2010-06-25 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is invalid index.  This points to a global symbol.
602     // Otherwise, this points a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj.  This is done to avoid making the stub class a template
605     // as most of the stub machinery is endianness-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB with using KEY.  Caller is reponsible for avoid adding
899   // if already a STUB with the same key has been added. 
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // Caller is reponsible for avoid adding if already a STUB with the same
919   // address has been added. 
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067  private:
1068   // Implement do_write for a given endianness.
1069   template<bool big_endian>
1070   void inline
1071   do_fixed_endian_write(Output_file*);
1072   
1073   // The object containing the section pointed by this.
1074   Relobj* relobj_;
1075   // The section index of the section pointed by this.
1076   unsigned int shndx_;
1077 };
1078
1079 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section. 
1082
1083 typedef std::map<section_offset_type, section_offset_type>
1084         Arm_exidx_section_offset_map;
1085
1086 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1087 // with some of its entries merged.
1088
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1090 {
1091  public:
1092   // Constructor for Arm_exidx_merged_section.
1093   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094   // SECTION_OFFSET_MAP points to a section offset map describing how
1095   // parts of the input section are mapped to output.  DELETED_BYTES is
1096   // the number of bytes deleted from the EXIDX input section.
1097   Arm_exidx_merged_section(
1098       const Arm_exidx_input_section& exidx_input_section,
1099       const Arm_exidx_section_offset_map& section_offset_map,
1100       uint32_t deleted_bytes);
1101
1102   // Return the original EXIDX input section.
1103   const Arm_exidx_input_section&
1104   exidx_input_section() const
1105   { return this->exidx_input_section_; }
1106
1107   // Return the section offset map.
1108   const Arm_exidx_section_offset_map&
1109   section_offset_map() const
1110   { return this->section_offset_map_; }
1111
1112  protected:
1113   // Write merged section into file OF.
1114   void
1115   do_write(Output_file* of);
1116
1117   bool
1118   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119                   section_offset_type*) const;
1120
1121  private:
1122   // Original EXIDX input section.
1123   const Arm_exidx_input_section& exidx_input_section_;
1124   // Section offset map.
1125   const Arm_exidx_section_offset_map& section_offset_map_;
1126 };
1127
1128 // A class to wrap an ordinary input section containing executable code.
1129
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1132 {
1133  public:
1134   Arm_input_section(Relobj* relobj, unsigned int shndx)
1135     : Output_relaxed_input_section(relobj, shndx, 1),
1136       original_addralign_(1), original_size_(0), stub_table_(NULL)
1137   { }
1138
1139   ~Arm_input_section()
1140   { }
1141
1142   // Initialize.
1143   void
1144   init();
1145   
1146   // Whether this is a stub table owner.
1147   bool
1148   is_stub_table_owner() const
1149   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151   // Return the stub table.
1152   Stub_table<big_endian>*
1153   stub_table() const
1154   { return this->stub_table_; }
1155
1156   // Set the stub_table.
1157   void
1158   set_stub_table(Stub_table<big_endian>* stub_table)
1159   { this->stub_table_ = stub_table; }
1160
1161   // Downcast a base pointer to an Arm_input_section pointer.  This is
1162   // not type-safe but we only use Arm_input_section not the base class.
1163   static Arm_input_section<big_endian>*
1164   as_arm_input_section(Output_relaxed_input_section* poris)
1165   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
1167   // Return the original size of the section.
1168   uint32_t
1169   original_size() const
1170   { return this->original_size_; }
1171
1172  protected:
1173   // Write data to output file.
1174   void
1175   do_write(Output_file*);
1176
1177   // Return required alignment of this.
1178   uint64_t
1179   do_addralign() const
1180   {
1181     if (this->is_stub_table_owner())
1182       return std::max(this->stub_table_->addralign(),
1183                       static_cast<uint64_t>(this->original_addralign_));
1184     else
1185       return this->original_addralign_;
1186   }
1187
1188   // Finalize data size.
1189   void
1190   set_final_data_size();
1191
1192   // Reset address and file offset.
1193   void
1194   do_reset_address_and_file_offset();
1195
1196   // Output offset.
1197   bool
1198   do_output_offset(const Relobj* object, unsigned int shndx,
1199                    section_offset_type offset,
1200                    section_offset_type* poutput) const
1201   {
1202     if ((object == this->relobj())
1203         && (shndx == this->shndx())
1204         && (offset >= 0)
1205         && (offset <=
1206             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1207       {
1208         *poutput = offset;
1209         return true;
1210       }
1211     else
1212       return false;
1213   }
1214
1215  private:
1216   // Copying is not allowed.
1217   Arm_input_section(const Arm_input_section&);
1218   Arm_input_section& operator=(const Arm_input_section&);
1219
1220   // Address alignment of the original input section.
1221   uint32_t original_addralign_;
1222   // Section size of the original input section.
1223   uint32_t original_size_;
1224   // Stub table.
1225   Stub_table<big_endian>* stub_table_;
1226 };
1227
1228 // Arm_exidx_fixup class.  This is used to define a number of methods
1229 // and keep states for fixing up EXIDX coverage.
1230
1231 class Arm_exidx_fixup
1232 {
1233  public:
1234   Arm_exidx_fixup(Output_section* exidx_output_section,
1235                   bool merge_exidx_entries = true)
1236     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1237       last_inlined_entry_(0), last_input_section_(NULL),
1238       section_offset_map_(NULL), first_output_text_section_(NULL),
1239       merge_exidx_entries_(merge_exidx_entries)
1240   { }
1241
1242   ~Arm_exidx_fixup()
1243   { delete this->section_offset_map_; }
1244
1245   // Process an EXIDX section for entry merging.  Return  number of bytes to
1246   // be deleted in output.  If parts of the input EXIDX section are merged
1247   // a heap allocated Arm_exidx_section_offset_map is store in the located
1248   // PSECTION_OFFSET_MAP.  The caller owns the map and is reponsible for
1249   // releasing it.
1250   template<bool big_endian>
1251   uint32_t
1252   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1253                         Arm_exidx_section_offset_map** psection_offset_map);
1254   
1255   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1256   // input section, if there is not one already.
1257   void
1258   add_exidx_cantunwind_as_needed();
1259
1260   // Return the output section for the text section which is linked to the
1261   // first exidx input in output.
1262   Output_section*
1263   first_output_text_section() const
1264   { return this->first_output_text_section_; }
1265
1266  private:
1267   // Copying is not allowed.
1268   Arm_exidx_fixup(const Arm_exidx_fixup&);
1269   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1270
1271   // Type of EXIDX unwind entry.
1272   enum Unwind_type
1273   {
1274     // No type.
1275     UT_NONE,
1276     // EXIDX_CANTUNWIND.
1277     UT_EXIDX_CANTUNWIND,
1278     // Inlined entry.
1279     UT_INLINED_ENTRY,
1280     // Normal entry.
1281     UT_NORMAL_ENTRY,
1282   };
1283
1284   // Process an EXIDX entry.  We only care about the second word of the
1285   // entry.  Return true if the entry can be deleted.
1286   bool
1287   process_exidx_entry(uint32_t second_word);
1288
1289   // Update the current section offset map during EXIDX section fix-up.
1290   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1291   // reference point, DELETED_BYTES is the number of deleted by in the
1292   // section so far.  If DELETE_ENTRY is true, the reference point and
1293   // all offsets after the previous reference point are discarded.
1294   void
1295   update_offset_map(section_offset_type input_offset,
1296                     section_size_type deleted_bytes, bool delete_entry);
1297
1298   // EXIDX output section.
1299   Output_section* exidx_output_section_;
1300   // Unwind type of the last EXIDX entry processed.
1301   Unwind_type last_unwind_type_;
1302   // Last seen inlined EXIDX entry.
1303   uint32_t last_inlined_entry_;
1304   // Last processed EXIDX input section.
1305   const Arm_exidx_input_section* last_input_section_;
1306   // Section offset map created in process_exidx_section.
1307   Arm_exidx_section_offset_map* section_offset_map_;
1308   // Output section for the text section which is linked to the first exidx
1309   // input in output.
1310   Output_section* first_output_text_section_;
1311
1312   bool merge_exidx_entries_;
1313 };
1314
1315 // Arm output section class.  This is defined mainly to add a number of
1316 // stub generation methods.
1317
1318 template<bool big_endian>
1319 class Arm_output_section : public Output_section
1320 {
1321  public:
1322   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1323
1324   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1325                      elfcpp::Elf_Xword flags)
1326     : Output_section(name, type, flags)
1327   { }
1328
1329   ~Arm_output_section()
1330   { }
1331   
1332   // Group input sections for stub generation.
1333   void
1334   group_sections(section_size_type, bool, Target_arm<big_endian>*);
1335
1336   // Downcast a base pointer to an Arm_output_section pointer.  This is
1337   // not type-safe but we only use Arm_output_section not the base class.
1338   static Arm_output_section<big_endian>*
1339   as_arm_output_section(Output_section* os)
1340   { return static_cast<Arm_output_section<big_endian>*>(os); }
1341
1342   // Append all input text sections in this into LIST.
1343   void
1344   append_text_sections_to_list(Text_section_list* list);
1345
1346   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1347   // is a list of text input sections sorted in ascending order of their
1348   // output addresses.
1349   void
1350   fix_exidx_coverage(Layout* layout,
1351                      const Text_section_list& sorted_text_section,
1352                      Symbol_table* symtab,
1353                      bool merge_exidx_entries);
1354
1355  private:
1356   // For convenience.
1357   typedef Output_section::Input_section Input_section;
1358   typedef Output_section::Input_section_list Input_section_list;
1359
1360   // Create a stub group.
1361   void create_stub_group(Input_section_list::const_iterator,
1362                          Input_section_list::const_iterator,
1363                          Input_section_list::const_iterator,
1364                          Target_arm<big_endian>*,
1365                          std::vector<Output_relaxed_input_section*>*);
1366 };
1367
1368 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1369
1370 class Arm_exidx_input_section
1371 {
1372  public:
1373   static const section_offset_type invalid_offset =
1374     static_cast<section_offset_type>(-1);
1375
1376   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1377                           unsigned int link, uint32_t size, uint32_t addralign)
1378     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1379       addralign_(addralign)
1380   { }
1381
1382   ~Arm_exidx_input_section()
1383   { }
1384         
1385   // Accessors:  This is a read-only class.
1386
1387   // Return the object containing this EXIDX input section.
1388   Relobj*
1389   relobj() const
1390   { return this->relobj_; }
1391
1392   // Return the section index of this EXIDX input section.
1393   unsigned int
1394   shndx() const
1395   { return this->shndx_; }
1396
1397   // Return the section index of linked text section in the same object.
1398   unsigned int
1399   link() const
1400   { return this->link_; }
1401
1402   // Return size of the EXIDX input section.
1403   uint32_t
1404   size() const
1405   { return this->size_; }
1406
1407   // Reutnr address alignment of EXIDX input section.
1408   uint32_t
1409   addralign() const
1410   { return this->addralign_; }
1411
1412  private:
1413   // Object containing this.
1414   Relobj* relobj_;
1415   // Section index of this.
1416   unsigned int shndx_;
1417   // text section linked to this in the same object.
1418   unsigned int link_;
1419   // Size of this.  For ARM 32-bit is sufficient.
1420   uint32_t size_;
1421   // Address alignment of this.  For ARM 32-bit is sufficient.
1422   uint32_t addralign_;
1423 };
1424
1425 // Arm_relobj class.
1426
1427 template<bool big_endian>
1428 class Arm_relobj : public Sized_relobj<32, big_endian>
1429 {
1430  public:
1431   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1432
1433   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1434              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1435     : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1436       stub_tables_(), local_symbol_is_thumb_function_(),
1437       attributes_section_data_(NULL), mapping_symbols_info_(),
1438       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1439       output_local_symbol_count_needs_update_(false),
1440       merge_flags_and_attributes_(true)
1441   { }
1442
1443   ~Arm_relobj()
1444   { delete this->attributes_section_data_; }
1445  
1446   // Return the stub table of the SHNDX-th section if there is one.
1447   Stub_table<big_endian>*
1448   stub_table(unsigned int shndx) const
1449   {
1450     gold_assert(shndx < this->stub_tables_.size());
1451     return this->stub_tables_[shndx];
1452   }
1453
1454   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1455   void
1456   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1457   {
1458     gold_assert(shndx < this->stub_tables_.size());
1459     this->stub_tables_[shndx] = stub_table;
1460   }
1461
1462   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1463   // index.  This is only valid after do_count_local_symbol is called.
1464   bool
1465   local_symbol_is_thumb_function(unsigned int r_sym) const
1466   {
1467     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1468     return this->local_symbol_is_thumb_function_[r_sym];
1469   }
1470   
1471   // Scan all relocation sections for stub generation.
1472   void
1473   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1474                           const Layout*);
1475
1476   // Convert regular input section with index SHNDX to a relaxed section.
1477   void
1478   convert_input_section_to_relaxed_section(unsigned shndx)
1479   {
1480     // The stubs have relocations and we need to process them after writing
1481     // out the stubs.  So relocation now must follow section write.
1482     this->set_section_offset(shndx, -1ULL);
1483     this->set_relocs_must_follow_section_writes();
1484   }
1485
1486   // Downcast a base pointer to an Arm_relobj pointer.  This is
1487   // not type-safe but we only use Arm_relobj not the base class.
1488   static Arm_relobj<big_endian>*
1489   as_arm_relobj(Relobj* relobj)
1490   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1491
1492   // Processor-specific flags in ELF file header.  This is valid only after
1493   // reading symbols.
1494   elfcpp::Elf_Word
1495   processor_specific_flags() const
1496   { return this->processor_specific_flags_; }
1497
1498   // Attribute section data  This is the contents of the .ARM.attribute section
1499   // if there is one.
1500   const Attributes_section_data*
1501   attributes_section_data() const
1502   { return this->attributes_section_data_; }
1503
1504   // Mapping symbol location.
1505   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1506
1507   // Functor for STL container.
1508   struct Mapping_symbol_position_less
1509   {
1510     bool
1511     operator()(const Mapping_symbol_position& p1,
1512                const Mapping_symbol_position& p2) const
1513     {
1514       return (p1.first < p2.first
1515               || (p1.first == p2.first && p1.second < p2.second));
1516     }
1517   };
1518   
1519   // We only care about the first character of a mapping symbol, so
1520   // we only store that instead of the whole symbol name.
1521   typedef std::map<Mapping_symbol_position, char,
1522                    Mapping_symbol_position_less> Mapping_symbols_info;
1523
1524   // Whether a section contains any Cortex-A8 workaround.
1525   bool
1526   section_has_cortex_a8_workaround(unsigned int shndx) const
1527   { 
1528     return (this->section_has_cortex_a8_workaround_ != NULL
1529             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1530   }
1531   
1532   // Mark a section that has Cortex-A8 workaround.
1533   void
1534   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1535   {
1536     if (this->section_has_cortex_a8_workaround_ == NULL)
1537       this->section_has_cortex_a8_workaround_ =
1538         new std::vector<bool>(this->shnum(), false);
1539     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1540   }
1541
1542   // Return the EXIDX section of an text section with index SHNDX or NULL
1543   // if the text section has no associated EXIDX section.
1544   const Arm_exidx_input_section*
1545   exidx_input_section_by_link(unsigned int shndx) const
1546   {
1547     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1548     return ((p != this->exidx_section_map_.end()
1549              && p->second->link() == shndx)
1550             ? p->second
1551             : NULL);
1552   }
1553
1554   // Return the EXIDX section with index SHNDX or NULL if there is none.
1555   const Arm_exidx_input_section*
1556   exidx_input_section_by_shndx(unsigned shndx) const
1557   {
1558     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1559     return ((p != this->exidx_section_map_.end()
1560              && p->second->shndx() == shndx)
1561             ? p->second
1562             : NULL);
1563   }
1564
1565   // Whether output local symbol count needs updating.
1566   bool
1567   output_local_symbol_count_needs_update() const
1568   { return this->output_local_symbol_count_needs_update_; }
1569
1570   // Set output_local_symbol_count_needs_update flag to be true.
1571   void
1572   set_output_local_symbol_count_needs_update()
1573   { this->output_local_symbol_count_needs_update_ = true; }
1574   
1575   // Update output local symbol count at the end of relaxation.
1576   void
1577   update_output_local_symbol_count();
1578
1579   // Whether we want to merge processor-specific flags and attributes.
1580   bool
1581   merge_flags_and_attributes() const
1582   { return this->merge_flags_and_attributes_; }
1583   
1584  protected:
1585   // Post constructor setup.
1586   void
1587   do_setup()
1588   {
1589     // Call parent's setup method.
1590     Sized_relobj<32, big_endian>::do_setup();
1591
1592     // Initialize look-up tables.
1593     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1594     this->stub_tables_.swap(empty_stub_table_list);
1595   }
1596
1597   // Count the local symbols.
1598   void
1599   do_count_local_symbols(Stringpool_template<char>*,
1600                          Stringpool_template<char>*);
1601
1602   void
1603   do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1604                        const unsigned char* pshdrs,
1605                        typename Sized_relobj<32, big_endian>::Views* pivews);
1606
1607   // Read the symbol information.
1608   void
1609   do_read_symbols(Read_symbols_data* sd);
1610
1611   // Process relocs for garbage collection.
1612   void
1613   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1614
1615  private:
1616
1617   // Whether a section needs to be scanned for relocation stubs.
1618   bool
1619   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1620                                     const Relobj::Output_sections&,
1621                                     const Symbol_table *, const unsigned char*);
1622
1623   // Whether a section is a scannable text section.
1624   bool
1625   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1626                        const Output_section*, const Symbol_table *);
1627
1628   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1629   bool
1630   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1631                                         unsigned int, Output_section*,
1632                                         const Symbol_table *);
1633
1634   // Scan a section for the Cortex-A8 erratum.
1635   void
1636   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1637                                      unsigned int, Output_section*,
1638                                      Target_arm<big_endian>*);
1639
1640   // Find the linked text section of an EXIDX section by looking at the
1641   // first reloction of the EXIDX section.  PSHDR points to the section
1642   // headers of a relocation section and PSYMS points to the local symbols.
1643   // PSHNDX points to a location storing the text section index if found.
1644   // Return whether we can find the linked section.
1645   bool
1646   find_linked_text_section(const unsigned char* pshdr,
1647                            const unsigned char* psyms, unsigned int* pshndx);
1648
1649   //
1650   // Make a new Arm_exidx_input_section object for EXIDX section with
1651   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1652   // index of the linked text section.
1653   void
1654   make_exidx_input_section(unsigned int shndx,
1655                            const elfcpp::Shdr<32, big_endian>& shdr,
1656                            unsigned int text_shndx);
1657
1658   // Return the output address of either a plain input section or a
1659   // relaxed input section.  SHNDX is the section index.
1660   Arm_address
1661   simple_input_section_output_address(unsigned int, Output_section*);
1662
1663   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1664   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1665     Exidx_section_map;
1666
1667   // List of stub tables.
1668   Stub_table_list stub_tables_;
1669   // Bit vector to tell if a local symbol is a thumb function or not.
1670   // This is only valid after do_count_local_symbol is called.
1671   std::vector<bool> local_symbol_is_thumb_function_;
1672   // processor-specific flags in ELF file header.
1673   elfcpp::Elf_Word processor_specific_flags_;
1674   // Object attributes if there is an .ARM.attributes section or NULL.
1675   Attributes_section_data* attributes_section_data_;
1676   // Mapping symbols information.
1677   Mapping_symbols_info mapping_symbols_info_;
1678   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1679   std::vector<bool>* section_has_cortex_a8_workaround_;
1680   // Map a text section to its associated .ARM.exidx section, if there is one.
1681   Exidx_section_map exidx_section_map_;
1682   // Whether output local symbol count needs updating.
1683   bool output_local_symbol_count_needs_update_;
1684   // Whether we merge processor flags and attributes of this object to
1685   // output.
1686   bool merge_flags_and_attributes_;
1687 };
1688
1689 // Arm_dynobj class.
1690
1691 template<bool big_endian>
1692 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1693 {
1694  public:
1695   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1696              const elfcpp::Ehdr<32, big_endian>& ehdr)
1697     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1698       processor_specific_flags_(0), attributes_section_data_(NULL)
1699   { }
1700  
1701   ~Arm_dynobj()
1702   { delete this->attributes_section_data_; }
1703
1704   // Downcast a base pointer to an Arm_relobj pointer.  This is
1705   // not type-safe but we only use Arm_relobj not the base class.
1706   static Arm_dynobj<big_endian>*
1707   as_arm_dynobj(Dynobj* dynobj)
1708   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1709
1710   // Processor-specific flags in ELF file header.  This is valid only after
1711   // reading symbols.
1712   elfcpp::Elf_Word
1713   processor_specific_flags() const
1714   { return this->processor_specific_flags_; }
1715
1716   // Attributes section data.
1717   const Attributes_section_data*
1718   attributes_section_data() const
1719   { return this->attributes_section_data_; }
1720
1721  protected:
1722   // Read the symbol information.
1723   void
1724   do_read_symbols(Read_symbols_data* sd);
1725
1726  private:
1727   // processor-specific flags in ELF file header.
1728   elfcpp::Elf_Word processor_specific_flags_;
1729   // Object attributes if there is an .ARM.attributes section or NULL.
1730   Attributes_section_data* attributes_section_data_;
1731 };
1732
1733 // Functor to read reloc addends during stub generation.
1734
1735 template<int sh_type, bool big_endian>
1736 struct Stub_addend_reader
1737 {
1738   // Return the addend for a relocation of a particular type.  Depending
1739   // on whether this is a REL or RELA relocation, read the addend from a
1740   // view or from a Reloc object.
