Support 64-bit entry size in SHT_HASH (for s390).
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI.  It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 //   Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops.  If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked.  The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only.  That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class.  This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140  public:
141   // Types of instruction templates.
142   enum Type
143     {
144       THUMB16_TYPE = 1,
145       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146       // templates with class-specific semantics.  Currently this is used
147       // only by the Cortex_a8_stub class for handling condition codes in
148       // conditional branches.
149       THUMB16_SPECIAL_TYPE,
150       THUMB32_TYPE,
151       ARM_TYPE,
152       DATA_TYPE
153     };
154
155   // Factory methods to create instruction templates in different formats.
156
157   static const Insn_template
158   thumb16_insn(uint32_t data)
159   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161   // A Thumb conditional branch, in which the proper condition is inserted
162   // when we build the stub.
163   static const Insn_template
164   thumb16_bcond_insn(uint32_t data)
165   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167   static const Insn_template
168   thumb32_insn(uint32_t data)
169   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171   static const Insn_template
172   thumb32_b_insn(uint32_t data, int reloc_addend)
173   {
174     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175                          reloc_addend);
176   }
177
178   static const Insn_template
179   arm_insn(uint32_t data)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182   static const Insn_template
183   arm_rel_insn(unsigned data, int reloc_addend)
184   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186   static const Insn_template
187   data_word(unsigned data, unsigned int r_type, int reloc_addend)
188   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190   // Accessors.  This class is used for read-only objects so no modifiers
191   // are provided.
192
193   uint32_t
194   data() const
195   { return this->data_; }
196
197   // Return the instruction sequence type of this.
198   Type
199   type() const
200   { return this->type_; }
201
202   // Return the ARM relocation type of this.
203   unsigned int
204   r_type() const
205   { return this->r_type_; }
206
207   int32_t
208   reloc_addend() const
209   { return this->reloc_addend_; }
210
211   // Return size of instruction template in bytes.
212   size_t
213   size() const;
214
215   // Return byte-alignment of instruction template.
216   unsigned
217   alignment() const;
218
219  private:
220   // We make the constructor private to ensure that only the factory
221   // methods are used.
222   inline
223   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225   { }
226
227   // Instruction specific data.  This is used to store information like
228   // some of the instruction bits.
229   uint32_t data_;
230   // Instruction template type.
231   Type type_;
232   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233   unsigned int r_type_;
234   // Relocation addend.
235   int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242   DEF_STUB(long_branch_any_any) \
243   DEF_STUB(long_branch_v4t_arm_thumb) \
244   DEF_STUB(long_branch_thumb_only) \
245   DEF_STUB(long_branch_v4t_thumb_thumb) \
246   DEF_STUB(long_branch_v4t_thumb_arm) \
247   DEF_STUB(short_branch_v4t_thumb_arm) \
248   DEF_STUB(long_branch_any_arm_pic) \
249   DEF_STUB(long_branch_any_thumb_pic) \
250   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253   DEF_STUB(long_branch_thumb_only_pic) \
254   DEF_STUB(a8_veneer_b_cond) \
255   DEF_STUB(a8_veneer_b) \
256   DEF_STUB(a8_veneer_bl) \
257   DEF_STUB(a8_veneer_blx) \
258   DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264   {
265     arm_stub_none,
266     DEF_STUBS
267
268     // First reloc stub type.
269     arm_stub_reloc_first = arm_stub_long_branch_any_any,
270     // Last  reloc stub type.
271     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273     // First Cortex-A8 stub type.
274     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275     // Last Cortex-A8 stub type.
276     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278     // Last stub type.
279     arm_stub_type_last = arm_stub_v4_veneer_bx
280   } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class.  Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289  public:
290   Stub_template(Stub_type, const Insn_template*, size_t);
291
292   ~Stub_template()
293   { }
294
295   // Return stub type.
296   Stub_type
297   type() const
298   { return this->type_; }
299
300   // Return an array of instruction templates.
301   const Insn_template*
302   insns() const
303   { return this->insns_; }
304
305   // Return size of template in number of instructions.
306   size_t
307   insn_count() const
308   { return this->insn_count_; }
309
310   // Return size of template in bytes.
311   size_t
312   size() const
313   { return this->size_; }
314
315   // Return alignment of the stub template.
316   unsigned
317   alignment() const
318   { return this->alignment_; }
319
320   // Return whether entry point is in thumb mode.
321   bool
322   entry_in_thumb_mode() const
323   { return this->entry_in_thumb_mode_; }
324
325   // Return number of relocations in this template.
326   size_t
327   reloc_count() const
328   { return this->relocs_.size(); }
329
330   // Return index of the I-th instruction with relocation.
331   size_t
332   reloc_insn_index(size_t i) const
333   {
334     gold_assert(i < this->relocs_.size());
335     return this->relocs_[i].first;
336   }
337
338   // Return the offset of the I-th instruction with relocation from the
339   // beginning of the stub.
340   section_size_type
341   reloc_offset(size_t i) const
342   {
343     gold_assert(i < this->relocs_.size());
344     return this->relocs_[i].second;
345   }
346
347  private:
348   // This contains information about an instruction template with a relocation
349   // and its offset from start of stub.
350   typedef std::pair<size_t, section_size_type> Reloc;
351
352   // A Stub_template may not be copied.  We want to share templates as much
353   // as possible.
354   Stub_template(const Stub_template&);
355   Stub_template& operator=(const Stub_template&);
356
357   // Stub type.
358   Stub_type type_;
359   // Points to an array of Insn_templates.
360   const Insn_template* insns_;
361   // Number of Insn_templates in insns_[].
362   size_t insn_count_;
363   // Size of templated instructions in bytes.
364   size_t size_;
365   // Alignment of templated instructions.
366   unsigned alignment_;
367   // Flag to indicate if entry is in thumb mode.
368   bool entry_in_thumb_mode_;
369   // A table of reloc instruction indices and offsets.  We can find these by
370   // looking at the instruction templates but we pre-compute and then stash
371   // them here for speed.
372   std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs.  This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382  private:
383   static const section_offset_type invalid_offset =
384     static_cast<section_offset_type>(-1);
385
386  public:
387   Stub(const Stub_template* stub_template)
388     : stub_template_(stub_template), offset_(invalid_offset)
389   { }
390
391   virtual
392    ~Stub()
393   { }
394
395   // Return the stub template.
396   const Stub_template*
397   stub_template() const
398   { return this->stub_template_; }
399
400   // Return offset of code stub from beginning of its containing stub table.
401   section_offset_type
402   offset() const
403   {
404     gold_assert(this->offset_ != invalid_offset);
405     return this->offset_;
406   }
407
408   // Set offset of code stub from beginning of its containing stub table.
409   void
410   set_offset(section_offset_type offset)
411   { this->offset_ = offset; }
412
413   // Return the relocation target address of the i-th relocation in the
414   // stub.  This must be defined in a child class.
415   Arm_address
416   reloc_target(size_t i)
417   { return this->do_reloc_target(i); }
418
419   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
420   void
421   write(unsigned char* view, section_size_type view_size, bool big_endian)
422   { this->do_write(view, view_size, big_endian); }
423
424   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425   // for the i-th instruction.
426   uint16_t
427   thumb16_special(size_t i)
428   { return this->do_thumb16_special(i); }
429
430  protected:
431   // This must be defined in the child class.
432   virtual Arm_address
433   do_reloc_target(size_t) = 0;
434
435   // This may be overridden in the child class.
436   virtual void
437   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438   {
439     if (big_endian)
440       this->do_fixed_endian_write<true>(view, view_size);
441     else
442       this->do_fixed_endian_write<false>(view, view_size);
443   }
444
445   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446   // instruction template.
447   virtual uint16_t
448   do_thumb16_special(size_t)
449   { gold_unreachable(); }
450
451  private:
452   // A template to implement do_write.
453   template<bool big_endian>
454   void inline
455   do_fixed_endian_write(unsigned char*, section_size_type);
456
457   // Its template.
458   const Stub_template* stub_template_;
459   // Offset within the section of containing this stub.
460   section_offset_type offset_;
461 };
462
463 // Reloc stub class.  These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468  public:
469   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470   // We assume we never jump to this address.
471   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473   // Return destination address.
474   Arm_address
475   destination_address() const
476   {
477     gold_assert(this->destination_address_ != this->invalid_address);
478     return this->destination_address_;
479   }
480
481   // Set destination address.
482   void
483   set_destination_address(Arm_address address)
484   {
485     gold_assert(address != this->invalid_address);
486     this->destination_address_ = address;
487   }
488
489   // Reset destination address.
490   void
491   reset_destination_address()
492   { this->destination_address_ = this->invalid_address; }
493
494   // Determine stub type for a branch of a relocation of R_TYPE going
495   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
496   // the branch target is a thumb instruction.  TARGET is used for look
497   // up ARM-specific linker settings.
498   static Stub_type
499   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500                       Arm_address branch_target, bool target_is_thumb);
501
502   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
503   // and an addend.  Since we treat global and local symbol differently, we
504   // use a Symbol object for a global symbol and a object-index pair for
505   // a local symbol.
506   class Key
507   {
508    public:
509     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
511     // and R_SYM must not be invalid_index.
512     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513         unsigned int r_sym, int32_t addend)
514       : stub_type_(stub_type), addend_(addend)
515     {
516       if (symbol != NULL)
517         {
518           this->r_sym_ = Reloc_stub::invalid_index;
519           this->u_.symbol = symbol;
520         }
521       else
522         {
523           gold_assert(relobj != NULL && r_sym != invalid_index);
524           this->r_sym_ = r_sym;
525           this->u_.relobj = relobj;
526         }
527     }
528
529     ~Key()
530     { }
531
532     // Accessors: Keys are meant to be read-only object so no modifiers are
533     // provided.
534
535     // Return stub type.
536     Stub_type
537     stub_type() const
538     { return this->stub_type_; }
539
540     // Return the local symbol index or invalid_index.
541     unsigned int
542     r_sym() const
543     { return this->r_sym_; }
544
545     // Return the symbol if there is one.
546     const Symbol*
547     symbol() const
548     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550     // Return the relobj if there is one.
551     const Relobj*
552     relobj() const
553     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555     // Whether this equals to another key k.
556     bool
557     eq(const Key& k) const
558     {
559       return ((this->stub_type_ == k.stub_type_)
560               && (this->r_sym_ == k.r_sym_)
561               && ((this->r_sym_ != Reloc_stub::invalid_index)
562                   ? (this->u_.relobj == k.u_.relobj)
563                   : (this->u_.symbol == k.u_.symbol))
564               && (this->addend_ == k.addend_));
565     }
566
567     // Return a hash value.
568     size_t
569     hash_value() const
570     {
571       return (this->stub_type_
572               ^ this->r_sym_
573               ^ gold::string_hash<char>(
574                     (this->r_sym_ != Reloc_stub::invalid_index)
575                     ? this->u_.relobj->name().c_str()
576                     : this->u_.symbol->name())
577               ^ this->addend_);
578     }
579
580     // Functors for STL associative containers.
581     struct hash
582     {
583       size_t
584       operator()(const Key& k) const
585       { return k.hash_value(); }
586     };
587
588     struct equal_to
589     {
590       bool
591       operator()(const Key& k1, const Key& k2) const
592       { return k1.eq(k2); }
593     };
594
595     // Name of key.  This is mainly for debugging.
596     std::string
597     name() const;
598
599    private:
600     // Stub type.
601     Stub_type stub_type_;
602     // If this is a local symbol, this is the index in the defining object.
603     // Otherwise, it is invalid_index for a global symbol.
604     unsigned int r_sym_;
605     // If r_sym_ is an invalid index, this points to a global symbol.
606     // Otherwise, it points to a relobj.  We used the unsized and target
607     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608     // Arm_relobj, in order to avoid making the stub class a template
609     // as most of the stub machinery is endianness-neutral.  However, it
610     // may require a bit of casting done by users of this class.
611     union
612     {
613       const Symbol* symbol;
614       const Relobj* relobj;
615     } u_;
616     // Addend associated with a reloc.
617     int32_t addend_;
618   };
619
620  protected:
621   // Reloc_stubs are created via a stub factory.  So these are protected.
622   Reloc_stub(const Stub_template* stub_template)
623     : Stub(stub_template), destination_address_(invalid_address)
624   { }
625
626   ~Reloc_stub()
627   { }
628
629   friend class Stub_factory;
630
631   // Return the relocation target address of the i-th relocation in the
632   // stub.
633   Arm_address
634   do_reloc_target(size_t i)
635   {
636     // All reloc stub have only one relocation.
637     gold_assert(i == 0);
638     return this->destination_address_;
639   }
640
641  private:
642   // Address of destination.
643   Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 //    branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 //    branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least.  We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch.  The
658 // condition code is used in a special instruction template.  We also want
659 // to identify input sections needing Cortex-A8 workaround quickly.  We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up.  The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667  public:
668   ~Cortex_a8_stub()
669   { }
670
671   // Return the object of the code section containing the branch being fixed
672   // up.
673   Relobj*
674   relobj() const
675   { return this->relobj_; }
676
677   // Return the section index of the code section containing the branch being
678   // fixed up.
679   unsigned int
680   shndx() const
681   { return this->shndx_; }
682
683   // Return the source address of stub.  This is the address of the original
684   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
685   // instruction.
686   Arm_address
687   source_address() const
688   { return this->source_address_; }
689
690   // Return the destination address of the stub.  This is the branch taken
691   // address of the original branch instruction.  LSB is 1 if it is a THUMB
692   // instruction address.
693   Arm_address
694   destination_address() const
695   { return this->destination_address_; }
696
697   // Return the instruction being fixed up.
698   uint32_t
699   original_insn() const
700   { return this->original_insn_; }
701
702  protected:
703   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
704   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705                  unsigned int shndx, Arm_address source_address,
706                  Arm_address destination_address, uint32_t original_insn)
707     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708       source_address_(source_address | 1U),
709       destination_address_(destination_address),
710       original_insn_(original_insn)
711   { }
712
713   friend class Stub_factory;
714
715   // Return the relocation target address of the i-th relocation in the
716   // stub.
717   Arm_address
718   do_reloc_target(size_t i)
719   {
720     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721       {
722         // The conditional branch veneer has two relocations.
723         gold_assert(i < 2);
724         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725       }
726     else
727       {
728         // All other Cortex-A8 stubs have only one relocation.
729         gold_assert(i == 0);
730         return this->destination_address_;
731       }
732   }
733
734   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735   uint16_t
736   do_thumb16_special(size_t);
737
738  private:
739   // Object of the code section containing the branch being fixed up.
740   Relobj* relobj_;
741   // Section index of the code section containing the branch begin fixed up.
742   unsigned int shndx_;
743   // Source address of original branch.
744   Arm_address source_address_;
745   // Destination address of the original branch.
746   Arm_address destination_address_;
747   // Original branch instruction.  This is needed for copying the condition
748   // code from a condition branch to its stub.
749   uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755  public:
756   ~Arm_v4bx_stub()
757   { }
758
759   // Return the associated register.
760   uint32_t
761   reg() const
762   { return this->reg_; }
763
764  protected:
765   // Arm V4BX stubs are created via a stub factory.  So these are protected.
766   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767     : Stub(stub_template), reg_(reg)
768   { }
769
770   friend class Stub_factory;
771
772   // Return the relocation target address of the i-th relocation in the
773   // stub.
774   Arm_address
775   do_reloc_target(size_t)
776   { gold_unreachable(); }
777
778   // This may be overridden in the child class.
779   virtual void
780   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781   {
782     if (big_endian)
783       this->do_fixed_endian_v4bx_write<true>(view, view_size);
784     else
785       this->do_fixed_endian_v4bx_write<false>(view, view_size);
786   }
787
788  private:
789   // A template to implement do_write.
790   template<bool big_endian>
791   void inline
792   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793   {
794     const Insn_template* insns = this->stub_template()->insns();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[0].data()
797                                            + (this->reg_ << 16)));
798     view += insns[0].size();
799     elfcpp::Swap<32, big_endian>::writeval(view,
800                                            (insns[1].data() + this->reg_));
801     view += insns[1].size();
802     elfcpp::Swap<32, big_endian>::writeval(view,
803                                            (insns[2].data() + this->reg_));
804   }
805
806   // A register index (r0-r14), which is associated with the stub.
807   uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814  public:
815   // Return the unique instance of this class.
816   static const Stub_factory&
817   get_instance()
818   {
819     static Stub_factory singleton;
820     return singleton;
821   }
822
823   // Make a relocation stub.
824   Reloc_stub*
825   make_reloc_stub(Stub_type stub_type) const
826   {
827     gold_assert(stub_type >= arm_stub_reloc_first
828                 && stub_type <= arm_stub_reloc_last);
829     return new Reloc_stub(this->stub_templates_[stub_type]);
830   }
831
832   // Make a Cortex-A8 stub.
833   Cortex_a8_stub*
834   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835                       Arm_address source, Arm_address destination,
836                       uint32_t original_insn) const
837   {
838     gold_assert(stub_type >= arm_stub_cortex_a8_first
839                 && stub_type <= arm_stub_cortex_a8_last);
840     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841                               source, destination, original_insn);
842   }
843
844   // Make an ARM V4BX relocation stub.
845   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846   Arm_v4bx_stub*
847   make_arm_v4bx_stub(uint32_t reg) const
848   {
849     gold_assert(reg < 0xf);
850     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851                              reg);
852   }
853
854  private:
855   // Constructor and destructor are protected since we only return a single
856   // instance created in Stub_factory::get_instance().
857
858   Stub_factory();
859
860   // A Stub_factory may not be copied since it is a singleton.
861   Stub_factory(const Stub_factory&);
862   Stub_factory& operator=(Stub_factory&);
863
864   // Stub templates.  These are initialized in the constructor.
865   const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873  public:
874   Stub_table(Arm_input_section<big_endian>* owner)
875     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877       prev_data_size_(0), prev_addralign_(1)
878   { }
879
880   ~Stub_table()
881   { }
882
883   // Owner of this stub table.
884   Arm_input_section<big_endian>*
885   owner() const
886   { return this->owner_; }
887
888   // Whether this stub table is empty.
889   bool
890   empty() const
891   {
892     return (this->reloc_stubs_.empty()
893             && this->cortex_a8_stubs_.empty()
894             && this->arm_v4bx_stubs_.empty());
895   }
896
897   // Return the current data size.
898   off_t
899   current_data_size() const
900   { return this->current_data_size_for_child(); }
901
902   // Add a STUB using KEY.  The caller is responsible for avoiding addition
903   // if a STUB with the same key has already been added.
904   void
905   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906   {
907     const Stub_template* stub_template = stub->stub_template();
908     gold_assert(stub_template->type() == key.stub_type());
909     this->reloc_stubs_[key] = stub;
910
911     // Assign stub offset early.  We can do this because we never remove
912     // reloc stubs and they are in the beginning of the stub table.
913     uint64_t align = stub_template->alignment();
914     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915     stub->set_offset(this->reloc_stubs_size_);
916     this->reloc_stubs_size_ += stub_template->size();
917     this->reloc_stubs_addralign_ =
918       std::max(this->reloc_stubs_addralign_, align);
919   }
920
921   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922   // The caller is responsible for avoiding addition if a STUB with the same
923   // address has already been added.
924   void
925   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926   {
927     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928     this->cortex_a8_stubs_.insert(value);
929   }
930
931   // Add an ARM V4BX relocation stub. A register index will be retrieved
932   // from the stub.
933   void
934   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935   {
936     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937     this->arm_v4bx_stubs_[stub->reg()] = stub;
938   }
939
940   // Remove all Cortex-A8 stubs.
941   void
942   remove_all_cortex_a8_stubs();
943
944   // Look up a relocation stub using KEY.  Return NULL if there is none.
945   Reloc_stub*
946   find_reloc_stub(const Reloc_stub::Key& key) const
947   {
948     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950   }
951
952   // Look up an arm v4bx relocation stub using the register index.
953   // Return NULL if there is none.
954   Arm_v4bx_stub*
955   find_arm_v4bx_stub(const uint32_t reg) const
956   {
957     gold_assert(reg < 0xf);
958     return this->arm_v4bx_stubs_[reg];
959   }
960
961   // Relocate stubs in this stub table.
962   void
963   relocate_stubs(const Relocate_info<32, big_endian>*,
964                  Target_arm<big_endian>*, Output_section*,
965                  unsigned char*, Arm_address, section_size_type);
966
967   // Update data size and alignment at the end of a relaxation pass.  Return
968   // true if either data size or alignment is different from that of the
969   // previous relaxation pass.
970   bool
971   update_data_size_and_addralign();
972
973   // Finalize stubs.  Set the offsets of all stubs and mark input sections
974   // needing the Cortex-A8 workaround.
975   void
976   finalize_stubs();
977
978   // Apply Cortex-A8 workaround to an address range.
979   void
980   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981                                               unsigned char*, Arm_address,
982                                               section_size_type);
983
984  protected:
985   // Write out section contents.
986   void
987   do_write(Output_file*);
988
989   // Return the required alignment.
990   uint64_t
991   do_addralign() const
992   { return this->prev_addralign_; }
993
994   // Reset address and file offset.
995   void
996   do_reset_address_and_file_offset()
997   { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999   // Set final data size.
1000   void
1001   set_final_data_size()
1002   { this->set_data_size(this->current_data_size()); }
1003
1004  private:
1005   // Relocate one stub.
1006   void
1007   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008                 Target_arm<big_endian>*, Output_section*,
1009                 unsigned char*, Arm_address, section_size_type);
1010
1011   // Unordered map of relocation stubs.
1012   typedef
1013     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014                   Reloc_stub::Key::equal_to>
1015     Reloc_stub_map;
1016
1017   // List of Cortex-A8 stubs ordered by addresses of branches being
1018   // fixed up in output.
1019   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020   // List of Arm V4BX relocation stubs ordered by associated registers.
1021   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023   // Owner of this stub table.
1024   Arm_input_section<big_endian>* owner_;
1025   // The relocation stubs.
1026   Reloc_stub_map reloc_stubs_;
1027   // Size of reloc stubs.
1028   off_t reloc_stubs_size_;
1029   // Maximum address alignment of reloc stubs.
1030   uint64_t reloc_stubs_addralign_;
1031   // The cortex_a8_stubs.
1032   Cortex_a8_stub_list cortex_a8_stubs_;
1033   // The Arm V4BX relocation stubs.
1034   Arm_v4bx_stub_list arm_v4bx_stubs_;
1035   // data size of this in the previous pass.
1036   off_t prev_data_size_;
1037   // address alignment of this in the previous pass.
1038   uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046  public:
1047   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049   { }
1050
1051   // Return the object containing the section pointed by this.
1052   Relobj*
1053   relobj() const
1054   { return this->relobj_; }
1055
1056   // Return the section index of the section pointed by this.
1057   unsigned int
1058   shndx() const
1059   { return this->shndx_; }
1060
1061  protected:
1062   void
1063   do_write(Output_file* of)
1064   {
1065     if (parameters->target().is_big_endian())
1066       this->do_fixed_endian_write<true>(of);
1067     else
1068       this->do_fixed_endian_write<false>(of);
1069   }
1070
1071   // Write to a map file.
1072   void
1073   do_print_to_mapfile(Mapfile* mapfile) const
1074   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076  private:
1077   // Implement do_write for a given endianness.
1078   template<bool big_endian>
1079   void inline
1080   do_fixed_endian_write(Output_file*);
1081
1082   // The object containing the section pointed by this.
1083   Relobj* relobj_;
1084   // The section index of the section pointed by this.
1085   unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093         Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100  public:
1101   // Constructor for Arm_exidx_merged_section.
1102   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103   // SECTION_OFFSET_MAP points to a section offset map describing how
1104   // parts of the input section are mapped to output.  DELETED_BYTES is
1105   // the number of bytes deleted from the EXIDX input section.
1106   Arm_exidx_merged_section(
1107       const Arm_exidx_input_section& exidx_input_section,
1108       const Arm_exidx_section_offset_map& section_offset_map,
1109       uint32_t deleted_bytes);
1110
1111   // Build output contents.
1112   void
1113   build_contents(const unsigned char*, section_size_type);
1114
1115   // Return the original EXIDX input section.
1116   const Arm_exidx_input_section&
1117   exidx_input_section() const
1118   { return this->exidx_input_section_; }
1119
1120   // Return the section offset map.
1121   const Arm_exidx_section_offset_map&
1122   section_offset_map() const
1123   { return this->section_offset_map_; }
1124
1125  protected:
1126   // Write merged section into file OF.
1127   void
1128   do_write(Output_file* of);
1129
1130   bool
1131   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132                   section_offset_type*) const;
1133
1134  private:
1135   // Original EXIDX input section.
1136   const Arm_exidx_input_section& exidx_input_section_;
1137   // Section offset map.
1138   const Arm_exidx_section_offset_map& section_offset_map_;
1139   // Merged section contents.  We need to keep build the merged section
1140   // and save it here to avoid accessing the original EXIDX section when
1141   // we cannot lock the sections' object.
1142   unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150  public:
1151   Arm_input_section(Relobj* relobj, unsigned int shndx)
1152     : Output_relaxed_input_section(relobj, shndx, 1),
1153       original_addralign_(1), original_size_(0), stub_table_(NULL),
1154       original_contents_(NULL)
1155   { }
1156
1157   ~Arm_input_section()
1158   { delete[] this->original_contents_; }
1159
1160   // Initialize.
1161   void
1162   init();
1163
1164   // Whether this is a stub table owner.
1165   bool
1166   is_stub_table_owner() const
1167   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169   // Return the stub table.
1170   Stub_table<big_endian>*
1171   stub_table() const
1172   { return this->stub_table_; }
1173
1174   // Set the stub_table.
1175   void
1176   set_stub_table(Stub_table<big_endian>* stub_table)
1177   { this->stub_table_ = stub_table; }
1178
1179   // Downcast a base pointer to an Arm_input_section pointer.  This is
1180   // not type-safe but we only use Arm_input_section not the base class.
1181   static Arm_input_section<big_endian>*
1182   as_arm_input_section(Output_relaxed_input_section* poris)
1183   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185   // Return the original size of the section.
1186   uint32_t
1187   original_size() const
1188   { return this->original_size_; }
1189
1190  protected:
1191   // Write data to output file.
1192   void
1193   do_write(Output_file*);
1194
1195   // Return required alignment of this.
1196   uint64_t
1197   do_addralign() const
1198   {
1199     if (this->is_stub_table_owner())
1200       return std::max(this->stub_table_->addralign(),
1201                       static_cast<uint64_t>(this->original_addralign_));
1202     else
1203       return this->original_addralign_;
1204   }
1205
1206   // Finalize data size.
1207   void
1208   set_final_data_size();
1209
1210   // Reset address and file offset.
1211   void
1212   do_reset_address_and_file_offset();
1213
1214   // Output offset.
1215   bool
1216   do_output_offset(const Relobj* object, unsigned int shndx,
1217                    section_offset_type offset,
1218                    section_offset_type* poutput) const
1219   {
1220     if ((object == this->relobj())
1221         && (shndx == this->shndx())
1222         && (offset >= 0)
1223         && (offset <=
1224             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225       {
1226         *poutput = offset;
1227         return true;
1228       }
1229     else
1230       return false;
1231   }
1232
1233  private:
1234   // Copying is not allowed.
1235   Arm_input_section(const Arm_input_section&);
1236   Arm_input_section& operator=(const Arm_input_section&);
1237
1238   // Address alignment of the original input section.
1239   uint32_t original_addralign_;
1240   // Section size of the original input section.
1241   uint32_t original_size_;
1242   // Stub table.
1243   Stub_table<big_endian>* stub_table_;
1244   // Original section contents.  We have to make a copy here since the file
1245   // containing the original section may not be locked when we need to access
1246   // the contents.
1247   unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class.  This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255  public:
1256   Arm_exidx_fixup(Output_section* exidx_output_section,
1257                   bool merge_exidx_entries = true)
1258     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259       last_inlined_entry_(0), last_input_section_(NULL),
1260       section_offset_map_(NULL), first_output_text_section_(NULL),
1261       merge_exidx_entries_(merge_exidx_entries)
1262   { }
1263
1264   ~Arm_exidx_fixup()
1265   { delete this->section_offset_map_; }
1266
1267   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1268   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269   // number of bytes to be deleted in output.  If parts of the input EXIDX
1270   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1272   // responsible for releasing it.
1273   template<bool big_endian>
1274   uint32_t
1275   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276                         const unsigned char* section_contents,
1277                         section_size_type section_size,
1278                         Arm_exidx_section_offset_map** psection_offset_map);
1279
1280   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281   // input section, if there is not one already.
1282   void
1283   add_exidx_cantunwind_as_needed();
1284
1285   // Return the output section for the text section which is linked to the
1286   // first exidx input in output.
1287   Output_section*
1288   first_output_text_section() const
1289   { return this->first_output_text_section_; }
1290
1291  private:
1292   // Copying is not allowed.
1293   Arm_exidx_fixup(const Arm_exidx_fixup&);
1294   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296   // Type of EXIDX unwind entry.
1297   enum Unwind_type
1298   {
1299     // No type.
1300     UT_NONE,
1301     // EXIDX_CANTUNWIND.
1302     UT_EXIDX_CANTUNWIND,
1303     // Inlined entry.
1304     UT_INLINED_ENTRY,
1305     // Normal entry.
1306     UT_NORMAL_ENTRY,
1307   };
1308
1309   // Process an EXIDX entry.  We only care about the second word of the
1310   // entry.  Return true if the entry can be deleted.
1311   bool
1312   process_exidx_entry(uint32_t second_word);
1313
1314   // Update the current section offset map during EXIDX section fix-up.
1315   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1316   // reference point, DELETED_BYTES is the number of deleted by in the
1317   // section so far.  If DELETE_ENTRY is true, the reference point and
1318   // all offsets after the previous reference point are discarded.
1319   void
1320   update_offset_map(section_offset_type input_offset,
1321                     section_size_type deleted_bytes, bool delete_entry);
1322
1323   // EXIDX output section.
1324   Output_section* exidx_output_section_;
1325   // Unwind type of the last EXIDX entry processed.
1326   Unwind_type last_unwind_type_;
1327   // Last seen inlined EXIDX entry.
1328   uint32_t last_inlined_entry_;
1329   // Last processed EXIDX input section.
1330   const Arm_exidx_input_section* last_input_section_;
1331   // Section offset map created in process_exidx_section.
1332   Arm_exidx_section_offset_map* section_offset_map_;
1333   // Output section for the text section which is linked to the first exidx
1334   // input in output.
1335   Output_section* first_output_text_section_;
1336
1337   bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class.  This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346  public:
1347   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351                      elfcpp::Elf_Xword flags)
1352     : Output_section(name, type,
1353                      (type == elfcpp::SHT_ARM_EXIDX
1354                       ? flags | elfcpp::SHF_LINK_ORDER
1355                       : flags))
1356   {
1357     if (type == elfcpp::SHT_ARM_EXIDX)
1358       this->set_always_keeps_input_sections();
1359   }
1360
1361   ~Arm_output_section()
1362   { }
1363
1364   // Group input sections for stub generation.
1365   void
1366   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368   // Downcast a base pointer to an Arm_output_section pointer.  This is
1369   // not type-safe but we only use Arm_output_section not the base class.
1370   static Arm_output_section<big_endian>*
1371   as_arm_output_section(Output_section* os)
1372   { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374   // Append all input text sections in this into LIST.
1375   void
1376   append_text_sections_to_list(Text_section_list* list);
1377
1378   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1379   // is a list of text input sections sorted in ascending order of their
1380   // output addresses.
1381   void
1382   fix_exidx_coverage(Layout* layout,
1383                      const Text_section_list& sorted_text_section,
1384                      Symbol_table* symtab,
1385                      bool merge_exidx_entries,
1386                      const Task* task);
1387
1388   // Link an EXIDX section into its corresponding text section.
1389   void
1390   set_exidx_section_link();
1391
1392  private:
1393   // For convenience.
1394   typedef Output_section::Input_section Input_section;
1395   typedef Output_section::Input_section_list Input_section_list;
1396
1397   // Create a stub group.
1398   void create_stub_group(Input_section_list::const_iterator,
1399                          Input_section_list::const_iterator,
1400                          Input_section_list::const_iterator,
1401                          Target_arm<big_endian>*,
1402                          std::vector<Output_relaxed_input_section*>*,
1403                          const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410  public:
1411   static const section_offset_type invalid_offset =
1412     static_cast<section_offset_type>(-1);
1413
1414   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415                           unsigned int link, uint32_t size,
1416                           uint32_t addralign, uint32_t text_size)
1417     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418       addralign_(addralign), text_size_(text_size), has_errors_(false)
1419   { }
1420
1421   ~Arm_exidx_input_section()
1422   { }
1423
1424   // Accessors:  This is a read-only class.
1425
1426   // Return the object containing this EXIDX input section.
1427   Relobj*
1428   relobj() const
1429   { return this->relobj_; }
1430
1431   // Return the section index of this EXIDX input section.
1432   unsigned int
1433   shndx() const
1434   { return this->shndx_; }
1435
1436   // Return the section index of linked text section in the same object.
1437   unsigned int
1438   link() const
1439   { return this->link_; }
1440
1441   // Return size of the EXIDX input section.
1442   uint32_t
1443   size() const
1444   { return this->size_; }
1445
1446   // Return address alignment of EXIDX input section.
1447   uint32_t
1448   addralign() const
1449   { return this->addralign_; }
1450
1451   // Return size of the associated text input section.
1452   uint32_t
1453   text_size() const
1454   { return this->text_size_; }
1455
1456   // Whether there are any errors in the EXIDX input section.
1457   bool
1458   has_errors() const
1459   { return this->has_errors_; }
1460
1461   // Set has-errors flag.
1462   void
1463   set_has_errors()
1464   { this->has_errors_ = true; }
1465
1466  private:
1467   // Object containing this.
1468   Relobj* relobj_;
1469   // Section index of this.
1470   unsigned int shndx_;
1471   // text section linked to this in the same object.
1472   unsigned int link_;
1473   // Size of this.  For ARM 32-bit is sufficient.
1474   uint32_t size_;
1475   // Address alignment of this.  For ARM 32-bit is sufficient.
1476   uint32_t addralign_;
1477   // Size of associated text section.
1478   uint32_t text_size_;
1479   // Whether this has any errors.
1480   bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488  public:
1489   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494       stub_tables_(), local_symbol_is_thumb_function_(),
1495       attributes_section_data_(NULL), mapping_symbols_info_(),
1496       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497       output_local_symbol_count_needs_update_(false),
1498       merge_flags_and_attributes_(true)
1499   { }
1500
1501   ~Arm_relobj()
1502   { delete this->attributes_section_data_; }
1503
1504   // Return the stub table of the SHNDX-th section if there is one.
1505   Stub_table<big_endian>*
1506   stub_table(unsigned int shndx) const
1507   {
1508     gold_assert(shndx < this->stub_tables_.size());
1509     return this->stub_tables_[shndx];
1510   }
1511
1512   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513   void
1514   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515   {
1516     gold_assert(shndx < this->stub_tables_.size());
1517     this->stub_tables_[shndx] = stub_table;
1518   }
1519
1520   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1521   // index.  This is only valid after do_count_local_symbol is called.
1522   bool
1523   local_symbol_is_thumb_function(unsigned int r_sym) const
1524   {
1525     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526     return this->local_symbol_is_thumb_function_[r_sym];
1527   }
1528
1529   // Scan all relocation sections for stub generation.
1530   void
1531   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532                           const Layout*);
1533
1534   // Convert regular input section with index SHNDX to a relaxed section.
1535   void
1536   convert_input_section_to_relaxed_section(unsigned shndx)
1537   {
1538     // The stubs have relocations and we need to process them after writing
1539     // out the stubs.  So relocation now must follow section write.
1540     this->set_section_offset(shndx, -1ULL);
1541     this->set_relocs_must_follow_section_writes();
1542   }
1543
1544   // Downcast a base pointer to an Arm_relobj pointer.  This is
1545   // not type-safe but we only use Arm_relobj not the base class.
1546   static Arm_relobj<big_endian>*
1547   as_arm_relobj(Relobj* relobj)
1548   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550   // Processor-specific flags in ELF file header.  This is valid only after
1551   // reading symbols.
1552   elfcpp::Elf_Word
1553   processor_specific_flags() const
1554   { return this->processor_specific_flags_; }
1555
1556   // Attribute section data  This is the contents of the .ARM.attribute section
1557   // if there is one.
1558   const Attributes_section_data*
1559   attributes_section_data() const
1560   { return this->attributes_section_data_; }
1561
1562   // Mapping symbol location.
1563   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565   // Functor for STL container.
1566   struct Mapping_symbol_position_less
1567   {
1568     bool
1569     operator()(const Mapping_symbol_position& p1,
1570                const Mapping_symbol_position& p2) const
1571     {
1572       return (p1.first < p2.first
1573               || (p1.first == p2.first && p1.second < p2.second));
1574     }
1575   };
1576
1577   // We only care about the first character of a mapping symbol, so
1578   // we only store that instead of the whole symbol name.
1579   typedef std::map<Mapping_symbol_position, char,
1580                    Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582   // Whether a section contains any Cortex-A8 workaround.
1583   bool
1584   section_has_cortex_a8_workaround(unsigned int shndx) const
1585   {
1586     return (this->section_has_cortex_a8_workaround_ != NULL
1587             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588   }
1589
1590   // Mark a section that has Cortex-A8 workaround.
1591   void
1592   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593   {
1594     if (this->section_has_cortex_a8_workaround_ == NULL)
1595       this->section_has_cortex_a8_workaround_ =
1596         new std::vector<bool>(this->shnum(), false);
1597     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598   }
1599
1600   // Return the EXIDX section of an text section with index SHNDX or NULL
1601   // if the text section has no associated EXIDX section.
1602   const Arm_exidx_input_section*
1603   exidx_input_section_by_link(unsigned int shndx) const
1604   {
1605     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606     return ((p != this->exidx_section_map_.end()
1607              && p->second->link() == shndx)
1608             ? p->second
1609             : NULL);
1610   }
1611
1612   // Return the EXIDX section with index SHNDX or NULL if there is none.
1613   const Arm_exidx_input_section*
1614   exidx_input_section_by_shndx(unsigned shndx) const
1615   {
1616     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617     return ((p != this->exidx_section_map_.end()
1618              && p->second->shndx() == shndx)
1619             ? p->second
1620             : NULL);
1621   }
1622
1623   // Whether output local symbol count needs updating.
1624   bool
1625   output_local_symbol_count_needs_update() const
1626   { return this->output_local_symbol_count_needs_update_; }
1627
1628   // Set output_local_symbol_count_needs_update flag to be true.
1629   void
1630   set_output_local_symbol_count_needs_update()
1631   { this->output_local_symbol_count_needs_update_ = true; }
1632
1633   // Update output local symbol count at the end of relaxation.
1634   void
1635   update_output_local_symbol_count();
1636
1637   // Whether we want to merge processor-specific flags and attributes.
1638   bool
1639   merge_flags_and_attributes() const
1640   { return this->merge_flags_and_attributes_; }
1641
1642   // Export list of EXIDX section indices.
1643   void
1644   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645   {
1646     list->clear();
1647     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648          p != this->exidx_section_map_.end();
1649          ++p)
1650       {
1651         if (p->second->shndx() == p->first)
1652           list->push_back(p->first);
1653       }
1654     // Sort list to make result independent of implementation of map.
1655     std::sort(list->begin(), list->end());
1656   }
1657
1658  protected:
1659   // Post constructor setup.
1660   void
1661   do_setup()
1662   {
1663     // Call parent's setup method.
1664     Sized_relobj_file<32, big_endian>::do_setup();
1665
1666     // Initialize look-up tables.
1667     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668     this->stub_tables_.swap(empty_stub_table_list);
1669   }
1670
1671   // Count the local symbols.
1672   void
1673   do_count_local_symbols(Stringpool_template<char>*,
1674                          Stringpool_template<char>*);
1675
1676   void
1677   do_relocate_sections(
1678       const Symbol_table* symtab, const Layout* layout,
1679       const unsigned char* pshdrs, Output_file* of,
1680       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682   // Read the symbol information.
1683   void
1684   do_read_symbols(Read_symbols_data* sd);
1685
1686   // Process relocs for garbage collection.
1687   void
1688   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690  private:
1691
1692   // Whether a section needs to be scanned for relocation stubs.
1693   bool
1694   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695                                     const Relobj::Output_sections&,
1696                                     const Symbol_table*, const unsigned char*);
1697
1698   // Whether a section is a scannable text section.
1699   bool
1700   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701                        const Output_section*, const Symbol_table*);
1702
1703   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704   bool
1705   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706                                         unsigned int, Output_section*,
1707                                         const Symbol_table*);
1708
1709   // Scan a section for the Cortex-A8 erratum.
1710   void
1711   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712                                      unsigned int, Output_section*,
1713                                      Target_arm<big_endian>*);
1714
1715   // Find the linked text section of an EXIDX section by looking at the
1716   // first relocation of the EXIDX section.  PSHDR points to the section
1717   // headers of a relocation section and PSYMS points to the local symbols.
1718   // PSHNDX points to a location storing the text section index if found.
1719   // Return whether we can find the linked section.
1720   bool
1721   find_linked_text_section(const unsigned char* pshdr,
1722                            const unsigned char* psyms, unsigned int* pshndx);
1723
1724   //
1725   // Make a new Arm_exidx_input_section object for EXIDX section with
1726   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1727   // index of the linked text section.
1728   void
1729   make_exidx_input_section(unsigned int shndx,
1730                            const elfcpp::Shdr<32, big_endian>& shdr,
1731                            unsigned int text_shndx,
1732                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734   // Return the output address of either a plain input section or a
1735   // relaxed input section.  SHNDX is the section index.
1736   Arm_address
1737   simple_input_section_output_address(unsigned int, Output_section*);
1738
1739   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741     Exidx_section_map;
1742
1743   // List of stub tables.
1744   Stub_table_list stub_tables_;
1745   // Bit vector to tell if a local symbol is a thumb function or not.
1746   // This is only valid after do_count_local_symbol is called.
1747   std::vector<bool> local_symbol_is_thumb_function_;
1748   // processor-specific flags in ELF file header.
1749   elfcpp::Elf_Word processor_specific_flags_;
1750   // Object attributes if there is an .ARM.attributes section or NULL.
1751   Attributes_section_data* attributes_section_data_;
1752   // Mapping symbols information.
1753   Mapping_symbols_info mapping_symbols_info_;
1754   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755   std::vector<bool>* section_has_cortex_a8_workaround_;
1756   // Map a text section to its associated .ARM.exidx section, if there is one.
1757   Exidx_section_map exidx_section_map_;
1758   // Whether output local symbol count needs updating.
1759   bool output_local_symbol_count_needs_update_;
1760   // Whether we merge processor flags and attributes of this object to
1761   // output.
1762   bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770  public:
1771   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772              const elfcpp::Ehdr<32, big_endian>& ehdr)
1773     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774       processor_specific_flags_(0), attributes_section_data_(NULL)
1775   { }
1776
1777   ~Arm_dynobj()
1778   { delete this->attributes_section_data_; }
1779
1780   // Downcast a base pointer to an Arm_relobj pointer.  This is
1781   // not type-safe but we only use Arm_relobj not the base class.
1782   static Arm_dynobj<big_endian>*
1783   as_arm_dynobj(Dynobj* dynobj)
1784   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786   // Processor-specific flags in ELF file header.  This is valid only after
1787   // reading symbols.
1788   elfcpp::Elf_Word
1789   processor_specific_flags() const
1790   { return this->processor_specific_flags_; }
1791
1792   // Attributes section data.
1793   const Attributes_section_data*
1794   attributes_section_data() const
1795   { return this->attributes_section_data_; }
1796
1797  protected:
1798   // Read the symbol information.
1799   void
1800   do_read_symbols(Read_symbols_data* sd);
1801
1802  private:
1803   // processor-specific flags in ELF file header.
1804   elfcpp::Elf_Word processor_specific_flags_;
1805   // Object attributes if there is an .ARM.attributes section or NULL.
1806   Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814   // Return the addend for a relocation of a particular type.  Depending
1815   // on whether this is a REL or RELA relocation, read the addend from a
1816   // view or from a Reloc object.
1817   elfcpp::Elf_types<32>::Elf_Swxword
1818   operator()(
1819     unsigned int /* r_type */,
1820     const unsigned char* /* view */,
1821     const typename Reloc_types<sh_type,
1822                                32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830   elfcpp::Elf_types<32>::Elf_Swxword
1831   operator()(
1832     unsigned int,
1833     const unsigned char*,
1834     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader.  This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845   elfcpp::Elf_types<32>::Elf_Swxword
1846   operator()(
1847     unsigned int,
1848     const unsigned char*,
1849     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850                                big_endian>::Reloc& reloc) const
1851   { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class.  We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859  public:
1860   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861                   Arm_address destination)
1862     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863   { }
1864
1865   ~Cortex_a8_reloc()
1866   { }
1867
1868   // Accessors:  This is a read-only class.
1869
1870   // Return the relocation stub associated with this relocation if there is
1871   // one.
1872   const Reloc_stub*
1873   reloc_stub() const
1874   { return this->reloc_stub_; }
1875
1876   // Return the relocation type.
1877   unsigned int
1878   r_type() const
1879   { return this->r_type_; }
1880
1881   // Return the destination address of the relocation.  LSB stores the THUMB
1882   // bit.
1883   Arm_address
1884   destination() const
1885   { return this->destination_; }
1886
1887  private:
1888   // Associated relocation stub if there is one, or NULL.
1889   const Reloc_stub* reloc_stub_;
1890   // Relocation type.
1891   unsigned int r_type_;
1892   // Destination address of this relocation.  LSB is used to distinguish
1893   // ARM/THUMB mode.
1894   Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class.  We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903  public:
1904   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906   { }
1907
1908   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1909   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910   // applied in a static link.
1911   void
1912   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1916   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1917   // relocation that needs to be applied in a static link.
1918   void
1919   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920                    Sized_relobj_file<32, big_endian>* relobj,
1921                    unsigned int index)
1922   {
1923     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924                                                 index));
1925   }
1926
1927   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1928   // The first one is initialized to be 1, which is the module index for
1929   // the main executable and the second one 0.  A reloc of the type
1930   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931   // be applied by gold.  GSYM is a global symbol.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935   // Same as the above but for a local symbol in OBJECT with INDEX.
1936   void
1937   add_tls_gd32_with_static_reloc(unsigned int got_type,
1938                                  Sized_relobj_file<32, big_endian>* object,
1939                                  unsigned int index);
1940
1941  protected:
1942   // Write out the GOT table.
1943   void
1944   do_write(Output_file*);
1945
1946  private:
1947   // This class represent dynamic relocations that need to be applied by
1948   // gold because we are using TLS relocations in a static link.
1949   class Static_reloc
1950   {
1951    public:
1952     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954     { this->u_.global.symbol = gsym; }
1955
1956     Static_reloc(unsigned int got_offset, unsigned int r_type,
1957           Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959     {
1960       this->u_.local.relobj = relobj;
1961       this->u_.local.index = index;
1962     }
1963
1964     // Return the GOT offset.
1965     unsigned int
1966     got_offset() const
1967     { return this->got_offset_; }
1968
1969     // Relocation type.
1970     unsigned int
1971     r_type() const
1972     { return this->r_type_; }
1973
1974     // Whether the symbol is global or not.
1975     bool
1976     symbol_is_global() const
1977     { return this->symbol_is_global_; }
1978
1979     // For a relocation against a global symbol, the global symbol.
1980     Symbol*
1981     symbol() const
1982     {
1983       gold_assert(this->symbol_is_global_);
1984       return this->u_.global.symbol;
1985     }
1986
1987     // For a relocation against a local symbol, the defining object.
1988     Sized_relobj_file<32, big_endian>*
1989     relobj() const
1990     {
1991       gold_assert(!this->symbol_is_global_);
1992       return this->u_.local.relobj;
1993     }
1994
1995     // For a relocation against a local symbol, the local symbol index.
1996     unsigned int
1997     index() const
1998     {
1999       gold_assert(!this->symbol_is_global_);
2000       return this->u_.local.index;
2001     }
2002
2003    private:
2004     // GOT offset of the entry to which this relocation is applied.
2005     unsigned int got_offset_;
2006     // Type of relocation.
2007     unsigned int r_type_;
2008     // Whether this relocation is against a global symbol.
2009     bool symbol_is_global_;
2010     // A global or local symbol.
2011     union
2012     {
2013       struct
2014       {
2015         // For a global symbol, the symbol itself.
2016         Symbol* symbol;
2017       } global;
2018       struct
2019       {
2020         // For a local symbol, the object defining object.
2021         Sized_relobj_file<32, big_endian>* relobj;
2022         // For a local symbol, the symbol index.
2023         unsigned int index;
2024       } local;
2025     } u_;
2026   };
2027
2028   // Symbol table of the output object.
2029   Symbol_table* symbol_table_;
2030   // Layout of the output object.
2031   Layout* layout_;
2032   // Static relocs to be applied to the GOT.
2033   std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits.  The default handling of relocatable relocation cannot process these
2038 // relocations.  So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044  public:
2045   // Return the strategy to use for a local symbol which is a section
2046   // symbol, given the relocation type.
2047   inline Relocatable_relocs::Reloc_strategy
2048   local_section_strategy(unsigned int r_type, Relobj*)
2049   {
2050     if (sh_type == elfcpp::SHT_RELA)
2051       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052     else
2053       {
2054         if (r_type == elfcpp::R_ARM_TARGET1
2055             || r_type == elfcpp::R_ARM_TARGET2)
2056           {
2057             const Target_arm<big_endian>* arm_target =
2058               Target_arm<big_endian>::default_target();
2059             r_type = arm_target->get_real_reloc_type(r_type);
2060           }
2061
2062         switch(r_type)
2063           {
2064           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2065           // and R_ARM_TARGET2.
2066           case elfcpp::R_ARM_NONE:
2067           case elfcpp::R_ARM_V4BX:
2068           case elfcpp::R_ARM_TLS_GOTDESC:
2069           case elfcpp::R_ARM_TLS_CALL:
2070           case elfcpp::R_ARM_TLS_DESCSEQ:
2071           case elfcpp::R_ARM_THM_TLS_CALL:
2072           case elfcpp::R_ARM_GOTRELAX:
2073           case elfcpp::R_ARM_GNU_VTENTRY:
2074           case elfcpp::R_ARM_GNU_VTINHERIT:
2075           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078           // These should have been converted to something else above.
