpret_cast<Valtype*>(view);
3263     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3264     Reltype addend = val & 0x0fffU;
3265     Reltype x = psymval->value(object, addend);
3266     val = utils::bit_select(val, x, 0x0fffU);
3267     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3268     return (utils::has_overflow<12>(x)
3269             ? This::STATUS_OVERFLOW
3270             : This::STATUS_OKAY);
3271   }
3272
3273   // R_ARM_ABS16: S + A
3274   static inline typename This::Status
3275   abs16(unsigned char* view,
3276         const Sized_relobj_file<32, big_endian>* object,
3277         const Symbol_value<32>* psymval)
3278   {
3279     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3280     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3281     Valtype* wv = reinterpret_cast<Valtype*>(view);
3282     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3283     Reltype addend = utils::sign_extend<16>(val);
3284     Reltype x = psymval->value(object, addend);
3285     val = utils::bit_select(val, x, 0xffffU);
3286     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3287     return (utils::has_signed_unsigned_overflow<16>(x)
3288             ? This::STATUS_OVERFLOW
3289             : This::STATUS_OKAY);
3290   }
3291
3292   // R_ARM_ABS32: (S + A) | T
3293   static inline typename This::Status
3294   abs32(unsigned char* view,
3295         const Sized_relobj_file<32, big_endian>* object,
3296         const Symbol_value<32>* psymval,
3297         Arm_address thumb_bit)
3298   {
3299     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3300     Valtype* wv = reinterpret_cast<Valtype*>(view);
3301     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3302     Valtype x = psymval->value(object, addend) | thumb_bit;
3303     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3304     return This::STATUS_OKAY;
3305   }
3306
3307   // R_ARM_REL32: (S + A) | T - P
3308   static inline typename This::Status
3309   rel32(unsigned char* view,
3310         const Sized_relobj_file<32, big_endian>* object,
3311         const Symbol_value<32>* psymval,
3312         Arm_address address,
3313         Arm_address thumb_bit)
3314   {
3315     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3316     Valtype* wv = reinterpret_cast<Valtype*>(view);
3317     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3318     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3319     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3320     return This::STATUS_OKAY;
3321   }
3322
3323   // R_ARM_THM_JUMP24: (S + A) | T - P
3324   static typename This::Status
3325   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3326              const Symbol_value<32>* psymval, Arm_address address,
3327              Arm_address thumb_bit);
3328
3329   // R_ARM_THM_JUMP6: S + A â€“ P
3330   static inline typename This::Status
3331   thm_jump6(unsigned char* view,
3332             const Sized_relobj_file<32, big_endian>* object,
3333             const Symbol_value<32>* psymval,
3334             Arm_address address)
3335   {
3336     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3337     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3338     Valtype* wv = reinterpret_cast<Valtype*>(view);
3339     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3340     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3341     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3342     Reltype x = (psymval->value(object, addend) - address);
3343     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3344     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3345     // CZB does only forward jumps.
3346     return ((x > 0x007e)
3347             ? This::STATUS_OVERFLOW
3348             : This::STATUS_OKAY);
3349   }
3350
3351   // R_ARM_THM_JUMP8: S + A â€“ P
3352   static inline typename This::Status
3353   thm_jump8(unsigned char* view,
3354             const Sized_relobj_file<32, big_endian>* object,
3355             const Symbol_value<32>* psymval,
3356             Arm_address address)
3357   {
3358     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3359     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3360     Valtype* wv = reinterpret_cast<Valtype*>(view);
3361     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3362     Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3363     Reltype x = (psymval->value(object, addend) - address);
3364     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3365     return (utils::has_overflow<8>(x)
3366             ? This::STATUS_OVERFLOW
3367             : This::STATUS_OKAY);
3368   }
3369
3370   // R_ARM_THM_JUMP11: S + A â€“ P
3371   static inline typename This::Status
3372   thm_jump11(unsigned char* view,
3373             const Sized_relobj_file<32, big_endian>* object,
3374             const Symbol_value<32>* psymval,
3375             Arm_address address)
3376   {
3377     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3378     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3379     Valtype* wv = reinterpret_cast<Valtype*>(view);
3380     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3381     Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3382     Reltype x = (psymval->value(object, addend) - address);
3383     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3384     return (utils::has_overflow<11>(x)
3385             ? This::STATUS_OVERFLOW
3386             : This::STATUS_OKAY);
3387   }
3388
3389   // R_ARM_BASE_PREL: B(S) + A - P
3390   static inline typename This::Status
3391   base_prel(unsigned char* view,
3392             Arm_address origin,
3393             Arm_address address)
3394   {
3395     Base::rel32(view, origin - address);
3396     return STATUS_OKAY;
3397   }
3398
3399   // R_ARM_BASE_ABS: B(S) + A
3400   static inline typename This::Status
3401   base_abs(unsigned char* view,
3402            Arm_address origin)
3403   {
3404     Base::rel32(view, origin);
3405     return STATUS_OKAY;
3406   }
3407
3408   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3409   static inline typename This::Status
3410   got_brel(unsigned char* view,
3411            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3412   {
3413     Base::rel32(view, got_offset);
3414     return This::STATUS_OKAY;
3415   }
3416
3417   // R_ARM_GOT_PREL: GOT(S) + A - P
3418   static inline typename This::Status
3419   got_prel(unsigned char* view,
3420            Arm_address got_entry,
3421            Arm_address address)
3422   {
3423     Base::rel32(view, got_entry - address);
3424     return This::STATUS_OKAY;
3425   }
3426
3427   // R_ARM_PREL: (S + A) | T - P
3428   static inline typename This::Status
3429   prel31(unsigned char* view,
3430          const Sized_relobj_file<32, big_endian>* object,
3431          const Symbol_value<32>* psymval,
3432          Arm_address address,
3433          Arm_address thumb_bit)
3434   {
3435     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3436     Valtype* wv = reinterpret_cast<Valtype*>(view);
3437     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3438     Valtype addend = utils::sign_extend<31>(val);
3439     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3440     val = utils::bit_select(val, x, 0x7fffffffU);
3441     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3442     return (utils::has_overflow<31>(x) ?
3443             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3444   }
3445
3446   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3447   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3448   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3449   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3450   static inline typename This::Status
3451   movw(unsigned char* view,
3452        const Sized_relobj_file<32, big_endian>* object,
3453        const Symbol_value<32>* psymval,
3454        Arm_address relative_address_base,
3455        Arm_address thumb_bit,
3456        bool check_overflow)
3457   {
3458     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3459     Valtype* wv = reinterpret_cast<Valtype*>(view);
3460     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3461     Valtype addend = This::extract_arm_movw_movt_addend(val);
3462     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3463                  - relative_address_base);
3464     val = This::insert_val_arm_movw_movt(val, x);
3465     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3466     return ((check_overflow && utils::has_overflow<16>(x))
3467             ? This::STATUS_OVERFLOW
3468             : This::STATUS_OKAY);
3469   }
3470
3471   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3472   // R_ARM_MOVT_PREL: S + A - P
3473   // R_ARM_MOVT_BREL: S + A - B(S)
3474   static inline typename This::Status
3475   movt(unsigned char* view,
3476        const Sized_relobj_file<32, big_endian>* object,
3477        const Symbol_value<32>* psymval,
3478        Arm_address relative_address_base)
3479   {
3480     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3481     Valtype* wv = reinterpret_cast<Valtype*>(view);
3482     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3483     Valtype addend = This::extract_arm_movw_movt_addend(val);
3484     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3485     val = This::insert_val_arm_movw_movt(val, x);
3486     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3487     // FIXME: IHI0044D says that we should check for overflow.
3488     return This::STATUS_OKAY;
3489   }
3490
3491   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3492   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3493   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3494   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3495   static inline typename This::Status
3496   thm_movw(unsigned char* view,
3497            const Sized_relobj_file<32, big_endian>* object,
3498            const Symbol_value<32>* psymval,
3499            Arm_address relative_address_base,
3500            Arm_address thumb_bit,
3501            bool check_overflow)
3502   {
3503     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3504     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3505     Valtype* wv = reinterpret_cast<Valtype*>(view);
3506     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3507                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3508     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3509     Reltype x =
3510       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3511     val = This::insert_val_thumb_movw_movt(val, x);
3512     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3513     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3514     return ((check_overflow && utils::has_overflow<16>(x))
3515             ? This::STATUS_OVERFLOW
3516             : This::STATUS_OKAY);
3517   }
3518
3519   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3520   // R_ARM_THM_MOVT_PREL: S + A - P
3521   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3522   static inline typename This::Status
3523   thm_movt(unsigned char* view,
3524            const Sized_relobj_file<32, big_endian>* object,
3525            const Symbol_value<32>* psymval,
3526            Arm_address relative_address_base)
3527   {
3528     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3529     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3530     Valtype* wv = reinterpret_cast<Valtype*>(view);
3531     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3532                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3533     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3534     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3535     val = This::insert_val_thumb_movw_movt(val, x);
3536     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3537     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3538     return This::STATUS_OKAY;
3539   }
3540
3541   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3542   static inline typename This::Status
3543   thm_alu11(unsigned char* view,
3544             const Sized_relobj_file<32, big_endian>* object,
3545             const Symbol_value<32>* psymval,
3546             Arm_address address,
3547             Arm_address thumb_bit)
3548   {
3549     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3550     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3551     Valtype* wv = reinterpret_cast<Valtype*>(view);
3552     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3553                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3554
3555     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3556     // -----------------------------------------------------------------------
3557     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3558     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3559     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3560     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3561     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3562     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3563
3564     // Determine a sign for the addend.
3565     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3566                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3567     // Thumb2 addend encoding:
3568     // imm12 := i | imm3 | imm8
3569     int32_t addend = (insn & 0xff)
3570                      | ((insn & 0x00007000) >> 4)
3571                      | ((insn & 0x04000000) >> 15);
3572     // Apply a sign to the added.
3573     addend *= sign;
3574
3575     int32_t x = (psymval->value(object, addend) | thumb_bit)
3576                 - (address & 0xfffffffc);
3577     Reltype val = abs(x);
3578     // Mask out the value and a distinct part of the ADD/SUB opcode
3579     // (bits 7:5 of opword).
3580     insn = (insn & 0xfb0f8f00)
3581            | (val & 0xff)
3582            | ((val & 0x700) << 4)
3583            | ((val & 0x800) << 15);
3584     // Set the opcode according to whether the value to go in the
3585     // place is negative.
3586     if (x < 0)
3587       insn |= 0x00a00000;
3588
3589     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3590     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3591     return ((val > 0xfff) ?
3592             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3593   }
3594
3595   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3596   static inline typename This::Status
3597   thm_pc8(unsigned char* view,
3598           const Sized_relobj_file<32, big_endian>* object,
3599           const Symbol_value<32>* psymval,
3600           Arm_address address)
3601   {
3602     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3603     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3604     Valtype* wv = reinterpret_cast<Valtype*>(view);
3605     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3606     Reltype addend = ((insn & 0x00ff) << 2);
3607     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3608     Reltype val = abs(x);
3609     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3610
3611     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3612     return ((val > 0x03fc)
3613             ? This::STATUS_OVERFLOW
3614             : This::STATUS_OKAY);
3615   }
3616
3617   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3618   static inline typename This::Status
3619   thm_pc12(unsigned char* view,
3620            const Sized_relobj_file<32, big_endian>* object,
3621            const Symbol_value<32>* psymval,
3622            Arm_address address)
3623   {
3624     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3625     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3626     Valtype* wv = reinterpret_cast<Valtype*>(view);
3627     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3628                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3629     // Determine a sign for the addend (positive if the U bit is 1).
3630     const int sign = (insn & 0x00800000) ? 1 : -1;
3631     int32_t addend = (insn & 0xfff);
3632     // Apply a sign to the added.
3633     addend *= sign;
3634
3635     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3636     Reltype val = abs(x);
3637     // Mask out and apply the value and the U bit.
3638     insn = (insn & 0xff7ff000) | (val & 0xfff);
3639     // Set the U bit according to whether the value to go in the
3640     // place is positive.
3641     if (x >= 0)
3642       insn |= 0x00800000;
3643
3644     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3645     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3646     return ((val > 0xfff) ?
3647             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3648   }
3649
3650   // R_ARM_V4BX
3651   static inline typename This::Status
3652   v4bx(const Relocate_info<32, big_endian>* relinfo,
3653        unsigned char* view,
3654        const Arm_relobj<big_endian>* object,
3655        const Arm_address address,
3656        const bool is_interworking)
3657   {
3658
3659     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3660     Valtype* wv = reinterpret_cast<Valtype*>(view);
3661     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3662
3663     // Ensure that we have a BX instruction.
3664     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3665     const uint32_t reg = (val & 0xf);
3666     if (is_interworking && reg != 0xf)
3667       {
3668         Stub_table<big_endian>* stub_table =
3669             object->stub_table(relinfo->data_shndx);
3670         gold_assert(stub_table != NULL);
3671
3672         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3673         gold_assert(stub != NULL);
3674
3675         int32_t veneer_address =
3676             stub_table->address() + stub->offset() - 8 - address;
3677         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3678                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3679         // Replace with a branch to veneer (B <addr>)
3680         val = (val & 0xf0000000) | 0x0a000000
3681               | ((veneer_address >> 2) & 0x00ffffff);
3682       }
3683     else
3684       {
3685         // Preserve Rm (lowest four bits) and the condition code
3686         // (highest four bits). Other bits encode MOV PC,Rm.
3687         val = (val & 0xf000000f) | 0x01a0f000;
3688       }
3689     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3690     return This::STATUS_OKAY;
3691   }
3692
3693   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3694   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3695   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3696   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3697   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3698   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3699   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3700   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3701   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3702   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3703   static inline typename This::Status
3704   arm_grp_alu(unsigned char* view,
3705         const Sized_relobj_file<32, big_endian>* object,
3706         const Symbol_value<32>* psymval,
3707         const int group,
3708         Arm_address address,
3709         Arm_address thumb_bit,
3710         bool check_overflow)
3711   {
3712     gold_assert(group >= 0 && group < 3);
3713     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3714     Valtype* wv = reinterpret_cast<Valtype*>(view);
3715     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3716
3717     // ALU group relocations are allowed only for the ADD/SUB instructions.
3718     // (0x00800000 - ADD, 0x00400000 - SUB)
3719     const Valtype opcode = insn & 0x01e00000;
3720     if (opcode != 0x00800000 && opcode != 0x00400000)
3721       return This::STATUS_BAD_RELOC;
3722
3723     // Determine a sign for the addend.
3724     const int sign = (opcode == 0x00800000) ? 1 : -1;
3725     // shifter = rotate_imm * 2
3726     const uint32_t shifter = (insn & 0xf00) >> 7;
3727     // Initial addend value.
3728     int32_t addend = insn & 0xff;
3729     // Rotate addend right by shifter.
3730     addend = (addend >> shifter) | (addend << (32 - shifter));
3731     // Apply a sign to the added.
3732     addend *= sign;
3733
3734     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3735     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3736     // Check for overflow if required
3737     if (check_overflow
3738         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3739       return This::STATUS_OVERFLOW;
3740
3741     // Mask out the value and the ADD/SUB part of the opcode; take care
3742     // not to destroy the S bit.
3743     insn &= 0xff1ff000;
3744     // Set the opcode according to whether the value to go in the
3745     // place is negative.
3746     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3747     // Encode the offset (encoded Gn).
3748     insn |= gn;
3749
3750     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3751     return This::STATUS_OKAY;
3752   }
3753
3754   // R_ARM_LDR_PC_G0: S + A - P
3755   // R_ARM_LDR_PC_G1: S + A - P
3756   // R_ARM_LDR_PC_G2: S + A - P
3757   // R_ARM_LDR_SB_G0: S + A - B(S)
3758   // R_ARM_LDR_SB_G1: S + A - B(S)
3759   // R_ARM_LDR_SB_G2: S + A - B(S)
3760   static inline typename This::Status
3761   arm_grp_ldr(unsigned char* view,
3762         const Sized_relobj_file<32, big_endian>* object,
3763         const Symbol_value<32>* psymval,
3764         const int group,
3765         Arm_address address)
3766   {
3767     gold_assert(group >= 0 && group < 3);
3768     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3769     Valtype* wv = reinterpret_cast<Valtype*>(view);
3770     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3771
3772     const int sign = (insn & 0x00800000) ? 1 : -1;
3773     int32_t addend = (insn & 0xfff) * sign;
3774     int32_t x = (psymval->value(object, addend) - address);
3775     // Calculate the relevant G(n-1) value to obtain this stage residual.
3776     Valtype residual =
3777         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3778     if (residual >= 0x1000)
3779       return This::STATUS_OVERFLOW;
3780
3781     // Mask out the value and U bit.
3782     insn &= 0xff7ff000;
3783     // Set the U bit for non-negative values.
3784     if (x >= 0)
3785       insn |= 0x00800000;
3786     insn |= residual;
3787
3788     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3789     return This::STATUS_OKAY;
3790   }
3791
3792   // R_ARM_LDRS_PC_G0: S + A - P
3793   // R_ARM_LDRS_PC_G1: S + A - P
3794   // R_ARM_LDRS_PC_G2: S + A - P
3795   // R_ARM_LDRS_SB_G0: S + A - B(S)
3796   // R_ARM_LDRS_SB_G1: S + A - B(S)
3797   // R_ARM_LDRS_SB_G2: S + A - B(S)
3798   static inline typename This::Status
3799   arm_grp_ldrs(unsigned char* view,
3800         const Sized_relobj_file<32, big_endian>* object,
3801         const Symbol_value<32>* psymval,
3802         const int group,
3803         Arm_address address)
3804   {
3805     gold_assert(group >= 0 && group < 3);
3806     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3807     Valtype* wv = reinterpret_cast<Valtype*>(view);
3808     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3809
3810     const int sign = (insn & 0x00800000) ? 1 : -1;
3811     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3812     int32_t x = (psymval->value(object, addend) - address);
3813     // Calculate the relevant G(n-1) value to obtain this stage residual.
3814     Valtype residual =
3815         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3816    if (residual >= 0x100)
3817       return This::STATUS_OVERFLOW;
3818
3819     // Mask out the value and U bit.
3820     insn &= 0xff7ff0f0;
3821     // Set the U bit for non-negative values.
3822     if (x >= 0)
3823       insn |= 0x00800000;
3824     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3825
3826     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3827     return This::STATUS_OKAY;
3828   }
3829
3830   // R_ARM_LDC_PC_G0: S + A - P
3831   // R_ARM_LDC_PC_G1: S + A - P
3832   // R_ARM_LDC_PC_G2: S + A - P
3833   // R_ARM_LDC_SB_G0: S + A - B(S)
3834   // R_ARM_LDC_SB_G1: S + A - B(S)
3835   // R_ARM_LDC_SB_G2: S + A - B(S)
3836   static inline typename This::Status
3837   arm_grp_ldc(unsigned char* view,
3838       const Sized_relobj_file<32, big_endian>* object,
3839       const Symbol_value<32>* psymval,
3840       const int group,
3841       Arm_address address)
3842   {
3843     gold_assert(group >= 0 && group < 3);
3844     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3845     Valtype* wv = reinterpret_cast<Valtype*>(view);
3846     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3847
3848     const int sign = (insn & 0x00800000) ? 1 : -1;
3849     int32_t addend = ((insn & 0xff) << 2) * sign;
3850     int32_t x = (psymval->value(object, addend) - address);
3851     // Calculate the relevant G(n-1) value to obtain this stage residual.
3852     Valtype residual =
3853       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3854     if ((residual & 0x3) != 0 || residual >= 0x400)
3855       return This::STATUS_OVERFLOW;
3856
3857     // Mask out the value and U bit.
3858     insn &= 0xff7fff00;
3859     // Set the U bit for non-negative values.
3860     if (x >= 0)
3861       insn |= 0x00800000;
3862     insn |= (residual >> 2);
3863
3864     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3865     return This::STATUS_OKAY;
3866   }
3867 };
3868
3869 // Relocate ARM long branches.  This handles relocation types
3870 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3871 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3872 // undefined and we do not use PLT in this relocation.  In such a case,
3873 // the branch is converted into an NOP.
3874
3875 template<bool big_endian>
3876 typename Arm_relocate_functions<big_endian>::Status
3877 Arm_relocate_functions<big_endian>::arm_branch_common(
3878     unsigned int r_type,
3879     const Relocate_info<32, big_endian>* relinfo,
3880     unsigned char* view,
3881     const Sized_symbol<32>* gsym,
3882     const Arm_relobj<big_endian>* object,
3883     unsigned int r_sym,
3884     const Symbol_value<32>* psymval,
3885     Arm_address address,
3886     Arm_address thumb_bit,
3887     bool is_weakly_undefined_without_plt)
3888 {
3889   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3890   Valtype* wv = reinterpret_cast<Valtype*>(view);
3891   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3892      
3893   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3894                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3895   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3896   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3897                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3898   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3899   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3900
3901   // Check that the instruction is valid.
3902   if (r_type == elfcpp::R_ARM_CALL)
3903     {
3904       if (!insn_is_uncond_bl && !insn_is_blx)
3905         return This::STATUS_BAD_RELOC;
3906     }
3907   else if (r_type == elfcpp::R_ARM_JUMP24)
3908     {
3909       if (!insn_is_b && !insn_is_cond_bl)
3910         return This::STATUS_BAD_RELOC;
3911     }
3912   else if (r_type == elfcpp::R_ARM_PLT32)
3913     {
3914       if (!insn_is_any_branch)
3915         return This::STATUS_BAD_RELOC;
3916     }
3917   else if (r_type == elfcpp::R_ARM_XPC25)
3918     {
3919       // FIXME: AAELF document IH0044C does not say much about it other
3920       // than it being obsolete.
3921       if (!insn_is_any_branch)
3922         return This::STATUS_BAD_RELOC;
3923     }
3924   else
3925     gold_unreachable();
3926
3927   // A branch to an undefined weak symbol is turned into a jump to
3928   // the next instruction unless a PLT entry will be created.
3929   // Do the same for local undefined symbols.
3930   // The jump to the next instruction is optimized as a NOP depending
3931   // on the architecture.
3932   const Target_arm<big_endian>* arm_target =
3933     Target_arm<big_endian>::default_target();
3934   if (is_weakly_undefined_without_plt)
3935     {
3936       gold_assert(!parameters->options().relocatable());
3937       Valtype cond = val & 0xf0000000U;
3938       if (arm_target->may_use_arm_nop())
3939         val = cond | 0x0320f000;
3940       else
3941         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3942       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3943       return This::STATUS_OKAY;
3944     }
3945  
3946   Valtype addend = utils::sign_extend<26>(val << 2);
3947   Valtype branch_target = psymval->value(object, addend);
3948   int32_t branch_offset = branch_target - address;
3949
3950   // We need a stub if the branch offset is too large or if we need
3951   // to switch mode.
3952   bool may_use_blx = arm_target->may_use_blx();
3953   Reloc_stub* stub = NULL;
3954
3955   if (!parameters->options().relocatable()
3956       && (utils::has_overflow<26>(branch_offset)
3957           || ((thumb_bit != 0)
3958               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3959     {
3960       Valtype unadjusted_branch_target = psymval->value(object, 0);
3961
3962       Stub_type stub_type =
3963         Reloc_stub::stub_type_for_reloc(r_type, address,
3964                                         unadjusted_branch_target,
3965                                         (thumb_bit != 0));
3966       if (stub_type != arm_stub_none)
3967         {
3968           Stub_table<big_endian>* stub_table =
3969             object->stub_table(relinfo->data_shndx);
3970           gold_assert(stub_table != NULL);
3971
3972           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3973           stub = stub_table->find_reloc_stub(stub_key);
3974           gold_assert(stub != NULL);
3975           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3976           branch_target = stub_table->address() + stub->offset() + addend;
3977           branch_offset = branch_target - address;
3978           gold_assert(!utils::has_overflow<26>(branch_offset));
3979         }
3980     }
3981
3982   // At this point, if we still need to switch mode, the instruction
3983   // must either be a BLX or a BL that can be converted to a BLX.
3984   if (thumb_bit != 0)
3985     {
3986       // Turn BL to BLX.
3987       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3988       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3989     }
3990
3991   val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3992   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3993   return (utils::has_overflow<26>(branch_offset)
3994           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3995 }
3996
3997 // Relocate THUMB long branches.  This handles relocation types
3998 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3999 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4000 // undefined and we do not use PLT in this relocation.  In such a case,
4001 // the branch is converted into an NOP.
4002
4003 template<bool big_endian>
4004 typename Arm_relocate_functions<big_endian>::Status
4005 Arm_relocate_functions<big_endian>::thumb_branch_common(
4006     unsigned int r_type,
4007     const Relocate_info<32, big_endian>* relinfo,
4008     unsigned char* view,
4009     const Sized_symbol<32>* gsym,
4010     const Arm_relobj<big_endian>* object,
4011     unsigned int r_sym,
4012     const Symbol_value<32>* psymval,
4013     Arm_address address,
4014     Arm_address thumb_bit,
4015     bool is_weakly_undefined_without_plt)
4016 {
4017   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4018   Valtype* wv = reinterpret_cast<Valtype*>(view);
4019   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4020   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4021
4022   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4023   // into account.
4024   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4025   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4026      
4027   // Check that the instruction is valid.
4028   if (r_type == elfcpp::R_ARM_THM_CALL)
4029     {
4030       if (!is_bl_insn && !is_blx_insn)
4031         return This::STATUS_BAD_RELOC;
4032     }
4033   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4034     {
4035       // This cannot be a BLX.
4036       if (!is_bl_insn)
4037         return This::STATUS_BAD_RELOC;
4038     }
4039   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4040     {
4041       // Check for Thumb to Thumb call.
4042       if (!is_blx_insn)
4043         return This::STATUS_BAD_RELOC;
4044       if (thumb_bit != 0)
4045         {
4046           gold_warning(_("%s: Thumb BLX instruction targets "
4047                          "thumb function '%s'."),
4048                          object->name().c_str(),
4049                          (gsym ? gsym->name() : "(local)")); 
4050           // Convert BLX to BL.
4051           lower_insn |= 0x1000U;
4052         }
4053     }
4054   else
4055     gold_unreachable();
4056
4057   // A branch to an undefined weak symbol is turned into a jump to
4058   // the next instruction unless a PLT entry will be created.
4059   // The jump to the next instruction is optimized as a NOP.W for
4060   // Thumb-2 enabled architectures.
4061   const Target_arm<big_endian>* arm_target =
4062     Target_arm<big_endian>::default_target();
4063   if (is_weakly_undefined_without_plt)
4064     {
4065       gold_assert(!parameters->options().relocatable());
4066       if (arm_target->may_use_thumb2_nop())
4067         {
4068           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4069           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4070         }
4071       else
4072         {
4073           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4074           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4075         }
4076       return This::STATUS_OKAY;
4077     }
4078  
4079   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4080   Arm_address branch_target = psymval->value(object, addend);
4081
4082   // For BLX, bit 1 of target address comes from bit 1 of base address.
4083   bool may_use_blx = arm_target->may_use_blx();
4084   if (thumb_bit == 0 && may_use_blx)
4085     branch_target = utils::bit_select(branch_target, address, 0x2);
4086
4087   int32_t branch_offset = branch_target - address;
4088
4089   // We need a stub if the branch offset is too large or if we need
4090   // to switch mode.
4091   bool thumb2 = arm_target->using_thumb2();
4092   if (!parameters->options().relocatable()
4093       && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4094           || (thumb2 && utils::has_overflow<25>(branch_offset))
4095           || ((thumb_bit == 0)
4096               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4097                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4098     {
4099       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4100
4101       Stub_type stub_type =
4102         Reloc_stub::stub_type_for_reloc(r_type, address,
4103                                         unadjusted_branch_target,
4104                                         (thumb_bit != 0));
4105
4106       if (stub_type != arm_stub_none)
4107         {
4108           Stub_table<big_endian>* stub_table =
4109             object->stub_table(relinfo->data_shndx);
4110           gold_assert(stub_table != NULL);
4111
4112           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4113           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4114           gold_assert(stub != NULL);
4115           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4116           branch_target = stub_table->address() + stub->offset() + addend;
4117           if (thumb_bit == 0 && may_use_blx) 
4118             branch_target = utils::bit_select(branch_target, address, 0x2);
4119           branch_offset = branch_target - address;
4120         }
4121     }
4122
4123   // At this point, if we still need to switch mode, the instruction
4124   // must either be a BLX or a BL that can be converted to a BLX.
4125   if (thumb_bit == 0)
4126     {
4127       gold_assert(may_use_blx
4128                   && (r_type == elfcpp::R_ARM_THM_CALL
4129                       || r_type == elfcpp::R_ARM_THM_XPC22));
4130       // Make sure this is a BLX.
4131       lower_insn &= ~0x1000U;
4132     }
4133   else
4134     {
4135       // Make sure this is a BL.
4136       lower_insn |= 0x1000U;
4137     }
4138
4139   // For a BLX instruction, make sure that the relocation is rounded up
4140   // to a word boundary.  This follows the semantics of the instruction
4141   // which specifies that bit 1 of the target address will come from bit
4142   // 1 of the base address.
4143   if ((lower_insn & 0x5000U) == 0x4000U)
4144     gold_assert((branch_offset & 3) == 0);
4145
4146   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4147   // We use the Thumb-2 encoding, which is safe even if dealing with
4148   // a Thumb-1 instruction by virtue of our overflow check above.  */
4149   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4150   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4151
4152   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4153   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4154
4155   gold_assert(!utils::has_overflow<25>(branch_offset));
4156
4157   return ((thumb2
4158            ? utils::has_overflow<25>(branch_offset)
4159            : utils::has_overflow<23>(branch_offset))
4160           ? This::STATUS_OVERFLOW
4161           : This::STATUS_OKAY);
4162 }
4163
4164 // Relocate THUMB-2 long conditional branches.
4165 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4166 // undefined and we do not use PLT in this relocation.  In such a case,
4167 // the branch is converted into an NOP.
4168
4169 template<bool big_endian>
4170 typename Arm_relocate_functions<big_endian>::Status
4171 Arm_relocate_functions<big_endian>::thm_jump19(
4172     unsigned char* view,
4173     const Arm_relobj<big_endian>* object,
4174     const Symbol_value<32>* psymval,
4175     Arm_address address,
4176     Arm_address thumb_bit)
4177 {
4178   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4179   Valtype* wv = reinterpret_cast<Valtype*>(view);
4180   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4181   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4182   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4183
4184   Arm_address branch_target = psymval->value(object, addend);
4185   int32_t branch_offset = branch_target - address;
4186
4187   // ??? Should handle interworking?  GCC might someday try to
4188   // use this for tail calls.
4189   // FIXME: We do support thumb entry to PLT yet.
4190   if (thumb_bit == 0)
4191     {
4192       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4193       return This::STATUS_BAD_RELOC;
4194     }
4195
4196   // Put RELOCATION back into the insn.
4197   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4198   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4199
4200   // Put the relocated value back in the object file:
4201   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4202   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4203
4204   return (utils::has_overflow<21>(branch_offset)
4205           ? This::STATUS_OVERFLOW
4206           : This::STATUS_OKAY);
4207 }
4208
4209 // Get the GOT section, creating it if necessary.
4210
4211 template<bool big_endian>
4212 Arm_output_data_got<big_endian>*
4213 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4214 {
4215   if (this->got_ == NULL)
4216     {
4217       gold_assert(symtab != NULL && layout != NULL);
4218
4219       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4220
4221       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4222                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4223                                       this->got_, ORDER_DATA, false);
4224
4225       // The old GNU linker creates a .got.plt section.  We just
4226       // create another set of data in the .got section.  Note that we
4227       // always create a PLT if we create a GOT, although the PLT
4228       // might be empty.
4229       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4230       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4231                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4232                                       this->got_plt_, ORDER_DATA, false);
4233
4234       // The first three entries are reserved.
4235       this->got_plt_->set_current_data_size(3 * 4);
4236
4237       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4238       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4239                                     Symbol_table::PREDEFINED,
4240                                     this->got_plt_,
4241                                     0, 0, elfcpp::STT_OBJECT,
4242                                     elfcpp::STB_LOCAL,
4243                                     elfcpp::STV_HIDDEN, 0,
4244                                     false, false);
4245     }
4246   return this->got_;
4247 }
4248
4249 // Get the dynamic reloc section, creating it if necessary.
4250
4251 template<bool big_endian>
4252 typename Target_arm<big_endian>::Reloc_section*
4253 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4254 {
4255   if (this->rel_dyn_ == NULL)
4256     {
4257       gold_assert(layout != NULL);
4258       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4259       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4260                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4261                                       ORDER_DYNAMIC_RELOCS, false);
4262     }
4263   return this->rel_dyn_;
4264 }
4265
4266 // Insn_template methods.
4267
4268 // Return byte size of an instruction template.
4269
4270 size_t
4271 Insn_template::size() const
4272 {
4273   switch (this->type())
4274     {
4275     case THUMB16_TYPE:
4276     case THUMB16_SPECIAL_TYPE:
4277       return 2;
4278     case ARM_TYPE:
4279     case THUMB32_TYPE:
4280     case DATA_TYPE:
4281       return 4;
4282     default:
4283       gold_unreachable();
4284     }
4285 }
4286
4287 // Return alignment of an instruction template.
4288
4289 unsigned
4290 Insn_template::alignment() const
4291 {
4292   switch (this->type())
4293     {
4294     case THUMB16_TYPE:
4295     case THUMB16_SPECIAL_TYPE:
4296     case THUMB32_TYPE:
4297       return 2;
4298     case ARM_TYPE:
4299     case DATA_TYPE:
4300       return 4;
4301     default:
4302       gold_unreachable();
4303     }
4304 }
4305
4306 // Stub_template methods.
4307
4308 Stub_template::Stub_template(
4309     Stub_type type, const Insn_template* insns,
4310      size_t insn_count)
4311   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4312     entry_in_thumb_mode_(false), relocs_()
4313 {
4314   off_t offset = 0;
4315
4316   // Compute byte size and alignment of stub template.
4317   for (size_t i = 0; i < insn_count; i++)
4318     {
4319       unsigned insn_alignment = insns[i].alignment();
4320       size_t insn_size = insns[i].size();
4321       gold_assert((offset & (insn_alignment - 1)) == 0);
4322       this->alignment_ = std::max(this->alignment_, insn_alignment);
4323       switch (insns[i].type())
4324         {
4325         case Insn_template::THUMB16_TYPE:
4326         case Insn_template::THUMB16_SPECIAL_TYPE:
4327           if (i == 0)
4328             this->entry_in_thumb_mode_ = true;
4329           break;
4330
4331         case Insn_template::THUMB32_TYPE:
4332           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4333             this->relocs_.push_back(Reloc(i, offset));
4334           if (i == 0)
4335             this->entry_in_thumb_mode_ = true;
4336           break;
4337
4338         case Insn_template::ARM_TYPE:
4339           // Handle cases where the target is encoded within the
4340           // instruction.
4341           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4342             this->relocs_.push_back(Reloc(i, offset));
4343           break;
4344
4345         case Insn_template::DATA_TYPE:
4346           // Entry point cannot be data.
4347           gold_assert(i != 0);
4348           this->relocs_.push_back(Reloc(i, offset));
4349           break;
4350
4351         default:
4352           gold_unreachable();
4353         }
4354       offset += insn_size; 
4355     }
4356   this->size_ = offset;
4357 }
4358
4359 // Stub methods.