1741   elfcpp::Elf_types<32>::Elf_Swxword
1742   operator()(
1743     unsigned int /* r_type */,
1744     const unsigned char* /* view */,
1745     const typename Reloc_types<sh_type,
1746                                32, big_endian>::Reloc& /* reloc */) const;
1747 };
1748
1749 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1750
1751 template<bool big_endian>
1752 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1753 {
1754   elfcpp::Elf_types<32>::Elf_Swxword
1755   operator()(
1756     unsigned int,
1757     const unsigned char*,
1758     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1759 };
1760
1761 // Specialized Stub_addend_reader for RELA type relocation sections.
1762 // We currently do not handle RELA type relocation sections but it is trivial
1763 // to implement the addend reader.  This is provided for completeness and to
1764 // make it easier to add support for RELA relocation sections in the future.
1765
1766 template<bool big_endian>
1767 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1768 {
1769   elfcpp::Elf_types<32>::Elf_Swxword
1770   operator()(
1771     unsigned int,
1772     const unsigned char*,
1773     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1774                                big_endian>::Reloc& reloc) const
1775   { return reloc.get_r_addend(); }
1776 };
1777
1778 // Cortex_a8_reloc class.  We keep record of relocation that may need
1779 // the Cortex-A8 erratum workaround.
1780
1781 class Cortex_a8_reloc
1782 {
1783  public:
1784   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1785                   Arm_address destination)
1786     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1787   { }
1788
1789   ~Cortex_a8_reloc()
1790   { }
1791
1792   // Accessors:  This is a read-only class.
1793   
1794   // Return the relocation stub associated with this relocation if there is
1795   // one.
1796   const Reloc_stub*
1797   reloc_stub() const
1798   { return this->reloc_stub_; } 
1799   
1800   // Return the relocation type.
1801   unsigned int
1802   r_type() const
1803   { return this->r_type_; }
1804
1805   // Return the destination address of the relocation.  LSB stores the THUMB
1806   // bit.
1807   Arm_address
1808   destination() const
1809   { return this->destination_; }
1810
1811  private:
1812   // Associated relocation stub if there is one, or NULL.
1813   const Reloc_stub* reloc_stub_;
1814   // Relocation type.
1815   unsigned int r_type_;
1816   // Destination address of this relocation.  LSB is used to distinguish
1817   // ARM/THUMB mode.
1818   Arm_address destination_;
1819 };
1820
1821 // Arm_output_data_got class.  We derive this from Output_data_got to add
1822 // extra methods to handle TLS relocations in a static link.
1823
1824 template<bool big_endian>
1825 class Arm_output_data_got : public Output_data_got<32, big_endian>
1826 {
1827  public:
1828   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1829     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1830   { }
1831
1832   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1833   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1834   // applied in a static link.
1835   void
1836   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1837   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1838
1839   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1840   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1841   // relocation that needs to be applied in a static link.
1842   void
1843   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1844                    Sized_relobj<32, big_endian>* relobj, unsigned int index)
1845   {
1846     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1847                                                 index));
1848   }
1849
1850   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1851   // The first one is initialized to be 1, which is the module index for
1852   // the main executable and the second one 0.  A reloc of the type
1853   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1854   // be applied by gold.  GSYM is a global symbol.
1855   void
1856   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1857
1858   // Same as the above but for a local symbol in OBJECT with INDEX.
1859   void
1860   add_tls_gd32_with_static_reloc(unsigned int got_type,
1861                                  Sized_relobj<32, big_endian>* object,
1862                                  unsigned int index);
1863
1864  protected:
1865   // Write out the GOT table.
1866   void
1867   do_write(Output_file*);
1868
1869  private:
1870   // This class represent dynamic relocations that need to be applied by
1871   // gold because we are using TLS relocations in a static link.
1872   class Static_reloc
1873   {
1874    public:
1875     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1876       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1877     { this->u_.global.symbol = gsym; }
1878
1879     Static_reloc(unsigned int got_offset, unsigned int r_type,
1880           Sized_relobj<32, big_endian>* relobj, unsigned int index)
1881       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1882     {
1883       this->u_.local.relobj = relobj;
1884       this->u_.local.index = index;
1885     }
1886
1887     // Return the GOT offset.
1888     unsigned int
1889     got_offset() const
1890     { return this->got_offset_; }
1891
1892     // Relocation type.
1893     unsigned int
1894     r_type() const
1895     { return this->r_type_; }
1896
1897     // Whether the symbol is global or not.
1898     bool
1899     symbol_is_global() const
1900     { return this->symbol_is_global_; }
1901
1902     // For a relocation against a global symbol, the global symbol.
1903     Symbol*
1904     symbol() const
1905     {
1906       gold_assert(this->symbol_is_global_);
1907       return this->u_.global.symbol;
1908     }
1909
1910     // For a relocation against a local symbol, the defining object.
1911     Sized_relobj<32, big_endian>*
1912     relobj() const
1913     {
1914       gold_assert(!this->symbol_is_global_);
1915       return this->u_.local.relobj;
1916     }
1917
1918     // For a relocation against a local symbol, the local symbol index.
1919     unsigned int
1920     index() const
1921     {
1922       gold_assert(!this->symbol_is_global_);
1923       return this->u_.local.index;
1924     }
1925
1926    private:
1927     // GOT offset of the entry to which this relocation is applied.
1928     unsigned int got_offset_;
1929     // Type of relocation.
1930     unsigned int r_type_;
1931     // Whether this relocation is against a global symbol.
1932     bool symbol_is_global_;
1933     // A global or local symbol.
1934     union
1935     {
1936       struct
1937       {
1938         // For a global symbol, the symbol itself.
1939         Symbol* symbol;
1940       } global;
1941       struct
1942       {
1943         // For a local symbol, the object defining object.
1944         Sized_relobj<32, big_endian>* relobj;
1945         // For a local symbol, the symbol index.
1946         unsigned int index;
1947       } local;
1948     } u_;
1949   };
1950
1951   // Symbol table of the output object.
1952   Symbol_table* symbol_table_;
1953   // Layout of the output object.
1954   Layout* layout_;
1955   // Static relocs to be applied to the GOT.
1956   std::vector<Static_reloc> static_relocs_;
1957 };
1958
1959 // The ARM target has many relocation types with odd-sizes or incontigious
1960 // bits.  The default handling of relocatable relocation cannot process these
1961 // relocations.  So we have to extend the default code.
1962
1963 template<bool big_endian, int sh_type, typename Classify_reloc>
1964 class Arm_scan_relocatable_relocs :
1965   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
1966 {
1967  public:
1968   // Return the strategy to use for a local symbol which is a section
1969   // symbol, given the relocation type.
1970   inline Relocatable_relocs::Reloc_strategy
1971   local_section_strategy(unsigned int r_type, Relobj*)
1972   {
1973     if (sh_type == elfcpp::SHT_RELA)
1974       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
1975     else
1976       {
1977         if (r_type == elfcpp::R_ARM_TARGET1
1978             || r_type == elfcpp::R_ARM_TARGET2)
1979           {
1980             const Target_arm<big_endian>* arm_target =
1981               Target_arm<big_endian>::default_target();
1982             r_type = arm_target->get_real_reloc_type(r_type);
1983           }
1984
1985         switch(r_type)
1986           {
1987           // Relocations that write nothing.  These exclude R_ARM_TARGET1
1988           // and R_ARM_TARGET2.
1989           case elfcpp::R_ARM_NONE:
1990           case elfcpp::R_ARM_V4BX:
1991           case elfcpp::R_ARM_TLS_GOTDESC:
1992           case elfcpp::R_ARM_TLS_CALL:
1993           case elfcpp::R_ARM_TLS_DESCSEQ:
1994           case elfcpp::R_ARM_THM_TLS_CALL:
1995           case elfcpp::R_ARM_GOTRELAX:
1996           case elfcpp::R_ARM_GNU_VTENTRY:
1997           case elfcpp::R_ARM_GNU_VTINHERIT:
1998           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
1999           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2000             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2001           // These should have been converted to something else above.
2002           case elfcpp::R_ARM_TARGET1:
2003           case elfcpp::R_ARM_TARGET2:
2004             gold_unreachable();
2005           // Relocations that write full 32 bits.
2006           case elfcpp::R_ARM_ABS32:
2007           case elfcpp::R_ARM_REL32:
2008           case elfcpp::R_ARM_SBREL32:
2009           case elfcpp::R_ARM_GOTOFF32:
2010           case elfcpp::R_ARM_BASE_PREL:
2011           case elfcpp::R_ARM_GOT_BREL:
2012           case elfcpp::R_ARM_BASE_ABS:
2013           case elfcpp::R_ARM_ABS32_NOI:
2014           case elfcpp::R_ARM_REL32_NOI:
2015           case elfcpp::R_ARM_PLT32_ABS:
2016           case elfcpp::R_ARM_GOT_ABS:
2017           case elfcpp::R_ARM_GOT_PREL:
2018           case elfcpp::R_ARM_TLS_GD32:
2019           case elfcpp::R_ARM_TLS_LDM32:
2020           case elfcpp::R_ARM_TLS_LDO32:
2021           case elfcpp::R_ARM_TLS_IE32:
2022           case elfcpp::R_ARM_TLS_LE32:
2023             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2024           default:
2025             // For all other static relocations, return RELOC_SPECIAL.
2026             return Relocatable_relocs::RELOC_SPECIAL;
2027           }
2028       }
2029   }
2030 };
2031
2032 // Utilities for manipulating integers of up to 32-bits
2033
2034 namespace utils
2035 {
2036   // Sign extend an n-bit unsigned integer stored in an uint32_t into
2037   // an int32_t.  NO_BITS must be between 1 to 32.
2038   template<int no_bits>
2039   static inline int32_t
2040   sign_extend(uint32_t bits)
2041   {
2042     gold_assert(no_bits >= 0 && no_bits <= 32);
2043     if (no_bits == 32)
2044       return static_cast<int32_t>(bits);
2045     uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2046     bits &= mask;
2047     uint32_t top_bit = 1U << (no_bits - 1);
2048     int32_t as_signed = static_cast<int32_t>(bits);
2049     return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2050   }
2051
2052   // Detects overflow of an NO_BITS integer stored in a uint32_t.
2053   template<int no_bits>
2054   static inline bool
2055   has_overflow(uint32_t bits)
2056   {
2057     gold_assert(no_bits >= 0 && no_bits <= 32);
2058     if (no_bits == 32)
2059       return false;
2060     int32_t max = (1 << (no_bits - 1)) - 1;
2061     int32_t min = -(1 << (no_bits - 1));
2062     int32_t as_signed = static_cast<int32_t>(bits);
2063     return as_signed > max || as_signed < min;
2064   }
2065
2066   // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2067   // fits in the given number of bits as either a signed or unsigned value.
2068   // For example, has_signed_unsigned_overflow<8> would check
2069   // -128 <= bits <= 255
2070   template<int no_bits>
2071   static inline bool
2072   has_signed_unsigned_overflow(uint32_t bits)
2073   {
2074     gold_assert(no_bits >= 2 && no_bits <= 32);
2075     if (no_bits == 32)
2076       return false;
2077     int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2078     int32_t min = -(1 << (no_bits - 1));
2079     int32_t as_signed = static_cast<int32_t>(bits);
2080     return as_signed > max || as_signed < min;
2081   }
2082
2083   // Select bits from A and B using bits in MASK.  For each n in [0..31],
2084   // the n-th bit in the result is chosen from the n-th bits of A and B.
2085   // A zero selects A and a one selects B.
2086   static inline uint32_t
2087   bit_select(uint32_t a, uint32_t b, uint32_t mask)
2088   { return (a & ~mask) | (b & mask); }
2089 };
2090
2091 template<bool big_endian>
2092 class Target_arm : public Sized_target<32, big_endian>
2093 {
2094  public:
2095   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2096     Reloc_section;
2097
2098   // When were are relocating a stub, we pass this as the relocation number.
2099   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2100
2101   Target_arm()
2102     : Sized_target<32, big_endian>(&arm_info),
2103       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2104       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2105       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2106       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2107       may_use_blx_(false), should_force_pic_veneer_(false),
2108       arm_input_section_map_(), attributes_section_data_(NULL),
2109       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2110   { }
2111
2112   // Virtual function which is set to return true by a target if
2113   // it can use relocation types to determine if a function's
2114   // pointer is taken.
2115   virtual bool
2116   can_check_for_function_pointers() const
2117   { return true; }
2118
2119   // Whether a section called SECTION_NAME may have function pointers to
2120   // sections not eligible for safe ICF folding.
2121   virtual bool
2122   section_may_have_icf_unsafe_pointers(const char* section_name) const
2123   {
2124     return (!is_prefix_of(".ARM.exidx", section_name)
2125             && !is_prefix_of(".ARM.extab", section_name)
2126             && Target::section_may_have_icf_unsafe_pointers(section_name));
2127   }
2128   
2129   // Whether we can use BLX.
2130   bool
2131   may_use_blx() const
2132   { return this->may_use_blx_; }
2133
2134   // Set use-BLX flag.
2135   void
2136   set_may_use_blx(bool value)
2137   { this->may_use_blx_ = value; }
2138   
2139   // Whether we force PCI branch veneers.
2140   bool
2141   should_force_pic_veneer() const
2142   { return this->should_force_pic_veneer_; }
2143
2144   // Set PIC veneer flag.
2145   void
2146   set_should_force_pic_veneer(bool value)
2147   { this->should_force_pic_veneer_ = value; }
2148   
2149   // Whether we use THUMB-2 instructions.
2150   bool
2151   using_thumb2() const
2152   {
2153     Object_attribute* attr =
2154       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2155     int arch = attr->int_value();
2156     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2157   }
2158
2159   // Whether we use THUMB/THUMB-2 instructions only.
2160   bool
2161   using_thumb_only() const
2162   {
2163     Object_attribute* attr =
2164       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2165
2166     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2167         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2168       return true;
2169     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2170         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2171       return false;
2172     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2173     return attr->int_value() == 'M';
2174   }
2175
2176   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2177   bool
2178   may_use_arm_nop() const
2179   {
2180     Object_attribute* attr =
2181       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2182     int arch = attr->int_value();
2183     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2184             || arch == elfcpp::TAG_CPU_ARCH_V6K
2185             || arch == elfcpp::TAG_CPU_ARCH_V7
2186             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2187   }
2188
2189   // Whether we have THUMB-2 NOP.W instruction.
2190   bool
2191   may_use_thumb2_nop() const
2192   {
2193     Object_attribute* attr =
2194       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195     int arch = attr->int_value();
2196     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2197             || arch == elfcpp::TAG_CPU_ARCH_V7
2198             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2199   }
2200   
2201   // Process the relocations to determine unreferenced sections for 
2202   // garbage collection.
2203   void
2204   gc_process_relocs(Symbol_table* symtab,
2205                     Layout* layout,
2206                     Sized_relobj<32, big_endian>* object,
2207                     unsigned int data_shndx,
2208                     unsigned int sh_type,
2209                     const unsigned char* prelocs,
2210                     size_t reloc_count,
2211                     Output_section* output_section,
2212                     bool needs_special_offset_handling,
2213                     size_t local_symbol_count,
2214                     const unsigned char* plocal_symbols);
2215
2216   // Scan the relocations to look for symbol adjustments.
2217   void
2218   scan_relocs(Symbol_table* symtab,
2219               Layout* layout,
2220               Sized_relobj<32, big_endian>* object,
2221               unsigned int data_shndx,
2222               unsigned int sh_type,
2223               const unsigned char* prelocs,
2224               size_t reloc_count,
2225               Output_section* output_section,
2226               bool needs_special_offset_handling,
2227               size_t local_symbol_count,
2228               const unsigned char* plocal_symbols);
2229
2230   // Finalize the sections.
2231   void
2232   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2233
2234   // Return the value to use for a dynamic symbol which requires special
2235   // treatment.
2236   uint64_t
2237   do_dynsym_value(const Symbol*) const;
2238
2239   // Relocate a section.
2240   void
2241   relocate_section(const Relocate_info<32, big_endian>*,
2242                    unsigned int sh_type,
2243                    const unsigned char* prelocs,
2244                    size_t reloc_count,
2245                    Output_section* output_section,
2246                    bool needs_special_offset_handling,
2247                    unsigned char* view,
2248                    Arm_address view_address,
2249                    section_size_type view_size,
2250                    const Reloc_symbol_changes*);
2251
2252   // Scan the relocs during a relocatable link.
2253   void
2254   scan_relocatable_relocs(Symbol_table* symtab,
2255                           Layout* layout,
2256                           Sized_relobj<32, big_endian>* object,
2257                           unsigned int data_shndx,
2258                           unsigned int sh_type,
2259                           const unsigned char* prelocs,
2260                           size_t reloc_count,
2261                           Output_section* output_section,
2262                           bool needs_special_offset_handling,
2263                           size_t local_symbol_count,
2264                           const unsigned char* plocal_symbols,
2265                           Relocatable_relocs*);
2266
2267   // Relocate a section during a relocatable link.
2268   void
2269   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2270                            unsigned int sh_type,
2271                            const unsigned char* prelocs,
2272                            size_t reloc_count,
2273                            Output_section* output_section,
2274                            off_t offset_in_output_section,
2275                            const Relocatable_relocs*,
2276                            unsigned char* view,
2277                            Arm_address view_address,
2278                            section_size_type view_size,
2279                            unsigned char* reloc_view,
2280                            section_size_type reloc_view_size);
2281
2282   // Perform target-specific processing in a relocatable link.  This is
2283   // only used if we use the relocation strategy RELOC_SPECIAL.
2284   void
2285   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2286                                unsigned int sh_type,
2287                                const unsigned char* preloc_in,
2288                                size_t relnum,
2289                                Output_section* output_section,
2290                                off_t offset_in_output_section,
2291                                unsigned char* view,
2292                                typename elfcpp::Elf_types<32>::Elf_Addr
2293                                  view_address,
2294                                section_size_type view_size,
2295                                unsigned char* preloc_out);
2296  
2297   // Return whether SYM is defined by the ABI.
2298   bool
2299   do_is_defined_by_abi(Symbol* sym) const
2300   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2301
2302   // Return whether there is a GOT section.
2303   bool
2304   has_got_section() const
2305   { return this->got_ != NULL; }
2306
2307   // Return the size of the GOT section.
2308   section_size_type
2309   got_size()
2310   {
2311     gold_assert(this->got_ != NULL);
2312     return this->got_->data_size();
2313   }
2314
2315   // Map platform-specific reloc types
2316   static unsigned int
2317   get_real_reloc_type (unsigned int r_type);
2318
2319   //
2320   // Methods to support stub-generations.
2321   //
2322   
2323   // Return the stub factory
2324   const Stub_factory&
2325   stub_factory() const
2326   { return this->stub_factory_; }
2327
2328   // Make a new Arm_input_section object.
2329   Arm_input_section<big_endian>*
2330   new_arm_input_section(Relobj*, unsigned int);
2331
2332   // Find the Arm_input_section object corresponding to the SHNDX-th input
2333   // section of RELOBJ.
2334   Arm_input_section<big_endian>*
2335   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2336
2337   // Make a new Stub_table
2338   Stub_table<big_endian>*
2339   new_stub_table(Arm_input_section<big_endian>*);
2340
2341   // Scan a section for stub generation.
2342   void
2343   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2344                          const unsigned char*, size_t, Output_section*,
2345                          bool, const unsigned char*, Arm_address,
2346                          section_size_type);
2347
2348   // Relocate a stub. 
2349   void
2350   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2351                 Output_section*, unsigned char*, Arm_address,
2352                 section_size_type);
2353  
2354   // Get the default ARM target.
2355   static Target_arm<big_endian>*
2356   default_target()
2357   {
2358     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2359                 && parameters->target().is_big_endian() == big_endian);
2360     return static_cast<Target_arm<big_endian>*>(
2361              parameters->sized_target<32, big_endian>());
2362   }
2363
2364   // Whether NAME belongs to a mapping symbol.
2365   static bool
2366   is_mapping_symbol_name(const char* name)
2367   {
2368     return (name
2369             && name[0] == '$'
2370             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2371             && (name[2] == '\0' || name[2] == '.'));
2372   }
2373
2374   // Whether we work around the Cortex-A8 erratum.
2375   bool
2376   fix_cortex_a8() const
2377   { return this->fix_cortex_a8_; }
2378
2379   // Whether we merge exidx entries in debuginfo.
2380   bool
2381   merge_exidx_entries() const
2382   { return parameters->options().merge_exidx_entries(); }
2383
2384   // Whether we fix R_ARM_V4BX relocation.
2385   // 0 - do not fix
2386   // 1 - replace with MOV instruction (armv4 target)
2387   // 2 - make interworking veneer (>= armv4t targets only)
2388   General_options::Fix_v4bx
2389   fix_v4bx() const
2390   { return parameters->options().fix_v4bx(); }
2391
2392   // Scan a span of THUMB code section for Cortex-A8 erratum.
2393   void
2394   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2395                                   section_size_type, section_size_type,
2396                                   const unsigned char*, Arm_address);
2397
2398   // Apply Cortex-A8 workaround to a branch.
2399   void
2400   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2401                              unsigned char*, Arm_address);
2402
2403  protected:
2404   // Make an ELF object.