2079           case elfcpp::R_ARM_TARGET1:
2080           case elfcpp::R_ARM_TARGET2:
2081             gold_unreachable();
2082           // Relocations that write full 32 bits and
2083           // have alignment of 1.
2084           case elfcpp::R_ARM_ABS32:
2085           case elfcpp::R_ARM_REL32:
2086           case elfcpp::R_ARM_SBREL32:
2087           case elfcpp::R_ARM_GOTOFF32:
2088           case elfcpp::R_ARM_BASE_PREL:
2089           case elfcpp::R_ARM_GOT_BREL:
2090           case elfcpp::R_ARM_BASE_ABS:
2091           case elfcpp::R_ARM_ABS32_NOI:
2092           case elfcpp::R_ARM_REL32_NOI:
2093           case elfcpp::R_ARM_PLT32_ABS:
2094           case elfcpp::R_ARM_GOT_ABS:
2095           case elfcpp::R_ARM_GOT_PREL:
2096           case elfcpp::R_ARM_TLS_GD32:
2097           case elfcpp::R_ARM_TLS_LDM32:
2098           case elfcpp::R_ARM_TLS_LDO32:
2099           case elfcpp::R_ARM_TLS_IE32:
2100           case elfcpp::R_ARM_TLS_LE32:
2101             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102           default:
2103             // For all other static relocations, return RELOC_SPECIAL.
2104             return Relocatable_relocs::RELOC_SPECIAL;
2105           }
2106       }
2107   }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113  public:
2114   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115     Reloc_section;
2116
2117   // When were are relocating a stub, we pass this as the relocation number.
2118   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120   Target_arm(const Target::Target_info* info = &arm_info)
2121     : Sized_target<32, big_endian>(info),
2122       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123       rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2124       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126       should_force_pic_veneer_(false),
2127       arm_input_section_map_(), attributes_section_data_(NULL),
2128       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129   { }
2130
2131   // Whether we force PCI branch veneers.
2132   bool
2133   should_force_pic_veneer() const
2134   { return this->should_force_pic_veneer_; }
2135
2136   // Set PIC veneer flag.
2137   void
2138   set_should_force_pic_veneer(bool value)
2139   { this->should_force_pic_veneer_ = value; }
2140
2141   // Whether we use THUMB-2 instructions.
2142   bool
2143   using_thumb2() const
2144   {
2145     Object_attribute* attr =
2146       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147     int arch = attr->int_value();
2148     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149   }
2150
2151   // Whether we use THUMB/THUMB-2 instructions only.
2152   bool
2153   using_thumb_only() const
2154   {
2155     Object_attribute* attr =
2156       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160       return true;
2161     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163       return false;
2164     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165     return attr->int_value() == 'M';
2166   }
2167
2168   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2169   bool
2170   may_use_arm_nop() const
2171   {
2172     Object_attribute* attr =
2173       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174     int arch = attr->int_value();
2175     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176             || arch == elfcpp::TAG_CPU_ARCH_V6K
2177             || arch == elfcpp::TAG_CPU_ARCH_V7
2178             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179   }
2180
2181   // Whether we have THUMB-2 NOP.W instruction.
2182   bool
2183   may_use_thumb2_nop() const
2184   {
2185     Object_attribute* attr =
2186       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187     int arch = attr->int_value();
2188     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189             || arch == elfcpp::TAG_CPU_ARCH_V7
2190             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191   }
2192
2193   // Whether we have v4T interworking instructions available.
2194   bool
2195   may_use_v4t_interworking() const
2196   {
2197     Object_attribute* attr =
2198       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199     int arch = attr->int_value();
2200     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201             && arch != elfcpp::TAG_CPU_ARCH_V4);
2202   }
2203
2204   // Whether we have v5T interworking instructions available.
2205   bool
2206   may_use_v5t_interworking() const
2207   {
2208     Object_attribute* attr =
2209       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210     int arch = attr->int_value();
2211     if (parameters->options().fix_arm1176())
2212       return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213               || arch == elfcpp::TAG_CPU_ARCH_V7
2214               || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215               || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216               || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217     else
2218       return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219               && arch != elfcpp::TAG_CPU_ARCH_V4
2220               && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221   }
2222
2223   // Process the relocations to determine unreferenced sections for
2224   // garbage collection.
2225   void
2226   gc_process_relocs(Symbol_table* symtab,
2227                     Layout* layout,
2228                     Sized_relobj_file<32, big_endian>* object,
2229                     unsigned int data_shndx,
2230                     unsigned int sh_type,
2231                     const unsigned char* prelocs,
2232                     size_t reloc_count,
2233                     Output_section* output_section,
2234                     bool needs_special_offset_handling,
2235                     size_t local_symbol_count,
2236                     const unsigned char* plocal_symbols);
2237
2238   // Scan the relocations to look for symbol adjustments.
2239   void
2240   scan_relocs(Symbol_table* symtab,
2241               Layout* layout,
2242               Sized_relobj_file<32, big_endian>* object,
2243               unsigned int data_shndx,
2244               unsigned int sh_type,
2245               const unsigned char* prelocs,
2246               size_t reloc_count,
2247               Output_section* output_section,
2248               bool needs_special_offset_handling,
2249               size_t local_symbol_count,
2250               const unsigned char* plocal_symbols);
2251
2252   // Finalize the sections.
2253   void
2254   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256   // Return the value to use for a dynamic symbol which requires special
2257   // treatment.
2258   uint64_t
2259   do_dynsym_value(const Symbol*) const;
2260
2261   // Return the plt address for globals. Since we have irelative plt entries,
2262   // address calculation is not as straightforward as plt_address + plt_offset.
2263   uint64_t
2264   do_plt_address_for_global(const Symbol* gsym) const
2265   { return this->plt_section()->address_for_global(gsym); }
2266
2267   // Return the plt address for locals. Since we have irelative plt entries,
2268   // address calculation is not as straightforward as plt_address + plt_offset.
2269   uint64_t
2270   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271   { return this->plt_section()->address_for_local(relobj, symndx); }
2272
2273   // Relocate a section.
2274   void
2275   relocate_section(const Relocate_info<32, big_endian>*,
2276                    unsigned int sh_type,
2277                    const unsigned char* prelocs,
2278                    size_t reloc_count,
2279                    Output_section* output_section,
2280                    bool needs_special_offset_handling,
2281                    unsigned char* view,
2282                    Arm_address view_address,
2283                    section_size_type view_size,
2284                    const Reloc_symbol_changes*);
2285
2286   // Scan the relocs during a relocatable link.
2287   void
2288   scan_relocatable_relocs(Symbol_table* symtab,
2289                           Layout* layout,
2290                           Sized_relobj_file<32, big_endian>* object,
2291                           unsigned int data_shndx,
2292                           unsigned int sh_type,
2293                           const unsigned char* prelocs,
2294                           size_t reloc_count,
2295                           Output_section* output_section,
2296                           bool needs_special_offset_handling,
2297                           size_t local_symbol_count,
2298                           const unsigned char* plocal_symbols,
2299                           Relocatable_relocs*);
2300
2301   // Emit relocations for a section.
2302   void
2303   relocate_relocs(const Relocate_info<32, big_endian>*,
2304                   unsigned int sh_type,
2305                   const unsigned char* prelocs,
2306                   size_t reloc_count,
2307                   Output_section* output_section,
2308                   typename elfcpp::Elf_types<32>::Elf_Off
2309                     offset_in_output_section,
2310                   const Relocatable_relocs*,
2311                   unsigned char* view,
2312                   Arm_address view_address,
2313                   section_size_type view_size,
2314                   unsigned char* reloc_view,
2315                   section_size_type reloc_view_size);
2316
2317   // Perform target-specific processing in a relocatable link.  This is
2318   // only used if we use the relocation strategy RELOC_SPECIAL.
2319   void
2320   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2321                                unsigned int sh_type,
2322                                const unsigned char* preloc_in,
2323                                size_t relnum,
2324                                Output_section* output_section,
2325                                typename elfcpp::Elf_types<32>::Elf_Off
2326                                  offset_in_output_section,
2327                                unsigned char* view,
2328                                typename elfcpp::Elf_types<32>::Elf_Addr
2329                                  view_address,
2330                                section_size_type view_size,
2331                                unsigned char* preloc_out);
2332
2333   // Return whether SYM is defined by the ABI.
2334   bool
2335   do_is_defined_by_abi(const Symbol* sym) const
2336   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337
2338   // Return whether there is a GOT section.
2339   bool
2340   has_got_section() const
2341   { return this->got_ != NULL; }
2342
2343   // Return the size of the GOT section.
2344   section_size_type
2345   got_size() const
2346   {
2347     gold_assert(this->got_ != NULL);
2348     return this->got_->data_size();
2349   }
2350
2351   // Return the number of entries in the GOT.
2352   unsigned int
2353   got_entry_count() const
2354   {
2355     if (!this->has_got_section())
2356       return 0;
2357     return this->got_size() / 4;
2358   }
2359
2360   // Return the number of entries in the PLT.
2361   unsigned int
2362   plt_entry_count() const;
2363
2364   // Return the offset of the first non-reserved PLT entry.
2365   unsigned int
2366   first_plt_entry_offset() const;
2367
2368   // Return the size of each PLT entry.
2369   unsigned int
2370   plt_entry_size() const;
2371
2372   // Get the section to use for IRELATIVE relocations, create it if necessary.
2373   Reloc_section*
2374   rel_irelative_section(Layout*);
2375
2376   // Map platform-specific reloc types
2377   static unsigned int
2378   get_real_reloc_type(unsigned int r_type);
2379
2380   //
2381   // Methods to support stub-generations.
2382   //
2383
2384   // Return the stub factory
2385   const Stub_factory&
2386   stub_factory() const
2387   { return this->stub_factory_; }
2388
2389   // Make a new Arm_input_section object.
2390   Arm_input_section<big_endian>*
2391   new_arm_input_section(Relobj*, unsigned int);
2392
2393   // Find the Arm_input_section object corresponding to the SHNDX-th input
2394   // section of RELOBJ.
2395   Arm_input_section<big_endian>*
2396   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2397
2398   // Make a new Stub_table
2399   Stub_table<big_endian>*
2400   new_stub_table(Arm_input_section<big_endian>*);
2401
2402   // Scan a section for stub generation.
2403   void
2404   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2405                          const unsigned char*, size_t, Output_section*,
2406                          bool, const unsigned char*, Arm_address,
2407                          section_size_type);
2408
2409   // Relocate a stub.
2410   void
2411   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2412                 Output_section*, unsigned char*, Arm_address,
2413                 section_size_type);
2414
2415   // Get the default ARM target.
2416   static Target_arm<big_endian>*
2417   default_target()
2418   {
2419     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2420                 && parameters->target().is_big_endian() == big_endian);
2421     return static_cast<Target_arm<big_endian>*>(
2422              parameters->sized_target<32, big_endian>());
2423   }
2424
2425   // Whether NAME belongs to a mapping symbol.
2426   static bool
2427   is_mapping_symbol_name(const char* name)
2428   {
2429     return (name
2430             && name[0] == '$'
2431             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2432             && (name[2] == '\0' || name[2] == '.'));
2433   }
2434
2435   // Whether we work around the Cortex-A8 erratum.
2436   bool
2437   fix_cortex_a8() const
2438   { return this->fix_cortex_a8_; }
2439
2440   // Whether we merge exidx entries in debuginfo.
2441   bool
2442   merge_exidx_entries() const
2443   { return parameters->options().merge_exidx_entries(); }
2444
2445   // Whether we fix R_ARM_V4BX relocation.
2446   // 0 - do not fix
2447   // 1 - replace with MOV instruction (armv4 target)
2448   // 2 - make interworking veneer (>= armv4t targets only)
2449   General_options::Fix_v4bx
2450   fix_v4bx() const
2451   { return parameters->options().fix_v4bx(); }
2452
2453   // Scan a span of THUMB code section for Cortex-A8 erratum.
2454   void
2455   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2456                                   section_size_type, section_size_type,
2457                                   const unsigned char*, Arm_address);
2458
2459   // Apply Cortex-A8 workaround to a branch.
2460   void
2461   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2462                              unsigned char*, Arm_address);
2463
2464  protected:
2465   // Make the PLT-generator object.
2466   Output_data_plt_arm<big_endian>*
2467   make_data_plt(Layout* layout,
2468                 Arm_output_data_got<big_endian>* got,
2469                 Output_data_space* got_plt,
2470                 Output_data_space* got_irelative)
2471   { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2472
2473   // Make an ELF object.
2474   Object*
2475   do_make_elf_object(const std::string&, Input_file*, off_t,
2476                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2477
2478   Object*
2479   do_make_elf_object(const std::string&, Input_file*, off_t,
2480                      const elfcpp::Ehdr<32, !big_endian>&)
2481   { gold_unreachable(); }
2482
2483   Object*
2484   do_make_elf_object(const std::string&, Input_file*, off_t,
2485                       const elfcpp::Ehdr<64, false>&)
2486   { gold_unreachable(); }
2487
2488   Object*
2489   do_make_elf_object(const std::string&, Input_file*, off_t,
2490                      const elfcpp::Ehdr<64, true>&)
2491   { gold_unreachable(); }
2492
2493   // Make an output section.
2494   Output_section*
2495   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2496                          elfcpp::Elf_Xword flags)
2497   { return new Arm_output_section<big_endian>(name, type, flags); }
2498
2499   void
2500   do_adjust_elf_header(unsigned char* view, int len);
2501
2502   // We only need to generate stubs, and hence perform relaxation if we are
2503   // not doing relocatable linking.
2504   bool
2505   do_may_relax() const
2506   { return !parameters->options().relocatable(); }
2507
2508   bool
2509   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2510
2511   // Determine whether an object attribute tag takes an integer, a
2512   // string or both.
2513   int
2514   do_attribute_arg_type(int tag) const;
2515
2516   // Reorder tags during output.
2517   int
2518   do_attributes_order(int num) const;
2519
2520   // This is called when the target is selected as the default.
2521   void
2522   do_select_as_default_target()
2523   {
2524     // No locking is required since there should only be one default target.
2525     // We cannot have both the big-endian and little-endian ARM targets
2526     // as the default.
2527     gold_assert(arm_reloc_property_table == NULL);
2528     arm_reloc_property_table = new Arm_reloc_property_table();
2529   }
2530
2531   // Virtual function which is set to return true by a target if
2532   // it can use relocation types to determine if a function's
2533   // pointer is taken.
2534   virtual bool
2535   do_can_check_for_function_pointers() const
2536   { return true; }
2537
2538   // Whether a section called SECTION_NAME may have function pointers to
2539   // sections not eligible for safe ICF folding.
2540   virtual bool
2541   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542   {
2543     return (!is_prefix_of(".ARM.exidx", section_name)
2544             && !is_prefix_of(".ARM.extab", section_name)
2545             && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2546   }
2547
2548   virtual void
2549   do_define_standard_symbols(Symbol_table*, Layout*);
2550
2551   virtual Output_data_plt_arm<big_endian>*
2552   do_make_data_plt(Layout* layout,
2553                    Arm_output_data_got<big_endian>* got,
2554                    Output_data_space* got_plt,
2555                    Output_data_space* got_irelative)
2556   {
2557     gold_assert(got_plt != NULL && got_irelative != NULL);
2558     return new Output_data_plt_arm_standard<big_endian>(
2559         layout, got, got_plt, got_irelative);
2560   }
2561
2562  private:
2563   // The class which scans relocations.
2564   class Scan
2565   {
2566    public:
2567     Scan()
2568       : issued_non_pic_error_(false)
2569     { }
2570
2571     static inline int
2572     get_reference_flags(unsigned int r_type);
2573
2574     inline void
2575     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2576           Sized_relobj_file<32, big_endian>* object,
2577           unsigned int data_shndx,
2578           Output_section* output_section,
2579           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2580           const elfcpp::Sym<32, big_endian>& lsym,
2581           bool is_discarded);
2582
2583     inline void
2584     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2585            Sized_relobj_file<32, big_endian>* object,
2586            unsigned int data_shndx,
2587            Output_section* output_section,
2588            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2589            Symbol* gsym);
2590
2591     inline bool
2592     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2593                                         Sized_relobj_file<32, big_endian>* ,
2594                                         unsigned int ,
2595                                         Output_section* ,
2596                                         const elfcpp::Rel<32, big_endian>& ,
2597                                         unsigned int ,
2598                                         const elfcpp::Sym<32, big_endian>&);
2599
2600     inline bool
2601     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2602                                          Sized_relobj_file<32, big_endian>* ,
2603                                          unsigned int ,
2604                                          Output_section* ,
2605                                          const elfcpp::Rel<32, big_endian>& ,
2606                                          unsigned int , Symbol*);
2607
2608    private:
2609     static void
2610     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2611                             unsigned int r_type);
2612
2613     static void
2614     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2615                              unsigned int r_type, Symbol*);
2616
2617     void
2618     check_non_pic(Relobj*, unsigned int r_type);
2619
2620     // Almost identical to Symbol::needs_plt_entry except that it also
2621     // handles STT_ARM_TFUNC.
2622     static bool
2623     symbol_needs_plt_entry(const Symbol* sym)
2624     {
2625       // An undefined symbol from an executable does not need a PLT entry.
2626       if (sym->is_undefined() && !parameters->options().shared())
2627         return false;
2628
2629       if (sym->type() == elfcpp::STT_GNU_IFUNC)
2630         return true;
2631
2632       return (!parameters->doing_static_link()
2633               && (sym->type() == elfcpp::STT_FUNC
2634                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2635               && (sym->is_from_dynobj()
2636                   || sym->is_undefined()
2637                   || sym->is_preemptible()));
2638     }
2639
2640     inline bool
2641     possible_function_pointer_reloc(unsigned int r_type);
2642
2643     // Whether a plt entry is needed for ifunc.
2644     bool
2645     reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2646                               unsigned int r_type);
2647
2648     // Whether we have issued an error about a non-PIC compilation.
2649     bool issued_non_pic_error_;
2650   };
2651
2652   // The class which implements relocation.
2653   class Relocate
2654   {
2655    public:
2656     Relocate()
2657     { }
2658
2659     ~Relocate()
2660     { }
2661
2662     // Return whether the static relocation needs to be applied.
2663     inline bool
2664     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2665                               unsigned int r_type,
2666                               bool is_32bit,
2667                               Output_section* output_section);
2668
2669     // Do a relocation.  Return false if the caller should not issue
2670     // any warnings about this relocation.
2671     inline bool
2672     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2673              Output_section*,  size_t relnum,
2674              const elfcpp::Rel<32, big_endian>&,
2675              unsigned int r_type, const Sized_symbol<32>*,
2676              const Symbol_value<32>*,
2677              unsigned char*, Arm_address,
2678              section_size_type);
2679
2680     // Return whether we want to pass flag NON_PIC_REF for this
2681     // reloc.  This means the relocation type accesses a symbol not via
2682     // GOT or PLT.
2683     static inline bool
2684     reloc_is_non_pic(unsigned int r_type)
2685     {
2686       switch (r_type)
2687         {
2688         // These relocation types reference GOT or PLT entries explicitly.
2689         case elfcpp::R_ARM_GOT_BREL:
2690         case elfcpp::R_ARM_GOT_ABS:
2691         case elfcpp::R_ARM_GOT_PREL:
2692         case elfcpp::R_ARM_GOT_BREL12:
2693         case elfcpp::R_ARM_PLT32_ABS:
2694         case elfcpp::R_ARM_TLS_GD32:
2695         case elfcpp::R_ARM_TLS_LDM32:
2696         case elfcpp::R_ARM_TLS_IE32:
2697         case elfcpp::R_ARM_TLS_IE12GP:
2698
2699         // These relocate types may use PLT entries.
2700         case elfcpp::R_ARM_CALL:
2701         case elfcpp::R_ARM_THM_CALL:
2702         case elfcpp::R_ARM_JUMP24:
2703         case elfcpp::R_ARM_THM_JUMP24:
2704         case elfcpp::R_ARM_THM_JUMP19:
2705         case elfcpp::R_ARM_PLT32:
2706         case elfcpp::R_ARM_THM_XPC22:
2707         case elfcpp::R_ARM_PREL31:
2708         case elfcpp::R_ARM_SBREL31:
2709           return false;
2710
2711         default:
2712           return true;
2713         }
2714     }
2715
2716    private:
2717     // Do a TLS relocation.
2718     inline typename Arm_relocate_functions<big_endian>::Status
2719     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2720                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2721                  const Sized_symbol<32>*, const Symbol_value<32>*,
2722                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723                  section_size_type);
2724
2725   };
2726
2727   // A class which returns the size required for a relocation type,
2728   // used while scanning relocs during a relocatable link.
2729   class Relocatable_size_for_reloc
2730   {
2731    public:
2732     unsigned int
2733     get_size_for_reloc(unsigned int, Relobj*);
2734   };
2735
2736   // Adjust TLS relocation type based on the options and whether this
2737   // is a local symbol.
2738   static tls::Tls_optimization
2739   optimize_tls_reloc(bool is_final, int r_type);
2740
2741   // Get the GOT section, creating it if necessary.
2742   Arm_output_data_got<big_endian>*
2743   got_section(Symbol_table*, Layout*);
2744
2745   // Get the GOT PLT section.
2746   Output_data_space*
2747   got_plt_section() const
2748   {
2749     gold_assert(this->got_plt_ != NULL);
2750     return this->got_plt_;
2751   }
2752
2753   // Create the PLT section.
2754   void
2755   make_plt_section(Symbol_table* symtab, Layout* layout);
2756
2757   // Create a PLT entry for a global symbol.
2758   void
2759   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2760
2761   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2762   void
2763   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2764                              Sized_relobj_file<32, big_endian>* relobj,
2765                              unsigned int local_sym_index);
2766
2767   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2768   void
2769   define_tls_base_symbol(Symbol_table*, Layout*);
2770
2771   // Create a GOT entry for the TLS module index.
2772   unsigned int
2773   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2774                       Sized_relobj_file<32, big_endian>* object);
2775
2776   // Get the PLT section.
2777   const Output_data_plt_arm<big_endian>*
2778   plt_section() const
2779   {
2780     gold_assert(this->plt_ != NULL);
2781     return this->plt_;
2782   }
2783
2784   // Get the dynamic reloc section, creating it if necessary.
2785   Reloc_section*
2786   rel_dyn_section(Layout*);
2787
2788   // Get the section to use for TLS_DESC relocations.
2789   Reloc_section*
2790   rel_tls_desc_section(Layout*) const;
2791
2792   // Return true if the symbol may need a COPY relocation.
2793   // References from an executable object to non-function symbols
2794   // defined in a dynamic object may need a COPY relocation.
2795   bool
2796   may_need_copy_reloc(Symbol* gsym)
2797   {
2798     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2799             && gsym->may_need_copy_reloc());
2800   }
2801
2802   // Add a potential copy relocation.
2803   void
2804   copy_reloc(Symbol_table* symtab, Layout* layout,
2805              Sized_relobj_file<32, big_endian>* object,
2806              unsigned int shndx, Output_section* output_section,
2807              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2808   {
2809     this->copy_relocs_.copy_reloc(symtab, layout,
2810                                   symtab->get_sized_symbol<32>(sym),
2811                                   object, shndx, output_section, reloc,
2812                                   this->rel_dyn_section(layout));
2813   }
2814
2815   // Whether two EABI versions are compatible.
2816   static bool
2817   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2818
2819   // Merge processor-specific flags from input object and those in the ELF
2820   // header of the output.
2821   void
2822   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2823
2824   // Get the secondary compatible architecture.
2825   static int
2826   get_secondary_compatible_arch(const Attributes_section_data*);
2827
2828   // Set the secondary compatible architecture.
2829   static void
2830   set_secondary_compatible_arch(Attributes_section_data*, int);
2831
2832   static int
2833   tag_cpu_arch_combine(const char*, int, int*, int, int);
2834
2835   // Helper to print AEABI enum tag value.
2836   static std::string
2837   aeabi_enum_name(unsigned int);
2838
2839   // Return string value for TAG_CPU_name.
2840   static std::string
2841   tag_cpu_name_value(unsigned int);
2842
2843   // Query attributes object to see if integer divide instructions may be
2844   // present in an object.
2845   static bool
2846   attributes_accept_div(int arch, int profile,
2847                         const Object_attribute* div_attr);
2848
2849   // Query attributes object to see if integer divide instructions are
2850   // forbidden to be in the object.  This is not the inverse of
2851   // attributes_accept_div.
2852   static bool
2853   attributes_forbid_div(const Object_attribute* div_attr);
2854
2855   // Merge object attributes from input object and those in the output.
2856   void
2857   merge_object_attributes(const char*, const Attributes_section_data*);
2858
2859   // Helper to get an AEABI object attribute
2860   Object_attribute*
2861   get_aeabi_object_attribute(int tag) const
2862   {
2863     Attributes_section_data* pasd = this->attributes_section_data_;
2864     gold_assert(pasd != NULL);
2865     Object_attribute* attr =
2866       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2867     gold_assert(attr != NULL);
2868     return attr;
2869   }
2870
2871   //
2872   // Methods to support stub-generations.
2873   //
2874
2875   // Group input sections for stub generation.
2876   void
2877   group_sections(Layout*, section_size_type, bool, const Task*);
2878
2879   // Scan a relocation for stub generation.
2880   void
2881   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2882                       const Sized_symbol<32>*, unsigned int,
2883                       const Symbol_value<32>*,
2884                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2885
2886   // Scan a relocation section for stub.
2887   template<int sh_type>
2888   void
2889   scan_reloc_section_for_stubs(
2890       const Relocate_info<32, big_endian>* relinfo,
2891       const unsigned char* prelocs,
2892       size_t reloc_count,
2893       Output_section* output_section,
2894       bool needs_special_offset_handling,
2895       const unsigned char* view,
2896       elfcpp::Elf_types<32>::Elf_Addr view_address,
2897       section_size_type);
2898
2899   // Fix .ARM.exidx section coverage.
2900   void
2901   fix_exidx_coverage(Layout*, const Input_objects*,
2902                      Arm_output_section<big_endian>*, Symbol_table*,
2903                      const Task*);
2904
2905   // Functors for STL set.
2906   struct output_section_address_less_than
2907   {
2908     bool
2909     operator()(const Output_section* s1, const Output_section* s2) const
2910     { return s1->address() < s2->address(); }
2911   };
2912
2913   // Information about this specific target which we pass to the
2914   // general Target structure.
2915   static const Target::Target_info arm_info;
2916
2917   // The types of GOT entries needed for this platform.
2918   // These values are exposed to the ABI in an incremental link.
2919   // Do not renumber existing values without changing the version
2920   // number of the .gnu_incremental_inputs section.
2921   enum Got_type
2922   {
2923     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2924     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2925     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2926     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2927     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2928   };
2929
2930   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2931
2932   // Map input section to Arm_input_section.
2933   typedef Unordered_map<Section_id,
2934                         Arm_input_section<big_endian>*,
2935                         Section_id_hash>
2936           Arm_input_section_map;
2937
2938   // Map output addresses to relocs for Cortex-A8 erratum.
2939   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2940           Cortex_a8_relocs_info;
2941
2942   // The GOT section.
2943   Arm_output_data_got<big_endian>* got_;
2944   // The PLT section.
2945   Output_data_plt_arm<big_endian>* plt_;
2946   // The GOT PLT section.
2947   Output_data_space* got_plt_;
2948   // The GOT section for IRELATIVE relocations.
2949   Output_data_space* got_irelative_;
2950   // The dynamic reloc section.
2951   Reloc_section* rel_dyn_;
2952   // The section to use for IRELATIVE relocs.
2953   Reloc_section* rel_irelative_;
2954   // Relocs saved to avoid a COPY reloc.
2955   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2956   // Offset of the GOT entry for the TLS module index.
2957   unsigned int got_mod_index_offset_;
2958   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2959   bool tls_base_symbol_defined_;
2960   // Vector of Stub_tables created.
2961   Stub_table_list stub_tables_;
2962   // Stub factory.
2963   const Stub_factory &stub_factory_;
2964   // Whether we force PIC branch veneers.
2965   bool should_force_pic_veneer_;
2966   // Map for locating Arm_input_sections.
2967   Arm_input_section_map arm_input_section_map_;
2968   // Attributes section data in output.
2969   Attributes_section_data* attributes_section_data_;
2970   // Whether we want to fix code for Cortex-A8 erratum.
2971   bool fix_cortex_a8_;
2972   // Map addresses to relocs for Cortex-A8 erratum.
2973   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2974 };
2975
2976 template<bool big_endian>
2977 const Target::Target_info Target_arm<big_endian>::arm_info =
2978 {
2979   32,                   // size
2980   big_endian,           // is_big_endian
2981   elfcpp::EM_ARM,       // machine_code
2982   false,                // has_make_symbol
2983   false,                // has_resolve
2984   false,                // has_code_fill
2985   true,                 // is_default_stack_executable
2986   false,                // can_icf_inline_merge_sections
2987   '\0',                 // wrap_char
2988   "/usr/lib/libc.so.1", // dynamic_linker
2989   0x8000,               // default_text_segment_address
2990   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2991   0x1000,               // common_pagesize (overridable by -z common-page-size)
2992   false,                // isolate_execinstr
2993   0,                    // rosegment_gap
2994   elfcpp::SHN_UNDEF,    // small_common_shndx
2995   elfcpp::SHN_UNDEF,    // large_common_shndx
2996   0,                    // small_common_section_flags
2997   0,                    // large_common_section_flags
2998   ".ARM.attributes",    // attributes_section
2999   "aeabi",              // attributes_vendor
3000   "_start",             // entry_symbol_name
3001   32,                   // hash_entry_size
3002 };
3003
3004 // Arm relocate functions class
3005 //
3006
3007 template<bool big_endian>
3008 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3009 {
3010  public:
3011   typedef enum
3012   {
3013     STATUS_OKAY,        // No error during relocation.
3014     STATUS_OVERFLOW,    // Relocation overflow.
3015     STATUS_BAD_RELOC    // Relocation cannot be applied.
3016   } Status;
3017
3018  private:
3019   typedef Relocate_functions<32, big_endian> Base;
3020   typedef Arm_relocate_functions<big_endian> This;
3021
3022   // Encoding of imm16 argument for movt and movw ARM instructions
3023   // from ARM ARM:
3024   //
3025   //     imm16 := imm4 | imm12
3026   //
3027   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3028   // +-------+---------------+-------+-------+-----------------------+
3029   // |       |               |imm4   |       |imm12                  |
3030   // +-------+---------------+-------+-------+-----------------------+
3031
3032   // Extract the relocation addend from VAL based on the ARM
3033   // instruction encoding described above.
3034   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3035   extract_arm_movw_movt_addend(
3036       typename elfcpp::Swap<32, big_endian>::Valtype val)
3037   {
3038     // According to the Elf ABI for ARM Architecture the immediate
3039     // field is sign-extended to form the addend.
3040     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3041   }
3042
3043   // Insert X into VAL based on the ARM instruction encoding described
3044   // above.
3045   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3046   insert_val_arm_movw_movt(
3047       typename elfcpp::Swap<32, big_endian>::Valtype val,
3048       typename elfcpp::Swap<32, big_endian>::Valtype x)
3049   {
3050     val &= 0xfff0f000;
3051     val |= x & 0x0fff;
3052     val |= (x & 0xf000) << 4;
3053     return val;
3054   }
3055
3056   // Encoding of imm16 argument for movt and movw Thumb2 instructions
3057   // from ARM ARM:
3058   //
3059   //     imm16 := imm4 | i | imm3 | imm8
3060   //
3061   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0
3062   // +---------+-+-----------+-------++-+-----+-------+---------------+
3063   // |         |i|           |imm4   || |imm3 |       |imm8           |
3064   // +---------+-+-----------+-------++-+-----+-------+---------------+
3065
3066   // Extract the relocation addend from VAL based on the Thumb2
3067   // instruction encoding described above.
3068   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3069   extract_thumb_movw_movt_addend(
3070       typename elfcpp::Swap<32, big_endian>::Valtype val)
3071   {
3072     // According to the Elf ABI for ARM Architecture the immediate
3073     // field is sign-extended to form the addend.
3074     return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3075                                    | ((val >> 15) & 0x0800)
3076                                    | ((val >> 4) & 0x0700)
3077                                    | (val & 0x00ff));
3078   }
3079
3080   // Insert X into VAL based on the Thumb2 instruction encoding
3081   // described above.
3082   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3083   insert_val_thumb_movw_movt(
3084       typename elfcpp::Swap<32, big_endian>::Valtype val,
3085       typename elfcpp::Swap<32, big_endian>::Valtype x)
3086   {
3087     val &= 0xfbf08f00;
3088     val |= (x & 0xf000) << 4;
3089     val |= (x & 0x0800) << 15;
3090     val |= (x & 0x0700) << 4;
3091     val |= (x & 0x00ff);
3092     return val;
3093   }
3094
3095   // Calculate the smallest constant Kn for the specified residual.
3096   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3097   static uint32_t
3098   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3099   {
3100     int32_t msb;
3101
3102     if (residual == 0)
3103       return 0;
3104     // Determine the most significant bit in the residual and
3105     // align the resulting value to a 2-bit boundary.
3106     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3107       ;
3108     // The desired shift is now (msb - 6), or zero, whichever
3109     // is the greater.
3110     return (((msb - 6) < 0) ? 0 : (msb - 6));
3111   }
3112
3113   // Calculate the final residual for the specified group index.
3114   // If the passed group index is less than zero, the method will return
3115   // the value of the specified residual without any change.
3116   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3117   static typename elfcpp::Swap<32, big_endian>::Valtype
3118   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3119                     const int group)
3120   {
3121     for (int n = 0; n <= group; n++)
3122       {
3123         // Calculate which part of the value to mask.
3124         uint32_t shift = calc_grp_kn(residual);
3125         // Calculate the residual for the next time around.
3126         residual &= ~(residual & (0xff << shift));
3127       }
3128
3129     return residual;
3130   }
3131
3132   // Calculate the value of Gn for the specified group index.
3133   // We return it in the form of an encoded constant-and-rotation.
3134   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3135   static typename elfcpp::Swap<32, big_endian>::Valtype
3136   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3137               const int group)
3138   {
3139     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3140     uint32_t shift = 0;
3141
3142     for (int n = 0; n <= group; n++)
3143       {
3144         // Calculate which part of the value to mask.
3145         shift = calc_grp_kn(residual);
3146         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3147         gn = residual & (0xff << shift);
3148         // Calculate the residual for the next time around.
3149         residual &= ~gn;
3150       }
3151     // Return Gn in the form of an encoded constant-and-rotation.
3152     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3153   }
3154
3155  public:
3156   // Handle ARM long branches.
3157   static typename This::Status
3158   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3159                     unsigned char*, const Sized_symbol<32>*,
3160                     const Arm_relobj<big_endian>*, unsigned int,
3161                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3162
3163   // Handle THUMB long branches.
3164   static typename This::Status
3165   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3166                       unsigned char*, const Sized_symbol<32>*,
3167                       const Arm_relobj<big_endian>*, unsigned int,
3168                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3169
3170
3171   // Return the branch offset of a 32-bit THUMB branch.
3172   static inline int32_t
3173   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3174   {
3175     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3176     // involving the J1 and J2 bits.
3177     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3178     uint32_t upper = upper_insn & 0x3ffU;
3179     uint32_t lower = lower_insn & 0x7ffU;
3180     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3181     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3182     uint32_t i1 = j1 ^ s ? 0 : 1;
3183     uint32_t i2 = j2 ^ s ? 0 : 1;
3184
3185     return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3186                                    | (upper << 12) | (lower << 1));
3187   }
3188
3189   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3190   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3191   // responsible for overflow checking and BLX offset adjustment.
3192   static inline uint16_t
3193   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3194   {
3195     uint32_t s = offset < 0 ? 1 : 0;
3196     uint32_t bits = static_cast<uint32_t>(offset);
3197     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3198   }
3199
3200   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3201   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3202   // responsible for overflow checking and BLX offset adjustment.
3203   static inline uint16_t
3204   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3205   {
3206     uint32_t s = offset < 0 ? 1 : 0;
3207     uint32_t bits = static_cast<uint32_t>(offset);
3208     return ((lower_insn & ~0x2fffU)
3209             | ((((bits >> 23) & 1) ^ !s) << 13)
3210             | ((((bits >> 22) & 1) ^ !s) << 11)
3211             | ((bits >> 1) & 0x7ffU));
3212   }
3213
3214   // Return the branch offset of a 32-bit THUMB conditional branch.
3215   static inline int32_t
3216   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3217   {
3218     uint32_t s = (upper_insn & 0x0400U) >> 10;
3219     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3220     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3221     uint32_t lower = (lower_insn & 0x07ffU);
3222     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3223
3224     return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3225   }
3226
3227   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3228   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3229   // Caller is responsible for overflow checking.
3230   static inline uint16_t
3231   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3232   {
3233     uint32_t s = offset < 0 ? 1 : 0;
3234     uint32_t bits = static_cast<uint32_t>(offset);
3235     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3236   }
3237
3238   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3239   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3240   // The caller is responsible for overflow checking.
3241   static inline uint16_t
3242   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3243   {
3244     uint32_t bits = static_cast<uint32_t>(offset);
3245     uint32_t j2 = (bits & 0x00080000U) >> 19;
3246     uint32_t j1 = (bits & 0x00040000U) >> 18;
3247     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3248
3249     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3250   }
3251
3252   // R_ARM_ABS8: S + A
3253   static inline typename This::Status
3254   abs8(unsigned char* view,
3255        const Sized_relobj_file<32, big_endian>* object,
3256        const Symbol_value<32>* psymval)
3257   {
3258     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3259     Valtype* wv = reinterpret_cast<Valtype*>(view);
3260     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3261     int32_t addend = Bits<8>::sign_extend32(val);
3262     Arm_address x = psymval->value(object, addend);
3263     val = Bits<32>::bit_select32(val, x, 0xffU);
3264     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3265
3266     // R_ARM_ABS8 permits signed or unsigned results.
3267     return (Bits<8>::has_signed_unsigned_overflow32(x)
3268             ? This::STATUS_OVERFLOW
3269             : This::STATUS_OKAY);
3270   }
3271
3272   // R_ARM_THM_ABS5: S + A
3273   static inline typename This::Status
3274   thm_abs5(unsigned char* view,
3275        const Sized_relobj_file<32, big_endian>* object,
3276        const Symbol_value<32>* psymval)
3277   {
3278     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3279     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3280     Valtype* wv = reinterpret_cast<Valtype*>(view);
3281     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3282     Reltype addend = (val & 0x7e0U) >> 6;
3283     Reltype x = psymval->value(object, addend);
3284     val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3285     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3286     return (Bits<5>::has_overflow32(x)
3287             ? This::STATUS_OVERFLOW
3288             : This::STATUS_OKAY);
3289   }
3290
3291   // R_ARM_ABS12: S + A
3292   static inline typename This::Status
3293   abs12(unsigned char* view,
3294         const Sized_relobj_file<32, big_endian>* object,
3295         const Symbol_value<32>* psymval)
3296   {
3297     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3298     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3299     Valtype* wv = reinterpret_cast<Valtype*>(view);
3300     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3301     Reltype addend = val & 0x0fffU;
3302     Reltype x = psymval->value(object, addend);
3303     val = Bits<32>::bit_select32(val, x, 0x0fffU);
3304     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3305     return (Bits<12>::has_overflow32(x)
3306             ? This::STATUS_OVERFLOW
3307             : This::STATUS_OKAY);
3308   }
3309
3310   // R_ARM_ABS16: S + A
3311   static inline typename This::Status
3312   abs16(unsigned char* view,
3313         const Sized_relobj_file<32, big_endian>* object,
3314         const Symbol_value<32>* psymval)
3315   {
3316     typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3317     Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3318     int32_t addend = Bits<16>::sign_extend32(val);
3319     Arm_address x = psymval->value(object, addend);
3320     val = Bits<32>::bit_select32(val, x, 0xffffU);
3321     elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3322
3323     // R_ARM_ABS16 permits signed or unsigned results.
3324     return (Bits<16>::has_signed_unsigned_overflow32(x)
3325             ? This::STATUS_OVERFLOW
3326             : This::STATUS_OKAY);
3327   }
3328
3329   // R_ARM_ABS32: (S + A) | T
3330   static inline typename This::Status
3331   abs32(unsigned char* view,
3332         const Sized_relobj_file<32, big_endian>* object,
3333         const Symbol_value<32>* psymval,
3334         Arm_address thumb_bit)
3335   {
3336     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3337     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3338     Valtype x = psymval->value(object, addend) | thumb_bit;
3339     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3340     return This::STATUS_OKAY;
3341   }
3342
3343   // R_ARM_REL32: (S + A) | T - P
3344   static inline typename This::Status
3345   rel32(unsigned char* view,
3346         const Sized_relobj_file<32, big_endian>* object,
3347         const Symbol_value<32>* psymval,
3348         Arm_address address,
3349         Arm_address thumb_bit)
3350   {
3351     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3352     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3353     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3354     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3355     return This::STATUS_OKAY;
3356   }
3357
3358   // R_ARM_THM_JUMP24: (S + A) | T - P
3359   static typename This::Status
3360   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3361              const Symbol_value<32>* psymval, Arm_address address,
3362              Arm_address thumb_bit);
3363
3364   // R_ARM_THM_JUMP6: S + A â€“ P
3365   static inline typename This::Status
3366   thm_jump6(unsigned char* view,
3367             const Sized_relobj_file<32, big_endian>* object,
3368             const Symbol_value<32>* psymval,
3369             Arm_address address)
3370   {
3371     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3372     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3373     Valtype* wv = reinterpret_cast<Valtype*>(view);
3374     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3375     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3376     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3377     Reltype x = (psymval->value(object, addend) - address);
3378     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3379     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3380     // CZB does only forward jumps.
3381     return ((x > 0x007e)
3382             ? This::STATUS_OVERFLOW
3383             : This::STATUS_OKAY);
3384   }
3385
3386   // R_ARM_THM_JUMP8: S + A â€“ P
3387   static inline typename This::Status
3388   thm_jump8(unsigned char* view,
3389             const Sized_relobj_file<32, big_endian>* object,
3390             const Symbol_value<32>* psymval,
3391             Arm_address address)
3392   {
3393     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3394     Valtype* wv = reinterpret_cast<Valtype*>(view);
3395     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3396     int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3397     int32_t x = (psymval->value(object, addend) - address);
3398     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3399                                                 | ((x & 0x01fe) >> 1)));
3400     // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3401     return (Bits<9>::has_overflow32(x)
3402             ? This::STATUS_OVERFLOW
3403             : This::STATUS_OKAY);
3404   }
3405
3406   // R_ARM_THM_JUMP11: S + A â€“ P
3407   static inline typename This::Status
3408   thm_jump11(unsigned char* view,
3409             const Sized_relobj_file<32, big_endian>* object,
3410             const Symbol_value<32>* psymval,
3411             Arm_address address)
3412   {
3413     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3414     Valtype* wv = reinterpret_cast<Valtype*>(view);
3415     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3416     int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3417     int32_t x = (psymval->value(object, addend) - address);
3418     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3419                                                 | ((x & 0x0ffe) >> 1)));
3420     // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3421     return (Bits<12>::has_overflow32(x)
3422             ? This::STATUS_OVERFLOW
3423             : This::STATUS_OKAY);
3424   }
3425
3426   // R_ARM_BASE_PREL: B(S) + A - P
3427   static inline typename This::Status
3428   base_prel(unsigned char* view,
3429             Arm_address origin,
3430             Arm_address address)
3431   {
3432     Base::rel32(view, origin - address);
3433     return STATUS_OKAY;
3434   }
3435
3436   // R_ARM_BASE_ABS: B(S) + A
3437   static inline typename This::Status
3438   base_abs(unsigned char* view,
3439            Arm_address origin)
3440   {
3441     Base::rel32(view, origin);
3442     return STATUS_OKAY;
3443   }
3444
3445   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3446   static inline typename This::Status
3447   got_brel(unsigned char* view,
3448            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3449   {
3450     Base::rel32(view, got_offset);
3451     return This::STATUS_OKAY;
3452   }
3453
3454   // R_ARM_GOT_PREL: GOT(S) + A - P
3455   static inline typename This::Status
3456   got_prel(unsigned char* view,
3457            Arm_address got_entry,
3458            Arm_address address)
3459   {
3460     Base::rel32(view, got_entry - address);
3461     return This::STATUS_OKAY;
3462   }
3463
3464   // R_ARM_PREL: (S + A) | T - P
3465   static inline typename This::Status
3466   prel31(unsigned char* view,
3467          const Sized_relobj_file<32, big_endian>* object,
3468          const Symbol_value<32>* psymval,
3469          Arm_address address,
3470          Arm_address thumb_bit)
3471   {
3472     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3473     Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3474     Valtype addend = Bits<31>::sign_extend32(val);
3475     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3476     val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3477     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3478     return (Bits<31>::has_overflow32(x)
3479             ? This::STATUS_OVERFLOW
3480             : This::STATUS_OKAY);
3481   }
3482
3483   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3484   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3485   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3486   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3487   static inline typename This::Status
3488   movw(unsigned char* view,
3489        const Sized_relobj_file<32, big_endian>* object,
3490        const Symbol_value<32>* psymval,
3491        Arm_address relative_address_base,
3492        Arm_address thumb_bit,
3493        bool check_overflow)
3494   {
3495     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3496     Valtype* wv = reinterpret_cast<Valtype*>(view);
3497     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3498     Valtype addend = This::extract_arm_movw_movt_addend(val);
3499     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3500                  - relative_address_base);
3501     val = This::insert_val_arm_movw_movt(val, x);
3502     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3503     return ((check_overflow && Bits<16>::has_overflow32(x))
3504             ? This::STATUS_OVERFLOW
3505             : This::STATUS_OKAY);
3506   }
3507
3508   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3509   // R_ARM_MOVT_PREL: S + A - P
3510   // R_ARM_MOVT_BREL: S + A - B(S)
3511   static inline typename This::Status
3512   movt(unsigned char* view,
3513        const Sized_relobj_file<32, big_endian>* object,
3514        const Symbol_value<32>* psymval,
3515        Arm_address relative_address_base)
3516   {
3517     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3518     Valtype* wv = reinterpret_cast<Valtype*>(view);
3519     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3520     Valtype addend = This::extract_arm_movw_movt_addend(val);
3521     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3522     val = This::insert_val_arm_movw_movt(val, x);
3523     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3524     // FIXME: IHI0044D says that we should check for overflow.
3525     return This::STATUS_OKAY;
3526   }
3527
3528   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3529   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3530   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3531   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3532   static inline typename This::Status
3533   thm_movw(unsigned char* view,
3534            const Sized_relobj_file<32, big_endian>* object,
3535            const Symbol_value<32>* psymval,
3536            Arm_address relative_address_base,
3537            Arm_address thumb_bit,
3538            bool check_overflow)
3539   {
3540     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3541     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3542     Valtype* wv = reinterpret_cast<Valtype*>(view);
3543     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3544                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3545     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3546     Reltype x =
3547       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3548     val = This::insert_val_thumb_movw_movt(val, x);
3549     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3550     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3551     return ((check_overflow && Bits<16>::has_overflow32(x))
3552             ? This::STATUS_OVERFLOW
3553             : This::STATUS_OKAY);
3554   }
3555
3556   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3557   // R_ARM_THM_MOVT_PREL: S + A - P
3558   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3559   static inline typename This::Status
3560   thm_movt(unsigned char* view,
3561            const Sized_relobj_file<32, big_endian>* object,
3562            const Symbol_value<32>* psymval,
3563            Arm_address relative_address_base)
3564   {
3565     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3566     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3567     Valtype* wv = reinterpret_cast<Valtype*>(view);
3568     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3569                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3570     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3571     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3572     val = This::insert_val_thumb_movw_movt(val, x);
3573     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3574     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3575     return This::STATUS_OKAY;
3576   }
3577
3578   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3579   static inline typename This::Status
3580   thm_alu11(unsigned char* view,
3581             const Sized_relobj_file<32, big_endian>* object,
3582             const Symbol_value<32>* psymval,
3583             Arm_address address,
3584             Arm_address thumb_bit)
3585   {
3586     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3587     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3588     Valtype* wv = reinterpret_cast<Valtype*>(view);
3589     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3590                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3591
3592     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3593     // -----------------------------------------------------------------------
3594     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3595     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3596     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3597     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3598     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3599     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3600
3601     // Determine a sign for the addend.
3602     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3603                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3604     // Thumb2 addend encoding:
3605     // imm12 := i | imm3 | imm8
3606     int32_t addend = (insn & 0xff)
3607                      | ((insn & 0x00007000) >> 4)
3608                      | ((insn & 0x04000000) >> 15);
3609     // Apply a sign to the added.
3610     addend *= sign;
3611
3612     int32_t x = (psymval->value(object, addend) | thumb_bit)
3613                 - (address & 0xfffffffc);
3614     Reltype val = abs(x);
3615     // Mask out the value and a distinct part of the ADD/SUB opcode
3616     // (bits 7:5 of opword).
3617     insn = (insn & 0xfb0f8f00)
3618            | (val & 0xff)
3619            | ((val & 0x700) << 4)
3620            | ((val & 0x800) << 15);
3621     // Set the opcode according to whether the value to go in the
3622     // place is negative.
3623     if (x < 0)
3624       insn |= 0x00a00000;
3625
3626     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3627     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3628     return ((val > 0xfff) ?
3629             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3630   }
3631
3632   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3633   static inline typename This::Status
3634   thm_pc8(unsigned char* view,
3635           const Sized_relobj_file<32, big_endian>* object,
3636           const Symbol_value<32>* psymval,
3637           Arm_address address)
3638   {
3639     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3640     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3641     Valtype* wv = reinterpret_cast<Valtype*>(view);
3642     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3643     Reltype addend = ((insn & 0x00ff) << 2);
3644     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3645     Reltype val = abs(x);
3646     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3647
3648     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3649     return ((val > 0x03fc)
3650             ? This::STATUS_OVERFLOW
3651             : This::STATUS_OKAY);
3652   }
3653
3654   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3655   static inline typename This::Status
3656   thm_pc12(unsigned char* view,
3657            const Sized_relobj_file<32, big_endian>* object,
3658            const Symbol_value<32>* psymval,
3659            Arm_address address)
3660   {
3661     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3662     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3663     Valtype* wv = reinterpret_cast<Valtype*>(view);
3664     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3665                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3666     // Determine a sign for the addend (positive if the U bit is 1).