4360
4361 // Template to implement do_write for a specific target endianness.
4362
4363 template<bool big_endian>
4364 void inline
4365 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4366 {
4367   const Stub_template* stub_template = this->stub_template();
4368   const Insn_template* insns = stub_template->insns();
4369
4370   // FIXME:  We do not handle BE8 encoding yet.
4371   unsigned char* pov = view;
4372   for (size_t i = 0; i < stub_template->insn_count(); i++)
4373     {
4374       switch (insns[i].type())
4375         {
4376         case Insn_template::THUMB16_TYPE:
4377           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4378           break;
4379         case Insn_template::THUMB16_SPECIAL_TYPE:
4380           elfcpp::Swap<16, big_endian>::writeval(
4381               pov,
4382               this->thumb16_special(i));
4383           break;
4384         case Insn_template::THUMB32_TYPE:
4385           {
4386             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4387             uint32_t lo = insns[i].data() & 0xffff;
4388             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4389             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4390           }
4391           break;
4392         case Insn_template::ARM_TYPE:
4393         case Insn_template::DATA_TYPE:
4394           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4395           break;
4396         default:
4397           gold_unreachable();
4398         }
4399       pov += insns[i].size();
4400     }
4401   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4402
4403
4404 // Reloc_stub::Key methods.
4405
4406 // Dump a Key as a string for debugging.
4407
4408 std::string
4409 Reloc_stub::Key::name() const
4410 {
4411   if (this->r_sym_ == invalid_index)
4412     {
4413       // Global symbol key name
4414       // <stub-type>:<symbol name>:<addend>.
4415       const std::string sym_name = this->u_.symbol->name();
4416       // We need to print two hex number and two colons.  So just add 100 bytes
4417       // to the symbol name size.
4418       size_t len = sym_name.size() + 100;
4419       char* buffer = new char[len];
4420       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4421                        sym_name.c_str(), this->addend_);
4422       gold_assert(c > 0 && c < static_cast<int>(len));
4423       delete[] buffer;
4424       return std::string(buffer);
4425     }
4426   else
4427     {
4428       // local symbol key name
4429       // <stub-type>:<object>:<r_sym>:<addend>.
4430       const size_t len = 200;
4431       char buffer[len];
4432       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4433                        this->u_.relobj, this->r_sym_, this->addend_);
4434       gold_assert(c > 0 && c < static_cast<int>(len));
4435       return std::string(buffer);
4436     }
4437 }
4438
4439 // Reloc_stub methods.
4440
4441 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4442 // LOCATION to DESTINATION.
4443 // This code is based on the arm_type_of_stub function in
4444 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4445 // class simple.
4446
4447 Stub_type
4448 Reloc_stub::stub_type_for_reloc(
4449    unsigned int r_type,
4450    Arm_address location,
4451    Arm_address destination,
4452    bool target_is_thumb)
4453 {
4454   Stub_type stub_type = arm_stub_none;
4455
4456   // This is a bit ugly but we want to avoid using a templated class for
4457   // big and little endianities.
4458   bool may_use_blx;
4459   bool should_force_pic_veneer;
4460   bool thumb2;
4461   bool thumb_only;
4462   if (parameters->target().is_big_endian())
4463     {
4464       const Target_arm<true>* big_endian_target =
4465         Target_arm<true>::default_target();
4466       may_use_blx = big_endian_target->may_use_blx();
4467       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4468       thumb2 = big_endian_target->using_thumb2();
4469       thumb_only = big_endian_target->using_thumb_only();
4470     }
4471   else
4472     {
4473       const Target_arm<false>* little_endian_target =
4474         Target_arm<false>::default_target();
4475       may_use_blx = little_endian_target->may_use_blx();
4476       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4477       thumb2 = little_endian_target->using_thumb2();
4478       thumb_only = little_endian_target->using_thumb_only();
4479     }
4480
4481   int64_t branch_offset;
4482   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4483     {
4484       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4485       // base address (instruction address + 4).
4486       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4487         destination = utils::bit_select(destination, location, 0x2);
4488       branch_offset = static_cast<int64_t>(destination) - location;
4489         
4490       // Handle cases where:
4491       // - this call goes too far (different Thumb/Thumb2 max
4492       //   distance)
4493       // - it's a Thumb->Arm call and blx is not available, or it's a
4494       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4495       if ((!thumb2
4496             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4497                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4498           || (thumb2
4499               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4500                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4501           || ((!target_is_thumb)
4502               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4503                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4504         {
4505           if (target_is_thumb)
4506             {
4507               // Thumb to thumb.
4508               if (!thumb_only)
4509                 {
4510                   stub_type = (parameters->options().shared()
4511                                || should_force_pic_veneer)
4512                     // PIC stubs.
4513                     ? ((may_use_blx
4514                         && (r_type == elfcpp::R_ARM_THM_CALL))
4515                        // V5T and above. Stub starts with ARM code, so
4516                        // we must be able to switch mode before
4517                        // reaching it, which is only possible for 'bl'
4518                        // (ie R_ARM_THM_CALL relocation).
4519                        ? arm_stub_long_branch_any_thumb_pic
4520                        // On V4T, use Thumb code only.
4521                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4522
4523                     // non-PIC stubs.
4524                     : ((may_use_blx
4525                         && (r_type == elfcpp::R_ARM_THM_CALL))
4526                        ? arm_stub_long_branch_any_any // V5T and above.
4527                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4528                 }
4529               else
4530                 {
4531                   stub_type = (parameters->options().shared()
4532                                || should_force_pic_veneer)
4533                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4534                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4535                 }
4536             }
4537           else
4538             {
4539               // Thumb to arm.
4540              
4541               // FIXME: We should check that the input section is from an
4542               // object that has interwork enabled.
4543
4544               stub_type = (parameters->options().shared()
4545                            || should_force_pic_veneer)
4546                 // PIC stubs.
4547                 ? ((may_use_blx
4548                     && (r_type == elfcpp::R_ARM_THM_CALL))
4549                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4550                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4551
4552                 // non-PIC stubs.
4553                 : ((may_use_blx
4554                     && (r_type == elfcpp::R_ARM_THM_CALL))
4555                    ? arm_stub_long_branch_any_any       // V5T and above.
4556                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4557
4558               // Handle v4t short branches.
4559               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4560                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4561                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4562                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4563             }
4564         }
4565     }
4566   else if (r_type == elfcpp::R_ARM_CALL
4567            || r_type == elfcpp::R_ARM_JUMP24
4568            || r_type == elfcpp::R_ARM_PLT32)
4569     {
4570       branch_offset = static_cast<int64_t>(destination) - location;
4571       if (target_is_thumb)
4572         {
4573           // Arm to thumb.
4574
4575           // FIXME: We should check that the input section is from an
4576           // object that has interwork enabled.
4577
4578           // We have an extra 2-bytes reach because of
4579           // the mode change (bit 24 (H) of BLX encoding).
4580           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4581               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4582               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4583               || (r_type == elfcpp::R_ARM_JUMP24)
4584               || (r_type == elfcpp::R_ARM_PLT32))
4585             {
4586               stub_type = (parameters->options().shared()
4587                            || should_force_pic_veneer)
4588                 // PIC stubs.
4589                 ? (may_use_blx
4590                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4591                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4592
4593                 // non-PIC stubs.
4594                 : (may_use_blx
4595                    ? arm_stub_long_branch_any_any       // V5T and above.
4596                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4597             }
4598         }
4599       else
4600         {
4601           // Arm to arm.
4602           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4603               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4604             {
4605               stub_type = (parameters->options().shared()
4606                            || should_force_pic_veneer)
4607                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4608                 : arm_stub_long_branch_any_any;         /// non-PIC.
4609             }
4610         }
4611     }
4612
4613   return stub_type;
4614 }
4615
4616 // Cortex_a8_stub methods.
4617
4618 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4619 // I is the position of the instruction template in the stub template.
4620
4621 uint16_t
4622 Cortex_a8_stub::do_thumb16_special(size_t i)
4623 {
4624   // The only use of this is to copy condition code from a conditional
4625   // branch being worked around to the corresponding conditional branch in
4626   // to the stub.
4627   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4628               && i == 0);
4629   uint16_t data = this->stub_template()->insns()[i].data();
4630   gold_assert((data & 0xff00U) == 0xd000U);
4631   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4632   return data;
4633 }
4634
4635 // Stub_factory methods.
4636
4637 Stub_factory::Stub_factory()
4638 {
4639   // The instruction template sequences are declared as static
4640   // objects and initialized first time the constructor runs.
4641  
4642   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4643   // to reach the stub if necessary.
4644   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4645     {
4646       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4647       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4648                                                 // dcd   R_ARM_ABS32(X)
4649     };
4650   
4651   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4652   // available.
4653   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4654     {
4655       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4656       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4657       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4658                                                 // dcd   R_ARM_ABS32(X)
4659     };
4660   
4661   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4662   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4663     {
4664       Insn_template::thumb16_insn(0xb401),      // push {r0}
4665       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4666       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4667       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4668       Insn_template::thumb16_insn(0x4760),      // bx   ip
4669       Insn_template::thumb16_insn(0xbf00),      // nop
4670       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4671                                                 // dcd  R_ARM_ABS32(X)
4672     };
4673   
4674   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4675   // allowed.
4676   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4677     {
4678       Insn_template::thumb16_insn(0x4778),      // bx   pc
4679       Insn_template::thumb16_insn(0x46c0),      // nop
4680       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4681       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4682       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4683                                                 // dcd  R_ARM_ABS32(X)
4684     };
4685   
4686   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4687   // available.
4688   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4689     {
4690       Insn_template::thumb16_insn(0x4778),      // bx   pc
4691       Insn_template::thumb16_insn(0x46c0),      // nop
4692       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4693       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4694                                                 // dcd   R_ARM_ABS32(X)
4695     };
4696   
4697   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4698   // one, when the destination is close enough.
4699   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4700     {
4701       Insn_template::thumb16_insn(0x4778),              // bx   pc
4702       Insn_template::thumb16_insn(0x46c0),              // nop
4703       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4704     };
4705   
4706   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4707   // blx to reach the stub if necessary.
4708   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4709     {
4710       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4711       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4712       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4713                                                 // dcd   R_ARM_REL32(X-4)
4714     };
4715   
4716   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4717   // blx to reach the stub if necessary.  We can not add into pc;
4718   // it is not guaranteed to mode switch (different in ARMv6 and
4719   // ARMv7).
4720   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4721     {
4722       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4723       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4724       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4725       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4726                                                 // dcd   R_ARM_REL32(X)
4727     };
4728   
4729   // V4T ARM -> ARM long branch stub, PIC.
4730   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4731     {
4732       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4733       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4734       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4735       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4736                                                 // dcd   R_ARM_REL32(X)
4737     };
4738   
4739   // V4T Thumb -> ARM long branch stub, PIC.
4740   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4741     {
4742       Insn_template::thumb16_insn(0x4778),      // bx   pc
4743       Insn_template::thumb16_insn(0x46c0),      // nop
4744       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4745       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4746       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4747                                                 // dcd  R_ARM_REL32(X)
4748     };
4749   
4750   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4751   // architectures.
4752   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4753     {
4754       Insn_template::thumb16_insn(0xb401),      // push {r0}
4755       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4756       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4757       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4758       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4759       Insn_template::thumb16_insn(0x4760),      // bx   ip
4760       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4761                                                 // dcd  R_ARM_REL32(X)
4762     };
4763   
4764   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4765   // allowed.
4766   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4767     {
4768       Insn_template::thumb16_insn(0x4778),      // bx   pc
4769       Insn_template::thumb16_insn(0x46c0),      // nop
4770       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4771       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4772       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4773       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4774                                                 // dcd  R_ARM_REL32(X)
4775     };
4776   
4777   // Cortex-A8 erratum-workaround stubs.
4778   
4779   // Stub used for conditional branches (which may be beyond +/-1MB away,
4780   // so we can't use a conditional branch to reach this stub).
4781   
4782   // original code:
4783   //
4784   //    b<cond> X
4785   // after:
4786   //
4787   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4788     {
4789       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4790       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4791       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4792                                                         //      b.w X
4793     };
4794   
4795   // Stub used for b.w and bl.w instructions.
4796   
4797   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4798     {
4799       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4800     };
4801   
4802   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4803     {
4804       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4805     };
4806   
4807   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4808   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4809   // the real destination using an ARM-mode branch.
4810   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4811     {
4812       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4813     };
4814
4815   // Stub used to provide an interworking for R_ARM_V4BX relocation
4816   // (bx r[n] instruction).
4817   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4818     {
4819       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4820       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4821       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4822     };
4823
4824   // Fill in the stub template look-up table.  Stub templates are constructed
4825   // per instance of Stub_factory for fast look-up without locking
4826   // in a thread-enabled environment.
4827
4828   this->stub_templates_[arm_stub_none] =
4829     new Stub_template(arm_stub_none, NULL, 0);
4830
4831 #define DEF_STUB(x)     \
4832   do \
4833     { \
4834       size_t array_size \
4835         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4836       Stub_type type = arm_stub_##x; \
4837       this->stub_templates_[type] = \
4838         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4839     } \
4840   while (0);
4841
4842   DEF_STUBS
4843 #undef DEF_STUB
4844 }
4845
4846 // Stub_table methods.
4847
4848 // Remove all Cortex-A8 stub.
4849
4850 template<bool big_endian>
4851 void
4852 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4853 {
4854   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4855        p != this->cortex_a8_stubs_.end();
4856        ++p)
4857     delete p->second;
4858   this->cortex_a8_stubs_.clear();
4859 }
4860
4861 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4862
4863 template<bool big_endian>
4864 void
4865 Stub_table<big_endian>::relocate_stub(
4866     Stub* stub,
4867     const Relocate_info<32, big_endian>* relinfo,
4868     Target_arm<big_endian>* arm_target,
4869     Output_section* output_section,
4870     unsigned char* view,
4871     Arm_address address,
4872     section_size_type view_size)
4873 {
4874   const Stub_template* stub_template = stub->stub_template();
4875   if (stub_template->reloc_count() != 0)
4876     {
4877       // Adjust view to cover the stub only.
4878       section_size_type offset = stub->offset();
4879       section_size_type stub_size = stub_template->size();
4880       gold_assert(offset + stub_size <= view_size);
4881
4882       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4883                                 address + offset, stub_size);
4884     }
4885 }
4886
4887 // Relocate all stubs in this stub table.
4888
4889 template<bool big_endian>
4890 void
4891 Stub_table<big_endian>::relocate_stubs(
4892     const Relocate_info<32, big_endian>* relinfo,
4893     Target_arm<big_endian>* arm_target,
4894     Output_section* output_section,
4895     unsigned char* view,
4896     Arm_address address,
4897     section_size_type view_size)
4898 {
4899   // If we are passed a view bigger than the stub table's.  we need to
4900   // adjust the view.
4901   gold_assert(address == this->address()
4902               && (view_size
4903                   == static_cast<section_size_type>(this->data_size())));
4904
4905   // Relocate all relocation stubs.
4906   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4907       p != this->reloc_stubs_.end();
4908       ++p)
4909     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4910                         address, view_size);
4911
4912   // Relocate all Cortex-A8 stubs.
4913   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4914        p != this->cortex_a8_stubs_.end();
4915        ++p)
4916     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4917                         address, view_size);
4918
4919   // Relocate all ARM V4BX stubs.
4920   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4921        p != this->arm_v4bx_stubs_.end();
4922        ++p)
4923     {
4924       if (*p != NULL)
4925         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4926                             address, view_size);
4927     }
4928 }
4929
4930 // Write out the stubs to file.
4931
4932 template<bool big_endian>
4933 void
4934 Stub_table<big_endian>::do_write(Output_file* of)
4935 {
4936   off_t offset = this->offset();
4937   const section_size_type oview_size =
4938     convert_to_section_size_type(this->data_size());
4939   unsigned char* const oview = of->get_output_view(offset, oview_size);
4940
4941   // Write relocation stubs.
4942   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4943       p != this->reloc_stubs_.end();
4944       ++p)
4945     {
4946       Reloc_stub* stub = p->second;
4947       Arm_address address = this->address() + stub->offset();
4948       gold_assert(address
4949                   == align_address(address,
4950                                    stub->stub_template()->alignment()));
4951       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4952                   big_endian);
4953     }
4954
4955   // Write Cortex-A8 stubs.
4956   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4957        p != this->cortex_a8_stubs_.end();
4958        ++p)
4959     {
4960       Cortex_a8_stub* stub = p->second;
4961       Arm_address address = this->address() + stub->offset();
4962       gold_assert(address
4963                   == align_address(address,
4964                                    stub->stub_template()->alignment()));
4965       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4966                   big_endian);
4967     }
4968
4969   // Write ARM V4BX relocation stubs.
4970   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4971        p != this->arm_v4bx_stubs_.end();
4972        ++p)
4973     {
4974       if (*p == NULL)
4975         continue;
4976
4977       Arm_address address = this->address() + (*p)->offset();
4978       gold_assert(address
4979                   == align_address(address,
4980                                    (*p)->stub_template()->alignment()));
4981       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4982                   big_endian);
4983     }
4984
4985   of->write_output_view(this->offset(), oview_size, oview);
4986 }
4987
4988 // Update the data size and address alignment of the stub table at the end
4989 // of a relaxation pass.   Return true if either the data size or the
4990 // alignment changed in this relaxation pass.
4991
4992 template<bool big_endian>
4993 bool
4994 Stub_table<big_endian>::update_data_size_and_addralign()
4995 {
4996   // Go over all stubs in table to compute data size and address alignment.
4997   off_t size = this->reloc_stubs_size_;
4998   unsigned addralign = this->reloc_stubs_addralign_;
4999
5000   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5001        p != this->cortex_a8_stubs_.end();
5002        ++p)
5003     {
5004       const Stub_template* stub_template = p->second->stub_template();
5005       addralign = std::max(addralign, stub_template->alignment());
5006       size = (align_address(size, stub_template->alignment())
5007               + stub_template->size());
5008     }
5009
5010   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5011        p != this->arm_v4bx_stubs_.end();
5012        ++p)
5013     {
5014       if (*p == NULL)
5015         continue;
5016
5017       const Stub_template* stub_template = (*p)->stub_template();
5018       addralign = std::max(addralign, stub_template->alignment());
5019       size = (align_address(size, stub_template->alignment())
5020               + stub_template->size());
5021     }
5022
5023   // Check if either data size or alignment changed in this pass.
5024   // Update prev_data_size_ and prev_addralign_.  These will be used
5025   // as the current data size and address alignment for the next pass.
5026   bool changed = size != this->prev_data_size_;
5027   this->prev_data_size_ = size; 
5028
5029   if (addralign != this->prev_addralign_)
5030     changed = true;
5031   this->prev_addralign_ = addralign;
5032
5033   return changed;
5034 }
5035
5036 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5037 // table.  It also marks all input sections needing Cortex-A8 workaround.
5038
5039 template<bool big_endian>
5040 void
5041 Stub_table<big_endian>::finalize_stubs()
5042 {
5043   off_t off = this->reloc_stubs_size_;
5044   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045        p != this->cortex_a8_stubs_.end();
5046        ++p)
5047     {
5048       Cortex_a8_stub* stub = p->second;
5049       const Stub_template* stub_template = stub->stub_template();
5050       uint64_t stub_addralign = stub_template->alignment();
5051       off = align_address(off, stub_addralign);
5052       stub->set_offset(off);
5053       off += stub_template->size();
5054
5055       // Mark input section so that we can determine later if a code section
5056       // needs the Cortex-A8 workaround quickly.
5057       Arm_relobj<big_endian>* arm_relobj =
5058         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5059       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5060     }
5061
5062   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5063       p != this->arm_v4bx_stubs_.end();
5064       ++p)
5065     {
5066       if (*p == NULL)
5067         continue;
5068
5069       const Stub_template* stub_template = (*p)->stub_template();
5070       uint64_t stub_addralign = stub_template->alignment();
5071       off = align_address(off, stub_addralign);
5072       (*p)->set_offset(off);
5073       off += stub_template->size();
5074     }
5075
5076   gold_assert(off <= this->prev_data_size_);
5077 }
5078
5079 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5080 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5081 // of the address range seen by the linker.
5082
5083 template<bool big_endian>
5084 void
5085 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5086     Target_arm<big_endian>* arm_target,
5087     unsigned char* view,
5088     Arm_address view_address,
5089     section_size_type view_size)
5090 {
5091   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5092   for (Cortex_a8_stub_list::const_iterator p =
5093          this->cortex_a8_stubs_.lower_bound(view_address);
5094        ((p != this->cortex_a8_stubs_.end())
5095         && (p->first < (view_address + view_size)));
5096        ++p)
5097     {
5098       // We do not store the THUMB bit in the LSB of either the branch address
5099       // or the stub offset.  There is no need to strip the LSB.
5100       Arm_address branch_address = p->first;
5101       const Cortex_a8_stub* stub = p->second;
5102       Arm_address stub_address = this->address() + stub->offset();
5103
5104       // Offset of the branch instruction relative to this view.
5105       section_size_type offset =
5106         convert_to_section_size_type(branch_address - view_address);
5107       gold_assert((offset + 4) <= view_size);
5108
5109       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5110                                              view + offset, branch_address);
5111     }
5112 }
5113
5114 // Arm_input_section methods.
5115
5116 // Initialize an Arm_input_section.
5117
5118 template<bool big_endian>
5119 void
5120 Arm_input_section<big_endian>::init()
5121 {
5122   Relobj* relobj = this->relobj();
5123   unsigned int shndx = this->shndx();
5124
5125   // We have to cache original size, alignment and contents to avoid locking
5126   // the original file.
5127   this->original_addralign_ =
5128     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5129
5130   // This is not efficient but we expect only a small number of relaxed
5131   // input sections for stubs.
5132   section_size_type section_size;
5133   const unsigned char* section_contents =
5134     relobj->section_contents(shndx, &section_size, false);
5135   this->original_size_ =
5136     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5137
5138   gold_assert(this->original_contents_ == NULL);
5139   this->original_contents_ = new unsigned char[section_size];
5140   memcpy(this->original_contents_, section_contents, section_size);
5141
5142   // We want to make this look like the original input section after
5143   // output sections are finalized.
5144   Output_section* os = relobj->output_section(shndx);
5145   off_t offset = relobj->output_section_offset(shndx);
5146   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5147   this->set_address(os->address() + offset);
5148   this->set_file_offset(os->offset() + offset);
5149
5150   this->set_current_data_size(this->original_size_);
5151   this->finalize_data_size();
5152 }
5153
5154 template<bool big_endian>
5155 void
5156 Arm_input_section<big_endian>::do_write(Output_file* of)
5157 {
5158   // We have to write out the original section content.
5159   gold_assert(this->original_contents_ != NULL);
5160   of->write(this->offset(), this->original_contents_,
5161             this->original_size_); 
5162
5163   // If this owns a stub table and it is not empty, write it.
5164   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5165     this->stub_table_->write(of);
5166 }
5167
5168 // Finalize data size.
5169
5170 template<bool big_endian>
5171 void
5172 Arm_input_section<big_endian>::set_final_data_size()
5173 {
5174   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5175
5176   if (this->is_stub_table_owner())
5177     {
5178       this->stub_table_->finalize_data_size();
5179       off = align_address(off, this->stub_table_->addralign());
5180       off += this->stub_table_->data_size();
5181     }
5182   this->set_data_size(off);
5183 }
5184
5185 // Reset address and file offset.
5186
5187 template<bool big_endian>
5188 void
5189 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5190 {
5191   // Size of the original input section contents.
5192   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5193
5194   // If this is a stub table owner, account for the stub table size.
5195   if (this->is_stub_table_owner())
5196     {
5197       Stub_table<big_endian>* stub_table = this->stub_table_;
5198
5199       // Reset the stub table's address and file offset.  The
5200       // current data size for child will be updated after that.
5201       stub_table_->reset_address_and_file_offset();
5202       off = align_address(off, stub_table_->addralign());
5203       off += stub_table->current_data_size();
5204     }
5205
5206   this->set_current_data_size(off);
5207 }
5208
5209 // Arm_exidx_cantunwind methods.
5210
5211 // Write this to Output file OF for a fixed endianness.
5212
5213 template<bool big_endian>
5214 void
5215 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5216 {
5217   off_t offset = this->offset();
5218   const section_size_type oview_size = 8;
5219   unsigned char* const oview = of->get_output_view(offset, oview_size);
5220   
5221   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5222   Valtype* wv = reinterpret_cast<Valtype*>(oview);
5223
5224   Output_section* os = this->relobj_->output_section(this->shndx_);
5225   gold_assert(os != NULL);
5226
5227   Arm_relobj<big_endian>* arm_relobj =
5228     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5229   Arm_address output_offset =
5230     arm_relobj->get_output_section_offset(this->shndx_);
5231   Arm_address section_start;
5232   section_size_type section_size;
5233
5234   // Find out the end of the text section referred by this.
5235   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5236     {
5237       section_start = os->address() + output_offset;
5238       const Arm_exidx_input_section* exidx_input_section =
5239         arm_relobj->exidx_input_section_by_link(this->shndx_);
5240       gold_assert(exidx_input_section != NULL);
5241       section_size =
5242         convert_to_section_size_type(exidx_input_section->text_size());
5243     }
5244   else
5245     {
5246       // Currently this only happens for a relaxed section.
5247       const Output_relaxed_input_section* poris =
5248         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5249       gold_assert(poris != NULL);
5250       section_start = poris->address();
5251       section_size = convert_to_section_size_type(poris->data_size());
5252     }
5253
5254   // We always append this to the end of an EXIDX section.
5255   Arm_address output_address = section_start + section_size;
5256
5257   // Write out the entry.  The first word either points to the beginning
5258   // or after the end of a text section.  The second word is the special
5259   // EXIDX_CANTUNWIND value.
5260   uint32_t prel31_offset = output_address - this->address();
5261   if (utils::has_overflow<31>(offset))
5262     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5263   elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5264   elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5265
5266   of->write_output_view(this->offset(), oview_size, oview);
5267 }
5268
5269 // Arm_exidx_merged_section methods.
5270
5271 // Constructor for Arm_exidx_merged_section.
5272 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5273 // SECTION_OFFSET_MAP points to a section offset map describing how
5274 // parts of the input section are mapped to output.  DELETED_BYTES is
5275 // the number of bytes deleted from the EXIDX input section.
5276
5277 Arm_exidx_merged_section::Arm_exidx_merged_section(
5278     const Arm_exidx_input_section& exidx_input_section,
5279     const Arm_exidx_section_offset_map& section_offset_map,
5280     uint32_t deleted_bytes)
5281   : Output_relaxed_input_section(exidx_input_section.relobj(),
5282                                  exidx_input_section.shndx(),
5283                                  exidx_input_section.addralign()),
5284     exidx_input_section_(exidx_input_section),
5285     section_offset_map_(section_offset_map)
5286 {
5287   // If we retain or discard the whole EXIDX input section,  we would
5288   // not be here.
5289   gold_assert(deleted_bytes != 0
5290               && deleted_bytes != this->exidx_input_section_.size());
5291
5292   // Fix size here so that we do not need to implement set_final_data_size.
5293   uint32_t size = exidx_input_section.size() - deleted_bytes;
5294   this->set_data_size(size);
5295   this->fix_data_size();
5296
5297   // Allocate buffer for section contents and build contents.
5298   this->section_contents_ = new unsigned char[size];
5299 }
5300
5301 // Build the contents of a merged EXIDX output section.
5302
5303 void
5304 Arm_exidx_merged_section::build_contents(
5305     const unsigned char* original_contents,
5306     section_size_type original_size)
5307 {
5308   // Go over spans of input offsets and write only those that are not
5309   // discarded.
5310   section_offset_type in_start = 0;
5311   section_offset_type out_start = 0;
5312   section_offset_type in_max =
5313     convert_types<section_offset_type>(original_size);
5314   section_offset_type out_max =
5315     convert_types<section_offset_type>(this->data_size());
5316   for (Arm_exidx_section_offset_map::const_iterator p =
5317         this->section_offset_map_.begin();
5318       p != this->section_offset_map_.end();
5319       ++p)
5320     {
5321       section_offset_type in_end = p->first;
5322       gold_assert(in_end >= in_start);
5323       section_offset_type out_end = p->second;
5324       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5325       if (out_end != -1)
5326         {
5327           size_t out_chunk_size =
5328             convert_types<size_t>(out_end - out_start + 1);
5329
5330           gold_assert(out_chunk_size == in_chunk_size
5331                       && in_end < in_max && out_end < out_max);
5332
5333           memcpy(this->section_contents_ + out_start,
5334                  original_contents + in_start,
5335                  out_chunk_size);
5336           out_start += out_chunk_size;
5337         }
5338       in_start += in_chunk_size;
5339     }
5340 }
5341
5342 // Given an input OBJECT, an input section index SHNDX within that
5343 // object, and an OFFSET relative to the start of that input
5344 // section, return whether or not the corresponding offset within
5345 // the output section is known.  If this function returns true, it
5346 // sets *POUTPUT to the output offset.  The value -1 indicates that
5347 // this input offset is being discarded.
5348
5349 bool
5350 Arm_exidx_merged_section::do_output_offset(
5351     const Relobj* relobj,
5352     unsigned int shndx,
5353     section_offset_type offset,
5354     section_offset_type* poutput) const
5355 {
5356   // We only handle offsets for the original EXIDX input section.
5357   if (relobj != this->exidx_input_section_.relobj()
5358       || shndx != this->exidx_input_section_.shndx())
5359     return false;
5360
5361   section_offset_type section_size =
5362     convert_types<section_offset_type>(this->exidx_input_section_.size());
5363   if (offset < 0 || offset >= section_size)
5364     // Input offset is out of valid range.
5365     *poutput = -1;
5366   else
5367     {
5368       // We need to look up the section offset map to determine the output
5369       // offset.  Find the reference point in map that is first offset
5370       // bigger than or equal to this offset.
5371       Arm_exidx_section_offset_map::const_iterator p =
5372         this->section_offset_map_.lower_bound(offset);
5373
5374       // The section offset maps are build such that this should not happen if
5375       // input offset is in the valid range.
5376       gold_assert(p != this->section_offset_map_.end());
5377
5378       // We need to check if this is dropped.
5379      section_offset_type ref = p->first;
5380      section_offset_type mapped_ref = p->second;
5381
5382       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5383         // Offset is present in output.
5384         *poutput = mapped_ref + (offset - ref);
5385       else
5386         // Offset is discarded owing to EXIDX entry merging.
5387         *poutput = -1;
5388     }
5389   
5390   return true;
5391 }
5392
5393 // Write this to output file OF.
5394
5395 void
5396 Arm_exidx_merged_section::do_write(Output_file* of)
5397 {
5398   off_t offset = this->offset();
5399   const section_size_type oview_size = this->data_size();
5400   unsigned char* const oview = of->get_output_view(offset, oview_size);
5401   
5402   Output_section* os = this->relobj()->output_section(this->shndx());
5403   gold_assert(os != NULL);
5404
5405   memcpy(oview, this->section_contents_, oview_size);
5406   of->write_output_view(this->offset(), oview_size, oview);
5407 }
5408
5409 // Arm_exidx_fixup methods.
5410
5411 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5412 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5413 // points to the end of the last seen EXIDX section.
5414
5415 void
5416 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5417 {
5418   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5419       && this->last_input_section_ != NULL)
5420     {
5421       Relobj* relobj = this->last_input_section_->relobj();
5422       unsigned int text_shndx = this->last_input_section_->link();
5423       Arm_exidx_cantunwind* cantunwind =
5424         new Arm_exidx_cantunwind(relobj, text_shndx);
5425       this->exidx_output_section_->add_output_section_data(cantunwind);
5426       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5427     }
5428 }
5429
5430 // Process an EXIDX section entry in input.  Return whether this entry
5431 // can be deleted in the output.  SECOND_WORD in the second word of the
5432 // EXIDX entry.
5433
5434 bool
5435 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5436 {
5437   bool delete_entry;
5438   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5439     {
5440       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5441       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5442       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5443     }
5444   else if ((second_word & 0x80000000) != 0)
5445     {
5446       // Inlined unwinding data.  Merge if equal to previous.
5447       delete_entry = (merge_exidx_entries_
5448                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5449                       && this->last_inlined_entry_ == second_word);
5450       this->last_unwind_type_ = UT_INLINED_ENTRY;
5451       this->last_inlined_entry_ = second_word;
5452     }
5453   else
5454     {
5455       // Normal table entry.  In theory we could merge these too,
5456       // but duplicate entries are likely to be much less common.
5457       delete_entry = false;
5458       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5459     }
5460   return delete_entry;
5461 }
5462
5463 // Update the current section offset map during EXIDX section fix-up.
5464 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5465 // reference point, DELETED_BYTES is the number of deleted by in the
5466 // section so far.  If DELETE_ENTRY is true, the reference point and
5467 // all offsets after the previous reference point are discarded.
5468
5469 void
5470 Arm_exidx_fixup::update_offset_map(
5471     section_offset_type input_offset,
5472     section_size_type deleted_bytes,
5473     bool delete_entry)
5474 {
5475   if (this->section_offset_map_ == NULL)
5476     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5477   section_offset_type output_offset;
5478   if (delete_entry)
5479     output_offset = Arm_exidx_input_section::invalid_offset;
5480   else
5481     output_offset = input_offset - deleted_bytes;
5482   (*this->section_offset_map_)[input_offset] = output_offset;
5483 }
5484
5485 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5486 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5487 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5488 // If some entries are merged, also store a pointer to a newly created
5489 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5490 // owns the map and is responsible for releasing it after use.
5491
5492 template<bool big_endian>
5493 uint32_t
5494 Arm_exidx_fixup::process_exidx_section(
5495     const Arm_exidx_input_section* exidx_input_section,
5496     const unsigned char* section_contents,
5497     section_size_type section_size,
5498     Arm_exidx_section_offset_map** psection_offset_map)
5499 {
5500   Relobj* relobj = exidx_input_section->relobj();
5501   unsigned shndx = exidx_input_section->shndx();
5502
5503   if ((section_size % 8) != 0)
5504     {
5505       // Something is wrong with this section.  Better not touch it.
5506       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5507                  relobj->name().c_str(), shndx);
5508       this->last_input_section_ = exidx_input_section;
5509       this->last_unwind_type_ = UT_NONE;
5510       return 0;
5511     }
5512   
5513   uint32_t deleted_bytes = 0;
5514   bool prev_delete_entry = false;
5515   gold_assert(this->section_offset_map_ == NULL);
5516
5517   for (section_size_type i = 0; i < section_size; i += 8)
5518     {
5519       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5520       const Valtype* wv =
5521           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5522       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5523
5524       bool delete_entry = this->process_exidx_entry(second_word);
5525
5526       // Entry deletion causes changes in output offsets.  We use a std::map
5527       // to record these.  And entry (x, y) means input offset x
5528       // is mapped to output offset y.  If y is invalid_offset, then x is
5529       // dropped in the output.  Because of the way std::map::lower_bound
5530       // works, we record the last offset in a region w.r.t to keeping or
5531       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5532       // the output offset y0 of it is determined by the output offset y1 of
5533       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5534       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5535       // y0 is also -1.