2405   Object*
2406   do_make_elf_object(const std::string&, Input_file*, off_t,
2407                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2408
2409   Object*
2410   do_make_elf_object(const std::string&, Input_file*, off_t,
2411                      const elfcpp::Ehdr<32, !big_endian>&)
2412   { gold_unreachable(); }
2413
2414   Object*
2415   do_make_elf_object(const std::string&, Input_file*, off_t,
2416                       const elfcpp::Ehdr<64, false>&)
2417   { gold_unreachable(); }
2418
2419   Object*
2420   do_make_elf_object(const std::string&, Input_file*, off_t,
2421                      const elfcpp::Ehdr<64, true>&)
2422   { gold_unreachable(); }
2423
2424   // Make an output section.
2425   Output_section*
2426   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2427                          elfcpp::Elf_Xword flags)
2428   { return new Arm_output_section<big_endian>(name, type, flags); }
2429
2430   void
2431   do_adjust_elf_header(unsigned char* view, int len) const;
2432
2433   // We only need to generate stubs, and hence perform relaxation if we are
2434   // not doing relocatable linking.
2435   bool
2436   do_may_relax() const
2437   { return !parameters->options().relocatable(); }
2438
2439   bool
2440   do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2441
2442   // Determine whether an object attribute tag takes an integer, a
2443   // string or both.
2444   int
2445   do_attribute_arg_type(int tag) const;
2446
2447   // Reorder tags during output.
2448   int
2449   do_attributes_order(int num) const;
2450
2451   // This is called when the target is selected as the default.
2452   void
2453   do_select_as_default_target()
2454   {
2455     // No locking is required since there should only be one default target.
2456     // We cannot have both the big-endian and little-endian ARM targets
2457     // as the default.
2458     gold_assert(arm_reloc_property_table == NULL);
2459     arm_reloc_property_table = new Arm_reloc_property_table();
2460   }
2461
2462  private:
2463   // The class which scans relocations.
2464   class Scan
2465   {
2466    public:
2467     Scan()
2468       : issued_non_pic_error_(false)
2469     { }
2470
2471     inline void
2472     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2473           Sized_relobj<32, big_endian>* object,
2474           unsigned int data_shndx,
2475           Output_section* output_section,
2476           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2477           const elfcpp::Sym<32, big_endian>& lsym);
2478
2479     inline void
2480     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2481            Sized_relobj<32, big_endian>* object,
2482            unsigned int data_shndx,
2483            Output_section* output_section,
2484            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2485            Symbol* gsym);
2486
2487     inline bool
2488     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2489                                         Sized_relobj<32, big_endian>* ,
2490                                         unsigned int ,
2491                                         Output_section* ,
2492                                         const elfcpp::Rel<32, big_endian>& ,
2493                                         unsigned int ,
2494                                         const elfcpp::Sym<32, big_endian>&);
2495
2496     inline bool
2497     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2498                                          Sized_relobj<32, big_endian>* ,
2499                                          unsigned int ,
2500                                          Output_section* ,
2501                                          const elfcpp::Rel<32, big_endian>& ,
2502                                          unsigned int , Symbol*);
2503
2504    private:
2505     static void
2506     unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2507                             unsigned int r_type);
2508
2509     static void
2510     unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2511                              unsigned int r_type, Symbol*);
2512
2513     void
2514     check_non_pic(Relobj*, unsigned int r_type);
2515
2516     // Almost identical to Symbol::needs_plt_entry except that it also
2517     // handles STT_ARM_TFUNC.
2518     static bool
2519     symbol_needs_plt_entry(const Symbol* sym)
2520     {
2521       // An undefined symbol from an executable does not need a PLT entry.
2522       if (sym->is_undefined() && !parameters->options().shared())
2523         return false;
2524
2525       return (!parameters->doing_static_link()
2526               && (sym->type() == elfcpp::STT_FUNC
2527                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2528               && (sym->is_from_dynobj()
2529                   || sym->is_undefined()
2530                   || sym->is_preemptible()));
2531     }
2532
2533     inline bool
2534     possible_function_pointer_reloc(unsigned int r_type);
2535
2536     // Whether we have issued an error about a non-PIC compilation.
2537     bool issued_non_pic_error_;
2538   };
2539
2540   // The class which implements relocation.
2541   class Relocate
2542   {
2543    public:
2544     Relocate()
2545     { }
2546
2547     ~Relocate()
2548     { }
2549
2550     // Return whether the static relocation needs to be applied.
2551     inline bool
2552     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2553                               int ref_flags,
2554                               bool is_32bit,
2555                               Output_section* output_section);
2556
2557     // Do a relocation.  Return false if the caller should not issue
2558     // any warnings about this relocation.
2559     inline bool
2560     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2561              Output_section*,  size_t relnum,
2562              const elfcpp::Rel<32, big_endian>&,
2563              unsigned int r_type, const Sized_symbol<32>*,
2564              const Symbol_value<32>*,
2565              unsigned char*, Arm_address,
2566              section_size_type);
2567
2568     // Return whether we want to pass flag NON_PIC_REF for this
2569     // reloc.  This means the relocation type accesses a symbol not via
2570     // GOT or PLT.
2571     static inline bool
2572     reloc_is_non_pic (unsigned int r_type)
2573     {
2574       switch (r_type)
2575         {
2576         // These relocation types reference GOT or PLT entries explicitly.
2577         case elfcpp::R_ARM_GOT_BREL:
2578         case elfcpp::R_ARM_GOT_ABS:
2579         case elfcpp::R_ARM_GOT_PREL:
2580         case elfcpp::R_ARM_GOT_BREL12:
2581         case elfcpp::R_ARM_PLT32_ABS:
2582         case elfcpp::R_ARM_TLS_GD32:
2583         case elfcpp::R_ARM_TLS_LDM32:
2584         case elfcpp::R_ARM_TLS_IE32:
2585         case elfcpp::R_ARM_TLS_IE12GP:
2586
2587         // These relocate types may use PLT entries.
2588         case elfcpp::R_ARM_CALL:
2589         case elfcpp::R_ARM_THM_CALL:
2590         case elfcpp::R_ARM_JUMP24:
2591         case elfcpp::R_ARM_THM_JUMP24:
2592         case elfcpp::R_ARM_THM_JUMP19:
2593         case elfcpp::R_ARM_PLT32:
2594         case elfcpp::R_ARM_THM_XPC22:
2595         case elfcpp::R_ARM_PREL31:
2596         case elfcpp::R_ARM_SBREL31:
2597           return false;
2598
2599         default:
2600           return true;
2601         }
2602     }
2603
2604    private:
2605     // Do a TLS relocation.
2606     inline typename Arm_relocate_functions<big_endian>::Status
2607     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2608                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2609                  const Sized_symbol<32>*, const Symbol_value<32>*,
2610                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2611                  section_size_type);
2612
2613   };
2614
2615   // A class which returns the size required for a relocation type,
2616   // used while scanning relocs during a relocatable link.
2617   class Relocatable_size_for_reloc
2618   {
2619    public:
2620     unsigned int
2621     get_size_for_reloc(unsigned int, Relobj*);
2622   };
2623
2624   // Adjust TLS relocation type based on the options and whether this
2625   // is a local symbol.
2626   static tls::Tls_optimization
2627   optimize_tls_reloc(bool is_final, int r_type);
2628
2629   // Get the GOT section, creating it if necessary.
2630   Arm_output_data_got<big_endian>*
2631   got_section(Symbol_table*, Layout*);
2632
2633   // Get the GOT PLT section.
2634   Output_data_space*
2635   got_plt_section() const
2636   {
2637     gold_assert(this->got_plt_ != NULL);
2638     return this->got_plt_;
2639   }
2640
2641   // Create a PLT entry for a global symbol.
2642   void
2643   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2644
2645   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2646   void
2647   define_tls_base_symbol(Symbol_table*, Layout*);
2648
2649   // Create a GOT entry for the TLS module index.
2650   unsigned int
2651   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2652                       Sized_relobj<32, big_endian>* object);
2653
2654   // Get the PLT section.
2655   const Output_data_plt_arm<big_endian>*
2656   plt_section() const
2657   {
2658     gold_assert(this->plt_ != NULL);
2659     return this->plt_;
2660   }
2661
2662   // Get the dynamic reloc section, creating it if necessary.
2663   Reloc_section*
2664   rel_dyn_section(Layout*);
2665
2666   // Get the section to use for TLS_DESC relocations.
2667   Reloc_section*
2668   rel_tls_desc_section(Layout*) const;
2669
2670   // Return true if the symbol may need a COPY relocation.
2671   // References from an executable object to non-function symbols
2672   // defined in a dynamic object may need a COPY relocation.
2673   bool
2674   may_need_copy_reloc(Symbol* gsym)
2675   {
2676     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2677             && gsym->may_need_copy_reloc());
2678   }
2679
2680   // Add a potential copy relocation.
2681   void
2682   copy_reloc(Symbol_table* symtab, Layout* layout,
2683              Sized_relobj<32, big_endian>* object,
2684              unsigned int shndx, Output_section* output_section,
2685              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2686   {
2687     this->copy_relocs_.copy_reloc(symtab, layout,
2688                                   symtab->get_sized_symbol<32>(sym),
2689                                   object, shndx, output_section, reloc,
2690                                   this->rel_dyn_section(layout));
2691   }
2692
2693   // Whether two EABI versions are compatible.
2694   static bool
2695   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2696
2697   // Merge processor-specific flags from input object and those in the ELF
2698   // header of the output.
2699   void
2700   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2701
2702   // Get the secondary compatible architecture.
2703   static int
2704   get_secondary_compatible_arch(const Attributes_section_data*);
2705
2706   // Set the secondary compatible architecture.
2707   static void
2708   set_secondary_compatible_arch(Attributes_section_data*, int);
2709
2710   static int
2711   tag_cpu_arch_combine(const char*, int, int*, int, int);
2712
2713   // Helper to print AEABI enum tag value.
2714   static std::string
2715   aeabi_enum_name(unsigned int);
2716
2717   // Return string value for TAG_CPU_name.
2718   static std::string
2719   tag_cpu_name_value(unsigned int);
2720
2721   // Merge object attributes from input object and those in the output.
2722   void
2723   merge_object_attributes(const char*, const Attributes_section_data*);
2724
2725   // Helper to get an AEABI object attribute
2726   Object_attribute*
2727   get_aeabi_object_attribute(int tag) const
2728   {
2729     Attributes_section_data* pasd = this->attributes_section_data_;
2730     gold_assert(pasd != NULL);
2731     Object_attribute* attr =
2732       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2733     gold_assert(attr != NULL);
2734     return attr;
2735   }
2736
2737   //
2738   // Methods to support stub-generations.
2739   //
2740
2741   // Group input sections for stub generation.
2742   void
2743   group_sections(Layout*, section_size_type, bool);
2744
2745   // Scan a relocation for stub generation.
2746   void
2747   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2748                       const Sized_symbol<32>*, unsigned int,
2749                       const Symbol_value<32>*,
2750                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2751
2752   // Scan a relocation section for stub.
2753   template<int sh_type>
2754   void
2755   scan_reloc_section_for_stubs(
2756       const Relocate_info<32, big_endian>* relinfo,
2757       const unsigned char* prelocs,
2758       size_t reloc_count,
2759       Output_section* output_section,
2760       bool needs_special_offset_handling,
2761       const unsigned char* view,
2762       elfcpp::Elf_types<32>::Elf_Addr view_address,
2763       section_size_type);
2764
2765   // Fix .ARM.exidx section coverage.
2766   void
2767   fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2768
2769   // Functors for STL set.
2770   struct output_section_address_less_than
2771   {
2772     bool
2773     operator()(const Output_section* s1, const Output_section* s2) const
2774     { return s1->address() < s2->address(); }
2775   };
2776
2777   // Information about this specific target which we pass to the
2778   // general Target structure.
2779   static const Target::Target_info arm_info;
2780
2781   // The types of GOT entries needed for this platform.
2782   enum Got_type
2783   {
2784     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2785     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2786     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2787     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2788     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2789   };
2790
2791   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2792
2793   // Map input section to Arm_input_section.
2794   typedef Unordered_map<Section_id,
2795                         Arm_input_section<big_endian>*,
2796                         Section_id_hash>
2797           Arm_input_section_map;
2798     
2799   // Map output addresses to relocs for Cortex-A8 erratum.
2800   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2801           Cortex_a8_relocs_info;
2802
2803   // The GOT section.
2804   Arm_output_data_got<big_endian>* got_;
2805   // The PLT section.
2806   Output_data_plt_arm<big_endian>* plt_;
2807   // The GOT PLT section.
2808   Output_data_space* got_plt_;
2809   // The dynamic reloc section.
2810   Reloc_section* rel_dyn_;
2811   // Relocs saved to avoid a COPY reloc.
2812   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2813   // Space for variables copied with a COPY reloc.
2814   Output_data_space* dynbss_;
2815   // Offset of the GOT entry for the TLS module index.
2816   unsigned int got_mod_index_offset_;
2817   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2818   bool tls_base_symbol_defined_;
2819   // Vector of Stub_tables created.
2820   Stub_table_list stub_tables_;
2821   // Stub factory.
2822   const Stub_factory &stub_factory_;
2823   // Whether we can use BLX.
2824   bool may_use_blx_;
2825   // Whether we force PIC branch veneers.
2826   bool should_force_pic_veneer_;
2827   // Map for locating Arm_input_sections.
2828   Arm_input_section_map arm_input_section_map_;
2829   // Attributes section data in output.
2830   Attributes_section_data* attributes_section_data_;
2831   // Whether we want to fix code for Cortex-A8 erratum.
2832   bool fix_cortex_a8_;
2833   // Map addresses to relocs for Cortex-A8 erratum.
2834   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2835 };
2836
2837 template<bool big_endian>
2838 const Target::Target_info Target_arm<big_endian>::arm_info =
2839 {
2840   32,                   // size
2841   big_endian,           // is_big_endian
2842   elfcpp::EM_ARM,       // machine_code
2843   false,                // has_make_symbol
2844   false,                // has_resolve
2845   false,                // has_code_fill
2846   true,                 // is_default_stack_executable
2847   '\0',                 // wrap_char
2848   "/usr/lib/libc.so.1", // dynamic_linker
2849   0x8000,               // default_text_segment_address
2850   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2851   0x1000,               // common_pagesize (overridable by -z common-page-size)
2852   elfcpp::SHN_UNDEF,    // small_common_shndx
2853   elfcpp::SHN_UNDEF,    // large_common_shndx
2854   0,                    // small_common_section_flags
2855   0,                    // large_common_section_flags
2856   ".ARM.attributes",    // attributes_section
2857   "aeabi"               // attributes_vendor
2858 };
2859
2860 // Arm relocate functions class
2861 //
2862
2863 template<bool big_endian>
2864 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2865 {
2866  public:
2867   typedef enum
2868   {
2869     STATUS_OKAY,        // No error during relocation.
2870     STATUS_OVERFLOW,    // Relocation oveflow.
2871     STATUS_BAD_RELOC    // Relocation cannot be applied.
2872   } Status;
2873
2874  private:
2875   typedef Relocate_functions<32, big_endian> Base;
2876   typedef Arm_relocate_functions<big_endian> This;
2877
2878   // Encoding of imm16 argument for movt and movw ARM instructions
2879   // from ARM ARM:
2880   //     
2881   //     imm16 := imm4 | imm12
2882   //
2883   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2884   // +-------+---------------+-------+-------+-----------------------+
2885   // |       |               |imm4   |       |imm12                  |
2886   // +-------+---------------+-------+-------+-----------------------+
2887
2888   // Extract the relocation addend from VAL based on the ARM
2889   // instruction encoding described above.
2890   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2891   extract_arm_movw_movt_addend(
2892       typename elfcpp::Swap<32, big_endian>::Valtype val)
2893   {
2894     // According to the Elf ABI for ARM Architecture the immediate
2895     // field is sign-extended to form the addend.
2896     return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2897   }
2898
2899   // Insert X into VAL based on the ARM instruction encoding described
2900   // above.
2901   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2902   insert_val_arm_movw_movt(
2903       typename elfcpp::Swap<32, big_endian>::Valtype val,
2904       typename elfcpp::Swap<32, big_endian>::Valtype x)
2905   {
2906     val &= 0xfff0f000;
2907     val |= x & 0x0fff;
2908     val |= (x & 0xf000) << 4;
2909     return val;
2910   }
2911
2912   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2913   // from ARM ARM:
2914   //     
2915   //     imm16 := imm4 | i | imm3 | imm8
2916   //
2917   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
2918   // +---------+-+-----------+-------++-+-----+-------+---------------+
2919   // |         |i|           |imm4   || |imm3 |       |imm8           |
2920   // +---------+-+-----------+-------++-+-----+-------+---------------+
2921
2922   // Extract the relocation addend from VAL based on the Thumb2
2923   // instruction encoding described above.
2924   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2925   extract_thumb_movw_movt_addend(
2926       typename elfcpp::Swap<32, big_endian>::Valtype val)
2927   {
2928     // According to the Elf ABI for ARM Architecture the immediate
2929     // field is sign-extended to form the addend.
2930     return utils::sign_extend<16>(((val >> 4) & 0xf000)
2931                                   | ((val >> 15) & 0x0800)
2932                                   | ((val >> 4) & 0x0700)
2933                                   | (val & 0x00ff));
2934   }
2935
2936   // Insert X into VAL based on the Thumb2 instruction encoding
2937   // described above.
2938   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2939   insert_val_thumb_movw_movt(
2940       typename elfcpp::Swap<32, big_endian>::Valtype val,
2941       typename elfcpp::Swap<32, big_endian>::Valtype x)
2942   {
2943     val &= 0xfbf08f00;
2944     val |= (x & 0xf000) << 4;
2945     val |= (x & 0x0800) << 15;
2946     val |= (x & 0x0700) << 4;
2947     val |= (x & 0x00ff);
2948     return val;
2949   }
2950
2951   // Calculate the smallest constant Kn for the specified residual.
2952   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2953   static uint32_t
2954   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2955   {
2956     int32_t msb;
2957
2958     if (residual == 0)
2959       return 0;
2960     // Determine the most significant bit in the residual and
2961     // align the resulting value to a 2-bit boundary.
2962     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2963       ;
2964     // The desired shift is now (msb - 6), or zero, whichever
2965     // is the greater.
2966     return (((msb - 6) < 0) ? 0 : (msb - 6));
2967   }
2968
2969   // Calculate the final residual for the specified group index.
2970   // If the passed group index is less than zero, the method will return
2971   // the value of the specified residual without any change.
2972   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2973   static typename elfcpp::Swap<32, big_endian>::Valtype
2974   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2975                     const int group)
2976   {
2977     for (int n = 0; n <= group; n++)
2978       {
2979         // Calculate which part of the value to mask.
2980         uint32_t shift = calc_grp_kn(residual);
2981         // Calculate the residual for the next time around.
2982         residual &= ~(residual & (0xff << shift));
2983       }
2984
2985     return residual;
2986   }
2987
2988   // Calculate the value of Gn for the specified group index.
2989   // We return it in the form of an encoded constant-and-rotation.
2990   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2991   static typename elfcpp::Swap<32, big_endian>::Valtype
2992   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2993               const int group)
2994   {
2995     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2996     uint32_t shift = 0;
2997
2998     for (int n = 0; n <= group; n++)
2999       {
3000         // Calculate which part of the value to mask.
3001         shift = calc_grp_kn(residual);
3002         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3003         gn = residual & (0xff << shift);
3004         // Calculate the residual for the next time around.
3005         residual &= ~gn;
3006       }
3007     // Return Gn in the form of an encoded constant-and-rotation.
3008     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3009   }
3010
3011  public:
3012   // Handle ARM long branches.
3013   static typename This::Status
3014   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3015                     unsigned char *, const Sized_symbol<32>*,
3016                     const Arm_relobj<big_endian>*, unsigned int,
3017                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3018
3019   // Handle THUMB long branches.
3020   static typename This::Status
3021   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3022                       unsigned char *, const Sized_symbol<32>*,
3023                       const Arm_relobj<big_endian>*, unsigned int,
3024                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3025
3026
3027   // Return the branch offset of a 32-bit THUMB branch.
3028   static inline int32_t
3029   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3030   {
3031     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3032     // involving the J1 and J2 bits.
3033     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3034     uint32_t upper = upper_insn & 0x3ffU;
3035     uint32_t lower = lower_insn & 0x7ffU;
3036     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3037     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3038     uint32_t i1 = j1 ^ s ? 0 : 1;
3039     uint32_t i2 = j2 ^ s ? 0 : 1;
3040
3041     return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3042                                   | (upper << 12) | (lower << 1));
3043   }
3044
3045   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3046   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3047   // responsible for overflow checking and BLX offset adjustment.
3048   static inline uint16_t
3049   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3050   {
3051     uint32_t s = offset < 0 ? 1 : 0;
3052     uint32_t bits = static_cast<uint32_t>(offset);
3053     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3054   }
3055
3056   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3057   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3058   // responsible for overflow checking and BLX offset adjustment.
3059   static inline uint16_t
3060   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3061   {
3062     uint32_t s = offset < 0 ? 1 : 0;
3063     uint32_t bits = static_cast<uint32_t>(offset);
3064     return ((lower_insn & ~0x2fffU)
3065             | ((((bits >> 23) & 1) ^ !s) << 13)
3066             | ((((bits >> 22) & 1) ^ !s) << 11)
3067             | ((bits >> 1) & 0x7ffU));
3068   }
3069
3070   // Return the branch offset of a 32-bit THUMB conditional branch.
3071   static inline int32_t
3072   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3073   {
3074     uint32_t s = (upper_insn & 0x0400U) >> 10;
3075     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3076     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3077     uint32_t lower = (lower_insn & 0x07ffU);
3078     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3079
3080     return utils::sign_extend<21>((upper << 12) | (lower << 1));
3081   }
3082
3083   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3084   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3085   // Caller is responsible for overflow checking.