3667     const int sign = (insn & 0x00800000) ? 1 : -1;
3668     int32_t addend = (insn & 0xfff);
3669     // Apply a sign to the added.
3670     addend *= sign;
3671
3672     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3673     Reltype val = abs(x);
3674     // Mask out and apply the value and the U bit.
3675     insn = (insn & 0xff7ff000) | (val & 0xfff);
3676     // Set the U bit according to whether the value to go in the
3677     // place is positive.
3678     if (x >= 0)
3679       insn |= 0x00800000;
3680
3681     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3682     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3683     return ((val > 0xfff) ?
3684             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3685   }
3686
3687   // R_ARM_V4BX
3688   static inline typename This::Status
3689   v4bx(const Relocate_info<32, big_endian>* relinfo,
3690        unsigned char* view,
3691        const Arm_relobj<big_endian>* object,
3692        const Arm_address address,
3693        const bool is_interworking)
3694   {
3695
3696     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3697     Valtype* wv = reinterpret_cast<Valtype*>(view);
3698     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3699
3700     // Ensure that we have a BX instruction.
3701     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3702     const uint32_t reg = (val & 0xf);
3703     if (is_interworking && reg != 0xf)
3704       {
3705         Stub_table<big_endian>* stub_table =
3706             object->stub_table(relinfo->data_shndx);
3707         gold_assert(stub_table != NULL);
3708
3709         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3710         gold_assert(stub != NULL);
3711
3712         int32_t veneer_address =
3713             stub_table->address() + stub->offset() - 8 - address;
3714         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3715                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3716         // Replace with a branch to veneer (B <addr>)
3717         val = (val & 0xf0000000) | 0x0a000000
3718               | ((veneer_address >> 2) & 0x00ffffff);
3719       }
3720     else
3721       {
3722         // Preserve Rm (lowest four bits) and the condition code
3723         // (highest four bits). Other bits encode MOV PC,Rm.
3724         val = (val & 0xf000000f) | 0x01a0f000;
3725       }
3726     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3727     return This::STATUS_OKAY;
3728   }
3729
3730   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3731   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3732   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3733   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3734   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3735   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3736   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3737   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3738   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3739   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3740   static inline typename This::Status
3741   arm_grp_alu(unsigned char* view,
3742         const Sized_relobj_file<32, big_endian>* object,
3743         const Symbol_value<32>* psymval,
3744         const int group,
3745         Arm_address address,
3746         Arm_address thumb_bit,
3747         bool check_overflow)
3748   {
3749     gold_assert(group >= 0 && group < 3);
3750     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3751     Valtype* wv = reinterpret_cast<Valtype*>(view);
3752     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3753
3754     // ALU group relocations are allowed only for the ADD/SUB instructions.
3755     // (0x00800000 - ADD, 0x00400000 - SUB)
3756     const Valtype opcode = insn & 0x01e00000;
3757     if (opcode != 0x00800000 && opcode != 0x00400000)
3758       return This::STATUS_BAD_RELOC;
3759
3760     // Determine a sign for the addend.
3761     const int sign = (opcode == 0x00800000) ? 1 : -1;
3762     // shifter = rotate_imm * 2
3763     const uint32_t shifter = (insn & 0xf00) >> 7;
3764     // Initial addend value.
3765     int32_t addend = insn & 0xff;
3766     // Rotate addend right by shifter.
3767     addend = (addend >> shifter) | (addend << (32 - shifter));
3768     // Apply a sign to the added.
3769     addend *= sign;
3770
3771     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3772     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3773     // Check for overflow if required
3774     if (check_overflow
3775         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3776       return This::STATUS_OVERFLOW;
3777
3778     // Mask out the value and the ADD/SUB part of the opcode; take care
3779     // not to destroy the S bit.
3780     insn &= 0xff1ff000;
3781     // Set the opcode according to whether the value to go in the
3782     // place is negative.
3783     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3784     // Encode the offset (encoded Gn).
3785     insn |= gn;
3786
3787     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3788     return This::STATUS_OKAY;
3789   }
3790
3791   // R_ARM_LDR_PC_G0: S + A - P
3792   // R_ARM_LDR_PC_G1: S + A - P
3793   // R_ARM_LDR_PC_G2: S + A - P
3794   // R_ARM_LDR_SB_G0: S + A - B(S)
3795   // R_ARM_LDR_SB_G1: S + A - B(S)
3796   // R_ARM_LDR_SB_G2: S + A - B(S)
3797   static inline typename This::Status
3798   arm_grp_ldr(unsigned char* view,
3799         const Sized_relobj_file<32, big_endian>* object,
3800         const Symbol_value<32>* psymval,
3801         const int group,
3802         Arm_address address)
3803   {
3804     gold_assert(group >= 0 && group < 3);
3805     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3806     Valtype* wv = reinterpret_cast<Valtype*>(view);
3807     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3808
3809     const int sign = (insn & 0x00800000) ? 1 : -1;
3810     int32_t addend = (insn & 0xfff) * sign;
3811     int32_t x = (psymval->value(object, addend) - address);
3812     // Calculate the relevant G(n-1) value to obtain this stage residual.
3813     Valtype residual =
3814         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3815     if (residual >= 0x1000)
3816       return This::STATUS_OVERFLOW;
3817
3818     // Mask out the value and U bit.
3819     insn &= 0xff7ff000;
3820     // Set the U bit for non-negative values.
3821     if (x >= 0)
3822       insn |= 0x00800000;
3823     insn |= residual;
3824
3825     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3826     return This::STATUS_OKAY;
3827   }
3828
3829   // R_ARM_LDRS_PC_G0: S + A - P
3830   // R_ARM_LDRS_PC_G1: S + A - P
3831   // R_ARM_LDRS_PC_G2: S + A - P
3832   // R_ARM_LDRS_SB_G0: S + A - B(S)
3833   // R_ARM_LDRS_SB_G1: S + A - B(S)
3834   // R_ARM_LDRS_SB_G2: S + A - B(S)
3835   static inline typename This::Status
3836   arm_grp_ldrs(unsigned char* view,
3837         const Sized_relobj_file<32, big_endian>* object,
3838         const Symbol_value<32>* psymval,
3839         const int group,
3840         Arm_address address)
3841   {
3842     gold_assert(group >= 0 && group < 3);
3843     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3844     Valtype* wv = reinterpret_cast<Valtype*>(view);
3845     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3846
3847     const int sign = (insn & 0x00800000) ? 1 : -1;
3848     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3849     int32_t x = (psymval->value(object, addend) - address);
3850     // Calculate the relevant G(n-1) value to obtain this stage residual.
3851     Valtype residual =
3852         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3853    if (residual >= 0x100)
3854       return This::STATUS_OVERFLOW;
3855
3856     // Mask out the value and U bit.
3857     insn &= 0xff7ff0f0;
3858     // Set the U bit for non-negative values.
3859     if (x >= 0)
3860       insn |= 0x00800000;
3861     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3862
3863     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3864     return This::STATUS_OKAY;
3865   }
3866
3867   // R_ARM_LDC_PC_G0: S + A - P
3868   // R_ARM_LDC_PC_G1: S + A - P
3869   // R_ARM_LDC_PC_G2: S + A - P
3870   // R_ARM_LDC_SB_G0: S + A - B(S)
3871   // R_ARM_LDC_SB_G1: S + A - B(S)
3872   // R_ARM_LDC_SB_G2: S + A - B(S)
3873   static inline typename This::Status
3874   arm_grp_ldc(unsigned char* view,
3875       const Sized_relobj_file<32, big_endian>* object,
3876       const Symbol_value<32>* psymval,
3877       const int group,
3878       Arm_address address)
3879   {
3880     gold_assert(group >= 0 && group < 3);
3881     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3882     Valtype* wv = reinterpret_cast<Valtype*>(view);
3883     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3884
3885     const int sign = (insn & 0x00800000) ? 1 : -1;
3886     int32_t addend = ((insn & 0xff) << 2) * sign;
3887     int32_t x = (psymval->value(object, addend) - address);
3888     // Calculate the relevant G(n-1) value to obtain this stage residual.
3889     Valtype residual =
3890       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3891     if ((residual & 0x3) != 0 || residual >= 0x400)
3892       return This::STATUS_OVERFLOW;
3893
3894     // Mask out the value and U bit.
3895     insn &= 0xff7fff00;
3896     // Set the U bit for non-negative values.
3897     if (x >= 0)
3898       insn |= 0x00800000;
3899     insn |= (residual >> 2);
3900
3901     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3902     return This::STATUS_OKAY;
3903   }
3904 };
3905
3906 // Relocate ARM long branches.  This handles relocation types
3907 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3908 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3909 // undefined and we do not use PLT in this relocation.  In such a case,
3910 // the branch is converted into an NOP.
3911
3912 template<bool big_endian>
3913 typename Arm_relocate_functions<big_endian>::Status
3914 Arm_relocate_functions<big_endian>::arm_branch_common(
3915     unsigned int r_type,
3916     const Relocate_info<32, big_endian>* relinfo,
3917     unsigned char* view,
3918     const Sized_symbol<32>* gsym,
3919     const Arm_relobj<big_endian>* object,
3920     unsigned int r_sym,
3921     const Symbol_value<32>* psymval,
3922     Arm_address address,
3923     Arm_address thumb_bit,
3924     bool is_weakly_undefined_without_plt)
3925 {
3926   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3927   Valtype* wv = reinterpret_cast<Valtype*>(view);
3928   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3929
3930   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3931                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3932   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3933   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3934                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3935   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3936   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3937
3938   // Check that the instruction is valid.
3939   if (r_type == elfcpp::R_ARM_CALL)
3940     {
3941       if (!insn_is_uncond_bl && !insn_is_blx)
3942         return This::STATUS_BAD_RELOC;
3943     }
3944   else if (r_type == elfcpp::R_ARM_JUMP24)
3945     {
3946       if (!insn_is_b && !insn_is_cond_bl)
3947         return This::STATUS_BAD_RELOC;
3948     }
3949   else if (r_type == elfcpp::R_ARM_PLT32)
3950     {
3951       if (!insn_is_any_branch)
3952         return This::STATUS_BAD_RELOC;
3953     }
3954   else if (r_type == elfcpp::R_ARM_XPC25)
3955     {
3956       // FIXME: AAELF document IH0044C does not say much about it other
3957       // than it being obsolete.
3958       if (!insn_is_any_branch)
3959         return This::STATUS_BAD_RELOC;
3960     }
3961   else
3962     gold_unreachable();
3963
3964   // A branch to an undefined weak symbol is turned into a jump to
3965   // the next instruction unless a PLT entry will be created.
3966   // Do the same for local undefined symbols.
3967   // The jump to the next instruction is optimized as a NOP depending
3968   // on the architecture.
3969   const Target_arm<big_endian>* arm_target =
3970     Target_arm<big_endian>::default_target();
3971   if (is_weakly_undefined_without_plt)
3972     {
3973       gold_assert(!parameters->options().relocatable());
3974       Valtype cond = val & 0xf0000000U;
3975       if (arm_target->may_use_arm_nop())
3976         val = cond | 0x0320f000;
3977       else
3978         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3979       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3980       return This::STATUS_OKAY;
3981     }
3982
3983   Valtype addend = Bits<26>::sign_extend32(val << 2);
3984   Valtype branch_target = psymval->value(object, addend);
3985   int32_t branch_offset = branch_target - address;
3986
3987   // We need a stub if the branch offset is too large or if we need
3988   // to switch mode.
3989   bool may_use_blx = arm_target->may_use_v5t_interworking();
3990   Reloc_stub* stub = NULL;
3991
3992   if (!parameters->options().relocatable()
3993       && (Bits<26>::has_overflow32(branch_offset)
3994           || ((thumb_bit != 0)
3995               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3996     {
3997       Valtype unadjusted_branch_target = psymval->value(object, 0);
3998
3999       Stub_type stub_type =
4000         Reloc_stub::stub_type_for_reloc(r_type, address,
4001                                         unadjusted_branch_target,
4002                                         (thumb_bit != 0));
4003       if (stub_type != arm_stub_none)
4004         {
4005           Stub_table<big_endian>* stub_table =
4006             object->stub_table(relinfo->data_shndx);
4007           gold_assert(stub_table != NULL);
4008
4009           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4010           stub = stub_table->find_reloc_stub(stub_key);
4011           gold_assert(stub != NULL);
4012           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4013           branch_target = stub_table->address() + stub->offset() + addend;
4014           branch_offset = branch_target - address;
4015           gold_assert(!Bits<26>::has_overflow32(branch_offset));
4016         }
4017     }
4018
4019   // At this point, if we still need to switch mode, the instruction
4020   // must either be a BLX or a BL that can be converted to a BLX.
4021   if (thumb_bit != 0)
4022     {
4023       // Turn BL to BLX.
4024       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4025       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4026     }
4027
4028   val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4029   elfcpp::Swap<32, big_endian>::writeval(wv, val);
4030   return (Bits<26>::has_overflow32(branch_offset)
4031           ? This::STATUS_OVERFLOW
4032           : This::STATUS_OKAY);
4033 }
4034
4035 // Relocate THUMB long branches.  This handles relocation types
4036 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4037 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4038 // undefined and we do not use PLT in this relocation.  In such a case,
4039 // the branch is converted into an NOP.
4040
4041 template<bool big_endian>
4042 typename Arm_relocate_functions<big_endian>::Status
4043 Arm_relocate_functions<big_endian>::thumb_branch_common(
4044     unsigned int r_type,
4045     const Relocate_info<32, big_endian>* relinfo,
4046     unsigned char* view,
4047     const Sized_symbol<32>* gsym,
4048     const Arm_relobj<big_endian>* object,
4049     unsigned int r_sym,
4050     const Symbol_value<32>* psymval,
4051     Arm_address address,
4052     Arm_address thumb_bit,
4053     bool is_weakly_undefined_without_plt)
4054 {
4055   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4056   Valtype* wv = reinterpret_cast<Valtype*>(view);
4057   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4058   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4059
4060   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4061   // into account.
4062   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4063   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4064
4065   // Check that the instruction is valid.
4066   if (r_type == elfcpp::R_ARM_THM_CALL)
4067     {
4068       if (!is_bl_insn && !is_blx_insn)
4069         return This::STATUS_BAD_RELOC;
4070     }
4071   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4072     {
4073       // This cannot be a BLX.
4074       if (!is_bl_insn)
4075         return This::STATUS_BAD_RELOC;
4076     }
4077   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4078     {
4079       // Check for Thumb to Thumb call.
4080       if (!is_blx_insn)
4081         return This::STATUS_BAD_RELOC;
4082       if (thumb_bit != 0)
4083         {
4084           gold_warning(_("%s: Thumb BLX instruction targets "
4085                          "thumb function '%s'."),
4086                          object->name().c_str(),
4087                          (gsym ? gsym->name() : "(local)"));
4088           // Convert BLX to BL.
4089           lower_insn |= 0x1000U;
4090         }
4091     }
4092   else
4093     gold_unreachable();
4094
4095   // A branch to an undefined weak symbol is turned into a jump to
4096   // the next instruction unless a PLT entry will be created.
4097   // The jump to the next instruction is optimized as a NOP.W for
4098   // Thumb-2 enabled architectures.
4099   const Target_arm<big_endian>* arm_target =
4100     Target_arm<big_endian>::default_target();
4101   if (is_weakly_undefined_without_plt)
4102     {
4103       gold_assert(!parameters->options().relocatable());
4104       if (arm_target->may_use_thumb2_nop())
4105         {
4106           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4107           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4108         }
4109       else
4110         {
4111           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4112           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4113         }
4114       return This::STATUS_OKAY;
4115     }
4116
4117   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4118   Arm_address branch_target = psymval->value(object, addend);
4119
4120   // For BLX, bit 1 of target address comes from bit 1 of base address.
4121   bool may_use_blx = arm_target->may_use_v5t_interworking();
4122   if (thumb_bit == 0 && may_use_blx)
4123     branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4124
4125   int32_t branch_offset = branch_target - address;
4126
4127   // We need a stub if the branch offset is too large or if we need
4128   // to switch mode.
4129   bool thumb2 = arm_target->using_thumb2();
4130   if (!parameters->options().relocatable()
4131       && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4132           || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4133           || ((thumb_bit == 0)
4134               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4135                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4136     {
4137       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4138
4139       Stub_type stub_type =
4140         Reloc_stub::stub_type_for_reloc(r_type, address,
4141                                         unadjusted_branch_target,
4142                                         (thumb_bit != 0));
4143
4144       if (stub_type != arm_stub_none)
4145         {
4146           Stub_table<big_endian>* stub_table =
4147             object->stub_table(relinfo->data_shndx);
4148           gold_assert(stub_table != NULL);
4149
4150           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4151           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4152           gold_assert(stub != NULL);
4153           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4154           branch_target = stub_table->address() + stub->offset() + addend;
4155           if (thumb_bit == 0 && may_use_blx)
4156             branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4157           branch_offset = branch_target - address;
4158         }
4159     }
4160
4161   // At this point, if we still need to switch mode, the instruction
4162   // must either be a BLX or a BL that can be converted to a BLX.
4163   if (thumb_bit == 0)
4164     {
4165       gold_assert(may_use_blx
4166                   && (r_type == elfcpp::R_ARM_THM_CALL
4167                       || r_type == elfcpp::R_ARM_THM_XPC22));
4168       // Make sure this is a BLX.
4169       lower_insn &= ~0x1000U;
4170     }
4171   else
4172     {
4173       // Make sure this is a BL.
4174       lower_insn |= 0x1000U;
4175     }
4176
4177   // For a BLX instruction, make sure that the relocation is rounded up
4178   // to a word boundary.  This follows the semantics of the instruction
4179   // which specifies that bit 1 of the target address will come from bit
4180   // 1 of the base address.
4181   if ((lower_insn & 0x5000U) == 0x4000U)
4182     gold_assert((branch_offset & 3) == 0);
4183
4184   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4185   // We use the Thumb-2 encoding, which is safe even if dealing with
4186   // a Thumb-1 instruction by virtue of our overflow check above.  */
4187   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4188   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4189
4190   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4191   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4192
4193   gold_assert(!Bits<25>::has_overflow32(branch_offset));
4194
4195   return ((thumb2
4196            ? Bits<25>::has_overflow32(branch_offset)
4197            : Bits<23>::has_overflow32(branch_offset))
4198           ? This::STATUS_OVERFLOW
4199           : This::STATUS_OKAY);
4200 }
4201
4202 // Relocate THUMB-2 long conditional branches.
4203 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4204 // undefined and we do not use PLT in this relocation.  In such a case,
4205 // the branch is converted into an NOP.
4206
4207 template<bool big_endian>
4208 typename Arm_relocate_functions<big_endian>::Status
4209 Arm_relocate_functions<big_endian>::thm_jump19(
4210     unsigned char* view,
4211     const Arm_relobj<big_endian>* object,
4212     const Symbol_value<32>* psymval,
4213     Arm_address address,
4214     Arm_address thumb_bit)
4215 {
4216   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4217   Valtype* wv = reinterpret_cast<Valtype*>(view);
4218   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4219   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4220   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4221
4222   Arm_address branch_target = psymval->value(object, addend);
4223   int32_t branch_offset = branch_target - address;
4224
4225   // ??? Should handle interworking?  GCC might someday try to
4226   // use this for tail calls.
4227   // FIXME: We do support thumb entry to PLT yet.
4228   if (thumb_bit == 0)
4229     {
4230       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4231       return This::STATUS_BAD_RELOC;
4232     }
4233
4234   // Put RELOCATION back into the insn.
4235   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4236   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4237
4238   // Put the relocated value back in the object file:
4239   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4240   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4241
4242   return (Bits<21>::has_overflow32(branch_offset)
4243           ? This::STATUS_OVERFLOW
4244           : This::STATUS_OKAY);
4245 }
4246
4247 // Get the GOT section, creating it if necessary.
4248
4249 template<bool big_endian>
4250 Arm_output_data_got<big_endian>*
4251 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4252 {
4253   if (this->got_ == NULL)
4254     {
4255       gold_assert(symtab != NULL && layout != NULL);
4256
4257       // When using -z now, we can treat .got as a relro section.
4258       // Without -z now, it is modified after program startup by lazy
4259       // PLT relocations.
4260       bool is_got_relro = parameters->options().now();
4261       Output_section_order got_order = (is_got_relro
4262                                         ? ORDER_RELRO_LAST
4263                                         : ORDER_DATA);
4264
4265       // Unlike some targets (.e.g x86), ARM does not use separate .got and
4266       // .got.plt sections in output.  The output .got section contains both
4267       // PLT and non-PLT GOT entries.
4268       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4269
4270       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4271                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4272                                       this->got_, got_order, is_got_relro);
4273
4274       // The old GNU linker creates a .got.plt section.  We just
4275       // create another set of data in the .got section.  Note that we
4276       // always create a PLT if we create a GOT, although the PLT
4277       // might be empty.
4278       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4279       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4280                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4281                                       this->got_plt_, got_order, is_got_relro);
4282
4283       // The first three entries are reserved.
4284       this->got_plt_->set_current_data_size(3 * 4);
4285
4286       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4287       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4288                                     Symbol_table::PREDEFINED,
4289                                     this->got_plt_,
4290                                     0, 0, elfcpp::STT_OBJECT,
4291                                     elfcpp::STB_LOCAL,
4292                                     elfcpp::STV_HIDDEN, 0,
4293                                     false, false);
4294
4295       // If there are any IRELATIVE relocations, they get GOT entries
4296       // in .got.plt after the jump slot entries.
4297       this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4298       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4299                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4300                                       this->got_irelative_,
4301                                       got_order, is_got_relro);
4302
4303     }
4304   return this->got_;
4305 }
4306
4307 // Get the dynamic reloc section, creating it if necessary.
4308
4309 template<bool big_endian>
4310 typename Target_arm<big_endian>::Reloc_section*
4311 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4312 {
4313   if (this->rel_dyn_ == NULL)
4314     {
4315       gold_assert(layout != NULL);
4316       // Create both relocation sections in the same place, so as to ensure
4317       // their relative order in the output section.
4318       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4319       this->rel_irelative_ = new Reloc_section(false);
4320       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4321                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4322                                       ORDER_DYNAMIC_RELOCS, false);
4323       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4324                                       elfcpp::SHF_ALLOC, this->rel_irelative_,
4325                                       ORDER_DYNAMIC_RELOCS, false);
4326     }
4327   return this->rel_dyn_;
4328 }
4329
4330
4331 // Get the section to use for IRELATIVE relocs, creating it if necessary.  These
4332 // go in .rela.dyn, but only after all other dynamic relocations.  They need to
4333 // follow the other dynamic relocations so that they can refer to global
4334 // variables initialized by those relocs.
4335
4336 template<bool big_endian>
4337 typename Target_arm<big_endian>::Reloc_section*
4338 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4339 {
4340   if (this->rel_irelative_ == NULL)
4341     {
4342       // Delegate the creation to rel_dyn_section so as to ensure their order in
4343       // the output section.
4344       this->rel_dyn_section(layout);
4345       gold_assert(this->rel_irelative_ != NULL
4346                   && (this->rel_dyn_->output_section()
4347                       == this->rel_irelative_->output_section()));
4348     }
4349   return this->rel_irelative_;
4350 }
4351
4352
4353 // Insn_template methods.
4354
4355 // Return byte size of an instruction template.
4356
4357 size_t
4358 Insn_template::size() const
4359 {
4360   switch (this->type())
4361     {
4362     case THUMB16_TYPE:
4363     case THUMB16_SPECIAL_TYPE:
4364       return 2;
4365     case ARM_TYPE:
4366     case THUMB32_TYPE:
4367     case DATA_TYPE:
4368       return 4;
4369     default:
4370       gold_unreachable();
4371     }
4372 }
4373
4374 // Return alignment of an instruction template.
4375
4376 unsigned
4377 Insn_template::alignment() const
4378 {
4379   switch (this->type())
4380     {
4381     case THUMB16_TYPE:
4382     case THUMB16_SPECIAL_TYPE:
4383     case THUMB32_TYPE:
4384       return 2;
4385     case ARM_TYPE:
4386     case DATA_TYPE:
4387       return 4;
4388     default:
4389       gold_unreachable();
4390     }
4391 }
4392
4393 // Stub_template methods.
4394
4395 Stub_template::Stub_template(
4396     Stub_type type, const Insn_template* insns,
4397      size_t insn_count)
4398   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4399     entry_in_thumb_mode_(false), relocs_()
4400 {
4401   off_t offset = 0;
4402
4403   // Compute byte size and alignment of stub template.
4404   for (size_t i = 0; i < insn_count; i++)
4405     {
4406       unsigned insn_alignment = insns[i].alignment();
4407       size_t insn_size = insns[i].size();
4408       gold_assert((offset & (insn_alignment - 1)) == 0);
4409       this->alignment_ = std::max(this->alignment_, insn_alignment);
4410       switch (insns[i].type())
4411         {
4412         case Insn_template::THUMB16_TYPE:
4413         case Insn_template::THUMB16_SPECIAL_TYPE:
4414           if (i == 0)
4415             this->entry_in_thumb_mode_ = true;
4416           break;
4417
4418         case Insn_template::THUMB32_TYPE:
4419           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4420             this->relocs_.push_back(Reloc(i, offset));
4421           if (i == 0)
4422             this->entry_in_thumb_mode_ = true;
4423           break;
4424
4425         case Insn_template::ARM_TYPE:
4426           // Handle cases where the target is encoded within the
4427           // instruction.
4428           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4429             this->relocs_.push_back(Reloc(i, offset));
4430           break;
4431
4432         case Insn_template::DATA_TYPE:
4433           // Entry point cannot be data.
4434           gold_assert(i != 0);
4435           this->relocs_.push_back(Reloc(i, offset));
4436           break;
4437
4438         default:
4439           gold_unreachable();
4440         }
4441       offset += insn_size;
4442     }
4443   this->size_ = offset;
4444 }
4445
4446 // Stub methods.
4447
4448 // Template to implement do_write for a specific target endianness.
4449
4450 template<bool big_endian>
4451 void inline
4452 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4453 {
4454   const Stub_template* stub_template = this->stub_template();
4455   const Insn_template* insns = stub_template->insns();
4456
4457   // FIXME:  We do not handle BE8 encoding yet.
4458   unsigned char* pov = view;
4459   for (size_t i = 0; i < stub_template->insn_count(); i++)
4460     {
4461       switch (insns[i].type())
4462         {
4463         case Insn_template::THUMB16_TYPE:
4464           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4465           break;
4466         case Insn_template::THUMB16_SPECIAL_TYPE:
4467           elfcpp::Swap<16, big_endian>::writeval(
4468               pov,
4469               this->thumb16_special(i));
4470           break;
4471         case Insn_template::THUMB32_TYPE:
4472           {
4473             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4474             uint32_t lo = insns[i].data() & 0xffff;
4475             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4476             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4477           }
4478           break;
4479         case Insn_template::ARM_TYPE:
4480         case Insn_template::DATA_TYPE:
4481           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4482           break;
4483         default:
4484           gold_unreachable();
4485         }
4486       pov += insns[i].size();
4487     }
4488   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4489 }
4490
4491 // Reloc_stub::Key methods.
4492
4493 // Dump a Key as a string for debugging.
4494
4495 std::string
4496 Reloc_stub::Key::name() const
4497 {
4498   if (this->r_sym_ == invalid_index)
4499     {
4500       // Global symbol key name
4501       // <stub-type>:<symbol name>:<addend>.
4502       const std::string sym_name = this->u_.symbol->name();
4503       // We need to print two hex number and two colons.  So just add 100 bytes
4504       // to the symbol name size.
4505       size_t len = sym_name.size() + 100;
4506       char* buffer = new char[len];
4507       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4508                        sym_name.c_str(), this->addend_);
4509       gold_assert(c > 0 && c < static_cast<int>(len));
4510       delete[] buffer;
4511       return std::string(buffer);
4512     }
4513   else
4514     {
4515       // local symbol key name
4516       // <stub-type>:<object>:<r_sym>:<addend>.
4517       const size_t len = 200;
4518       char buffer[len];
4519       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4520                        this->u_.relobj, this->r_sym_, this->addend_);
4521       gold_assert(c > 0 && c < static_cast<int>(len));
4522       return std::string(buffer);
4523     }
4524 }
4525
4526 // Reloc_stub methods.
4527
4528 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4529 // LOCATION to DESTINATION.
4530 // This code is based on the arm_type_of_stub function in
4531 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4532 // class simple.
4533
4534 Stub_type
4535 Reloc_stub::stub_type_for_reloc(
4536    unsigned int r_type,
4537    Arm_address location,
4538    Arm_address destination,
4539    bool target_is_thumb)
4540 {
4541   Stub_type stub_type = arm_stub_none;
4542
4543   // This is a bit ugly but we want to avoid using a templated class for
4544   // big and little endianities.
4545   bool may_use_blx;
4546   bool should_force_pic_veneer = parameters->options().pic_veneer();
4547   bool thumb2;
4548   bool thumb_only;
4549   if (parameters->target().is_big_endian())
4550     {
4551       const Target_arm<true>* big_endian_target =
4552         Target_arm<true>::default_target();
4553       may_use_blx = big_endian_target->may_use_v5t_interworking();
4554       should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4555       thumb2 = big_endian_target->using_thumb2();
4556       thumb_only = big_endian_target->using_thumb_only();
4557     }
4558   else
4559     {
4560       const Target_arm<false>* little_endian_target =
4561         Target_arm<false>::default_target();
4562       may_use_blx = little_endian_target->may_use_v5t_interworking();
4563       should_force_pic_veneer |=
4564         little_endian_target->should_force_pic_veneer();
4565       thumb2 = little_endian_target->using_thumb2();
4566       thumb_only = little_endian_target->using_thumb_only();
4567     }
4568
4569   int64_t branch_offset;
4570   bool output_is_position_independent =
4571       parameters->options().output_is_position_independent();
4572   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4573     {
4574       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4575       // base address (instruction address + 4).
4576       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4577         destination = Bits<32>::bit_select32(destination, location, 0x2);
4578       branch_offset = static_cast<int64_t>(destination) - location;
4579
4580       // Handle cases where:
4581       // - this call goes too far (different Thumb/Thumb2 max
4582       //   distance)
4583       // - it's a Thumb->Arm call and blx is not available, or it's a
4584       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4585       if ((!thumb2
4586             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4587                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4588           || (thumb2
4589               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4590                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4591           || ((!target_is_thumb)
4592               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4593                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4594         {
4595           if (target_is_thumb)
4596             {
4597               // Thumb to thumb.
4598               if (!thumb_only)
4599                 {
4600                   stub_type = (output_is_position_independent
4601                                || should_force_pic_veneer)
4602                     // PIC stubs.
4603                     ? ((may_use_blx
4604                         && (r_type == elfcpp::R_ARM_THM_CALL))
4605                        // V5T and above. Stub starts with ARM code, so
4606                        // we must be able to switch mode before
4607                        // reaching it, which is only possible for 'bl'
4608                        // (ie R_ARM_THM_CALL relocation).
4609                        ? arm_stub_long_branch_any_thumb_pic
4610                        // On V4T, use Thumb code only.
4611                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4612
4613                     // non-PIC stubs.
4614                     : ((may_use_blx
4615                         && (r_type == elfcpp::R_ARM_THM_CALL))
4616                        ? arm_stub_long_branch_any_any // V5T and above.
4617                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4618                 }
4619               else
4620                 {
4621                   stub_type = (output_is_position_independent
4622                                || should_force_pic_veneer)
4623                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4624                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4625                 }
4626             }
4627           else
4628             {
4629               // Thumb to arm.
4630
4631               // FIXME: We should check that the input section is from an
4632               // object that has interwork enabled.
4633
4634               stub_type = (output_is_position_independent
4635                            || should_force_pic_veneer)
4636                 // PIC stubs.
4637                 ? ((may_use_blx
4638                     && (r_type == elfcpp::R_ARM_THM_CALL))
4639                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4640                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4641
4642                 // non-PIC stubs.
4643                 : ((may_use_blx
4644                     && (r_type == elfcpp::R_ARM_THM_CALL))
4645                    ? arm_stub_long_branch_any_any       // V5T and above.
4646                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4647
4648               // Handle v4t short branches.
4649               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4650                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4651                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4652                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4653             }
4654         }
4655     }
4656   else if (r_type == elfcpp::R_ARM_CALL
4657            || r_type == elfcpp::R_ARM_JUMP24
4658            || r_type == elfcpp::R_ARM_PLT32)
4659     {
4660       branch_offset = static_cast<int64_t>(destination) - location;
4661       if (target_is_thumb)
4662         {
4663           // Arm to thumb.
4664
4665           // FIXME: We should check that the input section is from an
4666           // object that has interwork enabled.
4667
4668           // We have an extra 2-bytes reach because of
4669           // the mode change (bit 24 (H) of BLX encoding).
4670           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4671               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4672               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4673               || (r_type == elfcpp::R_ARM_JUMP24)
4674               || (r_type == elfcpp::R_ARM_PLT32))
4675             {
4676               stub_type = (output_is_position_independent
4677                            || should_force_pic_veneer)
4678                 // PIC stubs.
4679                 ? (may_use_blx
4680                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4681                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4682
4683                 // non-PIC stubs.
4684                 : (may_use_blx
4685                    ? arm_stub_long_branch_any_any       // V5T and above.
4686                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4687             }
4688         }
4689       else
4690         {
4691           // Arm to arm.
4692           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4693               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4694             {
4695               stub_type = (output_is_position_independent
4696                            || should_force_pic_veneer)
4697                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4698                 : arm_stub_long_branch_any_any;         /// non-PIC.
4699             }
4700         }
4701     }
4702
4703   return stub_type;
4704 }
4705
4706 // Cortex_a8_stub methods.
4707
4708 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4709 // I is the position of the instruction template in the stub template.
4710
4711 uint16_t
4712 Cortex_a8_stub::do_thumb16_special(size_t i)
4713 {
4714   // The only use of this is to copy condition code from a conditional
4715   // branch being worked around to the corresponding conditional branch in
4716   // to the stub.
4717   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4718               && i == 0);
4719   uint16_t data = this->stub_template()->insns()[i].data();
4720   gold_assert((data & 0xff00U) == 0xd000U);
4721   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4722   return data;
4723 }
4724
4725 // Stub_factory methods.
4726
4727 Stub_factory::Stub_factory()
4728 {
4729   // The instruction template sequences are declared as static
4730   // objects and initialized first time the constructor runs.
4731
4732   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4733   // to reach the stub if necessary.
4734   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4735     {
4736       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4737       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4738                                                 // dcd   R_ARM_ABS32(X)
4739     };
4740
4741   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4742   // available.
4743   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4744     {
4745       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4746       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4747       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4748                                                 // dcd   R_ARM_ABS32(X)
4749     };
4750
4751   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4752   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4753     {
4754       Insn_template::thumb16_insn(0xb401),      // push {r0}
4755       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4756       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4757       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4758       Insn_template::thumb16_insn(0x4760),      // bx   ip
4759       Insn_template::thumb16_insn(0xbf00),      // nop
4760       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4761                                                 // dcd  R_ARM_ABS32(X)
4762     };
4763
4764   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4765   // allowed.
4766   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4767     {
4768       Insn_template::thumb16_insn(0x4778),      // bx   pc
4769       Insn_template::thumb16_insn(0x46c0),      // nop
4770       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4771       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4772       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4773                                                 // dcd  R_ARM_ABS32(X)
4774     };
4775
4776   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4777   // available.
4778   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4779     {
4780       Insn_template::thumb16_insn(0x4778),      // bx   pc
4781       Insn_template::thumb16_insn(0x46c0),      // nop
4782       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4783       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4784                                                 // dcd   R_ARM_ABS32(X)
4785     };
4786
4787   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4788   // one, when the destination is close enough.
4789   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4790     {
4791       Insn_template::thumb16_insn(0x4778),              // bx   pc
4792       Insn_template::thumb16_insn(0x46c0),              // nop
4793       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4794     };
4795
4796   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4797   // blx to reach the stub if necessary.
4798   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4799     {
4800       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4801       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4802       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4803                                                 // dcd   R_ARM_REL32(X-4)
4804     };
4805
4806   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4807   // blx to reach the stub if necessary.  We can not add into pc;
4808   // it is not guaranteed to mode switch (different in ARMv6 and
4809   // ARMv7).
4810   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4811     {
4812       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4813       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4814       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4815       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4816                                                 // dcd   R_ARM_REL32(X)
4817     };
4818
4819   // V4T ARM -> ARM long branch stub, PIC.
4820   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4821     {
4822       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4823       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4824       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4825       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4826                                                 // dcd   R_ARM_REL32(X)
4827     };
4828
4829   // V4T Thumb -> ARM long branch stub, PIC.
4830   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4831     {
4832       Insn_template::thumb16_insn(0x4778),      // bx   pc
4833       Insn_template::thumb16_insn(0x46c0),      // nop
4834       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4835       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4836       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4837                                                 // dcd  R_ARM_REL32(X)
4838     };
4839
4840   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4841   // architectures.
4842   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4843     {
4844       Insn_template::thumb16_insn(0xb401),      // push {r0}
4845       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4846       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4847       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4848       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4849       Insn_template::thumb16_insn(0x4760),      // bx   ip
4850       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4851                                                 // dcd  R_ARM_REL32(X)
4852     };
4853
4854   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4855   // allowed.
4856   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4857     {
4858       Insn_template::thumb16_insn(0x4778),      // bx   pc
4859       Insn_template::thumb16_insn(0x46c0),      // nop
4860       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4861       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4862       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4863       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4864                                                 // dcd  R_ARM_REL32(X)
4865     };
4866
4867   // Cortex-A8 erratum-workaround stubs.
4868
4869   // Stub used for conditional branches (which may be beyond +/-1MB away,
4870   // so we can't use a conditional branch to reach this stub).
4871
4872   // original code:
4873   //
4874   //    b<cond> X
4875   // after:
4876   //
4877   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4878     {
4879       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4880       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4881       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4882                                                         //      b.w X
4883     };
4884
4885   // Stub used for b.w and bl.w instructions.
4886
4887   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4888     {
4889       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4890     };
4891
4892   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4893     {
4894       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4895     };
4896
4897   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4898   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4899   // the real destination using an ARM-mode branch.
4900   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4901     {
4902       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4903     };
4904
4905   // Stub used to provide an interworking for R_ARM_V4BX relocation
4906   // (bx r[n] instruction).
4907   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4908     {
4909       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4910       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4911       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4912     };
4913
4914   // Fill in the stub template look-up table.  Stub templates are constructed
4915   // per instance of Stub_factory for fast look-up without locking
4916   // in a thread-enabled environment.
4917
4918   this->stub_templates_[arm_stub_none] =
4919     new Stub_template(arm_stub_none, NULL, 0);
4920
4921 #define DEF_STUB(x)     \
4922   do \
4923     { \
4924       size_t array_size \
4925         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4926       Stub_type type = arm_stub_##x; \
4927       this->stub_templates_[type] = \
4928         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4929     } \
4930   while (0);
4931
4932   DEF_STUBS
4933 #undef DEF_STUB
4934 }
4935
4936 // Stub_table methods.
4937
4938 // Remove all Cortex-A8 stub.
4939
4940 template<bool big_endian>
4941 void
4942 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4943 {
4944   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4945        p != this->cortex_a8_stubs_.end();
4946        ++p)
4947     delete p->second;
4948   this->cortex_a8_stubs_.clear();
4949 }
4950
4951 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4952
4953 template<bool big_endian>
4954 void
4955 Stub_table<big_endian>::relocate_stub(
4956     Stub* stub,
4957     const Relocate_info<32, big_endian>* relinfo,
4958     Target_arm<big_endian>* arm_target,
4959     Output_section* output_section,
4960     unsigned char* view,
4961     Arm_address address,
4962     section_size_type view_size)
4963 {
4964   const Stub_template* stub_template = stub->stub_template();
4965   if (stub_template->reloc_count() != 0)
4966     {
4967       // Adjust view to cover the stub only.
4968       section_size_type offset = stub->offset();
4969       section_size_type stub_size = stub_template->size();
4970       gold_assert(offset + stub_size <= view_size);
4971
4972       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4973                                 address + offset, stub_size);
4974     }
4975 }
4976
4977 // Relocate all stubs in this stub table.
4978
4979 template<bool big_endian>
4980 void
4981 Stub_table<big_endian>::relocate_stubs(
4982     const Relocate_info<32, big_endian>* relinfo,
4983     Target_arm<big_endian>* arm_target,
4984     Output_section* output_section,
4985     unsigned char* view,
4986     Arm_address address,
4987     section_size_type view_size)
4988 {
4989   // If we are passed a view bigger than the stub table's.  we need to
4990   // adjust the view.
4991   gold_assert(address == this->address()
4992               && (view_size
4993                   == static_cast<section_size_type>(this->data_size())));
4994
4995   // Relocate all relocation stubs.
4996   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4997       p != this->reloc_stubs_.end();
4998       ++p)
4999     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5000                         address, view_size);
5001
5002   // Relocate all Cortex-A8 stubs.
5003   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5004        p != this->cortex_a8_stubs_.end();
5005        ++p)
5006     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5007                         address, view_size);
5008
5009   // Relocate all ARM V4BX stubs.
5010   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5011        p != this->arm_v4bx_stubs_.end();
5012        ++p)
5013     {
5014       if (*p != NULL)
5015         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5016                             address, view_size);
5017     }
5018 }
5019
5020 // Write out the stubs to file.
5021
5022 template<bool big_endian>
5023 void
5024 Stub_table<big_endian>::do_write(Output_file* of)
5025 {
5026   off_t offset = this->offset();
5027   const section_size_type oview_size =
5028     convert_to_section_size_type(this->data_size());
5029   unsigned char* const oview = of->get_output_view(offset, oview_size);
5030
5031   // Write relocation stubs.
5032   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5033       p != this->reloc_stubs_.end();
5034       ++p)
5035     {
5036       Reloc_stub* stub = p->second;
5037       Arm_address address = this->address() + stub->offset();
5038       gold_assert(address
5039                   == align_address(address,
5040                                    stub->stub_template()->alignment()));
5041       stub->write(oview + stub->offset(), stub->stub_template()->size(),
5042                   big_endian);
5043     }
5044
5045   // Write Cortex-A8 stubs.
5046   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5047        p != this->cortex_a8_stubs_.end();
5048        ++p)
5049     {
5050       Cortex_a8_stub* stub = p->second;
5051       Arm_address address = this->address() + stub->offset();
5052       gold_assert(address
5053                   == align_address(address,
5054                                    stub->stub_template()->alignment()));
5055       stub->write(oview + stub->offset(), stub->stub_template()->size(),
5056                   big_endian);
5057     }
5058
5059   // Write ARM V4BX relocation stubs.
5060   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5061        p != this->arm_v4bx_stubs_.end();
5062        ++p)
5063     {
5064       if (*p == NULL)
5065         continue;
5066
5067       Arm_address address = this->address() + (*p)->offset();
5068       gold_assert(address
5069                   == align_address(address,
5070                                    (*p)->stub_template()->alignment()));
5071       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5072                   big_endian);
5073     }
5074
5075   of->write_output_view(this->offset(), oview_size, oview);
5076 }
5077
5078 // Update the data size and address alignment of the stub table at the end
5079 // of a relaxation pass.   Return true if either the data size or the
5080 // alignment changed in this relaxation pass.
5081
5082 template<bool big_endian>
5083 bool
5084 Stub_table<big_endian>::update_data_size_and_addralign()
5085 {
5086   // Go over all stubs in table to compute data size and address alignment.
5087   off_t size = this->reloc_stubs_size_;
5088   unsigned addralign = this->reloc_stubs_addralign_;
5089
5090   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5091        p != this->cortex_a8_stubs_.end();
5092        ++p)
5093     {
5094       const Stub_template* stub_template = p->second->stub_template();
5095       addralign = std::max(addralign, stub_template->alignment());
5096       size = (align_address(size, stub_template->alignment())
5097               + stub_template->size());
5098     }
5099
5100   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5101        p != this->arm_v4bx_stubs_.end();
5102        ++p)
5103     {
5104       if (*p == NULL)
5105         continue;
5106
5107       const Stub_template* stub_template = (*p)->stub_template();
5108       addralign = std::max(addralign, stub_template->alignment());
5109       size = (align_address(size, stub_template->alignment())
5110               + stub_template->size());
5111     }
5112
5113   // Check if either data size or alignment changed in this pass.
5114   // Update prev_data_size_ and prev_addralign_.  These will be used
5115   // as the current data size and address alignment for the next pass.
5116   bool changed = size != this->prev_data_size_;
5117   this->prev_data_size_ = size;
5118
5119   if (addralign != this->prev_addralign_)
5120     changed = true;
5121   this->prev_addralign_ = addralign;
5122
5123   return changed;
5124 }
5125
5126 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5127 // table.  It also marks all input sections needing Cortex-A8 workaround.
5128
5129 template<bool big_endian>
5130 void
5131 Stub_table<big_endian>::finalize_stubs()
5132 {
5133   off_t off = this->reloc_stubs_size_;
5134   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5135        p != this->cortex_a8_stubs_.end();
5136        ++p)
5137     {
5138       Cortex_a8_stub* stub = p->second;
5139       const Stub_template* stub_template = stub->stub_template();
5140       uint64_t stub_addralign = stub_template->alignment();
5141       off = align_address(off, stub_addralign);
5142       stub->set_offset(off);
5143       off += stub_template->size();
5144
5145       // Mark input section so that we can determine later if a code section
5146       // needs the Cortex-A8 workaround quickly.
5147       Arm_relobj<big_endian>* arm_relobj =
5148         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5149       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5150     }
5151
5152   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5153       p != this->arm_v4bx_stubs_.end();
5154       ++p)
5155     {
5156       if (*p == NULL)
5157         continue;
5158
5159       const Stub_template* stub_template = (*p)->stub_template();
5160       uint64_t stub_addralign = stub_template->alignment();
5161       off = align_address(off, stub_addralign);
5162       (*p)->set_offset(off);
5163       off += stub_template->size();
5164     }
5165
5166   gold_assert(off <= this->prev_data_size_);
5167 }
5168
5169 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5170 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5171 // of the address range seen by the linker.
5172
5173 template<bool big_endian>
5174 void
5175 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5176     Target_arm<big_endian>* arm_target,
5177     unsigned char* view,
5178     Arm_address view_address,
5179     section_size_type view_size)
5180 {
5181   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5182   for (Cortex_a8_stub_list::const_iterator p =
5183          this->cortex_a8_stubs_.lower_bound(view_address);
5184        ((p != this->cortex_a8_stubs_.end())
5185         && (p->first < (view_address + view_size)));
5186        ++p)
5187     {
5188       // We do not store the THUMB bit in the LSB of either the branch address
5189       // or the stub offset.  There is no need to strip the LSB.
5190       Arm_address branch_address = p->first;
5191       const Cortex_a8_stub* stub = p->second;
5192       Arm_address stub_address = this->address() + stub->offset();
5193
5194       // Offset of the branch instruction relative to this view.
5195       section_size_type offset =
5196         convert_to_section_size_type(branch_address - view_address);
5197       gold_assert((offset + 4) <= view_size);
5198
5199       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5200                                              view + offset, branch_address);
5201     }
5202 }
5203
5204 // Arm_input_section methods.
5205
5206 // Initialize an Arm_input_section.
5207
5208 template<bool big_endian>
5209 void
5210 Arm_input_section<big_endian>::init()
5211 {
5212   Relobj* relobj = this->relobj();
5213   unsigned int shndx = this->shndx();
5214
5215   // We have to cache original size, alignment and contents to avoid locking
5216   // the original file.
5217   this->original_addralign_ =
5218     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5219
5220   // This is not efficient but we expect only a small number of relaxed
5221   // input sections for stubs.
5222   section_size_type section_size;
5223   const unsigned char* section_contents =
5224     relobj->section_contents(shndx, &section_size, false);
5225   this->original_size_ =
5226     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5227
5228   gold_assert(this->original_contents_ == NULL);
5229   this->original_contents_ = new unsigned char[section_size];
5230   memcpy(this->original_contents_, section_contents, section_size);
5231
5232   // We want to make this look like the original input section after
5233   // output sections are finalized.
5234   Output_section* os = relobj->output_section(shndx);
5235   off_t offset = relobj->output_section_offset(shndx);
5236   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5237   this->set_address(os->address() + offset);
5238   this->set_file_offset(os->offset() + offset);
5239
5240   this->set_current_data_size(this->original_size_);
5241   this->finalize_data_size();
5242 }
5243
5244 template<bool big_endian>
5245 void
5246 Arm_input_section<big_endian>::do_write(Output_file* of)
5247 {
5248   // We have to write out the original section content.
5249   gold_assert(this->original_contents_ != NULL);
5250   of->write(this->offset(), this->original_contents_,
5251             this->original_size_);
5252
5253   // If this owns a stub table and it is not empty, write it.
5254   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5255     this->stub_table_->write(of);
5256 }
5257
5258 // Finalize data size.
5259
5260 template<bool big_endian>
5261 void
5262 Arm_input_section<big_endian>::set_final_data_size()
5263 {
5264   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5265
5266   if (this->is_stub_table_owner())
5267     {
5268       this->stub_table_->finalize_data_size();
5269       off = align_address(off, this->stub_table_->addralign());
5270       off += this->stub_table_->data_size();
5271     }
5272   this->set_data_size(off);
5273 }
5274
5275 // Reset address and file offset.
5276
5277 template<bool big_endian>
5278 void
5279 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5280 {
5281   // Size of the original input section contents.
5282   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5283
5284   // If this is a stub table owner, account for the stub table size.
5285   if (this->is_stub_table_owner())
5286     {
5287       Stub_table<big_endian>* stub_table = this->stub_table_;
5288
5289       // Reset the stub table's address and file offset.  The
5290       // current data size for child will be updated after that.
5291       stub_table_->reset_address_and_file_offset();
5292       off = align_address(off, stub_table_->addralign());
5293       off += stub_table->current_data_size();
5294     }
5295
5296   this->set_current_data_size(off);
5297 }
5298
5299 // Arm_exidx_cantunwind methods.
5300
5301 // Write this to Output file OF for a fixed endianness.