5536       if (delete_entry != prev_delete_entry && i != 0)
5537         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5538
5539       // Update total deleted bytes for this entry.
5540       if (delete_entry)
5541         deleted_bytes += 8;
5542
5543       prev_delete_entry = delete_entry;
5544     }
5545   
5546   // If section offset map is not NULL, make an entry for the end of
5547   // section.
5548   if (this->section_offset_map_ != NULL)
5549     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5550
5551   *psection_offset_map = this->section_offset_map_;
5552   this->section_offset_map_ = NULL;
5553   this->last_input_section_ = exidx_input_section;
5554   
5555   // Set the first output text section so that we can link the EXIDX output
5556   // section to it.  Ignore any EXIDX input section that is completely merged.
5557   if (this->first_output_text_section_ == NULL
5558       && deleted_bytes != section_size)
5559     {
5560       unsigned int link = exidx_input_section->link();
5561       Output_section* os = relobj->output_section(link);
5562       gold_assert(os != NULL);
5563       this->first_output_text_section_ = os;
5564     }
5565
5566   return deleted_bytes;
5567 }
5568
5569 // Arm_output_section methods.
5570
5571 // Create a stub group for input sections from BEGIN to END.  OWNER
5572 // points to the input section to be the owner a new stub table.
5573
5574 template<bool big_endian>
5575 void
5576 Arm_output_section<big_endian>::create_stub_group(
5577   Input_section_list::const_iterator begin,
5578   Input_section_list::const_iterator end,
5579   Input_section_list::const_iterator owner,
5580   Target_arm<big_endian>* target,
5581   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5582   const Task* task)
5583 {
5584   // We use a different kind of relaxed section in an EXIDX section.
5585   // The static casting from Output_relaxed_input_section to
5586   // Arm_input_section is invalid in an EXIDX section.  We are okay
5587   // because we should not be calling this for an EXIDX section. 
5588   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5589
5590   // Currently we convert ordinary input sections into relaxed sections only
5591   // at this point but we may want to support creating relaxed input section
5592   // very early.  So we check here to see if owner is already a relaxed
5593   // section.
5594   
5595   Arm_input_section<big_endian>* arm_input_section;
5596   if (owner->is_relaxed_input_section())
5597     {
5598       arm_input_section =
5599         Arm_input_section<big_endian>::as_arm_input_section(
5600           owner->relaxed_input_section());
5601     }
5602   else
5603     {
5604       gold_assert(owner->is_input_section());
5605       // Create a new relaxed input section.  We need to lock the original
5606       // file.
5607       Task_lock_obj<Object> tl(task, owner->relobj());
5608       arm_input_section =
5609         target->new_arm_input_section(owner->relobj(), owner->shndx());
5610       new_relaxed_sections->push_back(arm_input_section);
5611     }
5612
5613   // Create a stub table.
5614   Stub_table<big_endian>* stub_table =
5615     target->new_stub_table(arm_input_section);
5616
5617   arm_input_section->set_stub_table(stub_table);
5618   
5619   Input_section_list::const_iterator p = begin;
5620   Input_section_list::const_iterator prev_p;
5621
5622   // Look for input sections or relaxed input sections in [begin ... end].
5623   do
5624     {
5625       if (p->is_input_section() || p->is_relaxed_input_section())
5626         {
5627           // The stub table information for input sections live
5628           // in their objects.
5629           Arm_relobj<big_endian>* arm_relobj =
5630             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5631           arm_relobj->set_stub_table(p->shndx(), stub_table);
5632         }
5633       prev_p = p++;
5634     }
5635   while (prev_p != end);
5636 }
5637
5638 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5639 // of stub groups.  We grow a stub group by adding input section until the
5640 // size is just below GROUP_SIZE.  The last input section will be converted
5641 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5642 // input section after the stub table, effectively double the group size.
5643 // 
5644 // This is similar to the group_sections() function in elf32-arm.c but is
5645 // implemented differently.
5646
5647 template<bool big_endian>
5648 void
5649 Arm_output_section<big_endian>::group_sections(
5650     section_size_type group_size,
5651     bool stubs_always_after_branch,
5652     Target_arm<big_endian>* target,
5653     const Task* task)
5654 {
5655   // We only care about sections containing code.
5656   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5657     return;
5658
5659   // States for grouping.
5660   typedef enum
5661   {
5662     // No group is being built.
5663     NO_GROUP,
5664     // A group is being built but the stub table is not found yet.
5665     // We keep group a stub group until the size is just under GROUP_SIZE.
5666     // The last input section in the group will be used as the stub table.
5667     FINDING_STUB_SECTION,
5668     // A group is being built and we have already found a stub table.
5669     // We enter this state to grow a stub group by adding input section
5670     // after the stub table.  This effectively doubles the group size.
5671     HAS_STUB_SECTION
5672   } State;
5673
5674   // Any newly created relaxed sections are stored here.
5675   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5676
5677   State state = NO_GROUP;
5678   section_size_type off = 0;
5679   section_size_type group_begin_offset = 0;
5680   section_size_type group_end_offset = 0;
5681   section_size_type stub_table_end_offset = 0;
5682   Input_section_list::const_iterator group_begin =
5683     this->input_sections().end();
5684   Input_section_list::const_iterator stub_table =
5685     this->input_sections().end();
5686   Input_section_list::const_iterator group_end = this->input_sections().end();
5687   for (Input_section_list::const_iterator p = this->input_sections().begin();
5688        p != this->input_sections().end();
5689        ++p)
5690     {
5691       section_size_type section_begin_offset =
5692         align_address(off, p->addralign());
5693       section_size_type section_end_offset =
5694         section_begin_offset + p->data_size(); 
5695       
5696       // Check to see if we should group the previously seen sections.
5697       switch (state)
5698         {
5699         case NO_GROUP:
5700           break;
5701
5702         case FINDING_STUB_SECTION:
5703           // Adding this section makes the group larger than GROUP_SIZE.
5704           if (section_end_offset - group_begin_offset >= group_size)
5705             {
5706               if (stubs_always_after_branch)
5707                 {       
5708                   gold_assert(group_end != this->input_sections().end());
5709                   this->create_stub_group(group_begin, group_end, group_end,
5710                                           target, &new_relaxed_sections,
5711                                           task);
5712                   state = NO_GROUP;
5713                 }
5714               else
5715                 {
5716                   // But wait, there's more!  Input sections up to
5717                   // stub_group_size bytes after the stub table can be
5718                   // handled by it too.
5719                   state = HAS_STUB_SECTION;
5720                   stub_table = group_end;
5721                   stub_table_end_offset = group_end_offset;
5722                 }
5723             }
5724             break;
5725
5726         case HAS_STUB_SECTION:
5727           // Adding this section makes the post stub-section group larger
5728           // than GROUP_SIZE.
5729           if (section_end_offset - stub_table_end_offset >= group_size)
5730            {
5731              gold_assert(group_end != this->input_sections().end());
5732              this->create_stub_group(group_begin, group_end, stub_table,
5733                                      target, &new_relaxed_sections, task);
5734              state = NO_GROUP;
5735            }
5736            break;
5737
5738           default:
5739             gold_unreachable();
5740         }       
5741
5742       // If we see an input section and currently there is no group, start
5743       // a new one.  Skip any empty sections.  We look at the data size
5744       // instead of calling p->relobj()->section_size() to avoid locking.
5745       if ((p->is_input_section() || p->is_relaxed_input_section())
5746           && (p->data_size() != 0))
5747         {
5748           if (state == NO_GROUP)
5749             {
5750               state = FINDING_STUB_SECTION;
5751               group_begin = p;
5752               group_begin_offset = section_begin_offset;
5753             }
5754
5755           // Keep track of the last input section seen.
5756           group_end = p;
5757           group_end_offset = section_end_offset;
5758         }
5759
5760       off = section_end_offset;
5761     }
5762
5763   // Create a stub group for any ungrouped sections.
5764   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5765     {
5766       gold_assert(group_end != this->input_sections().end());
5767       this->create_stub_group(group_begin, group_end,
5768                               (state == FINDING_STUB_SECTION
5769                                ? group_end
5770                                : stub_table),
5771                                target, &new_relaxed_sections, task);
5772     }
5773
5774   // Convert input section into relaxed input section in a batch.
5775   if (!new_relaxed_sections.empty())
5776     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5777
5778   // Update the section offsets
5779   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5780     {
5781       Arm_relobj<big_endian>* arm_relobj =
5782         Arm_relobj<big_endian>::as_arm_relobj(
5783           new_relaxed_sections[i]->relobj());
5784       unsigned int shndx = new_relaxed_sections[i]->shndx();
5785       // Tell Arm_relobj that this input section is converted.
5786       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5787     }
5788 }
5789
5790 // Append non empty text sections in this to LIST in ascending
5791 // order of their position in this.
5792
5793 template<bool big_endian>
5794 void
5795 Arm_output_section<big_endian>::append_text_sections_to_list(
5796     Text_section_list* list)
5797 {
5798   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5799
5800   for (Input_section_list::const_iterator p = this->input_sections().begin();
5801        p != this->input_sections().end();
5802        ++p)
5803     {
5804       // We only care about plain or relaxed input sections.  We also
5805       // ignore any merged sections.
5806       if (p->is_input_section() || p->is_relaxed_input_section())
5807         list->push_back(Text_section_list::value_type(p->relobj(),
5808                                                       p->shndx()));
5809     }
5810 }
5811
5812 template<bool big_endian>
5813 void
5814 Arm_output_section<big_endian>::fix_exidx_coverage(
5815     Layout* layout,
5816     const Text_section_list& sorted_text_sections,
5817     Symbol_table* symtab,
5818     bool merge_exidx_entries,
5819     const Task* task)
5820 {
5821   // We should only do this for the EXIDX output section.
5822   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5823
5824   // We don't want the relaxation loop to undo these changes, so we discard
5825   // the current saved states and take another one after the fix-up.
5826   this->discard_states();
5827
5828   // Remove all input sections.
5829   uint64_t address = this->address();
5830   typedef std::list<Output_section::Input_section> Input_section_list;
5831   Input_section_list input_sections;
5832   this->reset_address_and_file_offset();
5833   this->get_input_sections(address, std::string(""), &input_sections);
5834
5835   if (!this->input_sections().empty())
5836     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5837   
5838   // Go through all the known input sections and record them.
5839   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5840   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5841                         Section_id_hash> Text_to_exidx_map;
5842   Text_to_exidx_map text_to_exidx_map;
5843   for (Input_section_list::const_iterator p = input_sections.begin();
5844        p != input_sections.end();
5845        ++p)
5846     {
5847       // This should never happen.  At this point, we should only see
5848       // plain EXIDX input sections.
5849       gold_assert(!p->is_relaxed_input_section());
5850       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5851     }
5852
5853   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5854
5855   // Go over the sorted text sections.
5856   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5857   Section_id_set processed_input_sections;
5858   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5859        p != sorted_text_sections.end();
5860        ++p)
5861     {
5862       Relobj* relobj = p->first;
5863       unsigned int shndx = p->second;
5864
5865       Arm_relobj<big_endian>* arm_relobj =
5866          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5867       const Arm_exidx_input_section* exidx_input_section =
5868          arm_relobj->exidx_input_section_by_link(shndx);
5869
5870       // If this text section has no EXIDX section or if the EXIDX section
5871       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5872       // of the last seen EXIDX section.
5873       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5874         {
5875           exidx_fixup.add_exidx_cantunwind_as_needed();
5876           continue;
5877         }
5878
5879       Relobj* exidx_relobj = exidx_input_section->relobj();
5880       unsigned int exidx_shndx = exidx_input_section->shndx();
5881       Section_id sid(exidx_relobj, exidx_shndx);
5882       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5883       if (iter == text_to_exidx_map.end())
5884         {
5885           // This is odd.  We have not seen this EXIDX input section before.
5886           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5887           // issue a warning instead.  We assume the user knows what he
5888           // or she is doing.  Otherwise, this is an error.
5889           if (layout->script_options()->saw_sections_clause())
5890             gold_warning(_("unwinding may not work because EXIDX input section"
5891                            " %u of %s is not in EXIDX output section"),
5892                          exidx_shndx, exidx_relobj->name().c_str());
5893           else
5894             gold_error(_("unwinding may not work because EXIDX input section"
5895                          " %u of %s is not in EXIDX output section"),
5896                        exidx_shndx, exidx_relobj->name().c_str());
5897
5898           exidx_fixup.add_exidx_cantunwind_as_needed();
5899           continue;
5900         }
5901
5902       // We need to access the contents of the EXIDX section, lock the
5903       // object here.
5904       Task_lock_obj<Object> tl(task, exidx_relobj);
5905       section_size_type exidx_size;
5906       const unsigned char* exidx_contents =
5907         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); 
5908
5909       // Fix up coverage and append input section to output data list.
5910       Arm_exidx_section_offset_map* section_offset_map = NULL;
5911       uint32_t deleted_bytes =
5912         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5913                                                       exidx_contents,
5914                                                       exidx_size,
5915                                                       &section_offset_map);
5916
5917       if (deleted_bytes == exidx_input_section->size())
5918         {
5919           // The whole EXIDX section got merged.  Remove it from output.
5920           gold_assert(section_offset_map == NULL);
5921           exidx_relobj->set_output_section(exidx_shndx, NULL);
5922
5923           // All local symbols defined in this input section will be dropped.
5924           // We need to adjust output local symbol count.
5925           arm_relobj->set_output_local_symbol_count_needs_update();
5926         }
5927       else if (deleted_bytes > 0)
5928         {
5929           // Some entries are merged.  We need to convert this EXIDX input
5930           // section into a relaxed section.
5931           gold_assert(section_offset_map != NULL);
5932
5933           Arm_exidx_merged_section* merged_section =
5934             new Arm_exidx_merged_section(*exidx_input_section,
5935                                          *section_offset_map, deleted_bytes);
5936           merged_section->build_contents(exidx_contents, exidx_size);
5937
5938           const std::string secname = exidx_relobj->section_name(exidx_shndx);
5939           this->add_relaxed_input_section(layout, merged_section, secname);
5940           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5941
5942           // All local symbols defined in discarded portions of this input
5943           // section will be dropped.  We need to adjust output local symbol
5944           // count.
5945           arm_relobj->set_output_local_symbol_count_needs_update();
5946         }
5947       else
5948         {
5949           // Just add back the EXIDX input section.
5950           gold_assert(section_offset_map == NULL);
5951           const Output_section::Input_section* pis = iter->second;
5952           gold_assert(pis->is_input_section());
5953           this->add_script_input_section(*pis);
5954         }
5955
5956       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5957     }
5958
5959   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5960   exidx_fixup.add_exidx_cantunwind_as_needed();
5961
5962   // Remove any known EXIDX input sections that are not processed.
5963   for (Input_section_list::const_iterator p = input_sections.begin();
5964        p != input_sections.end();
5965        ++p)
5966     {
5967       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5968           == processed_input_sections.end())
5969         {
5970           // We discard a known EXIDX section because its linked
5971           // text section has been folded by ICF.  We also discard an
5972           // EXIDX section with error, the output does not matter in this
5973           // case.  We do this to avoid triggering asserts.
5974           Arm_relobj<big_endian>* arm_relobj =
5975             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5976           const Arm_exidx_input_section* exidx_input_section =
5977             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5978           gold_assert(exidx_input_section != NULL);
5979           if (!exidx_input_section->has_errors())
5980             {
5981               unsigned int text_shndx = exidx_input_section->link();
5982               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5983             }
5984
5985           // Remove this from link.  We also need to recount the
5986           // local symbols.
5987           p->relobj()->set_output_section(p->shndx(), NULL);
5988           arm_relobj->set_output_local_symbol_count_needs_update();
5989         }
5990     }
5991     
5992   // Link exidx output section to the first seen output section and
5993   // set correct entry size.
5994   this->set_link_section(exidx_fixup.first_output_text_section());
5995   this->set_entsize(8);
5996
5997   // Make changes permanent.
5998   this->save_states();
5999   this->set_section_offsets_need_adjustment();
6000 }
6001
6002 // Link EXIDX output sections to text output sections.
6003
6004 template<bool big_endian>
6005 void
6006 Arm_output_section<big_endian>::set_exidx_section_link()
6007 {
6008   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6009   if (!this->input_sections().empty())
6010     {
6011       Input_section_list::const_iterator p = this->input_sections().begin();
6012       Arm_relobj<big_endian>* arm_relobj =
6013         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6014       unsigned exidx_shndx = p->shndx();
6015       const Arm_exidx_input_section* exidx_input_section =
6016         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6017       gold_assert(exidx_input_section != NULL);
6018       unsigned int text_shndx = exidx_input_section->link();
6019       Output_section* os = arm_relobj->output_section(text_shndx);
6020       this->set_link_section(os);
6021     }
6022 }
6023
6024 // Arm_relobj methods.
6025
6026 // Determine if an input section is scannable for stub processing.  SHDR is
6027 // the header of the section and SHNDX is the section index.  OS is the output
6028 // section for the input section and SYMTAB is the global symbol table used to
6029 // look up ICF information.
6030
6031 template<bool big_endian>
6032 bool
6033 Arm_relobj<big_endian>::section_is_scannable(
6034     const elfcpp::Shdr<32, big_endian>& shdr,
6035     unsigned int shndx,
6036     const Output_section* os,
6037     const Symbol_table* symtab)
6038 {
6039   // Skip any empty sections, unallocated sections or sections whose
6040   // type are not SHT_PROGBITS.
6041   if (shdr.get_sh_size() == 0
6042       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6043       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6044     return false;
6045
6046   // Skip any discarded or ICF'ed sections.
6047   if (os == NULL || symtab->is_section_folded(this, shndx))
6048     return false;
6049
6050   // If this requires special offset handling, check to see if it is
6051   // a relaxed section.  If this is not, then it is a merged section that
6052   // we cannot handle.
6053   if (this->is_output_section_offset_invalid(shndx))
6054     {
6055       const Output_relaxed_input_section* poris =
6056         os->find_relaxed_input_section(this, shndx);
6057       if (poris == NULL)
6058         return false;
6059     }
6060
6061   return true;
6062 }
6063
6064 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6065 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6066
6067 template<bool big_endian>
6068 bool
6069 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6070     const elfcpp::Shdr<32, big_endian>& shdr,
6071     const Relobj::Output_sections& out_sections,
6072     const Symbol_table* symtab,
6073     const unsigned char* pshdrs)
6074 {
6075   unsigned int sh_type = shdr.get_sh_type();
6076   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6077     return false;
6078
6079   // Ignore empty section.
6080   off_t sh_size = shdr.get_sh_size();
6081   if (sh_size == 0)
6082     return false;
6083
6084   // Ignore reloc section with unexpected symbol table.  The
6085   // error will be reported in the final link.
6086   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6087     return false;
6088
6089   unsigned int reloc_size;
6090   if (sh_type == elfcpp::SHT_REL)
6091     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6092   else
6093     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6094
6095   // Ignore reloc section with unexpected entsize or uneven size.
6096   // The error will be reported in the final link.
6097   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6098     return false;
6099
6100   // Ignore reloc section with bad info.  This error will be
6101   // reported in the final link.
6102   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6103   if (index >= this->shnum())
6104     return false;
6105
6106   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6107   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6108   return this->section_is_scannable(text_shdr, index,
6109                                    out_sections[index], symtab);
6110 }
6111
6112 // Return the output address of either a plain input section or a relaxed
6113 // input section.  SHNDX is the section index.  We define and use this
6114 // instead of calling Output_section::output_address because that is slow
6115 // for large output.
6116
6117 template<bool big_endian>
6118 Arm_address
6119 Arm_relobj<big_endian>::simple_input_section_output_address(
6120     unsigned int shndx,
6121     Output_section* os)
6122 {
6123   if (this->is_output_section_offset_invalid(shndx))
6124     {
6125       const Output_relaxed_input_section* poris =
6126         os->find_relaxed_input_section(this, shndx);
6127       // We do not handle merged sections here.
6128       gold_assert(poris != NULL);
6129       return poris->address();
6130     }
6131   else
6132     return os->address() + this->get_output_section_offset(shndx);
6133 }
6134
6135 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6136 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6137
6138 template<bool big_endian>
6139 bool
6140 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6141     const elfcpp::Shdr<32, big_endian>& shdr,
6142     unsigned int shndx,
6143     Output_section* os,
6144     const Symbol_table* symtab)
6145 {
6146   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6147     return false;
6148
6149   // If the section does not cross any 4K-boundaries, it does not need to
6150   // be scanned.
6151   Arm_address address = this->simple_input_section_output_address(shndx, os);
6152   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6153     return false;
6154
6155   return true;
6156 }
6157
6158 // Scan a section for Cortex-A8 workaround.
6159
6160 template<bool big_endian>
6161 void
6162 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6163     const elfcpp::Shdr<32, big_endian>& shdr,
6164     unsigned int shndx,
6165     Output_section* os,
6166     Target_arm<big_endian>* arm_target)
6167 {
6168   // Look for the first mapping symbol in this section.  It should be
6169   // at (shndx, 0).
6170   Mapping_symbol_position section_start(shndx, 0);
6171   typename Mapping_symbols_info::const_iterator p =
6172     this->mapping_symbols_info_.lower_bound(section_start);
6173
6174   // There are no mapping symbols for this section.  Treat it as a data-only
6175   // section.  Issue a warning if section is marked as containing
6176   // instructions.
6177   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6178     {
6179       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6180         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6181                        "erratum because it has no mapping symbols."),
6182                      shndx, this->name().c_str());
6183       return;
6184     }
6185
6186   Arm_address output_address =
6187     this->simple_input_section_output_address(shndx, os);
6188
6189   // Get the section contents.
6190   section_size_type input_view_size = 0;
6191   const unsigned char* input_view =
6192     this->section_contents(shndx, &input_view_size, false);
6193
6194   // We need to go through the mapping symbols to determine what to
6195   // scan.  There are two reasons.  First, we should look at THUMB code and
6196   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6197   // to speed up the scanning.
6198   
6199   while (p != this->mapping_symbols_info_.end()
6200         && p->first.first == shndx)
6201     {
6202       typename Mapping_symbols_info::const_iterator next =
6203         this->mapping_symbols_info_.upper_bound(p->first);
6204
6205       // Only scan part of a section with THUMB code.
6206       if (p->second == 't')
6207         {
6208           // Determine the end of this range.
6209           section_size_type span_start =
6210             convert_to_section_size_type(p->first.second);
6211           section_size_type span_end;
6212           if (next != this->mapping_symbols_info_.end()
6213               && next->first.first == shndx)
6214             span_end = convert_to_section_size_type(next->first.second);
6215           else
6216             span_end = convert_to_section_size_type(shdr.get_sh_size());
6217           
6218           if (((span_start + output_address) & ~0xfffUL)
6219               != ((span_end + output_address - 1) & ~0xfffUL))
6220             {
6221               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6222                                                           span_start, span_end,
6223                                                           input_view,
6224                                                           output_address);
6225             }
6226         }
6227
6228       p = next; 
6229     }
6230 }
6231
6232 // Scan relocations for stub generation.
6233
6234 template<bool big_endian>
6235 void
6236 Arm_relobj<big_endian>::scan_sections_for_stubs(
6237     Target_arm<big_endian>* arm_target,
6238     const Symbol_table* symtab,
6239     const Layout* layout)
6240 {
6241   unsigned int shnum = this->shnum();
6242   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6243
6244   // Read the section headers.
6245   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6246                                                shnum * shdr_size,
6247                                                true, true);
6248
6249   // To speed up processing, we set up hash tables for fast lookup of
6250   // input offsets to output addresses.
6251   this->initialize_input_to_output_maps();
6252
6253   const Relobj::Output_sections& out_sections(this->output_sections());
6254
6255   Relocate_info<32, big_endian> relinfo;
6256   relinfo.symtab = symtab;
6257   relinfo.layout = layout;
6258   relinfo.object = this;
6259
6260   // Do relocation stubs scanning.
6261   const unsigned char* p = pshdrs + shdr_size;
6262   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6263     {
6264       const elfcpp::Shdr<32, big_endian> shdr(p);
6265       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6266                                                   pshdrs))
6267         {
6268           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6269           Arm_address output_offset = this->get_output_section_offset(index);
6270           Arm_address output_address;
6271           if (output_offset != invalid_address)
6272             output_address = out_sections[index]->address() + output_offset;
6273           else
6274             {
6275               // Currently this only happens for a relaxed section.
6276               const Output_relaxed_input_section* poris =
6277               out_sections[index]->find_relaxed_input_section(this, index);
6278               gold_assert(poris != NULL);
6279               output_address = poris->address();
6280             }
6281
6282           // Get the relocations.
6283           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6284                                                         shdr.get_sh_size(),
6285                                                         true, false);
6286
6287           // Get the section contents.  This does work for the case in which
6288           // we modify the contents of an input section.  We need to pass the
6289           // output view under such circumstances.
6290           section_size_type input_view_size = 0;
6291           const unsigned char* input_view =
6292             this->section_contents(index, &input_view_size, false);
6293
6294           relinfo.reloc_shndx = i;
6295           relinfo.data_shndx = index;
6296           unsigned int sh_type = shdr.get_sh_type();
6297           unsigned int reloc_size;
6298           if (sh_type == elfcpp::SHT_REL)
6299             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6300           else
6301             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6302
6303           Output_section* os = out_sections[index];
6304           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6305                                              shdr.get_sh_size() / reloc_size,
6306                                              os,
6307                                              output_offset == invalid_address,
6308                                              input_view, output_address,
6309                                              input_view_size);
6310         }
6311     }
6312
6313   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6314   // after its relocation section, if there is one, is processed for
6315   // relocation stubs.  Merging this loop with the one above would have been
6316   // complicated since we would have had to make sure that relocation stub
6317   // scanning is done first.
6318   if (arm_target->fix_cortex_a8())
6319     {
6320       const unsigned char* p = pshdrs + shdr_size;
6321       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6322         {
6323           const elfcpp::Shdr<32, big_endian> shdr(p);
6324           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6325                                                           out_sections[i],
6326                                                           symtab))
6327             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6328                                                      arm_target);
6329         }
6330     }
6331
6332   // After we've done the relocations, we release the hash tables,
6333   // since we no longer need them.
6334   this->free_input_to_output_maps();
6335 }
6336
6337 // Count the local symbols.  The ARM backend needs to know if a symbol
6338 // is a THUMB function or not.  For global symbols, it is easy because
6339 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6340 // harder because we cannot access this information.   So we override the
6341 // do_count_local_symbol in parent and scan local symbols to mark
6342 // THUMB functions.  This is not the most efficient way but I do not want to
6343 // slow down other ports by calling a per symbol target hook inside
6344 // Sized_relobj_file<size, big_endian>::do_count_local_symbols. 
6345
6346 template<bool big_endian>
6347 void
6348 Arm_relobj<big_endian>::do_count_local_symbols(
6349     Stringpool_template<char>* pool,
6350     Stringpool_template<char>* dynpool)
6351 {
6352   // We need to fix-up the values of any local symbols whose type are
6353   // STT_ARM_TFUNC.
6354   
6355   // Ask parent to count the local symbols.
6356   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6357   const unsigned int loccount = this->local_symbol_count();
6358   if (loccount == 0)
6359     return;
6360
6361   // Initialize the thumb function bit-vector.
6362   std::vector<bool> empty_vector(loccount, false);
6363   this->local_symbol_is_thumb_function_.swap(empty_vector);
6364
6365   // Read the symbol table section header.
6366   const unsigned int symtab_shndx = this->symtab_shndx();
6367   elfcpp::Shdr<32, big_endian>
6368       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6369   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6370
6371   // Read the local symbols.
6372   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6373   gold_assert(loccount == symtabshdr.get_sh_info());
6374   off_t locsize = loccount * sym_size;
6375   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6376                                               locsize, true, true);
6377
6378   // For mapping symbol processing, we need to read the symbol names.
6379   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6380   if (strtab_shndx >= this->shnum())
6381     {
6382       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6383       return;
6384     }
6385
6386   elfcpp::Shdr<32, big_endian>
6387     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6388   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6389     {
6390       this->error(_("symbol table name section has wrong type: %u"),
6391                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6392       return;
6393     }
6394   const char* pnames =
6395     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6396                                                  strtabshdr.get_sh_size(),
6397                                                  false, false));
6398
6399   // Loop over the local symbols and mark any local symbols pointing
6400   // to THUMB functions.
6401
6402   // Skip the first dummy symbol.
6403   psyms += sym_size;
6404   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6405     this->local_values();
6406   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6407     {
6408       elfcpp::Sym<32, big_endian> sym(psyms);
6409       elfcpp::STT st_type = sym.get_st_type();
6410       Symbol_value<32>& lv((*plocal_values)[i]);
6411       Arm_address input_value = lv.input_value();
6412
6413       // Check to see if this is a mapping symbol.
6414       const char* sym_name = pnames + sym.get_st_name();
6415       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6416         {
6417           bool is_ordinary;
6418           unsigned int input_shndx =
6419             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6420           gold_assert(is_ordinary);
6421
6422           // Strip of LSB in case this is a THUMB symbol.
6423           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6424           this->mapping_symbols_info_[msp] = sym_name[1];
6425         }
6426
6427       if (st_type == elfcpp::STT_ARM_TFUNC
6428           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6429         {
6430           // This is a THUMB function.  Mark this and canonicalize the
6431           // symbol value by setting LSB.
6432           this->local_symbol_is_thumb_function_[i] = true;
6433           if ((input_value & 1) == 0)
6434             lv.set_input_value(input_value | 1);
6435         }
6436     }
6437 }
6438
6439 // Relocate sections.
6440 template<bool big_endian>
6441 void
6442 Arm_relobj<big_endian>::do_relocate_sections(
6443     const Symbol_table* symtab,
6444     const Layout* layout,
6445     const unsigned char* pshdrs,
6446     Output_file* of,
6447     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6448 {
6449   // Call parent to relocate sections.
6450   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6451                                                           pshdrs, of, pviews); 
6452
6453   // We do not generate stubs if doing a relocatable link.
6454   if (parameters->options().relocatable())
6455     return;
6456
6457   // Relocate stub tables.
6458   unsigned int shnum = this->shnum();
6459
6460   Target_arm<big_endian>* arm_target =
6461     Target_arm<big_endian>::default_target();
6462
6463   Relocate_info<32, big_endian> relinfo;
6464   relinfo.symtab = symtab;
6465   relinfo.layout = layout;
6466   relinfo.object = this;
6467
6468   for (unsigned int i = 1; i < shnum; ++i)
6469     {
6470       Arm_input_section<big_endian>* arm_input_section =
6471         arm_target->find_arm_input_section(this, i);
6472
6473       if (arm_input_section != NULL
6474           && arm_input_section->is_stub_table_owner()
6475           && !arm_input_section->stub_table()->empty())
6476         {
6477           // We cannot discard a section if it owns a stub table.
6478           Output_section* os = this->output_section(i);
6479           gold_assert(os != NULL);
6480
6481           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6482           relinfo.reloc_shdr = NULL;
6483           relinfo.data_shndx = i;
6484           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6485
6486           gold_assert((*pviews)[i].view != NULL);
6487
6488           // We are passed the output section view.  Adjust it to cover the
6489           // stub table only.
6490           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6491           gold_assert((stub_table->address() >= (*pviews)[i].address)
6492                       && ((stub_table->address() + stub_table->data_size())
6493                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6494
6495           off_t offset = stub_table->address() - (*pviews)[i].address;
6496           unsigned char* view = (*pviews)[i].view + offset;
6497           Arm_address address = stub_table->address();
6498           section_size_type view_size = stub_table->data_size();
6499  
6500           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6501                                      view_size);
6502         }
6503
6504       // Apply Cortex A8 workaround if applicable.
6505       if (this->section_has_cortex_a8_workaround(i))
6506         {
6507           unsigned char* view = (*pviews)[i].view;
6508           Arm_address view_address = (*pviews)[i].address;
6509           section_size_type view_size = (*pviews)[i].view_size;
6510           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6511
6512           // Adjust view to cover section.
6513           Output_section* os = this->output_section(i);
6514           gold_assert(os != NULL);
6515           Arm_address section_address =
6516             this->simple_input_section_output_address(i, os);
6517           uint64_t section_size = this->section_size(i);
6518
6519           gold_assert(section_address >= view_address
6520                       && ((section_address + section_size)
6521                           <= (view_address + view_size)));
6522
6523           unsigned char* section_view = view + (section_address - view_address);
6524
6525           // Apply the Cortex-A8 workaround to the output address range
6526           // corresponding to this input section.
6527           stub_table->apply_cortex_a8_workaround_to_address_range(
6528               arm_target,
6529               section_view,
6530               section_address,
6531               section_size);
6532         }
6533     }
6534 }
6535
6536 // Find the linked text section of an EXIDX section by looking at the first
6537 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6538 // must be linked to its associated code section via the sh_link field of
6539 // its section header.  However, some tools are broken and the link is not
6540 // always set.  LD just drops such an EXIDX section silently, causing the
6541 // associated code not unwindabled.   Here we try a little bit harder to
6542 // discover the linked code section.
6543 //
6544 // PSHDR points to the section header of a relocation section of an EXIDX
6545 // section.  If we can find a linked text section, return true and
6546 // store the text section index in the location PSHNDX.  Otherwise
6547 // return false.
6548
6549 template<bool big_endian>
6550 bool
6551 Arm_relobj<big_endian>::find_linked_text_section(
6552     const unsigned char* pshdr,
6553     const unsigned char* psyms,
6554     unsigned int* pshndx)
6555 {
6556   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6557   
6558   // If there is no relocation, we cannot find the linked text section.
6559   size_t reloc_size;
6560   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6561       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6562   else
6563       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6564   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6565  
6566   // Get the relocations.
6567   const unsigned char* prelocs =
6568       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6569
6570   // Find the REL31 relocation for the first word of the first EXIDX entry.
6571   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6572     {
6573       Arm_address r_offset;
6574       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6575       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6576         {
6577           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6578           r_info = reloc.get_r_info();
6579           r_offset = reloc.get_r_offset();
6580         }
6581       else
6582         {
6583           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6584           r_info = reloc.get_r_info();
6585           r_offset = reloc.get_r_offset();
6586         }
6587
6588       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6589       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6590         continue;
6591
6592       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6593       if (r_sym == 0
6594           || r_sym >= this->local_symbol_count()
6595           || r_offset != 0)
6596         continue;
6597
6598       // This is the relocation for the first word of the first EXIDX entry.
6599       // We expect to see a local section symbol.
6600       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6601       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6602       if (sym.get_st_type() == elfcpp::STT_SECTION)
6603         {
6604           bool is_ordinary;
6605           *pshndx =
6606             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6607           gold_assert(is_ordinary);
6608           return true;
6609         }
6610       else
6611         return false;
6612     }
6613
6614   return false;
6615 }
6616
6617 // Make an EXIDX input section object for an EXIDX section whose index is
6618 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6619 // is the section index of the linked text section.
6620
6621 template<bool big_endian>
6622 void
6623 Arm_relobj<big_endian>::make_exidx_input_section(
6624     unsigned int shndx,
6625     const elfcpp::Shdr<32, big_endian>& shdr,
6626     unsigned int text_shndx,
6627     const elfcpp::Shdr<32, big_endian>& text_shdr)
6628 {
6629   // Create an Arm_exidx_input_section object for this EXIDX section.