3086   static inline uint16_t
3087   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3088   {
3089     uint32_t s = offset < 0 ? 1 : 0;
3090     uint32_t bits = static_cast<uint32_t>(offset);
3091     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3092   }
3093
3094   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3095   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3096   // Caller is reponsible for overflow checking.
3097   static inline uint16_t
3098   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3099   {
3100     uint32_t bits = static_cast<uint32_t>(offset);
3101     uint32_t j2 = (bits & 0x00080000U) >> 19;
3102     uint32_t j1 = (bits & 0x00040000U) >> 18;
3103     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3104
3105     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3106   }
3107
3108   // R_ARM_ABS8: S + A
3109   static inline typename This::Status
3110   abs8(unsigned char *view,
3111        const Sized_relobj<32, big_endian>* object,
3112        const Symbol_value<32>* psymval)
3113   {
3114     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3115     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3116     Valtype* wv = reinterpret_cast<Valtype*>(view);
3117     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3118     Reltype addend = utils::sign_extend<8>(val);
3119     Reltype x = psymval->value(object, addend);
3120     val = utils::bit_select(val, x, 0xffU);
3121     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3122
3123     // R_ARM_ABS8 permits signed or unsigned results.
3124     int signed_x = static_cast<int32_t>(x);
3125     return ((signed_x < -128 || signed_x > 255)
3126             ? This::STATUS_OVERFLOW
3127             : This::STATUS_OKAY);
3128   }
3129
3130   // R_ARM_THM_ABS5: S + A
3131   static inline typename This::Status
3132   thm_abs5(unsigned char *view,
3133        const Sized_relobj<32, big_endian>* object,
3134        const Symbol_value<32>* psymval)
3135   {
3136     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3137     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3138     Valtype* wv = reinterpret_cast<Valtype*>(view);
3139     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3140     Reltype addend = (val & 0x7e0U) >> 6;
3141     Reltype x = psymval->value(object, addend);
3142     val = utils::bit_select(val, x << 6, 0x7e0U);
3143     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3144
3145     // R_ARM_ABS16 permits signed or unsigned results.
3146     int signed_x = static_cast<int32_t>(x);
3147     return ((signed_x < -32768 || signed_x > 65535)
3148             ? This::STATUS_OVERFLOW
3149             : This::STATUS_OKAY);
3150   }
3151
3152   // R_ARM_ABS12: S + A
3153   static inline typename This::Status
3154   abs12(unsigned char *view,
3155         const Sized_relobj<32, big_endian>* object,
3156         const Symbol_value<32>* psymval)
3157   {
3158     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3159     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3160     Valtype* wv = reinterpret_cast<Valtype*>(view);
3161     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3162     Reltype addend = val & 0x0fffU;
3163     Reltype x = psymval->value(object, addend);
3164     val = utils::bit_select(val, x, 0x0fffU);
3165     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3166     return (utils::has_overflow<12>(x)
3167             ? This::STATUS_OVERFLOW
3168             : This::STATUS_OKAY);
3169   }
3170
3171   // R_ARM_ABS16: S + A
3172   static inline typename This::Status
3173   abs16(unsigned char *view,
3174         const Sized_relobj<32, big_endian>* object,
3175         const Symbol_value<32>* psymval)
3176   {
3177     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3178     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3179     Valtype* wv = reinterpret_cast<Valtype*>(view);
3180     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3181     Reltype addend = utils::sign_extend<16>(val);
3182     Reltype x = psymval->value(object, addend);
3183     val = utils::bit_select(val, x, 0xffffU);
3184     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3185     return (utils::has_signed_unsigned_overflow<16>(x)
3186             ? This::STATUS_OVERFLOW
3187             : This::STATUS_OKAY);
3188   }
3189
3190   // R_ARM_ABS32: (S + A) | T
3191   static inline typename This::Status
3192   abs32(unsigned char *view,
3193         const Sized_relobj<32, big_endian>* object,
3194         const Symbol_value<32>* psymval,
3195         Arm_address thumb_bit)
3196   {
3197     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3198     Valtype* wv = reinterpret_cast<Valtype*>(view);
3199     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3200     Valtype x = psymval->value(object, addend) | thumb_bit;
3201     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3202     return This::STATUS_OKAY;
3203   }
3204
3205   // R_ARM_REL32: (S + A) | T - P
3206   static inline typename This::Status
3207   rel32(unsigned char *view,
3208         const Sized_relobj<32, big_endian>* object,
3209         const Symbol_value<32>* psymval,
3210         Arm_address address,
3211         Arm_address thumb_bit)
3212   {
3213     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3214     Valtype* wv = reinterpret_cast<Valtype*>(view);
3215     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3216     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3217     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3218     return This::STATUS_OKAY;
3219   }
3220
3221   // R_ARM_THM_JUMP24: (S + A) | T - P
3222   static typename This::Status
3223   thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3224              const Symbol_value<32>* psymval, Arm_address address,
3225              Arm_address thumb_bit);
3226
3227   // R_ARM_THM_JUMP6: S + A â€“ P
3228   static inline typename This::Status
3229   thm_jump6(unsigned char *view,
3230             const Sized_relobj<32, big_endian>* object,
3231             const Symbol_value<32>* psymval,
3232             Arm_address address)
3233   {
3234     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3235     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3236     Valtype* wv = reinterpret_cast<Valtype*>(view);
3237     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3238     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3239     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3240     Reltype x = (psymval->value(object, addend) - address);
3241     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3242     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3243     // CZB does only forward jumps.
3244     return ((x > 0x007e)
3245             ? This::STATUS_OVERFLOW
3246             : This::STATUS_OKAY);
3247   }
3248
3249   // R_ARM_THM_JUMP8: S + A â€“ P
3250   static inline typename This::Status
3251   thm_jump8(unsigned char *view,
3252             const Sized_relobj<32, big_endian>* object,
3253             const Symbol_value<32>* psymval,
3254             Arm_address address)
3255   {
3256     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3257     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3258     Valtype* wv = reinterpret_cast<Valtype*>(view);
3259     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3260     Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3261     Reltype x = (psymval->value(object, addend) - address);
3262     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3263     return (utils::has_overflow<8>(x)
3264             ? This::STATUS_OVERFLOW
3265             : This::STATUS_OKAY);
3266   }
3267
3268   // R_ARM_THM_JUMP11: S + A â€“ P
3269   static inline typename This::Status
3270   thm_jump11(unsigned char *view,
3271             const Sized_relobj<32, big_endian>* object,
3272             const Symbol_value<32>* psymval,
3273             Arm_address address)
3274   {
3275     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3276     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3277     Valtype* wv = reinterpret_cast<Valtype*>(view);
3278     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3279     Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3280     Reltype x = (psymval->value(object, addend) - address);
3281     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3282     return (utils::has_overflow<11>(x)
3283             ? This::STATUS_OVERFLOW
3284             : This::STATUS_OKAY);
3285   }
3286
3287   // R_ARM_BASE_PREL: B(S) + A - P
3288   static inline typename This::Status
3289   base_prel(unsigned char* view,
3290             Arm_address origin,
3291             Arm_address address)
3292   {
3293     Base::rel32(view, origin - address);
3294     return STATUS_OKAY;
3295   }
3296
3297   // R_ARM_BASE_ABS: B(S) + A
3298   static inline typename This::Status
3299   base_abs(unsigned char* view,
3300            Arm_address origin)
3301   {
3302     Base::rel32(view, origin);
3303     return STATUS_OKAY;
3304   }
3305
3306   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3307   static inline typename This::Status
3308   got_brel(unsigned char* view,
3309            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3310   {
3311     Base::rel32(view, got_offset);
3312     return This::STATUS_OKAY;
3313   }
3314
3315   // R_ARM_GOT_PREL: GOT(S) + A - P
3316   static inline typename This::Status
3317   got_prel(unsigned char *view,
3318            Arm_address got_entry,
3319            Arm_address address)
3320   {
3321     Base::rel32(view, got_entry - address);
3322     return This::STATUS_OKAY;
3323   }
3324
3325   // R_ARM_PREL: (S + A) | T - P
3326   static inline typename This::Status
3327   prel31(unsigned char *view,
3328          const Sized_relobj<32, big_endian>* object,
3329          const Symbol_value<32>* psymval,
3330          Arm_address address,
3331          Arm_address thumb_bit)
3332   {
3333     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3334     Valtype* wv = reinterpret_cast<Valtype*>(view);
3335     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3336     Valtype addend = utils::sign_extend<31>(val);
3337     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3338     val = utils::bit_select(val, x, 0x7fffffffU);
3339     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3340     return (utils::has_overflow<31>(x) ?
3341             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3342   }
3343
3344   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3345   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3346   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3347   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3348   static inline typename This::Status
3349   movw(unsigned char* view,
3350        const Sized_relobj<32, big_endian>* object,
3351        const Symbol_value<32>* psymval,
3352        Arm_address relative_address_base,
3353        Arm_address thumb_bit,
3354        bool check_overflow)
3355   {
3356     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3357     Valtype* wv = reinterpret_cast<Valtype*>(view);
3358     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3359     Valtype addend = This::extract_arm_movw_movt_addend(val);
3360     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3361                  - relative_address_base);
3362     val = This::insert_val_arm_movw_movt(val, x);
3363     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3364     return ((check_overflow && utils::has_overflow<16>(x))
3365             ? This::STATUS_OVERFLOW
3366             : This::STATUS_OKAY);
3367   }
3368
3369   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3370   // R_ARM_MOVT_PREL: S + A - P
3371   // R_ARM_MOVT_BREL: S + A - B(S)
3372   static inline typename This::Status
3373   movt(unsigned char* view,
3374        const Sized_relobj<32, big_endian>* object,
3375        const Symbol_value<32>* psymval,
3376        Arm_address relative_address_base)
3377   {
3378     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3379     Valtype* wv = reinterpret_cast<Valtype*>(view);
3380     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3381     Valtype addend = This::extract_arm_movw_movt_addend(val);
3382     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3383     val = This::insert_val_arm_movw_movt(val, x);
3384     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3385     // FIXME: IHI0044D says that we should check for overflow.
3386     return This::STATUS_OKAY;
3387   }
3388
3389   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3390   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3391   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3392   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3393   static inline typename This::Status
3394   thm_movw(unsigned char *view,
3395            const Sized_relobj<32, big_endian>* object,
3396            const Symbol_value<32>* psymval,
3397            Arm_address relative_address_base,
3398            Arm_address thumb_bit,
3399            bool check_overflow)
3400   {
3401     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403     Valtype* wv = reinterpret_cast<Valtype*>(view);
3404     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3407     Reltype x =
3408       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3409     val = This::insert_val_thumb_movw_movt(val, x);
3410     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3411     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3412     return ((check_overflow && utils::has_overflow<16>(x))
3413             ? This::STATUS_OVERFLOW
3414             : This::STATUS_OKAY);
3415   }
3416
3417   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3418   // R_ARM_THM_MOVT_PREL: S + A - P
3419   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3420   static inline typename This::Status
3421   thm_movt(unsigned char* view,
3422            const Sized_relobj<32, big_endian>* object,
3423            const Symbol_value<32>* psymval,
3424            Arm_address relative_address_base)
3425   {
3426     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3427     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3428     Valtype* wv = reinterpret_cast<Valtype*>(view);
3429     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3430                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3431     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3432     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3433     val = This::insert_val_thumb_movw_movt(val, x);
3434     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3435     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3436     return This::STATUS_OKAY;
3437   }
3438
3439   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3440   static inline typename This::Status
3441   thm_alu11(unsigned char* view,
3442             const Sized_relobj<32, big_endian>* object,
3443             const Symbol_value<32>* psymval,
3444             Arm_address address,
3445             Arm_address thumb_bit)
3446   {
3447     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3448     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3449     Valtype* wv = reinterpret_cast<Valtype*>(view);
3450     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3451                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3452
3453     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3454     // -----------------------------------------------------------------------
3455     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3456     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3457     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3458     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3459     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3460     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3461
3462     // Determine a sign for the addend.
3463     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3464                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3465     // Thumb2 addend encoding:
3466     // imm12 := i | imm3 | imm8
3467     int32_t addend = (insn & 0xff)
3468                      | ((insn & 0x00007000) >> 4)
3469                      | ((insn & 0x04000000) >> 15);
3470     // Apply a sign to the added.
3471     addend *= sign;
3472
3473     int32_t x = (psymval->value(object, addend) | thumb_bit)
3474                 - (address & 0xfffffffc);
3475     Reltype val = abs(x);
3476     // Mask out the value and a distinct part of the ADD/SUB opcode
3477     // (bits 7:5 of opword).
3478     insn = (insn & 0xfb0f8f00)
3479            | (val & 0xff)
3480            | ((val & 0x700) << 4)
3481            | ((val & 0x800) << 15);
3482     // Set the opcode according to whether the value to go in the
3483     // place is negative.
3484     if (x < 0)
3485       insn |= 0x00a00000;
3486
3487     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3488     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3489     return ((val > 0xfff) ?
3490             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3491   }
3492
3493   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3494   static inline typename This::Status
3495   thm_pc8(unsigned char* view,
3496           const Sized_relobj<32, big_endian>* object,
3497           const Symbol_value<32>* psymval,
3498           Arm_address address)
3499   {
3500     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3501     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3502     Valtype* wv = reinterpret_cast<Valtype*>(view);
3503     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3504     Reltype addend = ((insn & 0x00ff) << 2);
3505     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3506     Reltype val = abs(x);
3507     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3508
3509     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3510     return ((val > 0x03fc)
3511             ? This::STATUS_OVERFLOW
3512             : This::STATUS_OKAY);
3513   }
3514
3515   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3516   static inline typename This::Status
3517   thm_pc12(unsigned char* view,
3518            const Sized_relobj<32, big_endian>* object,
3519            const Symbol_value<32>* psymval,
3520            Arm_address address)
3521   {
3522     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3523     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3524     Valtype* wv = reinterpret_cast<Valtype*>(view);
3525     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3526                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3527     // Determine a sign for the addend (positive if the U bit is 1).
3528     const int sign = (insn & 0x00800000) ? 1 : -1;
3529     int32_t addend = (insn & 0xfff);
3530     // Apply a sign to the added.
3531     addend *= sign;
3532
3533     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3534     Reltype val = abs(x);
3535     // Mask out and apply the value and the U bit.
3536     insn = (insn & 0xff7ff000) | (val & 0xfff);
3537     // Set the U bit according to whether the value to go in the
3538     // place is positive.
3539     if (x >= 0)
3540       insn |= 0x00800000;
3541
3542     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3543     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3544     return ((val > 0xfff) ?
3545             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3546   }
3547
3548   // R_ARM_V4BX
3549   static inline typename This::Status
3550   v4bx(const Relocate_info<32, big_endian>* relinfo,
3551        unsigned char *view,
3552        const Arm_relobj<big_endian>* object,
3553        const Arm_address address,
3554        const bool is_interworking)
3555   {
3556
3557     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3558     Valtype* wv = reinterpret_cast<Valtype*>(view);
3559     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3560
3561     // Ensure that we have a BX instruction.
3562     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3563     const uint32_t reg = (val & 0xf);
3564     if (is_interworking && reg != 0xf)
3565       {
3566         Stub_table<big_endian>* stub_table =
3567             object->stub_table(relinfo->data_shndx);
3568         gold_assert(stub_table != NULL);
3569
3570         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3571         gold_assert(stub != NULL);
3572
3573         int32_t veneer_address =
3574             stub_table->address() + stub->offset() - 8 - address;
3575         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3576                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3577         // Replace with a branch to veneer (B <addr>)
3578         val = (val & 0xf0000000) | 0x0a000000
3579               | ((veneer_address >> 2) & 0x00ffffff);
3580       }
3581     else
3582       {
3583         // Preserve Rm (lowest four bits) and the condition code
3584         // (highest four bits). Other bits encode MOV PC,Rm.
3585         val = (val & 0xf000000f) | 0x01a0f000;
3586       }
3587     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3588     return This::STATUS_OKAY;
3589   }
3590
3591   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3592   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3593   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3594   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3595   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3596   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3597   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3598   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3599   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3600   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3601   static inline typename This::Status
3602   arm_grp_alu(unsigned char* view,
3603         const Sized_relobj<32, big_endian>* object,
3604         const Symbol_value<32>* psymval,
3605         const int group,
3606         Arm_address address,
3607         Arm_address thumb_bit,
3608         bool check_overflow)
3609   {
3610     gold_assert(group >= 0 && group < 3);
3611     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3612     Valtype* wv = reinterpret_cast<Valtype*>(view);
3613     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3614
3615     // ALU group relocations are allowed only for the ADD/SUB instructions.
3616     // (0x00800000 - ADD, 0x00400000 - SUB)
3617     const Valtype opcode = insn & 0x01e00000;
3618     if (opcode != 0x00800000 && opcode != 0x00400000)
3619       return This::STATUS_BAD_RELOC;
3620
3621     // Determine a sign for the addend.
3622     const int sign = (opcode == 0x00800000) ? 1 : -1;
3623     // shifter = rotate_imm * 2
3624     const uint32_t shifter = (insn & 0xf00) >> 7;
3625     // Initial addend value.
3626     int32_t addend = insn & 0xff;
3627     // Rotate addend right by shifter.
3628     addend = (addend >> shifter) | (addend << (32 - shifter));
3629     // Apply a sign to the added.
3630     addend *= sign;
3631
3632     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3633     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3634     // Check for overflow if required
3635     if (check_overflow
3636         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3637       return This::STATUS_OVERFLOW;
3638
3639     // Mask out the value and the ADD/SUB part of the opcode; take care
3640     // not to destroy the S bit.
3641     insn &= 0xff1ff000;
3642     // Set the opcode according to whether the value to go in the
3643     // place is negative.
3644     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3645     // Encode the offset (encoded Gn).
3646     insn |= gn;
3647
3648     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3649     return This::STATUS_OKAY;
3650   }
3651
3652   // R_ARM_LDR_PC_G0: S + A - P
3653   // R_ARM_LDR_PC_G1: S + A - P
3654   // R_ARM_LDR_PC_G2: S + A - P
3655   // R_ARM_LDR_SB_G0: S + A - B(S)
3656   // R_ARM_LDR_SB_G1: S + A - B(S)
3657   // R_ARM_LDR_SB_G2: S + A - B(S)
3658   static inline typename This::Status
3659   arm_grp_ldr(unsigned char* view,
3660         const Sized_relobj<32, big_endian>* object,
3661         const Symbol_value<32>* psymval,
3662         const int group,
3663         Arm_address address)
3664   {
3665     gold_assert(group >= 0 && group < 3);
3666     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667     Valtype* wv = reinterpret_cast<Valtype*>(view);
3668     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3669
3670     const int sign = (insn & 0x00800000) ? 1 : -1;
3671     int32_t addend = (insn & 0xfff) * sign;
3672     int32_t x = (psymval->value(object, addend) - address);
3673     // Calculate the relevant G(n-1) value to obtain this stage residual.
3674     Valtype residual =
3675         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3676     if (residual >= 0x1000)
3677       return This::STATUS_OVERFLOW;
3678
3679     // Mask out the value and U bit.
3680     insn &= 0xff7ff000;
3681     // Set the U bit for non-negative values.
3682     if (x >= 0)
3683       insn |= 0x00800000;
3684     insn |= residual;
3685
3686     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3687     return This::STATUS_OKAY;
3688   }
3689
3690   // R_ARM_LDRS_PC_G0: S + A - P
3691   // R_ARM_LDRS_PC_G1: S + A - P
3692   // R_ARM_LDRS_PC_G2: S + A - P
3693   // R_ARM_LDRS_SB_G0: S + A - B(S)
3694   // R_ARM_LDRS_SB_G1: S + A - B(S)
3695   // R_ARM_LDRS_SB_G2: S + A - B(S)
3696   static inline typename This::Status
3697   arm_grp_ldrs(unsigned char* view,
3698         const Sized_relobj<32, big_endian>* object,
3699         const Symbol_value<32>* psymval,
3700         const int group,
3701         Arm_address address)
3702   {
3703     gold_assert(group >= 0 && group < 3);
3704     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3705     Valtype* wv = reinterpret_cast<Valtype*>(view);
3706     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3707
3708     const int sign = (insn & 0x00800000) ? 1 : -1;
3709     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3710     int32_t x = (psymval->value(object, addend) - address);
3711     // Calculate the relevant G(n-1) value to obtain this stage residual.
3712     Valtype residual =
3713         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3714    if (residual >= 0x100)
3715       return This::STATUS_OVERFLOW;
3716
3717     // Mask out the value and U bit.
3718     insn &= 0xff7ff0f0;
3719     // Set the U bit for non-negative values.
3720     if (x >= 0)
3721       insn |= 0x00800000;
3722     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3723
3724     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3725     return This::STATUS_OKAY;
3726   }
3727
3728   // R_ARM_LDC_PC_G0: S + A - P
3729   // R_ARM_LDC_PC_G1: S + A - P
3730   // R_ARM_LDC_PC_G2: S + A - P
3731   // R_ARM_LDC_SB_G0: S + A - B(S)
3732   // R_ARM_LDC_SB_G1: S + A - B(S)
3733   // R_ARM_LDC_SB_G2: S + A - B(S)
3734   static inline typename This::Status
3735   arm_grp_ldc(unsigned char* view,
3736       const Sized_relobj<32, big_endian>* object,
3737       const Symbol_value<32>* psymval,
3738       const int group,
3739       Arm_address address)
3740   {
3741     gold_assert(group >= 0 && group < 3);
3742     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3743     Valtype* wv = reinterpret_cast<Valtype*>(view);
3744     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3745
3746     const int sign = (insn & 0x00800000) ? 1 : -1;
3747     int32_t addend = ((insn & 0xff) << 2) * sign;
3748     int32_t x = (psymval->value(object, addend) - address);
3749     // Calculate the relevant G(n-1) value to obtain this stage residual.