5302
5303 template<bool big_endian>
5304 void
5305 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5306 {
5307   off_t offset = this->offset();
5308   const section_size_type oview_size = 8;
5309   unsigned char* const oview = of->get_output_view(offset, oview_size);
5310
5311   Output_section* os = this->relobj_->output_section(this->shndx_);
5312   gold_assert(os != NULL);
5313
5314   Arm_relobj<big_endian>* arm_relobj =
5315     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5316   Arm_address output_offset =
5317     arm_relobj->get_output_section_offset(this->shndx_);
5318   Arm_address section_start;
5319   section_size_type section_size;
5320
5321   // Find out the end of the text section referred by this.
5322   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5323     {
5324       section_start = os->address() + output_offset;
5325       const Arm_exidx_input_section* exidx_input_section =
5326         arm_relobj->exidx_input_section_by_link(this->shndx_);
5327       gold_assert(exidx_input_section != NULL);
5328       section_size =
5329         convert_to_section_size_type(exidx_input_section->text_size());
5330     }
5331   else
5332     {
5333       // Currently this only happens for a relaxed section.
5334       const Output_relaxed_input_section* poris =
5335         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5336       gold_assert(poris != NULL);
5337       section_start = poris->address();
5338       section_size = convert_to_section_size_type(poris->data_size());
5339     }
5340
5341   // We always append this to the end of an EXIDX section.
5342   Arm_address output_address = section_start + section_size;
5343
5344   // Write out the entry.  The first word either points to the beginning
5345   // or after the end of a text section.  The second word is the special
5346   // EXIDX_CANTUNWIND value.
5347   uint32_t prel31_offset = output_address - this->address();
5348   if (Bits<31>::has_overflow32(offset))
5349     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5350   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5351                                                    prel31_offset & 0x7fffffffU);
5352   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5353                                                    elfcpp::EXIDX_CANTUNWIND);
5354
5355   of->write_output_view(this->offset(), oview_size, oview);
5356 }
5357
5358 // Arm_exidx_merged_section methods.
5359
5360 // Constructor for Arm_exidx_merged_section.
5361 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5362 // SECTION_OFFSET_MAP points to a section offset map describing how
5363 // parts of the input section are mapped to output.  DELETED_BYTES is
5364 // the number of bytes deleted from the EXIDX input section.
5365
5366 Arm_exidx_merged_section::Arm_exidx_merged_section(
5367     const Arm_exidx_input_section& exidx_input_section,
5368     const Arm_exidx_section_offset_map& section_offset_map,
5369     uint32_t deleted_bytes)
5370   : Output_relaxed_input_section(exidx_input_section.relobj(),
5371                                  exidx_input_section.shndx(),
5372                                  exidx_input_section.addralign()),
5373     exidx_input_section_(exidx_input_section),
5374     section_offset_map_(section_offset_map)
5375 {
5376   // If we retain or discard the whole EXIDX input section,  we would
5377   // not be here.
5378   gold_assert(deleted_bytes != 0
5379               && deleted_bytes != this->exidx_input_section_.size());
5380
5381   // Fix size here so that we do not need to implement set_final_data_size.
5382   uint32_t size = exidx_input_section.size() - deleted_bytes;
5383   this->set_data_size(size);
5384   this->fix_data_size();
5385
5386   // Allocate buffer for section contents and build contents.
5387   this->section_contents_ = new unsigned char[size];
5388 }
5389
5390 // Build the contents of a merged EXIDX output section.
5391
5392 void
5393 Arm_exidx_merged_section::build_contents(
5394     const unsigned char* original_contents,
5395     section_size_type original_size)
5396 {
5397   // Go over spans of input offsets and write only those that are not
5398   // discarded.
5399   section_offset_type in_start = 0;
5400   section_offset_type out_start = 0;
5401   section_offset_type in_max =
5402     convert_types<section_offset_type>(original_size);
5403   section_offset_type out_max =
5404     convert_types<section_offset_type>(this->data_size());
5405   for (Arm_exidx_section_offset_map::const_iterator p =
5406         this->section_offset_map_.begin();
5407       p != this->section_offset_map_.end();
5408       ++p)
5409     {
5410       section_offset_type in_end = p->first;
5411       gold_assert(in_end >= in_start);
5412       section_offset_type out_end = p->second;
5413       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5414       if (out_end != -1)
5415         {
5416           size_t out_chunk_size =
5417             convert_types<size_t>(out_end - out_start + 1);
5418
5419           gold_assert(out_chunk_size == in_chunk_size
5420                       && in_end < in_max && out_end < out_max);
5421
5422           memcpy(this->section_contents_ + out_start,
5423                  original_contents + in_start,
5424                  out_chunk_size);
5425           out_start += out_chunk_size;
5426         }
5427       in_start += in_chunk_size;
5428     }
5429 }
5430
5431 // Given an input OBJECT, an input section index SHNDX within that
5432 // object, and an OFFSET relative to the start of that input
5433 // section, return whether or not the corresponding offset within
5434 // the output section is known.  If this function returns true, it
5435 // sets *POUTPUT to the output offset.  The value -1 indicates that
5436 // this input offset is being discarded.
5437
5438 bool
5439 Arm_exidx_merged_section::do_output_offset(
5440     const Relobj* relobj,
5441     unsigned int shndx,
5442     section_offset_type offset,
5443     section_offset_type* poutput) const
5444 {
5445   // We only handle offsets for the original EXIDX input section.
5446   if (relobj != this->exidx_input_section_.relobj()
5447       || shndx != this->exidx_input_section_.shndx())
5448     return false;
5449
5450   section_offset_type section_size =
5451     convert_types<section_offset_type>(this->exidx_input_section_.size());
5452   if (offset < 0 || offset >= section_size)
5453     // Input offset is out of valid range.
5454     *poutput = -1;
5455   else
5456     {
5457       // We need to look up the section offset map to determine the output
5458       // offset.  Find the reference point in map that is first offset
5459       // bigger than or equal to this offset.
5460       Arm_exidx_section_offset_map::const_iterator p =
5461         this->section_offset_map_.lower_bound(offset);
5462
5463       // The section offset maps are build such that this should not happen if
5464       // input offset is in the valid range.
5465       gold_assert(p != this->section_offset_map_.end());
5466
5467       // We need to check if this is dropped.
5468      section_offset_type ref = p->first;
5469      section_offset_type mapped_ref = p->second;
5470
5471       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5472         // Offset is present in output.
5473         *poutput = mapped_ref + (offset - ref);
5474       else
5475         // Offset is discarded owing to EXIDX entry merging.
5476         *poutput = -1;
5477     }
5478
5479   return true;
5480 }
5481
5482 // Write this to output file OF.
5483
5484 void
5485 Arm_exidx_merged_section::do_write(Output_file* of)
5486 {
5487   off_t offset = this->offset();
5488   const section_size_type oview_size = this->data_size();
5489   unsigned char* const oview = of->get_output_view(offset, oview_size);
5490
5491   Output_section* os = this->relobj()->output_section(this->shndx());
5492   gold_assert(os != NULL);
5493
5494   memcpy(oview, this->section_contents_, oview_size);
5495   of->write_output_view(this->offset(), oview_size, oview);
5496 }
5497
5498 // Arm_exidx_fixup methods.
5499
5500 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5501 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5502 // points to the end of the last seen EXIDX section.
5503
5504 void
5505 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5506 {
5507   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5508       && this->last_input_section_ != NULL)
5509     {
5510       Relobj* relobj = this->last_input_section_->relobj();
5511       unsigned int text_shndx = this->last_input_section_->link();
5512       Arm_exidx_cantunwind* cantunwind =
5513         new Arm_exidx_cantunwind(relobj, text_shndx);
5514       this->exidx_output_section_->add_output_section_data(cantunwind);
5515       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5516     }
5517 }
5518
5519 // Process an EXIDX section entry in input.  Return whether this entry
5520 // can be deleted in the output.  SECOND_WORD in the second word of the
5521 // EXIDX entry.
5522
5523 bool
5524 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5525 {
5526   bool delete_entry;
5527   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5528     {
5529       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5530       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5531       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5532     }
5533   else if ((second_word & 0x80000000) != 0)
5534     {
5535       // Inlined unwinding data.  Merge if equal to previous.
5536       delete_entry = (merge_exidx_entries_
5537                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5538                       && this->last_inlined_entry_ == second_word);
5539       this->last_unwind_type_ = UT_INLINED_ENTRY;
5540       this->last_inlined_entry_ = second_word;
5541     }
5542   else
5543     {
5544       // Normal table entry.  In theory we could merge these too,
5545       // but duplicate entries are likely to be much less common.
5546       delete_entry = false;
5547       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5548     }
5549   return delete_entry;
5550 }
5551
5552 // Update the current section offset map during EXIDX section fix-up.
5553 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5554 // reference point, DELETED_BYTES is the number of deleted by in the
5555 // section so far.  If DELETE_ENTRY is true, the reference point and
5556 // all offsets after the previous reference point are discarded.
5557
5558 void
5559 Arm_exidx_fixup::update_offset_map(
5560     section_offset_type input_offset,
5561     section_size_type deleted_bytes,
5562     bool delete_entry)
5563 {
5564   if (this->section_offset_map_ == NULL)
5565     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5566   section_offset_type output_offset;
5567   if (delete_entry)
5568     output_offset = Arm_exidx_input_section::invalid_offset;
5569   else
5570     output_offset = input_offset - deleted_bytes;
5571   (*this->section_offset_map_)[input_offset] = output_offset;
5572 }
5573
5574 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5575 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5576 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5577 // If some entries are merged, also store a pointer to a newly created
5578 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5579 // owns the map and is responsible for releasing it after use.
5580
5581 template<bool big_endian>
5582 uint32_t
5583 Arm_exidx_fixup::process_exidx_section(
5584     const Arm_exidx_input_section* exidx_input_section,
5585     const unsigned char* section_contents,
5586     section_size_type section_size,
5587     Arm_exidx_section_offset_map** psection_offset_map)
5588 {
5589   Relobj* relobj = exidx_input_section->relobj();
5590   unsigned shndx = exidx_input_section->shndx();
5591
5592   if ((section_size % 8) != 0)
5593     {
5594       // Something is wrong with this section.  Better not touch it.
5595       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5596                  relobj->name().c_str(), shndx);
5597       this->last_input_section_ = exidx_input_section;
5598       this->last_unwind_type_ = UT_NONE;
5599       return 0;
5600     }
5601
5602   uint32_t deleted_bytes = 0;
5603   bool prev_delete_entry = false;
5604   gold_assert(this->section_offset_map_ == NULL);
5605
5606   for (section_size_type i = 0; i < section_size; i += 8)
5607     {
5608       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5609       const Valtype* wv =
5610           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5611       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5612
5613       bool delete_entry = this->process_exidx_entry(second_word);
5614
5615       // Entry deletion causes changes in output offsets.  We use a std::map
5616       // to record these.  And entry (x, y) means input offset x
5617       // is mapped to output offset y.  If y is invalid_offset, then x is
5618       // dropped in the output.  Because of the way std::map::lower_bound
5619       // works, we record the last offset in a region w.r.t to keeping or
5620       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5621       // the output offset y0 of it is determined by the output offset y1 of
5622       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5623       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5624       // y0 is also -1.
5625       if (delete_entry != prev_delete_entry && i != 0)
5626         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5627
5628       // Update total deleted bytes for this entry.
5629       if (delete_entry)
5630         deleted_bytes += 8;
5631
5632       prev_delete_entry = delete_entry;
5633     }
5634
5635   // If section offset map is not NULL, make an entry for the end of
5636   // section.
5637   if (this->section_offset_map_ != NULL)
5638     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5639
5640   *psection_offset_map = this->section_offset_map_;
5641   this->section_offset_map_ = NULL;
5642   this->last_input_section_ = exidx_input_section;
5643
5644   // Set the first output text section so that we can link the EXIDX output
5645   // section to it.  Ignore any EXIDX input section that is completely merged.
5646   if (this->first_output_text_section_ == NULL
5647       && deleted_bytes != section_size)
5648     {
5649       unsigned int link = exidx_input_section->link();
5650       Output_section* os = relobj->output_section(link);
5651       gold_assert(os != NULL);
5652       this->first_output_text_section_ = os;
5653     }
5654
5655   return deleted_bytes;
5656 }
5657
5658 // Arm_output_section methods.
5659
5660 // Create a stub group for input sections from BEGIN to END.  OWNER
5661 // points to the input section to be the owner a new stub table.
5662
5663 template<bool big_endian>
5664 void
5665 Arm_output_section<big_endian>::create_stub_group(
5666   Input_section_list::const_iterator begin,
5667   Input_section_list::const_iterator end,
5668   Input_section_list::const_iterator owner,
5669   Target_arm<big_endian>* target,
5670   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5671   const Task* task)
5672 {
5673   // We use a different kind of relaxed section in an EXIDX section.
5674   // The static casting from Output_relaxed_input_section to
5675   // Arm_input_section is invalid in an EXIDX section.  We are okay
5676   // because we should not be calling this for an EXIDX section.
5677   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5678
5679   // Currently we convert ordinary input sections into relaxed sections only
5680   // at this point but we may want to support creating relaxed input section
5681   // very early.  So we check here to see if owner is already a relaxed
5682   // section.
5683
5684   Arm_input_section<big_endian>* arm_input_section;
5685   if (owner->is_relaxed_input_section())
5686     {
5687       arm_input_section =
5688         Arm_input_section<big_endian>::as_arm_input_section(
5689           owner->relaxed_input_section());
5690     }
5691   else
5692     {
5693       gold_assert(owner->is_input_section());
5694       // Create a new relaxed input section.  We need to lock the original
5695       // file.
5696       Task_lock_obj<Object> tl(task, owner->relobj());
5697       arm_input_section =
5698         target->new_arm_input_section(owner->relobj(), owner->shndx());
5699       new_relaxed_sections->push_back(arm_input_section);
5700     }
5701
5702   // Create a stub table.
5703   Stub_table<big_endian>* stub_table =
5704     target->new_stub_table(arm_input_section);
5705
5706   arm_input_section->set_stub_table(stub_table);
5707
5708   Input_section_list::const_iterator p = begin;
5709   Input_section_list::const_iterator prev_p;
5710
5711   // Look for input sections or relaxed input sections in [begin ... end].
5712   do
5713     {
5714       if (p->is_input_section() || p->is_relaxed_input_section())
5715         {
5716           // The stub table information for input sections live
5717           // in their objects.
5718           Arm_relobj<big_endian>* arm_relobj =
5719             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5720           arm_relobj->set_stub_table(p->shndx(), stub_table);
5721         }
5722       prev_p = p++;
5723     }
5724   while (prev_p != end);
5725 }
5726
5727 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5728 // of stub groups.  We grow a stub group by adding input section until the
5729 // size is just below GROUP_SIZE.  The last input section will be converted
5730 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5731 // input section after the stub table, effectively double the group size.
5732 //
5733 // This is similar to the group_sections() function in elf32-arm.c but is
5734 // implemented differently.
5735
5736 template<bool big_endian>
5737 void
5738 Arm_output_section<big_endian>::group_sections(
5739     section_size_type group_size,
5740     bool stubs_always_after_branch,
5741     Target_arm<big_endian>* target,
5742     const Task* task)
5743 {
5744   // States for grouping.
5745   typedef enum
5746   {
5747     // No group is being built.
5748     NO_GROUP,
5749     // A group is being built but the stub table is not found yet.
5750     // We keep group a stub group until the size is just under GROUP_SIZE.
5751     // The last input section in the group will be used as the stub table.
5752     FINDING_STUB_SECTION,
5753     // A group is being built and we have already found a stub table.
5754     // We enter this state to grow a stub group by adding input section
5755     // after the stub table.  This effectively doubles the group size.
5756     HAS_STUB_SECTION
5757   } State;
5758
5759   // Any newly created relaxed sections are stored here.
5760   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5761
5762   State state = NO_GROUP;
5763   section_size_type off = 0;
5764   section_size_type group_begin_offset = 0;
5765   section_size_type group_end_offset = 0;
5766   section_size_type stub_table_end_offset = 0;
5767   Input_section_list::const_iterator group_begin =
5768     this->input_sections().end();
5769   Input_section_list::const_iterator stub_table =
5770     this->input_sections().end();
5771   Input_section_list::const_iterator group_end = this->input_sections().end();
5772   for (Input_section_list::const_iterator p = this->input_sections().begin();
5773        p != this->input_sections().end();
5774        ++p)
5775     {
5776       section_size_type section_begin_offset =
5777         align_address(off, p->addralign());
5778       section_size_type section_end_offset =
5779         section_begin_offset + p->data_size();
5780
5781       // Check to see if we should group the previously seen sections.
5782       switch (state)
5783         {
5784         case NO_GROUP:
5785           break;
5786
5787         case FINDING_STUB_SECTION:
5788           // Adding this section makes the group larger than GROUP_SIZE.
5789           if (section_end_offset - group_begin_offset >= group_size)
5790             {
5791               if (stubs_always_after_branch)
5792                 {
5793                   gold_assert(group_end != this->input_sections().end());
5794                   this->create_stub_group(group_begin, group_end, group_end,
5795                                           target, &new_relaxed_sections,
5796                                           task);
5797                   state = NO_GROUP;
5798                 }
5799               else
5800                 {
5801                   // But wait, there's more!  Input sections up to
5802                   // stub_group_size bytes after the stub table can be
5803                   // handled by it too.
5804                   state = HAS_STUB_SECTION;
5805                   stub_table = group_end;
5806                   stub_table_end_offset = group_end_offset;
5807                 }
5808             }
5809             break;
5810
5811         case HAS_STUB_SECTION:
5812           // Adding this section makes the post stub-section group larger
5813           // than GROUP_SIZE.
5814           if (section_end_offset - stub_table_end_offset >= group_size)
5815            {
5816              gold_assert(group_end != this->input_sections().end());
5817              this->create_stub_group(group_begin, group_end, stub_table,
5818                                      target, &new_relaxed_sections, task);
5819              state = NO_GROUP;
5820            }
5821            break;
5822
5823           default:
5824             gold_unreachable();
5825         }
5826
5827       // If we see an input section and currently there is no group, start
5828       // a new one.  Skip any empty sections.  We look at the data size
5829       // instead of calling p->relobj()->section_size() to avoid locking.
5830       if ((p->is_input_section() || p->is_relaxed_input_section())
5831           && (p->data_size() != 0))
5832         {
5833           if (state == NO_GROUP)
5834             {
5835               state = FINDING_STUB_SECTION;
5836               group_begin = p;
5837               group_begin_offset = section_begin_offset;
5838             }
5839
5840           // Keep track of the last input section seen.
5841           group_end = p;
5842           group_end_offset = section_end_offset;
5843         }
5844
5845       off = section_end_offset;
5846     }
5847
5848   // Create a stub group for any ungrouped sections.
5849   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5850     {
5851       gold_assert(group_end != this->input_sections().end());
5852       this->create_stub_group(group_begin, group_end,
5853                               (state == FINDING_STUB_SECTION
5854                                ? group_end
5855                                : stub_table),
5856                                target, &new_relaxed_sections, task);
5857     }
5858
5859   // Convert input section into relaxed input section in a batch.
5860   if (!new_relaxed_sections.empty())
5861     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5862
5863   // Update the section offsets
5864   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5865     {
5866       Arm_relobj<big_endian>* arm_relobj =
5867         Arm_relobj<big_endian>::as_arm_relobj(
5868           new_relaxed_sections[i]->relobj());
5869       unsigned int shndx = new_relaxed_sections[i]->shndx();
5870       // Tell Arm_relobj that this input section is converted.
5871       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5872     }
5873 }
5874
5875 // Append non empty text sections in this to LIST in ascending
5876 // order of their position in this.
5877
5878 template<bool big_endian>
5879 void
5880 Arm_output_section<big_endian>::append_text_sections_to_list(
5881     Text_section_list* list)
5882 {
5883   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5884
5885   for (Input_section_list::const_iterator p = this->input_sections().begin();
5886        p != this->input_sections().end();
5887        ++p)
5888     {
5889       // We only care about plain or relaxed input sections.  We also
5890       // ignore any merged sections.
5891       if (p->is_input_section() || p->is_relaxed_input_section())
5892         list->push_back(Text_section_list::value_type(p->relobj(),
5893                                                       p->shndx()));
5894     }
5895 }
5896
5897 template<bool big_endian>
5898 void
5899 Arm_output_section<big_endian>::fix_exidx_coverage(
5900     Layout* layout,
5901     const Text_section_list& sorted_text_sections,
5902     Symbol_table* symtab,
5903     bool merge_exidx_entries,
5904     const Task* task)
5905 {
5906   // We should only do this for the EXIDX output section.
5907   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5908
5909   // We don't want the relaxation loop to undo these changes, so we discard
5910   // the current saved states and take another one after the fix-up.
5911   this->discard_states();
5912
5913   // Remove all input sections.
5914   uint64_t address = this->address();
5915   typedef std::list<Output_section::Input_section> Input_section_list;
5916   Input_section_list input_sections;
5917   this->reset_address_and_file_offset();
5918   this->get_input_sections(address, std::string(""), &input_sections);
5919
5920   if (!this->input_sections().empty())
5921     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5922
5923   // Go through all the known input sections and record them.
5924   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5925   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5926                         Section_id_hash> Text_to_exidx_map;
5927   Text_to_exidx_map text_to_exidx_map;
5928   for (Input_section_list::const_iterator p = input_sections.begin();
5929        p != input_sections.end();
5930        ++p)
5931     {
5932       // This should never happen.  At this point, we should only see
5933       // plain EXIDX input sections.
5934       gold_assert(!p->is_relaxed_input_section());
5935       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5936     }
5937
5938   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5939
5940   // Go over the sorted text sections.
5941   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5942   Section_id_set processed_input_sections;
5943   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5944        p != sorted_text_sections.end();
5945        ++p)
5946     {
5947       Relobj* relobj = p->first;
5948       unsigned int shndx = p->second;
5949
5950       Arm_relobj<big_endian>* arm_relobj =
5951          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5952       const Arm_exidx_input_section* exidx_input_section =
5953          arm_relobj->exidx_input_section_by_link(shndx);
5954
5955       // If this text section has no EXIDX section or if the EXIDX section
5956       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5957       // of the last seen EXIDX section.
5958       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5959         {
5960           exidx_fixup.add_exidx_cantunwind_as_needed();
5961           continue;
5962         }
5963
5964       Relobj* exidx_relobj = exidx_input_section->relobj();
5965       unsigned int exidx_shndx = exidx_input_section->shndx();
5966       Section_id sid(exidx_relobj, exidx_shndx);
5967       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5968       if (iter == text_to_exidx_map.end())
5969         {
5970           // This is odd.  We have not seen this EXIDX input section before.
5971           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5972           // issue a warning instead.  We assume the user knows what he
5973           // or she is doing.  Otherwise, this is an error.
5974           if (layout->script_options()->saw_sections_clause())
5975             gold_warning(_("unwinding may not work because EXIDX input section"
5976                            " %u of %s is not in EXIDX output section"),
5977                          exidx_shndx, exidx_relobj->name().c_str());
5978           else
5979             gold_error(_("unwinding may not work because EXIDX input section"
5980                          " %u of %s is not in EXIDX output section"),
5981                        exidx_shndx, exidx_relobj->name().c_str());
5982
5983           exidx_fixup.add_exidx_cantunwind_as_needed();
5984           continue;
5985         }
5986
5987       // We need to access the contents of the EXIDX section, lock the
5988       // object here.
5989       Task_lock_obj<Object> tl(task, exidx_relobj);
5990       section_size_type exidx_size;
5991       const unsigned char* exidx_contents =
5992         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5993
5994       // Fix up coverage and append input section to output data list.
5995       Arm_exidx_section_offset_map* section_offset_map = NULL;
5996       uint32_t deleted_bytes =
5997         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5998                                                       exidx_contents,
5999                                                       exidx_size,
6000                                                       &section_offset_map);
6001
6002       if (deleted_bytes == exidx_input_section->size())
6003         {
6004           // The whole EXIDX section got merged.  Remove it from output.
6005           gold_assert(section_offset_map == NULL);
6006           exidx_relobj->set_output_section(exidx_shndx, NULL);
6007
6008           // All local symbols defined in this input section will be dropped.
6009           // We need to adjust output local symbol count.
6010           arm_relobj->set_output_local_symbol_count_needs_update();
6011         }
6012       else if (deleted_bytes > 0)
6013         {
6014           // Some entries are merged.  We need to convert this EXIDX input
6015           // section into a relaxed section.
6016           gold_assert(section_offset_map != NULL);
6017
6018           Arm_exidx_merged_section* merged_section =
6019             new Arm_exidx_merged_section(*exidx_input_section,
6020                                          *section_offset_map, deleted_bytes);
6021           merged_section->build_contents(exidx_contents, exidx_size);
6022
6023           const std::string secname = exidx_relobj->section_name(exidx_shndx);
6024           this->add_relaxed_input_section(layout, merged_section, secname);
6025           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6026
6027           // All local symbols defined in discarded portions of this input
6028           // section will be dropped.  We need to adjust output local symbol
6029           // count.
6030           arm_relobj->set_output_local_symbol_count_needs_update();
6031         }
6032       else
6033         {
6034           // Just add back the EXIDX input section.
6035           gold_assert(section_offset_map == NULL);
6036           const Output_section::Input_section* pis = iter->second;
6037           gold_assert(pis->is_input_section());
6038           this->add_script_input_section(*pis);
6039         }
6040
6041       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6042     }
6043
6044   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6045   exidx_fixup.add_exidx_cantunwind_as_needed();
6046
6047   // Remove any known EXIDX input sections that are not processed.
6048   for (Input_section_list::const_iterator p = input_sections.begin();
6049        p != input_sections.end();
6050        ++p)
6051     {
6052       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6053           == processed_input_sections.end())
6054         {
6055           // We discard a known EXIDX section because its linked
6056           // text section has been folded by ICF.  We also discard an
6057           // EXIDX section with error, the output does not matter in this
6058           // case.  We do this to avoid triggering asserts.
6059           Arm_relobj<big_endian>* arm_relobj =
6060             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6061           const Arm_exidx_input_section* exidx_input_section =
6062             arm_relobj->exidx_input_section_by_shndx(p->shndx());
6063           gold_assert(exidx_input_section != NULL);
6064           if (!exidx_input_section->has_errors())
6065             {
6066               unsigned int text_shndx = exidx_input_section->link();
6067               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6068             }
6069
6070           // Remove this from link.  We also need to recount the
6071           // local symbols.
6072           p->relobj()->set_output_section(p->shndx(), NULL);
6073           arm_relobj->set_output_local_symbol_count_needs_update();
6074         }
6075     }
6076
6077   // Link exidx output section to the first seen output section and
6078   // set correct entry size.
6079   this->set_link_section(exidx_fixup.first_output_text_section());
6080   this->set_entsize(8);
6081
6082   // Make changes permanent.
6083   this->save_states();
6084   this->set_section_offsets_need_adjustment();
6085 }
6086
6087 // Link EXIDX output sections to text output sections.
6088
6089 template<bool big_endian>
6090 void
6091 Arm_output_section<big_endian>::set_exidx_section_link()
6092 {
6093   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6094   if (!this->input_sections().empty())
6095     {
6096       Input_section_list::const_iterator p = this->input_sections().begin();
6097       Arm_relobj<big_endian>* arm_relobj =
6098         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6099       unsigned exidx_shndx = p->shndx();
6100       const Arm_exidx_input_section* exidx_input_section =
6101         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6102       gold_assert(exidx_input_section != NULL);
6103       unsigned int text_shndx = exidx_input_section->link();
6104       Output_section* os = arm_relobj->output_section(text_shndx);
6105       this->set_link_section(os);
6106     }
6107 }
6108
6109 // Arm_relobj methods.
6110
6111 // Determine if an input section is scannable for stub processing.  SHDR is
6112 // the header of the section and SHNDX is the section index.  OS is the output
6113 // section for the input section and SYMTAB is the global symbol table used to
6114 // look up ICF information.
6115
6116 template<bool big_endian>
6117 bool
6118 Arm_relobj<big_endian>::section_is_scannable(
6119     const elfcpp::Shdr<32, big_endian>& shdr,
6120     unsigned int shndx,
6121     const Output_section* os,
6122     const Symbol_table* symtab)
6123 {
6124   // Skip any empty sections, unallocated sections or sections whose
6125   // type are not SHT_PROGBITS.
6126   if (shdr.get_sh_size() == 0
6127       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6128       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6129     return false;
6130
6131   // Skip any discarded or ICF'ed sections.
6132   if (os == NULL || symtab->is_section_folded(this, shndx))
6133     return false;
6134
6135   // If this requires special offset handling, check to see if it is
6136   // a relaxed section.  If this is not, then it is a merged section that
6137   // we cannot handle.
6138   if (this->is_output_section_offset_invalid(shndx))
6139     {
6140       const Output_relaxed_input_section* poris =
6141         os->find_relaxed_input_section(this, shndx);
6142       if (poris == NULL)
6143         return false;
6144     }
6145
6146   return true;
6147 }
6148
6149 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6150 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6151
6152 template<bool big_endian>
6153 bool
6154 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6155     const elfcpp::Shdr<32, big_endian>& shdr,
6156     const Relobj::Output_sections& out_sections,
6157     const Symbol_table* symtab,
6158     const unsigned char* pshdrs)
6159 {
6160   unsigned int sh_type = shdr.get_sh_type();
6161   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6162     return false;
6163
6164   // Ignore empty section.
6165   off_t sh_size = shdr.get_sh_size();
6166   if (sh_size == 0)
6167     return false;
6168
6169   // Ignore reloc section with unexpected symbol table.  The
6170   // error will be reported in the final link.
6171   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6172     return false;
6173
6174   unsigned int reloc_size;
6175   if (sh_type == elfcpp::SHT_REL)
6176     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6177   else
6178     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6179
6180   // Ignore reloc section with unexpected entsize or uneven size.
6181   // The error will be reported in the final link.
6182   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6183     return false;
6184
6185   // Ignore reloc section with bad info.  This error will be
6186   // reported in the final link.
6187   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6188   if (index >= this->shnum())
6189     return false;
6190
6191   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6192   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6193   return this->section_is_scannable(text_shdr, index,
6194                                    out_sections[index], symtab);
6195 }
6196
6197 // Return the output address of either a plain input section or a relaxed
6198 // input section.  SHNDX is the section index.  We define and use this
6199 // instead of calling Output_section::output_address because that is slow
6200 // for large output.
6201
6202 template<bool big_endian>
6203 Arm_address
6204 Arm_relobj<big_endian>::simple_input_section_output_address(
6205     unsigned int shndx,
6206     Output_section* os)
6207 {
6208   if (this->is_output_section_offset_invalid(shndx))
6209     {
6210       const Output_relaxed_input_section* poris =
6211         os->find_relaxed_input_section(this, shndx);
6212       // We do not handle merged sections here.
6213       gold_assert(poris != NULL);
6214       return poris->address();
6215     }
6216   else
6217     return os->address() + this->get_output_section_offset(shndx);
6218 }
6219
6220 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6221 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6222
6223 template<bool big_endian>
6224 bool
6225 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6226     const elfcpp::Shdr<32, big_endian>& shdr,
6227     unsigned int shndx,
6228     Output_section* os,
6229     const Symbol_table* symtab)
6230 {
6231   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6232     return false;
6233
6234   // If the section does not cross any 4K-boundaries, it does not need to
6235   // be scanned.
6236   Arm_address address = this->simple_input_section_output_address(shndx, os);
6237   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6238     return false;
6239
6240   return true;
6241 }
6242
6243 // Scan a section for Cortex-A8 workaround.
6244
6245 template<bool big_endian>
6246 void
6247 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6248     const elfcpp::Shdr<32, big_endian>& shdr,
6249     unsigned int shndx,
6250     Output_section* os,
6251     Target_arm<big_endian>* arm_target)
6252 {
6253   // Look for the first mapping symbol in this section.  It should be
6254   // at (shndx, 0).
6255   Mapping_symbol_position section_start(shndx, 0);
6256   typename Mapping_symbols_info::const_iterator p =
6257     this->mapping_symbols_info_.lower_bound(section_start);
6258
6259   // There are no mapping symbols for this section.  Treat it as a data-only
6260   // section.
6261   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6262     return;
6263
6264   Arm_address output_address =
6265     this->simple_input_section_output_address(shndx, os);
6266
6267   // Get the section contents.
6268   section_size_type input_view_size = 0;
6269   const unsigned char* input_view =
6270     this->section_contents(shndx, &input_view_size, false);
6271
6272   // We need to go through the mapping symbols to determine what to
6273   // scan.  There are two reasons.  First, we should look at THUMB code and
6274   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6275   // to speed up the scanning.
6276
6277   while (p != this->mapping_symbols_info_.end()
6278         && p->first.first == shndx)
6279     {
6280       typename Mapping_symbols_info::const_iterator next =
6281         this->mapping_symbols_info_.upper_bound(p->first);
6282
6283       // Only scan part of a section with THUMB code.
6284       if (p->second == 't')
6285         {
6286           // Determine the end of this range.
6287           section_size_type span_start =
6288             convert_to_section_size_type(p->first.second);
6289           section_size_type span_end;
6290           if (next != this->mapping_symbols_info_.end()
6291               && next->first.first == shndx)
6292             span_end = convert_to_section_size_type(next->first.second);
6293           else
6294             span_end = convert_to_section_size_type(shdr.get_sh_size());
6295
6296           if (((span_start + output_address) & ~0xfffUL)
6297               != ((span_end + output_address - 1) & ~0xfffUL))
6298             {
6299               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6300                                                           span_start, span_end,
6301                                                           input_view,
6302                                                           output_address);
6303             }
6304         }
6305
6306       p = next;
6307     }
6308 }
6309
6310 // Scan relocations for stub generation.
6311
6312 template<bool big_endian>
6313 void
6314 Arm_relobj<big_endian>::scan_sections_for_stubs(
6315     Target_arm<big_endian>* arm_target,
6316     const Symbol_table* symtab,
6317     const Layout* layout)
6318 {
6319   unsigned int shnum = this->shnum();
6320   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6321
6322   // Read the section headers.
6323   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6324                                                shnum * shdr_size,
6325                                                true, true);
6326
6327   // To speed up processing, we set up hash tables for fast lookup of
6328   // input offsets to output addresses.
6329   this->initialize_input_to_output_maps();
6330
6331   const Relobj::Output_sections& out_sections(this->output_sections());
6332
6333   Relocate_info<32, big_endian> relinfo;
6334   relinfo.symtab = symtab;
6335   relinfo.layout = layout;
6336   relinfo.object = this;
6337
6338   // Do relocation stubs scanning.
6339   const unsigned char* p = pshdrs + shdr_size;
6340   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6341     {
6342       const elfcpp::Shdr<32, big_endian> shdr(p);
6343       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6344                                                   pshdrs))
6345         {
6346           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6347           Arm_address output_offset = this->get_output_section_offset(index);
6348           Arm_address output_address;
6349           if (output_offset != invalid_address)
6350             output_address = out_sections[index]->address() + output_offset;
6351           else
6352             {
6353               // Currently this only happens for a relaxed section.
6354               const Output_relaxed_input_section* poris =
6355               out_sections[index]->find_relaxed_input_section(this, index);
6356               gold_assert(poris != NULL);
6357               output_address = poris->address();
6358             }
6359
6360           // Get the relocations.
6361           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6362                                                         shdr.get_sh_size(),
6363                                                         true, false);
6364
6365           // Get the section contents.  This does work for the case in which
6366           // we modify the contents of an input section.  We need to pass the
6367           // output view under such circumstances.
6368           section_size_type input_view_size = 0;
6369           const unsigned char* input_view =
6370             this->section_contents(index, &input_view_size, false);
6371
6372           relinfo.reloc_shndx = i;
6373           relinfo.data_shndx = index;
6374           unsigned int sh_type = shdr.get_sh_type();
6375           unsigned int reloc_size;
6376           if (sh_type == elfcpp::SHT_REL)
6377             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6378           else
6379             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6380
6381           Output_section* os = out_sections[index];
6382           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6383                                              shdr.get_sh_size() / reloc_size,
6384                                              os,
6385                                              output_offset == invalid_address,
6386                                              input_view, output_address,
6387                                              input_view_size);
6388         }
6389     }
6390
6391   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6392   // after its relocation section, if there is one, is processed for
6393   // relocation stubs.  Merging this loop with the one above would have been
6394   // complicated since we would have had to make sure that relocation stub
6395   // scanning is done first.
6396   if (arm_target->fix_cortex_a8())
6397     {
6398       const unsigned char* p = pshdrs + shdr_size;
6399       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6400         {
6401           const elfcpp::Shdr<32, big_endian> shdr(p);
6402           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6403                                                           out_sections[i],
6404                                                           symtab))
6405             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6406                                                      arm_target);
6407         }
6408     }
6409
6410   // After we've done the relocations, we release the hash tables,
6411   // since we no longer need them.
6412   this->free_input_to_output_maps();
6413 }
6414
6415 // Count the local symbols.  The ARM backend needs to know if a symbol
6416 // is a THUMB function or not.  For global symbols, it is easy because
6417 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6418 // harder because we cannot access this information.   So we override the
6419 // do_count_local_symbol in parent and scan local symbols to mark
6420 // THUMB functions.  This is not the most efficient way but I do not want to
6421 // slow down other ports by calling a per symbol target hook inside
6422 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6423
6424 template<bool big_endian>
6425 void
6426 Arm_relobj<big_endian>::do_count_local_symbols(
6427     Stringpool_template<char>* pool,
6428     Stringpool_template<char>* dynpool)
6429 {
6430   // We need to fix-up the values of any local symbols whose type are
6431   // STT_ARM_TFUNC.
6432
6433   // Ask parent to count the local symbols.
6434   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6435   const unsigned int loccount = this->local_symbol_count();
6436   if (loccount == 0)
6437     return;
6438
6439   // Initialize the thumb function bit-vector.
6440   std::vector<bool> empty_vector(loccount, false);
6441   this->local_symbol_is_thumb_function_.swap(empty_vector);
6442
6443   // Read the symbol table section header.
6444   const unsigned int symtab_shndx = this->symtab_shndx();
6445   elfcpp::Shdr<32, big_endian>
6446       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6447   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6448
6449   // Read the local symbols.
6450   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6451   gold_assert(loccount == symtabshdr.get_sh_info());
6452   off_t locsize = loccount * sym_size;
6453   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6454                                               locsize, true, true);
6455
6456   // For mapping symbol processing, we need to read the symbol names.
6457   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6458   if (strtab_shndx >= this->shnum())
6459     {
6460       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6461       return;
6462     }
6463
6464   elfcpp::Shdr<32, big_endian>
6465     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6466   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6467     {
6468       this->error(_("symbol table name section has wrong type: %u"),
6469                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6470       return;
6471     }
6472   const char* pnames =
6473     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6474                                                  strtabshdr.get_sh_size(),
6475                                                  false, false));
6476
6477   // Loop over the local symbols and mark any local symbols pointing
6478   // to THUMB functions.
6479
6480   // Skip the first dummy symbol.
6481   psyms += sym_size;
6482   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6483     this->local_values();
6484   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6485     {
6486       elfcpp::Sym<32, big_endian> sym(psyms);
6487       elfcpp::STT st_type = sym.get_st_type();
6488       Symbol_value<32>& lv((*plocal_values)[i]);
6489       Arm_address input_value = lv.input_value();
6490
6491       // Check to see if this is a mapping symbol.
6492       const char* sym_name = pnames + sym.get_st_name();
6493       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6494         {
6495           bool is_ordinary;
6496           unsigned int input_shndx =
6497             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6498           gold_assert(is_ordinary);
6499
6500           // Strip of LSB in case this is a THUMB symbol.
6501           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6502           this->mapping_symbols_info_[msp] = sym_name[1];
6503         }
6504
6505       if (st_type == elfcpp::STT_ARM_TFUNC
6506           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6507         {
6508           // This is a THUMB function.  Mark this and canonicalize the
6509           // symbol value by setting LSB.
6510           this->local_symbol_is_thumb_function_[i] = true;
6511           if ((input_value & 1) == 0)
6512             lv.set_input_value(input_value | 1);
6513         }
6514     }
6515 }
6516
6517 // Relocate sections.
6518 template<bool big_endian>
6519 void
6520 Arm_relobj<big_endian>::do_relocate_sections(
6521     const Symbol_table* symtab,
6522     const Layout* layout,
6523     const unsigned char* pshdrs,
6524     Output_file* of,
6525     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6526 {
6527   // Call parent to relocate sections.
6528   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6529                                                           pshdrs, of, pviews);
6530
6531   // We do not generate stubs if doing a relocatable link.
6532   if (parameters->options().relocatable())
6533     return;
6534
6535   // Relocate stub tables.
6536   unsigned int shnum = this->shnum();
6537
6538   Target_arm<big_endian>* arm_target =
6539     Target_arm<big_endian>::default_target();
6540
6541   Relocate_info<32, big_endian> relinfo;
6542   relinfo.symtab = symtab;
6543   relinfo.layout = layout;
6544   relinfo.object = this;
6545
6546   for (unsigned int i = 1; i < shnum; ++i)
6547     {
6548       Arm_input_section<big_endian>* arm_input_section =
6549         arm_target->find_arm_input_section(this, i);
6550
6551       if (arm_input_section != NULL
6552           && arm_input_section->is_stub_table_owner()
6553           && !arm_input_section->stub_table()->empty())
6554         {
6555           // We cannot discard a section if it owns a stub table.
6556           Output_section* os = this->output_section(i);
6557           gold_assert(os != NULL);
6558
6559           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6560           relinfo.reloc_shdr = NULL;
6561           relinfo.data_shndx = i;
6562           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6563
6564           gold_assert((*pviews)[i].view != NULL);
6565
6566           // We are passed the output section view.  Adjust it to cover the
6567           // stub table only.
6568           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6569           gold_assert((stub_table->address() >= (*pviews)[i].address)
6570                       && ((stub_table->address() + stub_table->data_size())
6571                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6572
6573           off_t offset = stub_table->address() - (*pviews)[i].address;
6574           unsigned char* view = (*pviews)[i].view + offset;
6575           Arm_address address = stub_table->address();
6576           section_size_type view_size = stub_table->data_size();
6577
6578           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6579                                      view_size);
6580         }
6581
6582       // Apply Cortex A8 workaround if applicable.
6583       if (this->section_has_cortex_a8_workaround(i))
6584         {
6585           unsigned char* view = (*pviews)[i].view;
6586           Arm_address view_address = (*pviews)[i].address;
6587           section_size_type view_size = (*pviews)[i].view_size;
6588           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6589
6590           // Adjust view to cover section.
6591           Output_section* os = this->output_section(i);
6592           gold_assert(os != NULL);
6593           Arm_address section_address =
6594             this->simple_input_section_output_address(i, os);
6595           uint64_t section_size = this->section_size(i);
6596
6597           gold_assert(section_address >= view_address
6598                       && ((section_address + section_size)
6599                           <= (view_address + view_size)));
6600
6601           unsigned char* section_view = view + (section_address - view_address);
6602
6603           // Apply the Cortex-A8 workaround to the output address range
6604           // corresponding to this input section.
6605           stub_table->apply_cortex_a8_workaround_to_address_range(
6606               arm_target,
6607               section_view,
6608               section_address,
6609               section_size);
6610         }
6611     }
6612 }
6613
6614 // Find the linked text section of an EXIDX section by looking at the first
6615 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6616 // must be linked to its associated code section via the sh_link field of
6617 // its section header.  However, some tools are broken and the link is not
6618 // always set.  LD just drops such an EXIDX section silently, causing the
6619 // associated code not unwindabled.   Here we try a little bit harder to
6620 // discover the linked code section.
6621 //
6622 // PSHDR points to the section header of a relocation section of an EXIDX
6623 // section.  If we can find a linked text section, return true and
6624 // store the text section index in the location PSHNDX.  Otherwise
6625 // return false.
6626
6627 template<bool big_endian>
6628 bool
6629 Arm_relobj<big_endian>::find_linked_text_section(
6630     const unsigned char* pshdr,
6631     const unsigned char* psyms,
6632     unsigned int* pshndx)
6633 {
6634   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6635
6636   // If there is no relocation, we cannot find the linked text section.
6637   size_t reloc_size;
6638   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6639       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6640   else
6641       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6642   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6643
6644   // Get the relocations.
6645   const unsigned char* prelocs =
6646       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6647
6648   // Find the REL31 relocation for the first word of the first EXIDX entry.
6649   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6650     {
6651       Arm_address r_offset;
6652       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6653       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6654         {
6655           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6656           r_info = reloc.get_r_info();
6657           r_offset = reloc.get_r_offset();
6658         }
6659       else
6660         {
6661           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6662           r_info = reloc.get_r_info();
6663           r_offset = reloc.get_r_offset();
6664         }
6665
6666       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6667       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6668         continue;
6669
6670       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6671       if (r_sym == 0
6672           || r_sym >= this->local_symbol_count()
6673           || r_offset != 0)
6674         continue;
6675
6676       // This is the relocation for the first word of the first EXIDX entry.
6677       // We expect to see a local section symbol.
6678       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6679       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6680       if (sym.get_st_type() == elfcpp::STT_SECTION)
6681         {
6682           bool is_ordinary;
6683           *pshndx =
6684             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6685           gold_assert(is_ordinary);
6686           return true;
6687         }
6688       else
6689         return false;
6690     }
6691
6692   return false;
6693 }
6694
6695 // Make an EXIDX input section object for an EXIDX section whose index is
6696 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6697 // is the section index of the linked text section.
6698
6699 template<bool big_endian>
6700 void
6701 Arm_relobj<big_endian>::make_exidx_input_section(
6702     unsigned int shndx,
6703     const elfcpp::Shdr<32, big_endian>& shdr,
6704     unsigned int text_shndx,
6705     const elfcpp::Shdr<32, big_endian>& text_shdr)
6706 {
6707   // Create an Arm_exidx_input_section object for this EXIDX section.
6708   Arm_exidx_input_section* exidx_input_section =
6709     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6710                                 shdr.get_sh_addralign(),
6711                                 text_shdr.get_sh_size());
6712
6713   gold_assert(this->exidx_section_map_[shndx] == NULL);
6714   this->exidx_section_map_[shndx] = exidx_input_section;
6715
6716   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6717     {
6718       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6719                  this->section_name(shndx).c_str(), shndx, text_shndx,
6720                  this->name().c_str());
6721       exidx_input_section->set_has_errors();
6722     }
6723   else if (this->exidx_section_map_[text_shndx] != NULL)
6724     {
6725       unsigned other_exidx_shndx =
6726         this->exidx_section_map_[text_shndx]->shndx();
6727       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6728                    "%s(%u) in %s"),
6729                  this->section_name(shndx).c_str(), shndx,
6730                  this->section_name(other_exidx_shndx).c_str(),
6731                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6732                  text_shndx, this->name().c_str());
6733       exidx_input_section->set_has_errors();
6734     }
6735   else
6736      this->exidx_section_map_[text_shndx] = exidx_input_section;
6737
6738   // Check section flags of text section.
6739   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6740     {
6741       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6742                    " in %s"),
6743                  this->section_name(shndx).c_str(), shndx,
6744                  this->section_name(text_shndx).c_str(), text_shndx,
6745                  this->name().c_str());
6746       exidx_input_section->set_has_errors();
6747     }
6748   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6749     // I would like to make this an error but currently ld just ignores
6750     // this.
6751     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6752                    "%s(%u) in %s"),
6753                  this->section_name(shndx).c_str(), shndx,
6754                  this->section_name(text_shndx).c_str(), text_shndx,
6755                  this->name().c_str());
6756 }
6757
6758 // Read the symbol information.
6759
6760 template<bool big_endian>
6761 void
6762 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6763 {
6764   // Call parent class to read symbol information.
6765   this->base_read_symbols(sd);
6766
6767   // If this input file is a binary file, it has no processor
6768   // specific flags and attributes section.
6769   Input_file::Format format = this->input_file()->format();
6770   if (format != Input_file::FORMAT_ELF)
6771     {
6772       gold_assert(format == Input_file::FORMAT_BINARY);
6773       this->merge_flags_and_attributes_ = false;
6774       return;
6775     }
6776
6777   // Read processor-specific flags in ELF file header.
6778   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6779                                               elfcpp::Elf_sizes<32>::ehdr_size,
6780                                               true, false);
6781   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6782   this->processor_specific_flags_ = ehdr.get_e_flags();
6783
6784   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6785   // sections.
6786   std::vector<unsigned int> deferred_exidx_sections;
6787   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6788   const unsigned char* pshdrs = sd->section_headers->data();
6789   const unsigned char* ps = pshdrs + shdr_size;
6790   bool must_merge_flags_and_attributes = false;
6791   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6792     {
6793       elfcpp::Shdr<32, big_endian> shdr(ps);
6794
6795       // Sometimes an object has no contents except the section name string
6796       // table and an empty symbol table with the undefined symbol.  We
6797       // don't want to merge processor-specific flags from such an object.
6798       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6799         {
6800           // Symbol table is not empty.
6801           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6802              elfcpp::Elf_sizes<32>::sym_size;
6803           if (shdr.get_sh_size() > sym_size)
6804             must_merge_flags_and_attributes = true;
6805         }
6806       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6807         // If this is neither an empty symbol table nor a string table,
6808         // be conservative.
6809         must_merge_flags_and_attributes = true;
6810
6811       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6812         {
6813           gold_assert(this->attributes_section_data_ == NULL);
6814           section_offset_type section_offset = shdr.get_sh_offset();
6815           section_size_type section_size =
6816             convert_to_section_size_type(shdr.get_sh_size());
6817           const unsigned char* view =
6818              this->get_view(section_offset, section_size, true, false);
6819           this->attributes_section_data_ =
6820             new Attributes_section_data(view, section_size);
6821         }
6822       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6823         {
6824           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6825           if (text_shndx == elfcpp::SHN_UNDEF)
6826             deferred_exidx_sections.push_back(i);
6827           else
6828             {
6829               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6830                                                      + text_shndx * shdr_size);
6831               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6832             }
6833           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6834           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6835             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6836                          this->section_name(i).c_str(), this->name().c_str());
6837         }
6838     }
6839
6840   // This is rare.