6630   Arm_exidx_input_section* exidx_input_section =
6631     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6632                                 shdr.get_sh_addralign(),
6633                                 text_shdr.get_sh_size());
6634
6635   gold_assert(this->exidx_section_map_[shndx] == NULL);
6636   this->exidx_section_map_[shndx] = exidx_input_section;
6637
6638   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6639     {
6640       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6641                  this->section_name(shndx).c_str(), shndx, text_shndx,
6642                  this->name().c_str());
6643       exidx_input_section->set_has_errors();
6644     } 
6645   else if (this->exidx_section_map_[text_shndx] != NULL)
6646     {
6647       unsigned other_exidx_shndx =
6648         this->exidx_section_map_[text_shndx]->shndx();
6649       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6650                    "%s(%u) in %s"),
6651                  this->section_name(shndx).c_str(), shndx,
6652                  this->section_name(other_exidx_shndx).c_str(),
6653                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6654                  text_shndx, this->name().c_str());
6655       exidx_input_section->set_has_errors();
6656     }
6657   else
6658      this->exidx_section_map_[text_shndx] = exidx_input_section;
6659
6660   // Check section flags of text section.
6661   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6662     {
6663       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6664                    " in %s"),
6665                  this->section_name(shndx).c_str(), shndx,
6666                  this->section_name(text_shndx).c_str(), text_shndx,
6667                  this->name().c_str());
6668       exidx_input_section->set_has_errors();
6669     }
6670   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6671     // I would like to make this an error but currently ld just ignores
6672     // this.
6673     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6674                    "%s(%u) in %s"),
6675                  this->section_name(shndx).c_str(), shndx,
6676                  this->section_name(text_shndx).c_str(), text_shndx,
6677                  this->name().c_str());
6678 }
6679
6680 // Read the symbol information.
6681
6682 template<bool big_endian>
6683 void
6684 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6685 {
6686   // Call parent class to read symbol information.
6687   Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6688
6689   // If this input file is a binary file, it has no processor
6690   // specific flags and attributes section.
6691   Input_file::Format format = this->input_file()->format();
6692   if (format != Input_file::FORMAT_ELF)
6693     {
6694       gold_assert(format == Input_file::FORMAT_BINARY);
6695       this->merge_flags_and_attributes_ = false;
6696       return;
6697     }
6698
6699   // Read processor-specific flags in ELF file header.
6700   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6701                                               elfcpp::Elf_sizes<32>::ehdr_size,
6702                                               true, false);
6703   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6704   this->processor_specific_flags_ = ehdr.get_e_flags();
6705
6706   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6707   // sections.
6708   std::vector<unsigned int> deferred_exidx_sections;
6709   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6710   const unsigned char* pshdrs = sd->section_headers->data();
6711   const unsigned char* ps = pshdrs + shdr_size;
6712   bool must_merge_flags_and_attributes = false;
6713   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6714     {
6715       elfcpp::Shdr<32, big_endian> shdr(ps);
6716
6717       // Sometimes an object has no contents except the section name string
6718       // table and an empty symbol table with the undefined symbol.  We
6719       // don't want to merge processor-specific flags from such an object.
6720       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6721         {
6722           // Symbol table is not empty.
6723           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6724              elfcpp::Elf_sizes<32>::sym_size;
6725           if (shdr.get_sh_size() > sym_size)
6726             must_merge_flags_and_attributes = true;
6727         }
6728       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6729         // If this is neither an empty symbol table nor a string table,
6730         // be conservative.
6731         must_merge_flags_and_attributes = true;
6732
6733       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6734         {
6735           gold_assert(this->attributes_section_data_ == NULL);
6736           section_offset_type section_offset = shdr.get_sh_offset();
6737           section_size_type section_size =
6738             convert_to_section_size_type(shdr.get_sh_size());
6739           const unsigned char* view =
6740              this->get_view(section_offset, section_size, true, false);
6741           this->attributes_section_data_ =
6742             new Attributes_section_data(view, section_size);
6743         }
6744       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6745         {
6746           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6747           if (text_shndx == elfcpp::SHN_UNDEF)
6748             deferred_exidx_sections.push_back(i);
6749           else
6750             {
6751               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6752                                                      + text_shndx * shdr_size);
6753               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6754             }
6755           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6756           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6757             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6758                          this->section_name(i).c_str(), this->name().c_str());
6759         }
6760     }
6761
6762   // This is rare.
6763   if (!must_merge_flags_and_attributes)
6764     {
6765       gold_assert(deferred_exidx_sections.empty());
6766       this->merge_flags_and_attributes_ = false;
6767       return;
6768     }
6769
6770   // Some tools are broken and they do not set the link of EXIDX sections. 
6771   // We look at the first relocation to figure out the linked sections.
6772   if (!deferred_exidx_sections.empty())
6773     {
6774       // We need to go over the section headers again to find the mapping
6775       // from sections being relocated to their relocation sections.  This is
6776       // a bit inefficient as we could do that in the loop above.  However,
6777       // we do not expect any deferred EXIDX sections normally.  So we do not
6778       // want to slow down the most common path.
6779       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6780       Reloc_map reloc_map;
6781       ps = pshdrs + shdr_size;
6782       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6783         {
6784           elfcpp::Shdr<32, big_endian> shdr(ps);
6785           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6786           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6787             {
6788               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6789               if (info_shndx >= this->shnum())
6790                 gold_error(_("relocation section %u has invalid info %u"),
6791                            i, info_shndx);
6792               Reloc_map::value_type value(info_shndx, i);
6793               std::pair<Reloc_map::iterator, bool> result =
6794                 reloc_map.insert(value);
6795               if (!result.second)
6796                 gold_error(_("section %u has multiple relocation sections "
6797                              "%u and %u"),
6798                            info_shndx, i, reloc_map[info_shndx]);
6799             }
6800         }
6801
6802       // Read the symbol table section header.
6803       const unsigned int symtab_shndx = this->symtab_shndx();
6804       elfcpp::Shdr<32, big_endian>
6805           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6806       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6807
6808       // Read the local symbols.
6809       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6810       const unsigned int loccount = this->local_symbol_count();
6811       gold_assert(loccount == symtabshdr.get_sh_info());
6812       off_t locsize = loccount * sym_size;
6813       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6814                                                   locsize, true, true);
6815
6816       // Process the deferred EXIDX sections. 
6817       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6818         {
6819           unsigned int shndx = deferred_exidx_sections[i];
6820           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6821           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6822           Reloc_map::const_iterator it = reloc_map.find(shndx);
6823           if (it != reloc_map.end())
6824             find_linked_text_section(pshdrs + it->second * shdr_size,
6825                                      psyms, &text_shndx);
6826           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6827                                                  + text_shndx * shdr_size);
6828           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6829         }
6830     }
6831 }
6832
6833 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6834 // sections for unwinding.  These sections are referenced implicitly by 
6835 // text sections linked in the section headers.  If we ignore these implicit
6836 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6837 // will be garbage-collected incorrectly.  Hence we override the same function
6838 // in the base class to handle these implicit references.
6839
6840 template<bool big_endian>
6841 void
6842 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6843                                              Layout* layout,
6844                                              Read_relocs_data* rd)
6845 {
6846   // First, call base class method to process relocations in this object.
6847   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6848
6849   // If --gc-sections is not specified, there is nothing more to do.
6850   // This happens when --icf is used but --gc-sections is not.
6851   if (!parameters->options().gc_sections())
6852     return;
6853   
6854   unsigned int shnum = this->shnum();
6855   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6856   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6857                                                shnum * shdr_size,
6858                                                true, true);
6859
6860   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6861   // to these from the linked text sections.
6862   const unsigned char* ps = pshdrs + shdr_size;
6863   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6864     {
6865       elfcpp::Shdr<32, big_endian> shdr(ps);
6866       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6867         {
6868           // Found an .ARM.exidx section, add it to the set of reachable
6869           // sections from its linked text section.
6870           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6871           symtab->gc()->add_reference(this, text_shndx, this, i);
6872         }
6873     }
6874 }
6875
6876 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6877 // symbols  will be removed in output.  Adjust output local symbol count
6878 // accordingly.  We can only changed the static output local symbol count.  It
6879 // is too late to change the dynamic symbols.
6880
6881 template<bool big_endian>
6882 void
6883 Arm_relobj<big_endian>::update_output_local_symbol_count()
6884 {
6885   // Caller should check that this needs updating.  We want caller checking
6886   // because output_local_symbol_count_needs_update() is most likely inlined.
6887   gold_assert(this->output_local_symbol_count_needs_update_);
6888
6889   gold_assert(this->symtab_shndx() != -1U);
6890   if (this->symtab_shndx() == 0)
6891     {
6892       // This object has no symbols.  Weird but legal.
6893       return;
6894     }
6895
6896   // Read the symbol table section header.
6897   const unsigned int symtab_shndx = this->symtab_shndx();
6898   elfcpp::Shdr<32, big_endian>
6899     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6900   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6901
6902   // Read the local symbols.
6903   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6904   const unsigned int loccount = this->local_symbol_count();
6905   gold_assert(loccount == symtabshdr.get_sh_info());
6906   off_t locsize = loccount * sym_size;
6907   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6908                                               locsize, true, true);
6909
6910   // Loop over the local symbols.
6911
6912   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6913      Output_sections;
6914   const Output_sections& out_sections(this->output_sections());
6915   unsigned int shnum = this->shnum();
6916   unsigned int count = 0;
6917   // Skip the first, dummy, symbol.
6918   psyms += sym_size;
6919   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6920     {
6921       elfcpp::Sym<32, big_endian> sym(psyms);
6922
6923       Symbol_value<32>& lv((*this->local_values())[i]);
6924
6925       // This local symbol was already discarded by do_count_local_symbols.
6926       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6927         continue;
6928
6929       bool is_ordinary;
6930       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6931                                                   &is_ordinary);
6932
6933       if (shndx < shnum)
6934         {
6935           Output_section* os = out_sections[shndx];
6936
6937           // This local symbol no longer has an output section.  Discard it.
6938           if (os == NULL)
6939             {
6940               lv.set_no_output_symtab_entry();
6941               continue;
6942             }
6943
6944           // Currently we only discard parts of EXIDX input sections.
6945           // We explicitly check for a merged EXIDX input section to avoid
6946           // calling Output_section_data::output_offset unless necessary.
6947           if ((this->get_output_section_offset(shndx) == invalid_address)
6948               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6949             {
6950               section_offset_type output_offset =
6951                 os->output_offset(this, shndx, lv.input_value());
6952               if (output_offset == -1)
6953                 {
6954                   // This symbol is defined in a part of an EXIDX input section
6955                   // that is discarded due to entry merging.
6956                   lv.set_no_output_symtab_entry();
6957                   continue;
6958                 }       
6959             }
6960         }
6961
6962       ++count;
6963     }
6964
6965   this->set_output_local_symbol_count(count);
6966   this->output_local_symbol_count_needs_update_ = false;
6967 }
6968
6969 // Arm_dynobj methods.
6970
6971 // Read the symbol information.
6972
6973 template<bool big_endian>
6974 void
6975 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6976 {
6977   // Call parent class to read symbol information.
6978   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6979
6980   // Read processor-specific flags in ELF file header.
6981   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6982                                               elfcpp::Elf_sizes<32>::ehdr_size,
6983                                               true, false);
6984   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6985   this->processor_specific_flags_ = ehdr.get_e_flags();
6986
6987   // Read the attributes section if there is one.
6988   // We read from the end because gas seems to put it near the end of
6989   // the section headers.
6990   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6991   const unsigned char* ps =
6992     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6993   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6994     {
6995       elfcpp::Shdr<32, big_endian> shdr(ps);
6996       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6997         {
6998           section_offset_type section_offset = shdr.get_sh_offset();
6999           section_size_type section_size =
7000             convert_to_section_size_type(shdr.get_sh_size());
7001           const unsigned char* view =
7002             this->get_view(section_offset, section_size, true, false);
7003           this->attributes_section_data_ =
7004             new Attributes_section_data(view, section_size);
7005           break;
7006         }
7007     }
7008 }
7009
7010 // Stub_addend_reader methods.
7011
7012 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7013
7014 template<bool big_endian>
7015 elfcpp::Elf_types<32>::Elf_Swxword
7016 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7017     unsigned int r_type,
7018     const unsigned char* view,
7019     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7020 {
7021   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7022   
7023   switch (r_type)
7024     {
7025     case elfcpp::R_ARM_CALL:
7026     case elfcpp::R_ARM_JUMP24:
7027     case elfcpp::R_ARM_PLT32:
7028       {
7029         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7030         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7031         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7032         return utils::sign_extend<26>(val << 2);
7033       }
7034
7035     case elfcpp::R_ARM_THM_CALL:
7036     case elfcpp::R_ARM_THM_JUMP24:
7037     case elfcpp::R_ARM_THM_XPC22:
7038       {
7039         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7040         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7041         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7042         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7043         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7044       }
7045
7046     case elfcpp::R_ARM_THM_JUMP19:
7047       {
7048         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7049         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7050         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7051         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7052         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7053       }
7054
7055     default:
7056       gold_unreachable();
7057     }
7058 }
7059
7060 // Arm_output_data_got methods.
7061
7062 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7063 // The first one is initialized to be 1, which is the module index for
7064 // the main executable and the second one 0.  A reloc of the type
7065 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7066 // be applied by gold.  GSYM is a global symbol.
7067 //
7068 template<bool big_endian>
7069 void
7070 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7071     unsigned int got_type,
7072     Symbol* gsym)
7073 {
7074   if (gsym->has_got_offset(got_type))
7075     return;
7076
7077   // We are doing a static link.  Just mark it as belong to module 1,
7078   // the executable.
7079   unsigned int got_offset = this->add_constant(1);
7080   gsym->set_got_offset(got_type, got_offset); 
7081   got_offset = this->add_constant(0);
7082   this->static_relocs_.push_back(Static_reloc(got_offset,
7083                                               elfcpp::R_ARM_TLS_DTPOFF32,
7084                                               gsym));
7085 }
7086
7087 // Same as the above but for a local symbol.
7088
7089 template<bool big_endian>
7090 void
7091 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7092   unsigned int got_type,
7093   Sized_relobj_file<32, big_endian>* object,
7094   unsigned int index)
7095 {
7096   if (object->local_has_got_offset(index, got_type))
7097     return;
7098
7099   // We are doing a static link.  Just mark it as belong to module 1,
7100   // the executable.
7101   unsigned int got_offset = this->add_constant(1);
7102   object->set_local_got_offset(index, got_type, got_offset);
7103   got_offset = this->add_constant(0);
7104   this->static_relocs_.push_back(Static_reloc(got_offset, 
7105                                               elfcpp::R_ARM_TLS_DTPOFF32, 
7106                                               object, index));
7107 }
7108
7109 template<bool big_endian>
7110 void
7111 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7112 {
7113   // Call parent to write out GOT.
7114   Output_data_got<32, big_endian>::do_write(of);
7115
7116   // We are done if there is no fix up.
7117   if (this->static_relocs_.empty())
7118     return;
7119
7120   gold_assert(parameters->doing_static_link());
7121
7122   const off_t offset = this->offset();
7123   const section_size_type oview_size =
7124     convert_to_section_size_type(this->data_size());
7125   unsigned char* const oview = of->get_output_view(offset, oview_size);
7126
7127   Output_segment* tls_segment = this->layout_->tls_segment();
7128   gold_assert(tls_segment != NULL);
7129   
7130   // The thread pointer $tp points to the TCB, which is followed by the
7131   // TLS.  So we need to adjust $tp relative addressing by this amount.
7132   Arm_address aligned_tcb_size =
7133     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7134
7135   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7136     {
7137       Static_reloc& reloc(this->static_relocs_[i]);
7138       
7139       Arm_address value;
7140       if (!reloc.symbol_is_global())
7141         {
7142           Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7143           const Symbol_value<32>* psymval =
7144             reloc.relobj()->local_symbol(reloc.index());
7145
7146           // We are doing static linking.  Issue an error and skip this
7147           // relocation if the symbol is undefined or in a discarded_section.
7148           bool is_ordinary;
7149           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7150           if ((shndx == elfcpp::SHN_UNDEF)
7151               || (is_ordinary
7152                   && shndx != elfcpp::SHN_UNDEF
7153                   && !object->is_section_included(shndx)
7154                   && !this->symbol_table_->is_section_folded(object, shndx)))
7155             {
7156               gold_error(_("undefined or discarded local symbol %u from "
7157                            " object %s in GOT"),
7158                          reloc.index(), reloc.relobj()->name().c_str());
7159               continue;
7160             }
7161           
7162           value = psymval->value(object, 0);
7163         }
7164       else
7165         {
7166           const Symbol* gsym = reloc.symbol();
7167           gold_assert(gsym != NULL);
7168           if (gsym->is_forwarder())
7169             gsym = this->symbol_table_->resolve_forwards(gsym);
7170
7171           // We are doing static linking.  Issue an error and skip this
7172           // relocation if the symbol is undefined or in a discarded_section
7173           // unless it is a weakly_undefined symbol.
7174           if ((gsym->is_defined_in_discarded_section()
7175                || gsym->is_undefined())
7176               && !gsym->is_weak_undefined())
7177             {
7178               gold_error(_("undefined or discarded symbol %s in GOT"),
7179                          gsym->name());
7180               continue;
7181             }
7182
7183           if (!gsym->is_weak_undefined())
7184             {
7185               const Sized_symbol<32>* sym =
7186                 static_cast<const Sized_symbol<32>*>(gsym);
7187               value = sym->value();
7188             }
7189           else
7190               value = 0;
7191         }
7192
7193       unsigned got_offset = reloc.got_offset();
7194       gold_assert(got_offset < oview_size);
7195
7196       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7197       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7198       Valtype x;
7199       switch (reloc.r_type())
7200         {
7201         case elfcpp::R_ARM_TLS_DTPOFF32:
7202           x = value;
7203           break;
7204         case elfcpp::R_ARM_TLS_TPOFF32:
7205           x = value + aligned_tcb_size;
7206           break;
7207         default:
7208           gold_unreachable();
7209         }
7210       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7211     }
7212
7213   of->write_output_view(offset, oview_size, oview);
7214 }
7215
7216 // A class to handle the PLT data.
7217
7218 template<bool big_endian>
7219 class Output_data_plt_arm : public Output_section_data
7220 {
7221  public:
7222   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7223     Reloc_section;
7224
7225   Output_data_plt_arm(Layout*, Output_data_space*);
7226
7227   // Add an entry to the PLT.
7228   void
7229   add_entry(Symbol* gsym);
7230
7231   // Return the .rel.plt section data.
7232   const Reloc_section*
7233   rel_plt() const
7234   { return this->rel_; }
7235
7236   // Return the number of PLT entries.
7237   unsigned int
7238   entry_count() const
7239   { return this->count_; }
7240
7241   // Return the offset of the first non-reserved PLT entry.
7242   static unsigned int
7243   first_plt_entry_offset()
7244   { return sizeof(first_plt_entry); }
7245
7246   // Return the size of a PLT entry.
7247   static unsigned int
7248   get_plt_entry_size()
7249   { return sizeof(plt_entry); }
7250
7251  protected:
7252   void
7253   do_adjust_output_section(Output_section* os);
7254
7255   // Write to a map file.
7256   void
7257   do_print_to_mapfile(Mapfile* mapfile) const
7258   { mapfile->print_output_data(this, _("** PLT")); }
7259
7260  private:
7261   // Template for the first PLT entry.
7262   static const uint32_t first_plt_entry[5];
7263
7264   // Template for subsequent PLT entries. 
7265   static const uint32_t plt_entry[3];
7266
7267   // Set the final size.
7268   void
7269   set_final_data_size()
7270   {
7271     this->set_data_size(sizeof(first_plt_entry)
7272                         + this->count_ * sizeof(plt_entry));
7273   }
7274
7275   // Write out the PLT data.
7276   void
7277   do_write(Output_file*);
7278
7279   // The reloc section.
7280   Reloc_section* rel_;
7281   // The .got.plt section.
7282   Output_data_space* got_plt_;
7283   // The number of PLT entries.
7284   unsigned int count_;
7285 };
7286
7287 // Create the PLT section.  The ordinary .got section is an argument,
7288 // since we need to refer to the start.  We also create our own .got
7289 // section just for PLT entries.
7290
7291 template<bool big_endian>
7292 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7293                                                      Output_data_space* got_plt)
7294   : Output_section_data(4), got_plt_(got_plt), count_(0)
7295 {
7296   this->rel_ = new Reloc_section(false);
7297   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7298                                   elfcpp::SHF_ALLOC, this->rel_,
7299                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7300 }
7301
7302 template<bool big_endian>
7303 void
7304 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7305 {
7306   os->set_entsize(0);
7307 }
7308
7309 // Add an entry to the PLT.
7310
7311 template<bool big_endian>
7312 void
7313 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7314 {
7315   gold_assert(!gsym->has_plt_offset());
7316
7317   // Note that when setting the PLT offset we skip the initial
7318   // reserved PLT entry.
7319   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7320                        + sizeof(first_plt_entry));
7321
7322   ++this->count_;
7323
7324   section_offset_type got_offset = this->got_plt_->current_data_size();
7325
7326   // Every PLT entry needs a GOT entry which points back to the PLT
7327   // entry (this will be changed by the dynamic linker, normally
7328   // lazily when the function is called).
7329   this->got_plt_->set_current_data_size(got_offset + 4);
7330
7331   // Every PLT entry needs a reloc.
7332   gsym->set_needs_dynsym_entry();
7333   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7334                          got_offset);
7335
7336   // Note that we don't need to save the symbol.  The contents of the
7337   // PLT are independent of which symbols are used.  The symbols only
7338   // appear in the relocations.
7339 }
7340
7341 // ARM PLTs.
7342 // FIXME:  This is not very flexible.  Right now this has only been tested
7343 // on armv5te.  If we are to support additional architecture features like
7344 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7345
7346 // The first entry in the PLT.
7347 template<bool big_endian>
7348 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7349 {
7350   0xe52de004,   // str   lr, [sp, #-4]!
7351   0xe59fe004,   // ldr   lr, [pc, #4]
7352   0xe08fe00e,   // add   lr, pc, lr 
7353   0xe5bef008,   // ldr   pc, [lr, #8]!
7354   0x00000000,   // &GOT[0] - .
7355 };
7356
7357 // Subsequent entries in the PLT.
7358
7359 template<bool big_endian>
7360 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7361 {
7362   0xe28fc600,   // add   ip, pc, #0xNN00000
7363   0xe28cca00,   // add   ip, ip, #0xNN000
7364   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7365 };
7366
7367 // Write out the PLT.  This uses the hand-coded instructions above,
7368 // and adjusts them as needed.  This is all specified by the arm ELF
7369 // Processor Supplement.
7370
7371 template<bool big_endian>
7372 void
7373 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7374 {
7375   const off_t offset = this->offset();
7376   const section_size_type oview_size =
7377     convert_to_section_size_type(this->data_size());
7378   unsigned char* const oview = of->get_output_view(offset, oview_size);
7379
7380   const off_t got_file_offset = this->got_plt_->offset();
7381   const section_size_type got_size =
7382     convert_to_section_size_type(this->got_plt_->data_size());
7383   unsigned char* const got_view = of->get_output_view(got_file_offset,
7384                                                       got_size);
7385   unsigned char* pov = oview;
7386
7387   Arm_address plt_address = this->address();
7388   Arm_address got_address = this->got_plt_->address();
7389
7390   // Write first PLT entry.  All but the last word are constants.
7391   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7392                                       / sizeof(plt_entry[0]));
7393   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7394     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7395   // Last word in first PLT entry is &GOT[0] - .
7396   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7397                                          got_address - (plt_address + 16));
7398   pov += sizeof(first_plt_entry);
7399
7400   unsigned char* got_pov = got_view;
7401
7402   memset(got_pov, 0, 12);
7403   got_pov += 12;
7404
7405   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7406   unsigned int plt_offset = sizeof(first_plt_entry);
7407   unsigned int plt_rel_offset = 0;
7408   unsigned int got_offset = 12;
7409   const unsigned int count = this->count_;
7410   for (unsigned int i = 0;
7411        i < count;
7412        ++i,
7413          pov += sizeof(plt_entry),
7414          got_pov += 4,
7415          plt_offset += sizeof(plt_entry),
7416          plt_rel_offset += rel_size,
7417          got_offset += 4)
7418     {
7419       // Set and adjust the PLT entry itself.
7420       int32_t offset = ((got_address + got_offset)
7421                          - (plt_address + plt_offset + 8));
7422
7423       gold_assert(offset >= 0 && offset < 0x0fffffff);
7424       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7425       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7426       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7427       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7428       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7429       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7430
7431       // Set the entry in the GOT.
7432       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7433     }
7434
7435   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7436   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7437
7438   of->write_output_view(offset, oview_size, oview);
7439   of->write_output_view(got_file_offset, got_size, got_view);
7440 }
7441
7442 // Create a PLT entry for a global symbol.
7443
7444 template<bool big_endian>
7445 void
7446 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7447                                        Symbol* gsym)
7448 {
7449   if (gsym->has_plt_offset())
7450     return;
7451
7452   if (this->plt_ == NULL)
7453     {
7454       // Create the GOT sections first.
7455       this->got_section(symtab, layout);
7456
7457       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7458       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7459                                       (elfcpp::SHF_ALLOC
7460                                        | elfcpp::SHF_EXECINSTR),
7461                                       this->plt_, ORDER_PLT, false);
7462     }
7463   this->plt_->add_entry(gsym);
7464 }
7465
7466 // Return the number of entries in the PLT.
7467
7468 template<bool big_endian>
7469 unsigned int
7470 Target_arm<big_endian>::plt_entry_count() const
7471 {
7472   if (this->plt_ == NULL)
7473     return 0;
7474   return this->plt_->entry_count();
7475 }
7476
7477 // Return the offset of the first non-reserved PLT entry.
7478
7479 template<bool big_endian>
7480 unsigned int
7481 Target_arm<big_endian>::first_plt_entry_offset() const
7482 {
7483   return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7484 }
7485
7486 // Return the size of each PLT entry.
7487
7488 template<bool big_endian>
7489 unsigned int
7490 Target_arm<big_endian>::plt_entry_size() const
7491 {
7492   return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7493 }
7494
7495 // Get the section to use for TLS_DESC relocations.
7496
7497 template<bool big_endian>
7498 typename Target_arm<big_endian>::Reloc_section*
7499 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7500 {
7501   return this->plt_section()->rel_tls_desc(layout);
7502 }
7503
7504 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7505
7506 template<bool big_endian>
7507 void
7508 Target_arm<big_endian>::define_tls_base_symbol(
7509     Symbol_table* symtab,
7510     Layout* layout)
7511 {
7512   if (this->tls_base_symbol_defined_)
7513     return;
7514
7515   Output_segment* tls_segment = layout->tls_segment();
7516   if (tls_segment != NULL)
7517     {
7518       bool is_exec = parameters->options().output_is_executable();
7519       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7520                                        Symbol_table::PREDEFINED,
7521                                        tls_segment, 0, 0,
7522                                        elfcpp::STT_TLS,
7523                                        elfcpp::STB_LOCAL,
7524                                        elfcpp::STV_HIDDEN, 0,
7525                                        (is_exec
7526                                         ? Symbol::SEGMENT_END
7527                                         : Symbol::SEGMENT_START),
7528                                        true);
7529     }
7530   this->tls_base_symbol_defined_ = true;
7531 }
7532
7533 // Create a GOT entry for the TLS module index.
7534
7535 template<bool big_endian>
7536 unsigned int
7537 Target_arm<big_endian>::got_mod_index_entry(
7538     Symbol_table* symtab,
7539     Layout* layout,
7540     Sized_relobj_file<32, big_endian>* object)
7541 {
7542   if (this->got_mod_index_offset_ == -1U)
7543     {
7544       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7545       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7546       unsigned int got_offset;
7547       if (!parameters->doing_static_link())
7548         {
7549           got_offset = got->add_constant(0);
7550           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7551           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7552                              got_offset);
7553         }
7554       else
7555         {
7556           // We are doing a static link.  Just mark it as belong to module 1,
7557           // the executable.
7558           got_offset = got->add_constant(1);
7559         }
7560
7561       got->add_constant(0);
7562       this->got_mod_index_offset_ = got_offset;
7563     }
7564   return this->got_mod_index_offset_;
7565 }
7566
7567 // Optimize the TLS relocation type based on what we know about the
7568 // symbol.  IS_FINAL is true if the final address of this symbol is
7569 // known at link time.
7570
7571 template<bool big_endian>
7572 tls::Tls_optimization
7573 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7574 {
7575   // FIXME: Currently we do not do any TLS optimization.
7576   return tls::TLSOPT_NONE;
7577 }
7578
7579 // Get the Reference_flags for a particular relocation.
7580
7581 template<bool big_endian>
7582 int
7583 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7584 {
7585   switch (r_type)
7586     {
7587     case elfcpp::R_ARM_NONE:
7588     case elfcpp::R_ARM_V4BX:
7589     case elfcpp::R_ARM_GNU_VTENTRY:
7590     case elfcpp::R_ARM_GNU_VTINHERIT:
7591       // No symbol reference.
7592       return 0;
7593
7594     case elfcpp::R_ARM_ABS32:
7595     case elfcpp::R_ARM_ABS16:
7596     case elfcpp::R_ARM_ABS12:
7597     case elfcpp::R_ARM_THM_ABS5:
7598     case elfcpp::R_ARM_ABS8:
7599     case elfcpp::R_ARM_BASE_ABS:
7600     case elfcpp::R_ARM_MOVW_ABS_NC:
7601     case elfcpp::R_ARM_MOVT_ABS:
7602     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7603     case elfcpp::R_ARM_THM_MOVT_ABS:
7604     case elfcpp::R_ARM_ABS32_NOI:
7605       return Symbol::ABSOLUTE_REF;
7606
7607     case elfcpp::R_ARM_REL32:
7608     case elfcpp::R_ARM_LDR_PC_G0:
7609     case elfcpp::R_ARM_SBREL32:
7610     case elfcpp::R_ARM_THM_PC8:
7611     case elfcpp::R_ARM_BASE_PREL:
7612     case elfcpp::R_ARM_MOVW_PREL_NC:
7613     case elfcpp::R_ARM_MOVT_PREL:
7614     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7615     case elfcpp::R_ARM_THM_MOVT_PREL:
7616     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7617     case elfcpp::R_ARM_THM_PC12:
7618     case elfcpp::R_ARM_REL32_NOI:
7619     case elfcpp::R_ARM_ALU_PC_G0_NC:
7620     case elfcpp::R_ARM_ALU_PC_G0:
7621     case elfcpp::R_ARM_ALU_PC_G1_NC:
7622     case elfcpp::R_ARM_ALU_PC_G1:
7623     case elfcpp::R_ARM_ALU_PC_G2:
7624     case elfcpp::R_ARM_LDR_PC_G1:
7625     case elfcpp::R_ARM_LDR_PC_G2:
7626     case elfcpp::R_ARM_LDRS_PC_G0:
7627     case elfcpp::R_ARM_LDRS_PC_G1:
7628     case elfcpp::R_ARM_LDRS_PC_G2:
7629     case elfcpp::R_ARM_LDC_PC_G0:
7630     case elfcpp::R_ARM_LDC_PC_G1:
7631     case elfcpp::R_ARM_LDC_PC_G2:
7632     case elfcpp::R_ARM_ALU_SB_G0_NC:
7633     case elfcpp::R_ARM_ALU_SB_G0:
7634     case elfcpp::R_ARM_ALU_SB_G1_NC:
7635     case elfcpp::R_ARM_ALU_SB_G1:
7636     case elfcpp::R_ARM_ALU_SB_G2:
7637     case elfcpp::R_ARM_LDR_SB_G0:
7638     case elfcpp::R_ARM_LDR_SB_G1:
7639     case elfcpp::R_ARM_LDR_SB_G2:
7640     case elfcpp::R_ARM_LDRS_SB_G0:
7641     case elfcpp::R_ARM_LDRS_SB_G1:
7642     case elfcpp::R_ARM_LDRS_SB_G2:
7643     case elfcpp::R_ARM_LDC_SB_G0:
7644     case elfcpp::R_ARM_LDC_SB_G1:
7645     case elfcpp::R_ARM_LDC_SB_G2:
7646     case elfcpp::R_ARM_MOVW_BREL_NC:
7647     case elfcpp::R_ARM_MOVT_BREL:
7648     case elfcpp::R_ARM_MOVW_BREL:
7649     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7650     case elfcpp::R_ARM_THM_MOVT_BREL:
7651     case elfcpp::R_ARM_THM_MOVW_BREL:
7652     case elfcpp::R_ARM_GOTOFF32:
7653     case elfcpp::R_ARM_GOTOFF12:
7654     case elfcpp::R_ARM_SBREL31:
7655       return Symbol::RELATIVE_REF;
7656
7657     case elfcpp::R_ARM_PLT32:
7658     case elfcpp::R_ARM_CALL:
7659     case elfcpp::R_ARM_JUMP24:
7660     case elfcpp::R_ARM_THM_CALL:
7661     case elfcpp::R_ARM_THM_JUMP24:
7662     case elfcpp::R_ARM_THM_JUMP19:
7663     case elfcpp::R_ARM_THM_JUMP6:
7664     case elfcpp::R_ARM_THM_JUMP11:
7665     case elfcpp::R_ARM_THM_JUMP8:
7666     // R_ARM_PREL31 is not used to relocate call/jump instructions but
7667     // in unwind tables. It may point to functions via PLTs.
7668     // So we treat it like call/jump relocations above.
7669     case elfcpp::R_ARM_PREL31:
7670       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7671
7672     case elfcpp::R_ARM_GOT_BREL:
7673     case elfcpp::R_ARM_GOT_ABS:
7674     case elfcpp::R_ARM_GOT_PREL:
7675       // Absolute in GOT.
7676       return Symbol::ABSOLUTE_REF;
7677
7678     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7679     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7680     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7681     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7682     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7683       return Symbol::TLS_REF;
7684
7685     case elfcpp::R_ARM_TARGET1:
7686     case elfcpp::R_ARM_TARGET2:
7687     case elfcpp::R_ARM_COPY:
7688     case elfcpp::R_ARM_GLOB_DAT:
7689     case elfcpp::R_ARM_JUMP_SLOT:
7690     case elfcpp::R_ARM_RELATIVE:
7691     case elfcpp::R_ARM_PC24:
7692     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7693     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7694     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7695     default:
7696       // Not expected.  We will give an error later.
7697       return 0;
7698     }
7699 }
7700
7701 // Report an unsupported relocation against a local symbol.
7702
7703 template<bool big_endian>
7704 void
7705 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7706     Sized_relobj_file<32, big_endian>* object,
7707     unsigned int r_type)
7708 {
7709   gold_error(_("%s: unsupported reloc %u against local symbol"),
7710              object->name().c_str(), r_type);
7711 }
7712
7713 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7714 // dynamic linker does not support it, issue an error.  The GNU linker
7715 // only issues a non-PIC error for an allocated read-only section.
7716 // Here we know the section is allocated, but we don't know that it is
7717 // read-only.  But we check for all the relocation types which the
7718 // glibc dynamic linker supports, so it seems appropriate to issue an
7719 // error even if the section is not read-only.