3750     Valtype residual =
3751       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3752     if ((residual & 0x3) != 0 || residual >= 0x400)
3753       return This::STATUS_OVERFLOW;
3754
3755     // Mask out the value and U bit.
3756     insn &= 0xff7fff00;
3757     // Set the U bit for non-negative values.
3758     if (x >= 0)
3759       insn |= 0x00800000;
3760     insn |= (residual >> 2);
3761
3762     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3763     return This::STATUS_OKAY;
3764   }
3765 };
3766
3767 // Relocate ARM long branches.  This handles relocation types
3768 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3769 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3770 // undefined and we do not use PLT in this relocation.  In such a case,
3771 // the branch is converted into an NOP.
3772
3773 template<bool big_endian>
3774 typename Arm_relocate_functions<big_endian>::Status
3775 Arm_relocate_functions<big_endian>::arm_branch_common(
3776     unsigned int r_type,
3777     const Relocate_info<32, big_endian>* relinfo,
3778     unsigned char *view,
3779     const Sized_symbol<32>* gsym,
3780     const Arm_relobj<big_endian>* object,
3781     unsigned int r_sym,
3782     const Symbol_value<32>* psymval,
3783     Arm_address address,
3784     Arm_address thumb_bit,
3785     bool is_weakly_undefined_without_plt)
3786 {
3787   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3788   Valtype* wv = reinterpret_cast<Valtype*>(view);
3789   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3790      
3791   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3792                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3793   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3794   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3795                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3796   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3797   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3798
3799   // Check that the instruction is valid.
3800   if (r_type == elfcpp::R_ARM_CALL)
3801     {
3802       if (!insn_is_uncond_bl && !insn_is_blx)
3803         return This::STATUS_BAD_RELOC;
3804     }
3805   else if (r_type == elfcpp::R_ARM_JUMP24)
3806     {
3807       if (!insn_is_b && !insn_is_cond_bl)
3808         return This::STATUS_BAD_RELOC;
3809     }
3810   else if (r_type == elfcpp::R_ARM_PLT32)
3811     {
3812       if (!insn_is_any_branch)
3813         return This::STATUS_BAD_RELOC;
3814     }
3815   else if (r_type == elfcpp::R_ARM_XPC25)
3816     {
3817       // FIXME: AAELF document IH0044C does not say much about it other
3818       // than it being obsolete.
3819       if (!insn_is_any_branch)
3820         return This::STATUS_BAD_RELOC;
3821     }
3822   else
3823     gold_unreachable();
3824
3825   // A branch to an undefined weak symbol is turned into a jump to
3826   // the next instruction unless a PLT entry will be created.
3827   // Do the same for local undefined symbols.
3828   // The jump to the next instruction is optimized as a NOP depending
3829   // on the architecture.
3830   const Target_arm<big_endian>* arm_target =
3831     Target_arm<big_endian>::default_target();
3832   if (is_weakly_undefined_without_plt)
3833     {
3834       gold_assert(!parameters->options().relocatable());
3835       Valtype cond = val & 0xf0000000U;
3836       if (arm_target->may_use_arm_nop())
3837         val = cond | 0x0320f000;
3838       else
3839         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3840       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3841       return This::STATUS_OKAY;
3842     }
3843  
3844   Valtype addend = utils::sign_extend<26>(val << 2);
3845   Valtype branch_target = psymval->value(object, addend);
3846   int32_t branch_offset = branch_target - address;
3847
3848   // We need a stub if the branch offset is too large or if we need
3849   // to switch mode.
3850   bool may_use_blx = arm_target->may_use_blx();
3851   Reloc_stub* stub = NULL;
3852
3853   if (!parameters->options().relocatable()
3854       && (utils::has_overflow<26>(branch_offset)
3855           || ((thumb_bit != 0)
3856               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3857     {
3858       Valtype unadjusted_branch_target = psymval->value(object, 0);
3859
3860       Stub_type stub_type =
3861         Reloc_stub::stub_type_for_reloc(r_type, address,
3862                                         unadjusted_branch_target,
3863                                         (thumb_bit != 0));
3864       if (stub_type != arm_stub_none)
3865         {
3866           Stub_table<big_endian>* stub_table =
3867             object->stub_table(relinfo->data_shndx);
3868           gold_assert(stub_table != NULL);
3869
3870           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3871           stub = stub_table->find_reloc_stub(stub_key);
3872           gold_assert(stub != NULL);
3873           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3874           branch_target = stub_table->address() + stub->offset() + addend;
3875           branch_offset = branch_target - address;
3876           gold_assert(!utils::has_overflow<26>(branch_offset));
3877         }
3878     }
3879
3880   // At this point, if we still need to switch mode, the instruction
3881   // must either be a BLX or a BL that can be converted to a BLX.
3882   if (thumb_bit != 0)
3883     {
3884       // Turn BL to BLX.
3885       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3886       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3887     }
3888
3889   val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3890   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3891   return (utils::has_overflow<26>(branch_offset)
3892           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3893 }
3894
3895 // Relocate THUMB long branches.  This handles relocation types
3896 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3897 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3898 // undefined and we do not use PLT in this relocation.  In such a case,
3899 // the branch is converted into an NOP.
3900
3901 template<bool big_endian>
3902 typename Arm_relocate_functions<big_endian>::Status
3903 Arm_relocate_functions<big_endian>::thumb_branch_common(
3904     unsigned int r_type,
3905     const Relocate_info<32, big_endian>* relinfo,
3906     unsigned char *view,
3907     const Sized_symbol<32>* gsym,
3908     const Arm_relobj<big_endian>* object,
3909     unsigned int r_sym,
3910     const Symbol_value<32>* psymval,
3911     Arm_address address,
3912     Arm_address thumb_bit,
3913     bool is_weakly_undefined_without_plt)
3914 {
3915   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3916   Valtype* wv = reinterpret_cast<Valtype*>(view);
3917   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3918   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3919
3920   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3921   // into account.
3922   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3923   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3924      
3925   // Check that the instruction is valid.
3926   if (r_type == elfcpp::R_ARM_THM_CALL)
3927     {
3928       if (!is_bl_insn && !is_blx_insn)
3929         return This::STATUS_BAD_RELOC;
3930     }
3931   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3932     {
3933       // This cannot be a BLX.
3934       if (!is_bl_insn)
3935         return This::STATUS_BAD_RELOC;
3936     }
3937   else if (r_type == elfcpp::R_ARM_THM_XPC22)
3938     {
3939       // Check for Thumb to Thumb call.
3940       if (!is_blx_insn)
3941         return This::STATUS_BAD_RELOC;
3942       if (thumb_bit != 0)
3943         {
3944           gold_warning(_("%s: Thumb BLX instruction targets "
3945                          "thumb function '%s'."),
3946                          object->name().c_str(),
3947                          (gsym ? gsym->name() : "(local)")); 
3948           // Convert BLX to BL.
3949           lower_insn |= 0x1000U;
3950         }
3951     }
3952   else
3953     gold_unreachable();
3954
3955   // A branch to an undefined weak symbol is turned into a jump to
3956   // the next instruction unless a PLT entry will be created.
3957   // The jump to the next instruction is optimized as a NOP.W for
3958   // Thumb-2 enabled architectures.
3959   const Target_arm<big_endian>* arm_target =
3960     Target_arm<big_endian>::default_target();
3961   if (is_weakly_undefined_without_plt)
3962     {
3963       gold_assert(!parameters->options().relocatable());
3964       if (arm_target->may_use_thumb2_nop())
3965         {
3966           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3967           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3968         }
3969       else
3970         {
3971           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3972           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3973         }
3974       return This::STATUS_OKAY;
3975     }
3976  
3977   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3978   Arm_address branch_target = psymval->value(object, addend);
3979
3980   // For BLX, bit 1 of target address comes from bit 1 of base address.
3981   bool may_use_blx = arm_target->may_use_blx();
3982   if (thumb_bit == 0 && may_use_blx)
3983     branch_target = utils::bit_select(branch_target, address, 0x2);
3984
3985   int32_t branch_offset = branch_target - address;
3986
3987   // We need a stub if the branch offset is too large or if we need
3988   // to switch mode.
3989   bool thumb2 = arm_target->using_thumb2();
3990   if (!parameters->options().relocatable()
3991       && ((!thumb2 && utils::has_overflow<23>(branch_offset))
3992           || (thumb2 && utils::has_overflow<25>(branch_offset))
3993           || ((thumb_bit == 0)
3994               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3995                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
3996     {
3997       Arm_address unadjusted_branch_target = psymval->value(object, 0);
3998
3999       Stub_type stub_type =
4000         Reloc_stub::stub_type_for_reloc(r_type, address,
4001                                         unadjusted_branch_target,
4002                                         (thumb_bit != 0));
4003
4004       if (stub_type != arm_stub_none)
4005         {
4006           Stub_table<big_endian>* stub_table =
4007             object->stub_table(relinfo->data_shndx);
4008           gold_assert(stub_table != NULL);
4009
4010           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4011           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4012           gold_assert(stub != NULL);
4013           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4014           branch_target = stub_table->address() + stub->offset() + addend;
4015           if (thumb_bit == 0 && may_use_blx) 
4016             branch_target = utils::bit_select(branch_target, address, 0x2);
4017           branch_offset = branch_target - address;
4018         }
4019     }
4020
4021   // At this point, if we still need to switch mode, the instruction
4022   // must either be a BLX or a BL that can be converted to a BLX.
4023   if (thumb_bit == 0)
4024     {
4025       gold_assert(may_use_blx
4026                   && (r_type == elfcpp::R_ARM_THM_CALL
4027                       || r_type == elfcpp::R_ARM_THM_XPC22));
4028       // Make sure this is a BLX.
4029       lower_insn &= ~0x1000U;
4030     }
4031   else
4032     {
4033       // Make sure this is a BL.
4034       lower_insn |= 0x1000U;
4035     }
4036
4037   // For a BLX instruction, make sure that the relocation is rounded up
4038   // to a word boundary.  This follows the semantics of the instruction
4039   // which specifies that bit 1 of the target address will come from bit
4040   // 1 of the base address.
4041   if ((lower_insn & 0x5000U) == 0x4000U)
4042     gold_assert((branch_offset & 3) == 0);
4043
4044   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4045   // We use the Thumb-2 encoding, which is safe even if dealing with
4046   // a Thumb-1 instruction by virtue of our overflow check above.  */
4047   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4048   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4049
4050   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4051   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4052
4053   gold_assert(!utils::has_overflow<25>(branch_offset));
4054
4055   return ((thumb2
4056            ? utils::has_overflow<25>(branch_offset)
4057            : utils::has_overflow<23>(branch_offset))
4058           ? This::STATUS_OVERFLOW
4059           : This::STATUS_OKAY);
4060 }
4061
4062 // Relocate THUMB-2 long conditional branches.
4063 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4064 // undefined and we do not use PLT in this relocation.  In such a case,
4065 // the branch is converted into an NOP.
4066
4067 template<bool big_endian>
4068 typename Arm_relocate_functions<big_endian>::Status
4069 Arm_relocate_functions<big_endian>::thm_jump19(
4070     unsigned char *view,
4071     const Arm_relobj<big_endian>* object,
4072     const Symbol_value<32>* psymval,
4073     Arm_address address,
4074     Arm_address thumb_bit)
4075 {
4076   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4077   Valtype* wv = reinterpret_cast<Valtype*>(view);
4078   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4079   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4080   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4081
4082   Arm_address branch_target = psymval->value(object, addend);
4083   int32_t branch_offset = branch_target - address;
4084
4085   // ??? Should handle interworking?  GCC might someday try to
4086   // use this for tail calls.
4087   // FIXME: We do support thumb entry to PLT yet.
4088   if (thumb_bit == 0)
4089     {
4090       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4091       return This::STATUS_BAD_RELOC;
4092     }
4093
4094   // Put RELOCATION back into the insn.
4095   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4096   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4097
4098   // Put the relocated value back in the object file:
4099   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4100   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4101
4102   return (utils::has_overflow<21>(branch_offset)
4103           ? This::STATUS_OVERFLOW
4104           : This::STATUS_OKAY);
4105 }
4106
4107 // Get the GOT section, creating it if necessary.
4108
4109 template<bool big_endian>
4110 Arm_output_data_got<big_endian>*
4111 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4112 {
4113   if (this->got_ == NULL)
4114     {
4115       gold_assert(symtab != NULL && layout != NULL);
4116
4117       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4118
4119       Output_section* os;
4120       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4121                                            (elfcpp::SHF_ALLOC
4122                                             | elfcpp::SHF_WRITE),
4123                                            this->got_, false, false, false,
4124                                            true);
4125       // The old GNU linker creates a .got.plt section.  We just
4126       // create another set of data in the .got section.  Note that we
4127       // always create a PLT if we create a GOT, although the PLT
4128       // might be empty.
4129       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4130       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4131                                            (elfcpp::SHF_ALLOC
4132                                             | elfcpp::SHF_WRITE),
4133                                            this->got_plt_, false, false,
4134                                            false, false);
4135
4136       // The first three entries are reserved.
4137       this->got_plt_->set_current_data_size(3 * 4);
4138
4139       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4140       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4141                                     Symbol_table::PREDEFINED,
4142                                     this->got_plt_,
4143                                     0, 0, elfcpp::STT_OBJECT,
4144                                     elfcpp::STB_LOCAL,
4145                                     elfcpp::STV_HIDDEN, 0,
4146                                     false, false);
4147     }
4148   return this->got_;
4149 }
4150
4151 // Get the dynamic reloc section, creating it if necessary.
4152
4153 template<bool big_endian>
4154 typename Target_arm<big_endian>::Reloc_section*
4155 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4156 {
4157   if (this->rel_dyn_ == NULL)
4158     {
4159       gold_assert(layout != NULL);
4160       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4161       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4162                                       elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4163                                       false, false, false);
4164     }
4165   return this->rel_dyn_;
4166 }
4167
4168 // Insn_template methods.
4169
4170 // Return byte size of an instruction template.
4171
4172 size_t
4173 Insn_template::size() const
4174 {
4175   switch (this->type())
4176     {
4177     case THUMB16_TYPE:
4178     case THUMB16_SPECIAL_TYPE:
4179       return 2;
4180     case ARM_TYPE:
4181     case THUMB32_TYPE:
4182     case DATA_TYPE:
4183       return 4;
4184     default:
4185       gold_unreachable();
4186     }
4187 }
4188
4189 // Return alignment of an instruction template.
4190
4191 unsigned
4192 Insn_template::alignment() const
4193 {
4194   switch (this->type())
4195     {
4196     case THUMB16_TYPE:
4197     case THUMB16_SPECIAL_TYPE:
4198     case THUMB32_TYPE:
4199       return 2;
4200     case ARM_TYPE:
4201     case DATA_TYPE:
4202       return 4;
4203     default:
4204       gold_unreachable();
4205     }
4206 }
4207
4208 // Stub_template methods.
4209
4210 Stub_template::Stub_template(
4211     Stub_type type, const Insn_template* insns,
4212      size_t insn_count)
4213   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4214     entry_in_thumb_mode_(false), relocs_()
4215 {
4216   off_t offset = 0;
4217
4218   // Compute byte size and alignment of stub template.
4219   for (size_t i = 0; i < insn_count; i++)
4220     {
4221       unsigned insn_alignment = insns[i].alignment();
4222       size_t insn_size = insns[i].size();
4223       gold_assert((offset & (insn_alignment - 1)) == 0);
4224       this->alignment_ = std::max(this->alignment_, insn_alignment);
4225       switch (insns[i].type())
4226         {
4227         case Insn_template::THUMB16_TYPE:
4228         case Insn_template::THUMB16_SPECIAL_TYPE:
4229           if (i == 0)
4230             this->entry_in_thumb_mode_ = true;
4231           break;
4232
4233         case Insn_template::THUMB32_TYPE:
4234           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4235             this->relocs_.push_back(Reloc(i, offset));
4236           if (i == 0)
4237             this->entry_in_thumb_mode_ = true;
4238           break;
4239
4240         case Insn_template::ARM_TYPE:
4241           // Handle cases where the target is encoded within the
4242           // instruction.
4243           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4244             this->relocs_.push_back(Reloc(i, offset));
4245           break;
4246
4247         case Insn_template::DATA_TYPE:
4248           // Entry point cannot be data.
4249           gold_assert(i != 0);
4250           this->relocs_.push_back(Reloc(i, offset));
4251           break;
4252
4253         default:
4254           gold_unreachable();
4255         }
4256       offset += insn_size; 
4257     }
4258   this->size_ = offset;
4259 }
4260
4261 // Stub methods.
4262
4263 // Template to implement do_write for a specific target endianness.
4264
4265 template<bool big_endian>
4266 void inline
4267 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4268 {
4269   const Stub_template* stub_template = this->stub_template();
4270   const Insn_template* insns = stub_template->insns();
4271
4272   // FIXME:  We do not handle BE8 encoding yet.
4273   unsigned char* pov = view;
4274   for (size_t i = 0; i < stub_template->insn_count(); i++)
4275     {
4276       switch (insns[i].type())
4277         {
4278         case Insn_template::THUMB16_TYPE:
4279           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4280           break;
4281         case Insn_template::THUMB16_SPECIAL_TYPE:
4282           elfcpp::Swap<16, big_endian>::writeval(
4283               pov,
4284               this->thumb16_special(i));
4285           break;
4286         case Insn_template::THUMB32_TYPE:
4287           {
4288             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4289             uint32_t lo = insns[i].data() & 0xffff;
4290             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4291             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4292           }
4293           break;
4294         case Insn_template::ARM_TYPE:
4295         case Insn_template::DATA_TYPE:
4296           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4297           break;
4298         default:
4299           gold_unreachable();
4300         }
4301       pov += insns[i].size();
4302     }
4303   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4304
4305
4306 // Reloc_stub::Key methods.
4307
4308 // Dump a Key as a string for debugging.
4309
4310 std::string
4311 Reloc_stub::Key::name() const
4312 {
4313   if (this->r_sym_ == invalid_index)
4314     {
4315       // Global symbol key name
4316       // <stub-type>:<symbol name>:<addend>.
4317       const std::string sym_name = this->u_.symbol->name();
4318       // We need to print two hex number and two colons.  So just add 100 bytes
4319       // to the symbol name size.
4320       size_t len = sym_name.size() + 100;
4321       char* buffer = new char[len];
4322       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4323                        sym_name.c_str(), this->addend_);
4324       gold_assert(c > 0 && c < static_cast<int>(len));
4325       delete[] buffer;
4326       return std::string(buffer);
4327     }
4328   else
4329     {
4330       // local symbol key name
4331       // <stub-type>:<object>:<r_sym>:<addend>.
4332       const size_t len = 200;
4333       char buffer[len];
4334       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4335                        this->u_.relobj, this->r_sym_, this->addend_);
4336       gold_assert(c > 0 && c < static_cast<int>(len));
4337       return std::string(buffer);
4338     }
4339 }
4340
4341 // Reloc_stub methods.
4342
4343 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4344 // LOCATION to DESTINATION.
4345 // This code is based on the arm_type_of_stub function in
4346 // bfd/elf32-arm.c.  We have changed the interface a liitle to keep the Stub
4347 // class simple.
4348
4349 Stub_type
4350 Reloc_stub::stub_type_for_reloc(
4351    unsigned int r_type,
4352    Arm_address location,
4353    Arm_address destination,
4354    bool target_is_thumb)
4355 {
4356   Stub_type stub_type = arm_stub_none;
4357
4358   // This is a bit ugly but we want to avoid using a templated class for
4359   // big and little endianities.
4360   bool may_use_blx;
4361   bool should_force_pic_veneer;
4362   bool thumb2;
4363   bool thumb_only;
4364   if (parameters->target().is_big_endian())
4365     {
4366       const Target_arm<true>* big_endian_target =
4367         Target_arm<true>::default_target();
4368       may_use_blx = big_endian_target->may_use_blx();
4369       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4370       thumb2 = big_endian_target->using_thumb2();
4371       thumb_only = big_endian_target->using_thumb_only();
4372     }
4373   else
4374     {
4375       const Target_arm<false>* little_endian_target =
4376         Target_arm<false>::default_target();
4377       may_use_blx = little_endian_target->may_use_blx();
4378       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4379       thumb2 = little_endian_target->using_thumb2();
4380       thumb_only = little_endian_target->using_thumb_only();
4381     }
4382
4383   int64_t branch_offset;
4384   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4385     {
4386       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4387       // base address (instruction address + 4).
4388       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4389         destination = utils::bit_select(destination, location, 0x2);
4390       branch_offset = static_cast<int64_t>(destination) - location;
4391         
4392       // Handle cases where:
4393       // - this call goes too far (different Thumb/Thumb2 max
4394       //   distance)
4395       // - it's a Thumb->Arm call and blx is not available, or it's a
4396       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4397       if ((!thumb2
4398             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4399                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4400           || (thumb2
4401               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4402                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4403           || ((!target_is_thumb)
4404               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4405                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4406         {
4407           if (target_is_thumb)
4408             {
4409               // Thumb to thumb.
4410               if (!thumb_only)
4411                 {
4412                   stub_type = (parameters->options().shared()
4413                                || should_force_pic_veneer)
4414                     // PIC stubs.
4415                     ? ((may_use_blx
4416                         && (r_type == elfcpp::R_ARM_THM_CALL))
4417                        // V5T and above. Stub starts with ARM code, so
4418                        // we must be able to switch mode before
4419                        // reaching it, which is only possible for 'bl'
4420                        // (ie R_ARM_THM_CALL relocation).