6841   if (!must_merge_flags_and_attributes)
6842     {
6843       gold_assert(deferred_exidx_sections.empty());
6844       this->merge_flags_and_attributes_ = false;
6845       return;
6846     }
6847
6848   // Some tools are broken and they do not set the link of EXIDX sections.
6849   // We look at the first relocation to figure out the linked sections.
6850   if (!deferred_exidx_sections.empty())
6851     {
6852       // We need to go over the section headers again to find the mapping
6853       // from sections being relocated to their relocation sections.  This is
6854       // a bit inefficient as we could do that in the loop above.  However,
6855       // we do not expect any deferred EXIDX sections normally.  So we do not
6856       // want to slow down the most common path.
6857       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6858       Reloc_map reloc_map;
6859       ps = pshdrs + shdr_size;
6860       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6861         {
6862           elfcpp::Shdr<32, big_endian> shdr(ps);
6863           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6864           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6865             {
6866               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6867               if (info_shndx >= this->shnum())
6868                 gold_error(_("relocation section %u has invalid info %u"),
6869                            i, info_shndx);
6870               Reloc_map::value_type value(info_shndx, i);
6871               std::pair<Reloc_map::iterator, bool> result =
6872                 reloc_map.insert(value);
6873               if (!result.second)
6874                 gold_error(_("section %u has multiple relocation sections "
6875                              "%u and %u"),
6876                            info_shndx, i, reloc_map[info_shndx]);
6877             }
6878         }
6879
6880       // Read the symbol table section header.
6881       const unsigned int symtab_shndx = this->symtab_shndx();
6882       elfcpp::Shdr<32, big_endian>
6883           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6884       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6885
6886       // Read the local symbols.
6887       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6888       const unsigned int loccount = this->local_symbol_count();
6889       gold_assert(loccount == symtabshdr.get_sh_info());
6890       off_t locsize = loccount * sym_size;
6891       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6892                                                   locsize, true, true);
6893
6894       // Process the deferred EXIDX sections.
6895       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6896         {
6897           unsigned int shndx = deferred_exidx_sections[i];
6898           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6899           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6900           Reloc_map::const_iterator it = reloc_map.find(shndx);
6901           if (it != reloc_map.end())
6902             find_linked_text_section(pshdrs + it->second * shdr_size,
6903                                      psyms, &text_shndx);
6904           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6905                                                  + text_shndx * shdr_size);
6906           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6907         }
6908     }
6909 }
6910
6911 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6912 // sections for unwinding.  These sections are referenced implicitly by
6913 // text sections linked in the section headers.  If we ignore these implicit
6914 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6915 // will be garbage-collected incorrectly.  Hence we override the same function
6916 // in the base class to handle these implicit references.
6917
6918 template<bool big_endian>
6919 void
6920 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6921                                              Layout* layout,
6922                                              Read_relocs_data* rd)
6923 {
6924   // First, call base class method to process relocations in this object.
6925   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6926
6927   // If --gc-sections is not specified, there is nothing more to do.
6928   // This happens when --icf is used but --gc-sections is not.
6929   if (!parameters->options().gc_sections())
6930     return;
6931
6932   unsigned int shnum = this->shnum();
6933   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6934   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6935                                                shnum * shdr_size,
6936                                                true, true);
6937
6938   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6939   // to these from the linked text sections.
6940   const unsigned char* ps = pshdrs + shdr_size;
6941   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6942     {
6943       elfcpp::Shdr<32, big_endian> shdr(ps);
6944       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6945         {
6946           // Found an .ARM.exidx section, add it to the set of reachable
6947           // sections from its linked text section.
6948           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6949           symtab->gc()->add_reference(this, text_shndx, this, i);
6950         }
6951     }
6952 }
6953
6954 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6955 // symbols  will be removed in output.  Adjust output local symbol count
6956 // accordingly.  We can only changed the static output local symbol count.  It
6957 // is too late to change the dynamic symbols.
6958
6959 template<bool big_endian>
6960 void
6961 Arm_relobj<big_endian>::update_output_local_symbol_count()
6962 {
6963   // Caller should check that this needs updating.  We want caller checking
6964   // because output_local_symbol_count_needs_update() is most likely inlined.
6965   gold_assert(this->output_local_symbol_count_needs_update_);
6966
6967   gold_assert(this->symtab_shndx() != -1U);
6968   if (this->symtab_shndx() == 0)
6969     {
6970       // This object has no symbols.  Weird but legal.
6971       return;
6972     }
6973
6974   // Read the symbol table section header.
6975   const unsigned int symtab_shndx = this->symtab_shndx();
6976   elfcpp::Shdr<32, big_endian>
6977     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6978   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6979
6980   // Read the local symbols.
6981   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6982   const unsigned int loccount = this->local_symbol_count();
6983   gold_assert(loccount == symtabshdr.get_sh_info());
6984   off_t locsize = loccount * sym_size;
6985   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6986                                               locsize, true, true);
6987
6988   // Loop over the local symbols.
6989
6990   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6991      Output_sections;
6992   const Output_sections& out_sections(this->output_sections());
6993   unsigned int shnum = this->shnum();
6994   unsigned int count = 0;
6995   // Skip the first, dummy, symbol.
6996   psyms += sym_size;
6997   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6998     {
6999       elfcpp::Sym<32, big_endian> sym(psyms);
7000
7001       Symbol_value<32>& lv((*this->local_values())[i]);
7002
7003       // This local symbol was already discarded by do_count_local_symbols.
7004       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7005         continue;
7006
7007       bool is_ordinary;
7008       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7009                                                   &is_ordinary);
7010
7011       if (shndx < shnum)
7012         {
7013           Output_section* os = out_sections[shndx];
7014
7015           // This local symbol no longer has an output section.  Discard it.
7016           if (os == NULL)
7017             {
7018               lv.set_no_output_symtab_entry();
7019               continue;
7020             }
7021
7022           // Currently we only discard parts of EXIDX input sections.
7023           // We explicitly check for a merged EXIDX input section to avoid
7024           // calling Output_section_data::output_offset unless necessary.
7025           if ((this->get_output_section_offset(shndx) == invalid_address)
7026               && (this->exidx_input_section_by_shndx(shndx) != NULL))
7027             {
7028               section_offset_type output_offset =
7029                 os->output_offset(this, shndx, lv.input_value());
7030               if (output_offset == -1)
7031                 {
7032                   // This symbol is defined in a part of an EXIDX input section
7033                   // that is discarded due to entry merging.
7034                   lv.set_no_output_symtab_entry();
7035                   continue;
7036                 }
7037             }
7038         }
7039
7040       ++count;
7041     }
7042
7043   this->set_output_local_symbol_count(count);
7044   this->output_local_symbol_count_needs_update_ = false;
7045 }
7046
7047 // Arm_dynobj methods.
7048
7049 // Read the symbol information.
7050
7051 template<bool big_endian>
7052 void
7053 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7054 {
7055   // Call parent class to read symbol information.
7056   this->base_read_symbols(sd);
7057
7058   // Read processor-specific flags in ELF file header.
7059   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7060                                               elfcpp::Elf_sizes<32>::ehdr_size,
7061                                               true, false);
7062   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7063   this->processor_specific_flags_ = ehdr.get_e_flags();
7064
7065   // Read the attributes section if there is one.
7066   // We read from the end because gas seems to put it near the end of
7067   // the section headers.
7068   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7069   const unsigned char* ps =
7070     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7071   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7072     {
7073       elfcpp::Shdr<32, big_endian> shdr(ps);
7074       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7075         {
7076           section_offset_type section_offset = shdr.get_sh_offset();
7077           section_size_type section_size =
7078             convert_to_section_size_type(shdr.get_sh_size());
7079           const unsigned char* view =
7080             this->get_view(section_offset, section_size, true, false);
7081           this->attributes_section_data_ =
7082             new Attributes_section_data(view, section_size);
7083           break;
7084         }
7085     }
7086 }
7087
7088 // Stub_addend_reader methods.
7089
7090 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7091
7092 template<bool big_endian>
7093 elfcpp::Elf_types<32>::Elf_Swxword
7094 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7095     unsigned int r_type,
7096     const unsigned char* view,
7097     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7098 {
7099   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7100
7101   switch (r_type)
7102     {
7103     case elfcpp::R_ARM_CALL:
7104     case elfcpp::R_ARM_JUMP24:
7105     case elfcpp::R_ARM_PLT32:
7106       {
7107         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7108         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7109         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7110         return Bits<26>::sign_extend32(val << 2);
7111       }
7112
7113     case elfcpp::R_ARM_THM_CALL:
7114     case elfcpp::R_ARM_THM_JUMP24:
7115     case elfcpp::R_ARM_THM_XPC22:
7116       {
7117         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7118         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7119         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7120         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7121         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7122       }
7123
7124     case elfcpp::R_ARM_THM_JUMP19:
7125       {
7126         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7127         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7128         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7129         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7130         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7131       }
7132
7133     default:
7134       gold_unreachable();
7135     }
7136 }
7137
7138 // Arm_output_data_got methods.
7139
7140 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7141 // The first one is initialized to be 1, which is the module index for
7142 // the main executable and the second one 0.  A reloc of the type
7143 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7144 // be applied by gold.  GSYM is a global symbol.
7145 //
7146 template<bool big_endian>
7147 void
7148 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7149     unsigned int got_type,
7150     Symbol* gsym)
7151 {
7152   if (gsym->has_got_offset(got_type))
7153     return;
7154
7155   // We are doing a static link.  Just mark it as belong to module 1,
7156   // the executable.
7157   unsigned int got_offset = this->add_constant(1);
7158   gsym->set_got_offset(got_type, got_offset);
7159   got_offset = this->add_constant(0);
7160   this->static_relocs_.push_back(Static_reloc(got_offset,
7161                                               elfcpp::R_ARM_TLS_DTPOFF32,
7162                                               gsym));
7163 }
7164
7165 // Same as the above but for a local symbol.
7166
7167 template<bool big_endian>
7168 void
7169 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7170   unsigned int got_type,
7171   Sized_relobj_file<32, big_endian>* object,
7172   unsigned int index)
7173 {
7174   if (object->local_has_got_offset(index, got_type))
7175     return;
7176
7177   // We are doing a static link.  Just mark it as belong to module 1,
7178   // the executable.
7179   unsigned int got_offset = this->add_constant(1);
7180   object->set_local_got_offset(index, got_type, got_offset);
7181   got_offset = this->add_constant(0);
7182   this->static_relocs_.push_back(Static_reloc(got_offset,
7183                                               elfcpp::R_ARM_TLS_DTPOFF32,
7184                                               object, index));
7185 }
7186
7187 template<bool big_endian>
7188 void
7189 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7190 {
7191   // Call parent to write out GOT.
7192   Output_data_got<32, big_endian>::do_write(of);
7193
7194   // We are done if there is no fix up.
7195   if (this->static_relocs_.empty())
7196     return;
7197
7198   gold_assert(parameters->doing_static_link());
7199
7200   const off_t offset = this->offset();
7201   const section_size_type oview_size =
7202     convert_to_section_size_type(this->data_size());
7203   unsigned char* const oview = of->get_output_view(offset, oview_size);
7204
7205   Output_segment* tls_segment = this->layout_->tls_segment();
7206   gold_assert(tls_segment != NULL);
7207
7208   // The thread pointer $tp points to the TCB, which is followed by the
7209   // TLS.  So we need to adjust $tp relative addressing by this amount.
7210   Arm_address aligned_tcb_size =
7211     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7212
7213   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7214     {
7215       Static_reloc& reloc(this->static_relocs_[i]);
7216
7217       Arm_address value;
7218       if (!reloc.symbol_is_global())
7219         {
7220           Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7221           const Symbol_value<32>* psymval =
7222             reloc.relobj()->local_symbol(reloc.index());
7223
7224           // We are doing static linking.  Issue an error and skip this
7225           // relocation if the symbol is undefined or in a discarded_section.
7226           bool is_ordinary;
7227           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7228           if ((shndx == elfcpp::SHN_UNDEF)
7229               || (is_ordinary
7230                   && shndx != elfcpp::SHN_UNDEF
7231                   && !object->is_section_included(shndx)
7232                   && !this->symbol_table_->is_section_folded(object, shndx)))
7233             {
7234               gold_error(_("undefined or discarded local symbol %u from "
7235                            " object %s in GOT"),
7236                          reloc.index(), reloc.relobj()->name().c_str());
7237               continue;
7238             }
7239
7240           value = psymval->value(object, 0);
7241         }
7242       else
7243         {
7244           const Symbol* gsym = reloc.symbol();
7245           gold_assert(gsym != NULL);
7246           if (gsym->is_forwarder())
7247             gsym = this->symbol_table_->resolve_forwards(gsym);
7248
7249           // We are doing static linking.  Issue an error and skip this
7250           // relocation if the symbol is undefined or in a discarded_section
7251           // unless it is a weakly_undefined symbol.
7252           if ((gsym->is_defined_in_discarded_section()
7253                || gsym->is_undefined())
7254               && !gsym->is_weak_undefined())
7255             {
7256               gold_error(_("undefined or discarded symbol %s in GOT"),
7257                          gsym->name());
7258               continue;
7259             }
7260
7261           if (!gsym->is_weak_undefined())
7262             {
7263               const Sized_symbol<32>* sym =
7264                 static_cast<const Sized_symbol<32>*>(gsym);
7265               value = sym->value();
7266             }
7267           else
7268               value = 0;
7269         }
7270
7271       unsigned got_offset = reloc.got_offset();
7272       gold_assert(got_offset < oview_size);
7273
7274       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7275       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7276       Valtype x;
7277       switch (reloc.r_type())
7278         {
7279         case elfcpp::R_ARM_TLS_DTPOFF32:
7280           x = value;
7281           break;
7282         case elfcpp::R_ARM_TLS_TPOFF32:
7283           x = value + aligned_tcb_size;
7284           break;
7285         default:
7286           gold_unreachable();
7287         }
7288       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7289     }
7290
7291   of->write_output_view(offset, oview_size, oview);
7292 }
7293
7294 // A class to handle the PLT data.
7295 // This is an abstract base class that handles most of the linker details
7296 // but does not know the actual contents of PLT entries.  The derived
7297 // classes below fill in those details.
7298
7299 template<bool big_endian>
7300 class Output_data_plt_arm : public Output_section_data
7301 {
7302  public:
7303   // Unlike aarch64, which records symbol value in "addend" field of relocations
7304   // and could be done at the same time an IRelative reloc is created for the
7305   // symbol, arm puts the symbol value into "GOT" table, which, however, is
7306   // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7307   // to keep necessary symbol information for later use in do_write. We usually
7308   // have only a very limited number of ifuncs, so the extra data required here
7309   // is also limited.
7310
7311   struct IRelative_data
7312   {
7313     IRelative_data(Sized_symbol<32>* sized_symbol)
7314       : symbol_is_global_(true)
7315     {
7316       u_.global = sized_symbol;
7317     }
7318
7319     IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7320                    unsigned int index)
7321       : symbol_is_global_(false)
7322     {
7323       u_.local.relobj = relobj;
7324       u_.local.index = index;
7325     }
7326
7327     union
7328     {
7329       Sized_symbol<32>* global;
7330
7331       struct
7332       {
7333         Sized_relobj_file<32, big_endian>* relobj;
7334         unsigned int index;
7335       } local;
7336     } u_;
7337
7338     bool symbol_is_global_;
7339   };
7340
7341   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7342     Reloc_section;
7343
7344   Output_data_plt_arm(Layout* layout, uint64_t addralign,
7345                       Arm_output_data_got<big_endian>* got,
7346                       Output_data_space* got_plt,
7347                       Output_data_space* got_irelative);
7348
7349   // Add an entry to the PLT.
7350   void
7351   add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7352
7353   // Add the relocation for a plt entry.
7354   void
7355   add_relocation(Symbol_table* symtab, Layout* layout,
7356                  Symbol* gsym, unsigned int got_offset);
7357
7358   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7359   unsigned int
7360   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7361                         Sized_relobj_file<32, big_endian>* relobj,
7362                         unsigned int local_sym_index);
7363
7364   // Return the .rel.plt section data.
7365   const Reloc_section*
7366   rel_plt() const
7367   { return this->rel_; }
7368
7369   // Return the PLT relocation container for IRELATIVE.
7370   Reloc_section*
7371   rel_irelative(Symbol_table*, Layout*);
7372
7373   // Return the number of PLT entries.
7374   unsigned int
7375   entry_count() const
7376   { return this->count_ + this->irelative_count_; }
7377
7378   // Return the offset of the first non-reserved PLT entry.
7379   unsigned int
7380   first_plt_entry_offset() const
7381   { return this->do_first_plt_entry_offset(); }
7382
7383   // Return the size of a PLT entry.
7384   unsigned int
7385   get_plt_entry_size() const
7386   { return this->do_get_plt_entry_size(); }
7387
7388   // Return the PLT address for globals.
7389   uint32_t
7390   address_for_global(const Symbol*) const;
7391
7392   // Return the PLT address for locals.
7393   uint32_t
7394   address_for_local(const Relobj*, unsigned int symndx) const;
7395
7396  protected:
7397   // Fill in the first PLT entry.
7398   void
7399   fill_first_plt_entry(unsigned char* pov,
7400                        Arm_address got_address,
7401                        Arm_address plt_address)
7402   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7403
7404   void
7405   fill_plt_entry(unsigned char* pov,
7406                  Arm_address got_address,
7407                  Arm_address plt_address,
7408                  unsigned int got_offset,
7409                  unsigned int plt_offset)
7410   { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7411
7412   virtual unsigned int
7413   do_first_plt_entry_offset() const = 0;
7414
7415   virtual unsigned int
7416   do_get_plt_entry_size() const = 0;
7417
7418   virtual void
7419   do_fill_first_plt_entry(unsigned char* pov,
7420                           Arm_address got_address,
7421                           Arm_address plt_address) = 0;
7422
7423   virtual void
7424   do_fill_plt_entry(unsigned char* pov,
7425                     Arm_address got_address,
7426                     Arm_address plt_address,
7427                     unsigned int got_offset,
7428                     unsigned int plt_offset) = 0;
7429
7430   void
7431   do_adjust_output_section(Output_section* os);
7432
7433   // Write to a map file.
7434   void
7435   do_print_to_mapfile(Mapfile* mapfile) const
7436   { mapfile->print_output_data(this, _("** PLT")); }
7437
7438  private:
7439   // Set the final size.
7440   void
7441   set_final_data_size()
7442   {
7443     this->set_data_size(this->first_plt_entry_offset()
7444                         + ((this->count_ + this->irelative_count_)
7445                            * this->get_plt_entry_size()));
7446   }
7447
7448   // Write out the PLT data.
7449   void
7450   do_write(Output_file*);
7451
7452   // Record irelative symbol data.
7453   void insert_irelative_data(const IRelative_data& idata)
7454   { irelative_data_vec_.push_back(idata); }
7455
7456   // The reloc section.
7457   Reloc_section* rel_;
7458   // The IRELATIVE relocs, if necessary.  These must follow the
7459   // regular PLT relocations.
7460   Reloc_section* irelative_rel_;
7461   // The .got section.
7462   Arm_output_data_got<big_endian>* got_;
7463   // The .got.plt section.
7464   Output_data_space* got_plt_;
7465   // The part of the .got.plt section used for IRELATIVE relocs.
7466   Output_data_space* got_irelative_;
7467   // The number of PLT entries.
7468   unsigned int count_;
7469   // Number of PLT entries with R_ARM_IRELATIVE relocs.  These
7470   // follow the regular PLT entries.
7471   unsigned int irelative_count_;
7472   // Vector for irelative data.
7473   typedef std::vector<IRelative_data> IRelative_data_vec;
7474   IRelative_data_vec irelative_data_vec_;
7475 };
7476
7477 // Create the PLT section.  The ordinary .got section is an argument,
7478 // since we need to refer to the start.  We also create our own .got
7479 // section just for PLT entries.
7480
7481 template<bool big_endian>
7482 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7483     Layout* layout, uint64_t addralign,
7484     Arm_output_data_got<big_endian>* got,
7485     Output_data_space* got_plt,
7486     Output_data_space* got_irelative)
7487   : Output_section_data(addralign), irelative_rel_(NULL),
7488     got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7489     count_(0), irelative_count_(0)
7490 {
7491   this->rel_ = new Reloc_section(false);
7492   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7493                                   elfcpp::SHF_ALLOC, this->rel_,
7494                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7495 }
7496
7497 template<bool big_endian>
7498 void
7499 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7500 {
7501   os->set_entsize(0);
7502 }
7503
7504 // Add an entry to the PLT.
7505
7506 template<bool big_endian>
7507 void
7508 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7509                                            Layout* layout,
7510                                            Symbol* gsym)
7511 {
7512   gold_assert(!gsym->has_plt_offset());
7513
7514   unsigned int* entry_count;
7515   Output_section_data_build* got;
7516
7517   // We have 2 different types of plt entry here, normal and ifunc.
7518
7519   // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7520   // 1st entry offset would be 20, the second 32, third 44 ... etc.
7521
7522   // For ifunc plt, the offset begins with 0. So the first offset would 0,
7523   // second 12, third 24 ... etc.
7524
7525   // IFunc plt entries *always* come after *normal* plt entries.
7526
7527   // Notice, when computing the plt address of a certain symbol, "plt_address +
7528   // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7529   // target->plt_address_for_local() instead.
7530
7531   int begin_offset = 0;
7532   if (gsym->type() == elfcpp::STT_GNU_IFUNC
7533       && gsym->can_use_relative_reloc(false))
7534     {
7535       entry_count = &this->irelative_count_;
7536       got = this->got_irelative_;
7537       // For irelative plt entries, offset is relative to the end of normal plt
7538       // entries, so it starts from 0.
7539       begin_offset = 0;
7540       // Record symbol information.
7541       this->insert_irelative_data(
7542           IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7543     }
7544   else
7545     {
7546       entry_count = &this->count_;
7547       got = this->got_plt_;
7548       // Note that for normal plt entries, when setting the PLT offset we skip
7549       // the initial reserved PLT entry.
7550       begin_offset = this->first_plt_entry_offset();
7551     }
7552
7553   gsym->set_plt_offset(begin_offset
7554                        + (*entry_count) * this->get_plt_entry_size());
7555
7556   ++(*entry_count);
7557
7558   section_offset_type got_offset = got->current_data_size();
7559
7560   // Every PLT entry needs a GOT entry which points back to the PLT
7561   // entry (this will be changed by the dynamic linker, normally
7562   // lazily when the function is called).
7563   got->set_current_data_size(got_offset + 4);
7564
7565   // Every PLT entry needs a reloc.
7566   this->add_relocation(symtab, layout, gsym, got_offset);
7567
7568   // Note that we don't need to save the symbol.  The contents of the
7569   // PLT are independent of which symbols are used.  The symbols only
7570   // appear in the relocations.
7571 }
7572
7573 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
7574 // the PLT offset.
7575
7576 template<bool big_endian>
7577 unsigned int
7578 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7579     Symbol_table* symtab,
7580     Layout* layout,
7581     Sized_relobj_file<32, big_endian>* relobj,
7582     unsigned int local_sym_index)
7583 {
7584   this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7585
7586   // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7587   // no longer correct. Use target->plt_address_for_local() instead.
7588   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7589   ++this->irelative_count_;
7590
7591   section_offset_type got_offset = this->got_irelative_->current_data_size();
7592
7593   // Every PLT entry needs a GOT entry which points back to the PLT
7594   // entry.
7595   this->got_irelative_->set_current_data_size(got_offset + 4);
7596
7597
7598   // Every PLT entry needs a reloc.
7599   Reloc_section* rel = this->rel_irelative(symtab, layout);
7600   rel->add_symbolless_local_addend(relobj, local_sym_index,
7601                                    elfcpp::R_ARM_IRELATIVE,
7602                                    this->got_irelative_, got_offset);
7603   return plt_offset;
7604 }
7605
7606
7607 // Add the relocation for a PLT entry.
7608
7609 template<bool big_endian>
7610 void
7611 Output_data_plt_arm<big_endian>::add_relocation(
7612     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7613 {
7614   if (gsym->type() == elfcpp::STT_GNU_IFUNC
7615       && gsym->can_use_relative_reloc(false))
7616     {
7617       Reloc_section* rel = this->rel_irelative(symtab, layout);
7618       rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7619                                         this->got_irelative_, got_offset);
7620     }
7621   else
7622     {
7623       gsym->set_needs_dynsym_entry();
7624       this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7625                              got_offset);
7626     }
7627 }
7628
7629
7630 // Create the irelative relocation data.
7631
7632 template<bool big_endian>
7633 typename Output_data_plt_arm<big_endian>::Reloc_section*
7634 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7635                                                 Layout* layout)
7636 {
7637   if (this->irelative_rel_ == NULL)
7638     {
7639       // Since irelative relocations goes into 'rel.dyn', we delegate the
7640       // creation of irelative_rel_ to where rel_dyn section gets created.
7641       Target_arm<big_endian>* arm_target =
7642           Target_arm<big_endian>::default_target();
7643       this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7644
7645       // Make sure we have a place for the TLSDESC relocations, in
7646       // case we see any later on.
7647       // this->rel_tlsdesc(layout);
7648       if (parameters->doing_static_link())
7649         {
7650           // A statically linked executable will only have a .rel.plt section to
7651           // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols.  The library
7652           // will use these symbols to locate the IRELATIVE relocs at program
7653           // startup time.
7654           symtab->define_in_output_data("__rel_iplt_start", NULL,
7655                                         Symbol_table::PREDEFINED,
7656                                         this->irelative_rel_, 0, 0,
7657                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7658                                         elfcpp::STV_HIDDEN, 0, false, true);
7659           symtab->define_in_output_data("__rel_iplt_end", NULL,
7660                                         Symbol_table::PREDEFINED,
7661                                         this->irelative_rel_, 0, 0,
7662                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7663                                         elfcpp::STV_HIDDEN, 0, true, true);
7664         }
7665     }
7666   return this->irelative_rel_;
7667 }
7668
7669
7670 // Return the PLT address for a global symbol.
7671
7672 template<bool big_endian>
7673 uint32_t
7674 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7675 {
7676   uint64_t begin_offset = 0;
7677   if (gsym->type() == elfcpp::STT_GNU_IFUNC
7678       && gsym->can_use_relative_reloc(false))
7679     {
7680       begin_offset = (this->first_plt_entry_offset() +
7681                       this->count_ * this->get_plt_entry_size());
7682     }
7683   return this->address() + begin_offset + gsym->plt_offset();
7684 }
7685
7686
7687 // Return the PLT address for a local symbol.  These are always
7688 // IRELATIVE relocs.
7689
7690 template<bool big_endian>
7691 uint32_t
7692 Output_data_plt_arm<big_endian>::address_for_local(
7693     const Relobj* object,
7694     unsigned int r_sym) const
7695 {
7696   return (this->address()
7697           + this->first_plt_entry_offset()
7698           + this->count_ * this->get_plt_entry_size()
7699           + object->local_plt_offset(r_sym));
7700 }
7701
7702
7703 template<bool big_endian>
7704 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7705 {
7706  public:
7707   Output_data_plt_arm_standard(Layout* layout,
7708                                Arm_output_data_got<big_endian>* got,
7709                                Output_data_space* got_plt,
7710                                Output_data_space* got_irelative)
7711     : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7712   { }
7713
7714  protected:
7715   // Return the offset of the first non-reserved PLT entry.
7716   virtual unsigned int
7717   do_first_plt_entry_offset() const
7718   { return sizeof(first_plt_entry); }
7719
7720   // Return the size of a PLT entry.
7721   virtual unsigned int
7722   do_get_plt_entry_size() const
7723   { return sizeof(plt_entry); }
7724
7725   virtual void
7726   do_fill_first_plt_entry(unsigned char* pov,
7727                           Arm_address got_address,
7728                           Arm_address plt_address);
7729
7730   virtual void
7731   do_fill_plt_entry(unsigned char* pov,
7732                     Arm_address got_address,
7733                     Arm_address plt_address,
7734                     unsigned int got_offset,
7735                     unsigned int plt_offset);
7736
7737  private:
7738   // Template for the first PLT entry.
7739   static const uint32_t first_plt_entry[5];
7740
7741   // Template for subsequent PLT entries.
7742   static const uint32_t plt_entry[3];
7743 };
7744
7745 // ARM PLTs.
7746 // FIXME:  This is not very flexible.  Right now this has only been tested
7747 // on armv5te.  If we are to support additional architecture features like
7748 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7749
7750 // The first entry in the PLT.
7751 template<bool big_endian>
7752 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7753 {
7754   0xe52de004,   // str   lr, [sp, #-4]!
7755   0xe59fe004,   // ldr   lr, [pc, #4]
7756   0xe08fe00e,   // add   lr, pc, lr
7757   0xe5bef008,   // ldr   pc, [lr, #8]!
7758   0x00000000,   // &GOT[0] - .
7759 };
7760
7761 template<bool big_endian>
7762 void
7763 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7764     unsigned char* pov,
7765     Arm_address got_address,
7766     Arm_address plt_address)
7767 {
7768   // Write first PLT entry.  All but the last word are constants.
7769   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7770                                       / sizeof(plt_entry[0]));
7771   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7772     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7773   // Last word in first PLT entry is &GOT[0] - .
7774   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7775                                          got_address - (plt_address + 16));
7776 }
7777
7778 // Subsequent entries in the PLT.
7779
7780 template<bool big_endian>
7781 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7782 {
7783   0xe28fc600,   // add   ip, pc, #0xNN00000
7784   0xe28cca00,   // add   ip, ip, #0xNN000
7785   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7786 };
7787
7788 template<bool big_endian>
7789 void
7790 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7791     unsigned char* pov,
7792     Arm_address got_address,
7793     Arm_address plt_address,
7794     unsigned int got_offset,
7795     unsigned int plt_offset)
7796 {
7797   int32_t offset = ((got_address + got_offset)
7798                     - (plt_address + plt_offset + 8));
7799
7800   gold_assert(offset >= 0 && offset < 0x0fffffff);
7801   uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7802   elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7803   uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7804   elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7805   uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7806   elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7807 }
7808
7809 // Write out the PLT.  This uses the hand-coded instructions above,
7810 // and adjusts them as needed.  This is all specified by the arm ELF
7811 // Processor Supplement.
7812
7813 template<bool big_endian>
7814 void
7815 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7816 {
7817   const off_t offset = this->offset();
7818   const section_size_type oview_size =
7819     convert_to_section_size_type(this->data_size());
7820   unsigned char* const oview = of->get_output_view(offset, oview_size);
7821
7822   const off_t got_file_offset = this->got_plt_->offset();
7823   gold_assert(got_file_offset + this->got_plt_->data_size()
7824               == this->got_irelative_->offset());
7825   const section_size_type got_size =
7826     convert_to_section_size_type(this->got_plt_->data_size()
7827                                  + this->got_irelative_->data_size());
7828   unsigned char* const got_view = of->get_output_view(got_file_offset,
7829                                                       got_size);
7830   unsigned char* pov = oview;
7831
7832   Arm_address plt_address = this->address();
7833   Arm_address got_address = this->got_plt_->address();
7834
7835   // Write first PLT entry.
7836   this->fill_first_plt_entry(pov, got_address, plt_address);
7837   pov += this->first_plt_entry_offset();
7838
7839   unsigned char* got_pov = got_view;
7840
7841   memset(got_pov, 0, 12);
7842   got_pov += 12;
7843
7844   unsigned int plt_offset = this->first_plt_entry_offset();
7845   unsigned int got_offset = 12;
7846   const unsigned int count = this->count_ + this->irelative_count_;
7847   gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
7848   for (unsigned int i = 0;
7849        i < count;
7850        ++i,
7851          pov += this->get_plt_entry_size(),
7852          got_pov += 4,
7853          plt_offset += this->get_plt_entry_size(),
7854          got_offset += 4)
7855     {
7856       // Set and adjust the PLT entry itself.
7857       this->fill_plt_entry(pov, got_address, plt_address,
7858                            got_offset, plt_offset);
7859
7860       Arm_address value;
7861       if (i < this->count_)
7862         {
7863           // For non-irelative got entries, the value is the beginning of plt.
7864           value = plt_address;
7865         }
7866       else
7867         {
7868           // For irelative got entries, the value is the (global/local) symbol
7869           // address.
7870           const IRelative_data& idata =
7871               this->irelative_data_vec_[i - this->count_];
7872           if (idata.symbol_is_global_)
7873             {
7874               // Set the entry in the GOT for irelative symbols.  The content is
7875               // the address of the ifunc, not the address of plt start.
7876               const Sized_symbol<32>* sized_symbol = idata.u_.global;
7877               gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7878               value = sized_symbol->value();
7879             }
7880           else
7881             {
7882               value = idata.u_.local.relobj->local_symbol_value(
7883                   idata.u_.local.index, 0);
7884             }
7885         }
7886       elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
7887     }
7888
7889   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7890   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7891
7892   of->write_output_view(offset, oview_size, oview);
7893   of->write_output_view(got_file_offset, got_size, got_view);
7894 }
7895
7896
7897 // Create a PLT entry for a global symbol.
7898
7899 template<bool big_endian>
7900 void
7901 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7902                                        Symbol* gsym)
7903 {
7904   if (gsym->has_plt_offset())
7905     return;
7906
7907   if (this->plt_ == NULL)
7908     this->make_plt_section(symtab, layout);
7909
7910   this->plt_->add_entry(symtab, layout, gsym);
7911 }
7912
7913
7914 // Create the PLT section.
7915 template<bool big_endian>
7916 void
7917 Target_arm<big_endian>::make_plt_section(
7918   Symbol_table* symtab, Layout* layout)
7919 {
7920   if (this->plt_ == NULL)
7921     {
7922       // Create the GOT section first.
7923       this->got_section(symtab, layout);
7924
7925       // GOT for irelatives is create along with got.plt.
7926       gold_assert(this->got_ != NULL
7927                   && this->got_plt_ != NULL
7928                   && this->got_irelative_ != NULL);
7929       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7930                                        this->got_irelative_);
7931
7932       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7933                                       (elfcpp::SHF_ALLOC
7934                                        | elfcpp::SHF_EXECINSTR),
7935                                       this->plt_, ORDER_PLT, false);
7936       symtab->define_in_output_data("$a", NULL,
7937                                     Symbol_table::PREDEFINED,
7938                                     this->plt_,
7939                                     0, 0, elfcpp::STT_NOTYPE,
7940                                     elfcpp::STB_LOCAL,
7941                                     elfcpp::STV_DEFAULT, 0,
7942                                     false, false);
7943     }
7944 }
7945
7946
7947 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7948
7949 template<bool big_endian>
7950 void
7951 Target_arm<big_endian>::make_local_ifunc_plt_entry(
7952     Symbol_table* symtab, Layout* layout,
7953     Sized_relobj_file<32, big_endian>* relobj,
7954     unsigned int local_sym_index)
7955 {
7956   if (relobj->local_has_plt_offset(local_sym_index))
7957     return;
7958   if (this->plt_ == NULL)
7959     this->make_plt_section(symtab, layout);
7960   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7961                                                               relobj,
7962                                                               local_sym_index);
7963   relobj->set_local_plt_offset(local_sym_index, plt_offset);
7964 }
7965
7966
7967 // Return the number of entries in the PLT.
7968
7969 template<bool big_endian>
7970 unsigned int
7971 Target_arm<big_endian>::plt_entry_count() const
7972 {
7973   if (this->plt_ == NULL)
7974     return 0;
7975   return this->plt_->entry_count();
7976 }
7977
7978 // Return the offset of the first non-reserved PLT entry.
7979
7980 template<bool big_endian>
7981 unsigned int
7982 Target_arm<big_endian>::first_plt_entry_offset() const
7983 {
7984   return this->plt_->first_plt_entry_offset();
7985 }
7986
7987 // Return the size of each PLT entry.
7988
7989 template<bool big_endian>
7990 unsigned int
7991 Target_arm<big_endian>::plt_entry_size() const
7992 {
7993   return this->plt_->get_plt_entry_size();
7994 }
7995
7996 // Get the section to use for TLS_DESC relocations.
7997
7998 template<bool big_endian>
7999 typename Target_arm<big_endian>::Reloc_section*
8000 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8001 {
8002   return this->plt_section()->rel_tls_desc(layout);
8003 }
8004
8005 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8006
8007 template<bool big_endian>
8008 void
8009 Target_arm<big_endian>::define_tls_base_symbol(
8010     Symbol_table* symtab,
8011     Layout* layout)
8012 {
8013   if (this->tls_base_symbol_defined_)
8014     return;
8015
8016   Output_segment* tls_segment = layout->tls_segment();
8017   if (tls_segment != NULL)
8018     {
8019       bool is_exec = parameters->options().output_is_executable();
8020       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8021                                        Symbol_table::PREDEFINED,
8022                                        tls_segment, 0, 0,
8023                                        elfcpp::STT_TLS,
8024                                        elfcpp::STB_LOCAL,
8025                                        elfcpp::STV_HIDDEN, 0,
8026                                        (is_exec
8027                                         ? Symbol::SEGMENT_END
8028                                         : Symbol::SEGMENT_START),
8029                                        true);
8030     }
8031   this->tls_base_symbol_defined_ = true;
8032 }
8033
8034 // Create a GOT entry for the TLS module index.
8035
8036 template<bool big_endian>
8037 unsigned int
8038 Target_arm<big_endian>::got_mod_index_entry(
8039     Symbol_table* symtab,
8040     Layout* layout,
8041     Sized_relobj_file<32, big_endian>* object)
8042 {
8043   if (this->got_mod_index_offset_ == -1U)
8044     {
8045       gold_assert(symtab != NULL && layout != NULL && object != NULL);
8046       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8047       unsigned int got_offset;
8048       if (!parameters->doing_static_link())
8049         {
8050           got_offset = got->add_constant(0);
8051           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8052           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8053                              got_offset);
8054         }
8055       else
8056         {
8057           // We are doing a static link.  Just mark it as belong to module 1,
8058           // the executable.
8059           got_offset = got->add_constant(1);
8060         }
8061
8062       got->add_constant(0);
8063       this->got_mod_index_offset_ = got_offset;
8064     }
8065   return this->got_mod_index_offset_;
8066 }
8067
8068 // Optimize the TLS relocation type based on what we know about the
8069 // symbol.  IS_FINAL is true if the final address of this symbol is
8070 // known at link time.
8071
8072 template<bool big_endian>
8073 tls::Tls_optimization
8074 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8075 {
8076   // FIXME: Currently we do not do any TLS optimization.
8077   return tls::TLSOPT_NONE;
8078 }
8079
8080 // Get the Reference_flags for a particular relocation.
8081
8082 template<bool big_endian>
8083 int
8084 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8085 {
8086   switch (r_type)
8087     {
8088     case elfcpp::R_ARM_NONE:
8089     case elfcpp::R_ARM_V4BX:
8090     case elfcpp::R_ARM_GNU_VTENTRY:
8091     case elfcpp::R_ARM_GNU_VTINHERIT:
8092       // No symbol reference.
8093       return 0;
8094
8095     case elfcpp::R_ARM_ABS32:
8096     case elfcpp::R_ARM_ABS16:
8097     case elfcpp::R_ARM_ABS12:
8098     case elfcpp::R_ARM_THM_ABS5:
8099     case elfcpp::R_ARM_ABS8:
8100     case elfcpp::R_ARM_BASE_ABS:
8101     case elfcpp::R_ARM_MOVW_ABS_NC:
8102     case elfcpp::R_ARM_MOVT_ABS:
8103     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8104     case elfcpp::R_ARM_THM_MOVT_ABS:
8105     case elfcpp::R_ARM_ABS32_NOI:
8106       return Symbol::ABSOLUTE_REF;
8107
8108     case elfcpp::R_ARM_REL32:
8109     case elfcpp::R_ARM_LDR_PC_G0:
8110     case elfcpp::R_ARM_SBREL32:
8111     case elfcpp::R_ARM_THM_PC8:
8112     case elfcpp::R_ARM_BASE_PREL:
8113     case elfcpp::R_ARM_MOVW_PREL_NC:
8114     case elfcpp::R_ARM_MOVT_PREL:
8115     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8116     case elfcpp::R_ARM_THM_MOVT_PREL:
8117     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8118     case elfcpp::R_ARM_THM_PC12:
8119     case elfcpp::R_ARM_REL32_NOI:
8120     case elfcpp::R_ARM_ALU_PC_G0_NC:
8121     case elfcpp::R_ARM_ALU_PC_G0:
8122     case elfcpp::R_ARM_ALU_PC_G1_NC:
8123     case elfcpp::R_ARM_ALU_PC_G1:
8124     case elfcpp::R_ARM_ALU_PC_G2:
8125     case elfcpp::R_ARM_LDR_PC_G1:
8126     case elfcpp::R_ARM_LDR_PC_G2:
8127     case elfcpp::R_ARM_LDRS_PC_G0:
8128     case elfcpp::R_ARM_LDRS_PC_G1:
8129     case elfcpp::R_ARM_LDRS_PC_G2:
8130     case elfcpp::R_ARM_LDC_PC_G0:
8131     case elfcpp::R_ARM_LDC_PC_G1:
8132     case elfcpp::R_ARM_LDC_PC_G2:
8133     case elfcpp::R_ARM_ALU_SB_G0_NC:
8134     case elfcpp::R_ARM_ALU_SB_G0:
8135     case elfcpp::R_ARM_ALU_SB_G1_NC:
8136     case elfcpp::R_ARM_ALU_SB_G1:
8137     case elfcpp::R_ARM_ALU_SB_G2:
8138     case elfcpp::R_ARM_LDR_SB_G0:
8139     case elfcpp::R_ARM_LDR_SB_G1:
8140     case elfcpp::R_ARM_LDR_SB_G2:
8141     case elfcpp::R_ARM_LDRS_SB_G0:
8142     case elfcpp::R_ARM_LDRS_SB_G1:
8143     case elfcpp::R_ARM_LDRS_SB_G2:
8144     case elfcpp::R_ARM_LDC_SB_G0:
8145     case elfcpp::R_ARM_LDC_SB_G1:
8146     case elfcpp::R_ARM_LDC_SB_G2:
8147     case elfcpp::R_ARM_MOVW_BREL_NC:
8148     case elfcpp::R_ARM_MOVT_BREL:
8149     case elfcpp::R_ARM_MOVW_BREL:
8150     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8151     case elfcpp::R_ARM_THM_MOVT_BREL:
8152     case elfcpp::R_ARM_THM_MOVW_BREL:
8153     case elfcpp::R_ARM_GOTOFF32:
8154     case elfcpp::R_ARM_GOTOFF12:
8155     case elfcpp::R_ARM_SBREL31:
8156       return Symbol::RELATIVE_REF;
8157
8158     case elfcpp::R_ARM_PLT32:
8159     case elfcpp::R_ARM_CALL:
8160     case elfcpp::R_ARM_JUMP24:
8161     case elfcpp::R_ARM_THM_CALL:
8162     case elfcpp::R_ARM_THM_JUMP24:
8163     case elfcpp::R_ARM_THM_JUMP19:
8164     case elfcpp::R_ARM_THM_JUMP6:
8165     case elfcpp::R_ARM_THM_JUMP11:
8166     case elfcpp::R_ARM_THM_JUMP8:
8167     // R_ARM_PREL31 is not used to relocate call/jump instructions but
8168     // in unwind tables. It may point to functions via PLTs.
8169     // So we treat it like call/jump relocations above.
8170     case elfcpp::R_ARM_PREL31:
8171       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8172
8173     case elfcpp::R_ARM_GOT_BREL:
8174     case elfcpp::R_ARM_GOT_ABS:
8175     case elfcpp::R_ARM_GOT_PREL:
8176       // Absolute in GOT.
8177       return Symbol::ABSOLUTE_REF;
8178
8179     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8180     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8181     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8182     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8183     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8184       return Symbol::TLS_REF;
8185
8186     case elfcpp::R_ARM_TARGET1:
8187     case elfcpp::R_ARM_TARGET2:
8188     case elfcpp::R_ARM_COPY:
8189     case elfcpp::R_ARM_GLOB_DAT:
8190     case elfcpp::R_ARM_JUMP_SLOT:
8191     case elfcpp::R_ARM_RELATIVE:
8192     case elfcpp::R_ARM_PC24:
8193     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8194     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8195     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8196     default:
8197       // Not expected.  We will give an error later.
8198       return 0;
8199     }
8200 }
8201
8202 // Report an unsupported relocation against a local symbol.
8203
8204 template<bool big_endian>
8205 void
8206 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8207     Sized_relobj_file<32, big_endian>* object,
8208     unsigned int r_type)
8209 {
8210   gold_error(_("%s: unsupported reloc %u against local symbol"),
8211              object->name().c_str(), r_type);
8212 }
8213
8214 // We are about to emit a dynamic relocation of type R_TYPE.  If the
8215 // dynamic linker does not support it, issue an error.  The GNU linker
8216 // only issues a non-PIC error for an allocated read-only section.
8217 // Here we know the section is allocated, but we don't know that it is
8218 // read-only.  But we check for all the relocation types which the
8219 // glibc dynamic linker supports, so it seems appropriate to issue an
8220 // error even if the section is not read-only.
8221
8222 template<bool big_endian>
8223 void
8224 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8225                                             unsigned int r_type)
8226 {
8227   switch (r_type)
8228     {
8229     // These are the relocation types supported by glibc for ARM.
8230     case elfcpp::R_ARM_RELATIVE:
8231     case elfcpp::R_ARM_COPY:
8232     case elfcpp::R_ARM_GLOB_DAT:
8233     case elfcpp::R_ARM_JUMP_SLOT:
8234     case elfcpp::R_ARM_ABS32:
8235     case elfcpp::R_ARM_ABS32_NOI:
8236     case elfcpp::R_ARM_IRELATIVE:
8237     case elfcpp::R_ARM_PC24:
8238     // FIXME: The following 3 types are not supported by Android's dynamic
8239     // linker.
8240     case elfcpp::R_ARM_TLS_DTPMOD32:
8241     case elfcpp::R_ARM_TLS_DTPOFF32:
8242     case elfcpp::R_ARM_TLS_TPOFF32:
8243       return;
8244
8245     default:
8246       {
8247         // This prevents us from issuing more than one error per reloc
8248         // section.  But we can still wind up issuing more than one
8249         // error per object file.
8250         if (this->issued_non_pic_error_)
8251           return;
8252         const Arm_reloc_property* reloc_property =
8253           arm_reloc_property_table->get_reloc_property(r_type);
8254         gold_assert(reloc_property != NULL);
8255         object->error(_("requires unsupported dynamic reloc %s; "
8256                       "recompile with -fPIC"),
8257                       reloc_property->name().c_str());
8258         this->issued_non_pic_error_ = true;
8259         return;
8260       }
8261
8262     case elfcpp::R_ARM_NONE:
8263       gold_unreachable();
8264     }
8265 }
8266
8267
8268 // Return whether we need to make a PLT entry for a relocation of the
8269 // given type against a STT_GNU_IFUNC symbol.
8270
8271 template<bool big_endian>
8272 bool
8273 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8274     Sized_relobj_file<32, big_endian>* object,
8275     unsigned int r_type)
8276 {
8277   int flags = Scan::get_reference_flags(r_type);
8278   if (flags & Symbol::TLS_REF)
8279     {
8280       gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8281                  object->name().c_str(), r_type);
8282       return false;
8283     }
8284   return flags != 0;
8285 }
8286
8287
8288 // Scan a relocation for a local symbol.
8289 // FIXME: This only handles a subset of relocation types used by Android
8290 // on ARM v5te devices.
8291
8292 template<bool big_endian>
8293 inline void
8294 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8295                                     Layout* layout,
8296                                     Target_arm* target,
8297                                     Sized_relobj_file<32, big_endian>* object,
8298                                     unsigned int data_shndx,
8299                                     Output_section* output_section,
8300                                     const elfcpp::Rel<32, big_endian>& reloc,
8301                                     unsigned int r_type,
8302                                     const elfcpp::Sym<32, big_endian>& lsym,
8303                                     bool is_discarded)
8304 {
8305   if (is_discarded)
8306     return;
8307
8308   r_type = get_real_reloc_type(r_type);
8309
8310   // A local STT_GNU_IFUNC symbol may require a PLT entry.
8311   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8312   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8313     {
8314       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8315       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8316     }
8317
8318   switch (r_type)
8319     {
8320     case elfcpp::R_ARM_NONE:
8321     case elfcpp::R_ARM_V4BX:
8322     case elfcpp::R_ARM_GNU_VTENTRY:
8323     case elfcpp::R_ARM_GNU_VTINHERIT:
8324       break;
8325
8326     case elfcpp::R_ARM_ABS32:
8327     case elfcpp::R_ARM_ABS32_NOI:
8328       // If building a shared library (or a position-independent
8329       // executable), we need to create a dynamic relocation for
8330       // this location. The relocation applied at link time will
8331       // apply the link-time value, so we flag the location with
8332       // an R_ARM_RELATIVE relocation so the dynamic loader can
8333       // relocate it easily.
8334       if (parameters->options().output_is_position_independent())
8335         {
8336           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8337           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8338           // If we are to add more other reloc types than R_ARM_ABS32,
8339           // we need to add check_non_pic(object, r_type) here.
8340           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8341                                       output_section, data_shndx,
8342                                       reloc.get_r_offset(), is_ifunc);
8343         }
8344       break;
8345
8346     case elfcpp::R_ARM_ABS16:
8347     case elfcpp::R_ARM_ABS12:
8348     case elfcpp::R_ARM_THM_ABS5:
8349     case elfcpp::R_ARM_ABS8:
8350     case elfcpp::R_ARM_BASE_ABS:
8351     case elfcpp::R_ARM_MOVW_ABS_NC:
8352     case elfcpp::R_ARM_MOVT_ABS:
8353     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8354     case elfcpp::R_ARM_THM_MOVT_ABS:
8355       // If building a shared library (or a position-independent
8356       // executable), we need to create a dynamic relocation for
8357       // this location. Because the addend needs to remain in the
8358       // data section, we need to be careful not to apply this
8359       // relocation statically.