7720
7721 template<bool big_endian>
7722 void
7723 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7724                                             unsigned int r_type)
7725 {
7726   switch (r_type)
7727     {
7728     // These are the relocation types supported by glibc for ARM.
7729     case elfcpp::R_ARM_RELATIVE:
7730     case elfcpp::R_ARM_COPY:
7731     case elfcpp::R_ARM_GLOB_DAT:
7732     case elfcpp::R_ARM_JUMP_SLOT:
7733     case elfcpp::R_ARM_ABS32:
7734     case elfcpp::R_ARM_ABS32_NOI:
7735     case elfcpp::R_ARM_PC24:
7736     // FIXME: The following 3 types are not supported by Android's dynamic
7737     // linker.
7738     case elfcpp::R_ARM_TLS_DTPMOD32:
7739     case elfcpp::R_ARM_TLS_DTPOFF32:
7740     case elfcpp::R_ARM_TLS_TPOFF32:
7741       return;
7742
7743     default:
7744       {
7745         // This prevents us from issuing more than one error per reloc
7746         // section.  But we can still wind up issuing more than one
7747         // error per object file.
7748         if (this->issued_non_pic_error_)
7749           return;
7750         const Arm_reloc_property* reloc_property =
7751           arm_reloc_property_table->get_reloc_property(r_type);
7752         gold_assert(reloc_property != NULL);
7753         object->error(_("requires unsupported dynamic reloc %s; "
7754                       "recompile with -fPIC"),
7755                       reloc_property->name().c_str());
7756         this->issued_non_pic_error_ = true;
7757         return;
7758       }
7759
7760     case elfcpp::R_ARM_NONE:
7761       gold_unreachable();
7762     }
7763 }
7764
7765 // Scan a relocation for a local symbol.
7766 // FIXME: This only handles a subset of relocation types used by Android
7767 // on ARM v5te devices.
7768
7769 template<bool big_endian>
7770 inline void
7771 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7772                                     Layout* layout,
7773                                     Target_arm* target,
7774                                     Sized_relobj_file<32, big_endian>* object,
7775                                     unsigned int data_shndx,
7776                                     Output_section* output_section,
7777                                     const elfcpp::Rel<32, big_endian>& reloc,
7778                                     unsigned int r_type,
7779                                     const elfcpp::Sym<32, big_endian>& lsym)
7780 {
7781   r_type = get_real_reloc_type(r_type);
7782   switch (r_type)
7783     {
7784     case elfcpp::R_ARM_NONE:
7785     case elfcpp::R_ARM_V4BX:
7786     case elfcpp::R_ARM_GNU_VTENTRY:
7787     case elfcpp::R_ARM_GNU_VTINHERIT:
7788       break;
7789
7790     case elfcpp::R_ARM_ABS32:
7791     case elfcpp::R_ARM_ABS32_NOI:
7792       // If building a shared library (or a position-independent
7793       // executable), we need to create a dynamic relocation for
7794       // this location. The relocation applied at link time will
7795       // apply the link-time value, so we flag the location with
7796       // an R_ARM_RELATIVE relocation so the dynamic loader can
7797       // relocate it easily.
7798       if (parameters->options().output_is_position_independent())
7799         {
7800           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7801           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7802           // If we are to add more other reloc types than R_ARM_ABS32,
7803           // we need to add check_non_pic(object, r_type) here.
7804           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7805                                       output_section, data_shndx,
7806                                       reloc.get_r_offset());
7807         }
7808       break;
7809
7810     case elfcpp::R_ARM_ABS16:
7811     case elfcpp::R_ARM_ABS12:
7812     case elfcpp::R_ARM_THM_ABS5:
7813     case elfcpp::R_ARM_ABS8:
7814     case elfcpp::R_ARM_BASE_ABS:
7815     case elfcpp::R_ARM_MOVW_ABS_NC:
7816     case elfcpp::R_ARM_MOVT_ABS:
7817     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7818     case elfcpp::R_ARM_THM_MOVT_ABS:
7819       // If building a shared library (or a position-independent
7820       // executable), we need to create a dynamic relocation for
7821       // this location. Because the addend needs to remain in the
7822       // data section, we need to be careful not to apply this
7823       // relocation statically.
7824       if (parameters->options().output_is_position_independent())
7825         {
7826           check_non_pic(object, r_type);
7827           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7828           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7829           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7830             rel_dyn->add_local(object, r_sym, r_type, output_section,
7831                                data_shndx, reloc.get_r_offset());
7832           else
7833             {
7834               gold_assert(lsym.get_st_value() == 0);
7835               unsigned int shndx = lsym.get_st_shndx();
7836               bool is_ordinary;
7837               shndx = object->adjust_sym_shndx(r_sym, shndx,
7838                                                &is_ordinary);
7839               if (!is_ordinary)
7840                 object->error(_("section symbol %u has bad shndx %u"),
7841                               r_sym, shndx);
7842               else
7843                 rel_dyn->add_local_section(object, shndx,
7844                                            r_type, output_section,
7845                                            data_shndx, reloc.get_r_offset());
7846             }
7847         }
7848       break;
7849
7850     case elfcpp::R_ARM_REL32:
7851     case elfcpp::R_ARM_LDR_PC_G0:
7852     case elfcpp::R_ARM_SBREL32:
7853     case elfcpp::R_ARM_THM_CALL:
7854     case elfcpp::R_ARM_THM_PC8:
7855     case elfcpp::R_ARM_BASE_PREL:
7856     case elfcpp::R_ARM_PLT32:
7857     case elfcpp::R_ARM_CALL:
7858     case elfcpp::R_ARM_JUMP24:
7859     case elfcpp::R_ARM_THM_JUMP24:
7860     case elfcpp::R_ARM_SBREL31:
7861     case elfcpp::R_ARM_PREL31:
7862     case elfcpp::R_ARM_MOVW_PREL_NC:
7863     case elfcpp::R_ARM_MOVT_PREL:
7864     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7865     case elfcpp::R_ARM_THM_MOVT_PREL:
7866     case elfcpp::R_ARM_THM_JUMP19:
7867     case elfcpp::R_ARM_THM_JUMP6:
7868     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7869     case elfcpp::R_ARM_THM_PC12:
7870     case elfcpp::R_ARM_REL32_NOI:
7871     case elfcpp::R_ARM_ALU_PC_G0_NC:
7872     case elfcpp::R_ARM_ALU_PC_G0:
7873     case elfcpp::R_ARM_ALU_PC_G1_NC:
7874     case elfcpp::R_ARM_ALU_PC_G1:
7875     case elfcpp::R_ARM_ALU_PC_G2:
7876     case elfcpp::R_ARM_LDR_PC_G1:
7877     case elfcpp::R_ARM_LDR_PC_G2:
7878     case elfcpp::R_ARM_LDRS_PC_G0:
7879     case elfcpp::R_ARM_LDRS_PC_G1:
7880     case elfcpp::R_ARM_LDRS_PC_G2:
7881     case elfcpp::R_ARM_LDC_PC_G0:
7882     case elfcpp::R_ARM_LDC_PC_G1:
7883     case elfcpp::R_ARM_LDC_PC_G2:
7884     case elfcpp::R_ARM_ALU_SB_G0_NC:
7885     case elfcpp::R_ARM_ALU_SB_G0:
7886     case elfcpp::R_ARM_ALU_SB_G1_NC:
7887     case elfcpp::R_ARM_ALU_SB_G1:
7888     case elfcpp::R_ARM_ALU_SB_G2:
7889     case elfcpp::R_ARM_LDR_SB_G0:
7890     case elfcpp::R_ARM_LDR_SB_G1:
7891     case elfcpp::R_ARM_LDR_SB_G2:
7892     case elfcpp::R_ARM_LDRS_SB_G0:
7893     case elfcpp::R_ARM_LDRS_SB_G1:
7894     case elfcpp::R_ARM_LDRS_SB_G2:
7895     case elfcpp::R_ARM_LDC_SB_G0:
7896     case elfcpp::R_ARM_LDC_SB_G1:
7897     case elfcpp::R_ARM_LDC_SB_G2:
7898     case elfcpp::R_ARM_MOVW_BREL_NC:
7899     case elfcpp::R_ARM_MOVT_BREL:
7900     case elfcpp::R_ARM_MOVW_BREL:
7901     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7902     case elfcpp::R_ARM_THM_MOVT_BREL:
7903     case elfcpp::R_ARM_THM_MOVW_BREL:
7904     case elfcpp::R_ARM_THM_JUMP11:
7905     case elfcpp::R_ARM_THM_JUMP8:
7906       // We don't need to do anything for a relative addressing relocation
7907       // against a local symbol if it does not reference the GOT.
7908       break;
7909
7910     case elfcpp::R_ARM_GOTOFF32:
7911     case elfcpp::R_ARM_GOTOFF12:
7912       // We need a GOT section:
7913       target->got_section(symtab, layout);
7914       break;
7915
7916     case elfcpp::R_ARM_GOT_BREL:
7917     case elfcpp::R_ARM_GOT_PREL:
7918       {
7919         // The symbol requires a GOT entry.
7920         Arm_output_data_got<big_endian>* got =
7921           target->got_section(symtab, layout);
7922         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7923         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7924           {
7925             // If we are generating a shared object, we need to add a
7926             // dynamic RELATIVE relocation for this symbol's GOT entry.
7927             if (parameters->options().output_is_position_independent())
7928               {
7929                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7930                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7931                 rel_dyn->add_local_relative(
7932                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7933                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7934               }
7935           }
7936       }
7937       break;
7938
7939     case elfcpp::R_ARM_TARGET1:
7940     case elfcpp::R_ARM_TARGET2:
7941       // This should have been mapped to another type already.
7942       // Fall through.
7943     case elfcpp::R_ARM_COPY:
7944     case elfcpp::R_ARM_GLOB_DAT:
7945     case elfcpp::R_ARM_JUMP_SLOT:
7946     case elfcpp::R_ARM_RELATIVE:
7947       // These are relocations which should only be seen by the
7948       // dynamic linker, and should never be seen here.
7949       gold_error(_("%s: unexpected reloc %u in object file"),
7950                  object->name().c_str(), r_type);
7951       break;
7952
7953
7954       // These are initial TLS relocs, which are expected when
7955       // linking.
7956     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7957     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7958     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7959     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7960     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7961       {
7962         bool output_is_shared = parameters->options().shared();
7963         const tls::Tls_optimization optimized_type
7964             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7965                                                          r_type);
7966         switch (r_type)
7967           {
7968           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7969             if (optimized_type == tls::TLSOPT_NONE)
7970               {
7971                 // Create a pair of GOT entries for the module index and
7972                 // dtv-relative offset.
7973                 Arm_output_data_got<big_endian>* got
7974                     = target->got_section(symtab, layout);
7975                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7976                 unsigned int shndx = lsym.get_st_shndx();
7977                 bool is_ordinary;
7978                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7979                 if (!is_ordinary)
7980                   {
7981                     object->error(_("local symbol %u has bad shndx %u"),
7982                                   r_sym, shndx);
7983                     break;
7984                   }
7985
7986                 if (!parameters->doing_static_link())
7987                   got->add_local_pair_with_rel(object, r_sym, shndx,
7988                                                GOT_TYPE_TLS_PAIR,
7989                                                target->rel_dyn_section(layout),
7990                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7991                 else
7992                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7993                                                       object, r_sym);
7994               }
7995             else
7996               // FIXME: TLS optimization not supported yet.
7997               gold_unreachable();
7998             break;
7999
8000           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8001             if (optimized_type == tls::TLSOPT_NONE)
8002               {
8003                 // Create a GOT entry for the module index.
8004                 target->got_mod_index_entry(symtab, layout, object);
8005               }
8006             else
8007               // FIXME: TLS optimization not supported yet.
8008               gold_unreachable();
8009             break;
8010
8011           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8012             break;
8013
8014           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8015             layout->set_has_static_tls();
8016             if (optimized_type == tls::TLSOPT_NONE)
8017               {
8018                 // Create a GOT entry for the tp-relative offset.
8019                 Arm_output_data_got<big_endian>* got
8020                   = target->got_section(symtab, layout);
8021                 unsigned int r_sym =
8022                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
8023                 if (!parameters->doing_static_link())
8024                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8025                                             target->rel_dyn_section(layout),
8026                                             elfcpp::R_ARM_TLS_TPOFF32);
8027                 else if (!object->local_has_got_offset(r_sym,
8028                                                        GOT_TYPE_TLS_OFFSET))
8029                   {
8030                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8031                     unsigned int got_offset =
8032                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8033                     got->add_static_reloc(got_offset,
8034                                           elfcpp::R_ARM_TLS_TPOFF32, object,
8035                                           r_sym);
8036                   }
8037               }
8038             else
8039               // FIXME: TLS optimization not supported yet.
8040               gold_unreachable();
8041             break;
8042
8043           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8044             layout->set_has_static_tls();
8045             if (output_is_shared)
8046               {
8047                 // We need to create a dynamic relocation.
8048                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8049                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8050                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8051                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8052                                    output_section, data_shndx,
8053                                    reloc.get_r_offset());
8054               }
8055             break;
8056
8057           default:
8058             gold_unreachable();
8059           }
8060       }
8061       break;
8062
8063     case elfcpp::R_ARM_PC24:
8064     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8065     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8066     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8067     default:
8068       unsupported_reloc_local(object, r_type);
8069       break;
8070     }
8071 }
8072
8073 // Report an unsupported relocation against a global symbol.
8074
8075 template<bool big_endian>
8076 void
8077 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8078     Sized_relobj_file<32, big_endian>* object,
8079     unsigned int r_type,
8080     Symbol* gsym)
8081 {
8082   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8083              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8084 }
8085
8086 template<bool big_endian>
8087 inline bool
8088 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8089     unsigned int r_type)
8090 {
8091   switch (r_type)
8092     {
8093     case elfcpp::R_ARM_PC24:
8094     case elfcpp::R_ARM_THM_CALL:
8095     case elfcpp::R_ARM_PLT32:
8096     case elfcpp::R_ARM_CALL:
8097     case elfcpp::R_ARM_JUMP24:
8098     case elfcpp::R_ARM_THM_JUMP24:
8099     case elfcpp::R_ARM_SBREL31:
8100     case elfcpp::R_ARM_PREL31:
8101     case elfcpp::R_ARM_THM_JUMP19:
8102     case elfcpp::R_ARM_THM_JUMP6:
8103     case elfcpp::R_ARM_THM_JUMP11:
8104     case elfcpp::R_ARM_THM_JUMP8:
8105       // All the relocations above are branches except SBREL31 and PREL31.
8106       return false;
8107
8108     default:
8109       // Be conservative and assume this is a function pointer.
8110       return true;
8111     }
8112 }
8113
8114 template<bool big_endian>
8115 inline bool
8116 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8117   Symbol_table*,
8118   Layout*,
8119   Target_arm<big_endian>* target,
8120   Sized_relobj_file<32, big_endian>*,
8121   unsigned int,
8122   Output_section*,
8123   const elfcpp::Rel<32, big_endian>&,
8124   unsigned int r_type,
8125   const elfcpp::Sym<32, big_endian>&)
8126 {
8127   r_type = target->get_real_reloc_type(r_type);
8128   return possible_function_pointer_reloc(r_type);
8129 }
8130
8131 template<bool big_endian>
8132 inline bool
8133 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8134   Symbol_table*,
8135   Layout*,
8136   Target_arm<big_endian>* target,
8137   Sized_relobj_file<32, big_endian>*,
8138   unsigned int,
8139   Output_section*,
8140   const elfcpp::Rel<32, big_endian>&,
8141   unsigned int r_type,
8142   Symbol* gsym)
8143 {
8144   // GOT is not a function.
8145   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8146     return false;
8147
8148   r_type = target->get_real_reloc_type(r_type);
8149   return possible_function_pointer_reloc(r_type);
8150 }
8151
8152 // Scan a relocation for a global symbol.
8153
8154 template<bool big_endian>
8155 inline void
8156 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8157                                      Layout* layout,
8158                                      Target_arm* target,
8159                                      Sized_relobj_file<32, big_endian>* object,
8160                                      unsigned int data_shndx,
8161                                      Output_section* output_section,
8162                                      const elfcpp::Rel<32, big_endian>& reloc,
8163                                      unsigned int r_type,
8164                                      Symbol* gsym)
8165 {
8166   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8167   // section.  We check here to avoid creating a dynamic reloc against
8168   // _GLOBAL_OFFSET_TABLE_.
8169   if (!target->has_got_section()
8170       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8171     target->got_section(symtab, layout);
8172
8173   r_type = get_real_reloc_type(r_type);
8174   switch (r_type)
8175     {
8176     case elfcpp::R_ARM_NONE:
8177     case elfcpp::R_ARM_V4BX:
8178     case elfcpp::R_ARM_GNU_VTENTRY:
8179     case elfcpp::R_ARM_GNU_VTINHERIT:
8180       break;
8181
8182     case elfcpp::R_ARM_ABS32:
8183     case elfcpp::R_ARM_ABS16:
8184     case elfcpp::R_ARM_ABS12:
8185     case elfcpp::R_ARM_THM_ABS5:
8186     case elfcpp::R_ARM_ABS8:
8187     case elfcpp::R_ARM_BASE_ABS:
8188     case elfcpp::R_ARM_MOVW_ABS_NC:
8189     case elfcpp::R_ARM_MOVT_ABS:
8190     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8191     case elfcpp::R_ARM_THM_MOVT_ABS:
8192     case elfcpp::R_ARM_ABS32_NOI:
8193       // Absolute addressing relocations.
8194       {
8195         // Make a PLT entry if necessary.
8196         if (this->symbol_needs_plt_entry(gsym))
8197           {
8198             target->make_plt_entry(symtab, layout, gsym);
8199             // Since this is not a PC-relative relocation, we may be
8200             // taking the address of a function. In that case we need to
8201             // set the entry in the dynamic symbol table to the address of
8202             // the PLT entry.
8203             if (gsym->is_from_dynobj() && !parameters->options().shared())
8204               gsym->set_needs_dynsym_value();
8205           }
8206         // Make a dynamic relocation if necessary.
8207         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8208           {
8209             if (gsym->may_need_copy_reloc())
8210               {
8211                 target->copy_reloc(symtab, layout, object,
8212                                    data_shndx, output_section, gsym, reloc);
8213               }
8214             else if ((r_type == elfcpp::R_ARM_ABS32
8215                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8216                      && gsym->can_use_relative_reloc(false))
8217               {
8218                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8219                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8220                                              output_section, object,
8221                                              data_shndx, reloc.get_r_offset());
8222               }
8223             else
8224               {
8225                 check_non_pic(object, r_type);
8226                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8227                 rel_dyn->add_global(gsym, r_type, output_section, object,
8228                                     data_shndx, reloc.get_r_offset());
8229               }
8230           }
8231       }
8232       break;
8233
8234     case elfcpp::R_ARM_GOTOFF32:
8235     case elfcpp::R_ARM_GOTOFF12:
8236       // We need a GOT section.
8237       target->got_section(symtab, layout);
8238       break;
8239       
8240     case elfcpp::R_ARM_REL32:
8241     case elfcpp::R_ARM_LDR_PC_G0:
8242     case elfcpp::R_ARM_SBREL32:
8243     case elfcpp::R_ARM_THM_PC8:
8244     case elfcpp::R_ARM_BASE_PREL:
8245     case elfcpp::R_ARM_MOVW_PREL_NC:
8246     case elfcpp::R_ARM_MOVT_PREL:
8247     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8248     case elfcpp::R_ARM_THM_MOVT_PREL:
8249     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8250     case elfcpp::R_ARM_THM_PC12:
8251     case elfcpp::R_ARM_REL32_NOI:
8252     case elfcpp::R_ARM_ALU_PC_G0_NC:
8253     case elfcpp::R_ARM_ALU_PC_G0:
8254     case elfcpp::R_ARM_ALU_PC_G1_NC:
8255     case elfcpp::R_ARM_ALU_PC_G1:
8256     case elfcpp::R_ARM_ALU_PC_G2:
8257     case elfcpp::R_ARM_LDR_PC_G1:
8258     case elfcpp::R_ARM_LDR_PC_G2:
8259     case elfcpp::R_ARM_LDRS_PC_G0:
8260     case elfcpp::R_ARM_LDRS_PC_G1:
8261     case elfcpp::R_ARM_LDRS_PC_G2:
8262     case elfcpp::R_ARM_LDC_PC_G0:
8263     case elfcpp::R_ARM_LDC_PC_G1:
8264     case elfcpp::R_ARM_LDC_PC_G2:
8265     case elfcpp::R_ARM_ALU_SB_G0_NC:
8266     case elfcpp::R_ARM_ALU_SB_G0:
8267     case elfcpp::R_ARM_ALU_SB_G1_NC:
8268     case elfcpp::R_ARM_ALU_SB_G1:
8269     case elfcpp::R_ARM_ALU_SB_G2:
8270     case elfcpp::R_ARM_LDR_SB_G0:
8271     case elfcpp::R_ARM_LDR_SB_G1:
8272     case elfcpp::R_ARM_LDR_SB_G2:
8273     case elfcpp::R_ARM_LDRS_SB_G0:
8274     case elfcpp::R_ARM_LDRS_SB_G1:
8275     case elfcpp::R_ARM_LDRS_SB_G2:
8276     case elfcpp::R_ARM_LDC_SB_G0:
8277     case elfcpp::R_ARM_LDC_SB_G1:
8278     case elfcpp::R_ARM_LDC_SB_G2:
8279     case elfcpp::R_ARM_MOVW_BREL_NC:
8280     case elfcpp::R_ARM_MOVT_BREL:
8281     case elfcpp::R_ARM_MOVW_BREL:
8282     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8283     case elfcpp::R_ARM_THM_MOVT_BREL:
8284     case elfcpp::R_ARM_THM_MOVW_BREL:
8285       // Relative addressing relocations.
8286       {
8287         // Make a dynamic relocation if necessary.
8288         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8289           {
8290             if (target->may_need_copy_reloc(gsym))
8291               {
8292                 target->copy_reloc(symtab, layout, object,
8293                                    data_shndx, output_section, gsym, reloc);
8294               }
8295             else
8296               {
8297                 check_non_pic(object, r_type);
8298                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8299                 rel_dyn->add_global(gsym, r_type, output_section, object,
8300                                     data_shndx, reloc.get_r_offset());
8301               }
8302           }
8303       }
8304       break;
8305
8306     case elfcpp::R_ARM_THM_CALL:
8307     case elfcpp::R_ARM_PLT32:
8308     case elfcpp::R_ARM_CALL:
8309     case elfcpp::R_ARM_JUMP24:
8310     case elfcpp::R_ARM_THM_JUMP24:
8311     case elfcpp::R_ARM_SBREL31:
8312     case elfcpp::R_ARM_PREL31:
8313     case elfcpp::R_ARM_THM_JUMP19:
8314     case elfcpp::R_ARM_THM_JUMP6:
8315     case elfcpp::R_ARM_THM_JUMP11:
8316     case elfcpp::R_ARM_THM_JUMP8:
8317       // All the relocation above are branches except for the PREL31 ones.
8318       // A PREL31 relocation can point to a personality function in a shared
8319       // library.  In that case we want to use a PLT because we want to
8320       // call the personality routine and the dynamic linkers we care about
8321       // do not support dynamic PREL31 relocations. An REL31 relocation may
8322       // point to a function whose unwinding behaviour is being described but
8323       // we will not mistakenly generate a PLT for that because we should use
8324       // a local section symbol.
8325
8326       // If the symbol is fully resolved, this is just a relative
8327       // local reloc.  Otherwise we need a PLT entry.
8328       if (gsym->final_value_is_known())
8329         break;
8330       // If building a shared library, we can also skip the PLT entry
8331       // if the symbol is defined in the output file and is protected
8332       // or hidden.
8333       if (gsym->is_defined()
8334           && !gsym->is_from_dynobj()
8335           && !gsym->is_preemptible())
8336         break;
8337       target->make_plt_entry(symtab, layout, gsym);
8338       break;
8339
8340     case elfcpp::R_ARM_GOT_BREL:
8341     case elfcpp::R_ARM_GOT_ABS:
8342     case elfcpp::R_ARM_GOT_PREL:
8343       {
8344         // The symbol requires a GOT entry.
8345         Arm_output_data_got<big_endian>* got =
8346           target->got_section(symtab, layout);
8347         if (gsym->final_value_is_known())
8348           got->add_global(gsym, GOT_TYPE_STANDARD);
8349         else
8350           {
8351             // If this symbol is not fully resolved, we need to add a
8352             // GOT entry with a dynamic relocation.
8353             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8354             if (gsym->is_from_dynobj()
8355                 || gsym->is_undefined()
8356                 || gsym->is_preemptible())
8357               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8358                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8359             else
8360               {
8361                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8362                   rel_dyn->add_global_relative(
8363                       gsym, elfcpp::R_ARM_RELATIVE, got,
8364                       gsym->got_offset(GOT_TYPE_STANDARD));
8365               }
8366           }
8367       }
8368       break;
8369
8370     case elfcpp::R_ARM_TARGET1:
8371     case elfcpp::R_ARM_TARGET2:
8372       // These should have been mapped to other types already.
8373       // Fall through.
8374     case elfcpp::R_ARM_COPY:
8375     case elfcpp::R_ARM_GLOB_DAT:
8376     case elfcpp::R_ARM_JUMP_SLOT:
8377     case elfcpp::R_ARM_RELATIVE:
8378       // These are relocations which should only be seen by the
8379       // dynamic linker, and should never be seen here.
8380       gold_error(_("%s: unexpected reloc %u in object file"),
8381                  object->name().c_str(), r_type);
8382       break;
8383
8384       // These are initial tls relocs, which are expected when
8385       // linking.
8386     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8387     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8388     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8389     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8390     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8391       {
8392         const bool is_final = gsym->final_value_is_known();
8393         const tls::Tls_optimization optimized_type
8394             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8395         switch (r_type)
8396           {
8397           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8398             if (optimized_type == tls::TLSOPT_NONE)
8399               {
8400                 // Create a pair of GOT entries for the module index and
8401                 // dtv-relative offset.
8402                 Arm_output_data_got<big_endian>* got
8403                     = target->got_section(symtab, layout);
8404                 if (!parameters->doing_static_link())
8405                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8406                                                 target->rel_dyn_section(layout),
8407                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8408                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8409                 else
8410                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8411               }
8412             else
8413               // FIXME: TLS optimization not supported yet.
8414               gold_unreachable();
8415             break;
8416
8417           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8418             if (optimized_type == tls::TLSOPT_NONE)
8419               {
8420                 // Create a GOT entry for the module index.
8421                 target->got_mod_index_entry(symtab, layout, object);
8422               }
8423             else
8424               // FIXME: TLS optimization not supported yet.
8425               gold_unreachable();
8426             break;
8427
8428           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8429             break;
8430
8431           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8432             layout->set_has_static_tls();
8433             if (optimized_type == tls::TLSOPT_NONE)
8434               {
8435                 // Create a GOT entry for the tp-relative offset.
8436                 Arm_output_data_got<big_endian>* got
8437                   = target->got_section(symtab, layout);
8438                 if (!parameters->doing_static_link())
8439                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8440                                            target->rel_dyn_section(layout),
8441                                            elfcpp::R_ARM_TLS_TPOFF32);
8442                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8443                   {
8444                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8445                     unsigned int got_offset =
8446                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8447                     got->add_static_reloc(got_offset,
8448                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
8449                   }
8450               }
8451             else
8452               // FIXME: TLS optimization not supported yet.
8453               gold_unreachable();
8454             break;
8455
8456           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8457             layout->set_has_static_tls();
8458             if (parameters->options().shared())
8459               {
8460                 // We need to create a dynamic relocation.
8461                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8462                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8463                                     output_section, object,
8464                                     data_shndx, reloc.get_r_offset());
8465               }
8466             break;
8467
8468           default:
8469             gold_unreachable();
8470           }
8471       }
8472       break;
8473
8474     case elfcpp::R_ARM_PC24:
8475     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8476     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8477     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8478     default:
8479       unsupported_reloc_global(object, r_type, gsym);
8480       break;
8481     }
8482 }
8483
8484 // Process relocations for gc.
8485
8486 template<bool big_endian>
8487 void
8488 Target_arm<big_endian>::gc_process_relocs(
8489     Symbol_table* symtab,
8490     Layout* layout,
8491     Sized_relobj_file<32, big_endian>* object,
8492     unsigned int data_shndx,
8493     unsigned int,
8494     const unsigned char* prelocs,
8495     size_t reloc_count,
8496     Output_section* output_section,
8497     bool needs_special_offset_handling,
8498     size_t local_symbol_count,
8499     const unsigned char* plocal_symbols)
8500 {
8501   typedef Target_arm<big_endian> Arm;
8502   typedef typename Target_arm<big_endian>::Scan Scan;
8503
8504   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8505                           typename Target_arm::Relocatable_size_for_reloc>(
8506     symtab,
8507     layout,
8508     this,
8509     object,
8510     data_shndx,
8511     prelocs,
8512     reloc_count,
8513     output_section,
8514     needs_special_offset_handling,
8515     local_symbol_count,
8516     plocal_symbols);
8517 }
8518
8519 // Scan relocations for a section.
8520
8521 template<bool big_endian>
8522 void
8523 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8524                                     Layout* layout,
8525                                     Sized_relobj_file<32, big_endian>* object,
8526                                     unsigned int data_shndx,
8527                                     unsigned int sh_type,
8528                                     const unsigned char* prelocs,
8529                                     size_t reloc_count,
8530                                     Output_section* output_section,
8531                                     bool needs_special_offset_handling,
8532                                     size_t local_symbol_count,
8533                                     const unsigned char* plocal_symbols)
8534 {
8535   typedef typename Target_arm<big_endian>::Scan Scan;
8536   if (sh_type == elfcpp::SHT_RELA)
8537     {
8538       gold_error(_("%s: unsupported RELA reloc section"),
8539                  object->name().c_str());
8540       return;
8541     }
8542
8543   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8544     symtab,
8545     layout,
8546     this,
8547     object,
8548     data_shndx,
8549     prelocs,
8550     reloc_count,
8551     output_section,
8552     needs_special_offset_handling,
8553     local_symbol_count,
8554     plocal_symbols);
8555 }
8556
8557 // Finalize the sections.
8558
8559 template<bool big_endian>
8560 void
8561 Target_arm<big_endian>::do_finalize_sections(
8562     Layout* layout,
8563     const Input_objects* input_objects,
8564     Symbol_table* symtab)
8565 {
8566   bool merged_any_attributes = false;
8567   // Merge processor-specific flags.
8568   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8569        p != input_objects->relobj_end();
8570        ++p)
8571     {
8572       Arm_relobj<big_endian>* arm_relobj =
8573         Arm_relobj<big_endian>::as_arm_relobj(*p);
8574       if (arm_relobj->merge_flags_and_attributes())
8575         {
8576           this->merge_processor_specific_flags(
8577               arm_relobj->name(),
8578               arm_relobj->processor_specific_flags());
8579           this->merge_object_attributes(arm_relobj->name().c_str(),
8580                                         arm_relobj->attributes_section_data());
8581           merged_any_attributes = true;
8582         }
8583     } 
8584
8585   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8586        p != input_objects->dynobj_end();
8587        ++p)
8588     {
8589       Arm_dynobj<big_endian>* arm_dynobj =
8590         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8591       this->merge_processor_specific_flags(
8592           arm_dynobj->name(),
8593           arm_dynobj->processor_specific_flags());
8594       this->merge_object_attributes(arm_dynobj->name().c_str(),
8595                                     arm_dynobj->attributes_section_data());
8596       merged_any_attributes = true;
8597     }
8598
8599   // Create an empty uninitialized attribute section if we still don't have it
8600   // at this moment.  This happens if there is no attributes sections in all
8601   // inputs.
8602   if (this->attributes_section_data_ == NULL)
8603     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8604
8605   // Check BLX use.
8606   const Object_attribute* cpu_arch_attr =
8607     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8608   if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8609     this->set_may_use_blx(true);
8610  
8611   // Check if we need to use Cortex-A8 workaround.
8612   if (parameters->options().user_set_fix_cortex_a8())
8613     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8614   else
8615     {
8616       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8617       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8618       // profile.  
8619       const Object_attribute* cpu_arch_profile_attr =
8620         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8621       this->fix_cortex_a8_ =
8622         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8623          && (cpu_arch_profile_attr->int_value() == 'A'
8624              || cpu_arch_profile_attr->int_value() == 0));
8625     }
8626   
8627   // Check if we can use V4BX interworking.
8628   // The V4BX interworking stub contains BX instruction,
8629   // which is not specified for some profiles.
8630   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8631       && !this->may_use_blx())
8632     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8633                  "the target profile does not support BX instruction"));
8634
8635   // Fill in some more dynamic tags.
8636   const Reloc_section* rel_plt = (this->plt_ == NULL
8637                                   ? NULL
8638                                   : this->plt_->rel_plt());
8639   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8640                                   this->rel_dyn_, true, false);
8641
8642   // Emit any relocs we saved in an attempt to avoid generating COPY
8643   // relocs.
8644   if (this->copy_relocs_.any_saved_relocs())
8645     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8646
8647   // Handle the .ARM.exidx section.
8648   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8649
8650   if (!parameters->options().relocatable())
8651     {
8652       if (exidx_section != NULL
8653           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8654         {
8655           // Create __exidx_start and __exidx_end symbols.
8656           symtab->define_in_output_data("__exidx_start", NULL,
8657                                         Symbol_table::PREDEFINED,
8658                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8659                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8660                                         0, false, true);
8661           symtab->define_in_output_data("__exidx_end", NULL,
8662                                         Symbol_table::PREDEFINED,
8663                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8664                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8665                                         0, true, true);
8666
8667           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8668           // the .ARM.exidx section.
8669           if (!layout->script_options()->saw_phdrs_clause())
8670             {
8671               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8672                                                       0)
8673                           == NULL);
8674               Output_segment*  exidx_segment =
8675                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8676               exidx_segment->add_output_section_to_nonload(exidx_section,
8677                                                            elfcpp::PF_R);
8678             }
8679         }
8680       else
8681         {
8682           symtab->define_as_constant("__exidx_start", NULL,
8683                                      Symbol_table::PREDEFINED,
8684                                      0, 0, elfcpp::STT_OBJECT,
8685                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8686                                      true, false);
8687           symtab->define_as_constant("__exidx_end", NULL,
8688                                      Symbol_table::PREDEFINED,
8689                                      0, 0, elfcpp::STT_OBJECT,
8690                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8691                                      true, false);
8692         }
8693     }
8694
8695   // Create an .ARM.attributes section if we have merged any attributes
8696   // from inputs.
8697   if (merged_any_attributes)
8698     {
8699       Output_attributes_section_data* attributes_section =
8700       new Output_attributes_section_data(*this->attributes_section_data_);
8701       layout->add_output_section_data(".ARM.attributes",
8702                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8703                                       attributes_section, ORDER_INVALID,
8704                                       false);
8705     }
8706
8707   // Fix up links in section EXIDX headers.
8708   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8709        p != layout->section_list().end();
8710        ++p)
8711     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8712       {
8713         Arm_output_section<big_endian>* os =
8714           Arm_output_section<big_endian>::as_arm_output_section(*p);
8715         os->set_exidx_section_link();
8716       }
8717 }
8718
8719 // Return whether a direct absolute static relocation needs to be applied.