4421                        ? arm_stub_long_branch_any_thumb_pic
4422                        // On V4T, use Thumb code only.
4423                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4424
4425                     // non-PIC stubs.
4426                     : ((may_use_blx
4427                         && (r_type == elfcpp::R_ARM_THM_CALL))
4428                        ? arm_stub_long_branch_any_any // V5T and above.
4429                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4430                 }
4431               else
4432                 {
4433                   stub_type = (parameters->options().shared()
4434                                || should_force_pic_veneer)
4435                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4436                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4437                 }
4438             }
4439           else
4440             {
4441               // Thumb to arm.
4442              
4443               // FIXME: We should check that the input section is from an
4444               // object that has interwork enabled.
4445
4446               stub_type = (parameters->options().shared()
4447                            || should_force_pic_veneer)
4448                 // PIC stubs.
4449                 ? ((may_use_blx
4450                     && (r_type == elfcpp::R_ARM_THM_CALL))
4451                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4452                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4453
4454                 // non-PIC stubs.
4455                 : ((may_use_blx
4456                     && (r_type == elfcpp::R_ARM_THM_CALL))
4457                    ? arm_stub_long_branch_any_any       // V5T and above.
4458                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4459
4460               // Handle v4t short branches.
4461               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4462                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4463                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4464                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4465             }
4466         }
4467     }
4468   else if (r_type == elfcpp::R_ARM_CALL
4469            || r_type == elfcpp::R_ARM_JUMP24
4470            || r_type == elfcpp::R_ARM_PLT32)
4471     {
4472       branch_offset = static_cast<int64_t>(destination) - location;
4473       if (target_is_thumb)
4474         {
4475           // Arm to thumb.
4476
4477           // FIXME: We should check that the input section is from an
4478           // object that has interwork enabled.
4479
4480           // We have an extra 2-bytes reach because of
4481           // the mode change (bit 24 (H) of BLX encoding).
4482           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4483               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4484               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4485               || (r_type == elfcpp::R_ARM_JUMP24)
4486               || (r_type == elfcpp::R_ARM_PLT32))
4487             {
4488               stub_type = (parameters->options().shared()
4489                            || should_force_pic_veneer)
4490                 // PIC stubs.
4491                 ? (may_use_blx
4492                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4493                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4494
4495                 // non-PIC stubs.
4496                 : (may_use_blx
4497                    ? arm_stub_long_branch_any_any       // V5T and above.
4498                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4499             }
4500         }
4501       else
4502         {
4503           // Arm to arm.
4504           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4505               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4506             {
4507               stub_type = (parameters->options().shared()
4508                            || should_force_pic_veneer)
4509                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4510                 : arm_stub_long_branch_any_any;         /// non-PIC.
4511             }
4512         }
4513     }
4514
4515   return stub_type;
4516 }
4517
4518 // Cortex_a8_stub methods.
4519
4520 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4521 // I is the position of the instruction template in the stub template.
4522
4523 uint16_t
4524 Cortex_a8_stub::do_thumb16_special(size_t i)
4525 {
4526   // The only use of this is to copy condition code from a conditional
4527   // branch being worked around to the corresponding conditional branch in
4528   // to the stub.
4529   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4530               && i == 0);
4531   uint16_t data = this->stub_template()->insns()[i].data();
4532   gold_assert((data & 0xff00U) == 0xd000U);
4533   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4534   return data;
4535 }
4536
4537 // Stub_factory methods.
4538
4539 Stub_factory::Stub_factory()
4540 {
4541   // The instruction template sequences are declared as static
4542   // objects and initialized first time the constructor runs.
4543  
4544   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4545   // to reach the stub if necessary.
4546   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4547     {
4548       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4549       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4550                                                 // dcd   R_ARM_ABS32(X)
4551     };
4552   
4553   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4554   // available.
4555   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4556     {
4557       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4558       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4559       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4560                                                 // dcd   R_ARM_ABS32(X)
4561     };
4562   
4563   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4564   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4565     {
4566       Insn_template::thumb16_insn(0xb401),      // push {r0}
4567       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4568       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4569       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4570       Insn_template::thumb16_insn(0x4760),      // bx   ip
4571       Insn_template::thumb16_insn(0xbf00),      // nop
4572       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4573                                                 // dcd  R_ARM_ABS32(X)
4574     };
4575   
4576   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4577   // allowed.
4578   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4579     {
4580       Insn_template::thumb16_insn(0x4778),      // bx   pc
4581       Insn_template::thumb16_insn(0x46c0),      // nop
4582       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4583       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4584       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4585                                                 // dcd  R_ARM_ABS32(X)
4586     };
4587   
4588   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4589   // available.
4590   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4591     {
4592       Insn_template::thumb16_insn(0x4778),      // bx   pc
4593       Insn_template::thumb16_insn(0x46c0),      // nop
4594       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4595       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4596                                                 // dcd   R_ARM_ABS32(X)
4597     };
4598   
4599   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4600   // one, when the destination is close enough.
4601   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4602     {
4603       Insn_template::thumb16_insn(0x4778),              // bx   pc
4604       Insn_template::thumb16_insn(0x46c0),              // nop
4605       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4606     };
4607   
4608   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4609   // blx to reach the stub if necessary.
4610   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4611     {
4612       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4613       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4614       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4615                                                 // dcd   R_ARM_REL32(X-4)
4616     };
4617   
4618   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4619   // blx to reach the stub if necessary.  We can not add into pc;
4620   // it is not guaranteed to mode switch (different in ARMv6 and
4621   // ARMv7).
4622   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4623     {
4624       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4625       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4626       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4627       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4628                                                 // dcd   R_ARM_REL32(X)
4629     };
4630   
4631   // V4T ARM -> ARM long branch stub, PIC.
4632   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4633     {
4634       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4635       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4636       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4637       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4638                                                 // dcd   R_ARM_REL32(X)
4639     };
4640   
4641   // V4T Thumb -> ARM long branch stub, PIC.
4642   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4643     {
4644       Insn_template::thumb16_insn(0x4778),      // bx   pc
4645       Insn_template::thumb16_insn(0x46c0),      // nop
4646       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4647       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4648       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4649                                                 // dcd  R_ARM_REL32(X)
4650     };
4651   
4652   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4653   // architectures.
4654   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4655     {
4656       Insn_template::thumb16_insn(0xb401),      // push {r0}
4657       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4658       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4659       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4660       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4661       Insn_template::thumb16_insn(0x4760),      // bx   ip
4662       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4663                                                 // dcd  R_ARM_REL32(X)
4664     };
4665   
4666   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4667   // allowed.
4668   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4669     {
4670       Insn_template::thumb16_insn(0x4778),      // bx   pc
4671       Insn_template::thumb16_insn(0x46c0),      // nop
4672       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4673       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4674       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4675       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4676                                                 // dcd  R_ARM_REL32(X)
4677     };
4678   
4679   // Cortex-A8 erratum-workaround stubs.
4680   
4681   // Stub used for conditional branches (which may be beyond +/-1MB away,
4682   // so we can't use a conditional branch to reach this stub).
4683   
4684   // original code:
4685   //
4686   //    b<cond> X
4687   // after:
4688   //
4689   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4690     {
4691       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4692       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4693       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4694                                                         //      b.w X
4695     };
4696   
4697   // Stub used for b.w and bl.w instructions.
4698   
4699   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4700     {
4701       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4702     };
4703   
4704   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4705     {
4706       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4707     };
4708   
4709   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4710   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4711   // the real destination using an ARM-mode branch.
4712   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4713     {
4714       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4715     };
4716
4717   // Stub used to provide an interworking for R_ARM_V4BX relocation
4718   // (bx r[n] instruction).
4719   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4720     {
4721       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4722       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4723       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4724     };
4725
4726   // Fill in the stub template look-up table.  Stub templates are constructed
4727   // per instance of Stub_factory for fast look-up without locking
4728   // in a thread-enabled environment.
4729
4730   this->stub_templates_[arm_stub_none] =
4731     new Stub_template(arm_stub_none, NULL, 0);
4732
4733 #define DEF_STUB(x)     \
4734   do \
4735     { \
4736       size_t array_size \
4737         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4738       Stub_type type = arm_stub_##x; \
4739       this->stub_templates_[type] = \
4740         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4741     } \
4742   while (0);
4743
4744   DEF_STUBS
4745 #undef DEF_STUB
4746 }
4747
4748 // Stub_table methods.
4749
4750 // Removel all Cortex-A8 stub.
4751
4752 template<bool big_endian>
4753 void
4754 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4755 {
4756   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4757        p != this->cortex_a8_stubs_.end();
4758        ++p)
4759     delete p->second;
4760   this->cortex_a8_stubs_.clear();
4761 }
4762
4763 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4764
4765 template<bool big_endian>
4766 void
4767 Stub_table<big_endian>::relocate_stub(
4768     Stub* stub,
4769     const Relocate_info<32, big_endian>* relinfo,
4770     Target_arm<big_endian>* arm_target,
4771     Output_section* output_section,
4772     unsigned char* view,
4773     Arm_address address,
4774     section_size_type view_size)
4775 {
4776   const Stub_template* stub_template = stub->stub_template();
4777   if (stub_template->reloc_count() != 0)
4778     {
4779       // Adjust view to cover the stub only.
4780       section_size_type offset = stub->offset();
4781       section_size_type stub_size = stub_template->size();
4782       gold_assert(offset + stub_size <= view_size);
4783
4784       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4785                                 address + offset, stub_size);
4786     }
4787 }
4788
4789 // Relocate all stubs in this stub table.
4790
4791 template<bool big_endian>
4792 void
4793 Stub_table<big_endian>::relocate_stubs(
4794     const Relocate_info<32, big_endian>* relinfo,
4795     Target_arm<big_endian>* arm_target,
4796     Output_section* output_section,
4797     unsigned char* view,
4798     Arm_address address,
4799     section_size_type view_size)
4800 {
4801   // If we are passed a view bigger than the stub table's.  we need to
4802   // adjust the view.
4803   gold_assert(address == this->address()
4804               && (view_size
4805                   == static_cast<section_size_type>(this->data_size())));
4806
4807   // Relocate all relocation stubs.
4808   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4809       p != this->reloc_stubs_.end();
4810       ++p)
4811     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4812                         address, view_size);
4813
4814   // Relocate all Cortex-A8 stubs.
4815   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4816        p != this->cortex_a8_stubs_.end();
4817        ++p)
4818     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4819                         address, view_size);
4820
4821   // Relocate all ARM V4BX stubs.
4822   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4823        p != this->arm_v4bx_stubs_.end();
4824        ++p)
4825     {
4826       if (*p != NULL)
4827         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4828                             address, view_size);
4829     }
4830 }
4831
4832 // Write out the stubs to file.
4833
4834 template<bool big_endian>
4835 void
4836 Stub_table<big_endian>::do_write(Output_file* of)
4837 {
4838   off_t offset = this->offset();
4839   const section_size_type oview_size =
4840     convert_to_section_size_type(this->data_size());
4841   unsigned char* const oview = of->get_output_view(offset, oview_size);
4842
4843   // Write relocation stubs.
4844   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4845       p != this->reloc_stubs_.end();
4846       ++p)
4847     {
4848       Reloc_stub* stub = p->second;
4849       Arm_address address = this->address() + stub->offset();
4850       gold_assert(address
4851                   == align_address(address,
4852                                    stub->stub_template()->alignment()));
4853       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4854                   big_endian);
4855     }
4856
4857   // Write Cortex-A8 stubs.
4858   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4859        p != this->cortex_a8_stubs_.end();
4860        ++p)
4861     {
4862       Cortex_a8_stub* stub = p->second;
4863       Arm_address address = this->address() + stub->offset();
4864       gold_assert(address
4865                   == align_address(address,
4866                                    stub->stub_template()->alignment()));
4867       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4868                   big_endian);
4869     }
4870
4871   // Write ARM V4BX relocation stubs.
4872   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4873        p != this->arm_v4bx_stubs_.end();
4874        ++p)
4875     {
4876       if (*p == NULL)
4877         continue;
4878
4879       Arm_address address = this->address() + (*p)->offset();
4880       gold_assert(address
4881                   == align_address(address,
4882                                    (*p)->stub_template()->alignment()));
4883       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4884                   big_endian);
4885     }
4886
4887   of->write_output_view(this->offset(), oview_size, oview);
4888 }
4889
4890 // Update the data size and address alignment of the stub table at the end
4891 // of a relaxation pass.   Return true if either the data size or the
4892 // alignment changed in this relaxation pass.
4893
4894 template<bool big_endian>
4895 bool
4896 Stub_table<big_endian>::update_data_size_and_addralign()
4897 {
4898   // Go over all stubs in table to compute data size and address alignment.
4899   off_t size = this->reloc_stubs_size_;
4900   unsigned addralign = this->reloc_stubs_addralign_;
4901
4902   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4903        p != this->cortex_a8_stubs_.end();
4904        ++p)
4905     {
4906       const Stub_template* stub_template = p->second->stub_template();
4907       addralign = std::max(addralign, stub_template->alignment());
4908       size = (align_address(size, stub_template->alignment())
4909               + stub_template->size());
4910     }
4911
4912   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4913        p != this->arm_v4bx_stubs_.end();
4914        ++p)
4915     {
4916       if (*p == NULL)
4917         continue;
4918
4919       const Stub_template* stub_template = (*p)->stub_template();
4920       addralign = std::max(addralign, stub_template->alignment());
4921       size = (align_address(size, stub_template->alignment())
4922               + stub_template->size());
4923     }
4924
4925   // Check if either data size or alignment changed in this pass.
4926   // Update prev_data_size_ and prev_addralign_.  These will be used
4927   // as the current data size and address alignment for the next pass.
4928   bool changed = size != this->prev_data_size_;
4929   this->prev_data_size_ = size; 
4930
4931   if (addralign != this->prev_addralign_)
4932     changed = true;
4933   this->prev_addralign_ = addralign;
4934
4935   return changed;
4936 }
4937
4938 // Finalize the stubs.  This sets the offsets of the stubs within the stub
4939 // table.  It also marks all input sections needing Cortex-A8 workaround.
4940
4941 template<bool big_endian>
4942 void
4943 Stub_table<big_endian>::finalize_stubs()
4944 {
4945   off_t off = this->reloc_stubs_size_;
4946   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4947        p != this->cortex_a8_stubs_.end();
4948        ++p)
4949     {
4950       Cortex_a8_stub* stub = p->second;
4951       const Stub_template* stub_template = stub->stub_template();
4952       uint64_t stub_addralign = stub_template->alignment();
4953       off = align_address(off, stub_addralign);
4954       stub->set_offset(off);
4955       off += stub_template->size();
4956
4957       // Mark input section so that we can determine later if a code section
4958       // needs the Cortex-A8 workaround quickly.
4959       Arm_relobj<big_endian>* arm_relobj =
4960         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4961       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4962     }
4963
4964   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4965       p != this->arm_v4bx_stubs_.end();
4966       ++p)
4967     {
4968       if (*p == NULL)
4969         continue;
4970
4971       const Stub_template* stub_template = (*p)->stub_template();
4972       uint64_t stub_addralign = stub_template->alignment();
4973       off = align_address(off, stub_addralign);
4974       (*p)->set_offset(off);
4975       off += stub_template->size();
4976     }
4977
4978   gold_assert(off <= this->prev_data_size_);
4979 }
4980
4981 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4982 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
4983 // of the address range seen by the linker.
4984
4985 template<bool big_endian>
4986 void
4987 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4988     Target_arm<big_endian>* arm_target,
4989     unsigned char* view,
4990     Arm_address view_address,
4991     section_size_type view_size)
4992 {
4993   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4994   for (Cortex_a8_stub_list::const_iterator p =
4995          this->cortex_a8_stubs_.lower_bound(view_address);
4996        ((p != this->cortex_a8_stubs_.end())
4997         && (p->first < (view_address + view_size)));
4998        ++p)
4999     {
5000       // We do not store the THUMB bit in the LSB of either the branch address
5001       // or the stub offset.  There is no need to strip the LSB.
5002       Arm_address branch_address = p->first;
5003       const Cortex_a8_stub* stub = p->second;
5004       Arm_address stub_address = this->address() + stub->offset();
5005
5006       // Offset of the branch instruction relative to this view.
5007       section_size_type offset =
5008         convert_to_section_size_type(branch_address - view_address);
5009       gold_assert((offset + 4) <= view_size);
5010
5011       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5012                                              view + offset, branch_address);
5013     }
5014 }
5015
5016 // Arm_input_section methods.
5017
5018 // Initialize an Arm_input_section.
5019
5020 template<bool big_endian>
5021 void
5022 Arm_input_section<big_endian>::init()
5023 {
5024   Relobj* relobj = this->relobj();
5025   unsigned int shndx = this->shndx();
5026
5027   // Cache these to speed up size and alignment queries.  It is too slow
5028   // to call section_addraglin and section_size every time.
5029   this->original_addralign_ =
5030     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5031   this->original_size_ =
5032     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5033
5034   // We want to make this look like the original input section after
5035   // output sections are finalized.
5036   Output_section* os = relobj->output_section(shndx);
5037   off_t offset = relobj->output_section_offset(shndx);
5038   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5039   this->set_address(os->address() + offset);
5040   this->set_file_offset(os->offset() + offset);
5041
5042   this->set_current_data_size(this->original_size_);
5043   this->finalize_data_size();
5044 }
5045
5046 template<bool big_endian>
5047 void
5048 Arm_input_section<big_endian>::do_write(Output_file* of)
5049 {
5050   // We have to write out the original section content.
5051   section_size_type section_size;
5052   const unsigned char* section_contents =
5053     this->relobj()->section_contents(this->shndx(), &section_size, false); 
5054   of->write(this->offset(), section_contents, section_size); 
5055
5056   // If this owns a stub table and it is not empty, write it.
5057   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5058     this->stub_table_->write(of);
5059 }
5060
5061 // Finalize data size.
5062
5063 template<bool big_endian>
5064 void
5065 Arm_input_section<big_endian>::set_final_data_size()
5066 {
5067   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5068
5069   if (this->is_stub_table_owner())
5070     {
5071       this->stub_table_->finalize_data_size();
5072       off = align_address(off, this->stub_table_->addralign());
5073       off += this->stub_table_->data_size();
5074     }
5075   this->set_data_size(off);
5076 }
5077
5078 // Reset address and file offset.
5079
5080 template<bool big_endian>
5081 void
5082 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5083 {
5084   // Size of the original input section contents.
5085   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5086
5087   // If this is a stub table owner, account for the stub table size.
5088   if (this->is_stub_table_owner())
5089     {
5090       Stub_table<big_endian>* stub_table = this->stub_table_;
5091
5092       // Reset the stub table's address and file offset.  The
5093       // current data size for child will be updated after that.
5094       stub_table_->reset_address_and_file_offset();
5095       off = align_address(off, stub_table_->addralign());
5096       off += stub_table->current_data_size();
5097     }
5098
5099   this->set_current_data_size(off);
5100 }
5101
5102 // Arm_exidx_cantunwind methods.
5103
5104 // Write this to Output file OF for a fixed endianness.
5105
5106 template<bool big_endian>
5107 void
5108 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5109 {
5110   off_t offset = this->offset();
5111   const section_size_type oview_size = 8;
5112   unsigned char* const oview = of->get_output_view(offset, oview_size);
5113   
5114   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5115   Valtype* wv = reinterpret_cast<Valtype*>(oview);
5116
5117   Output_section* os = this->relobj_->output_section(this->shndx_);
5118   gold_assert(os != NULL);
5119
5120   Arm_relobj<big_endian>* arm_relobj =
5121     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5122   Arm_address output_offset =
5123     arm_relobj->get_output_section_offset(this->shndx_);
5124   Arm_address section_start;
5125   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5126     section_start = os->address() + output_offset;
5127   else
5128     {
5129       // Currently this only happens for a relaxed section.
5130       const Output_relaxed_input_section* poris =
5131         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5132       gold_assert(poris != NULL);
5133       section_start = poris->address();
5134     }
5135
5136   // We always append this to the end of an EXIDX section.
5137   Arm_address output_address =
5138     section_start + this->relobj_->section_size(this->shndx_);
5139
5140   // Write out the entry.  The first word either points to the beginning
5141   // or after the end of a text section.  The second word is the special
5142   // EXIDX_CANTUNWIND value.
5143   uint32_t prel31_offset = output_address - this->address();
5144   if (utils::has_overflow<31>(offset))
5145     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5146   elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5147   elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5148
5149   of->write_output_view(this->offset(), oview_size, oview);
5150 }
5151
5152 // Arm_exidx_merged_section methods.
5153
5154 // Constructor for Arm_exidx_merged_section.
5155 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5156 // SECTION_OFFSET_MAP points to a section offset map describing how
5157 // parts of the input section are mapped to output.  DELETED_BYTES is
5158 // the number of bytes deleted from the EXIDX input section.
5159
5160 Arm_exidx_merged_section::Arm_exidx_merged_section(
5161     const Arm_exidx_input_section& exidx_input_section,
5162     const Arm_exidx_section_offset_map& section_offset_map,
5163     uint32_t deleted_bytes)
5164   : Output_relaxed_input_section(exidx_input_section.relobj(),
5165                                  exidx_input_section.shndx(),
5166                                  exidx_input_section.addralign()),
5167     exidx_input_section_(exidx_input_section),
5168     section_offset_map_(section_offset_map)
5169 {
5170   // Fix size here so that we do not need to implement set_final_data_size.