8360       if (parameters->options().output_is_position_independent())
8361         {
8362           check_non_pic(object, r_type);
8363           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8364           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8365           if (lsym.get_st_type() != elfcpp::STT_SECTION)
8366             rel_dyn->add_local(object, r_sym, r_type, output_section,
8367                                data_shndx, reloc.get_r_offset());
8368           else
8369             {
8370               gold_assert(lsym.get_st_value() == 0);
8371               unsigned int shndx = lsym.get_st_shndx();
8372               bool is_ordinary;
8373               shndx = object->adjust_sym_shndx(r_sym, shndx,
8374                                                &is_ordinary);
8375               if (!is_ordinary)
8376                 object->error(_("section symbol %u has bad shndx %u"),
8377                               r_sym, shndx);
8378               else
8379                 rel_dyn->add_local_section(object, shndx,
8380                                            r_type, output_section,
8381                                            data_shndx, reloc.get_r_offset());
8382             }
8383         }
8384       break;
8385
8386     case elfcpp::R_ARM_REL32:
8387     case elfcpp::R_ARM_LDR_PC_G0:
8388     case elfcpp::R_ARM_SBREL32:
8389     case elfcpp::R_ARM_THM_CALL:
8390     case elfcpp::R_ARM_THM_PC8:
8391     case elfcpp::R_ARM_BASE_PREL:
8392     case elfcpp::R_ARM_PLT32:
8393     case elfcpp::R_ARM_CALL:
8394     case elfcpp::R_ARM_JUMP24:
8395     case elfcpp::R_ARM_THM_JUMP24:
8396     case elfcpp::R_ARM_SBREL31:
8397     case elfcpp::R_ARM_PREL31:
8398     case elfcpp::R_ARM_MOVW_PREL_NC:
8399     case elfcpp::R_ARM_MOVT_PREL:
8400     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8401     case elfcpp::R_ARM_THM_MOVT_PREL:
8402     case elfcpp::R_ARM_THM_JUMP19:
8403     case elfcpp::R_ARM_THM_JUMP6:
8404     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8405     case elfcpp::R_ARM_THM_PC12:
8406     case elfcpp::R_ARM_REL32_NOI:
8407     case elfcpp::R_ARM_ALU_PC_G0_NC:
8408     case elfcpp::R_ARM_ALU_PC_G0:
8409     case elfcpp::R_ARM_ALU_PC_G1_NC:
8410     case elfcpp::R_ARM_ALU_PC_G1:
8411     case elfcpp::R_ARM_ALU_PC_G2:
8412     case elfcpp::R_ARM_LDR_PC_G1:
8413     case elfcpp::R_ARM_LDR_PC_G2:
8414     case elfcpp::R_ARM_LDRS_PC_G0:
8415     case elfcpp::R_ARM_LDRS_PC_G1:
8416     case elfcpp::R_ARM_LDRS_PC_G2:
8417     case elfcpp::R_ARM_LDC_PC_G0:
8418     case elfcpp::R_ARM_LDC_PC_G1:
8419     case elfcpp::R_ARM_LDC_PC_G2:
8420     case elfcpp::R_ARM_ALU_SB_G0_NC:
8421     case elfcpp::R_ARM_ALU_SB_G0:
8422     case elfcpp::R_ARM_ALU_SB_G1_NC:
8423     case elfcpp::R_ARM_ALU_SB_G1:
8424     case elfcpp::R_ARM_ALU_SB_G2:
8425     case elfcpp::R_ARM_LDR_SB_G0:
8426     case elfcpp::R_ARM_LDR_SB_G1:
8427     case elfcpp::R_ARM_LDR_SB_G2:
8428     case elfcpp::R_ARM_LDRS_SB_G0:
8429     case elfcpp::R_ARM_LDRS_SB_G1:
8430     case elfcpp::R_ARM_LDRS_SB_G2:
8431     case elfcpp::R_ARM_LDC_SB_G0:
8432     case elfcpp::R_ARM_LDC_SB_G1:
8433     case elfcpp::R_ARM_LDC_SB_G2:
8434     case elfcpp::R_ARM_MOVW_BREL_NC:
8435     case elfcpp::R_ARM_MOVT_BREL:
8436     case elfcpp::R_ARM_MOVW_BREL:
8437     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8438     case elfcpp::R_ARM_THM_MOVT_BREL:
8439     case elfcpp::R_ARM_THM_MOVW_BREL:
8440     case elfcpp::R_ARM_THM_JUMP11:
8441     case elfcpp::R_ARM_THM_JUMP8:
8442       // We don't need to do anything for a relative addressing relocation
8443       // against a local symbol if it does not reference the GOT.
8444       break;
8445
8446     case elfcpp::R_ARM_GOTOFF32:
8447     case elfcpp::R_ARM_GOTOFF12:
8448       // We need a GOT section:
8449       target->got_section(symtab, layout);
8450       break;
8451
8452     case elfcpp::R_ARM_GOT_BREL:
8453     case elfcpp::R_ARM_GOT_PREL:
8454       {
8455         // The symbol requires a GOT entry.
8456         Arm_output_data_got<big_endian>* got =
8457           target->got_section(symtab, layout);
8458         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8459         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8460           {
8461             // If we are generating a shared object, we need to add a
8462             // dynamic RELATIVE relocation for this symbol's GOT entry.
8463             if (parameters->options().output_is_position_independent())
8464               {
8465                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8466                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8467                 rel_dyn->add_local_relative(
8468                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8469                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8470               }
8471           }
8472       }
8473       break;
8474
8475     case elfcpp::R_ARM_TARGET1:
8476     case elfcpp::R_ARM_TARGET2:
8477       // This should have been mapped to another type already.
8478       // Fall through.
8479     case elfcpp::R_ARM_COPY:
8480     case elfcpp::R_ARM_GLOB_DAT:
8481     case elfcpp::R_ARM_JUMP_SLOT:
8482     case elfcpp::R_ARM_RELATIVE:
8483       // These are relocations which should only be seen by the
8484       // dynamic linker, and should never be seen here.
8485       gold_error(_("%s: unexpected reloc %u in object file"),
8486                  object->name().c_str(), r_type);
8487       break;
8488
8489
8490       // These are initial TLS relocs, which are expected when
8491       // linking.
8492     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8493     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8494     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8495     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8496     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8497       {
8498         bool output_is_shared = parameters->options().shared();
8499         const tls::Tls_optimization optimized_type
8500             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8501                                                          r_type);
8502         switch (r_type)
8503           {
8504           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8505             if (optimized_type == tls::TLSOPT_NONE)
8506               {
8507                 // Create a pair of GOT entries for the module index and
8508                 // dtv-relative offset.
8509                 Arm_output_data_got<big_endian>* got
8510                     = target->got_section(symtab, layout);
8511                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8512                 unsigned int shndx = lsym.get_st_shndx();
8513                 bool is_ordinary;
8514                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8515                 if (!is_ordinary)
8516                   {
8517                     object->error(_("local symbol %u has bad shndx %u"),
8518                                   r_sym, shndx);
8519                     break;
8520                   }
8521
8522                 if (!parameters->doing_static_link())
8523                   got->add_local_pair_with_rel(object, r_sym, shndx,
8524                                                GOT_TYPE_TLS_PAIR,
8525                                                target->rel_dyn_section(layout),
8526                                                elfcpp::R_ARM_TLS_DTPMOD32);
8527                 else
8528                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8529                                                       object, r_sym);
8530               }
8531             else
8532               // FIXME: TLS optimization not supported yet.
8533               gold_unreachable();
8534             break;
8535
8536           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8537             if (optimized_type == tls::TLSOPT_NONE)
8538               {
8539                 // Create a GOT entry for the module index.
8540                 target->got_mod_index_entry(symtab, layout, object);
8541               }
8542             else
8543               // FIXME: TLS optimization not supported yet.
8544               gold_unreachable();
8545             break;
8546
8547           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8548             break;
8549
8550           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8551             layout->set_has_static_tls();
8552             if (optimized_type == tls::TLSOPT_NONE)
8553               {
8554                 // Create a GOT entry for the tp-relative offset.
8555                 Arm_output_data_got<big_endian>* got
8556                   = target->got_section(symtab, layout);
8557                 unsigned int r_sym =
8558                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
8559                 if (!parameters->doing_static_link())
8560                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8561                                             target->rel_dyn_section(layout),
8562                                             elfcpp::R_ARM_TLS_TPOFF32);
8563                 else if (!object->local_has_got_offset(r_sym,
8564                                                        GOT_TYPE_TLS_OFFSET))
8565                   {
8566                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8567                     unsigned int got_offset =
8568                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8569                     got->add_static_reloc(got_offset,
8570                                           elfcpp::R_ARM_TLS_TPOFF32, object,
8571                                           r_sym);
8572                   }
8573               }
8574             else
8575               // FIXME: TLS optimization not supported yet.
8576               gold_unreachable();
8577             break;
8578
8579           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8580             layout->set_has_static_tls();
8581             if (output_is_shared)
8582               {
8583                 // We need to create a dynamic relocation.
8584                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8585                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8586                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8587                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8588                                    output_section, data_shndx,
8589                                    reloc.get_r_offset());
8590               }
8591             break;
8592
8593           default:
8594             gold_unreachable();
8595           }
8596       }
8597       break;
8598
8599     case elfcpp::R_ARM_PC24:
8600     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8601     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8602     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8603     default:
8604       unsupported_reloc_local(object, r_type);
8605       break;
8606     }
8607 }
8608
8609 // Report an unsupported relocation against a global symbol.
8610
8611 template<bool big_endian>
8612 void
8613 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8614     Sized_relobj_file<32, big_endian>* object,
8615     unsigned int r_type,
8616     Symbol* gsym)
8617 {
8618   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8619              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8620 }
8621
8622 template<bool big_endian>
8623 inline bool
8624 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8625     unsigned int r_type)
8626 {
8627   switch (r_type)
8628     {
8629     case elfcpp::R_ARM_PC24:
8630     case elfcpp::R_ARM_THM_CALL:
8631     case elfcpp::R_ARM_PLT32:
8632     case elfcpp::R_ARM_CALL:
8633     case elfcpp::R_ARM_JUMP24:
8634     case elfcpp::R_ARM_THM_JUMP24:
8635     case elfcpp::R_ARM_SBREL31:
8636     case elfcpp::R_ARM_PREL31:
8637     case elfcpp::R_ARM_THM_JUMP19:
8638     case elfcpp::R_ARM_THM_JUMP6:
8639     case elfcpp::R_ARM_THM_JUMP11:
8640     case elfcpp::R_ARM_THM_JUMP8:
8641       // All the relocations above are branches except SBREL31 and PREL31.
8642       return false;
8643
8644     default:
8645       // Be conservative and assume this is a function pointer.
8646       return true;
8647     }
8648 }
8649
8650 template<bool big_endian>
8651 inline bool
8652 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8653   Symbol_table*,
8654   Layout*,
8655   Target_arm<big_endian>* target,
8656   Sized_relobj_file<32, big_endian>*,
8657   unsigned int,
8658   Output_section*,
8659   const elfcpp::Rel<32, big_endian>&,
8660   unsigned int r_type,
8661   const elfcpp::Sym<32, big_endian>&)
8662 {
8663   r_type = target->get_real_reloc_type(r_type);
8664   return possible_function_pointer_reloc(r_type);
8665 }
8666
8667 template<bool big_endian>
8668 inline bool
8669 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8670   Symbol_table*,
8671   Layout*,
8672   Target_arm<big_endian>* target,
8673   Sized_relobj_file<32, big_endian>*,
8674   unsigned int,
8675   Output_section*,
8676   const elfcpp::Rel<32, big_endian>&,
8677   unsigned int r_type,
8678   Symbol* gsym)
8679 {
8680   // GOT is not a function.
8681   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8682     return false;
8683
8684   r_type = target->get_real_reloc_type(r_type);
8685   return possible_function_pointer_reloc(r_type);
8686 }
8687
8688 // Scan a relocation for a global symbol.
8689
8690 template<bool big_endian>
8691 inline void
8692 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8693                                      Layout* layout,
8694                                      Target_arm* target,
8695                                      Sized_relobj_file<32, big_endian>* object,
8696                                      unsigned int data_shndx,
8697                                      Output_section* output_section,
8698                                      const elfcpp::Rel<32, big_endian>& reloc,
8699                                      unsigned int r_type,
8700                                      Symbol* gsym)
8701 {
8702   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8703   // section.  We check here to avoid creating a dynamic reloc against
8704   // _GLOBAL_OFFSET_TABLE_.
8705   if (!target->has_got_section()
8706       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8707     target->got_section(symtab, layout);
8708
8709   // A STT_GNU_IFUNC symbol may require a PLT entry.
8710   if (gsym->type() == elfcpp::STT_GNU_IFUNC
8711       && this->reloc_needs_plt_for_ifunc(object, r_type))
8712     target->make_plt_entry(symtab, layout, gsym);
8713
8714   r_type = get_real_reloc_type(r_type);
8715   switch (r_type)
8716     {
8717     case elfcpp::R_ARM_NONE:
8718     case elfcpp::R_ARM_V4BX:
8719     case elfcpp::R_ARM_GNU_VTENTRY:
8720     case elfcpp::R_ARM_GNU_VTINHERIT:
8721       break;
8722
8723     case elfcpp::R_ARM_ABS32:
8724     case elfcpp::R_ARM_ABS16:
8725     case elfcpp::R_ARM_ABS12:
8726     case elfcpp::R_ARM_THM_ABS5:
8727     case elfcpp::R_ARM_ABS8:
8728     case elfcpp::R_ARM_BASE_ABS:
8729     case elfcpp::R_ARM_MOVW_ABS_NC:
8730     case elfcpp::R_ARM_MOVT_ABS:
8731     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8732     case elfcpp::R_ARM_THM_MOVT_ABS:
8733     case elfcpp::R_ARM_ABS32_NOI:
8734       // Absolute addressing relocations.
8735       {
8736         // Make a PLT entry if necessary.
8737         if (this->symbol_needs_plt_entry(gsym))
8738           {
8739             target->make_plt_entry(symtab, layout, gsym);
8740             // Since this is not a PC-relative relocation, we may be
8741             // taking the address of a function. In that case we need to
8742             // set the entry in the dynamic symbol table to the address of
8743             // the PLT entry.
8744             if (gsym->is_from_dynobj() && !parameters->options().shared())
8745               gsym->set_needs_dynsym_value();
8746           }
8747         // Make a dynamic relocation if necessary.
8748         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8749           {
8750             if (!parameters->options().output_is_position_independent()
8751                 && gsym->may_need_copy_reloc())
8752               {
8753                 target->copy_reloc(symtab, layout, object,
8754                                    data_shndx, output_section, gsym, reloc);
8755               }
8756             else if ((r_type == elfcpp::R_ARM_ABS32
8757                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8758                      && gsym->type() == elfcpp::STT_GNU_IFUNC
8759                      && gsym->can_use_relative_reloc(false)
8760                      && !gsym->is_from_dynobj()
8761                      && !gsym->is_undefined()
8762                      && !gsym->is_preemptible())
8763               {
8764                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8765                 // symbol. This makes a function address in a PIE executable
8766                 // match the address in a shared library that it links against.
8767                 Reloc_section* rel_irelative =
8768                     target->rel_irelative_section(layout);
8769                 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8770                 rel_irelative->add_symbolless_global_addend(
8771                     gsym, r_type, output_section, object,
8772                     data_shndx, reloc.get_r_offset());
8773               }
8774             else if ((r_type == elfcpp::R_ARM_ABS32
8775                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8776                      && gsym->can_use_relative_reloc(false))
8777               {
8778                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8779                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8780                                              output_section, object,
8781                                              data_shndx, reloc.get_r_offset());
8782               }
8783             else
8784               {
8785                 check_non_pic(object, r_type);
8786                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8787                 rel_dyn->add_global(gsym, r_type, output_section, object,
8788                                     data_shndx, reloc.get_r_offset());
8789               }
8790           }
8791       }
8792       break;
8793
8794     case elfcpp::R_ARM_GOTOFF32:
8795     case elfcpp::R_ARM_GOTOFF12:
8796       // We need a GOT section.
8797       target->got_section(symtab, layout);
8798       break;
8799
8800     case elfcpp::R_ARM_REL32:
8801     case elfcpp::R_ARM_LDR_PC_G0:
8802     case elfcpp::R_ARM_SBREL32:
8803     case elfcpp::R_ARM_THM_PC8:
8804     case elfcpp::R_ARM_BASE_PREL:
8805     case elfcpp::R_ARM_MOVW_PREL_NC:
8806     case elfcpp::R_ARM_MOVT_PREL:
8807     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8808     case elfcpp::R_ARM_THM_MOVT_PREL:
8809     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8810     case elfcpp::R_ARM_THM_PC12:
8811     case elfcpp::R_ARM_REL32_NOI:
8812     case elfcpp::R_ARM_ALU_PC_G0_NC:
8813     case elfcpp::R_ARM_ALU_PC_G0:
8814     case elfcpp::R_ARM_ALU_PC_G1_NC:
8815     case elfcpp::R_ARM_ALU_PC_G1:
8816     case elfcpp::R_ARM_ALU_PC_G2:
8817     case elfcpp::R_ARM_LDR_PC_G1:
8818     case elfcpp::R_ARM_LDR_PC_G2:
8819     case elfcpp::R_ARM_LDRS_PC_G0:
8820     case elfcpp::R_ARM_LDRS_PC_G1:
8821     case elfcpp::R_ARM_LDRS_PC_G2:
8822     case elfcpp::R_ARM_LDC_PC_G0:
8823     case elfcpp::R_ARM_LDC_PC_G1:
8824     case elfcpp::R_ARM_LDC_PC_G2:
8825     case elfcpp::R_ARM_ALU_SB_G0_NC:
8826     case elfcpp::R_ARM_ALU_SB_G0:
8827     case elfcpp::R_ARM_ALU_SB_G1_NC:
8828     case elfcpp::R_ARM_ALU_SB_G1:
8829     case elfcpp::R_ARM_ALU_SB_G2:
8830     case elfcpp::R_ARM_LDR_SB_G0:
8831     case elfcpp::R_ARM_LDR_SB_G1:
8832     case elfcpp::R_ARM_LDR_SB_G2:
8833     case elfcpp::R_ARM_LDRS_SB_G0:
8834     case elfcpp::R_ARM_LDRS_SB_G1:
8835     case elfcpp::R_ARM_LDRS_SB_G2:
8836     case elfcpp::R_ARM_LDC_SB_G0:
8837     case elfcpp::R_ARM_LDC_SB_G1:
8838     case elfcpp::R_ARM_LDC_SB_G2:
8839     case elfcpp::R_ARM_MOVW_BREL_NC:
8840     case elfcpp::R_ARM_MOVT_BREL:
8841     case elfcpp::R_ARM_MOVW_BREL:
8842     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8843     case elfcpp::R_ARM_THM_MOVT_BREL:
8844     case elfcpp::R_ARM_THM_MOVW_BREL:
8845       // Relative addressing relocations.
8846       {
8847         // Make a dynamic relocation if necessary.
8848         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8849           {
8850             if (parameters->options().output_is_executable()
8851                 && target->may_need_copy_reloc(gsym))
8852               {
8853                 target->copy_reloc(symtab, layout, object,
8854                                    data_shndx, output_section, gsym, reloc);
8855               }
8856             else
8857               {
8858                 check_non_pic(object, r_type);
8859                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8860                 rel_dyn->add_global(gsym, r_type, output_section, object,
8861                                     data_shndx, reloc.get_r_offset());
8862               }
8863           }
8864       }
8865       break;
8866
8867     case elfcpp::R_ARM_THM_CALL:
8868     case elfcpp::R_ARM_PLT32:
8869     case elfcpp::R_ARM_CALL:
8870     case elfcpp::R_ARM_JUMP24:
8871     case elfcpp::R_ARM_THM_JUMP24:
8872     case elfcpp::R_ARM_SBREL31:
8873     case elfcpp::R_ARM_PREL31:
8874     case elfcpp::R_ARM_THM_JUMP19:
8875     case elfcpp::R_ARM_THM_JUMP6:
8876     case elfcpp::R_ARM_THM_JUMP11:
8877     case elfcpp::R_ARM_THM_JUMP8:
8878       // All the relocation above are branches except for the PREL31 ones.
8879       // A PREL31 relocation can point to a personality function in a shared
8880       // library.  In that case we want to use a PLT because we want to
8881       // call the personality routine and the dynamic linkers we care about
8882       // do not support dynamic PREL31 relocations. An REL31 relocation may
8883       // point to a function whose unwinding behaviour is being described but
8884       // we will not mistakenly generate a PLT for that because we should use
8885       // a local section symbol.
8886
8887       // If the symbol is fully resolved, this is just a relative
8888       // local reloc.  Otherwise we need a PLT entry.
8889       if (gsym->final_value_is_known())
8890         break;
8891       // If building a shared library, we can also skip the PLT entry
8892       // if the symbol is defined in the output file and is protected
8893       // or hidden.
8894       if (gsym->is_defined()
8895           && !gsym->is_from_dynobj()
8896           && !gsym->is_preemptible())
8897         break;
8898       target->make_plt_entry(symtab, layout, gsym);
8899       break;
8900
8901     case elfcpp::R_ARM_GOT_BREL:
8902     case elfcpp::R_ARM_GOT_ABS:
8903     case elfcpp::R_ARM_GOT_PREL:
8904       {
8905         // The symbol requires a GOT entry.
8906         Arm_output_data_got<big_endian>* got =
8907           target->got_section(symtab, layout);
8908         if (gsym->final_value_is_known())
8909           {
8910             // For a STT_GNU_IFUNC symbol we want the PLT address.
8911             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8912               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8913             else
8914               got->add_global(gsym, GOT_TYPE_STANDARD);
8915           }
8916         else
8917           {
8918             // If this symbol is not fully resolved, we need to add a
8919             // GOT entry with a dynamic relocation.
8920             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8921             if (gsym->is_from_dynobj()
8922                 || gsym->is_undefined()
8923                 || gsym->is_preemptible()
8924                 || (gsym->visibility() == elfcpp::STV_PROTECTED
8925                     && parameters->options().shared())
8926                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8927                     && parameters->options().output_is_position_independent()))
8928               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8929                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8930             else
8931               {
8932                 // For a STT_GNU_IFUNC symbol we want to write the PLT
8933                 // offset into the GOT, so that function pointer
8934                 // comparisons work correctly.
8935                 bool is_new;
8936                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8937                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8938                 else
8939                   {
8940                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8941                     // Tell the dynamic linker to use the PLT address
8942                     // when resolving relocations.
8943                     if (gsym->is_from_dynobj()
8944                         && !parameters->options().shared())
8945                       gsym->set_needs_dynsym_value();
8946                   }
8947                 if (is_new)
8948                   rel_dyn->add_global_relative(
8949                       gsym, elfcpp::R_ARM_RELATIVE, got,
8950                       gsym->got_offset(GOT_TYPE_STANDARD));
8951               }
8952           }
8953       }
8954       break;
8955
8956     case elfcpp::R_ARM_TARGET1:
8957     case elfcpp::R_ARM_TARGET2:
8958       // These should have been mapped to other types already.
8959       // Fall through.
8960     case elfcpp::R_ARM_COPY:
8961     case elfcpp::R_ARM_GLOB_DAT:
8962     case elfcpp::R_ARM_JUMP_SLOT:
8963     case elfcpp::R_ARM_RELATIVE:
8964       // These are relocations which should only be seen by the
8965       // dynamic linker, and should never be seen here.
8966       gold_error(_("%s: unexpected reloc %u in object file"),
8967                  object->name().c_str(), r_type);
8968       break;
8969
8970       // These are initial tls relocs, which are expected when
8971       // linking.
8972     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8973     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8974     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8975     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8976     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8977       {
8978         const bool is_final = gsym->final_value_is_known();
8979         const tls::Tls_optimization optimized_type
8980             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8981         switch (r_type)
8982           {
8983           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8984             if (optimized_type == tls::TLSOPT_NONE)
8985               {
8986                 // Create a pair of GOT entries for the module index and
8987                 // dtv-relative offset.
8988                 Arm_output_data_got<big_endian>* got
8989                     = target->got_section(symtab, layout);
8990                 if (!parameters->doing_static_link())
8991                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8992                                                 target->rel_dyn_section(layout),
8993                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8994                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8995                 else
8996                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8997               }
8998             else
8999               // FIXME: TLS optimization not supported yet.
9000               gold_unreachable();
9001             break;
9002
9003           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
9004             if (optimized_type == tls::TLSOPT_NONE)
9005               {
9006                 // Create a GOT entry for the module index.
9007                 target->got_mod_index_entry(symtab, layout, object);
9008               }
9009             else
9010               // FIXME: TLS optimization not supported yet.
9011               gold_unreachable();
9012             break;
9013
9014           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
9015             break;
9016
9017           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
9018             layout->set_has_static_tls();
9019             if (optimized_type == tls::TLSOPT_NONE)
9020               {
9021                 // Create a GOT entry for the tp-relative offset.
9022                 Arm_output_data_got<big_endian>* got
9023                   = target->got_section(symtab, layout);
9024                 if (!parameters->doing_static_link())
9025                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9026                                            target->rel_dyn_section(layout),
9027                                            elfcpp::R_ARM_TLS_TPOFF32);
9028                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9029                   {
9030                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9031                     unsigned int got_offset =
9032                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9033                     got->add_static_reloc(got_offset,
9034                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
9035                   }
9036               }
9037             else
9038               // FIXME: TLS optimization not supported yet.
9039               gold_unreachable();
9040             break;
9041
9042           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
9043             layout->set_has_static_tls();
9044             if (parameters->options().shared())
9045               {
9046                 // We need to create a dynamic relocation.
9047                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9048                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9049                                     output_section, object,
9050                                     data_shndx, reloc.get_r_offset());
9051               }
9052             break;
9053
9054           default:
9055             gold_unreachable();
9056           }
9057       }
9058       break;
9059
9060     case elfcpp::R_ARM_PC24:
9061     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9062     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9063     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9064     default:
9065       unsupported_reloc_global(object, r_type, gsym);
9066       break;
9067     }
9068 }
9069
9070 // Process relocations for gc.
9071
9072 template<bool big_endian>
9073 void
9074 Target_arm<big_endian>::gc_process_relocs(
9075     Symbol_table* symtab,
9076     Layout* layout,
9077     Sized_relobj_file<32, big_endian>* object,
9078     unsigned int data_shndx,
9079     unsigned int,
9080     const unsigned char* prelocs,
9081     size_t reloc_count,
9082     Output_section* output_section,
9083     bool needs_special_offset_handling,
9084     size_t local_symbol_count,
9085     const unsigned char* plocal_symbols)
9086 {
9087   typedef Target_arm<big_endian> Arm;
9088   typedef typename Target_arm<big_endian>::Scan Scan;
9089
9090   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
9091                           typename Target_arm::Relocatable_size_for_reloc>(
9092     symtab,
9093     layout,
9094     this,
9095     object,
9096     data_shndx,
9097     prelocs,
9098     reloc_count,
9099     output_section,
9100     needs_special_offset_handling,
9101     local_symbol_count,
9102     plocal_symbols);
9103 }
9104
9105 // Scan relocations for a section.
9106
9107 template<bool big_endian>
9108 void
9109 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9110                                     Layout* layout,
9111                                     Sized_relobj_file<32, big_endian>* object,
9112                                     unsigned int data_shndx,
9113                                     unsigned int sh_type,
9114                                     const unsigned char* prelocs,
9115                                     size_t reloc_count,
9116                                     Output_section* output_section,
9117                                     bool needs_special_offset_handling,
9118                                     size_t local_symbol_count,
9119                                     const unsigned char* plocal_symbols)
9120 {
9121   typedef typename Target_arm<big_endian>::Scan Scan;
9122   if (sh_type == elfcpp::SHT_RELA)
9123     {
9124       gold_error(_("%s: unsupported RELA reloc section"),
9125                  object->name().c_str());
9126       return;
9127     }
9128
9129   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
9130     symtab,
9131     layout,
9132     this,
9133     object,
9134     data_shndx,
9135     prelocs,
9136     reloc_count,
9137     output_section,
9138     needs_special_offset_handling,
9139     local_symbol_count,
9140     plocal_symbols);
9141 }
9142
9143 // Finalize the sections.
9144
9145 template<bool big_endian>
9146 void
9147 Target_arm<big_endian>::do_finalize_sections(
9148     Layout* layout,
9149     const Input_objects* input_objects,
9150     Symbol_table*)
9151 {
9152   bool merged_any_attributes = false;
9153   // Merge processor-specific flags.
9154   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9155        p != input_objects->relobj_end();
9156        ++p)
9157     {
9158       Arm_relobj<big_endian>* arm_relobj =
9159         Arm_relobj<big_endian>::as_arm_relobj(*p);
9160       if (arm_relobj->merge_flags_and_attributes())
9161         {
9162           this->merge_processor_specific_flags(
9163               arm_relobj->name(),
9164               arm_relobj->processor_specific_flags());
9165           this->merge_object_attributes(arm_relobj->name().c_str(),
9166                                         arm_relobj->attributes_section_data());
9167           merged_any_attributes = true;
9168         }
9169     }
9170
9171   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9172        p != input_objects->dynobj_end();
9173        ++p)
9174     {
9175       Arm_dynobj<big_endian>* arm_dynobj =
9176         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9177       this->merge_processor_specific_flags(
9178           arm_dynobj->name(),
9179           arm_dynobj->processor_specific_flags());
9180       this->merge_object_attributes(arm_dynobj->name().c_str(),
9181                                     arm_dynobj->attributes_section_data());
9182       merged_any_attributes = true;
9183     }
9184
9185   // Create an empty uninitialized attribute section if we still don't have it
9186   // at this moment.  This happens if there is no attributes sections in all
9187   // inputs.
9188   if (this->attributes_section_data_ == NULL)
9189     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9190
9191   const Object_attribute* cpu_arch_attr =
9192     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9193   // Check if we need to use Cortex-A8 workaround.
9194   if (parameters->options().user_set_fix_cortex_a8())
9195     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9196   else
9197     {
9198       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9199       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9200       // profile.
9201       const Object_attribute* cpu_arch_profile_attr =
9202         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9203       this->fix_cortex_a8_ =
9204         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9205          && (cpu_arch_profile_attr->int_value() == 'A'
9206              || cpu_arch_profile_attr->int_value() == 0));
9207     }
9208
9209   // Check if we can use V4BX interworking.
9210   // The V4BX interworking stub contains BX instruction,
9211   // which is not specified for some profiles.
9212   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9213       && !this->may_use_v4t_interworking())
9214     gold_error(_("unable to provide V4BX reloc interworking fix up; "
9215                  "the target profile does not support BX instruction"));
9216
9217   // Fill in some more dynamic tags.
9218   const Reloc_section* rel_plt = (this->plt_ == NULL
9219                                   ? NULL
9220                                   : this->plt_->rel_plt());
9221   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9222                                   this->rel_dyn_, true, false);
9223
9224   // Emit any relocs we saved in an attempt to avoid generating COPY
9225   // relocs.
9226   if (this->copy_relocs_.any_saved_relocs())
9227     this->copy_relocs_.emit(this->rel_dyn_section(layout));
9228
9229   // Handle the .ARM.exidx section.
9230   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9231
9232   if (!parameters->options().relocatable())
9233     {
9234       if (exidx_section != NULL
9235           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9236         {
9237           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9238           // the .ARM.exidx section.
9239           if (!layout->script_options()->saw_phdrs_clause())
9240             {
9241               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9242                                                       0)
9243                           == NULL);
9244               Output_segment*  exidx_segment =
9245                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9246               exidx_segment->add_output_section_to_nonload(exidx_section,
9247                                                            elfcpp::PF_R);
9248             }
9249         }
9250     }
9251
9252   // Create an .ARM.attributes section if we have merged any attributes
9253   // from inputs.
9254   if (merged_any_attributes)
9255     {
9256       Output_attributes_section_data* attributes_section =
9257       new Output_attributes_section_data(*this->attributes_section_data_);
9258       layout->add_output_section_data(".ARM.attributes",
9259                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
9260                                       attributes_section, ORDER_INVALID,
9261                                       false);
9262     }
9263
9264   // Fix up links in section EXIDX headers.
9265   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9266        p != layout->section_list().end();
9267        ++p)
9268     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9269       {
9270         Arm_output_section<big_endian>* os =
9271           Arm_output_section<big_endian>::as_arm_output_section(*p);
9272         os->set_exidx_section_link();
9273       }
9274 }
9275
9276 // Return whether a direct absolute static relocation needs to be applied.
9277 // In cases where Scan::local() or Scan::global() has created
9278 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9279 // of the relocation is carried in the data, and we must not
9280 // apply the static relocation.
9281
9282 template<bool big_endian>
9283 inline bool
9284 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9285     const Sized_symbol<32>* gsym,
9286     unsigned int r_type,
9287     bool is_32bit,
9288     Output_section* output_section)
9289 {
9290   // If the output section is not allocated, then we didn't call
9291   // scan_relocs, we didn't create a dynamic reloc, and we must apply
9292   // the reloc here.
9293   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9294       return true;
9295
9296   int ref_flags = Scan::get_reference_flags(r_type);
9297
9298   // For local symbols, we will have created a non-RELATIVE dynamic
9299   // relocation only if (a) the output is position independent,
9300   // (b) the relocation is absolute (not pc- or segment-relative), and
9301   // (c) the relocation is not 32 bits wide.
9302   if (gsym == NULL)
9303     return !(parameters->options().output_is_position_independent()
9304              && (ref_flags & Symbol::ABSOLUTE_REF)
9305              && !is_32bit);
9306
9307   // For global symbols, we use the same helper routines used in the
9308   // scan pass.  If we did not create a dynamic relocation, or if we
9309   // created a RELATIVE dynamic relocation, we should apply the static
9310   // relocation.
9311   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9312   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9313                  && gsym->can_use_relative_reloc(ref_flags
9314                                                  & Symbol::FUNCTION_CALL);
9315   return !has_dyn || is_rel;
9316 }
9317
9318 // Perform a relocation.
9319
9320 template<bool big_endian>
9321 inline bool
9322 Target_arm<big_endian>::Relocate::relocate(
9323     const Relocate_info<32, big_endian>* relinfo,
9324     Target_arm* target,
9325     Output_section* output_section,
9326     size_t relnum,
9327     const elfcpp::Rel<32, big_endian>& rel,
9328     unsigned int r_type,
9329     const Sized_symbol<32>* gsym,
9330     const Symbol_value<32>* psymval,
9331     unsigned char* view,
9332     Arm_address address,
9333     section_size_type view_size)
9334 {
9335   if (view == NULL)
9336     return true;
9337
9338   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9339
9340   r_type = get_real_reloc_type(r_type);
9341   const Arm_reloc_property* reloc_property =
9342     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9343   if (reloc_property == NULL)
9344     {
9345       std::string reloc_name =
9346         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9347       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9348                              _("cannot relocate %s in object file"),
9349                              reloc_name.c_str());
9350       return true;
9351     }
9352
9353   const Arm_relobj<big_endian>* object =
9354     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9355
9356   // If the final branch target of a relocation is THUMB instruction, this
9357   // is 1.  Otherwise it is 0.
9358   Arm_address thumb_bit = 0;
9359   Symbol_value<32> symval;
9360   bool is_weakly_undefined_without_plt = false;
9361   bool have_got_offset = false;
9362   unsigned int got_offset = 0;
9363
9364   // If the relocation uses the GOT entry of a symbol instead of the symbol
9365   // itself, we don't care about whether the symbol is defined or what kind
9366   // of symbol it is.
9367   if (reloc_property->uses_got_entry())
9368     {
9369       // Get the GOT offset.
9370       // The GOT pointer points to the end of the GOT section.
9371       // We need to subtract the size of the GOT section to get
9372       // the actual offset to use in the relocation.
9373       // TODO: We should move GOT offset computing code in TLS relocations
9374       // to here.
9375       switch (r_type)
9376         {
9377         case elfcpp::R_ARM_GOT_BREL:
9378         case elfcpp::R_ARM_GOT_PREL:
9379           if (gsym != NULL)
9380             {
9381               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9382               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9383                             - target->got_size());
9384             }
9385           else
9386             {
9387               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9388               gold_assert(object->local_has_got_offset(r_sym,
9389                                                        GOT_TYPE_STANDARD));
9390               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9391                             - target->got_size());
9392             }
9393           have_got_offset = true;
9394           break;
9395
9396         default:
9397           break;
9398         }
9399     }
9400   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9401     {
9402       if (gsym != NULL)
9403         {
9404           // This is a global symbol.  Determine if we use PLT and if the
9405           // final target is THUMB.
9406           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9407             {
9408               // This uses a PLT, change the symbol value.
9409               symval.set_output_value(target->plt_address_for_global(gsym));
9410               psymval = &symval;
9411             }
9412           else if (gsym->is_weak_undefined())
9413             {
9414               // This is a weakly undefined symbol and we do not use PLT
9415               // for this relocation.  A branch targeting this symbol will
9416               // be converted into an NOP.
9417               is_weakly_undefined_without_plt = true;
9418             }
9419           else if (gsym->is_undefined() && reloc_property->uses_symbol())
9420             {
9421               // This relocation uses the symbol value but the symbol is
9422               // undefined.  Exit early and have the caller reporting an
9423               // error.
9424               return true;
9425             }
9426           else
9427             {
9428               // Set thumb bit if symbol:
9429               // -Has type STT_ARM_TFUNC or
9430               // -Has type STT_FUNC, is defined and with LSB in value set.
9431               thumb_bit =
9432                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9433                  || (gsym->type() == elfcpp::STT_FUNC
9434                      && !gsym->is_undefined()
9435                      && ((psymval->value(object, 0) & 1) != 0)))
9436                 ? 1
9437                 : 0);
9438             }
9439         }
9440       else
9441         {
9442           // This is a local symbol.  Determine if the final target is THUMB.
9443           // We saved this information when all the local symbols were read.
9444           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9445           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9446           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9447
9448           if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9449             {
9450               symval.set_output_value(
9451                   target->plt_address_for_local(object, r_sym));
9452               psymval = &symval;
9453             }
9454         }
9455     }
9456   else
9457     {
9458       // This is a fake relocation synthesized for a stub.  It does not have
9459       // a real symbol.  We just look at the LSB of the symbol value to
9460       // determine if the target is THUMB or not.
9461       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9462     }
9463
9464   // Strip LSB if this points to a THUMB target.
9465   if (thumb_bit != 0
9466       && reloc_property->uses_thumb_bit()
9467       && ((psymval->value(object, 0) & 1) != 0))
9468     {
9469       Arm_address stripped_value =
9470         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9471       symval.set_output_value(stripped_value);
9472       psymval = &symval;
9473     }
9474
9475   // To look up relocation stubs, we need to pass the symbol table index of
9476   // a local symbol.
9477   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9478
9479   // Get the addressing origin of the output segment defining the
9480   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9481   Arm_address sym_origin = 0;
9482   if (reloc_property->uses_symbol_base())
9483     {
9484       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9485         // R_ARM_BASE_ABS with the NULL symbol will give the
9486         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9487         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9488         sym_origin = target->got_plt_section()->address();
9489       else if (gsym == NULL)
9490         sym_origin = 0;
9491       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9492         sym_origin = gsym->output_segment()->vaddr();
9493       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9494         sym_origin = gsym->output_data()->address();
9495
9496       // TODO: Assumes the segment base to be zero for the global symbols
9497       // till the proper support for the segment-base-relative addressing
9498       // will be implemented.  This is consistent with GNU ld.
9499     }
9500
9501   // For relative addressing relocation, find out the relative address base.
9502   Arm_address relative_address_base = 0;
9503   switch(reloc_property->relative_address_base())
9504     {
9505     case Arm_reloc_property::RAB_NONE:
9506     // Relocations with relative address bases RAB_TLS and RAB_tp are
9507     // handled by relocate_tls.  So we do not need to do anything here.
9508     case Arm_reloc_property::RAB_TLS:
9509     case Arm_reloc_property::RAB_tp:
9510       break;
9511     case Arm_reloc_property::RAB_B_S:
9512       relative_address_base = sym_origin;
9513       break;
9514     case Arm_reloc_property::RAB_GOT_ORG:
9515       relative_address_base = target->got_plt_section()->address();
9516       break;
9517     case Arm_reloc_property::RAB_P:
9518       relative_address_base = address;
9519       break;
9520     case Arm_reloc_property::RAB_Pa:
9521       relative_address_base = address & 0xfffffffcU;
9522       break;
9523     default:
9524       gold_unreachable();
9525     }
9526
9527   typename Arm_relocate_functions::Status reloc_status =
9528         Arm_relocate_functions::STATUS_OKAY;
9529   bool check_overflow = reloc_property->checks_overflow();
9530   switch (r_type)
9531     {
9532     case elfcpp::R_ARM_NONE:
9533       break;
9534
9535     case elfcpp::R_ARM_ABS8:
9536       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9537         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9538       break;
9539
9540     case elfcpp::R_ARM_ABS12:
9541       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9542         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9543       break;
9544
9545     case elfcpp::R_ARM_ABS16:
9546       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9547         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9548       break;
9549
9550     case elfcpp::R_ARM_ABS32:
9551       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9552         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9553                                                      thumb_bit);
9554       break;
9555
9556     case elfcpp::R_ARM_ABS32_NOI:
9557       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9558         // No thumb bit for this relocation: (S + A)
9559         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9560                                                      0);
9561       break;
9562
9563     case elfcpp::R_ARM_MOVW_ABS_NC:
9564       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9565         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9566                                                     0, thumb_bit,
9567                                                     check_overflow);
9568       break;
9569
9570     case elfcpp::R_ARM_MOVT_ABS:
9571       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9572         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9573       break;
9574
9575     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9576       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9577         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9578                                                         0, thumb_bit, false);
9579       break;
9580
9581     case elfcpp::R_ARM_THM_MOVT_ABS:
9582       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9583         reloc_status = Arm_relocate_functions::thm_movt(view, object,
9584                                                         psymval, 0);
9585       break;
9586
9587     case elfcpp::R_ARM_MOVW_PREL_NC:
9588     case elfcpp::R_ARM_MOVW_BREL_NC:
9589     case elfcpp::R_ARM_MOVW_BREL:
9590       reloc_status =
9591         Arm_relocate_functions::movw(view, object, psymval,
9592                                      relative_address_base, thumb_bit,
9593                                      check_overflow);
9594       break;
9595
9596     case elfcpp::R_ARM_MOVT_PREL:
9597     case elfcpp::R_ARM_MOVT_BREL:
9598       reloc_status =
9599         Arm_relocate_functions::movt(view, object, psymval,
9600                                      relative_address_base);
9601       break;
9602
9603     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9604     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9605     case elfcpp::R_ARM_THM_MOVW_BREL:
9606       reloc_status =
9607         Arm_relocate_functions::thm_movw(view, object, psymval,
9608                                          relative_address_base,
9609                                          thumb_bit, check_overflow);
9610       break;
9611
9612     case elfcpp::R_ARM_THM_MOVT_PREL:
9613     case elfcpp::R_ARM_THM_MOVT_BREL:
9614       reloc_status =
9615         Arm_relocate_functions::thm_movt(view, object, psymval,
9616                                          relative_address_base);
9617       break;
9618
9619     case elfcpp::R_ARM_REL32:
9620       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9621                                                    address, thumb_bit);
9622       break;
9623
9624     case elfcpp::R_ARM_THM_ABS5:
9625       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9626         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9627       break;
9628
9629     // Thumb long branches.
9630     case elfcpp::R_ARM_THM_CALL:
9631     case elfcpp::R_ARM_THM_XPC22:
9632     case elfcpp::R_ARM_THM_JUMP24:
9633       reloc_status =
9634         Arm_relocate_functions::thumb_branch_common(
9635             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9636             thumb_bit, is_weakly_undefined_without_plt);
9637       break;
9638
9639     case elfcpp::R_ARM_GOTOFF32:
9640       {
9641         Arm_address got_origin;
9642         got_origin = target->got_plt_section()->address();
9643         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9644                                                      got_origin, thumb_bit);
9645       }
9646       break;
9647
9648     case elfcpp::R_ARM_BASE_PREL:
9649       gold_assert(gsym != NULL);
9650       reloc_status =
9651           Arm_relocate_functions::base_prel(view, sym_origin, address);
9652       break;
9653
9654     case elfcpp::R_ARM_BASE_ABS:
9655       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9656         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9657       break;
9658
9659     case elfcpp::R_ARM_GOT_BREL:
9660       gold_assert(have_got_offset);
9661       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9662       break;
9663
9664     case elfcpp::R_ARM_GOT_PREL:
9665       gold_assert(have_got_offset);
9666       // Get the address origin for GOT PLT, which is allocated right
9667       // after the GOT section, to calculate an absolute address of
9668       // the symbol GOT entry (got_origin + got_offset).
9669       Arm_address got_origin;
9670       got_origin = target->got_plt_section()->address();
9671       reloc_status = Arm_relocate_functions::got_prel(view,
9672                                                       got_origin + got_offset,
9673                                                       address);
9674       break;
9675
9676     case elfcpp::R_ARM_PLT32:
9677     case elfcpp::R_ARM_CALL:
9678     case elfcpp::R_ARM_JUMP24:
9679     case elfcpp::R_ARM_XPC25:
9680       gold_assert(gsym == NULL
9681                   || gsym->has_plt_offset()
9682                   || gsym->final_value_is_known()
9683                   || (gsym->is_defined()
9684                       && !gsym->is_from_dynobj()
9685                       && !gsym->is_preemptible()));
9686       reloc_status =
9687         Arm_relocate_functions::arm_branch_common(
9688             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9689             thumb_bit, is_weakly_undefined_without_plt);
9690       break;
9691
9692     case elfcpp::R_ARM_THM_JUMP19:
9693       reloc_status =
9694         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9695                                            thumb_bit);
9696       break;
9697
9698     case elfcpp::R_ARM_THM_JUMP6:
9699       reloc_status =
9700         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9701       break;
9702
9703     case elfcpp::R_ARM_THM_JUMP8:
9704       reloc_status =
9705         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9706       break;
9707
9708     case elfcpp::R_ARM_THM_JUMP11:
9709       reloc_status =
9710         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9711       break;
9712
9713     case elfcpp::R_ARM_PREL31:
9714       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9715                                                     address, thumb_bit);
9716       break;
9717
9718     case elfcpp::R_ARM_V4BX:
9719       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9720         {
9721           const bool is_v4bx_interworking =
9722               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9723           reloc_status =
9724             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9725                                          is_v4bx_interworking);
9726         }
9727       break;
9728
9729     case elfcpp::R_ARM_THM_PC8:
9730       reloc_status =
9731         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9732       break;
9733
9734     case elfcpp::R_ARM_THM_PC12:
9735       reloc_status =
9736         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9737       break;
9738
9739     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9740       reloc_status =
9741         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9742                                           thumb_bit);
9743       break;
9744
9745     case elfcpp::R_ARM_ALU_PC_G0_NC:
9746     case elfcpp::R_ARM_ALU_PC_G0:
9747     case elfcpp::R_ARM_ALU_PC_G1_NC:
9748     case elfcpp::R_ARM_ALU_PC_G1:
9749     case elfcpp::R_ARM_ALU_PC_G2:
9750     case elfcpp::R_ARM_ALU_SB_G0_NC:
9751     case elfcpp::R_ARM_ALU_SB_G0:
9752     case elfcpp::R_ARM_ALU_SB_G1_NC:
9753     case elfcpp::R_ARM_ALU_SB_G1:
9754     case elfcpp::R_ARM_ALU_SB_G2:
9755       reloc_status =
9756         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9757                                             reloc_property->group_index(),
9758                                             relative_address_base,
9759                                             thumb_bit, check_overflow);
9760       break;
9761
9762     case elfcpp::R_ARM_LDR_PC_G0:
9763     case elfcpp::R_ARM_LDR_PC_G1:
9764     case elfcpp::R_ARM_LDR_PC_G2:
9765     case elfcpp::R_ARM_LDR_SB_G0:
9766     case elfcpp::R_ARM_LDR_SB_G1:
9767     case elfcpp::R_ARM_LDR_SB_G2:
9768       reloc_status =
9769           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9770                                               reloc_property->group_index(),
9771                                               relative_address_base);
9772       break;
9773
9774     case elfcpp::R_ARM_LDRS_PC_G0:
9775     case elfcpp::R_ARM_LDRS_PC_G1:
9776     case elfcpp::R_ARM_LDRS_PC_G2:
9777     case elfcpp::R_ARM_LDRS_SB_G0:
9778     case elfcpp::R_ARM_LDRS_SB_G1:
9779     case elfcpp::R_ARM_LDRS_SB_G2:
9780       reloc_status =
9781           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9782                                                reloc_property->group_index(),
9783                                                relative_address_base);
9784       break;
9785
9786     case elfcpp::R_ARM_LDC_PC_G0:
9787     case elfcpp::R_ARM_LDC_PC_G1:
9788     case elfcpp::R_ARM_LDC_PC_G2:
9789     case elfcpp::R_ARM_LDC_SB_G0:
9790     case elfcpp::R_ARM_LDC_SB_G1:
9791     case elfcpp::R_ARM_LDC_SB_G2:
9792       reloc_status =
9793           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9794                                               reloc_property->group_index(),
9795                                               relative_address_base);
9796       break;
9797
9798       // These are initial tls relocs, which are expected when
9799       // linking.
9800     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9801     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9802     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9803     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9804     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9805       reloc_status =
9806         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9807                            view, address, view_size);
9808       break;
9809
9810     // The known and unknown unsupported and/or deprecated relocations.
9811     case elfcpp::R_ARM_PC24:
9812     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9813     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9814     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9815     default:
9816       // Just silently leave the method. We should get an appropriate error
9817       // message in the scan methods.
9818       break;
9819     }
9820
9821   // Report any errors.
9822   switch (reloc_status)
9823     {
9824     case Arm_relocate_functions::STATUS_OKAY:
9825       break;
9826     case Arm_relocate_functions::STATUS_OVERFLOW:
9827       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9828                              _("relocation overflow in %s"),
9829                              reloc_property->name().c_str());
9830       break;
9831     case Arm_relocate_functions::STATUS_BAD_RELOC:
9832       gold_error_at_location(
9833         relinfo,
9834         relnum,
9835         rel.get_r_offset(),
9836         _("unexpected opcode while processing relocation %s"),
9837         reloc_property->name().c_str());
9838       break;
9839     default:
9840       gold_unreachable();
9841     }
9842
9843   return true;
9844 }
9845
9846 // Perform a TLS relocation.