8720 // In cases where Scan::local() or Scan::global() has created
8721 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8722 // of the relocation is carried in the data, and we must not
8723 // apply the static relocation.
8724
8725 template<bool big_endian>
8726 inline bool
8727 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8728     const Sized_symbol<32>* gsym,
8729     unsigned int r_type,
8730     bool is_32bit,
8731     Output_section* output_section)
8732 {
8733   // If the output section is not allocated, then we didn't call
8734   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8735   // the reloc here.
8736   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8737       return true;
8738
8739   int ref_flags = Scan::get_reference_flags(r_type);
8740
8741   // For local symbols, we will have created a non-RELATIVE dynamic
8742   // relocation only if (a) the output is position independent,
8743   // (b) the relocation is absolute (not pc- or segment-relative), and
8744   // (c) the relocation is not 32 bits wide.
8745   if (gsym == NULL)
8746     return !(parameters->options().output_is_position_independent()
8747              && (ref_flags & Symbol::ABSOLUTE_REF)
8748              && !is_32bit);
8749
8750   // For global symbols, we use the same helper routines used in the
8751   // scan pass.  If we did not create a dynamic relocation, or if we
8752   // created a RELATIVE dynamic relocation, we should apply the static
8753   // relocation.
8754   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8755   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8756                  && gsym->can_use_relative_reloc(ref_flags
8757                                                  & Symbol::FUNCTION_CALL);
8758   return !has_dyn || is_rel;
8759 }
8760
8761 // Perform a relocation.
8762
8763 template<bool big_endian>
8764 inline bool
8765 Target_arm<big_endian>::Relocate::relocate(
8766     const Relocate_info<32, big_endian>* relinfo,
8767     Target_arm* target,
8768     Output_section* output_section,
8769     size_t relnum,
8770     const elfcpp::Rel<32, big_endian>& rel,
8771     unsigned int r_type,
8772     const Sized_symbol<32>* gsym,
8773     const Symbol_value<32>* psymval,
8774     unsigned char* view,
8775     Arm_address address,
8776     section_size_type view_size)
8777 {
8778   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8779
8780   r_type = get_real_reloc_type(r_type);
8781   const Arm_reloc_property* reloc_property =
8782     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8783   if (reloc_property == NULL)
8784     {
8785       std::string reloc_name =
8786         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8787       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8788                              _("cannot relocate %s in object file"),
8789                              reloc_name.c_str());
8790       return true;
8791     }
8792
8793   const Arm_relobj<big_endian>* object =
8794     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8795
8796   // If the final branch target of a relocation is THUMB instruction, this
8797   // is 1.  Otherwise it is 0.
8798   Arm_address thumb_bit = 0;
8799   Symbol_value<32> symval;
8800   bool is_weakly_undefined_without_plt = false;
8801   bool have_got_offset = false;
8802   unsigned int got_offset = 0;
8803
8804   // If the relocation uses the GOT entry of a symbol instead of the symbol
8805   // itself, we don't care about whether the symbol is defined or what kind
8806   // of symbol it is.
8807   if (reloc_property->uses_got_entry())
8808     {
8809       // Get the GOT offset.
8810       // The GOT pointer points to the end of the GOT section.
8811       // We need to subtract the size of the GOT section to get
8812       // the actual offset to use in the relocation.
8813       // TODO: We should move GOT offset computing code in TLS relocations
8814       // to here.
8815       switch (r_type)
8816         {
8817         case elfcpp::R_ARM_GOT_BREL:
8818         case elfcpp::R_ARM_GOT_PREL:
8819           if (gsym != NULL)
8820             {
8821               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8822               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8823                             - target->got_size());
8824             }
8825           else
8826             {
8827               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8828               gold_assert(object->local_has_got_offset(r_sym,
8829                                                        GOT_TYPE_STANDARD));
8830               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8831                             - target->got_size());
8832             }
8833           have_got_offset = true;
8834           break;
8835
8836         default:
8837           break;
8838         }
8839     }
8840   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8841     {
8842       if (gsym != NULL)
8843         {
8844           // This is a global symbol.  Determine if we use PLT and if the
8845           // final target is THUMB.
8846           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8847             {
8848               // This uses a PLT, change the symbol value.
8849               symval.set_output_value(target->plt_section()->address()
8850                                       + gsym->plt_offset());
8851               psymval = &symval;
8852             }
8853           else if (gsym->is_weak_undefined())
8854             {
8855               // This is a weakly undefined symbol and we do not use PLT
8856               // for this relocation.  A branch targeting this symbol will
8857               // be converted into an NOP.
8858               is_weakly_undefined_without_plt = true;
8859             }
8860           else if (gsym->is_undefined() && reloc_property->uses_symbol())
8861             {
8862               // This relocation uses the symbol value but the symbol is
8863               // undefined.  Exit early and have the caller reporting an
8864               // error.
8865               return true;
8866             }
8867           else
8868             {
8869               // Set thumb bit if symbol:
8870               // -Has type STT_ARM_TFUNC or
8871               // -Has type STT_FUNC, is defined and with LSB in value set.
8872               thumb_bit =
8873                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8874                  || (gsym->type() == elfcpp::STT_FUNC
8875                      && !gsym->is_undefined()
8876                      && ((psymval->value(object, 0) & 1) != 0)))
8877                 ? 1
8878                 : 0);
8879             }
8880         }
8881       else
8882         {
8883           // This is a local symbol.  Determine if the final target is THUMB.
8884           // We saved this information when all the local symbols were read.
8885           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8886           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8887           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8888         }
8889     }
8890   else
8891     {
8892       // This is a fake relocation synthesized for a stub.  It does not have
8893       // a real symbol.  We just look at the LSB of the symbol value to
8894       // determine if the target is THUMB or not.
8895       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8896     }
8897
8898   // Strip LSB if this points to a THUMB target.
8899   if (thumb_bit != 0
8900       && reloc_property->uses_thumb_bit() 
8901       && ((psymval->value(object, 0) & 1) != 0))
8902     {
8903       Arm_address stripped_value =
8904         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8905       symval.set_output_value(stripped_value);
8906       psymval = &symval;
8907     } 
8908
8909   // To look up relocation stubs, we need to pass the symbol table index of
8910   // a local symbol.
8911   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8912
8913   // Get the addressing origin of the output segment defining the
8914   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8915   Arm_address sym_origin = 0;
8916   if (reloc_property->uses_symbol_base())
8917     {
8918       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8919         // R_ARM_BASE_ABS with the NULL symbol will give the
8920         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8921         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8922         sym_origin = target->got_plt_section()->address();
8923       else if (gsym == NULL)
8924         sym_origin = 0;
8925       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8926         sym_origin = gsym->output_segment()->vaddr();
8927       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8928         sym_origin = gsym->output_data()->address();
8929
8930       // TODO: Assumes the segment base to be zero for the global symbols
8931       // till the proper support for the segment-base-relative addressing
8932       // will be implemented.  This is consistent with GNU ld.
8933     }
8934
8935   // For relative addressing relocation, find out the relative address base.
8936   Arm_address relative_address_base = 0;
8937   switch(reloc_property->relative_address_base())
8938     {
8939     case Arm_reloc_property::RAB_NONE:
8940     // Relocations with relative address bases RAB_TLS and RAB_tp are
8941     // handled by relocate_tls.  So we do not need to do anything here.
8942     case Arm_reloc_property::RAB_TLS:
8943     case Arm_reloc_property::RAB_tp:
8944       break;
8945     case Arm_reloc_property::RAB_B_S:
8946       relative_address_base = sym_origin;
8947       break;
8948     case Arm_reloc_property::RAB_GOT_ORG:
8949       relative_address_base = target->got_plt_section()->address();
8950       break;
8951     case Arm_reloc_property::RAB_P:
8952       relative_address_base = address;
8953       break;
8954     case Arm_reloc_property::RAB_Pa:
8955       relative_address_base = address & 0xfffffffcU;
8956       break;
8957     default:
8958       gold_unreachable(); 
8959     }
8960     
8961   typename Arm_relocate_functions::Status reloc_status =
8962         Arm_relocate_functions::STATUS_OKAY;
8963   bool check_overflow = reloc_property->checks_overflow();
8964   switch (r_type)
8965     {
8966     case elfcpp::R_ARM_NONE:
8967       break;
8968
8969     case elfcpp::R_ARM_ABS8:
8970       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8971         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8972       break;
8973
8974     case elfcpp::R_ARM_ABS12:
8975       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8976         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8977       break;
8978
8979     case elfcpp::R_ARM_ABS16:
8980       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8981         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8982       break;
8983
8984     case elfcpp::R_ARM_ABS32:
8985       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8986         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8987                                                      thumb_bit);
8988       break;
8989
8990     case elfcpp::R_ARM_ABS32_NOI:
8991       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8992         // No thumb bit for this relocation: (S + A)
8993         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8994                                                      0);
8995       break;
8996
8997     case elfcpp::R_ARM_MOVW_ABS_NC:
8998       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8999         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9000                                                     0, thumb_bit,
9001                                                     check_overflow);
9002       break;
9003
9004     case elfcpp::R_ARM_MOVT_ABS:
9005       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9006         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9007       break;
9008
9009     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9010       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9011         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9012                                                         0, thumb_bit, false);
9013       break;
9014
9015     case elfcpp::R_ARM_THM_MOVT_ABS:
9016       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9017         reloc_status = Arm_relocate_functions::thm_movt(view, object,
9018                                                         psymval, 0);
9019       break;
9020
9021     case elfcpp::R_ARM_MOVW_PREL_NC:
9022     case elfcpp::R_ARM_MOVW_BREL_NC:
9023     case elfcpp::R_ARM_MOVW_BREL:
9024       reloc_status =
9025         Arm_relocate_functions::movw(view, object, psymval,
9026                                      relative_address_base, thumb_bit,
9027                                      check_overflow);
9028       break;
9029
9030     case elfcpp::R_ARM_MOVT_PREL:
9031     case elfcpp::R_ARM_MOVT_BREL:
9032       reloc_status =
9033         Arm_relocate_functions::movt(view, object, psymval,
9034                                      relative_address_base);
9035       break;
9036
9037     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9038     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9039     case elfcpp::R_ARM_THM_MOVW_BREL:
9040       reloc_status =
9041         Arm_relocate_functions::thm_movw(view, object, psymval,
9042                                          relative_address_base,
9043                                          thumb_bit, check_overflow);
9044       break;
9045
9046     case elfcpp::R_ARM_THM_MOVT_PREL:
9047     case elfcpp::R_ARM_THM_MOVT_BREL:
9048       reloc_status =
9049         Arm_relocate_functions::thm_movt(view, object, psymval,
9050                                          relative_address_base);
9051       break;
9052         
9053     case elfcpp::R_ARM_REL32:
9054       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9055                                                    address, thumb_bit);
9056       break;
9057
9058     case elfcpp::R_ARM_THM_ABS5:
9059       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9060         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9061       break;
9062
9063     // Thumb long branches.
9064     case elfcpp::R_ARM_THM_CALL:
9065     case elfcpp::R_ARM_THM_XPC22:
9066     case elfcpp::R_ARM_THM_JUMP24:
9067       reloc_status =
9068         Arm_relocate_functions::thumb_branch_common(
9069             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9070             thumb_bit, is_weakly_undefined_without_plt);
9071       break;
9072
9073     case elfcpp::R_ARM_GOTOFF32:
9074       {
9075         Arm_address got_origin;
9076         got_origin = target->got_plt_section()->address();
9077         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9078                                                      got_origin, thumb_bit);
9079       }
9080       break;
9081
9082     case elfcpp::R_ARM_BASE_PREL:
9083       gold_assert(gsym != NULL);
9084       reloc_status =
9085           Arm_relocate_functions::base_prel(view, sym_origin, address);
9086       break;
9087
9088     case elfcpp::R_ARM_BASE_ABS:
9089       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9090         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9091       break;
9092
9093     case elfcpp::R_ARM_GOT_BREL:
9094       gold_assert(have_got_offset);
9095       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9096       break;
9097
9098     case elfcpp::R_ARM_GOT_PREL:
9099       gold_assert(have_got_offset);
9100       // Get the address origin for GOT PLT, which is allocated right
9101       // after the GOT section, to calculate an absolute address of
9102       // the symbol GOT entry (got_origin + got_offset).
9103       Arm_address got_origin;
9104       got_origin = target->got_plt_section()->address();
9105       reloc_status = Arm_relocate_functions::got_prel(view,
9106                                                       got_origin + got_offset,
9107                                                       address);
9108       break;
9109
9110     case elfcpp::R_ARM_PLT32:
9111     case elfcpp::R_ARM_CALL:
9112     case elfcpp::R_ARM_JUMP24:
9113     case elfcpp::R_ARM_XPC25:
9114       gold_assert(gsym == NULL
9115                   || gsym->has_plt_offset()
9116                   || gsym->final_value_is_known()
9117                   || (gsym->is_defined()
9118                       && !gsym->is_from_dynobj()
9119                       && !gsym->is_preemptible()));
9120       reloc_status =
9121         Arm_relocate_functions::arm_branch_common(
9122             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9123             thumb_bit, is_weakly_undefined_without_plt);
9124       break;
9125
9126     case elfcpp::R_ARM_THM_JUMP19:
9127       reloc_status =
9128         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9129                                            thumb_bit);
9130       break;
9131
9132     case elfcpp::R_ARM_THM_JUMP6:
9133       reloc_status =
9134         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9135       break;
9136
9137     case elfcpp::R_ARM_THM_JUMP8:
9138       reloc_status =
9139         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9140       break;
9141
9142     case elfcpp::R_ARM_THM_JUMP11:
9143       reloc_status =
9144         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9145       break;
9146
9147     case elfcpp::R_ARM_PREL31:
9148       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9149                                                     address, thumb_bit);
9150       break;
9151
9152     case elfcpp::R_ARM_V4BX:
9153       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9154         {
9155           const bool is_v4bx_interworking =
9156               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9157           reloc_status =
9158             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9159                                          is_v4bx_interworking);
9160         }
9161       break;
9162
9163     case elfcpp::R_ARM_THM_PC8:
9164       reloc_status =
9165         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9166       break;
9167
9168     case elfcpp::R_ARM_THM_PC12:
9169       reloc_status =
9170         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9171       break;
9172
9173     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9174       reloc_status =
9175         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9176                                           thumb_bit);
9177       break;
9178
9179     case elfcpp::R_ARM_ALU_PC_G0_NC:
9180     case elfcpp::R_ARM_ALU_PC_G0:
9181     case elfcpp::R_ARM_ALU_PC_G1_NC:
9182     case elfcpp::R_ARM_ALU_PC_G1:
9183     case elfcpp::R_ARM_ALU_PC_G2:
9184     case elfcpp::R_ARM_ALU_SB_G0_NC:
9185     case elfcpp::R_ARM_ALU_SB_G0:
9186     case elfcpp::R_ARM_ALU_SB_G1_NC:
9187     case elfcpp::R_ARM_ALU_SB_G1:
9188     case elfcpp::R_ARM_ALU_SB_G2:
9189       reloc_status =
9190         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9191                                             reloc_property->group_index(),
9192                                             relative_address_base,
9193                                             thumb_bit, check_overflow);
9194       break;
9195
9196     case elfcpp::R_ARM_LDR_PC_G0:
9197     case elfcpp::R_ARM_LDR_PC_G1:
9198     case elfcpp::R_ARM_LDR_PC_G2:
9199     case elfcpp::R_ARM_LDR_SB_G0:
9200     case elfcpp::R_ARM_LDR_SB_G1:
9201     case elfcpp::R_ARM_LDR_SB_G2:
9202       reloc_status =
9203           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9204                                               reloc_property->group_index(),
9205                                               relative_address_base);
9206       break;
9207
9208     case elfcpp::R_ARM_LDRS_PC_G0:
9209     case elfcpp::R_ARM_LDRS_PC_G1:
9210     case elfcpp::R_ARM_LDRS_PC_G2:
9211     case elfcpp::R_ARM_LDRS_SB_G0:
9212     case elfcpp::R_ARM_LDRS_SB_G1:
9213     case elfcpp::R_ARM_LDRS_SB_G2:
9214       reloc_status =
9215           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9216                                                reloc_property->group_index(),
9217                                                relative_address_base);
9218       break;
9219
9220     case elfcpp::R_ARM_LDC_PC_G0:
9221     case elfcpp::R_ARM_LDC_PC_G1:
9222     case elfcpp::R_ARM_LDC_PC_G2:
9223     case elfcpp::R_ARM_LDC_SB_G0:
9224     case elfcpp::R_ARM_LDC_SB_G1:
9225     case elfcpp::R_ARM_LDC_SB_G2:
9226       reloc_status =
9227           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9228                                               reloc_property->group_index(),
9229                                               relative_address_base);
9230       break;
9231
9232       // These are initial tls relocs, which are expected when
9233       // linking.
9234     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9235     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9236     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9237     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9238     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9239       reloc_status =
9240         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9241                            view, address, view_size);
9242       break;
9243
9244     // The known and unknown unsupported and/or deprecated relocations.
9245     case elfcpp::R_ARM_PC24:
9246     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9247     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9248     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9249     default:
9250       // Just silently leave the method. We should get an appropriate error
9251       // message in the scan methods.
9252       break;
9253     }
9254
9255   // Report any errors.
9256   switch (reloc_status)
9257     {
9258     case Arm_relocate_functions::STATUS_OKAY:
9259       break;
9260     case Arm_relocate_functions::STATUS_OVERFLOW:
9261       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9262                              _("relocation overflow in %s"),
9263                              reloc_property->name().c_str());
9264       break;
9265     case Arm_relocate_functions::STATUS_BAD_RELOC:
9266       gold_error_at_location(
9267         relinfo,
9268         relnum,
9269         rel.get_r_offset(),
9270         _("unexpected opcode while processing relocation %s"),
9271         reloc_property->name().c_str());
9272       break;
9273     default:
9274       gold_unreachable();
9275     }
9276
9277   return true;
9278 }
9279
9280 // Perform a TLS relocation.
9281
9282 template<bool big_endian>
9283 inline typename Arm_relocate_functions<big_endian>::Status
9284 Target_arm<big_endian>::Relocate::relocate_tls(
9285     const Relocate_info<32, big_endian>* relinfo,
9286     Target_arm<big_endian>* target,
9287     size_t relnum,
9288     const elfcpp::Rel<32, big_endian>& rel,
9289     unsigned int r_type,
9290     const Sized_symbol<32>* gsym,
9291     const Symbol_value<32>* psymval,
9292     unsigned char* view,
9293     elfcpp::Elf_types<32>::Elf_Addr address,
9294     section_size_type /*view_size*/ )
9295 {
9296   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9297   typedef Relocate_functions<32, big_endian> RelocFuncs;
9298   Output_segment* tls_segment = relinfo->layout->tls_segment();
9299
9300   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9301
9302   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9303
9304   const bool is_final = (gsym == NULL
9305                          ? !parameters->options().shared()
9306                          : gsym->final_value_is_known());
9307   const tls::Tls_optimization optimized_type
9308       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9309   switch (r_type)
9310     {
9311     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9312         {
9313           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9314           unsigned int got_offset;
9315           if (gsym != NULL)
9316             {
9317               gold_assert(gsym->has_got_offset(got_type));
9318               got_offset = gsym->got_offset(got_type) - target->got_size();
9319             }
9320           else
9321             {
9322               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9323               gold_assert(object->local_has_got_offset(r_sym, got_type));
9324               got_offset = (object->local_got_offset(r_sym, got_type)
9325                             - target->got_size());
9326             }
9327           if (optimized_type == tls::TLSOPT_NONE)
9328             {
9329               Arm_address got_entry =
9330                 target->got_plt_section()->address() + got_offset;
9331               
9332               // Relocate the field with the PC relative offset of the pair of
9333               // GOT entries.
9334               RelocFuncs::pcrel32(view, got_entry, address);
9335               return ArmRelocFuncs::STATUS_OKAY;
9336             }
9337         }
9338       break;
9339
9340     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9341       if (optimized_type == tls::TLSOPT_NONE)
9342         {
9343           // Relocate the field with the offset of the GOT entry for
9344           // the module index.
9345           unsigned int got_offset;
9346           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9347                         - target->got_size());
9348           Arm_address got_entry =
9349             target->got_plt_section()->address() + got_offset;
9350
9351           // Relocate the field with the PC relative offset of the pair of
9352           // GOT entries.
9353           RelocFuncs::pcrel32(view, got_entry, address);
9354           return ArmRelocFuncs::STATUS_OKAY;
9355         }
9356       break;
9357
9358     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9359       RelocFuncs::rel32(view, value);
9360       return ArmRelocFuncs::STATUS_OKAY;
9361
9362     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9363       if (optimized_type == tls::TLSOPT_NONE)
9364         {
9365           // Relocate the field with the offset of the GOT entry for
9366           // the tp-relative offset of the symbol.
9367           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9368           unsigned int got_offset;
9369           if (gsym != NULL)
9370             {
9371               gold_assert(gsym->has_got_offset(got_type));
9372               got_offset = gsym->got_offset(got_type);
9373             }
9374           else
9375             {
9376               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9377               gold_assert(object->local_has_got_offset(r_sym, got_type));
9378               got_offset = object->local_got_offset(r_sym, got_type);
9379             }
9380
9381           // All GOT offsets are relative to the end of the GOT.
9382           got_offset -= target->got_size();
9383
9384           Arm_address got_entry =
9385             target->got_plt_section()->address() + got_offset;
9386
9387           // Relocate the field with the PC relative offset of the GOT entry.
9388           RelocFuncs::pcrel32(view, got_entry, address);
9389           return ArmRelocFuncs::STATUS_OKAY;
9390         }
9391       break;
9392
9393     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9394       // If we're creating a shared library, a dynamic relocation will
9395       // have been created for this location, so do not apply it now.
9396       if (!parameters->options().shared())
9397         {
9398           gold_assert(tls_segment != NULL);
9399
9400           // $tp points to the TCB, which is followed by the TLS, so we
9401           // need to add TCB size to the offset.
9402           Arm_address aligned_tcb_size =
9403             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9404           RelocFuncs::rel32(view, value + aligned_tcb_size);
9405
9406         }
9407       return ArmRelocFuncs::STATUS_OKAY;
9408     
9409     default:
9410       gold_unreachable();
9411     }
9412
9413   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9414                          _("unsupported reloc %u"),
9415                          r_type);
9416   return ArmRelocFuncs::STATUS_BAD_RELOC;
9417 }
9418
9419 // Relocate section data.
9420
9421 template<bool big_endian>
9422 void
9423 Target_arm<big_endian>::relocate_section(
9424     const Relocate_info<32, big_endian>* relinfo,
9425     unsigned int sh_type,
9426     const unsigned char* prelocs,
9427     size_t reloc_count,
9428     Output_section* output_section,
9429     bool needs_special_offset_handling,
9430     unsigned char* view,
9431     Arm_address address,
9432     section_size_type view_size,
9433     const Reloc_symbol_changes* reloc_symbol_changes)
9434 {
9435   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9436   gold_assert(sh_type == elfcpp::SHT_REL);
9437
9438   // See if we are relocating a relaxed input section.  If so, the view
9439   // covers the whole output section and we need to adjust accordingly.
9440   if (needs_special_offset_handling)
9441     {
9442       const Output_relaxed_input_section* poris =
9443         output_section->find_relaxed_input_section(relinfo->object,
9444                                                    relinfo->data_shndx);
9445       if (poris != NULL)
9446         {
9447           Arm_address section_address = poris->address();
9448           section_size_type section_size = poris->data_size();
9449
9450           gold_assert((section_address >= address)
9451                       && ((section_address + section_size)
9452                           <= (address + view_size)));
9453
9454           off_t offset = section_address - address;
9455           view += offset;
9456           address += offset;
9457           view_size = section_size;
9458         }
9459     }
9460
9461   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9462                          Arm_relocate>(
9463     relinfo,
9464     this,
9465     prelocs,
9466     reloc_count,
9467     output_section,
9468     needs_special_offset_handling,
9469     view,
9470     address,
9471     view_size,
9472     reloc_symbol_changes);
9473 }
9474
9475 // Return the size of a relocation while scanning during a relocatable
9476 // link.
9477
9478 template<bool big_endian>
9479 unsigned int
9480 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9481     unsigned int r_type,
9482     Relobj* object)
9483 {
9484   r_type = get_real_reloc_type(r_type);
9485   const Arm_reloc_property* arp =
9486       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9487   if (arp != NULL)
9488     return arp->size();
9489   else
9490     {
9491       std::string reloc_name =
9492         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9493       gold_error(_("%s: unexpected %s in object file"),
9494                  object->name().c_str(), reloc_name.c_str());
9495       return 0;
9496     }
9497 }
9498
9499 // Scan the relocs during a relocatable link.
9500
9501 template<bool big_endian>
9502 void
9503 Target_arm<big_endian>::scan_relocatable_relocs(
9504     Symbol_table* symtab,
9505     Layout* layout,
9506     Sized_relobj_file<32, big_endian>* object,
9507     unsigned int data_shndx,
9508     unsigned int sh_type,
9509     const unsigned char* prelocs,
9510     size_t reloc_count,
9511     Output_section* output_section,
9512     bool needs_special_offset_handling,
9513     size_t local_symbol_count,
9514     const unsigned char* plocal_symbols,
9515     Relocatable_relocs* rr)
9516 {
9517   gold_assert(sh_type == elfcpp::SHT_REL);
9518
9519   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9520     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9521
9522   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9523       Scan_relocatable_relocs>(
9524     symtab,
9525     layout,
9526     object,
9527     data_shndx,
9528     prelocs,
9529     reloc_count,
9530     output_section,
9531     needs_special_offset_handling,
9532     local_symbol_count,
9533     plocal_symbols,
9534     rr);
9535 }
9536
9537 // Relocate a section during a relocatable link.
9538
9539 template<bool big_endian>
9540 void
9541 Target_arm<big_endian>::relocate_for_relocatable(
9542     const Relocate_info<32, big_endian>* relinfo,
9543     unsigned int sh_type,
9544     const unsigned char* prelocs,
9545     size_t reloc_count,
9546     Output_section* output_section,
9547     off_t offset_in_output_section,
9548     const Relocatable_relocs* rr,
9549     unsigned char* view,
9550     Arm_address view_address,
9551     section_size_type view_size,
9552     unsigned char* reloc_view,
9553     section_size_type reloc_view_size)
9554 {
9555   gold_assert(sh_type == elfcpp::SHT_REL);
9556
9557   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9558     relinfo,
9559     prelocs,
9560     reloc_count,
9561     output_section,
9562     offset_in_output_section,
9563     rr,
9564     view,
9565     view_address,
9566     view_size,
9567     reloc_view,
9568     reloc_view_size);
9569 }
9570
9571 // Perform target-specific processing in a relocatable link.  This is
9572 // only used if we use the relocation strategy RELOC_SPECIAL.
9573
9574 template<bool big_endian>
9575 void
9576 Target_arm<big_endian>::relocate_special_relocatable(
9577     const Relocate_info<32, big_endian>* relinfo,
9578     unsigned int sh_type,
9579     const unsigned char* preloc_in,
9580     size_t relnum,
9581     Output_section* output_section,
9582     off_t offset_in_output_section,
9583     unsigned char* view,
9584     elfcpp::Elf_types<32>::Elf_Addr view_address,
9585     section_size_type,
9586     unsigned char* preloc_out)
9587 {
9588   // We can only handle REL type relocation sections.
9589   gold_assert(sh_type == elfcpp::SHT_REL);
9590
9591   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9592   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9593     Reltype_write;
9594   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9595
9596   const Arm_relobj<big_endian>* object =
9597     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9598   const unsigned int local_count = object->local_symbol_count();
9599
9600   Reltype reloc(preloc_in);
9601   Reltype_write reloc_write(preloc_out);
9602
9603   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9604   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9605   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9606
9607   const Arm_reloc_property* arp =
9608     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9609   gold_assert(arp != NULL);
9610
9611   // Get the new symbol index.
9612   // We only use RELOC_SPECIAL strategy in local relocations.
9613   gold_assert(r_sym < local_count);
9614
9615   // We are adjusting a section symbol.  We need to find
9616   // the symbol table index of the section symbol for
9617   // the output section corresponding to input section
9618   // in which this symbol is defined.
9619   bool is_ordinary;
9620   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9621   gold_assert(is_ordinary);
9622   Output_section* os = object->output_section(shndx);
9623   gold_assert(os != NULL);
9624   gold_assert(os->needs_symtab_index());
9625   unsigned int new_symndx = os->symtab_index();
9626
9627   // Get the new offset--the location in the output section where
9628   // this relocation should be applied.
9629
9630   Arm_address offset = reloc.get_r_offset();
9631   Arm_address new_offset;
9632   if (offset_in_output_section != invalid_address)
9633     new_offset = offset + offset_in_output_section;
9634   else
9635     {
9636       section_offset_type sot_offset =
9637           convert_types<section_offset_type, Arm_address>(offset);
9638       section_offset_type new_sot_offset =
9639           output_section->output_offset(object, relinfo->data_shndx,
9640                                         sot_offset);
9641       gold_assert(new_sot_offset != -1);
9642       new_offset = new_sot_offset;
9643     }
9644
9645   // In an object file, r_offset is an offset within the section.
9646   // In an executable or dynamic object, generated by
9647   // --emit-relocs, r_offset is an absolute address.
9648   if (!parameters->options().relocatable())
9649     {
9650       new_offset += view_address;
9651       if (offset_in_output_section != invalid_address)
9652         new_offset -= offset_in_output_section;
9653     }
9654
9655   reloc_write.put_r_offset(new_offset);
9656   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9657
9658   // Handle the reloc addend.
9659   // The relocation uses a section symbol in the input file.
9660   // We are adjusting it to use a section symbol in the output
9661   // file.  The input section symbol refers to some address in
9662   // the input section.  We need the relocation in the output
9663   // file to refer to that same address.  This adjustment to
9664   // the addend is the same calculation we use for a simple
9665   // absolute relocation for the input section symbol.
9666
9667   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9668
9669   // Handle THUMB bit.
9670   Symbol_value<32> symval;
9671   Arm_address thumb_bit =
9672      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9673   if (thumb_bit != 0
9674       && arp->uses_thumb_bit() 
9675       && ((psymval->value(object, 0) & 1) != 0))
9676     {
9677       Arm_address stripped_value =
9678         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9679       symval.set_output_value(stripped_value);
9680       psymval = &symval;
9681     } 
9682
9683   unsigned char* paddend = view + offset;
9684   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9685         Arm_relocate_functions<big_endian>::STATUS_OKAY;
9686   switch (r_type)
9687     {
9688     case elfcpp::R_ARM_ABS8:
9689       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9690                                                               psymval);
9691       break;
9692
9693     case elfcpp::R_ARM_ABS12:
9694       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9695                                                                psymval);
9696       break;
9697
9698     case elfcpp::R_ARM_ABS16:
9699       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9700                                                                psymval);
9701       break;
9702
9703     case elfcpp::R_ARM_THM_ABS5:
9704       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9705                                                                   object,
9706                                                                   psymval);
9707       break;
9708
9709     case elfcpp::R_ARM_MOVW_ABS_NC:
9710     case elfcpp::R_ARM_MOVW_PREL_NC:
9711     case elfcpp::R_ARM_MOVW_BREL_NC:
9712     case elfcpp::R_ARM_MOVW_BREL:
9713       reloc_status = Arm_relocate_functions<big_endian>::movw(
9714           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9715       break;
9716
9717     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9718     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9719     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9720     case elfcpp::R_ARM_THM_MOVW_BREL:
9721       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9722           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9723       break;
9724
9725     case elfcpp::R_ARM_THM_CALL:
9726     case elfcpp::R_ARM_THM_XPC22:
9727     case elfcpp::R_ARM_THM_JUMP24:
9728       reloc_status =
9729         Arm_relocate_functions<big_endian>::thumb_branch_common(
9730             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9731             false);
9732       break;
9733
9734     case elfcpp::R_ARM_PLT32:
9735     case elfcpp::R_ARM_CALL:
9736     case elfcpp::R_ARM_JUMP24:
9737     case elfcpp::R_ARM_XPC25:
9738       reloc_status =
9739         Arm_relocate_functions<big_endian>::arm_branch_common(
9740             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9741             false);
9742       break;
9743
9744     case elfcpp::R_ARM_THM_JUMP19:
9745       reloc_status =
9746         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9747                                                        psymval, 0, thumb_bit);
9748       break;
9749
9750     case elfcpp::R_ARM_THM_JUMP6:
9751       reloc_status =
9752         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9753                                                       0);
9754       break;
9755
9756     case elfcpp::R_ARM_THM_JUMP8:
9757       reloc_status =
9758         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9759                                                       0);
9760       break;
9761
9762     case elfcpp::R_ARM_THM_JUMP11:
9763       reloc_status =
9764         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9765                                                        0);
9766       break;
9767
9768     case elfcpp::R_ARM_PREL31:
9769       reloc_status =
9770         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9771                                                    thumb_bit);
9772       break;
9773
9774     case elfcpp::R_ARM_THM_PC8:
9775       reloc_status =
9776         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9777                                                     0);
9778       break;
9779
9780     case elfcpp::R_ARM_THM_PC12:
9781       reloc_status =
9782         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9783                                                      0);
9784       break;
9785
9786     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9787       reloc_status =
9788         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9789                                                       0, thumb_bit);
9790       break;
9791
9792     // These relocation truncate relocation results so we cannot handle them
9793     // in a relocatable link.
9794     case elfcpp::R_ARM_MOVT_ABS:
9795     case elfcpp::R_ARM_THM_MOVT_ABS:
9796     case elfcpp::R_ARM_MOVT_PREL:
9797     case elfcpp::R_ARM_MOVT_BREL:
9798     case elfcpp::R_ARM_THM_MOVT_PREL:
9799     case elfcpp::R_ARM_THM_MOVT_BREL:
9800     case elfcpp::R_ARM_ALU_PC_G0_NC:
9801     case elfcpp::R_ARM_ALU_PC_G0:
9802     case elfcpp::R_ARM_ALU_PC_G1_NC:
9803     case elfcpp::R_ARM_ALU_PC_G1:
9804     case elfcpp::R_ARM_ALU_PC_G2:
9805     case elfcpp::R_ARM_ALU_SB_G0_NC:
9806     case elfcpp::R_ARM_ALU_SB_G0:
9807     case elfcpp::R_ARM_ALU_SB_G1_NC:
9808     case elfcpp::R_ARM_ALU_SB_G1:
9809     case elfcpp::R_ARM_ALU_SB_G2:
9810     case elfcpp::R_ARM_LDR_PC_G0:
9811     case elfcpp::R_ARM_LDR_PC_G1:
9812     case elfcpp::R_ARM_LDR_PC_G2:
9813     case elfcpp::R_ARM_LDR_SB_G0:
9814     case elfcpp::R_ARM_LDR_SB_G1:
9815     case elfcpp::R_ARM_LDR_SB_G2:
9816     case elfcpp::R_ARM_LDRS_PC_G0:
9817     case elfcpp::R_ARM_LDRS_PC_G1:
9818     case elfcpp::R_ARM_LDRS_PC_G2:
9819     case elfcpp::R_ARM_LDRS_SB_G0:
9820     case elfcpp::R_ARM_LDRS_SB_G1:
9821     case elfcpp::R_ARM_LDRS_SB_G2:
9822     case elfcpp::R_ARM_LDC_PC_G0:
9823     case elfcpp::R_ARM_LDC_PC_G1:
9824     case elfcpp::R_ARM_LDC_PC_G2:
9825     case elfcpp::R_ARM_LDC_SB_G0:
9826     case elfcpp::R_ARM_LDC_SB_G1:
9827     case elfcpp::R_ARM_LDC_SB_G2:
9828       gold_error(_("cannot handle %s in a relocatable link"),
9829                  arp->name().c_str());
9830       break;
9831
9832     default:
9833       gold_unreachable();
9834     }
9835
9836   // Report any errors.