5171   this->set_data_size(exidx_input_section.size() - deleted_bytes);
5172   this->fix_data_size();
5173 }
5174
5175 // Given an input OBJECT, an input section index SHNDX within that
5176 // object, and an OFFSET relative to the start of that input
5177 // section, return whether or not the corresponding offset within
5178 // the output section is known.  If this function returns true, it
5179 // sets *POUTPUT to the output offset.  The value -1 indicates that
5180 // this input offset is being discarded.
5181
5182 bool
5183 Arm_exidx_merged_section::do_output_offset(
5184     const Relobj* relobj,
5185     unsigned int shndx,
5186     section_offset_type offset,
5187     section_offset_type* poutput) const
5188 {
5189   // We only handle offsets for the original EXIDX input section.
5190   if (relobj != this->exidx_input_section_.relobj()
5191       || shndx != this->exidx_input_section_.shndx())
5192     return false;
5193
5194   section_offset_type section_size =
5195     convert_types<section_offset_type>(this->exidx_input_section_.size());
5196   if (offset < 0 || offset >= section_size)
5197     // Input offset is out of valid range.
5198     *poutput = -1;
5199   else
5200     {
5201       // We need to look up the section offset map to determine the output
5202       // offset.  Find the reference point in map that is first offset
5203       // bigger than or equal to this offset.
5204       Arm_exidx_section_offset_map::const_iterator p =
5205         this->section_offset_map_.lower_bound(offset);
5206
5207       // The section offset maps are build such that this should not happen if
5208       // input offset is in the valid range.
5209       gold_assert(p != this->section_offset_map_.end());
5210
5211       // We need to check if this is dropped.
5212      section_offset_type ref = p->first;
5213      section_offset_type mapped_ref = p->second;
5214
5215       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5216         // Offset is present in output.
5217         *poutput = mapped_ref + (offset - ref);
5218       else
5219         // Offset is discarded owing to EXIDX entry merging.
5220         *poutput = -1;
5221     }
5222   
5223   return true;
5224 }
5225
5226 // Write this to output file OF.
5227
5228 void
5229 Arm_exidx_merged_section::do_write(Output_file* of)
5230 {
5231   // If we retain or discard the whole EXIDX input section,  we would
5232   // not be here.
5233   gold_assert(this->data_size() != this->exidx_input_section_.size()
5234               && this->data_size() != 0);
5235
5236   off_t offset = this->offset();
5237   const section_size_type oview_size = this->data_size();
5238   unsigned char* const oview = of->get_output_view(offset, oview_size);
5239   
5240   Output_section* os = this->relobj()->output_section(this->shndx());
5241   gold_assert(os != NULL);
5242
5243   // Get contents of EXIDX input section.
5244   section_size_type section_size;
5245   const unsigned char* section_contents =
5246     this->relobj()->section_contents(this->shndx(), &section_size, false); 
5247   gold_assert(section_size == this->exidx_input_section_.size());
5248
5249   // Go over spans of input offsets and write only those that are not
5250   // discarded.
5251   section_offset_type in_start = 0;
5252   section_offset_type out_start = 0;
5253   for(Arm_exidx_section_offset_map::const_iterator p =
5254         this->section_offset_map_.begin();
5255       p != this->section_offset_map_.end();
5256       ++p)
5257     {
5258       section_offset_type in_end = p->first;
5259       gold_assert(in_end >= in_start);
5260       section_offset_type out_end = p->second;
5261       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5262       if (out_end != -1)
5263         {
5264           size_t out_chunk_size =
5265             convert_types<size_t>(out_end - out_start + 1);
5266           gold_assert(out_chunk_size == in_chunk_size);
5267           memcpy(oview + out_start, section_contents + in_start,
5268                  out_chunk_size);
5269           out_start += out_chunk_size;
5270         }
5271       in_start += in_chunk_size;
5272     }
5273
5274   gold_assert(convert_to_section_size_type(out_start) == oview_size);
5275   of->write_output_view(this->offset(), oview_size, oview);
5276 }
5277
5278 // Arm_exidx_fixup methods.
5279
5280 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5281 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5282 // points to the end of the last seen EXIDX section.
5283
5284 void
5285 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5286 {
5287   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5288       && this->last_input_section_ != NULL)
5289     {
5290       Relobj* relobj = this->last_input_section_->relobj();
5291       unsigned int text_shndx = this->last_input_section_->link();
5292       Arm_exidx_cantunwind* cantunwind =
5293         new Arm_exidx_cantunwind(relobj, text_shndx);
5294       this->exidx_output_section_->add_output_section_data(cantunwind);
5295       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5296     }
5297 }
5298
5299 // Process an EXIDX section entry in input.  Return whether this entry
5300 // can be deleted in the output.  SECOND_WORD in the second word of the
5301 // EXIDX entry.
5302
5303 bool
5304 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5305 {
5306   bool delete_entry;
5307   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5308     {
5309       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5310       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5311       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5312     }
5313   else if ((second_word & 0x80000000) != 0)
5314     {
5315       // Inlined unwinding data.  Merge if equal to previous.
5316       delete_entry = (merge_exidx_entries_
5317                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5318                       && this->last_inlined_entry_ == second_word);
5319       this->last_unwind_type_ = UT_INLINED_ENTRY;
5320       this->last_inlined_entry_ = second_word;
5321     }
5322   else
5323     {
5324       // Normal table entry.  In theory we could merge these too,
5325       // but duplicate entries are likely to be much less common.
5326       delete_entry = false;
5327       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5328     }
5329   return delete_entry;
5330 }
5331
5332 // Update the current section offset map during EXIDX section fix-up.
5333 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5334 // reference point, DELETED_BYTES is the number of deleted by in the
5335 // section so far.  If DELETE_ENTRY is true, the reference point and
5336 // all offsets after the previous reference point are discarded.
5337
5338 void
5339 Arm_exidx_fixup::update_offset_map(
5340     section_offset_type input_offset,
5341     section_size_type deleted_bytes,
5342     bool delete_entry)
5343 {
5344   if (this->section_offset_map_ == NULL)
5345     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5346   section_offset_type output_offset;
5347   if (delete_entry)
5348     output_offset = Arm_exidx_input_section::invalid_offset;
5349   else
5350     output_offset = input_offset - deleted_bytes;
5351   (*this->section_offset_map_)[input_offset] = output_offset;
5352 }
5353
5354 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5355 // bytes deleted.  If some entries are merged, also store a pointer to a newly
5356 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The
5357 // caller owns the map and is responsible for releasing it after use.
5358
5359 template<bool big_endian>
5360 uint32_t
5361 Arm_exidx_fixup::process_exidx_section(
5362     const Arm_exidx_input_section* exidx_input_section,
5363     Arm_exidx_section_offset_map** psection_offset_map)
5364 {
5365   Relobj* relobj = exidx_input_section->relobj();
5366   unsigned shndx = exidx_input_section->shndx();
5367   section_size_type section_size;
5368   const unsigned char* section_contents =
5369     relobj->section_contents(shndx, &section_size, false);
5370
5371   if ((section_size % 8) != 0)
5372     {
5373       // Something is wrong with this section.  Better not touch it.
5374       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5375                  relobj->name().c_str(), shndx);
5376       this->last_input_section_ = exidx_input_section;
5377       this->last_unwind_type_ = UT_NONE;
5378       return 0;
5379     }
5380   
5381   uint32_t deleted_bytes = 0;
5382   bool prev_delete_entry = false;
5383   gold_assert(this->section_offset_map_ == NULL);
5384
5385   for (section_size_type i = 0; i < section_size; i += 8)
5386     {
5387       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5388       const Valtype* wv =
5389           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5390       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5391
5392       bool delete_entry = this->process_exidx_entry(second_word);
5393
5394       // Entry deletion causes changes in output offsets.  We use a std::map
5395       // to record these.  And entry (x, y) means input offset x
5396       // is mapped to output offset y.  If y is invalid_offset, then x is
5397       // dropped in the output.  Because of the way std::map::lower_bound
5398       // works, we record the last offset in a region w.r.t to keeping or
5399       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5400       // the output offset y0 of it is determined by the output offset y1 of
5401       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5402       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Othewise, y1
5403       // y0 is also -1.
5404       if (delete_entry != prev_delete_entry && i != 0)
5405         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5406
5407       // Update total deleted bytes for this entry.
5408       if (delete_entry)
5409         deleted_bytes += 8;
5410
5411       prev_delete_entry = delete_entry;
5412     }
5413   
5414   // If section offset map is not NULL, make an entry for the end of
5415   // section.
5416   if (this->section_offset_map_ != NULL)
5417     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5418
5419   *psection_offset_map = this->section_offset_map_;
5420   this->section_offset_map_ = NULL;
5421   this->last_input_section_ = exidx_input_section;
5422   
5423   // Set the first output text section so that we can link the EXIDX output
5424   // section to it.  Ignore any EXIDX input section that is completely merged.
5425   if (this->first_output_text_section_ == NULL
5426       && deleted_bytes != section_size)
5427     {
5428       unsigned int link = exidx_input_section->link();
5429       Output_section* os = relobj->output_section(link);
5430       gold_assert(os != NULL);
5431       this->first_output_text_section_ = os;
5432     }
5433
5434   return deleted_bytes;
5435 }
5436
5437 // Arm_output_section methods.
5438
5439 // Create a stub group for input sections from BEGIN to END.  OWNER
5440 // points to the input section to be the owner a new stub table.
5441
5442 template<bool big_endian>
5443 void
5444 Arm_output_section<big_endian>::create_stub_group(
5445   Input_section_list::const_iterator begin,
5446   Input_section_list::const_iterator end,
5447   Input_section_list::const_iterator owner,
5448   Target_arm<big_endian>* target,
5449   std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5450 {
5451   // We use a different kind of relaxed section in an EXIDX section.
5452   // The static casting from Output_relaxed_input_section to
5453   // Arm_input_section is invalid in an EXIDX section.  We are okay
5454   // because we should not be calling this for an EXIDX section. 
5455   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5456
5457   // Currently we convert ordinary input sections into relaxed sections only
5458   // at this point but we may want to support creating relaxed input section
5459   // very early.  So we check here to see if owner is already a relaxed
5460   // section.
5461   
5462   Arm_input_section<big_endian>* arm_input_section;
5463   if (owner->is_relaxed_input_section())
5464     {
5465       arm_input_section =
5466         Arm_input_section<big_endian>::as_arm_input_section(
5467           owner->relaxed_input_section());
5468     }
5469   else
5470     {
5471       gold_assert(owner->is_input_section());
5472       // Create a new relaxed input section.
5473       arm_input_section =
5474         target->new_arm_input_section(owner->relobj(), owner->shndx());
5475       new_relaxed_sections->push_back(arm_input_section);
5476     }
5477
5478   // Create a stub table.
5479   Stub_table<big_endian>* stub_table =
5480     target->new_stub_table(arm_input_section);
5481
5482   arm_input_section->set_stub_table(stub_table);
5483   
5484   Input_section_list::const_iterator p = begin;
5485   Input_section_list::const_iterator prev_p;
5486
5487   // Look for input sections or relaxed input sections in [begin ... end].
5488   do
5489     {
5490       if (p->is_input_section() || p->is_relaxed_input_section())
5491         {
5492           // The stub table information for input sections live
5493           // in their objects.
5494           Arm_relobj<big_endian>* arm_relobj =
5495             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5496           arm_relobj->set_stub_table(p->shndx(), stub_table);
5497         }
5498       prev_p = p++;
5499     }
5500   while (prev_p != end);
5501 }
5502
5503 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5504 // of stub groups.  We grow a stub group by adding input section until the
5505 // size is just below GROUP_SIZE.  The last input section will be converted
5506 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5507 // input section after the stub table, effectively double the group size.
5508 // 
5509 // This is similar to the group_sections() function in elf32-arm.c but is
5510 // implemented differently.
5511
5512 template<bool big_endian>
5513 void
5514 Arm_output_section<big_endian>::group_sections(
5515     section_size_type group_size,
5516     bool stubs_always_after_branch,
5517     Target_arm<big_endian>* target)
5518 {
5519   // We only care about sections containing code.
5520   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5521     return;
5522
5523   // States for grouping.
5524   typedef enum
5525   {
5526     // No group is being built.
5527     NO_GROUP,
5528     // A group is being built but the stub table is not found yet.
5529     // We keep group a stub group until the size is just under GROUP_SIZE.
5530     // The last input section in the group will be used as the stub table.
5531     FINDING_STUB_SECTION,
5532     // A group is being built and we have already found a stub table.
5533     // We enter this state to grow a stub group by adding input section
5534     // after the stub table.  This effectively doubles the group size.
5535     HAS_STUB_SECTION
5536   } State;
5537
5538   // Any newly created relaxed sections are stored here.
5539   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5540
5541   State state = NO_GROUP;
5542   section_size_type off = 0;
5543   section_size_type group_begin_offset = 0;
5544   section_size_type group_end_offset = 0;
5545   section_size_type stub_table_end_offset = 0;
5546   Input_section_list::const_iterator group_begin =
5547     this->input_sections().end();
5548   Input_section_list::const_iterator stub_table =
5549     this->input_sections().end();
5550   Input_section_list::const_iterator group_end = this->input_sections().end();
5551   for (Input_section_list::const_iterator p = this->input_sections().begin();
5552        p != this->input_sections().end();
5553        ++p)
5554     {
5555       section_size_type section_begin_offset =
5556         align_address(off, p->addralign());
5557       section_size_type section_end_offset =
5558         section_begin_offset + p->data_size(); 
5559       
5560       // Check to see if we should group the previously seens sections.
5561       switch (state)
5562         {
5563         case NO_GROUP:
5564           break;
5565
5566         case FINDING_STUB_SECTION:
5567           // Adding this section makes the group larger than GROUP_SIZE.
5568           if (section_end_offset - group_begin_offset >= group_size)
5569             {
5570               if (stubs_always_after_branch)
5571                 {       
5572                   gold_assert(group_end != this->input_sections().end());
5573                   this->create_stub_group(group_begin, group_end, group_end,
5574                                           target, &new_relaxed_sections);
5575                   state = NO_GROUP;
5576                 }
5577               else
5578                 {
5579                   // But wait, there's more!  Input sections up to
5580                   // stub_group_size bytes after the stub table can be
5581                   // handled by it too.
5582                   state = HAS_STUB_SECTION;
5583                   stub_table = group_end;
5584                   stub_table_end_offset = group_end_offset;
5585                 }
5586             }
5587             break;
5588
5589         case HAS_STUB_SECTION:
5590           // Adding this section makes the post stub-section group larger
5591           // than GROUP_SIZE.
5592           if (section_end_offset - stub_table_end_offset >= group_size)
5593            {
5594              gold_assert(group_end != this->input_sections().end());
5595              this->create_stub_group(group_begin, group_end, stub_table,
5596                                      target, &new_relaxed_sections);
5597              state = NO_GROUP;
5598            }
5599            break;
5600
5601           default:
5602             gold_unreachable();
5603         }       
5604
5605       // If we see an input section and currently there is no group, start
5606       // a new one.  Skip any empty sections.
5607       if ((p->is_input_section() || p->is_relaxed_input_section())
5608           && (p->relobj()->section_size(p->shndx()) != 0))
5609         {
5610           if (state == NO_GROUP)
5611             {
5612               state = FINDING_STUB_SECTION;
5613               group_begin = p;
5614               group_begin_offset = section_begin_offset;
5615             }
5616
5617           // Keep track of the last input section seen.
5618           group_end = p;
5619           group_end_offset = section_end_offset;
5620         }
5621
5622       off = section_end_offset;
5623     }
5624
5625   // Create a stub group for any ungrouped sections.
5626   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5627     {
5628       gold_assert(group_end != this->input_sections().end());
5629       this->create_stub_group(group_begin, group_end,
5630                               (state == FINDING_STUB_SECTION
5631                                ? group_end
5632                                : stub_table),
5633                                target, &new_relaxed_sections);
5634     }
5635
5636   // Convert input section into relaxed input section in a batch.
5637   if (!new_relaxed_sections.empty())
5638     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5639
5640   // Update the section offsets
5641   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5642     {
5643       Arm_relobj<big_endian>* arm_relobj =
5644         Arm_relobj<big_endian>::as_arm_relobj(
5645           new_relaxed_sections[i]->relobj());
5646       unsigned int shndx = new_relaxed_sections[i]->shndx();
5647       // Tell Arm_relobj that this input section is converted.
5648       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5649     }
5650 }
5651
5652 // Append non empty text sections in this to LIST in ascending
5653 // order of their position in this.
5654
5655 template<bool big_endian>
5656 void
5657 Arm_output_section<big_endian>::append_text_sections_to_list(
5658     Text_section_list* list)
5659 {
5660   // We only care about text sections.
5661   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5662     return;
5663
5664   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5665
5666   for (Input_section_list::const_iterator p = this->input_sections().begin();
5667        p != this->input_sections().end();
5668        ++p)
5669     {
5670       // We only care about plain or relaxed input sections.  We also
5671       // ignore any merged sections.
5672       if ((p->is_input_section() || p->is_relaxed_input_section())
5673           && p->data_size() != 0)
5674         list->push_back(Text_section_list::value_type(p->relobj(),
5675                                                       p->shndx()));
5676     }
5677 }
5678
5679 template<bool big_endian>
5680 void
5681 Arm_output_section<big_endian>::fix_exidx_coverage(
5682     Layout* layout,
5683     const Text_section_list& sorted_text_sections,
5684     Symbol_table* symtab,
5685     bool merge_exidx_entries)
5686 {
5687   // We should only do this for the EXIDX output section.
5688   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5689
5690   // We don't want the relaxation loop to undo these changes, so we discard
5691   // the current saved states and take another one after the fix-up.
5692   this->discard_states();
5693
5694   // Remove all input sections.
5695   uint64_t address = this->address();
5696   typedef std::list<Output_section::Input_section> Input_section_list;
5697   Input_section_list input_sections;
5698   this->reset_address_and_file_offset();
5699   this->get_input_sections(address, std::string(""), &input_sections);
5700
5701   if (!this->input_sections().empty())
5702     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5703   
5704   // Go through all the known input sections and record them.
5705   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5706   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5707                         Section_id_hash> Text_to_exidx_map;
5708   Text_to_exidx_map text_to_exidx_map;
5709   for (Input_section_list::const_iterator p = input_sections.begin();
5710        p != input_sections.end();
5711        ++p)
5712     {
5713       // This should never happen.  At this point, we should only see
5714       // plain EXIDX input sections.
5715       gold_assert(!p->is_relaxed_input_section());
5716       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5717     }
5718
5719   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5720
5721   // Go over the sorted text sections.
5722   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5723   Section_id_set processed_input_sections;
5724   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5725        p != sorted_text_sections.end();
5726        ++p)
5727     {
5728       Relobj* relobj = p->first;
5729       unsigned int shndx = p->second;
5730
5731       Arm_relobj<big_endian>* arm_relobj =
5732          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5733       const Arm_exidx_input_section* exidx_input_section =
5734          arm_relobj->exidx_input_section_by_link(shndx);
5735
5736       // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5737       // entry pointing to the end of the last seen EXIDX section.
5738       if (exidx_input_section == NULL)
5739         {
5740           exidx_fixup.add_exidx_cantunwind_as_needed();
5741           continue;
5742         }
5743
5744       Relobj* exidx_relobj = exidx_input_section->relobj();
5745       unsigned int exidx_shndx = exidx_input_section->shndx();
5746       Section_id sid(exidx_relobj, exidx_shndx);
5747       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5748       if (iter == text_to_exidx_map.end())
5749         {
5750           // This is odd.  We have not seen this EXIDX input section before.
5751           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5752           // issue a warning instead.  We assume the user knows what he
5753           // or she is doing.  Otherwise, this is an error.
5754           if (layout->script_options()->saw_sections_clause())
5755             gold_warning(_("unwinding may not work because EXIDX input section"
5756                            " %u of %s is not in EXIDX output section"),
5757                          exidx_shndx, exidx_relobj->name().c_str());
5758           else
5759             gold_error(_("unwinding may not work because EXIDX input section"
5760                          " %u of %s is not in EXIDX output section"),
5761                        exidx_shndx, exidx_relobj->name().c_str());
5762
5763           exidx_fixup.add_exidx_cantunwind_as_needed();
5764           continue;
5765         }
5766
5767       // Fix up coverage and append input section to output data list.
5768       Arm_exidx_section_offset_map* section_offset_map = NULL;
5769       uint32_t deleted_bytes =
5770         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5771                                                       &section_offset_map);
5772
5773       if (deleted_bytes == exidx_input_section->size())
5774         {
5775           // The whole EXIDX section got merged.  Remove it from output.
5776           gold_assert(section_offset_map == NULL);
5777           exidx_relobj->set_output_section(exidx_shndx, NULL);
5778
5779           // All local symbols defined in this input section will be dropped.
5780           // We need to adjust output local symbol count.
5781           arm_relobj->set_output_local_symbol_count_needs_update();
5782         }
5783       else if (deleted_bytes > 0)
5784         {
5785           // Some entries are merged.  We need to convert this EXIDX input
5786           // section into a relaxed section.
5787           gold_assert(section_offset_map != NULL);
5788           Arm_exidx_merged_section* merged_section =
5789             new Arm_exidx_merged_section(*exidx_input_section,
5790                                          *section_offset_map, deleted_bytes);
5791           this->add_relaxed_input_section(merged_section);
5792           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5793
5794           // All local symbols defined in discarded portions of this input
5795           // section will be dropped.  We need to adjust output local symbol
5796           // count.
5797           arm_relobj->set_output_local_symbol_count_needs_update();
5798         }
5799       else
5800         {
5801           // Just add back the EXIDX input section.