9847
9848 template<bool big_endian>
9849 inline typename Arm_relocate_functions<big_endian>::Status
9850 Target_arm<big_endian>::Relocate::relocate_tls(
9851     const Relocate_info<32, big_endian>* relinfo,
9852     Target_arm<big_endian>* target,
9853     size_t relnum,
9854     const elfcpp::Rel<32, big_endian>& rel,
9855     unsigned int r_type,
9856     const Sized_symbol<32>* gsym,
9857     const Symbol_value<32>* psymval,
9858     unsigned char* view,
9859     elfcpp::Elf_types<32>::Elf_Addr address,
9860     section_size_type /*view_size*/ )
9861 {
9862   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9863   typedef Relocate_functions<32, big_endian> RelocFuncs;
9864   Output_segment* tls_segment = relinfo->layout->tls_segment();
9865
9866   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9867
9868   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9869
9870   const bool is_final = (gsym == NULL
9871                          ? !parameters->options().shared()
9872                          : gsym->final_value_is_known());
9873   const tls::Tls_optimization optimized_type
9874       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9875   switch (r_type)
9876     {
9877     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9878         {
9879           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9880           unsigned int got_offset;
9881           if (gsym != NULL)
9882             {
9883               gold_assert(gsym->has_got_offset(got_type));
9884               got_offset = gsym->got_offset(got_type) - target->got_size();
9885             }
9886           else
9887             {
9888               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9889               gold_assert(object->local_has_got_offset(r_sym, got_type));
9890               got_offset = (object->local_got_offset(r_sym, got_type)
9891                             - target->got_size());
9892             }
9893           if (optimized_type == tls::TLSOPT_NONE)
9894             {
9895               Arm_address got_entry =
9896                 target->got_plt_section()->address() + got_offset;
9897
9898               // Relocate the field with the PC relative offset of the pair of
9899               // GOT entries.
9900               RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9901               return ArmRelocFuncs::STATUS_OKAY;
9902             }
9903         }
9904       break;
9905
9906     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9907       if (optimized_type == tls::TLSOPT_NONE)
9908         {
9909           // Relocate the field with the offset of the GOT entry for
9910           // the module index.
9911           unsigned int got_offset;
9912           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9913                         - target->got_size());
9914           Arm_address got_entry =
9915             target->got_plt_section()->address() + got_offset;
9916
9917           // Relocate the field with the PC relative offset of the pair of
9918           // GOT entries.
9919           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9920           return ArmRelocFuncs::STATUS_OKAY;
9921         }
9922       break;
9923
9924     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9925       RelocFuncs::rel32_unaligned(view, value);
9926       return ArmRelocFuncs::STATUS_OKAY;
9927
9928     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9929       if (optimized_type == tls::TLSOPT_NONE)
9930         {
9931           // Relocate the field with the offset of the GOT entry for
9932           // the tp-relative offset of the symbol.
9933           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9934           unsigned int got_offset;
9935           if (gsym != NULL)
9936             {
9937               gold_assert(gsym->has_got_offset(got_type));
9938               got_offset = gsym->got_offset(got_type);
9939             }
9940           else
9941             {
9942               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9943               gold_assert(object->local_has_got_offset(r_sym, got_type));
9944               got_offset = object->local_got_offset(r_sym, got_type);
9945             }
9946
9947           // All GOT offsets are relative to the end of the GOT.
9948           got_offset -= target->got_size();
9949
9950           Arm_address got_entry =
9951             target->got_plt_section()->address() + got_offset;
9952
9953           // Relocate the field with the PC relative offset of the GOT entry.
9954           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9955           return ArmRelocFuncs::STATUS_OKAY;
9956         }
9957       break;
9958
9959     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9960       // If we're creating a shared library, a dynamic relocation will
9961       // have been created for this location, so do not apply it now.
9962       if (!parameters->options().shared())
9963         {
9964           gold_assert(tls_segment != NULL);
9965
9966           // $tp points to the TCB, which is followed by the TLS, so we
9967           // need to add TCB size to the offset.
9968           Arm_address aligned_tcb_size =
9969             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9970           RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9971
9972         }
9973       return ArmRelocFuncs::STATUS_OKAY;
9974
9975     default:
9976       gold_unreachable();
9977     }
9978
9979   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9980                          _("unsupported reloc %u"),
9981                          r_type);
9982   return ArmRelocFuncs::STATUS_BAD_RELOC;
9983 }
9984
9985 // Relocate section data.
9986
9987 template<bool big_endian>
9988 void
9989 Target_arm<big_endian>::relocate_section(
9990     const Relocate_info<32, big_endian>* relinfo,
9991     unsigned int sh_type,
9992     const unsigned char* prelocs,
9993     size_t reloc_count,
9994     Output_section* output_section,
9995     bool needs_special_offset_handling,
9996     unsigned char* view,
9997     Arm_address address,
9998     section_size_type view_size,
9999     const Reloc_symbol_changes* reloc_symbol_changes)
10000 {
10001   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10002   gold_assert(sh_type == elfcpp::SHT_REL);
10003
10004   // See if we are relocating a relaxed input section.  If so, the view
10005   // covers the whole output section and we need to adjust accordingly.
10006   if (needs_special_offset_handling)
10007     {
10008       const Output_relaxed_input_section* poris =
10009         output_section->find_relaxed_input_section(relinfo->object,
10010                                                    relinfo->data_shndx);
10011       if (poris != NULL)
10012         {
10013           Arm_address section_address = poris->address();
10014           section_size_type section_size = poris->data_size();
10015
10016           gold_assert((section_address >= address)
10017                       && ((section_address + section_size)
10018                           <= (address + view_size)));
10019
10020           off_t offset = section_address - address;
10021           view += offset;
10022           address += offset;
10023           view_size = section_size;
10024         }
10025     }
10026
10027   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
10028                          Arm_relocate, gold::Default_comdat_behavior>(
10029     relinfo,
10030     this,
10031     prelocs,
10032     reloc_count,
10033     output_section,
10034     needs_special_offset_handling,
10035     view,
10036     address,
10037     view_size,
10038     reloc_symbol_changes);
10039 }
10040
10041 // Return the size of a relocation while scanning during a relocatable
10042 // link.
10043
10044 template<bool big_endian>
10045 unsigned int
10046 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10047     unsigned int r_type,
10048     Relobj* object)
10049 {
10050   r_type = get_real_reloc_type(r_type);
10051   const Arm_reloc_property* arp =
10052       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10053   if (arp != NULL)
10054     return arp->size();
10055   else
10056     {
10057       std::string reloc_name =
10058         arm_reloc_property_table->reloc_name_in_error_message(r_type);
10059       gold_error(_("%s: unexpected %s in object file"),
10060                  object->name().c_str(), reloc_name.c_str());
10061       return 0;
10062     }
10063 }
10064
10065 // Scan the relocs during a relocatable link.
10066
10067 template<bool big_endian>
10068 void
10069 Target_arm<big_endian>::scan_relocatable_relocs(
10070     Symbol_table* symtab,
10071     Layout* layout,
10072     Sized_relobj_file<32, big_endian>* object,
10073     unsigned int data_shndx,
10074     unsigned int sh_type,
10075     const unsigned char* prelocs,
10076     size_t reloc_count,
10077     Output_section* output_section,
10078     bool needs_special_offset_handling,
10079     size_t local_symbol_count,
10080     const unsigned char* plocal_symbols,
10081     Relocatable_relocs* rr)
10082 {
10083   gold_assert(sh_type == elfcpp::SHT_REL);
10084
10085   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
10086     Relocatable_size_for_reloc> Scan_relocatable_relocs;
10087
10088   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10089       Scan_relocatable_relocs>(
10090     symtab,
10091     layout,
10092     object,
10093     data_shndx,
10094     prelocs,
10095     reloc_count,
10096     output_section,
10097     needs_special_offset_handling,
10098     local_symbol_count,
10099     plocal_symbols,
10100     rr);
10101 }
10102
10103 // Emit relocations for a section.
10104
10105 template<bool big_endian>
10106 void
10107 Target_arm<big_endian>::relocate_relocs(
10108     const Relocate_info<32, big_endian>* relinfo,
10109     unsigned int sh_type,
10110     const unsigned char* prelocs,
10111     size_t reloc_count,
10112     Output_section* output_section,
10113     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10114     const Relocatable_relocs* rr,
10115     unsigned char* view,
10116     Arm_address view_address,
10117     section_size_type view_size,
10118     unsigned char* reloc_view,
10119     section_size_type reloc_view_size)
10120 {
10121   gold_assert(sh_type == elfcpp::SHT_REL);
10122
10123   gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
10124     relinfo,
10125     prelocs,
10126     reloc_count,
10127     output_section,
10128     offset_in_output_section,
10129     rr,
10130     view,
10131     view_address,
10132     view_size,
10133     reloc_view,
10134     reloc_view_size);
10135 }
10136
10137 // Perform target-specific processing in a relocatable link.  This is
10138 // only used if we use the relocation strategy RELOC_SPECIAL.
10139
10140 template<bool big_endian>
10141 void
10142 Target_arm<big_endian>::relocate_special_relocatable(
10143     const Relocate_info<32, big_endian>* relinfo,
10144     unsigned int sh_type,
10145     const unsigned char* preloc_in,
10146     size_t relnum,
10147     Output_section* output_section,
10148     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10149     unsigned char* view,
10150     elfcpp::Elf_types<32>::Elf_Addr view_address,
10151     section_size_type,
10152     unsigned char* preloc_out)
10153 {
10154   // We can only handle REL type relocation sections.
10155   gold_assert(sh_type == elfcpp::SHT_REL);
10156
10157   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10158   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10159     Reltype_write;
10160   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10161
10162   const Arm_relobj<big_endian>* object =
10163     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10164   const unsigned int local_count = object->local_symbol_count();
10165
10166   Reltype reloc(preloc_in);
10167   Reltype_write reloc_write(preloc_out);
10168
10169   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10170   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10171   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10172
10173   const Arm_reloc_property* arp =
10174     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10175   gold_assert(arp != NULL);
10176
10177   // Get the new symbol index.
10178   // We only use RELOC_SPECIAL strategy in local relocations.
10179   gold_assert(r_sym < local_count);
10180
10181   // We are adjusting a section symbol.  We need to find
10182   // the symbol table index of the section symbol for
10183   // the output section corresponding to input section
10184   // in which this symbol is defined.
10185   bool is_ordinary;
10186   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10187   gold_assert(is_ordinary);
10188   Output_section* os = object->output_section(shndx);
10189   gold_assert(os != NULL);
10190   gold_assert(os->needs_symtab_index());
10191   unsigned int new_symndx = os->symtab_index();
10192
10193   // Get the new offset--the location in the output section where
10194   // this relocation should be applied.
10195
10196   Arm_address offset = reloc.get_r_offset();
10197   Arm_address new_offset;
10198   if (offset_in_output_section != invalid_address)
10199     new_offset = offset + offset_in_output_section;
10200   else
10201     {
10202       section_offset_type sot_offset =
10203           convert_types<section_offset_type, Arm_address>(offset);
10204       section_offset_type new_sot_offset =
10205           output_section->output_offset(object, relinfo->data_shndx,
10206                                         sot_offset);
10207       gold_assert(new_sot_offset != -1);
10208       new_offset = new_sot_offset;
10209     }
10210
10211   // In an object file, r_offset is an offset within the section.
10212   // In an executable or dynamic object, generated by
10213   // --emit-relocs, r_offset is an absolute address.
10214   if (!parameters->options().relocatable())
10215     {
10216       new_offset += view_address;
10217       if (offset_in_output_section != invalid_address)
10218         new_offset -= offset_in_output_section;
10219     }
10220
10221   reloc_write.put_r_offset(new_offset);
10222   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10223
10224   // Handle the reloc addend.
10225   // The relocation uses a section symbol in the input file.
10226   // We are adjusting it to use a section symbol in the output
10227   // file.  The input section symbol refers to some address in
10228   // the input section.  We need the relocation in the output
10229   // file to refer to that same address.  This adjustment to
10230   // the addend is the same calculation we use for a simple
10231   // absolute relocation for the input section symbol.
10232
10233   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10234
10235   // Handle THUMB bit.
10236   Symbol_value<32> symval;
10237   Arm_address thumb_bit =
10238      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10239   if (thumb_bit != 0
10240       && arp->uses_thumb_bit()
10241       && ((psymval->value(object, 0) & 1) != 0))
10242     {
10243       Arm_address stripped_value =
10244         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10245       symval.set_output_value(stripped_value);
10246       psymval = &symval;
10247     }
10248
10249   unsigned char* paddend = view + offset;
10250   typename Arm_relocate_functions<big_endian>::Status reloc_status =
10251         Arm_relocate_functions<big_endian>::STATUS_OKAY;
10252   switch (r_type)
10253     {
10254     case elfcpp::R_ARM_ABS8:
10255       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10256                                                               psymval);
10257       break;
10258
10259     case elfcpp::R_ARM_ABS12:
10260       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10261                                                                psymval);
10262       break;
10263
10264     case elfcpp::R_ARM_ABS16:
10265       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10266                                                                psymval);
10267       break;
10268
10269     case elfcpp::R_ARM_THM_ABS5:
10270       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10271                                                                   object,
10272                                                                   psymval);
10273       break;
10274
10275     case elfcpp::R_ARM_MOVW_ABS_NC:
10276     case elfcpp::R_ARM_MOVW_PREL_NC:
10277     case elfcpp::R_ARM_MOVW_BREL_NC:
10278     case elfcpp::R_ARM_MOVW_BREL:
10279       reloc_status = Arm_relocate_functions<big_endian>::movw(
10280           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10281       break;
10282
10283     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10284     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10285     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10286     case elfcpp::R_ARM_THM_MOVW_BREL:
10287       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10288           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10289       break;
10290
10291     case elfcpp::R_ARM_THM_CALL:
10292     case elfcpp::R_ARM_THM_XPC22:
10293     case elfcpp::R_ARM_THM_JUMP24:
10294       reloc_status =
10295         Arm_relocate_functions<big_endian>::thumb_branch_common(
10296             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10297             false);
10298       break;
10299
10300     case elfcpp::R_ARM_PLT32:
10301     case elfcpp::R_ARM_CALL:
10302     case elfcpp::R_ARM_JUMP24:
10303     case elfcpp::R_ARM_XPC25:
10304       reloc_status =
10305         Arm_relocate_functions<big_endian>::arm_branch_common(
10306             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10307             false);
10308       break;
10309
10310     case elfcpp::R_ARM_THM_JUMP19:
10311       reloc_status =
10312         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10313                                                        psymval, 0, thumb_bit);
10314       break;
10315
10316     case elfcpp::R_ARM_THM_JUMP6:
10317       reloc_status =
10318         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10319                                                       0);
10320       break;
10321
10322     case elfcpp::R_ARM_THM_JUMP8:
10323       reloc_status =
10324         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10325                                                       0);
10326       break;
10327
10328     case elfcpp::R_ARM_THM_JUMP11:
10329       reloc_status =
10330         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10331                                                        0);
10332       break;
10333
10334     case elfcpp::R_ARM_PREL31:
10335       reloc_status =
10336         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10337                                                    thumb_bit);
10338       break;
10339
10340     case elfcpp::R_ARM_THM_PC8:
10341       reloc_status =
10342         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10343                                                     0);
10344       break;
10345
10346     case elfcpp::R_ARM_THM_PC12:
10347       reloc_status =
10348         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10349                                                      0);
10350       break;
10351
10352     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10353       reloc_status =
10354         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10355                                                       0, thumb_bit);
10356       break;
10357
10358     // These relocation truncate relocation results so we cannot handle them
10359     // in a relocatable link.
10360     case elfcpp::R_ARM_MOVT_ABS:
10361     case elfcpp::R_ARM_THM_MOVT_ABS:
10362     case elfcpp::R_ARM_MOVT_PREL:
10363     case elfcpp::R_ARM_MOVT_BREL:
10364     case elfcpp::R_ARM_THM_MOVT_PREL:
10365     case elfcpp::R_ARM_THM_MOVT_BREL:
10366     case elfcpp::R_ARM_ALU_PC_G0_NC:
10367     case elfcpp::R_ARM_ALU_PC_G0:
10368     case elfcpp::R_ARM_ALU_PC_G1_NC:
10369     case elfcpp::R_ARM_ALU_PC_G1:
10370     case elfcpp::R_ARM_ALU_PC_G2:
10371     case elfcpp::R_ARM_ALU_SB_G0_NC:
10372     case elfcpp::R_ARM_ALU_SB_G0:
10373     case elfcpp::R_ARM_ALU_SB_G1_NC:
10374     case elfcpp::R_ARM_ALU_SB_G1:
10375     case elfcpp::R_ARM_ALU_SB_G2:
10376     case elfcpp::R_ARM_LDR_PC_G0:
10377     case elfcpp::R_ARM_LDR_PC_G1:
10378     case elfcpp::R_ARM_LDR_PC_G2:
10379     case elfcpp::R_ARM_LDR_SB_G0:
10380     case elfcpp::R_ARM_LDR_SB_G1:
10381     case elfcpp::R_ARM_LDR_SB_G2:
10382     case elfcpp::R_ARM_LDRS_PC_G0:
10383     case elfcpp::R_ARM_LDRS_PC_G1:
10384     case elfcpp::R_ARM_LDRS_PC_G2:
10385     case elfcpp::R_ARM_LDRS_SB_G0:
10386     case elfcpp::R_ARM_LDRS_SB_G1:
10387     case elfcpp::R_ARM_LDRS_SB_G2:
10388     case elfcpp::R_ARM_LDC_PC_G0:
10389     case elfcpp::R_ARM_LDC_PC_G1:
10390     case elfcpp::R_ARM_LDC_PC_G2:
10391     case elfcpp::R_ARM_LDC_SB_G0:
10392     case elfcpp::R_ARM_LDC_SB_G1:
10393     case elfcpp::R_ARM_LDC_SB_G2:
10394       gold_error(_("cannot handle %s in a relocatable link"),
10395                  arp->name().c_str());
10396       break;
10397
10398     default:
10399       gold_unreachable();
10400     }
10401
10402   // Report any errors.
10403   switch (reloc_status)
10404     {
10405     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10406       break;
10407     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10408       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10409                              _("relocation overflow in %s"),
10410                              arp->name().c_str());
10411       break;
10412     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10413       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10414         _("unexpected opcode while processing relocation %s"),
10415         arp->name().c_str());
10416       break;
10417     default:
10418       gold_unreachable();
10419     }
10420 }
10421
10422 // Return the value to use for a dynamic symbol which requires special
10423 // treatment.  This is how we support equality comparisons of function
10424 // pointers across shared library boundaries, as described in the
10425 // processor specific ABI supplement.
10426
10427 template<bool big_endian>
10428 uint64_t
10429 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10430 {
10431   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10432   return this->plt_address_for_global(gsym);
10433 }
10434
10435 // Map platform-specific relocs to real relocs
10436 //
10437 template<bool big_endian>
10438 unsigned int
10439 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10440 {
10441   switch (r_type)
10442     {
10443     case elfcpp::R_ARM_TARGET1:
10444       // This is either R_ARM_ABS32 or R_ARM_REL32;
10445       return elfcpp::R_ARM_ABS32;
10446
10447     case elfcpp::R_ARM_TARGET2:
10448       // This can be any reloc type but usually is R_ARM_GOT_PREL
10449       return elfcpp::R_ARM_GOT_PREL;
10450
10451     default:
10452       return r_type;
10453     }
10454 }
10455
10456 // Whether if two EABI versions V1 and V2 are compatible.
10457
10458 template<bool big_endian>
10459 bool
10460 Target_arm<big_endian>::are_eabi_versions_compatible(
10461     elfcpp::Elf_Word v1,
10462     elfcpp::Elf_Word v2)
10463 {
10464   // v4 and v5 are the same spec before and after it was released,
10465   // so allow mixing them.
10466   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10467       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10468       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10469     return true;
10470
10471   return v1 == v2;
10472 }
10473
10474 // Combine FLAGS from an input object called NAME and the processor-specific
10475 // flags in the ELF header of the output.  Much of this is adapted from the
10476 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10477 // in bfd/elf32-arm.c.
10478
10479 template<bool big_endian>
10480 void
10481 Target_arm<big_endian>::merge_processor_specific_flags(
10482     const std::string& name,
10483     elfcpp::Elf_Word flags)
10484 {
10485   if (this->are_processor_specific_flags_set())
10486     {
10487       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10488
10489       // Nothing to merge if flags equal to those in output.
10490       if (flags == out_flags)
10491         return;
10492
10493       // Complain about various flag mismatches.
10494       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10495       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10496       if (!this->are_eabi_versions_compatible(version1, version2)
10497           && parameters->options().warn_mismatch())
10498         gold_error(_("Source object %s has EABI version %d but output has "
10499                      "EABI version %d."),
10500                    name.c_str(),
10501                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10502                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10503     }
10504   else
10505     {
10506       // If the input is the default architecture and had the default
10507       // flags then do not bother setting the flags for the output
10508       // architecture, instead allow future merges to do this.  If no
10509       // future merges ever set these flags then they will retain their
10510       // uninitialised values, which surprise surprise, correspond
10511       // to the default values.
10512       if (flags == 0)
10513         return;
10514
10515       // This is the first time, just copy the flags.
10516       // We only copy the EABI version for now.
10517       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10518     }
10519 }
10520
10521 // Adjust ELF file header.
10522 template<bool big_endian>
10523 void
10524 Target_arm<big_endian>::do_adjust_elf_header(
10525     unsigned char* view,
10526     int len)
10527 {
10528   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10529
10530   elfcpp::Ehdr<32, big_endian> ehdr(view);
10531   elfcpp::Elf_Word flags = this->processor_specific_flags();
10532   unsigned char e_ident[elfcpp::EI_NIDENT];
10533   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10534
10535   if (elfcpp::arm_eabi_version(flags)
10536       == elfcpp::EF_ARM_EABI_UNKNOWN)
10537     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10538   else
10539     e_ident[elfcpp::EI_OSABI] = 0;
10540   e_ident[elfcpp::EI_ABIVERSION] = 0;
10541
10542   // FIXME: Do EF_ARM_BE8 adjustment.
10543
10544   // If we're working in EABI_VER5, set the hard/soft float ABI flags
10545   // as appropriate.
10546   if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10547   {
10548     elfcpp::Elf_Half type = ehdr.get_e_type();
10549     if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10550       {
10551         Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10552         if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10553           flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10554         else
10555           flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10556         this->set_processor_specific_flags(flags);
10557       }
10558   }
10559   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10560   oehdr.put_e_ident(e_ident);
10561   oehdr.put_e_flags(this->processor_specific_flags());
10562 }
10563
10564 // do_make_elf_object to override the same function in the base class.
10565 // We need to use a target-specific sub-class of
10566 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10567 // Hence we need to have our own ELF object creation.
10568
10569 template<bool big_endian>
10570 Object*
10571 Target_arm<big_endian>::do_make_elf_object(
10572     const std::string& name,
10573     Input_file* input_file,
10574     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10575 {
10576   int et = ehdr.get_e_type();
10577   // ET_EXEC files are valid input for --just-symbols/-R,
10578   // and we treat them as relocatable objects.
10579   if (et == elfcpp::ET_REL
10580       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10581     {
10582       Arm_relobj<big_endian>* obj =
10583         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10584       obj->setup();
10585       return obj;
10586     }
10587   else if (et == elfcpp::ET_DYN)
10588     {
10589       Sized_dynobj<32, big_endian>* obj =
10590         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10591       obj->setup();
10592       return obj;
10593     }
10594   else
10595     {
10596       gold_error(_("%s: unsupported ELF file type %d"),
10597                  name.c_str(), et);
10598       return NULL;
10599     }
10600 }
10601
10602 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10603 // Returns -1 if no architecture could be read.
10604 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10605
10606 template<bool big_endian>
10607 int
10608 Target_arm<big_endian>::get_secondary_compatible_arch(
10609     const Attributes_section_data* pasd)
10610 {
10611   const Object_attribute* known_attributes =
10612     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10613
10614   // Note: the tag and its argument below are uleb128 values, though
10615   // currently-defined values fit in one byte for each.
10616   const std::string& sv =
10617     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10618   if (sv.size() == 2
10619       && sv.data()[0] == elfcpp::Tag_CPU_arch
10620       && (sv.data()[1] & 128) != 128)
10621    return sv.data()[1];
10622
10623   // This tag is "safely ignorable", so don't complain if it looks funny.
10624   return -1;
10625 }
10626
10627 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10628 // The tag is removed if ARCH is -1.
10629 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10630
10631 template<bool big_endian>
10632 void
10633 Target_arm<big_endian>::set_secondary_compatible_arch(
10634     Attributes_section_data* pasd,
10635     int arch)
10636 {
10637   Object_attribute* known_attributes =
10638     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10639
10640   if (arch == -1)
10641     {
10642       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10643       return;
10644     }
10645
10646   // Note: the tag and its argument below are uleb128 values, though
10647   // currently-defined values fit in one byte for each.
10648   char sv[3];
10649   sv[0] = elfcpp::Tag_CPU_arch;
10650   gold_assert(arch != 0);
10651   sv[1] = arch;
10652   sv[2] = '\0';
10653
10654   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10655 }
10656
10657 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10658 // into account.
10659 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10660
10661 template<bool big_endian>
10662 int
10663 Target_arm<big_endian>::tag_cpu_arch_combine(
10664     const char* name,
10665     int oldtag,
10666     int* secondary_compat_out,
10667     int newtag,
10668     int secondary_compat)
10669 {
10670 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10671   static const int v6t2[] =
10672     {
10673       T(V6T2),   // PRE_V4.
10674       T(V6T2),   // V4.
10675       T(V6T2),   // V4T.
10676       T(V6T2),   // V5T.
10677       T(V6T2),   // V5TE.
10678       T(V6T2),   // V5TEJ.
10679       T(V6T2),   // V6.
10680       T(V7),     // V6KZ.
10681       T(V6T2)    // V6T2.
10682     };
10683   static const int v6k[] =
10684     {
10685       T(V6K),    // PRE_V4.
10686       T(V6K),    // V4.
10687       T(V6K),    // V4T.
10688       T(V6K),    // V5T.
10689       T(V6K),    // V5TE.
10690       T(V6K),    // V5TEJ.
10691       T(V6K),    // V6.
10692       T(V6KZ),   // V6KZ.
10693       T(V7),     // V6T2.
10694       T(V6K)     // V6K.
10695     };
10696   static const int v7[] =
10697     {
10698       T(V7),     // PRE_V4.
10699       T(V7),     // V4.
10700       T(V7),     // V4T.
10701       T(V7),     // V5T.
10702       T(V7),     // V5TE.
10703       T(V7),     // V5TEJ.
10704       T(V7),     // V6.
10705       T(V7),     // V6KZ.
10706       T(V7),     // V6T2.
10707       T(V7),     // V6K.
10708       T(V7)      // V7.
10709     };
10710   static const int v6_m[] =
10711     {
10712       -1,        // PRE_V4.
10713       -1,        // V4.
10714       T(V6K),    // V4T.
10715       T(V6K),    // V5T.
10716       T(V6K),    // V5TE.
10717       T(V6K),    // V5TEJ.
10718       T(V6K),    // V6.
10719       T(V6KZ),   // V6KZ.
10720       T(V7),     // V6T2.
10721       T(V6K),    // V6K.
10722       T(V7),     // V7.
10723       T(V6_M)    // V6_M.
10724     };
10725   static const int v6s_m[] =
10726     {
10727       -1,        // PRE_V4.
10728       -1,        // V4.
10729       T(V6K),    // V4T.
10730       T(V6K),    // V5T.
10731       T(V6K),    // V5TE.
10732       T(V6K),    // V5TEJ.
10733       T(V6K),    // V6.
10734       T(V6KZ),   // V6KZ.
10735       T(V7),     // V6T2.
10736       T(V6K),    // V6K.
10737       T(V7),     // V7.
10738       T(V6S_M),  // V6_M.
10739       T(V6S_M)   // V6S_M.
10740     };
10741   static const int v7e_m[] =
10742     {
10743       -1,       // PRE_V4.
10744       -1,       // V4.
10745       T(V7E_M), // V4T.
10746       T(V7E_M), // V5T.
10747       T(V7E_M), // V5TE.
10748       T(V7E_M), // V5TEJ.
10749       T(V7E_M), // V6.
10750       T(V7E_M), // V6KZ.
10751       T(V7E_M), // V6T2.
10752       T(V7E_M), // V6K.
10753       T(V7E_M), // V7.
10754       T(V7E_M), // V6_M.
10755       T(V7E_M), // V6S_M.
10756       T(V7E_M)  // V7E_M.
10757     };
10758   static const int v8[] =
10759     {
10760       T(V8),   // PRE_V4.
10761       T(V8),   // V4.
10762       T(V8),   // V4T.
10763       T(V8),   // V5T.
10764       T(V8),   // V5TE.
10765       T(V8),   // V5TEJ.
10766       T(V8),   // V6.
10767       T(V8),   // V6KZ.
10768       T(V8),   // V6T2.
10769       T(V8),   // V6K.
10770       T(V8),   // V7.
10771       T(V8),   // V6_M.
10772       T(V8),   // V6S_M.
10773       T(V8),   // V7E_M.
10774       T(V8)    // V8.
10775     };
10776   static const int v4t_plus_v6_m[] =
10777     {
10778       -1,               // PRE_V4.
10779       -1,               // V4.
10780       T(V4T),           // V4T.
10781       T(V5T),           // V5T.
10782       T(V5TE),          // V5TE.
10783       T(V5TEJ),         // V5TEJ.
10784       T(V6),            // V6.
10785       T(V6KZ),          // V6KZ.
10786       T(V6T2),          // V6T2.
10787       T(V6K),           // V6K.
10788       T(V7),            // V7.
10789       T(V6_M),          // V6_M.
10790       T(V6S_M),         // V6S_M.
10791       T(V7E_M),         // V7E_M.
10792       T(V8),            // V8.
10793       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10794     };
10795   static const int* comb[] =
10796     {
10797       v6t2,
10798       v6k,
10799       v7,
10800       v6_m,
10801       v6s_m,
10802       v7e_m,
10803       v8,
10804       // Pseudo-architecture.
10805       v4t_plus_v6_m
10806     };
10807
10808   // Check we've not got a higher architecture than we know about.
10809
10810   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10811     {
10812       gold_error(_("%s: unknown CPU architecture"), name);
10813       return -1;
10814     }
10815
10816   // Override old tag if we have a Tag_also_compatible_with on the output.
10817
10818   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10819       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10820     oldtag = T(V4T_PLUS_V6_M);
10821
10822   // And override the new tag if we have a Tag_also_compatible_with on the
10823   // input.
10824
10825   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10826       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10827     newtag = T(V4T_PLUS_V6_M);
10828
10829   // Architectures before V6KZ add features monotonically.
10830   int tagh = std::max(oldtag, newtag);
10831   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10832     return tagh;
10833
10834   int tagl = std::min(oldtag, newtag);
10835   int result = comb[tagh - T(V6T2)][tagl];
10836
10837   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10838   // as the canonical version.
10839   if (result == T(V4T_PLUS_V6_M))
10840     {
10841       result = T(V4T);
10842       *secondary_compat_out = T(V6_M);
10843     }
10844   else
10845     *secondary_compat_out = -1;
10846
10847   if (result == -1)
10848     {
10849       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10850                  name, oldtag, newtag);
10851       return -1;
10852     }
10853
10854   return result;
10855 #undef T
10856 }
10857
10858 // Helper to print AEABI enum tag value.
10859
10860 template<bool big_endian>
10861 std::string
10862 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10863 {
10864   static const char* aeabi_enum_names[] =
10865     { "", "variable-size", "32-bit", "" };
10866   const size_t aeabi_enum_names_size =
10867     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10868
10869   if (value < aeabi_enum_names_size)
10870     return std::string(aeabi_enum_names[value]);
10871   else
10872     {
10873       char buffer[100];
10874       sprintf(buffer, "<unknown value %u>", value);
10875       return std::string(buffer);
10876     }
10877 }
10878
10879 // Return the string value to store in TAG_CPU_name.
10880
10881 template<bool big_endian>
10882 std::string
10883 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10884 {
10885   static const char* name_table[] = {
10886     // These aren't real CPU names, but we can't guess
10887     // that from the architecture version alone.
10888    "Pre v4",
10889    "ARM v4",
10890    "ARM v4T",
10891    "ARM v5T",
10892    "ARM v5TE",
10893    "ARM v5TEJ",
10894    "ARM v6",
10895    "ARM v6KZ",
10896    "ARM v6T2",
10897    "ARM v6K",
10898    "ARM v7",
10899    "ARM v6-M",
10900    "ARM v6S-M",
10901    "ARM v7E-M",
10902    "ARM v8"
10903  };
10904  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10905
10906   if (value < name_table_size)
10907     return std::string(name_table[value]);
10908   else
10909     {
10910       char buffer[100];
10911       sprintf(buffer, "<unknown CPU value %u>", value);
10912       return std::string(buffer);
10913     }
10914 }
10915
10916 // Query attributes object to see if integer divide instructions may be
10917 // present in an object.
10918
10919 template<bool big_endian>
10920 bool
10921 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10922     const Object_attribute* div_attr)
10923 {
10924   switch (div_attr->int_value())
10925     {
10926     case 0:
10927       // Integer divide allowed if instruction contained in
10928       // archetecture.
10929       if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10930         return true;
10931       else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10932         return true;
10933       else
10934         return false;
10935
10936     case 1:
10937       // Integer divide explicitly prohibited.
10938       return false;
10939
10940     default:
10941       // Unrecognised case - treat as allowing divide everywhere.
10942     case 2:
10943       // Integer divide allowed in ARM state.
10944       return true;
10945     }
10946 }
10947
10948 // Query attributes object to see if integer divide instructions are
10949 // forbidden to be in the object.  This is not the inverse of
10950 // attributes_accept_div.
10951
10952 template<bool big_endian>
10953 bool
10954 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10955 {
10956   return div_attr->int_value() == 1;
10957 }
10958
10959 // Merge object attributes from input file called NAME with those of the
10960 // output.  The input object attributes are in the object pointed by PASD.
10961
10962 template<bool big_endian>
10963 void
10964 Target_arm<big_endian>::merge_object_attributes(
10965     const char* name,
10966     const Attributes_section_data* pasd)
10967 {
10968   // Return if there is no attributes section data.
10969   if (pasd == NULL)
10970     return;
10971
10972   // If output has no object attributes, just copy.
10973   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10974   if (this->attributes_section_data_ == NULL)
10975     {
10976       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10977       Object_attribute* out_attr =
10978         this->attributes_section_data_->known_attributes(vendor);
10979
10980       // We do not output objects with Tag_MPextension_use_legacy - we move
10981       //  the attribute's value to Tag_MPextension_use.  */
10982       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10983         {
10984           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10985               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10986                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10987             {
10988               gold_error(_("%s has both the current and legacy "
10989                            "Tag_MPextension_use attributes"),
10990                          name);
10991             }
10992
10993           out_attr[elfcpp::Tag_MPextension_use] =
10994             out_attr[elfcpp::Tag_MPextension_use_legacy];
10995           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10996           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10997         }
10998
10999       return;
11000     }
11001
11002   const Object_attribute* in_attr = pasd->known_attributes(vendor);
11003   Object_attribute* out_attr =
11004     this->attributes_section_data_->known_attributes(vendor);
11005
11006   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
11007   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11008       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11009     {
11010       // Ignore mismatches if the object doesn't use floating point.  */
11011       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11012           == elfcpp::AEABI_FP_number_model_none
11013           || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11014               != elfcpp::AEABI_FP_number_model_none
11015               && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11016                  == elfcpp::AEABI_VFP_args_compatible))
11017         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11018             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11019       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11020                != elfcpp::AEABI_FP_number_model_none
11021                && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11022                   != elfcpp::AEABI_VFP_args_compatible
11023                && parameters->options().warn_mismatch())
11024         gold_error(_("%s uses VFP register arguments, output does not"),
11025                    name);
11026     }
11027
11028   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11029     {
11030       // Merge this attribute with existing attributes.
11031       switch (i)
11032         {
11033         case elfcpp::Tag_CPU_raw_name:
11034         case elfcpp::Tag_CPU_name:
11035           // These are merged after Tag_CPU_arch.
11036           break;
11037
11038         case elfcpp::Tag_ABI_optimization_goals:
11039         case elfcpp::Tag_ABI_FP_optimization_goals:
11040           // Use the first value seen.
11041           break;
11042
11043         case elfcpp::Tag_CPU_arch:
11044           {
11045             unsigned int saved_out_attr = out_attr->int_value();
11046             // Merge Tag_CPU_arch and Tag_also_compatible_with.
11047             int secondary_compat =
11048               this->get_secondary_compatible_arch(pasd);
11049             int secondary_compat_out =
11050               this->get_secondary_compatible_arch(
11051                   this->attributes_section_data_);
11052             out_attr[i].set_int_value(
11053                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11054                                      &secondary_compat_out,
11055                                      in_attr[i].int_value(),
11056                                      secondary_compat));
11057             this->set_secondary_compatible_arch(this->attributes_section_data_,
11058                                                 secondary_compat_out);
11059
11060             // Merge Tag_CPU_name and Tag_CPU_raw_name.
11061             if (out_attr[i].int_value() == saved_out_attr)
11062               ; // Leave the names alone.
11063             else if (out_attr[i].int_value() == in_attr[i].int_value())
11064               {
11065                 // The output architecture has been changed to match the
11066                 // input architecture.  Use the input names.
11067                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11068                     in_attr[elfcpp::Tag_CPU_name].string_value());
11069                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11070                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11071               }
11072             else
11073               {
11074                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11075                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11076               }
11077
11078             // If we still don't have a value for Tag_CPU_name,
11079             // make one up now.  Tag_CPU_raw_name remains blank.
11080             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11081               {
11082                 const std::string cpu_name =
11083                   this->tag_cpu_name_value(out_attr[i].int_value());
11084                 // FIXME:  If we see an unknown CPU, this will be set
11085                 // to "<unknown CPU n>", where n is the attribute value.
11086                 // This is different from BFD, which leaves the name alone.
11087                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11088               }
11089           }
11090           break;
11091
11092         case elfcpp::Tag_ARM_ISA_use:
11093         case elfcpp::Tag_THUMB_ISA_use:
11094         case elfcpp::Tag_WMMX_arch:
11095         case elfcpp::Tag_Advanced_SIMD_arch:
11096           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11097         case elfcpp::Tag_ABI_FP_rounding:
11098         case elfcpp::Tag_ABI_FP_exceptions:
11099         case elfcpp::Tag_ABI_FP_user_exceptions:
11100         case elfcpp::Tag_ABI_FP_number_model:
11101         case elfcpp::Tag_VFP_HP_extension:
11102         case elfcpp::Tag_CPU_unaligned_access:
11103         case elfcpp::Tag_T2EE_use:
11104         case elfcpp::Tag_Virtualization_use:
11105         case elfcpp::Tag_MPextension_use:
11106           // Use the largest value specified.
11107           if (in_attr[i].int_value() > out_attr[i].int_value())
11108             out_attr[i].set_int_value(in_attr[i].int_value());
11109           break;
11110
11111         case elfcpp::Tag_ABI_align8_preserved:
11112         case elfcpp::Tag_ABI_PCS_RO_data:
11113           // Use the smallest value specified.
11114           if (in_attr[i].int_value() < out_attr[i].int_value())
11115             out_attr[i].set_int_value(in_attr[i].int_value());
11116           break;
11117
11118         case elfcpp::Tag_ABI_align8_needed:
11119           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11120               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11121                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11122                       == 0)))
11123             {
11124               // This error message should be enabled once all non-conforming
11125               // binaries in the toolchain have had the attributes set
11126               // properly.
11127               // gold_error(_("output 8-byte data alignment conflicts with %s"),
11128               //            name);
11129             }
11130           // Fall through.
11131         case elfcpp::Tag_ABI_FP_denormal:
11132         case elfcpp::Tag_ABI_PCS_GOT_use:
11133           {
11134             // These tags have 0 = don't care, 1 = strong requirement,
11135             // 2 = weak requirement.
11136             static const int order_021[3] = {0, 2, 1};
11137
11138             // Use the "greatest" from the sequence 0, 2, 1, or the largest
11139             // value if greater than 2 (for future-proofing).
11140             if ((in_attr[i].int_value() > 2
11141                  && in_attr[i].int_value() > out_attr[i].int_value())
11142                 || (in_attr[i].int_value() <= 2
11143                     && out_attr[i].int_value() <= 2
11144                     && (order_021[in_attr[i].int_value()]
11145                         > order_021[out_attr[i].int_value()])))
11146               out_attr[i].set_int_value(in_attr[i].int_value());
11147           }
11148           break;
11149
11150         case elfcpp::Tag_CPU_arch_profile:
11151           if (out_attr[i].int_value() != in_attr[i].int_value())
11152             {
11153               // 0 will merge with anything.
11154               // 'A' and 'S' merge to 'A'.
11155               // 'R' and 'S' merge to 'R'.
11156               // 'M' and 'A|R|S' is an error.
11157               if (out_attr[i].int_value() == 0
11158                   || (out_attr[i].int_value() == 'S'
11159                       && (in_attr[i].int_value() == 'A'
11160                           || in_attr[i].int_value() == 'R')))
11161                 out_attr[i].set_int_value(in_attr[i].int_value());
11162               else if (in_attr[i].int_value() == 0
11163                        || (in_attr[i].int_value() == 'S'
11164                            && (out_attr[i].int_value() == 'A'
11165                                || out_attr[i].int_value() == 'R')))
11166                 ; // Do nothing.
11167               else if (parameters->options().warn_mismatch())
11168                 {
11169                   gold_error
11170                     (_("conflicting architecture profiles %c/%c"),
11171                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11172                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11173                 }
11174             }
11175           break;
11176         case elfcpp::Tag_VFP_arch:
11177             {
11178               static const struct
11179               {
11180                   int ver;
11181                   int regs;
11182               } vfp_versions[7] =
11183                 {
11184                   {0, 0},
11185                   {1, 16},
11186                   {2, 16},
11187                   {3, 32},
11188                   {3, 16},
11189                   {4, 32},
11190                   {4, 16}
11191                 };
11192
11193               // Values greater than 6 aren't defined, so just pick the
11194               // biggest.
11195               if (in_attr[i].int_value() > 6
11196                   && in_attr[i].int_value() > out_attr[i].int_value())
11197                 {
11198                   *out_attr = *in_attr;
11199                   break;
11200                 }
11201               // The output uses the superset of input features
11202               // (ISA version) and registers.
11203               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11204                                  vfp_versions[out_attr[i].int_value()].ver);
11205               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11206                                   vfp_versions[out_attr[i].int_value()].regs);
11207               // This assumes all possible supersets are also a valid
11208               // options.
11209               int newval;
11210               for (newval = 6; newval > 0; newval--)
11211                 {
11212                   if (regs == vfp_versions[newval].regs
11213                       && ver == vfp_versions[newval].ver)
11214                     break;
11215                 }
11216               out_attr[i].set_int_value(newval);
11217             }
11218           break;
11219         case elfcpp::Tag_PCS_config:
11220           if (out_attr[i].int_value() == 0)
11221             out_attr[i].set_int_value(in_attr[i].int_value());
11222           else if (in_attr[i].int_value() != 0
11223                    && out_attr[i].int_value() != 0
11224                    && parameters->options().warn_mismatch())
11225             {
11226               // It's sometimes ok to mix different configs, so this is only
11227               // a warning.
11228               gold_warning(_("%s: conflicting platform configuration"), name);
11229             }
11230           break;
11231         case elfcpp::Tag_ABI_PCS_R9_use:
11232           if (in_attr[i].int_value() != out_attr[i].int_value()
11233               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11234               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11235               && parameters->options().warn_mismatch())
11236             {
11237               gold_error(_("%s: conflicting use of R9"), name);
11238             }
11239           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11240             out_attr[i].set_int_value(in_attr[i].int_value());
11241           break;
11242         case elfcpp::Tag_ABI_PCS_RW_data:
11243           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11244               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11245                   != elfcpp::AEABI_R9_SB)
11246               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11247                   != elfcpp::AEABI_R9_unused)
11248               && parameters->options().warn_mismatch())
11249             {
11250               gold_error(_("%s: SB relative addressing conflicts with use "
11251                            "of R9"),
11252                            name);
11253             }
11254           // Use the smallest value specified.
11255           if (in_attr[i].int_value() < out_attr[i].int_value())
11256             out_attr[i].set_int_value(in_attr[i].int_value());
11257           break;
11258         case elfcpp::Tag_ABI_PCS_wchar_t:
11259           if (out_attr[i].int_value()
11260               && in_attr[i].int_value()
11261               && out_attr[i].int_value() != in_attr[i].int_value()
11262               && parameters->options().warn_mismatch()
11263               && parameters->options().wchar_size_warning())
11264             {
11265               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11266                              "use %u-byte wchar_t; use of wchar_t values "
11267                              "across objects may fail"),
11268                            name, in_attr[i].int_value(),
11269                            out_attr[i].int_value());
11270             }
11271           else if (in_attr[i].int_value() && !out_attr[i].int_value())
11272             out_attr[i].set_int_value(in_attr[i].int_value());
11273           break;
11274         case elfcpp::Tag_ABI_enum_size:
11275           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11276             {
11277               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11278                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11279                 {
11280                   // The existing object is compatible with anything.
11281                   // Use whatever requirements the new object has.
11282                   out_attr[i].set_int_value(in_attr[i].int_value());
11283                 }
11284               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11285                        && out_attr[i].int_value() != in_attr[i].int_value()
11286                        && parameters->options().warn_mismatch()
11287                        && parameters->options().enum_size_warning())
11288                 {
11289                   unsigned int in_value = in_attr[i].int_value();
11290                   unsigned int out_value = out_attr[i].int_value();
11291                   gold_warning(_("%s uses %s enums yet the output is to use "
11292                                  "%s enums; use of enum values across objects "
11293                                  "may fail"),
11294                                name,
11295                                this->aeabi_enum_name(in_value).c_str(),
11296                                this->aeabi_enum_name(out_value).c_str());
11297                 }
11298             }
11299           break;
11300         case elfcpp::Tag_ABI_VFP_args:
11301           // Already done.
11302           break;
11303         case elfcpp::Tag_ABI_WMMX_args:
11304           if (in_attr[i].int_value() != out_attr[i].int_value()
11305               && parameters->options().warn_mismatch())
11306             {
11307               gold_error(_("%s uses iWMMXt register arguments, output does "
11308                            "not"),
11309                          name);
11310             }
11311           break;
11312         case Object_attribute::Tag_compatibility:
11313           // Merged in target-independent code.
11314           break;
11315         case elfcpp::Tag_ABI_HardFP_use:
11316           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11317           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11318               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11319             out_attr[i].set_int_value(3);
11320           else if (in_attr[i].int_value() > out_attr[i].int_value())
11321             out_attr[i].set_int_value(in_attr[i].int_value());
11322           break;
11323         case elfcpp::Tag_ABI_FP_16bit_format:
11324           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11325             {
11326               if (in_attr[i].int_value() != out_attr[i].int_value()
11327                   && parameters->options().warn_mismatch())
11328                 gold_error(_("fp16 format mismatch between %s and output"),
11329                            name);
11330             }
11331           if (in_attr[i].int_value() != 0)
11332             out_attr[i].set_int_value(in_attr[i].int_value());
11333           break;
11334
11335         case elfcpp::Tag_DIV_use:
11336           {
11337             // A value of zero on input means that the divide
11338             // instruction may be used if available in the base
11339             // architecture as specified via Tag_CPU_arch and
11340             // Tag_CPU_arch_profile.  A value of 1 means that the user
11341             // did not want divide instructions.  A value of 2
11342             // explicitly means that divide instructions were allowed
11343             // in ARM and Thumb state.
11344             int arch = this->
11345               get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11346               int_value();
11347             int profile = this->
11348               get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11349               int_value();
11350             if (in_attr[i].int_value() == out_attr[i].int_value())
11351               {
11352                 // Do nothing.
11353               }
11354             else if (attributes_forbid_div(&in_attr[i])
11355                      && !attributes_accept_div(arch, profile, &out_attr[i]))
11356               out_attr[i].set_int_value(1);
11357             else if (attributes_forbid_div(&out_attr[i])
11358                      && attributes_accept_div(arch, profile, &in_attr[i]))
11359               out_attr[i].set_int_value(in_attr[i].int_value());
11360             else if (in_attr[i].int_value() == 2)
11361               out_attr[i].set_int_value(in_attr[i].int_value());
11362           }
11363           break;
11364
11365         case elfcpp::Tag_MPextension_use_legacy:
11366           // We don't output objects with Tag_MPextension_use_legacy - we
11367           // move the value to Tag_MPextension_use.
11368           if (in_attr[i].int_value() != 0
11369               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11370             {
11371               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11372                   != in_attr[i].int_value())
11373                 {
11374                   gold_error(_("%s has has both the current and legacy "
11375                                "Tag_MPextension_use attributes"),
11376                              name);
11377                 }
11378             }
11379
11380           if (in_attr[i].int_value()
11381               > out_attr[elfcpp::Tag_MPextension_use].int_value())
11382             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11383
11384           break;
11385
11386         case elfcpp::Tag_nodefaults:
11387           // This tag is set if it exists, but the value is unused (and is
11388           // typically zero).  We don't actually need to do anything here -
11389           // the merge happens automatically when the type flags are merged
11390           // below.
11391           break;
11392         case elfcpp::Tag_also_compatible_with:
11393           // Already done in Tag_CPU_arch.
11394           break;
11395         case elfcpp::Tag_conformance:
11396           // Keep the attribute if it matches.  Throw it away otherwise.
11397           // No attribute means no claim to conform.
11398           if (in_attr[i].string_value() != out_attr[i].string_value())
11399             out_attr[i].set_string_value("");
11400           break;
11401
11402         default:
11403           {
11404             const char* err_object = NULL;
11405
11406             // The "known_obj_attributes" table does contain some undefined
11407             // attributes.  Ensure that there are unused.
11408             if (out_attr[i].int_value() != 0
11409                 || out_attr[i].string_value() != "")
11410               err_object = "output";
11411             else if (in_attr[i].int_value() != 0
11412                      || in_attr[i].string_value() != "")
11413               err_object = name;
11414
11415             if (err_object != NULL
11416                 && parameters->options().warn_mismatch())
11417               {
11418                 // Attribute numbers >=64 (mod 128) can be safely ignored.