9837   switch (reloc_status)
9838     {
9839     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9840       break;
9841     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9842       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9843                              _("relocation overflow in %s"),
9844                              arp->name().c_str());
9845       break;
9846     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9847       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9848         _("unexpected opcode while processing relocation %s"),
9849         arp->name().c_str());
9850       break;
9851     default:
9852       gold_unreachable();
9853     }
9854 }
9855
9856 // Return the value to use for a dynamic symbol which requires special
9857 // treatment.  This is how we support equality comparisons of function
9858 // pointers across shared library boundaries, as described in the
9859 // processor specific ABI supplement.
9860
9861 template<bool big_endian>
9862 uint64_t
9863 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9864 {
9865   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9866   return this->plt_section()->address() + gsym->plt_offset();
9867 }
9868
9869 // Map platform-specific relocs to real relocs
9870 //
9871 template<bool big_endian>
9872 unsigned int
9873 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9874 {
9875   switch (r_type)
9876     {
9877     case elfcpp::R_ARM_TARGET1:
9878       // This is either R_ARM_ABS32 or R_ARM_REL32;
9879       return elfcpp::R_ARM_ABS32;
9880
9881     case elfcpp::R_ARM_TARGET2:
9882       // This can be any reloc type but usually is R_ARM_GOT_PREL
9883       return elfcpp::R_ARM_GOT_PREL;
9884
9885     default:
9886       return r_type;
9887     }
9888 }
9889
9890 // Whether if two EABI versions V1 and V2 are compatible.
9891
9892 template<bool big_endian>
9893 bool
9894 Target_arm<big_endian>::are_eabi_versions_compatible(
9895     elfcpp::Elf_Word v1,
9896     elfcpp::Elf_Word v2)
9897 {
9898   // v4 and v5 are the same spec before and after it was released,
9899   // so allow mixing them.
9900   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9901       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9902       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9903     return true;
9904
9905   return v1 == v2;
9906 }
9907
9908 // Combine FLAGS from an input object called NAME and the processor-specific
9909 // flags in the ELF header of the output.  Much of this is adapted from the
9910 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9911 // in bfd/elf32-arm.c.
9912
9913 template<bool big_endian>
9914 void
9915 Target_arm<big_endian>::merge_processor_specific_flags(
9916     const std::string& name,
9917     elfcpp::Elf_Word flags)
9918 {
9919   if (this->are_processor_specific_flags_set())
9920     {
9921       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9922
9923       // Nothing to merge if flags equal to those in output.
9924       if (flags == out_flags)
9925         return;
9926
9927       // Complain about various flag mismatches.
9928       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9929       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9930       if (!this->are_eabi_versions_compatible(version1, version2)
9931           && parameters->options().warn_mismatch())
9932         gold_error(_("Source object %s has EABI version %d but output has "
9933                      "EABI version %d."),
9934                    name.c_str(),
9935                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9936                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9937     }
9938   else
9939     {
9940       // If the input is the default architecture and had the default
9941       // flags then do not bother setting the flags for the output
9942       // architecture, instead allow future merges to do this.  If no
9943       // future merges ever set these flags then they will retain their
9944       // uninitialised values, which surprise surprise, correspond
9945       // to the default values.
9946       if (flags == 0)
9947         return;
9948
9949       // This is the first time, just copy the flags.
9950       // We only copy the EABI version for now.
9951       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9952     }
9953 }
9954
9955 // Adjust ELF file header.
9956 template<bool big_endian>
9957 void
9958 Target_arm<big_endian>::do_adjust_elf_header(
9959     unsigned char* view,
9960     int len) const
9961 {
9962   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9963
9964   elfcpp::Ehdr<32, big_endian> ehdr(view);
9965   unsigned char e_ident[elfcpp::EI_NIDENT];
9966   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9967
9968   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9969       == elfcpp::EF_ARM_EABI_UNKNOWN)
9970     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9971   else
9972     e_ident[elfcpp::EI_OSABI] = 0;
9973   e_ident[elfcpp::EI_ABIVERSION] = 0;
9974
9975   // FIXME: Do EF_ARM_BE8 adjustment.
9976
9977   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9978   oehdr.put_e_ident(e_ident);
9979 }
9980
9981 // do_make_elf_object to override the same function in the base class.
9982 // We need to use a target-specific sub-class of
9983 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9984 // Hence we need to have our own ELF object creation.
9985
9986 template<bool big_endian>
9987 Object*
9988 Target_arm<big_endian>::do_make_elf_object(
9989     const std::string& name,
9990     Input_file* input_file,
9991     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9992 {
9993   int et = ehdr.get_e_type();
9994   if (et == elfcpp::ET_REL)
9995     {
9996       Arm_relobj<big_endian>* obj =
9997         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9998       obj->setup();
9999       return obj;
10000     }
10001   else if (et == elfcpp::ET_DYN)
10002     {
10003       Sized_dynobj<32, big_endian>* obj =
10004         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10005       obj->setup();
10006       return obj;
10007     }
10008   else
10009     {
10010       gold_error(_("%s: unsupported ELF file type %d"),
10011                  name.c_str(), et);
10012       return NULL;
10013     }
10014 }
10015
10016 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10017 // Returns -1 if no architecture could be read.
10018 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10019
10020 template<bool big_endian>
10021 int
10022 Target_arm<big_endian>::get_secondary_compatible_arch(
10023     const Attributes_section_data* pasd)
10024 {
10025   const Object_attribute* known_attributes =
10026     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10027
10028   // Note: the tag and its argument below are uleb128 values, though
10029   // currently-defined values fit in one byte for each.
10030   const std::string& sv =
10031     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10032   if (sv.size() == 2
10033       && sv.data()[0] == elfcpp::Tag_CPU_arch
10034       && (sv.data()[1] & 128) != 128)
10035    return sv.data()[1];
10036
10037   // This tag is "safely ignorable", so don't complain if it looks funny.
10038   return -1;
10039 }
10040
10041 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10042 // The tag is removed if ARCH is -1.
10043 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10044
10045 template<bool big_endian>
10046 void
10047 Target_arm<big_endian>::set_secondary_compatible_arch(
10048     Attributes_section_data* pasd,
10049     int arch)
10050 {
10051   Object_attribute* known_attributes =
10052     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10053
10054   if (arch == -1)
10055     {
10056       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10057       return;
10058     }
10059
10060   // Note: the tag and its argument below are uleb128 values, though
10061   // currently-defined values fit in one byte for each.
10062   char sv[3];
10063   sv[0] = elfcpp::Tag_CPU_arch;
10064   gold_assert(arch != 0);
10065   sv[1] = arch;
10066   sv[2] = '\0';
10067
10068   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10069 }
10070
10071 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10072 // into account.
10073 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10074
10075 template<bool big_endian>
10076 int
10077 Target_arm<big_endian>::tag_cpu_arch_combine(
10078     const char* name,
10079     int oldtag,
10080     int* secondary_compat_out,
10081     int newtag,
10082     int secondary_compat)
10083 {
10084 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10085   static const int v6t2[] =
10086     {
10087       T(V6T2),   // PRE_V4.
10088       T(V6T2),   // V4.
10089       T(V6T2),   // V4T.
10090       T(V6T2),   // V5T.
10091       T(V6T2),   // V5TE.
10092       T(V6T2),   // V5TEJ.
10093       T(V6T2),   // V6.
10094       T(V7),     // V6KZ.
10095       T(V6T2)    // V6T2.
10096     };
10097   static const int v6k[] =
10098     {
10099       T(V6K),    // PRE_V4.
10100       T(V6K),    // V4.
10101       T(V6K),    // V4T.
10102       T(V6K),    // V5T.
10103       T(V6K),    // V5TE.
10104       T(V6K),    // V5TEJ.
10105       T(V6K),    // V6.
10106       T(V6KZ),   // V6KZ.
10107       T(V7),     // V6T2.
10108       T(V6K)     // V6K.
10109     };
10110   static const int v7[] =
10111     {
10112       T(V7),     // PRE_V4.
10113       T(V7),     // V4.
10114       T(V7),     // V4T.
10115       T(V7),     // V5T.
10116       T(V7),     // V5TE.
10117       T(V7),     // V5TEJ.
10118       T(V7),     // V6.
10119       T(V7),     // V6KZ.
10120       T(V7),     // V6T2.
10121       T(V7),     // V6K.
10122       T(V7)      // V7.
10123     };
10124   static const int v6_m[] =
10125     {
10126       -1,        // PRE_V4.
10127       -1,        // V4.
10128       T(V6K),    // V4T.
10129       T(V6K),    // V5T.
10130       T(V6K),    // V5TE.
10131       T(V6K),    // V5TEJ.
10132       T(V6K),    // V6.
10133       T(V6KZ),   // V6KZ.
10134       T(V7),     // V6T2.
10135       T(V6K),    // V6K.
10136       T(V7),     // V7.
10137       T(V6_M)    // V6_M.
10138     };
10139   static const int v6s_m[] =
10140     {
10141       -1,        // PRE_V4.
10142       -1,        // V4.
10143       T(V6K),    // V4T.
10144       T(V6K),    // V5T.
10145       T(V6K),    // V5TE.
10146       T(V6K),    // V5TEJ.
10147       T(V6K),    // V6.
10148       T(V6KZ),   // V6KZ.
10149       T(V7),     // V6T2.
10150       T(V6K),    // V6K.
10151       T(V7),     // V7.
10152       T(V6S_M),  // V6_M.
10153       T(V6S_M)   // V6S_M.
10154     };
10155   static const int v7e_m[] =
10156     {
10157       -1,       // PRE_V4.
10158       -1,       // V4.
10159       T(V7E_M), // V4T.
10160       T(V7E_M), // V5T.
10161       T(V7E_M), // V5TE.
10162       T(V7E_M), // V5TEJ.
10163       T(V7E_M), // V6.
10164       T(V7E_M), // V6KZ.
10165       T(V7E_M), // V6T2.
10166       T(V7E_M), // V6K.
10167       T(V7E_M), // V7.
10168       T(V7E_M), // V6_M.
10169       T(V7E_M), // V6S_M.
10170       T(V7E_M)  // V7E_M.
10171     };
10172   static const int v4t_plus_v6_m[] =
10173     {
10174       -1,               // PRE_V4.
10175       -1,               // V4.
10176       T(V4T),           // V4T.
10177       T(V5T),           // V5T.
10178       T(V5TE),          // V5TE.
10179       T(V5TEJ),         // V5TEJ.
10180       T(V6),            // V6.
10181       T(V6KZ),          // V6KZ.
10182       T(V6T2),          // V6T2.
10183       T(V6K),           // V6K.
10184       T(V7),            // V7.
10185       T(V6_M),          // V6_M.
10186       T(V6S_M),         // V6S_M.
10187       T(V7E_M),         // V7E_M.
10188       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10189     };
10190   static const int* comb[] =
10191     {
10192       v6t2,
10193       v6k,
10194       v7,
10195       v6_m,
10196       v6s_m,
10197       v7e_m,
10198       // Pseudo-architecture.
10199       v4t_plus_v6_m
10200     };
10201
10202   // Check we've not got a higher architecture than we know about.
10203
10204   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10205     {
10206       gold_error(_("%s: unknown CPU architecture"), name);
10207       return -1;
10208     }
10209
10210   // Override old tag if we have a Tag_also_compatible_with on the output.
10211
10212   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10213       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10214     oldtag = T(V4T_PLUS_V6_M);
10215
10216   // And override the new tag if we have a Tag_also_compatible_with on the
10217   // input.
10218
10219   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10220       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10221     newtag = T(V4T_PLUS_V6_M);
10222
10223   // Architectures before V6KZ add features monotonically.
10224   int tagh = std::max(oldtag, newtag);
10225   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10226     return tagh;
10227
10228   int tagl = std::min(oldtag, newtag);
10229   int result = comb[tagh - T(V6T2)][tagl];
10230
10231   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10232   // as the canonical version.
10233   if (result == T(V4T_PLUS_V6_M))
10234     {
10235       result = T(V4T);
10236       *secondary_compat_out = T(V6_M);
10237     }
10238   else
10239     *secondary_compat_out = -1;
10240
10241   if (result == -1)
10242     {
10243       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10244                  name, oldtag, newtag);
10245       return -1;
10246     }
10247
10248   return result;
10249 #undef T
10250 }
10251
10252 // Helper to print AEABI enum tag value.
10253
10254 template<bool big_endian>
10255 std::string
10256 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10257 {
10258   static const char* aeabi_enum_names[] =
10259     { "", "variable-size", "32-bit", "" };
10260   const size_t aeabi_enum_names_size =
10261     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10262
10263   if (value < aeabi_enum_names_size)
10264     return std::string(aeabi_enum_names[value]);
10265   else
10266     {
10267       char buffer[100];
10268       sprintf(buffer, "<unknown value %u>", value);
10269       return std::string(buffer);
10270     }
10271 }
10272
10273 // Return the string value to store in TAG_CPU_name.
10274
10275 template<bool big_endian>
10276 std::string
10277 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10278 {
10279   static const char* name_table[] = {
10280     // These aren't real CPU names, but we can't guess
10281     // that from the architecture version alone.
10282    "Pre v4",
10283    "ARM v4",
10284    "ARM v4T",
10285    "ARM v5T",
10286    "ARM v5TE",
10287    "ARM v5TEJ",
10288    "ARM v6",
10289    "ARM v6KZ",
10290    "ARM v6T2",
10291    "ARM v6K",
10292    "ARM v7",
10293    "ARM v6-M",
10294    "ARM v6S-M",
10295    "ARM v7E-M"
10296  };
10297  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10298
10299   if (value < name_table_size)
10300     return std::string(name_table[value]);
10301   else
10302     {
10303       char buffer[100];
10304       sprintf(buffer, "<unknown CPU value %u>", value);
10305       return std::string(buffer);
10306     } 
10307 }
10308
10309 // Merge object attributes from input file called NAME with those of the
10310 // output.  The input object attributes are in the object pointed by PASD.
10311
10312 template<bool big_endian>
10313 void
10314 Target_arm<big_endian>::merge_object_attributes(
10315     const char* name,
10316     const Attributes_section_data* pasd)
10317 {
10318   // Return if there is no attributes section data.
10319   if (pasd == NULL)
10320     return;
10321
10322   // If output has no object attributes, just copy.
10323   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10324   if (this->attributes_section_data_ == NULL)
10325     {
10326       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10327       Object_attribute* out_attr =
10328         this->attributes_section_data_->known_attributes(vendor);
10329
10330       // We do not output objects with Tag_MPextension_use_legacy - we move
10331       //  the attribute's value to Tag_MPextension_use.  */
10332       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10333         {
10334           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10335               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10336                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10337             {
10338               gold_error(_("%s has both the current and legacy "
10339                            "Tag_MPextension_use attributes"),
10340                          name);
10341             }
10342
10343           out_attr[elfcpp::Tag_MPextension_use] =
10344             out_attr[elfcpp::Tag_MPextension_use_legacy];
10345           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10346           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10347         }
10348
10349       return;
10350     }
10351
10352   const Object_attribute* in_attr = pasd->known_attributes(vendor);
10353   Object_attribute* out_attr =
10354     this->attributes_section_data_->known_attributes(vendor);
10355
10356   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10357   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10358       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10359     {
10360       // Ignore mismatches if the object doesn't use floating point.  */
10361       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10362         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10363             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10364       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10365                && parameters->options().warn_mismatch())
10366         gold_error(_("%s uses VFP register arguments, output does not"),
10367                    name);
10368     }
10369
10370   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10371     {
10372       // Merge this attribute with existing attributes.
10373       switch (i)
10374         {
10375         case elfcpp::Tag_CPU_raw_name:
10376         case elfcpp::Tag_CPU_name:
10377           // These are merged after Tag_CPU_arch.
10378           break;
10379
10380         case elfcpp::Tag_ABI_optimization_goals:
10381         case elfcpp::Tag_ABI_FP_optimization_goals:
10382           // Use the first value seen.
10383           break;
10384
10385         case elfcpp::Tag_CPU_arch:
10386           {
10387             unsigned int saved_out_attr = out_attr->int_value();
10388             // Merge Tag_CPU_arch and Tag_also_compatible_with.
10389             int secondary_compat =
10390               this->get_secondary_compatible_arch(pasd);
10391             int secondary_compat_out =
10392               this->get_secondary_compatible_arch(
10393                   this->attributes_section_data_);
10394             out_attr[i].set_int_value(
10395                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10396                                      &secondary_compat_out,
10397                                      in_attr[i].int_value(),
10398                                      secondary_compat));
10399             this->set_secondary_compatible_arch(this->attributes_section_data_,
10400                                                 secondary_compat_out);
10401
10402             // Merge Tag_CPU_name and Tag_CPU_raw_name.
10403             if (out_attr[i].int_value() == saved_out_attr)
10404               ; // Leave the names alone.
10405             else if (out_attr[i].int_value() == in_attr[i].int_value())
10406               {
10407                 // The output architecture has been changed to match the
10408                 // input architecture.  Use the input names.
10409                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10410                     in_attr[elfcpp::Tag_CPU_name].string_value());
10411                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10412                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10413               }
10414             else
10415               {
10416                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10417                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10418               }
10419
10420             // If we still don't have a value for Tag_CPU_name,
10421             // make one up now.  Tag_CPU_raw_name remains blank.
10422             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10423               {
10424                 const std::string cpu_name =
10425                   this->tag_cpu_name_value(out_attr[i].int_value());
10426                 // FIXME:  If we see an unknown CPU, this will be set
10427                 // to "<unknown CPU n>", where n is the attribute value.
10428                 // This is different from BFD, which leaves the name alone.
10429                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10430               }
10431           }
10432           break;
10433
10434         case elfcpp::Tag_ARM_ISA_use:
10435         case elfcpp::Tag_THUMB_ISA_use:
10436         case elfcpp::Tag_WMMX_arch:
10437         case elfcpp::Tag_Advanced_SIMD_arch:
10438           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10439         case elfcpp::Tag_ABI_FP_rounding:
10440         case elfcpp::Tag_ABI_FP_exceptions:
10441         case elfcpp::Tag_ABI_FP_user_exceptions:
10442         case elfcpp::Tag_ABI_FP_number_model:
10443         case elfcpp::Tag_VFP_HP_extension:
10444         case elfcpp::Tag_CPU_unaligned_access:
10445         case elfcpp::Tag_T2EE_use:
10446         case elfcpp::Tag_Virtualization_use:
10447         case elfcpp::Tag_MPextension_use:
10448           // Use the largest value specified.
10449           if (in_attr[i].int_value() > out_attr[i].int_value())
10450             out_attr[i].set_int_value(in_attr[i].int_value());
10451           break;
10452
10453         case elfcpp::Tag_ABI_align8_preserved:
10454         case elfcpp::Tag_ABI_PCS_RO_data:
10455           // Use the smallest value specified.
10456           if (in_attr[i].int_value() < out_attr[i].int_value())
10457             out_attr[i].set_int_value(in_attr[i].int_value());
10458           break;
10459
10460         case elfcpp::Tag_ABI_align8_needed:
10461           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10462               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10463                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10464                       == 0)))
10465             {
10466               // This error message should be enabled once all non-conforming
10467               // binaries in the toolchain have had the attributes set
10468               // properly.
10469               // gold_error(_("output 8-byte data alignment conflicts with %s"),
10470               //            name);
10471             }
10472           // Fall through.
10473         case elfcpp::Tag_ABI_FP_denormal:
10474         case elfcpp::Tag_ABI_PCS_GOT_use:
10475           {
10476             // These tags have 0 = don't care, 1 = strong requirement,
10477             // 2 = weak requirement.
10478             static const int order_021[3] = {0, 2, 1};
10479
10480             // Use the "greatest" from the sequence 0, 2, 1, or the largest
10481             // value if greater than 2 (for future-proofing).
10482             if ((in_attr[i].int_value() > 2
10483                  && in_attr[i].int_value() > out_attr[i].int_value())
10484                 || (in_attr[i].int_value() <= 2
10485                     && out_attr[i].int_value() <= 2
10486                     && (order_021[in_attr[i].int_value()]
10487                         > order_021[out_attr[i].int_value()])))
10488               out_attr[i].set_int_value(in_attr[i].int_value());
10489           }
10490           break;
10491
10492         case elfcpp::Tag_CPU_arch_profile:
10493           if (out_attr[i].int_value() != in_attr[i].int_value())
10494             {
10495               // 0 will merge with anything.
10496               // 'A' and 'S' merge to 'A'.
10497               // 'R' and 'S' merge to 'R'.
10498               // 'M' and 'A|R|S' is an error.
10499               if (out_attr[i].int_value() == 0
10500                   || (out_attr[i].int_value() == 'S'
10501                       && (in_attr[i].int_value() == 'A'
10502                           || in_attr[i].int_value() == 'R')))
10503                 out_attr[i].set_int_value(in_attr[i].int_value());
10504               else if (in_attr[i].int_value() == 0
10505                        || (in_attr[i].int_value() == 'S'
10506                            && (out_attr[i].int_value() == 'A'
10507                                || out_attr[i].int_value() == 'R')))
10508                 ; // Do nothing.
10509               else if (parameters->options().warn_mismatch())
10510                 {
10511                   gold_error
10512                     (_("conflicting architecture profiles %c/%c"),
10513                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10514                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10515                 }
10516             }
10517           break;
10518         case elfcpp::Tag_VFP_arch:
10519             {
10520               static const struct
10521               {
10522                   int ver;
10523                   int regs;
10524               } vfp_versions[7] =
10525                 {
10526                   {0, 0},
10527                   {1, 16},
10528                   {2, 16},
10529                   {3, 32},
10530                   {3, 16},
10531                   {4, 32},
10532                   {4, 16}
10533                 };
10534
10535               // Values greater than 6 aren't defined, so just pick the
10536               // biggest.
10537               if (in_attr[i].int_value() > 6
10538                   && in_attr[i].int_value() > out_attr[i].int_value())
10539                 {
10540                   *out_attr = *in_attr;
10541                   break;
10542                 }
10543               // The output uses the superset of input features
10544               // (ISA version) and registers.
10545               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10546                                  vfp_versions[out_attr[i].int_value()].ver);
10547               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10548                                   vfp_versions[out_attr[i].int_value()].regs);
10549               // This assumes all possible supersets are also a valid
10550               // options.
10551               int newval;
10552               for (newval = 6; newval > 0; newval--)
10553                 {
10554                   if (regs == vfp_versions[newval].regs
10555                       && ver == vfp_versions[newval].ver)
10556                     break;
10557                 }
10558               out_attr[i].set_int_value(newval);
10559             }
10560           break;
10561         case elfcpp::Tag_PCS_config:
10562           if (out_attr[i].int_value() == 0)
10563             out_attr[i].set_int_value(in_attr[i].int_value());
10564           else if (in_attr[i].int_value() != 0
10565                    && out_attr[i].int_value() != 0
10566                    && parameters->options().warn_mismatch())
10567             {
10568               // It's sometimes ok to mix different configs, so this is only
10569               // a warning.
10570               gold_warning(_("%s: conflicting platform configuration"), name);
10571             }
10572           break;
10573         case elfcpp::Tag_ABI_PCS_R9_use:
10574           if (in_attr[i].int_value() != out_attr[i].int_value()
10575               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10576               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10577               && parameters->options().warn_mismatch())
10578             {
10579               gold_error(_("%s: conflicting use of R9"), name);
10580             }
10581           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10582             out_attr[i].set_int_value(in_attr[i].int_value());
10583           break;
10584         case elfcpp::Tag_ABI_PCS_RW_data:
10585           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10586               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10587                   != elfcpp::AEABI_R9_SB)
10588               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10589                   != elfcpp::AEABI_R9_unused)
10590               && parameters->options().warn_mismatch())
10591             {
10592               gold_error(_("%s: SB relative addressing conflicts with use "
10593                            "of R9"),
10594                            name);
10595             }
10596           // Use the smallest value specified.
10597           if (in_attr[i].int_value() < out_attr[i].int_value())
10598             out_attr[i].set_int_value(in_attr[i].int_value());
10599           break;
10600         case elfcpp::Tag_ABI_PCS_wchar_t:
10601           if (out_attr[i].int_value()
10602               && in_attr[i].int_value()
10603               && out_attr[i].int_value() != in_attr[i].int_value()
10604               && parameters->options().warn_mismatch()
10605               && parameters->options().wchar_size_warning())
10606             {
10607               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10608                              "use %u-byte wchar_t; use of wchar_t values "
10609                              "across objects may fail"),
10610                            name, in_attr[i].int_value(),
10611                            out_attr[i].int_value());
10612             }
10613           else if (in_attr[i].int_value() && !out_attr[i].int_value())
10614             out_attr[i].set_int_value(in_attr[i].int_value());
10615           break;
10616         case elfcpp::Tag_ABI_enum_size:
10617           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10618             {
10619               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10620                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10621                 {
10622                   // The existing object is compatible with anything.
10623                   // Use whatever requirements the new object has.
10624                   out_attr[i].set_int_value(in_attr[i].int_value());
10625                 }
10626               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10627                        && out_attr[i].int_value() != in_attr[i].int_value()
10628                        && parameters->options().warn_mismatch()
10629                        && parameters->options().enum_size_warning())
10630                 {
10631                   unsigned int in_value = in_attr[i].int_value();
10632                   unsigned int out_value = out_attr[i].int_value();
10633                   gold_warning(_("%s uses %s enums yet the output is to use "
10634                                  "%s enums; use of enum values across objects "
10635                                  "may fail"),
10636                                name,
10637                                this->aeabi_enum_name(in_value).c_str(),
10638                                this->aeabi_enum_name(out_value).c_str());
10639                 }
10640             }
10641           break;
10642         case elfcpp::Tag_ABI_VFP_args:
10643           // Already done.
10644           break;
10645         case elfcpp::Tag_ABI_WMMX_args:
10646           if (in_attr[i].int_value() != out_attr[i].int_value()
10647               && parameters->options().warn_mismatch())
10648             {
10649               gold_error(_("%s uses iWMMXt register arguments, output does "
10650                            "not"),
10651                          name);
10652             }
10653           break;
10654         case Object_attribute::Tag_compatibility:
10655           // Merged in target-independent code.
10656           break;
10657         case elfcpp::Tag_ABI_HardFP_use:
10658           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10659           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10660               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10661             out_attr[i].set_int_value(3);
10662           else if (in_attr[i].int_value() > out_attr[i].int_value())
10663             out_attr[i].set_int_value(in_attr[i].int_value());
10664           break;
10665         case elfcpp::Tag_ABI_FP_16bit_format:
10666           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10667             {
10668               if (in_attr[i].int_value() != out_attr[i].int_value()
10669                   && parameters->options().warn_mismatch())
10670                 gold_error(_("fp16 format mismatch between %s and output"),
10671                            name);
10672             }
10673           if (in_attr[i].int_value() != 0)
10674             out_attr[i].set_int_value(in_attr[i].int_value());
10675           break;
10676
10677         case elfcpp::Tag_DIV_use:
10678           // This tag is set to zero if we can use UDIV and SDIV in Thumb
10679           // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10680           // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10681           // CPU.  We will merge as follows: If the input attribute's value
10682           // is one then the output attribute's value remains unchanged.  If
10683           // the input attribute's value is zero or two then if the output
10684           // attribute's value is one the output value is set to the input
10685           // value, otherwise the output value must be the same as the
10686           // inputs.  */ 
10687           if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) 
10688             { 
10689               if (in_attr[i].int_value() != out_attr[i].int_value())
10690                 {
10691                   gold_error(_("DIV usage mismatch between %s and output"),
10692                              name);
10693                 }
10694             } 
10695
10696           if (in_attr[i].int_value() != 1)
10697             out_attr[i].set_int_value(in_attr[i].int_value()); 
10698           
10699           break;
10700
10701         case elfcpp::Tag_MPextension_use_legacy:
10702           // We don't output objects with Tag_MPextension_use_legacy - we
10703           // move the value to Tag_MPextension_use.
10704           if (in_attr[i].int_value() != 0
10705               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10706             {
10707               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10708                   != in_attr[i].int_value())
10709                 {
10710                   gold_error(_("%s has has both the current and legacy "
10711                                "Tag_MPextension_use attributes"), 
10712                              name);
10713                 }
10714             }
10715
10716           if (in_attr[i].int_value()
10717               > out_attr[elfcpp::Tag_MPextension_use].int_value())
10718             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10719
10720           break;
10721
10722         case elfcpp::Tag_nodefaults:
10723           // This tag is set if it exists, but the value is unused (and is
10724           // typically zero).  We don't actually need to do anything here -
10725           // the merge happens automatically when the type flags are merged
10726           // below.
10727           break;
10728         case elfcpp::Tag_also_compatible_with:
10729           // Already done in Tag_CPU_arch.
10730           break;
10731         case elfcpp::Tag_conformance:
10732           // Keep the attribute if it matches.  Throw it away otherwise.
10733           // No attribute means no claim to conform.
10734           if (in_attr[i].string_value() != out_attr[i].string_value())
10735             out_attr[i].set_string_value("");
10736           break;
10737
10738         default:
10739           {
10740             const char* err_object = NULL;
10741
10742             // The "known_obj_attributes" table does contain some undefined
10743             // attributes.  Ensure that there are unused.
10744             if (out_attr[i].int_value() != 0
10745                 || out_attr[i].string_value() != "")
10746               err_object = "output";
10747             else if (in_attr[i].int_value() != 0
10748                      || in_attr[i].string_value() != "")
10749               err_object = name;
10750
10751             if (err_object != NULL
10752                 && parameters->options().warn_mismatch())
10753               {
10754                 // Attribute numbers >=64 (mod 128) can be safely ignored.
10755                 if ((i & 127) < 64)
10756                   gold_error(_("%s: unknown mandatory EABI object attribute "
10757                                "%d"),
10758                              err_object, i);
10759                 else
10760                   gold_warning(_("%s: unknown EABI object attribute %d"),
10761                                err_object, i);
10762               }
10763
10764             // Only pass on attributes that match in both inputs.
10765             if (!in_attr[i].matches(out_attr[i]))
10766               {
10767                 out_attr[i].set_int_value(0);
10768                 out_attr[i].set_string_value("");
10769               }
10770           }
10771         }
10772
10773       // If out_attr was copied from in_attr then it won't have a type yet.
10774       if (in_attr[i].type() && !out_attr[i].type())
10775         out_attr[i].set_type(in_attr[i].type());
10776     }
10777
10778   // Merge Tag_compatibility attributes and any common GNU ones.
10779   this->attributes_section_data_->merge(name, pasd);
10780
10781   // Check for any attributes not known on ARM.
10782   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10783   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10784   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10785   Other_attributes* out_other_attributes =
10786     this->attributes_section_data_->other_attributes(vendor);
10787   Other_attributes::iterator out_iter = out_other_attributes->begin();
10788
10789   while (in_iter != in_other_attributes->end()
10790          || out_iter != out_other_attributes->end())
10791     {
10792       const char* err_object = NULL;
10793       int err_tag = 0;
10794
10795       // The tags for each list are in numerical order.
10796       // If the tags are equal, then merge.
10797       if (out_iter != out_other_attributes->end()
10798           && (in_iter == in_other_attributes->end()
10799               || in_iter->first > out_iter->first))
10800         {
10801           // This attribute only exists in output.  We can't merge, and we
10802           // don't know what the tag means, so delete it.
10803           err_object = "output";
10804           err_tag = out_iter->first;
10805           int saved_tag = out_iter->first;
10806           delete out_iter->second;
10807           out_other_attributes->erase(out_iter); 
10808           out_iter = out_other_attributes->upper_bound(saved_tag);
10809         }
10810       else if (in_iter != in_other_attributes->end()
10811                && (out_iter != out_other_attributes->end()
10812                    || in_iter->first < out_iter->first))
10813         {
10814           // This attribute only exists in input. We can't merge, and we
10815           // don't know what the tag means, so ignore it.
10816           err_object = name;
10817           err_tag = in_iter->first;
10818           ++in_iter;
10819         }
10820       else // The tags are equal.
10821         {
10822           // As present, all attributes in the list are unknown, and
10823           // therefore can't be merged meaningfully.
10824           err_object = "output";
10825           err_tag = out_iter->first;
10826
10827           //  Only pass on attributes that match in both inputs.
10828           if (!in_iter->second->matches(*(out_iter->second)))
10829             {
10830               // No match.  Delete the attribute.
10831               int saved_tag = out_iter->first;
10832               delete out_iter->second;
10833               out_other_attributes->erase(out_iter);
10834               out_iter = out_other_attributes->upper_bound(saved_tag);
10835             }
10836           else
10837             {
10838               // Matched.  Keep the attribute and move to the next.
10839               ++out_iter;
10840               ++in_iter;
10841             }
10842         }
10843
10844       if (err_object && parameters->options().warn_mismatch())
10845         {
10846           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10847           if ((err_tag & 127) < 64)
10848             {
10849               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10850                          err_object, err_tag);
10851             }
10852           else
10853             {
10854               gold_warning(_("%s: unknown EABI object attribute %d"),
10855                            err_object, err_tag);
10856             }
10857         }
10858     }
10859 }
10860
10861 // Stub-generation methods for Target_arm.
10862
10863 // Make a new Arm_input_section object.
10864
10865 template<bool big_endian>
10866 Arm_input_section<big_endian>*
10867 Target_arm<big_endian>::new_arm_input_section(
10868     Relobj* relobj,
10869     unsigned int shndx)
10870 {
10871   Section_id sid(relobj, shndx);
10872
10873   Arm_input_section<big_endian>* arm_input_section =
10874     new Arm_input_section<big_endian>(relobj, shndx);
10875   arm_input_section->init();
10876
10877   // Register new Arm_input_section in map for look-up.
10878   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10879     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10880
10881   // Make sure that it we have not created another Arm_input_section
10882   // for this input section already.
10883   gold_assert(ins.second);
10884
10885   return arm_input_section; 
10886 }
10887
10888 // Find the Arm_input_section object corresponding to the SHNDX-th input
10889 // section of RELOBJ.
10890
10891 template<bool big_endian>
10892 Arm_input_section<big_endian>*
10893 Target_arm<big_endian>::find_arm_input_section(
10894     Relobj* relobj,
10895     unsigned int shndx) const
10896 {
10897   Section_id sid(relobj, shndx);
10898   typename Arm_input_section_map::const_iterator p =
10899     this->arm_input_section_map_.find(sid);
10900   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10901 }
10902
10903 // Make a new stub table.