11419                 if ((i & 127) < 64)
11420                   gold_error(_("%s: unknown mandatory EABI object attribute "
11421                                "%d"),
11422                              err_object, i);
11423                 else
11424                   gold_warning(_("%s: unknown EABI object attribute %d"),
11425                                err_object, i);
11426               }
11427
11428             // Only pass on attributes that match in both inputs.
11429             if (!in_attr[i].matches(out_attr[i]))
11430               {
11431                 out_attr[i].set_int_value(0);
11432                 out_attr[i].set_string_value("");
11433               }
11434           }
11435         }
11436
11437       // If out_attr was copied from in_attr then it won't have a type yet.
11438       if (in_attr[i].type() && !out_attr[i].type())
11439         out_attr[i].set_type(in_attr[i].type());
11440     }
11441
11442   // Merge Tag_compatibility attributes and any common GNU ones.
11443   this->attributes_section_data_->merge(name, pasd);
11444
11445   // Check for any attributes not known on ARM.
11446   typedef Vendor_object_attributes::Other_attributes Other_attributes;
11447   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11448   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11449   Other_attributes* out_other_attributes =
11450     this->attributes_section_data_->other_attributes(vendor);
11451   Other_attributes::iterator out_iter = out_other_attributes->begin();
11452
11453   while (in_iter != in_other_attributes->end()
11454          || out_iter != out_other_attributes->end())
11455     {
11456       const char* err_object = NULL;
11457       int err_tag = 0;
11458
11459       // The tags for each list are in numerical order.
11460       // If the tags are equal, then merge.
11461       if (out_iter != out_other_attributes->end()
11462           && (in_iter == in_other_attributes->end()
11463               || in_iter->first > out_iter->first))
11464         {
11465           // This attribute only exists in output.  We can't merge, and we
11466           // don't know what the tag means, so delete it.
11467           err_object = "output";
11468           err_tag = out_iter->first;
11469           int saved_tag = out_iter->first;
11470           delete out_iter->second;
11471           out_other_attributes->erase(out_iter);
11472           out_iter = out_other_attributes->upper_bound(saved_tag);
11473         }
11474       else if (in_iter != in_other_attributes->end()
11475                && (out_iter != out_other_attributes->end()
11476                    || in_iter->first < out_iter->first))
11477         {
11478           // This attribute only exists in input. We can't merge, and we
11479           // don't know what the tag means, so ignore it.
11480           err_object = name;
11481           err_tag = in_iter->first;
11482           ++in_iter;
11483         }
11484       else // The tags are equal.
11485         {
11486           // As present, all attributes in the list are unknown, and
11487           // therefore can't be merged meaningfully.
11488           err_object = "output";
11489           err_tag = out_iter->first;
11490
11491           //  Only pass on attributes that match in both inputs.
11492           if (!in_iter->second->matches(*(out_iter->second)))
11493             {
11494               // No match.  Delete the attribute.
11495               int saved_tag = out_iter->first;
11496               delete out_iter->second;
11497               out_other_attributes->erase(out_iter);
11498               out_iter = out_other_attributes->upper_bound(saved_tag);
11499             }
11500           else
11501             {
11502               // Matched.  Keep the attribute and move to the next.
11503               ++out_iter;
11504               ++in_iter;
11505             }
11506         }
11507
11508       if (err_object && parameters->options().warn_mismatch())
11509         {
11510           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
11511           if ((err_tag & 127) < 64)
11512             {
11513               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11514                          err_object, err_tag);
11515             }
11516           else
11517             {
11518               gold_warning(_("%s: unknown EABI object attribute %d"),
11519                            err_object, err_tag);
11520             }
11521         }
11522     }
11523 }
11524
11525 // Stub-generation methods for Target_arm.
11526
11527 // Make a new Arm_input_section object.
11528
11529 template<bool big_endian>
11530 Arm_input_section<big_endian>*
11531 Target_arm<big_endian>::new_arm_input_section(
11532     Relobj* relobj,
11533     unsigned int shndx)
11534 {
11535   Section_id sid(relobj, shndx);
11536
11537   Arm_input_section<big_endian>* arm_input_section =
11538     new Arm_input_section<big_endian>(relobj, shndx);
11539   arm_input_section->init();
11540
11541   // Register new Arm_input_section in map for look-up.
11542   std::pair<typename Arm_input_section_map::iterator, bool> ins =
11543     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11544
11545   // Make sure that it we have not created another Arm_input_section
11546   // for this input section already.
11547   gold_assert(ins.second);
11548
11549   return arm_input_section;
11550 }
11551
11552 // Find the Arm_input_section object corresponding to the SHNDX-th input
11553 // section of RELOBJ.
11554
11555 template<bool big_endian>
11556 Arm_input_section<big_endian>*
11557 Target_arm<big_endian>::find_arm_input_section(
11558     Relobj* relobj,
11559     unsigned int shndx) const
11560 {
11561   Section_id sid(relobj, shndx);
11562   typename Arm_input_section_map::const_iterator p =
11563     this->arm_input_section_map_.find(sid);
11564   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11565 }
11566
11567 // Make a new stub table.
11568
11569 template<bool big_endian>
11570 Stub_table<big_endian>*
11571 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11572 {
11573   Stub_table<big_endian>* stub_table =
11574     new Stub_table<big_endian>(owner);
11575   this->stub_tables_.push_back(stub_table);
11576
11577   stub_table->set_address(owner->address() + owner->data_size());
11578   stub_table->set_file_offset(owner->offset() + owner->data_size());
11579   stub_table->finalize_data_size();
11580
11581   return stub_table;
11582 }
11583
11584 // Scan a relocation for stub generation.
11585
11586 template<bool big_endian>
11587 void
11588 Target_arm<big_endian>::scan_reloc_for_stub(
11589     const Relocate_info<32, big_endian>* relinfo,
11590     unsigned int r_type,
11591     const Sized_symbol<32>* gsym,
11592     unsigned int r_sym,
11593     const Symbol_value<32>* psymval,
11594     elfcpp::Elf_types<32>::Elf_Swxword addend,
11595     Arm_address address)
11596 {
11597   const Arm_relobj<big_endian>* arm_relobj =
11598     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11599
11600   bool target_is_thumb;
11601   Symbol_value<32> symval;
11602   if (gsym != NULL)
11603     {
11604       // This is a global symbol.  Determine if we use PLT and if the
11605       // final target is THUMB.
11606       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11607         {
11608           // This uses a PLT, change the symbol value.
11609           symval.set_output_value(this->plt_address_for_global(gsym));
11610           psymval = &symval;
11611           target_is_thumb = false;
11612         }
11613       else if (gsym->is_undefined())
11614         // There is no need to generate a stub symbol is undefined.
11615         return;
11616       else
11617         {
11618           target_is_thumb =
11619             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11620              || (gsym->type() == elfcpp::STT_FUNC
11621                  && !gsym->is_undefined()
11622                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11623         }
11624     }
11625   else
11626     {
11627       // This is a local symbol.  Determine if the final target is THUMB.
11628       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11629     }
11630
11631   // Strip LSB if this points to a THUMB target.
11632   const Arm_reloc_property* reloc_property =
11633     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11634   gold_assert(reloc_property != NULL);
11635   if (target_is_thumb
11636       && reloc_property->uses_thumb_bit()
11637       && ((psymval->value(arm_relobj, 0) & 1) != 0))
11638     {
11639       Arm_address stripped_value =
11640         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11641       symval.set_output_value(stripped_value);
11642       psymval = &symval;
11643     }
11644
11645   // Get the symbol value.
11646   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11647
11648   // Owing to pipelining, the PC relative branches below actually skip
11649   // two instructions when the branch offset is 0.
11650   Arm_address destination;
11651   switch (r_type)
11652     {
11653     case elfcpp::R_ARM_CALL:
11654     case elfcpp::R_ARM_JUMP24:
11655     case elfcpp::R_ARM_PLT32:
11656       // ARM branches.
11657       destination = value + addend + 8;
11658       break;
11659     case elfcpp::R_ARM_THM_CALL:
11660     case elfcpp::R_ARM_THM_XPC22:
11661     case elfcpp::R_ARM_THM_JUMP24:
11662     case elfcpp::R_ARM_THM_JUMP19:
11663       // THUMB branches.
11664       destination = value + addend + 4;
11665       break;
11666     default:
11667       gold_unreachable();
11668     }
11669
11670   Reloc_stub* stub = NULL;
11671   Stub_type stub_type =
11672     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11673                                     target_is_thumb);
11674   if (stub_type != arm_stub_none)
11675     {
11676       // Try looking up an existing stub from a stub table.
11677       Stub_table<big_endian>* stub_table =
11678         arm_relobj->stub_table(relinfo->data_shndx);
11679       gold_assert(stub_table != NULL);
11680
11681       // Locate stub by destination.
11682       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11683
11684       // Create a stub if there is not one already
11685       stub = stub_table->find_reloc_stub(stub_key);
11686       if (stub == NULL)
11687         {
11688           // create a new stub and add it to stub table.
11689           stub = this->stub_factory().make_reloc_stub(stub_type);
11690           stub_table->add_reloc_stub(stub, stub_key);
11691         }
11692
11693       // Record the destination address.
11694       stub->set_destination_address(destination
11695                                     | (target_is_thumb ? 1 : 0));
11696     }
11697
11698   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11699   if (this->fix_cortex_a8_
11700       && (r_type == elfcpp::R_ARM_THM_JUMP24
11701           || r_type == elfcpp::R_ARM_THM_JUMP19
11702           || r_type == elfcpp::R_ARM_THM_CALL
11703           || r_type == elfcpp::R_ARM_THM_XPC22)
11704       && (address & 0xfffU) == 0xffeU)
11705     {
11706       // Found a candidate.  Note we haven't checked the destination is
11707       // within 4K here: if we do so (and don't create a record) we can't
11708       // tell that a branch should have been relocated when scanning later.
11709       this->cortex_a8_relocs_info_[address] =
11710         new Cortex_a8_reloc(stub, r_type,
11711                             destination | (target_is_thumb ? 1 : 0));
11712     }
11713 }
11714
11715 // This function scans a relocation sections for stub generation.
11716 // The template parameter Relocate must be a class type which provides
11717 // a single function, relocate(), which implements the machine
11718 // specific part of a relocation.
11719
11720 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11721 // SHT_REL or SHT_RELA.
11722
11723 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11724 // of relocs.  OUTPUT_SECTION is the output section.
11725 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11726 // mapped to output offsets.
11727
11728 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11729 // VIEW_SIZE is the size.  These refer to the input section, unless
11730 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11731 // the output section.
11732
11733 template<bool big_endian>
11734 template<int sh_type>
11735 void inline
11736 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11737     const Relocate_info<32, big_endian>* relinfo,
11738     const unsigned char* prelocs,
11739     size_t reloc_count,
11740     Output_section* output_section,
11741     bool needs_special_offset_handling,
11742     const unsigned char* view,
11743     elfcpp::Elf_types<32>::Elf_Addr view_address,
11744     section_size_type)
11745 {
11746   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11747   const int reloc_size =
11748     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11749
11750   Arm_relobj<big_endian>* arm_object =
11751     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11752   unsigned int local_count = arm_object->local_symbol_count();
11753
11754   gold::Default_comdat_behavior default_comdat_behavior;
11755   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11756
11757   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11758     {
11759       Reltype reloc(prelocs);
11760
11761       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11762       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11763       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11764
11765       r_type = this->get_real_reloc_type(r_type);
11766
11767       // Only a few relocation types need stubs.
11768       if ((r_type != elfcpp::R_ARM_CALL)
11769          && (r_type != elfcpp::R_ARM_JUMP24)
11770          && (r_type != elfcpp::R_ARM_PLT32)
11771          && (r_type != elfcpp::R_ARM_THM_CALL)
11772          && (r_type != elfcpp::R_ARM_THM_XPC22)
11773          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11774          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11775          && (r_type != elfcpp::R_ARM_V4BX))
11776         continue;
11777
11778       section_offset_type offset =
11779         convert_to_section_size_type(reloc.get_r_offset());
11780
11781       if (needs_special_offset_handling)
11782         {
11783           offset = output_section->output_offset(relinfo->object,
11784                                                  relinfo->data_shndx,
11785                                                  offset);
11786           if (offset == -1)
11787             continue;
11788         }
11789
11790       // Create a v4bx stub if --fix-v4bx-interworking is used.
11791       if (r_type == elfcpp::R_ARM_V4BX)
11792         {
11793           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11794             {
11795               // Get the BX instruction.
11796               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11797               const Valtype* wv =
11798                 reinterpret_cast<const Valtype*>(view + offset);
11799               elfcpp::Elf_types<32>::Elf_Swxword insn =
11800                 elfcpp::Swap<32, big_endian>::readval(wv);
11801               const uint32_t reg = (insn & 0xf);
11802
11803               if (reg < 0xf)
11804                 {
11805                   // Try looking up an existing stub from a stub table.
11806                   Stub_table<big_endian>* stub_table =
11807                     arm_object->stub_table(relinfo->data_shndx);
11808                   gold_assert(stub_table != NULL);
11809
11810                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11811                     {
11812                       // create a new stub and add it to stub table.
11813                       Arm_v4bx_stub* stub =
11814                         this->stub_factory().make_arm_v4bx_stub(reg);
11815                       gold_assert(stub != NULL);
11816                       stub_table->add_arm_v4bx_stub(stub);
11817                     }
11818                 }
11819             }
11820           continue;
11821         }
11822
11823       // Get the addend.
11824       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11825       elfcpp::Elf_types<32>::Elf_Swxword addend =
11826         stub_addend_reader(r_type, view + offset, reloc);
11827
11828       const Sized_symbol<32>* sym;
11829
11830       Symbol_value<32> symval;
11831       const Symbol_value<32> *psymval;
11832       bool is_defined_in_discarded_section;
11833       unsigned int shndx;
11834       if (r_sym < local_count)
11835         {
11836           sym = NULL;
11837           psymval = arm_object->local_symbol(r_sym);
11838
11839           // If the local symbol belongs to a section we are discarding,
11840           // and that section is a debug section, try to find the
11841           // corresponding kept section and map this symbol to its
11842           // counterpart in the kept section.  The symbol must not
11843           // correspond to a section we are folding.
11844           bool is_ordinary;
11845           shndx = psymval->input_shndx(&is_ordinary);
11846           is_defined_in_discarded_section =
11847             (is_ordinary
11848              && shndx != elfcpp::SHN_UNDEF
11849              && !arm_object->is_section_included(shndx)
11850              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11851
11852           // We need to compute the would-be final value of this local
11853           // symbol.
11854           if (!is_defined_in_discarded_section)
11855             {
11856               typedef Sized_relobj_file<32, big_endian> ObjType;
11857               typename ObjType::Compute_final_local_value_status status =
11858                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11859                                                       relinfo->symtab);
11860               if (status == ObjType::CFLV_OK)
11861                 {
11862                   // Currently we cannot handle a branch to a target in
11863                   // a merged section.  If this is the case, issue an error
11864                   // and also free the merge symbol value.
11865                   if (!symval.has_output_value())
11866                     {
11867                       const std::string& section_name =
11868                         arm_object->section_name(shndx);
11869                       arm_object->error(_("cannot handle branch to local %u "
11870                                           "in a merged section %s"),
11871                                         r_sym, section_name.c_str());
11872                     }
11873                   psymval = &symval;
11874                 }
11875               else
11876                 {
11877                   // We cannot determine the final value.
11878                   continue;
11879                 }
11880             }
11881         }
11882       else
11883         {
11884           const Symbol* gsym;
11885           gsym = arm_object->global_symbol(r_sym);
11886           gold_assert(gsym != NULL);
11887           if (gsym->is_forwarder())
11888             gsym = relinfo->symtab->resolve_forwards(gsym);
11889
11890           sym = static_cast<const Sized_symbol<32>*>(gsym);
11891           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11892             symval.set_output_symtab_index(sym->symtab_index());
11893           else
11894             symval.set_no_output_symtab_entry();
11895
11896           // We need to compute the would-be final value of this global
11897           // symbol.
11898           const Symbol_table* symtab = relinfo->symtab;
11899           const Sized_symbol<32>* sized_symbol =
11900             symtab->get_sized_symbol<32>(gsym);
11901           Symbol_table::Compute_final_value_status status;
11902           Arm_address value =
11903             symtab->compute_final_value<32>(sized_symbol, &status);
11904
11905           // Skip this if the symbol has not output section.
11906           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11907             continue;
11908           symval.set_output_value(value);
11909
11910           if (gsym->type() == elfcpp::STT_TLS)
11911             symval.set_is_tls_symbol();
11912           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11913             symval.set_is_ifunc_symbol();
11914           psymval = &symval;
11915
11916           is_defined_in_discarded_section =
11917             (gsym->is_defined_in_discarded_section()
11918              && gsym->is_undefined());
11919           shndx = 0;
11920         }
11921
11922       Symbol_value<32> symval2;
11923       if (is_defined_in_discarded_section)
11924         {
11925           if (comdat_behavior == CB_UNDETERMINED)
11926             {
11927               std::string name = arm_object->section_name(relinfo->data_shndx);
11928               comdat_behavior = default_comdat_behavior.get(name.c_str());
11929             }
11930           if (comdat_behavior == CB_PRETEND)
11931             {
11932               // FIXME: This case does not work for global symbols.
11933               // We have no place to store the original section index.
11934               // Fortunately this does not matter for comdat sections,
11935               // only for sections explicitly discarded by a linker
11936               // script.
11937               bool found;
11938               typename elfcpp::Elf_types<32>::Elf_Addr value =
11939                 arm_object->map_to_kept_section(shndx, &found);
11940               if (found)
11941                 symval2.set_output_value(value + psymval->input_value());
11942               else
11943                 symval2.set_output_value(0);
11944             }
11945           else
11946             {
11947               if (comdat_behavior == CB_WARNING)
11948                 gold_warning_at_location(relinfo, i, offset,
11949                                          _("relocation refers to discarded "
11950                                            "section"));
11951               symval2.set_output_value(0);
11952             }
11953           symval2.set_no_output_symtab_entry();
11954           psymval = &symval2;
11955         }
11956
11957       // If symbol is a section symbol, we don't know the actual type of
11958       // destination.  Give up.
11959       if (psymval->is_section_symbol())
11960         continue;
11961
11962       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11963                                 addend, view_address + offset);
11964     }
11965 }
11966
11967 // Scan an input section for stub generation.
11968
11969 template<bool big_endian>
11970 void
11971 Target_arm<big_endian>::scan_section_for_stubs(
11972     const Relocate_info<32, big_endian>* relinfo,
11973     unsigned int sh_type,
11974     const unsigned char* prelocs,
11975     size_t reloc_count,
11976     Output_section* output_section,
11977     bool needs_special_offset_handling,
11978     const unsigned char* view,
11979     Arm_address view_address,
11980     section_size_type view_size)
11981 {
11982   if (sh_type == elfcpp::SHT_REL)
11983     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11984         relinfo,
11985         prelocs,
11986         reloc_count,
11987         output_section,
11988         needs_special_offset_handling,
11989         view,
11990         view_address,
11991         view_size);
11992   else if (sh_type == elfcpp::SHT_RELA)
11993     // We do not support RELA type relocations yet.  This is provided for
11994     // completeness.
11995     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11996         relinfo,
11997         prelocs,
11998         reloc_count,
11999         output_section,
12000         needs_special_offset_handling,
12001         view,
12002         view_address,
12003         view_size);
12004   else
12005     gold_unreachable();
12006 }
12007
12008 // Group input sections for stub generation.
12009 //
12010 // We group input sections in an output section so that the total size,
12011 // including any padding space due to alignment is smaller than GROUP_SIZE
12012 // unless the only input section in group is bigger than GROUP_SIZE already.
12013 // Then an ARM stub table is created to follow the last input section
12014 // in group.  For each group an ARM stub table is created an is placed
12015 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
12016 // extend the group after the stub table.
12017
12018 template<bool big_endian>
12019 void
12020 Target_arm<big_endian>::group_sections(
12021     Layout* layout,
12022     section_size_type group_size,
12023     bool stubs_always_after_branch,
12024     const Task* task)
12025 {
12026   // Group input sections and insert stub table
12027   Layout::Section_list section_list;
12028   layout->get_executable_sections(&section_list);
12029   for (Layout::Section_list::const_iterator p = section_list.begin();
12030        p != section_list.end();
12031        ++p)
12032     {
12033       Arm_output_section<big_endian>* output_section =
12034         Arm_output_section<big_endian>::as_arm_output_section(*p);
12035       output_section->group_sections(group_size, stubs_always_after_branch,
12036                                      this, task);
12037     }
12038 }
12039
12040 // Relaxation hook.  This is where we do stub generation.
12041
12042 template<bool big_endian>
12043 bool
12044 Target_arm<big_endian>::do_relax(
12045     int pass,
12046     const Input_objects* input_objects,
12047     Symbol_table* symtab,
12048     Layout* layout,
12049     const Task* task)
12050 {
12051   // No need to generate stubs if this is a relocatable link.
12052   gold_assert(!parameters->options().relocatable());
12053
12054   // If this is the first pass, we need to group input sections into
12055   // stub groups.
12056   bool done_exidx_fixup = false;
12057   typedef typename Stub_table_list::iterator Stub_table_iterator;
12058   if (pass == 1)
12059     {
12060       // Determine the stub group size.  The group size is the absolute
12061       // value of the parameter --stub-group-size.  If --stub-group-size
12062       // is passed a negative value, we restrict stubs to be always after
12063       // the stubbed branches.
12064       int32_t stub_group_size_param =
12065         parameters->options().stub_group_size();
12066       bool stubs_always_after_branch = stub_group_size_param < 0;
12067       section_size_type stub_group_size = abs(stub_group_size_param);
12068
12069       if (stub_group_size == 1)
12070         {
12071           // Default value.
12072           // Thumb branch range is +-4MB has to be used as the default
12073           // maximum size (a given section can contain both ARM and Thumb
12074           // code, so the worst case has to be taken into account).  If we are
12075           // fixing cortex-a8 errata, the branch range has to be even smaller,
12076           // since wide conditional branch has a range of +-1MB only.
12077           //
12078           // This value is 48K less than that, which allows for 4096
12079           // 12-byte stubs.  If we exceed that, then we will fail to link.
12080           // The user will have to relink with an explicit group size
12081           // option.
12082             stub_group_size = 4145152;
12083         }
12084
12085       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12086       // page as the first half of a 32-bit branch straddling two 4K pages.
12087       // This is a crude way of enforcing that.  In addition, long conditional
12088       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
12089       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
12090       // cortex-A8 stubs from long conditional branches.
12091       if (this->fix_cortex_a8_)
12092         {
12093           stubs_always_after_branch = true;
12094           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12095           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12096         }
12097
12098       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12099
12100       // Also fix .ARM.exidx section coverage.
12101       Arm_output_section<big_endian>* exidx_output_section = NULL;
12102       for (Layout::Section_list::const_iterator p =
12103              layout->section_list().begin();
12104            p != layout->section_list().end();
12105            ++p)
12106         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12107           {
12108             if (exidx_output_section == NULL)
12109               exidx_output_section =
12110                 Arm_output_section<big_endian>::as_arm_output_section(*p);
12111             else
12112               // We cannot handle this now.
12113               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12114                            "non-relocatable link"),
12115                           exidx_output_section->name(),
12116                           (*p)->name());
12117           }
12118
12119       if (exidx_output_section != NULL)
12120         {
12121           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12122                                    symtab, task);
12123           done_exidx_fixup = true;
12124         }
12125     }
12126   else
12127     {
12128       // If this is not the first pass, addresses and file offsets have
12129       // been reset at this point, set them here.
12130       for (Stub_table_iterator sp = this->stub_tables_.begin();
12131            sp != this->stub_tables_.end();
12132            ++sp)
12133         {
12134           Arm_input_section<big_endian>* owner = (*sp)->owner();
12135           off_t off = align_address(owner->original_size(),
12136                                     (*sp)->addralign());
12137           (*sp)->set_address_and_file_offset(owner->address() + off,
12138                                              owner->offset() + off);
12139         }
12140     }
12141
12142   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
12143   // beginning of each relaxation pass, just blow away all the stubs.
12144   // Alternatively, we could selectively remove only the stubs and reloc
12145   // information for code sections that have moved since the last pass.
12146   // That would require more book-keeping.
12147   if (this->fix_cortex_a8_)
12148     {
12149       // Clear all Cortex-A8 reloc information.
12150       for (typename Cortex_a8_relocs_info::const_iterator p =
12151              this->cortex_a8_relocs_info_.begin();
12152            p != this->cortex_a8_relocs_info_.end();
12153            ++p)
12154         delete p->second;
12155       this->cortex_a8_relocs_info_.clear();
12156
12157       // Remove all Cortex-A8 stubs.
12158       for (Stub_table_iterator sp = this->stub_tables_.begin();
12159            sp != this->stub_tables_.end();
12160            ++sp)
12161         (*sp)->remove_all_cortex_a8_stubs();
12162     }
12163
12164   // Scan relocs for relocation stubs
12165   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12166        op != input_objects->relobj_end();
12167        ++op)
12168     {
12169       Arm_relobj<big_endian>* arm_relobj =
12170         Arm_relobj<big_endian>::as_arm_relobj(*op);
12171       // Lock the object so we can read from it.  This is only called
12172       // single-threaded from Layout::finalize, so it is OK to lock.
12173       Task_lock_obj<Object> tl(task, arm_relobj);
12174       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12175     }
12176
12177   // Check all stub tables to see if any of them have their data sizes
12178   // or addresses alignments changed.  These are the only things that
12179   // matter.
12180   bool any_stub_table_changed = false;
12181   Unordered_set<const Output_section*> sections_needing_adjustment;
12182   for (Stub_table_iterator sp = this->stub_tables_.begin();
12183        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12184        ++sp)
12185     {
12186       if ((*sp)->update_data_size_and_addralign())
12187         {
12188           // Update data size of stub table owner.
12189           Arm_input_section<big_endian>* owner = (*sp)->owner();
12190           uint64_t address = owner->address();
12191           off_t offset = owner->offset();
12192           owner->reset_address_and_file_offset();
12193           owner->set_address_and_file_offset(address, offset);
12194
12195           sections_needing_adjustment.insert(owner->output_section());
12196           any_stub_table_changed = true;
12197         }
12198     }
12199
12200   // Output_section_data::output_section() returns a const pointer but we
12201   // need to update output sections, so we record all output sections needing
12202   // update above and scan the sections here to find out what sections need
12203   // to be updated.
12204   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12205       p != layout->section_list().end();
12206       ++p)
12207     {
12208       if (sections_needing_adjustment.find(*p)
12209           != sections_needing_adjustment.end())
12210         (*p)->set_section_offsets_need_adjustment();
12211     }
12212
12213   // Stop relaxation if no EXIDX fix-up and no stub table change.
12214   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12215
12216   // Finalize the stubs in the last relaxation pass.
12217   if (!continue_relaxation)
12218     {
12219       for (Stub_table_iterator sp = this->stub_tables_.begin();
12220            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12221             ++sp)
12222         (*sp)->finalize_stubs();
12223
12224       // Update output local symbol counts of objects if necessary.
12225       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12226            op != input_objects->relobj_end();
12227            ++op)
12228         {
12229           Arm_relobj<big_endian>* arm_relobj =
12230             Arm_relobj<big_endian>::as_arm_relobj(*op);
12231
12232           // Update output local symbol counts.  We need to discard local
12233           // symbols defined in parts of input sections that are discarded by
12234           // relaxation.
12235           if (arm_relobj->output_local_symbol_count_needs_update())
12236             {
12237               // We need to lock the object's file to update it.
12238               Task_lock_obj<Object> tl(task, arm_relobj);
12239               arm_relobj->update_output_local_symbol_count();
12240             }
12241         }
12242     }
12243
12244   return continue_relaxation;
12245 }
12246
12247 // Relocate a stub.
12248
12249 template<bool big_endian>
12250 void
12251 Target_arm<big_endian>::relocate_stub(
12252     Stub* stub,
12253     const Relocate_info<32, big_endian>* relinfo,
12254     Output_section* output_section,
12255     unsigned char* view,
12256     Arm_address address,
12257     section_size_type view_size)
12258 {
12259   Relocate relocate;
12260   const Stub_template* stub_template = stub->stub_template();
12261   for (size_t i = 0; i < stub_template->reloc_count(); i++)
12262     {
12263       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12264       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12265
12266       unsigned int r_type = insn->r_type();
12267       section_size_type reloc_offset = stub_template->reloc_offset(i);
12268       section_size_type reloc_size = insn->size();
12269       gold_assert(reloc_offset + reloc_size <= view_size);
12270
12271       // This is the address of the stub destination.
12272       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12273       Symbol_value<32> symval;
12274       symval.set_output_value(target);
12275
12276       // Synthesize a fake reloc just in case.  We don't have a symbol so
12277       // we use 0.
12278       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12279       memset(reloc_buffer, 0, sizeof(reloc_buffer));
12280       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12281       reloc_write.put_r_offset(reloc_offset);
12282       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12283       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
12284
12285       relocate.relocate(relinfo, this, output_section,
12286                         this->fake_relnum_for_stubs, rel, r_type,
12287                         NULL, &symval, view + reloc_offset,
12288                         address + reloc_offset, reloc_size);
12289     }
12290 }
12291
12292 // Determine whether an object attribute tag takes an integer, a
12293 // string or both.
12294
12295 template<bool big_endian>
12296 int
12297 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12298 {
12299   if (tag == Object_attribute::Tag_compatibility)
12300     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12301             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12302   else if (tag == elfcpp::Tag_nodefaults)
12303     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12304             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12305   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12306     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12307   else if (tag < 32)
12308     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12309   else
12310     return ((tag & 1) != 0
12311             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12312             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12313 }
12314
12315 // Reorder attributes.
12316 //
12317 // The ABI defines that Tag_conformance should be emitted first, and that
12318 // Tag_nodefaults should be second (if either is defined).  This sets those
12319 // two positions, and bumps up the position of all the remaining tags to
12320 // compensate.
12321
12322 template<bool big_endian>
12323 int
12324 Target_arm<big_endian>::do_attributes_order(int num) const
12325 {
12326   // Reorder the known object attributes in output.  We want to move
12327   // Tag_conformance to position 4 and Tag_conformance to position 5
12328   // and shift everything between 4 .. Tag_conformance - 1 to make room.
12329   if (num == 4)
12330     return elfcpp::Tag_conformance;
12331   if (num == 5)
12332     return elfcpp::Tag_nodefaults;
12333   if ((num - 2) < elfcpp::Tag_nodefaults)
12334     return num - 2;
12335   if ((num - 1) < elfcpp::Tag_conformance)
12336     return num - 1;
12337   return num;
12338 }
12339
12340 // Scan a span of THUMB code for Cortex-A8 erratum.
12341
12342 template<bool big_endian>
12343 void
12344 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12345     Arm_relobj<big_endian>* arm_relobj,
12346     unsigned int shndx,
12347     section_size_type span_start,
12348     section_size_type span_end,
12349     const unsigned char* view,
12350     Arm_address address)
12351 {
12352   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12353   //
12354   // The opcode is BLX.W, BL.W, B.W, Bcc.W
12355   // The branch target is in the same 4KB region as the
12356   // first half of the branch.
12357   // The instruction before the branch is a 32-bit
12358   // length non-branch instruction.
12359   section_size_type i = span_start;
12360   bool last_was_32bit = false;
12361   bool last_was_branch = false;
12362   while (i < span_end)
12363     {
12364       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12365       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12366       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12367       bool is_blx = false, is_b = false;
12368       bool is_bl = false, is_bcc = false;
12369
12370       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12371       if (insn_32bit)
12372         {
12373           // Load the rest of the insn (in manual-friendly order).
12374           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12375
12376           // Encoding T4: B<c>.W.
12377           is_b = (insn & 0xf800d000U) == 0xf0009000U;
12378           // Encoding T1: BL<c>.W.
12379           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12380           // Encoding T2: BLX<c>.W.
12381           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12382           // Encoding T3: B<c>.W (not permitted in IT block).
12383           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12384                     && (insn & 0x07f00000U) != 0x03800000U);
12385         }
12386
12387       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12388
12389       // If this instruction is a 32-bit THUMB branch that crosses a 4K
12390       // page boundary and it follows 32-bit non-branch instruction,
12391       // we need to work around.
12392       if (is_32bit_branch
12393           && ((address + i) & 0xfffU) == 0xffeU
12394           && last_was_32bit
12395           && !last_was_branch)
12396         {
12397           // Check to see if there is a relocation stub for this branch.
12398           bool force_target_arm = false;
12399           bool force_target_thumb = false;
12400           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12401           Cortex_a8_relocs_info::const_iterator p =
12402             this->cortex_a8_relocs_info_.find(address + i);
12403
12404           if (p != this->cortex_a8_relocs_info_.end())
12405             {
12406               cortex_a8_reloc = p->second;
12407               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12408
12409               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12410                   && !target_is_thumb)
12411                 force_target_arm = true;
12412               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12413                        && target_is_thumb)
12414                 force_target_thumb = true;
12415             }
12416
12417           off_t offset;
12418           Stub_type stub_type = arm_stub_none;
12419
12420           // Check if we have an offending branch instruction.
12421           uint16_t upper_insn = (insn >> 16) & 0xffffU;
12422           uint16_t lower_insn = insn & 0xffffU;
12423           typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12424
12425           if (cortex_a8_reloc != NULL
12426               && cortex_a8_reloc->reloc_stub() != NULL)
12427             // We've already made a stub for this instruction, e.g.
12428             // it's a long branch or a Thumb->ARM stub.  Assume that
12429             // stub will suffice to work around the A8 erratum (see
12430             // setting of always_after_branch above).
12431             ;
12432           else if (is_bcc)
12433             {
12434               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12435                                                               lower_insn);
12436               stub_type = arm_stub_a8_veneer_b_cond;
12437             }
12438           else if (is_b || is_bl || is_blx)
12439             {
12440               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12441                                                          lower_insn);
12442               if (is_blx)
12443                 offset &= ~3;
12444
12445               stub_type = (is_blx
12446                            ? arm_stub_a8_veneer_blx
12447                            : (is_bl
12448                               ? arm_stub_a8_veneer_bl
12449                               : arm_stub_a8_veneer_b));
12450             }
12451
12452           if (stub_type != arm_stub_none)
12453             {
12454               Arm_address pc_for_insn = address + i + 4;
12455
12456               // The original instruction is a BL, but the target is
12457               // an ARM instruction.  If we were not making a stub,
12458               // the BL would have been converted to a BLX.  Use the
12459               // BLX stub instead in that case.
12460               if (this->may_use_v5t_interworking() && force_target_arm
12461                   && stub_type == arm_stub_a8_veneer_bl)
12462                 {
12463                   stub_type = arm_stub_a8_veneer_blx;
12464                   is_blx = true;
12465                   is_bl = false;
12466                 }
12467               // Conversely, if the original instruction was
12468               // BLX but the target is Thumb mode, use the BL stub.
12469               else if (force_target_thumb
12470                        && stub_type == arm_stub_a8_veneer_blx)
12471                 {
12472                   stub_type = arm_stub_a8_veneer_bl;
12473                   is_blx = false;
12474                   is_bl = true;
12475                 }
12476
12477               if (is_blx)
12478                 pc_for_insn &= ~3;
12479
12480               // If we found a relocation, use the proper destination,
12481               // not the offset in the (unrelocated) instruction.
12482               // Note this is always done if we switched the stub type above.
12483               if (cortex_a8_reloc != NULL)
12484                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12485
12486               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12487
12488               // Add a new stub if destination address in in the same page.
12489               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12490                 {
12491                   Cortex_a8_stub* stub =
12492                     this->stub_factory_.make_cortex_a8_stub(stub_type,
12493                                                             arm_relobj, shndx,
12494                                                             address + i,
12495                                                             target, insn);
12496                   Stub_table<big_endian>* stub_table =
12497                     arm_relobj->stub_table(shndx);
12498                   gold_assert(stub_table != NULL);
12499                   stub_table->add_cortex_a8_stub(address + i, stub);
12500                 }
12501             }
12502         }
12503
12504       i += insn_32bit ? 4 : 2;
12505       last_was_32bit = insn_32bit;
12506       last_was_branch = is_32bit_branch;
12507     }
12508 }
12509
12510 // Apply the Cortex-A8 workaround.
12511
12512 template<bool big_endian>
12513 void
12514 Target_arm<big_endian>::apply_cortex_a8_workaround(
12515     const Cortex_a8_stub* stub,
12516     Arm_address stub_address,
12517     unsigned char* insn_view,
12518     Arm_address insn_address)
12519 {
12520   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12521   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12522   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12523   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12524   off_t branch_offset = stub_address - (insn_address + 4);
12525
12526   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12527   switch (stub->stub_template()->type())
12528     {
12529     case arm_stub_a8_veneer_b_cond:
12530       // For a conditional branch, we re-write it to be an unconditional
12531       // branch to the stub.  We use the THUMB-2 encoding here.
12532       upper_insn = 0xf000U;
12533       lower_insn = 0xb800U;
12534       // Fall through
12535     case arm_stub_a8_veneer_b:
12536     case arm_stub_a8_veneer_bl:
12537     case arm_stub_a8_veneer_blx:
12538       if ((lower_insn & 0x5000U) == 0x4000U)
12539         // For a BLX instruction, make sure that the relocation is
12540         // rounded up to a word boundary.  This follows the semantics of
12541         // the instruction which specifies that bit 1 of the target
12542         // address will come from bit 1 of the base address.
12543         branch_offset = (branch_offset + 2) & ~3;
12544
12545       // Put BRANCH_OFFSET back into the insn.
12546       gold_assert(!Bits<25>::has_overflow32(branch_offset));
12547       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12548       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12549       break;
12550
12551     default:
12552       gold_unreachable();
12553     }
12554
12555   // Put the relocated value back in the object file:
12556   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12557   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12558 }
12559
12560 // Target selector for ARM.  Note this is never instantiated directly.
12561 // It's only used in Target_selector_arm_nacl, below.
12562
12563 template<bool big_endian>
12564 class Target_selector_arm : public Target_selector
12565 {
12566  public:
12567   Target_selector_arm()
12568     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12569                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12570                       (big_endian ? "armelfb" : "armelf"))
12571   { }
12572
12573   Target*
12574   do_instantiate_target()
12575   { return new Target_arm<big_endian>(); }
12576 };
12577
12578 // Fix .ARM.exidx section coverage.
12579
12580 template<bool big_endian>
12581 void
12582 Target_arm<big_endian>::fix_exidx_coverage(
12583     Layout* layout,
12584     const Input_objects* input_objects,
12585     Arm_output_section<big_endian>* exidx_section,
12586     Symbol_table* symtab,
12587     const Task* task)
12588 {
12589   // We need to look at all the input sections in output in ascending
12590   // order of of output address.  We do that by building a sorted list
12591   // of output sections by addresses.  Then we looks at the output sections
12592   // in order.  The input sections in an output section are already sorted
12593   // by addresses within the output section.
12594
12595   typedef std::set<Output_section*, output_section_address_less_than>
12596       Sorted_output_section_list;
12597   Sorted_output_section_list sorted_output_sections;
12598
12599   // Find out all the output sections of input sections pointed by
12600   // EXIDX input sections.
12601   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12602        p != input_objects->relobj_end();
12603        ++p)
12604     {
12605       Arm_relobj<big_endian>* arm_relobj =
12606         Arm_relobj<big_endian>::as_arm_relobj(*p);
12607       std::vector<unsigned int> shndx_list;
12608       arm_relobj->get_exidx_shndx_list(&shndx_list);
12609       for (size_t i = 0; i < shndx_list.size(); ++i)
12610         {
12611           const Arm_exidx_input_section* exidx_input_section =
12612             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12613           gold_assert(exidx_input_section != NULL);
12614           if (!exidx_input_section->has_errors())
12615             {
12616               unsigned int text_shndx = exidx_input_section->link();
12617               Output_section* os = arm_relobj->output_section(text_shndx);
12618               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12619                 sorted_output_sections.insert(os);
12620             }
12621         }
12622     }
12623
12624   // Go over the output sections in ascending order of output addresses.
12625   typedef typename Arm_output_section<big_endian>::Text_section_list
12626       Text_section_list;
12627   Text_section_list sorted_text_sections;
12628   for (typename Sorted_output_section_list::iterator p =
12629         sorted_output_sections.begin();
12630       p != sorted_output_sections.end();
12631       ++p)
12632     {
12633       Arm_output_section<big_endian>* arm_output_section =
12634         Arm_output_section<big_endian>::as_arm_output_section(*p);
12635       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12636     }
12637
12638   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12639                                     merge_exidx_entries(), task);
12640 }
12641
12642 template<bool big_endian>
12643 void
12644 Target_arm<big_endian>::do_define_standard_symbols(
12645     Symbol_table* symtab,
12646     Layout* layout)
12647 {
12648   // Handle the .ARM.exidx section.
12649   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12650
12651   if (exidx_section != NULL)
12652     {
12653       // Create __exidx_start and __exidx_end symbols.
12654       symtab->define_in_output_data("__exidx_start",
12655                                     NULL, // version
12656                                     Symbol_table::PREDEFINED,
12657                                     exidx_section,
12658                                     0, // value
12659                                     0, // symsize
12660                                     elfcpp::STT_NOTYPE,
12661                                     elfcpp::STB_GLOBAL,
12662                                     elfcpp::STV_HIDDEN,
12663                                     0, // nonvis
12664                                     false, // offset_is_from_end
12665                                     true); // only_if_ref
12666
12667       symtab->define_in_output_data("__exidx_end",
12668                                     NULL, // version
12669                                     Symbol_table::PREDEFINED,
12670                                     exidx_section,
12671                                     0, // value
12672                                     0, // symsize
12673                                     elfcpp::STT_NOTYPE,
12674                                     elfcpp::STB_GLOBAL,
12675                                     elfcpp::STV_HIDDEN,
12676                                     0, // nonvis
12677                                     true, // offset_is_from_end
12678                                     true); // only_if_ref
12679     }
12680   else
12681     {
12682       // Define __exidx_start and __exidx_end even when .ARM.exidx
12683       // section is missing to match ld's behaviour.
12684       symtab->define_as_constant("__exidx_start", NULL,
12685                                  Symbol_table::PREDEFINED,
12686                                  0, 0, elfcpp::STT_OBJECT,
12687                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12688                                  true, false);
12689       symtab->define_as_constant("__exidx_end", NULL,
12690                                  Symbol_table::PREDEFINED,
12691                                  0, 0, elfcpp::STT_OBJECT,
12692                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12693                                  true, false);
12694     }
12695 }
12696
12697 // NaCl variant.  It uses different PLT contents.
12698
12699 template<bool big_endian>
12700 class Output_data_plt_arm_nacl;
12701
12702 template<bool big_endian>
12703 class Target_arm_nacl : public Target_arm<big_endian>
12704 {
12705  public:
12706   Target_arm_nacl()
12707     : Target_arm<big_endian>(&arm_nacl_info)
12708   { }
12709
12710  protected:
12711   virtual Output_data_plt_arm<big_endian>*
12712   do_make_data_plt(
12713                    Layout* layout,
12714                    Arm_output_data_got<big_endian>* got,
12715                    Output_data_space* got_plt,
12716                    Output_data_space* got_irelative)
12717   { return new Output_data_plt_arm_nacl<big_endian>(
12718       layout, got, got_plt, got_irelative); }
12719
12720  private:
12721   static const Target::Target_info arm_nacl_info;
12722 };
12723
12724 template<bool big_endian>
12725 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12726 {
12727   32,                   // size
12728   big_endian,           // is_big_endian
12729   elfcpp::EM_ARM,       // machine_code
12730   false,                // has_make_symbol
12731   false,                // has_resolve
12732   false,                // has_code_fill
12733   true,                 // is_default_stack_executable
12734   false,                // can_icf_inline_merge_sections
12735   '\0',                 // wrap_char
12736   "/lib/ld-nacl-arm.so.1", // dynamic_linker
12737   0x20000,              // default_text_segment_address
12738   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12739   0x10000,              // common_pagesize (overridable by -z common-page-size)
12740   true,                 // isolate_execinstr
12741   0x10000000,           // rosegment_gap
12742   elfcpp::SHN_UNDEF,    // small_common_shndx
12743   elfcpp::SHN_UNDEF,    // large_common_shndx
12744   0,                    // small_common_section_flags
12745   0,                    // large_common_section_flags
12746   ".ARM.attributes",    // attributes_section
12747   "aeabi",              // attributes_vendor
12748   "_start",             // entry_symbol_name
12749   32,                   // hash_entry_size
12750 };
12751
12752 template<bool big_endian>
12753 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12754 {
12755  public:
12756   Output_data_plt_arm_nacl(
12757       Layout* layout,
12758       Arm_output_data_got<big_endian>* got,
12759       Output_data_space* got_plt,
12760       Output_data_space* got_irelative)
12761     : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
12762   { }
12763
12764  protected:
12765   // Return the offset of the first non-reserved PLT entry.
12766   virtual unsigned int
12767   do_first_plt_entry_offset() const
12768   { return sizeof(first_plt_entry); }
12769
12770   // Return the size of a PLT entry.
12771   virtual unsigned int
12772   do_get_plt_entry_size() const
12773   { return sizeof(plt_entry); }
12774
12775   virtual void
12776   do_fill_first_plt_entry(unsigned char* pov,
12777                           Arm_address got_address,
12778                           Arm_address plt_address);
12779
12780   virtual void
12781   do_fill_plt_entry(unsigned char* pov,
12782                     Arm_address got_address,
12783                     Arm_address plt_address,
12784                     unsigned int got_offset,
12785                     unsigned int plt_offset);
12786
12787  private:
12788   inline uint32_t arm_movw_immediate(uint32_t value)
12789   {
12790     return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12791   }
12792
12793   inline uint32_t arm_movt_immediate(uint32_t value)
12794   {
12795     return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12796   }
12797
12798   // Template for the first PLT entry.
12799   static const uint32_t first_plt_entry[16];
12800
12801   // Template for subsequent PLT entries.
12802   static const uint32_t plt_entry[4];
12803 };
12804
12805 // The first entry in the PLT.
12806 template<bool big_endian>
12807 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12808 {
12809   // First bundle:
12810   0xe300c000,                           // movw ip, #:lower16:&GOT[2]-.+8
12811   0xe340c000,                           // movt ip, #:upper16:&GOT[2]-.+8
12812   0xe08cc00f,                           // add  ip, ip, pc
12813   0xe52dc008,                           // str  ip, [sp, #-8]!
12814   // Second bundle:
12815   0xe3ccc103,                           // bic  ip, ip, #0xc0000000
12816   0xe59cc000,                           // ldr  ip, [ip]
12817   0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
12818   0xe12fff1c,                           // bx   ip
12819   // Third bundle:
12820   0xe320f000,                           // nop
12821   0xe320f000,                           // nop
12822   0xe320f000,                           // nop
12823   // .Lplt_tail:
12824   0xe50dc004,                           // str  ip, [sp, #-4]
12825   // Fourth bundle:
12826   0xe3ccc103,                           // bic  ip, ip, #0xc0000000
12827   0xe59cc000,                           // ldr  ip, [ip]
12828   0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
12829   0xe12fff1c,                           // bx   ip
12830 };
12831
12832 template<bool big_endian>
12833 void
12834 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12835     unsigned char* pov,
12836     Arm_address got_address,
12837     Arm_address plt_address)
12838 {
12839   // Write first PLT entry.  All but first two words are constants.
12840   const size_t num_first_plt_words = (sizeof(first_plt_entry)
12841                                       / sizeof(first_plt_entry[0]));
12842
12843   int32_t got_displacement = got_address + 8 - (plt_address + 16);
12844
12845   elfcpp::Swap<32, big_endian>::writeval
12846     (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12847   elfcpp::Swap<32, big_endian>::writeval
12848     (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12849
12850   for (size_t i = 2; i < num_first_plt_words; ++i)
12851     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12852 }
12853
12854 // Subsequent entries in the PLT.
12855
12856 template<bool big_endian>
12857 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12858 {
12859   0xe300c000,                           // movw ip, #:lower16:&GOT[n]-.+8
12860   0xe340c000,                           // movt ip, #:upper16:&GOT[n]-.+8
12861   0xe08cc00f,                           // add  ip, ip, pc
12862   0xea000000,                           // b    .Lplt_tail
12863 };
12864
12865 template<bool big_endian>
12866 void
12867 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12868     unsigned char* pov,
12869     Arm_address got_address,
12870     Arm_address plt_address,
12871     unsigned int got_offset,
12872     unsigned int plt_offset)
12873 {
12874   // Calculate the displacement between the PLT slot and the
12875   // common tail that's part of the special initial PLT slot.
12876   int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12877                                - (plt_address + plt_offset
12878                                   + sizeof(plt_entry) + sizeof(uint32_t)));
12879   gold_assert((tail_displacement & 3) == 0);
12880   tail_displacement >>= 2;
12881
12882   gold_assert ((tail_displacement & 0xff000000) == 0
12883                || (-tail_displacement & 0xff000000) == 0);
12884
12885   // Calculate the displacement between the PLT slot and the entry
12886   // in the GOT.  The offset accounts for the value produced by
12887   // adding to pc in the penultimate instruction of the PLT stub.
12888   const int32_t got_displacement = (got_address + got_offset
12889                                     - (plt_address + sizeof(plt_entry)));
12890
12891   elfcpp::Swap<32, big_endian>::writeval
12892     (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12893   elfcpp::Swap<32, big_endian>::writeval
12894     (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12895   elfcpp::Swap<32, big_endian>::writeval
12896     (pov + 8, plt_entry[2]);
12897   elfcpp::Swap<32, big_endian>::writeval
12898     (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12899 }
12900
12901 // Target selectors.
12902
12903 template<bool big_endian>
12904 class Target_selector_arm_nacl
12905   : public Target_selector_nacl<Target_selector_arm<big_endian>,
12906                                 Target_arm_nacl<big_endian> >
12907 {
12908  public:
12909   Target_selector_arm_nacl()
12910     : Target_selector_nacl<Target_selector_arm<big_endian>,
12911                            Target_arm_nacl<big_endian> >(
12912           "arm",
12913           big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12914           big_endian ? "armelfb_nacl" : "armelf_nacl")
12915   { }
12916 };
12917
12918 Target_selector_arm_nacl<false> target_selector_arm;
12919 Target_selector_arm_nacl<true> target_selector_armbe;
12920
12921 } // End anonymous namespace.