10904
10905 template<bool big_endian>
10906 Stub_table<big_endian>*
10907 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10908 {
10909   Stub_table<big_endian>* stub_table =
10910     new Stub_table<big_endian>(owner);
10911   this->stub_tables_.push_back(stub_table);
10912
10913   stub_table->set_address(owner->address() + owner->data_size());
10914   stub_table->set_file_offset(owner->offset() + owner->data_size());
10915   stub_table->finalize_data_size();
10916
10917   return stub_table;
10918 }
10919
10920 // Scan a relocation for stub generation.
10921
10922 template<bool big_endian>
10923 void
10924 Target_arm<big_endian>::scan_reloc_for_stub(
10925     const Relocate_info<32, big_endian>* relinfo,
10926     unsigned int r_type,
10927     const Sized_symbol<32>* gsym,
10928     unsigned int r_sym,
10929     const Symbol_value<32>* psymval,
10930     elfcpp::Elf_types<32>::Elf_Swxword addend,
10931     Arm_address address)
10932 {
10933   typedef typename Target_arm<big_endian>::Relocate Relocate;
10934
10935   const Arm_relobj<big_endian>* arm_relobj =
10936     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10937
10938   bool target_is_thumb;
10939   Symbol_value<32> symval;
10940   if (gsym != NULL)
10941     {
10942       // This is a global symbol.  Determine if we use PLT and if the
10943       // final target is THUMB.
10944       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10945         {
10946           // This uses a PLT, change the symbol value.
10947           symval.set_output_value(this->plt_section()->address()
10948                                   + gsym->plt_offset());
10949           psymval = &symval;
10950           target_is_thumb = false;
10951         }
10952       else if (gsym->is_undefined())
10953         // There is no need to generate a stub symbol is undefined.
10954         return;
10955       else
10956         {
10957           target_is_thumb =
10958             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10959              || (gsym->type() == elfcpp::STT_FUNC
10960                  && !gsym->is_undefined()
10961                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10962         }
10963     }
10964   else
10965     {
10966       // This is a local symbol.  Determine if the final target is THUMB.
10967       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10968     }
10969
10970   // Strip LSB if this points to a THUMB target.
10971   const Arm_reloc_property* reloc_property =
10972     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10973   gold_assert(reloc_property != NULL);
10974   if (target_is_thumb
10975       && reloc_property->uses_thumb_bit()
10976       && ((psymval->value(arm_relobj, 0) & 1) != 0))
10977     {
10978       Arm_address stripped_value =
10979         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10980       symval.set_output_value(stripped_value);
10981       psymval = &symval;
10982     } 
10983
10984   // Get the symbol value.
10985   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10986
10987   // Owing to pipelining, the PC relative branches below actually skip
10988   // two instructions when the branch offset is 0.
10989   Arm_address destination;
10990   switch (r_type)
10991     {
10992     case elfcpp::R_ARM_CALL:
10993     case elfcpp::R_ARM_JUMP24:
10994     case elfcpp::R_ARM_PLT32:
10995       // ARM branches.
10996       destination = value + addend + 8;
10997       break;
10998     case elfcpp::R_ARM_THM_CALL:
10999     case elfcpp::R_ARM_THM_XPC22:
11000     case elfcpp::R_ARM_THM_JUMP24:
11001     case elfcpp::R_ARM_THM_JUMP19:
11002       // THUMB branches.
11003       destination = value + addend + 4;
11004       break;
11005     default:
11006       gold_unreachable();
11007     }
11008
11009   Reloc_stub* stub = NULL;
11010   Stub_type stub_type =
11011     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11012                                     target_is_thumb);
11013   if (stub_type != arm_stub_none)
11014     {
11015       // Try looking up an existing stub from a stub table.
11016       Stub_table<big_endian>* stub_table = 
11017         arm_relobj->stub_table(relinfo->data_shndx);
11018       gold_assert(stub_table != NULL);
11019    
11020       // Locate stub by destination.
11021       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11022
11023       // Create a stub if there is not one already
11024       stub = stub_table->find_reloc_stub(stub_key);
11025       if (stub == NULL)
11026         {
11027           // create a new stub and add it to stub table.
11028           stub = this->stub_factory().make_reloc_stub(stub_type);
11029           stub_table->add_reloc_stub(stub, stub_key);
11030         }
11031
11032       // Record the destination address.
11033       stub->set_destination_address(destination
11034                                     | (target_is_thumb ? 1 : 0));
11035     }
11036
11037   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11038   if (this->fix_cortex_a8_
11039       && (r_type == elfcpp::R_ARM_THM_JUMP24
11040           || r_type == elfcpp::R_ARM_THM_JUMP19
11041           || r_type == elfcpp::R_ARM_THM_CALL
11042           || r_type == elfcpp::R_ARM_THM_XPC22)
11043       && (address & 0xfffU) == 0xffeU)
11044     {
11045       // Found a candidate.  Note we haven't checked the destination is
11046       // within 4K here: if we do so (and don't create a record) we can't
11047       // tell that a branch should have been relocated when scanning later.
11048       this->cortex_a8_relocs_info_[address] =
11049         new Cortex_a8_reloc(stub, r_type,
11050                             destination | (target_is_thumb ? 1 : 0));
11051     }
11052 }
11053
11054 // This function scans a relocation sections for stub generation.
11055 // The template parameter Relocate must be a class type which provides
11056 // a single function, relocate(), which implements the machine
11057 // specific part of a relocation.
11058
11059 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11060 // SHT_REL or SHT_RELA.
11061
11062 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11063 // of relocs.  OUTPUT_SECTION is the output section.
11064 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11065 // mapped to output offsets.
11066
11067 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11068 // VIEW_SIZE is the size.  These refer to the input section, unless
11069 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11070 // the output section.
11071
11072 template<bool big_endian>
11073 template<int sh_type>
11074 void inline
11075 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11076     const Relocate_info<32, big_endian>* relinfo,
11077     const unsigned char* prelocs,
11078     size_t reloc_count,
11079     Output_section* output_section,
11080     bool needs_special_offset_handling,
11081     const unsigned char* view,
11082     elfcpp::Elf_types<32>::Elf_Addr view_address,
11083     section_size_type)
11084 {
11085   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11086   const int reloc_size =
11087     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11088
11089   Arm_relobj<big_endian>* arm_object =
11090     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11091   unsigned int local_count = arm_object->local_symbol_count();
11092
11093   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11094
11095   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11096     {
11097       Reltype reloc(prelocs);
11098
11099       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11100       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11101       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11102
11103       r_type = this->get_real_reloc_type(r_type);
11104
11105       // Only a few relocation types need stubs.
11106       if ((r_type != elfcpp::R_ARM_CALL)
11107          && (r_type != elfcpp::R_ARM_JUMP24)
11108          && (r_type != elfcpp::R_ARM_PLT32)
11109          && (r_type != elfcpp::R_ARM_THM_CALL)
11110          && (r_type != elfcpp::R_ARM_THM_XPC22)
11111          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11112          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11113          && (r_type != elfcpp::R_ARM_V4BX))
11114         continue;
11115
11116       section_offset_type offset =
11117         convert_to_section_size_type(reloc.get_r_offset());
11118
11119       if (needs_special_offset_handling)
11120         {
11121           offset = output_section->output_offset(relinfo->object,
11122                                                  relinfo->data_shndx,
11123                                                  offset);
11124           if (offset == -1)
11125             continue;
11126         }
11127
11128       // Create a v4bx stub if --fix-v4bx-interworking is used.
11129       if (r_type == elfcpp::R_ARM_V4BX)
11130         {
11131           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11132             {
11133               // Get the BX instruction.
11134               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11135               const Valtype* wv =
11136                 reinterpret_cast<const Valtype*>(view + offset);
11137               elfcpp::Elf_types<32>::Elf_Swxword insn =
11138                 elfcpp::Swap<32, big_endian>::readval(wv);
11139               const uint32_t reg = (insn & 0xf);
11140
11141               if (reg < 0xf)
11142                 {
11143                   // Try looking up an existing stub from a stub table.
11144                   Stub_table<big_endian>* stub_table =
11145                     arm_object->stub_table(relinfo->data_shndx);
11146                   gold_assert(stub_table != NULL);
11147
11148                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11149                     {
11150                       // create a new stub and add it to stub table.
11151                       Arm_v4bx_stub* stub =
11152                         this->stub_factory().make_arm_v4bx_stub(reg);
11153                       gold_assert(stub != NULL);
11154                       stub_table->add_arm_v4bx_stub(stub);
11155                     }
11156                 }
11157             }
11158           continue;
11159         }
11160
11161       // Get the addend.
11162       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11163       elfcpp::Elf_types<32>::Elf_Swxword addend =
11164         stub_addend_reader(r_type, view + offset, reloc);
11165
11166       const Sized_symbol<32>* sym;
11167
11168       Symbol_value<32> symval;
11169       const Symbol_value<32> *psymval;
11170       bool is_defined_in_discarded_section;
11171       unsigned int shndx;
11172       if (r_sym < local_count)
11173         {
11174           sym = NULL;
11175           psymval = arm_object->local_symbol(r_sym);
11176
11177           // If the local symbol belongs to a section we are discarding,
11178           // and that section is a debug section, try to find the
11179           // corresponding kept section and map this symbol to its
11180           // counterpart in the kept section.  The symbol must not 
11181           // correspond to a section we are folding.
11182           bool is_ordinary;
11183           shndx = psymval->input_shndx(&is_ordinary);
11184           is_defined_in_discarded_section =
11185             (is_ordinary
11186              && shndx != elfcpp::SHN_UNDEF
11187              && !arm_object->is_section_included(shndx)
11188              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11189
11190           // We need to compute the would-be final value of this local
11191           // symbol.
11192           if (!is_defined_in_discarded_section)
11193             {
11194               typedef Sized_relobj_file<32, big_endian> ObjType;
11195               typename ObjType::Compute_final_local_value_status status =
11196                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11197                                                       relinfo->symtab); 
11198               if (status == ObjType::CFLV_OK)
11199                 {
11200                   // Currently we cannot handle a branch to a target in
11201                   // a merged section.  If this is the case, issue an error
11202                   // and also free the merge symbol value.
11203                   if (!symval.has_output_value())
11204                     {
11205                       const std::string& section_name =
11206                         arm_object->section_name(shndx);
11207                       arm_object->error(_("cannot handle branch to local %u "
11208                                           "in a merged section %s"),
11209                                         r_sym, section_name.c_str());
11210                     }
11211                   psymval = &symval;
11212                 }
11213               else
11214                 {
11215                   // We cannot determine the final value.
11216                   continue;  
11217                 }
11218             }
11219         }
11220       else
11221         {
11222           const Symbol* gsym;
11223           gsym = arm_object->global_symbol(r_sym);
11224           gold_assert(gsym != NULL);
11225           if (gsym->is_forwarder())
11226             gsym = relinfo->symtab->resolve_forwards(gsym);
11227
11228           sym = static_cast<const Sized_symbol<32>*>(gsym);
11229           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11230             symval.set_output_symtab_index(sym->symtab_index());
11231           else
11232             symval.set_no_output_symtab_entry();
11233
11234           // We need to compute the would-be final value of this global
11235           // symbol.
11236           const Symbol_table* symtab = relinfo->symtab;
11237           const Sized_symbol<32>* sized_symbol =
11238             symtab->get_sized_symbol<32>(gsym);
11239           Symbol_table::Compute_final_value_status status;
11240           Arm_address value =
11241             symtab->compute_final_value<32>(sized_symbol, &status);
11242
11243           // Skip this if the symbol has not output section.
11244           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11245             continue;
11246           symval.set_output_value(value);
11247
11248           if (gsym->type() == elfcpp::STT_TLS)
11249             symval.set_is_tls_symbol();
11250           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11251             symval.set_is_ifunc_symbol();
11252           psymval = &symval;
11253
11254           is_defined_in_discarded_section =
11255             (gsym->is_defined_in_discarded_section()
11256              && gsym->is_undefined());
11257           shndx = 0;
11258         }
11259
11260       Symbol_value<32> symval2;
11261       if (is_defined_in_discarded_section)
11262         {
11263           if (comdat_behavior == CB_UNDETERMINED)
11264             {
11265               std::string name = arm_object->section_name(relinfo->data_shndx);
11266               comdat_behavior = get_comdat_behavior(name.c_str());
11267             }
11268           if (comdat_behavior == CB_PRETEND)
11269             {
11270               // FIXME: This case does not work for global symbols.
11271               // We have no place to store the original section index.
11272               // Fortunately this does not matter for comdat sections,
11273               // only for sections explicitly discarded by a linker
11274               // script.
11275               bool found;
11276               typename elfcpp::Elf_types<32>::Elf_Addr value =
11277                 arm_object->map_to_kept_section(shndx, &found);
11278               if (found)
11279                 symval2.set_output_value(value + psymval->input_value());
11280               else
11281                 symval2.set_output_value(0);
11282             }
11283           else
11284             {
11285               if (comdat_behavior == CB_WARNING)
11286                 gold_warning_at_location(relinfo, i, offset,
11287                                          _("relocation refers to discarded "
11288                                            "section"));
11289               symval2.set_output_value(0);
11290             }
11291           symval2.set_no_output_symtab_entry();
11292           psymval = &symval2;
11293         }
11294
11295       // If symbol is a section symbol, we don't know the actual type of
11296       // destination.  Give up.
11297       if (psymval->is_section_symbol())
11298         continue;
11299
11300       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11301                                 addend, view_address + offset);
11302     }
11303 }
11304
11305 // Scan an input section for stub generation.
11306
11307 template<bool big_endian>
11308 void
11309 Target_arm<big_endian>::scan_section_for_stubs(
11310     const Relocate_info<32, big_endian>* relinfo,
11311     unsigned int sh_type,
11312     const unsigned char* prelocs,
11313     size_t reloc_count,
11314     Output_section* output_section,
11315     bool needs_special_offset_handling,
11316     const unsigned char* view,
11317     Arm_address view_address,
11318     section_size_type view_size)
11319 {
11320   if (sh_type == elfcpp::SHT_REL)
11321     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11322         relinfo,
11323         prelocs,
11324         reloc_count,
11325         output_section,
11326         needs_special_offset_handling,
11327         view,
11328         view_address,
11329         view_size);
11330   else if (sh_type == elfcpp::SHT_RELA)
11331     // We do not support RELA type relocations yet.  This is provided for
11332     // completeness.
11333     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11334         relinfo,
11335         prelocs,
11336         reloc_count,
11337         output_section,
11338         needs_special_offset_handling,
11339         view,
11340         view_address,
11341         view_size);
11342   else
11343     gold_unreachable();
11344 }
11345
11346 // Group input sections for stub generation.
11347 //
11348 // We group input sections in an output section so that the total size,
11349 // including any padding space due to alignment is smaller than GROUP_SIZE
11350 // unless the only input section in group is bigger than GROUP_SIZE already.
11351 // Then an ARM stub table is created to follow the last input section
11352 // in group.  For each group an ARM stub table is created an is placed
11353 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11354 // extend the group after the stub table.
11355
11356 template<bool big_endian>
11357 void
11358 Target_arm<big_endian>::group_sections(
11359     Layout* layout,
11360     section_size_type group_size,
11361     bool stubs_always_after_branch,
11362     const Task* task)
11363 {
11364   // Group input sections and insert stub table
11365   Layout::Section_list section_list;
11366   layout->get_allocated_sections(&section_list);
11367   for (Layout::Section_list::const_iterator p = section_list.begin();
11368        p != section_list.end();
11369        ++p)
11370     {
11371       Arm_output_section<big_endian>* output_section =
11372         Arm_output_section<big_endian>::as_arm_output_section(*p);
11373       output_section->group_sections(group_size, stubs_always_after_branch,
11374                                      this, task);
11375     }
11376 }
11377
11378 // Relaxation hook.  This is where we do stub generation.
11379
11380 template<bool big_endian>
11381 bool
11382 Target_arm<big_endian>::do_relax(
11383     int pass,
11384     const Input_objects* input_objects,
11385     Symbol_table* symtab,
11386     Layout* layout,
11387     const Task* task)
11388 {
11389   // No need to generate stubs if this is a relocatable link.
11390   gold_assert(!parameters->options().relocatable());
11391
11392   // If this is the first pass, we need to group input sections into
11393   // stub groups.
11394   bool done_exidx_fixup = false;
11395   typedef typename Stub_table_list::iterator Stub_table_iterator;
11396   if (pass == 1)
11397     {
11398       // Determine the stub group size.  The group size is the absolute
11399       // value of the parameter --stub-group-size.  If --stub-group-size
11400       // is passed a negative value, we restrict stubs to be always after
11401       // the stubbed branches.
11402       int32_t stub_group_size_param =
11403         parameters->options().stub_group_size();
11404       bool stubs_always_after_branch = stub_group_size_param < 0;
11405       section_size_type stub_group_size = abs(stub_group_size_param);
11406
11407       if (stub_group_size == 1)
11408         {
11409           // Default value.
11410           // Thumb branch range is +-4MB has to be used as the default
11411           // maximum size (a given section can contain both ARM and Thumb
11412           // code, so the worst case has to be taken into account).  If we are
11413           // fixing cortex-a8 errata, the branch range has to be even smaller,
11414           // since wide conditional branch has a range of +-1MB only.
11415           //
11416           // This value is 48K less than that, which allows for 4096
11417           // 12-byte stubs.  If we exceed that, then we will fail to link.
11418           // The user will have to relink with an explicit group size
11419           // option.
11420             stub_group_size = 4145152;
11421         }
11422
11423       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11424       // page as the first half of a 32-bit branch straddling two 4K pages.
11425       // This is a crude way of enforcing that.  In addition, long conditional
11426       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11427       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11428       // cortex-A8 stubs from long conditional branches.
11429       if (this->fix_cortex_a8_)
11430         {
11431           stubs_always_after_branch = true;
11432           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11433           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11434         }
11435
11436       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11437      
11438       // Also fix .ARM.exidx section coverage.
11439       Arm_output_section<big_endian>* exidx_output_section = NULL;
11440       for (Layout::Section_list::const_iterator p =
11441              layout->section_list().begin();
11442            p != layout->section_list().end();
11443            ++p)
11444         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11445           {
11446             if (exidx_output_section == NULL)
11447               exidx_output_section =
11448                 Arm_output_section<big_endian>::as_arm_output_section(*p);
11449             else
11450               // We cannot handle this now.
11451               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11452                            "non-relocatable link"),
11453                           exidx_output_section->name(),
11454                           (*p)->name());
11455           }
11456
11457       if (exidx_output_section != NULL)
11458         {
11459           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11460                                    symtab, task);
11461           done_exidx_fixup = true;
11462         }
11463     }
11464   else
11465     {
11466       // If this is not the first pass, addresses and file offsets have
11467       // been reset at this point, set them here.
11468       for (Stub_table_iterator sp = this->stub_tables_.begin();
11469            sp != this->stub_tables_.end();
11470            ++sp)
11471         {
11472           Arm_input_section<big_endian>* owner = (*sp)->owner();
11473           off_t off = align_address(owner->original_size(),
11474                                     (*sp)->addralign());
11475           (*sp)->set_address_and_file_offset(owner->address() + off,
11476                                              owner->offset() + off);
11477         }
11478     }
11479
11480   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11481   // beginning of each relaxation pass, just blow away all the stubs.
11482   // Alternatively, we could selectively remove only the stubs and reloc
11483   // information for code sections that have moved since the last pass.
11484   // That would require more book-keeping.
11485   if (this->fix_cortex_a8_)
11486     {
11487       // Clear all Cortex-A8 reloc information.
11488       for (typename Cortex_a8_relocs_info::const_iterator p =
11489              this->cortex_a8_relocs_info_.begin();
11490            p != this->cortex_a8_relocs_info_.end();
11491            ++p)
11492         delete p->second;
11493       this->cortex_a8_relocs_info_.clear();
11494
11495       // Remove all Cortex-A8 stubs.
11496       for (Stub_table_iterator sp = this->stub_tables_.begin();
11497            sp != this->stub_tables_.end();
11498            ++sp)
11499         (*sp)->remove_all_cortex_a8_stubs();
11500     }
11501   
11502   // Scan relocs for relocation stubs
11503   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11504        op != input_objects->relobj_end();
11505        ++op)
11506     {
11507       Arm_relobj<big_endian>* arm_relobj =
11508         Arm_relobj<big_endian>::as_arm_relobj(*op);
11509       // Lock the object so we can read from it.  This is only called
11510       // single-threaded from Layout::finalize, so it is OK to lock.
11511       Task_lock_obj<Object> tl(task, arm_relobj);
11512       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11513     }
11514
11515   // Check all stub tables to see if any of them have their data sizes
11516   // or addresses alignments changed.  These are the only things that
11517   // matter.
11518   bool any_stub_table_changed = false;
11519   Unordered_set<const Output_section*> sections_needing_adjustment;
11520   for (Stub_table_iterator sp = this->stub_tables_.begin();
11521        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11522        ++sp)
11523     {
11524       if ((*sp)->update_data_size_and_addralign())
11525         {
11526           // Update data size of stub table owner.
11527           Arm_input_section<big_endian>* owner = (*sp)->owner();
11528           uint64_t address = owner->address();
11529           off_t offset = owner->offset();
11530           owner->reset_address_and_file_offset();
11531           owner->set_address_and_file_offset(address, offset);
11532
11533           sections_needing_adjustment.insert(owner->output_section());
11534           any_stub_table_changed = true;
11535         }
11536     }
11537
11538   // Output_section_data::output_section() returns a const pointer but we
11539   // need to update output sections, so we record all output sections needing
11540   // update above and scan the sections here to find out what sections need
11541   // to be updated.
11542   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11543       p != layout->section_list().end();
11544       ++p)
11545     {
11546       if (sections_needing_adjustment.find(*p)
11547           != sections_needing_adjustment.end())
11548         (*p)->set_section_offsets_need_adjustment();
11549     }
11550
11551   // Stop relaxation if no EXIDX fix-up and no stub table change.
11552   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11553
11554   // Finalize the stubs in the last relaxation pass.
11555   if (!continue_relaxation)
11556     {
11557       for (Stub_table_iterator sp = this->stub_tables_.begin();
11558            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11559             ++sp)
11560         (*sp)->finalize_stubs();
11561
11562       // Update output local symbol counts of objects if necessary.
11563       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11564            op != input_objects->relobj_end();
11565            ++op)
11566         {
11567           Arm_relobj<big_endian>* arm_relobj =
11568             Arm_relobj<big_endian>::as_arm_relobj(*op);
11569
11570           // Update output local symbol counts.  We need to discard local
11571           // symbols defined in parts of input sections that are discarded by
11572           // relaxation.
11573           if (arm_relobj->output_local_symbol_count_needs_update())
11574             {
11575               // We need to lock the object's file to update it.
11576               Task_lock_obj<Object> tl(task, arm_relobj);
11577               arm_relobj->update_output_local_symbol_count();
11578             }
11579         }
11580     }
11581
11582   return continue_relaxation;
11583 }
11584
11585 // Relocate a stub.
11586
11587 template<bool big_endian>
11588 void
11589 Target_arm<big_endian>::relocate_stub(
11590     Stub* stub,
11591     const Relocate_info<32, big_endian>* relinfo,
11592     Output_section* output_section,
11593     unsigned char* view,
11594     Arm_address address,
11595     section_size_type view_size)
11596 {
11597   Relocate relocate;
11598   const Stub_template* stub_template = stub->stub_template();
11599   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11600     {
11601       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11602       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11603
11604       unsigned int r_type = insn->r_type();
11605       section_size_type reloc_offset = stub_template->reloc_offset(i);
11606       section_size_type reloc_size = insn->size();
11607       gold_assert(reloc_offset + reloc_size <= view_size);
11608
11609       // This is the address of the stub destination.
11610       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11611       Symbol_value<32> symval;
11612       symval.set_output_value(target);
11613
11614       // Synthesize a fake reloc just in case.  We don't have a symbol so
11615       // we use 0.
11616       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11617       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11618       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11619       reloc_write.put_r_offset(reloc_offset);
11620       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11621       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11622
11623       relocate.relocate(relinfo, this, output_section,
11624                         this->fake_relnum_for_stubs, rel, r_type,
11625                         NULL, &symval, view + reloc_offset,
11626                         address + reloc_offset, reloc_size);
11627     }
11628 }
11629
11630 // Determine whether an object attribute tag takes an integer, a
11631 // string or both.
11632
11633 template<bool big_endian>
11634 int
11635 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11636 {
11637   if (tag == Object_attribute::Tag_compatibility)
11638     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11639             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11640   else if (tag == elfcpp::Tag_nodefaults)
11641     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11642             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11643   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11644     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11645   else if (tag < 32)
11646     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11647   else
11648     return ((tag & 1) != 0
11649             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11650             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11651 }
11652
11653 // Reorder attributes.
11654 //
11655 // The ABI defines that Tag_conformance should be emitted first, and that
11656 // Tag_nodefaults should be second (if either is defined).  This sets those
11657 // two positions, and bumps up the position of all the remaining tags to
11658 // compensate.
11659
11660 template<bool big_endian>
11661 int
11662 Target_arm<big_endian>::do_attributes_order(int num) const
11663 {
11664   // Reorder the known object attributes in output.  We want to move
11665   // Tag_conformance to position 4 and Tag_conformance to position 5
11666   // and shift everything between 4 .. Tag_conformance - 1 to make room.
11667   if (num == 4)
11668     return elfcpp::Tag_conformance;
11669   if (num == 5)
11670     return elfcpp::Tag_nodefaults;
11671   if ((num - 2) < elfcpp::Tag_nodefaults)
11672     return num - 2;
11673   if ((num - 1) < elfcpp::Tag_conformance)
11674     return num - 1;
11675   return num;
11676 }
11677
11678 // Scan a span of THUMB code for Cortex-A8 erratum.
11679
11680 template<bool big_endian>
11681 void
11682 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11683     Arm_relobj<big_endian>* arm_relobj,
11684     unsigned int shndx,
11685     section_size_type span_start,
11686     section_size_type span_end,
11687     const unsigned char* view,
11688     Arm_address address)
11689 {
11690   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11691   //
11692   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11693   // The branch target is in the same 4KB region as the
11694   // first half of the branch.
11695   // The instruction before the branch is a 32-bit
11696   // length non-branch instruction.
11697   section_size_type i = span_start;
11698   bool last_was_32bit = false;
11699   bool last_was_branch = false;
11700   while (i < span_end)
11701     {
11702       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11703       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11704       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11705       bool is_blx = false, is_b = false;
11706       bool is_bl = false, is_bcc = false;
11707
11708       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11709       if (insn_32bit)
11710         {
11711           // Load the rest of the insn (in manual-friendly order).
11712           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11713
11714           // Encoding T4: B<c>.W.
11715           is_b = (insn & 0xf800d000U) == 0xf0009000U;
11716           // Encoding T1: BL<c>.W.
11717           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11718           // Encoding T2: BLX<c>.W.
11719           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11720           // Encoding T3: B<c>.W (not permitted in IT block).
11721           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11722                     && (insn & 0x07f00000U) != 0x03800000U);
11723         }
11724
11725       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11726                            
11727       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11728       // page boundary and it follows 32-bit non-branch instruction,
11729       // we need to work around.
11730       if (is_32bit_branch
11731           && ((address + i) & 0xfffU) == 0xffeU
11732           && last_was_32bit
11733           && !last_was_branch)
11734         {
11735           // Check to see if there is a relocation stub for this branch.
11736           bool force_target_arm = false;
11737           bool force_target_thumb = false;
11738           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11739           Cortex_a8_relocs_info::const_iterator p =
11740             this->cortex_a8_relocs_info_.find(address + i);
11741
11742           if (p != this->cortex_a8_relocs_info_.end())
11743             {
11744               cortex_a8_reloc = p->second;
11745               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11746
11747               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11748                   && !target_is_thumb)
11749                 force_target_arm = true;
11750               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11751                        && target_is_thumb)
11752                 force_target_thumb = true;
11753             }
11754
11755           off_t offset;
11756           Stub_type stub_type = arm_stub_none;
11757
11758           // Check if we have an offending branch instruction.
11759           uint16_t upper_insn = (insn >> 16) & 0xffffU;
11760           uint16_t lower_insn = insn & 0xffffU;
11761           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11762
11763           if (cortex_a8_reloc != NULL
11764               && cortex_a8_reloc->reloc_stub() != NULL)
11765             // We've already made a stub for this instruction, e.g.
11766             // it's a long branch or a Thumb->ARM stub.  Assume that
11767             // stub will suffice to work around the A8 erratum (see
11768             // setting of always_after_branch above).
11769             ;
11770           else if (is_bcc)
11771             {
11772               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11773                                                               lower_insn);
11774               stub_type = arm_stub_a8_veneer_b_cond;
11775             }
11776           else if (is_b || is_bl || is_blx)
11777             {
11778               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11779                                                          lower_insn);
11780               if (is_blx)
11781                 offset &= ~3;
11782
11783               stub_type = (is_blx
11784                            ? arm_stub_a8_veneer_blx
11785                            : (is_bl
11786                               ? arm_stub_a8_veneer_bl
11787                               : arm_stub_a8_veneer_b));
11788             }
11789
11790           if (stub_type != arm_stub_none)
11791             {
11792               Arm_address pc_for_insn = address + i + 4;
11793
11794               // The original instruction is a BL, but the target is
11795               // an ARM instruction.  If we were not making a stub,
11796               // the BL would have been converted to a BLX.  Use the
11797               // BLX stub instead in that case.
11798               if (this->may_use_blx() && force_target_arm
11799                   && stub_type == arm_stub_a8_veneer_bl)
11800                 {
11801                   stub_type = arm_stub_a8_veneer_blx;
11802                   is_blx = true;
11803                   is_bl = false;
11804                 }
11805               // Conversely, if the original instruction was
11806               // BLX but the target is Thumb mode, use the BL stub.
11807               else if (force_target_thumb
11808                        && stub_type == arm_stub_a8_veneer_blx)
11809                 {
11810                   stub_type = arm_stub_a8_veneer_bl;
11811                   is_blx = false;
11812                   is_bl = true;
11813                 }
11814
11815               if (is_blx)
11816                 pc_for_insn &= ~3;
11817
11818               // If we found a relocation, use the proper destination,
11819               // not the offset in the (unrelocated) instruction.
11820               // Note this is always done if we switched the stub type above.
11821               if (cortex_a8_reloc != NULL)
11822                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11823
11824               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11825
11826               // Add a new stub if destination address in in the same page.
11827               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11828                 {
11829                   Cortex_a8_stub* stub =
11830                     this->stub_factory_.make_cortex_a8_stub(stub_type,
11831                                                             arm_relobj, shndx,
11832                                                             address + i,
11833                                                             target, insn);
11834                   Stub_table<big_endian>* stub_table =
11835                     arm_relobj->stub_table(shndx);
11836                   gold_assert(stub_table != NULL);
11837                   stub_table->add_cortex_a8_stub(address + i, stub);
11838                 }
11839             }
11840         }
11841
11842       i += insn_32bit ? 4 : 2;
11843       last_was_32bit = insn_32bit;
11844       last_was_branch = is_32bit_branch;
11845     }
11846 }
11847
11848 // Apply the Cortex-A8 workaround.
11849
11850 template<bool big_endian>
11851 void
11852 Target_arm<big_endian>::apply_cortex_a8_workaround(
11853     const Cortex_a8_stub* stub,
11854     Arm_address stub_address,
11855     unsigned char* insn_view,
11856     Arm_address insn_address)
11857 {
11858   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11859   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11860   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11861   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11862   off_t branch_offset = stub_address - (insn_address + 4);
11863
11864   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11865   switch (stub->stub_template()->type())
11866     {
11867     case arm_stub_a8_veneer_b_cond:
11868       // For a conditional branch, we re-write it to be an unconditional
11869       // branch to the stub.  We use the THUMB-2 encoding here.
11870       upper_insn = 0xf000U;
11871       lower_insn = 0xb800U;
11872       // Fall through
11873     case arm_stub_a8_veneer_b:
11874     case arm_stub_a8_veneer_bl:
11875     case arm_stub_a8_veneer_blx:
11876       if ((lower_insn & 0x5000U) == 0x4000U)
11877         // For a BLX instruction, make sure that the relocation is
11878         // rounded up to a word boundary.  This follows the semantics of
11879         // the instruction which specifies that bit 1 of the target
11880         // address will come from bit 1 of the base address.
11881         branch_offset = (branch_offset + 2) & ~3;
11882
11883       // Put BRANCH_OFFSET back into the insn.
11884       gold_assert(!utils::has_overflow<25>(branch_offset));
11885       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11886       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11887       break;
11888
11889     default:
11890       gold_unreachable();
11891     }
11892
11893   // Put the relocated value back in the object file:
11894   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11895   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11896 }
11897
11898 template<bool big_endian>
11899 class Target_selector_arm : public Target_selector
11900 {
11901  public:
11902   Target_selector_arm()
11903     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11904                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11905   { }
11906
11907   Target*
11908   do_instantiate_target()
11909   { return new Target_arm<big_endian>(); }
11910 };
11911
11912 // Fix .ARM.exidx section coverage.
11913
11914 template<bool big_endian>
11915 void
11916 Target_arm<big_endian>::fix_exidx_coverage(
11917     Layout* layout,
11918     const Input_objects* input_objects,
11919     Arm_output_section<big_endian>* exidx_section,
11920     Symbol_table* symtab,
11921     const Task* task)
11922 {
11923   // We need to look at all the input sections in output in ascending
11924   // order of of output address.  We do that by building a sorted list
11925   // of output sections by addresses.  Then we looks at the output sections
11926   // in order.  The input sections in an output section are already sorted
11927   // by addresses within the output section.
11928
11929   typedef std::set<Output_section*, output_section_address_less_than>
11930       Sorted_output_section_list;
11931   Sorted_output_section_list sorted_output_sections;
11932
11933   // Find out all the output sections of input sections pointed by
11934   // EXIDX input sections.
11935   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11936        p != input_objects->relobj_end();
11937        ++p)
11938     {
11939       Arm_relobj<big_endian>* arm_relobj =
11940         Arm_relobj<big_endian>::as_arm_relobj(*p);
11941       std::vector<unsigned int> shndx_list;
11942       arm_relobj->get_exidx_shndx_list(&shndx_list);
11943       for (size_t i = 0; i < shndx_list.size(); ++i)
11944         {
11945           const Arm_exidx_input_section* exidx_input_section =
11946             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11947           gold_assert(exidx_input_section != NULL);
11948           if (!exidx_input_section->has_errors())
11949             {
11950               unsigned int text_shndx = exidx_input_section->link();
11951               Output_section* os = arm_relobj->output_section(text_shndx);
11952               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11953                 sorted_output_sections.insert(os);
11954             }
11955         }
11956     }
11957
11958   // Go over the output sections in ascending order of output addresses.
11959   typedef typename Arm_output_section<big_endian>::Text_section_list
11960       Text_section_list;
11961   Text_section_list sorted_text_sections;
11962   for (typename Sorted_output_section_list::iterator p =
11963         sorted_output_sections.begin();
11964       p != sorted_output_sections.end();
11965       ++p)
11966     {
11967       Arm_output_section<big_endian>* arm_output_section =
11968         Arm_output_section<big_endian>::as_arm_output_section(*p);
11969       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11970     } 
11971
11972   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11973                                     merge_exidx_entries(), task);
11974 }
11975
11976 Target_selector_arm<false> target_selector_arm;
11977 Target_selector_arm<true> target_selector_armbe;
11978
11979 } // End anonymous namespace.