5802           gold_assert(section_offset_map == NULL);
5803           const Output_section::Input_section* pis = iter->second;
5804           gold_assert(pis->is_input_section());
5805           this->add_script_input_section(*pis);
5806         }
5807
5808       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5809     }
5810
5811   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5812   exidx_fixup.add_exidx_cantunwind_as_needed();
5813
5814   // Remove any known EXIDX input sections that are not processed.
5815   for (Input_section_list::const_iterator p = input_sections.begin();
5816        p != input_sections.end();
5817        ++p)
5818     {
5819       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5820           == processed_input_sections.end())
5821         {
5822           // We only discard a known EXIDX section because its linked
5823           // text section has been folded by ICF.
5824           Arm_relobj<big_endian>* arm_relobj =
5825             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5826           const Arm_exidx_input_section* exidx_input_section =
5827             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5828           gold_assert(exidx_input_section != NULL);
5829           unsigned int text_shndx = exidx_input_section->link();
5830           gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5831
5832           // Remove this from link.  We also need to recount the
5833           // local symbols.
5834           p->relobj()->set_output_section(p->shndx(), NULL);
5835           arm_relobj->set_output_local_symbol_count_needs_update();
5836         }
5837     }
5838     
5839   // Link exidx output section to the first seen output section and
5840   // set correct entry size.
5841   this->set_link_section(exidx_fixup.first_output_text_section());
5842   this->set_entsize(8);
5843
5844   // Make changes permanent.
5845   this->save_states();
5846   this->set_section_offsets_need_adjustment();
5847 }
5848
5849 // Arm_relobj methods.
5850
5851 // Determine if an input section is scannable for stub processing.  SHDR is
5852 // the header of the section and SHNDX is the section index.  OS is the output
5853 // section for the input section and SYMTAB is the global symbol table used to
5854 // look up ICF information.
5855
5856 template<bool big_endian>
5857 bool
5858 Arm_relobj<big_endian>::section_is_scannable(
5859     const elfcpp::Shdr<32, big_endian>& shdr,
5860     unsigned int shndx,
5861     const Output_section* os,
5862     const Symbol_table *symtab)
5863 {
5864   // Skip any empty sections, unallocated sections or sections whose
5865   // type are not SHT_PROGBITS.
5866   if (shdr.get_sh_size() == 0
5867       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5868       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5869     return false;
5870
5871   // Skip any discarded or ICF'ed sections.
5872   if (os == NULL || symtab->is_section_folded(this, shndx))
5873     return false;
5874
5875   // If this requires special offset handling, check to see if it is
5876   // a relaxed section.  If this is not, then it is a merged section that
5877   // we cannot handle.
5878   if (this->is_output_section_offset_invalid(shndx))
5879     {
5880       const Output_relaxed_input_section* poris =
5881         os->find_relaxed_input_section(this, shndx);
5882       if (poris == NULL)
5883         return false;
5884     }
5885
5886   return true;
5887 }
5888
5889 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5890 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5891
5892 template<bool big_endian>
5893 bool
5894 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5895     const elfcpp::Shdr<32, big_endian>& shdr,
5896     const Relobj::Output_sections& out_sections,
5897     const Symbol_table *symtab,
5898     const unsigned char* pshdrs)
5899 {
5900   unsigned int sh_type = shdr.get_sh_type();
5901   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5902     return false;
5903
5904   // Ignore empty section.
5905   off_t sh_size = shdr.get_sh_size();
5906   if (sh_size == 0)
5907     return false;
5908
5909   // Ignore reloc section with unexpected symbol table.  The
5910   // error will be reported in the final link.
5911   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5912     return false;
5913
5914   unsigned int reloc_size;
5915   if (sh_type == elfcpp::SHT_REL)
5916     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5917   else
5918     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5919
5920   // Ignore reloc section with unexpected entsize or uneven size.
5921   // The error will be reported in the final link.
5922   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5923     return false;
5924
5925   // Ignore reloc section with bad info.  This error will be
5926   // reported in the final link.
5927   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5928   if (index >= this->shnum())
5929     return false;
5930
5931   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5932   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5933   return this->section_is_scannable(text_shdr, index,
5934                                    out_sections[index], symtab);
5935 }
5936
5937 // Return the output address of either a plain input section or a relaxed
5938 // input section.  SHNDX is the section index.  We define and use this
5939 // instead of calling Output_section::output_address because that is slow
5940 // for large output.
5941
5942 template<bool big_endian>
5943 Arm_address
5944 Arm_relobj<big_endian>::simple_input_section_output_address(
5945     unsigned int shndx,
5946     Output_section* os)
5947 {
5948   if (this->is_output_section_offset_invalid(shndx))
5949     {
5950       const Output_relaxed_input_section* poris =
5951         os->find_relaxed_input_section(this, shndx);
5952       // We do not handle merged sections here.
5953       gold_assert(poris != NULL);
5954       return poris->address();
5955     }
5956   else
5957     return os->address() + this->get_output_section_offset(shndx);
5958 }
5959
5960 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5961 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5962
5963 template<bool big_endian>
5964 bool
5965 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5966     const elfcpp::Shdr<32, big_endian>& shdr,
5967     unsigned int shndx,
5968     Output_section* os,
5969     const Symbol_table* symtab)
5970 {
5971   if (!this->section_is_scannable(shdr, shndx, os, symtab))
5972     return false;
5973
5974   // If the section does not cross any 4K-boundaries, it does not need to
5975   // be scanned.
5976   Arm_address address = this->simple_input_section_output_address(shndx, os);
5977   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5978     return false;
5979
5980   return true;
5981 }
5982
5983 // Scan a section for Cortex-A8 workaround.
5984
5985 template<bool big_endian>
5986 void
5987 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5988     const elfcpp::Shdr<32, big_endian>& shdr,
5989     unsigned int shndx,
5990     Output_section* os,
5991     Target_arm<big_endian>* arm_target)
5992 {
5993   // Look for the first mapping symbol in this section.  It should be
5994   // at (shndx, 0).
5995   Mapping_symbol_position section_start(shndx, 0);
5996   typename Mapping_symbols_info::const_iterator p =
5997     this->mapping_symbols_info_.lower_bound(section_start);
5998
5999   // There are no mapping symbols for this section.  Treat it as a data-only
6000   // section.  Issue a warning if section is marked as containing
6001   // instructions.
6002   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6003     {
6004       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6005         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6006                        "erratum because it has no mapping symbols."),
6007                      shndx, this->name().c_str());
6008       return;
6009     }
6010
6011   Arm_address output_address =
6012     this->simple_input_section_output_address(shndx, os);
6013
6014   // Get the section contents.
6015   section_size_type input_view_size = 0;
6016   const unsigned char* input_view =
6017     this->section_contents(shndx, &input_view_size, false);
6018
6019   // We need to go through the mapping symbols to determine what to
6020   // scan.  There are two reasons.  First, we should look at THUMB code and
6021   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6022   // to speed up the scanning.
6023   
6024   while (p != this->mapping_symbols_info_.end()
6025         && p->first.first == shndx)
6026     {
6027       typename Mapping_symbols_info::const_iterator next =
6028         this->mapping_symbols_info_.upper_bound(p->first);
6029
6030       // Only scan part of a section with THUMB code.
6031       if (p->second == 't')
6032         {
6033           // Determine the end of this range.
6034           section_size_type span_start =
6035             convert_to_section_size_type(p->first.second);
6036           section_size_type span_end;
6037           if (next != this->mapping_symbols_info_.end()
6038               && next->first.first == shndx)
6039             span_end = convert_to_section_size_type(next->first.second);
6040           else
6041             span_end = convert_to_section_size_type(shdr.get_sh_size());
6042           
6043           if (((span_start + output_address) & ~0xfffUL)
6044               != ((span_end + output_address - 1) & ~0xfffUL))
6045             {
6046               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6047                                                           span_start, span_end,
6048                                                           input_view,
6049                                                           output_address);
6050             }
6051         }
6052
6053       p = next; 
6054     }
6055 }
6056
6057 // Scan relocations for stub generation.
6058
6059 template<bool big_endian>
6060 void
6061 Arm_relobj<big_endian>::scan_sections_for_stubs(
6062     Target_arm<big_endian>* arm_target,
6063     const Symbol_table* symtab,
6064     const Layout* layout)
6065 {
6066   unsigned int shnum = this->shnum();
6067   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6068
6069   // Read the section headers.
6070   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6071                                                shnum * shdr_size,
6072                                                true, true);
6073
6074   // To speed up processing, we set up hash tables for fast lookup of
6075   // input offsets to output addresses.
6076   this->initialize_input_to_output_maps();
6077
6078   const Relobj::Output_sections& out_sections(this->output_sections());
6079
6080   Relocate_info<32, big_endian> relinfo;
6081   relinfo.symtab = symtab;
6082   relinfo.layout = layout;
6083   relinfo.object = this;
6084
6085   // Do relocation stubs scanning.
6086   const unsigned char* p = pshdrs + shdr_size;
6087   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6088     {
6089       const elfcpp::Shdr<32, big_endian> shdr(p);
6090       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6091                                                   pshdrs))
6092         {
6093           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6094           Arm_address output_offset = this->get_output_section_offset(index);
6095           Arm_address output_address;
6096           if (output_offset != invalid_address)
6097             output_address = out_sections[index]->address() + output_offset;
6098           else
6099             {
6100               // Currently this only happens for a relaxed section.
6101               const Output_relaxed_input_section* poris =
6102               out_sections[index]->find_relaxed_input_section(this, index);
6103               gold_assert(poris != NULL);
6104               output_address = poris->address();
6105             }
6106
6107           // Get the relocations.
6108           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6109                                                         shdr.get_sh_size(),
6110                                                         true, false);
6111
6112           // Get the section contents.  This does work for the case in which
6113           // we modify the contents of an input section.  We need to pass the
6114           // output view under such circumstances.
6115           section_size_type input_view_size = 0;
6116           const unsigned char* input_view =
6117             this->section_contents(index, &input_view_size, false);
6118
6119           relinfo.reloc_shndx = i;
6120           relinfo.data_shndx = index;
6121           unsigned int sh_type = shdr.get_sh_type();
6122           unsigned int reloc_size;
6123           if (sh_type == elfcpp::SHT_REL)
6124             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6125           else
6126             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6127
6128           Output_section* os = out_sections[index];
6129           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6130                                              shdr.get_sh_size() / reloc_size,
6131                                              os,
6132                                              output_offset == invalid_address,
6133                                              input_view, output_address,
6134                                              input_view_size);
6135         }
6136     }
6137
6138   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6139   // after its relocation section, if there is one, is processed for
6140   // relocation stubs.  Merging this loop with the one above would have been
6141   // complicated since we would have had to make sure that relocation stub
6142   // scanning is done first.
6143   if (arm_target->fix_cortex_a8())
6144     {
6145       const unsigned char* p = pshdrs + shdr_size;
6146       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6147         {
6148           const elfcpp::Shdr<32, big_endian> shdr(p);
6149           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6150                                                           out_sections[i],
6151                                                           symtab))
6152             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6153                                                      arm_target);
6154         }
6155     }
6156
6157   // After we've done the relocations, we release the hash tables,
6158   // since we no longer need them.
6159   this->free_input_to_output_maps();
6160 }
6161
6162 // Count the local symbols.  The ARM backend needs to know if a symbol
6163 // is a THUMB function or not.  For global symbols, it is easy because
6164 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6165 // harder because we cannot access this information.   So we override the
6166 // do_count_local_symbol in parent and scan local symbols to mark
6167 // THUMB functions.  This is not the most efficient way but I do not want to
6168 // slow down other ports by calling a per symbol targer hook inside
6169 // Sized_relobj<size, big_endian>::do_count_local_symbols. 
6170
6171 template<bool big_endian>
6172 void
6173 Arm_relobj<big_endian>::do_count_local_symbols(
6174     Stringpool_template<char>* pool,
6175     Stringpool_template<char>* dynpool)
6176 {
6177   // We need to fix-up the values of any local symbols whose type are
6178   // STT_ARM_TFUNC.
6179   
6180   // Ask parent to count the local symbols.
6181   Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6182   const unsigned int loccount = this->local_symbol_count();
6183   if (loccount == 0)
6184     return;
6185
6186   // Intialize the thumb function bit-vector.
6187   std::vector<bool> empty_vector(loccount, false);
6188   this->local_symbol_is_thumb_function_.swap(empty_vector);
6189
6190   // Read the symbol table section header.
6191   const unsigned int symtab_shndx = this->symtab_shndx();
6192   elfcpp::Shdr<32, big_endian>
6193       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6194   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6195
6196   // Read the local symbols.
6197   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6198   gold_assert(loccount == symtabshdr.get_sh_info());
6199   off_t locsize = loccount * sym_size;
6200   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6201                                               locsize, true, true);
6202
6203   // For mapping symbol processing, we need to read the symbol names.
6204   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6205   if (strtab_shndx >= this->shnum())
6206     {
6207       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6208       return;
6209     }
6210
6211   elfcpp::Shdr<32, big_endian>
6212     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6213   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6214     {
6215       this->error(_("symbol table name section has wrong type: %u"),
6216                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6217       return;
6218     }
6219   const char* pnames =
6220     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6221                                                  strtabshdr.get_sh_size(),
6222                                                  false, false));
6223
6224   // Loop over the local symbols and mark any local symbols pointing
6225   // to THUMB functions.
6226
6227   // Skip the first dummy symbol.
6228   psyms += sym_size;
6229   typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6230     this->local_values();
6231   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6232     {
6233       elfcpp::Sym<32, big_endian> sym(psyms);
6234       elfcpp::STT st_type = sym.get_st_type();
6235       Symbol_value<32>& lv((*plocal_values)[i]);
6236       Arm_address input_value = lv.input_value();
6237
6238       // Check to see if this is a mapping symbol.
6239       const char* sym_name = pnames + sym.get_st_name();
6240       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6241         {
6242           bool is_ordinary;
6243           unsigned int input_shndx =
6244             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6245           gold_assert(is_ordinary);
6246
6247           // Strip of LSB in case this is a THUMB symbol.
6248           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6249           this->mapping_symbols_info_[msp] = sym_name[1];
6250         }
6251
6252       if (st_type == elfcpp::STT_ARM_TFUNC
6253           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6254         {
6255           // This is a THUMB function.  Mark this and canonicalize the
6256           // symbol value by setting LSB.
6257           this->local_symbol_is_thumb_function_[i] = true;
6258           if ((input_value & 1) == 0)
6259             lv.set_input_value(input_value | 1);
6260         }
6261     }
6262 }
6263
6264 // Relocate sections.
6265 template<bool big_endian>
6266 void
6267 Arm_relobj<big_endian>::do_relocate_sections(
6268     const Symbol_table* symtab,
6269     const Layout* layout,
6270     const unsigned char* pshdrs,
6271     typename Sized_relobj<32, big_endian>::Views* pviews)
6272 {
6273   // Call parent to relocate sections.
6274   Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6275                                                      pviews); 
6276
6277   // We do not generate stubs if doing a relocatable link.
6278   if (parameters->options().relocatable())
6279     return;
6280
6281   // Relocate stub tables.
6282   unsigned int shnum = this->shnum();
6283
6284   Target_arm<big_endian>* arm_target =
6285     Target_arm<big_endian>::default_target();
6286
6287   Relocate_info<32, big_endian> relinfo;
6288   relinfo.symtab = symtab;
6289   relinfo.layout = layout;
6290   relinfo.object = this;
6291
6292   for (unsigned int i = 1; i < shnum; ++i)
6293     {
6294       Arm_input_section<big_endian>* arm_input_section =
6295         arm_target->find_arm_input_section(this, i);
6296
6297       if (arm_input_section != NULL
6298           && arm_input_section->is_stub_table_owner()
6299           && !arm_input_section->stub_table()->empty())
6300         {
6301           // We cannot discard a section if it owns a stub table.
6302           Output_section* os = this->output_section(i);
6303           gold_assert(os != NULL);
6304
6305           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6306           relinfo.reloc_shdr = NULL;
6307           relinfo.data_shndx = i;
6308           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6309
6310           gold_assert((*pviews)[i].view != NULL);
6311
6312           // We are passed the output section view.  Adjust it to cover the
6313           // stub table only.
6314           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6315           gold_assert((stub_table->address() >= (*pviews)[i].address)
6316                       && ((stub_table->address() + stub_table->data_size())
6317                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6318
6319           off_t offset = stub_table->address() - (*pviews)[i].address;
6320           unsigned char* view = (*pviews)[i].view + offset;
6321           Arm_address address = stub_table->address();
6322           section_size_type view_size = stub_table->data_size();
6323  
6324           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6325                                      view_size);
6326         }
6327
6328       // Apply Cortex A8 workaround if applicable.
6329       if (this->section_has_cortex_a8_workaround(i))
6330         {
6331           unsigned char* view = (*pviews)[i].view;
6332           Arm_address view_address = (*pviews)[i].address;
6333           section_size_type view_size = (*pviews)[i].view_size;
6334           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6335
6336           // Adjust view to cover section.
6337           Output_section* os = this->output_section(i);
6338           gold_assert(os != NULL);
6339           Arm_address section_address =
6340             this->simple_input_section_output_address(i, os);
6341           uint64_t section_size = this->section_size(i);
6342
6343           gold_assert(section_address >= view_address
6344                       && ((section_address + section_size)
6345                           <= (view_address + view_size)));
6346
6347           unsigned char* section_view = view + (section_address - view_address);
6348
6349           // Apply the Cortex-A8 workaround to the output address range
6350           // corresponding to this input section.
6351           stub_table->apply_cortex_a8_workaround_to_address_range(
6352               arm_target,
6353               section_view,
6354               section_address,
6355               section_size);
6356         }
6357     }
6358 }
6359
6360 // Find the linked text section of an EXIDX section by looking the the first
6361 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6362 // must be linked to to its associated code section via the sh_link field of
6363 // its section header.  However, some tools are broken and the link is not
6364 // always set.  LD just drops such an EXIDX section silently, causing the
6365 // associated code not unwindabled.   Here we try a little bit harder to
6366 // discover the linked code section.
6367 //
6368 // PSHDR points to the section header of a relocation section of an EXIDX
6369 // section.  If we can find a linked text section, return true and
6370 // store the text section index in the location PSHNDX.  Otherwise
6371 // return false.
6372
6373 template<bool big_endian>
6374 bool
6375 Arm_relobj<big_endian>::find_linked_text_section(
6376     const unsigned char* pshdr,
6377     const unsigned char* psyms,
6378     unsigned int* pshndx)
6379 {
6380   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6381   
6382   // If there is no relocation, we cannot find the linked text section.
6383   size_t reloc_size;
6384   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6385       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6386   else
6387       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6388   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6389  
6390   // Get the relocations.
6391   const unsigned char* prelocs =
6392       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6393
6394   // Find the REL31 relocation for the first word of the first EXIDX entry.
6395   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6396     {
6397       Arm_address r_offset;
6398       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6399       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6400         {
6401           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6402           r_info = reloc.get_r_info();
6403           r_offset = reloc.get_r_offset();
6404         }
6405       else
6406         {
6407           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6408           r_info = reloc.get_r_info();
6409           r_offset = reloc.get_r_offset();
6410         }
6411
6412       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6413       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6414         continue;
6415
6416       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6417       if (r_sym == 0
6418           || r_sym >= this->local_symbol_count()
6419           || r_offset != 0)
6420         continue;
6421
6422       // This is the relocation for the first word of the first EXIDX entry.
6423       // We expect to see a local section symbol.
6424       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6425       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6426       if (sym.get_st_type() == elfcpp::STT_SECTION)
6427         {
6428           bool is_ordinary;
6429           *pshndx =
6430             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6431           gold_assert(is_ordinary);
6432           return true;
6433         }
6434       else
6435         return false;
6436     }
6437
6438   return false;
6439 }
6440
6441 // Make an EXIDX input section object for an EXIDX section whose index is
6442 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6443 // is the section index of the linked text section.
6444
6445 template<bool big_endian>
6446 void
6447 Arm_relobj<big_endian>::make_exidx_input_section(
6448     unsigned int shndx,
6449     const elfcpp::Shdr<32, big_endian>& shdr,
6450     unsigned int text_shndx)
6451 {
6452   // Issue an error and ignore this EXIDX section if it points to a text
6453   // section already has an EXIDX section.
6454   if (this->exidx_section_map_[text_shndx] != NULL)
6455     {
6456       gold_error(_("EXIDX sections %u and %u both link to text section %u "
6457                    "in %s"),
6458                  shndx, this->exidx_section_map_[text_shndx]->shndx(),
6459                  text_shndx, this->name().c_str());
6460       return;
6461     }
6462
6463   // Create an Arm_exidx_input_section object for this EXIDX section.
6464   Arm_exidx_input_section* exidx_input_section =
6465     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6466                                 shdr.get_sh_addralign());
6467   this->exidx_section_map_[text_shndx] = exidx_input_section;
6468
6469   // Also map the EXIDX section index to this.
6470   gold_assert(this->exidx_section_map_[shndx] == NULL);
6471   this->exidx_section_map_[shndx] = exidx_input_section;
6472 }
6473
6474 // Read the symbol information.
6475
6476 template<bool big_endian>
6477 void
6478 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6479 {
6480   // Call parent class to read symbol information.
6481   Sized_relobj<32, big_endian>::do_read_symbols(sd);
6482
6483   // If this input file is a binary file, it has no processor
6484   // specific flags and attributes section.
6485   Input_file::Format format = this->input_file()->format();
6486   if (format != Input_file::FORMAT_ELF)
6487     {
6488       gold_assert(format == Input_file::FORMAT_BINARY);
6489       this->merge_flags_and_attributes_ = false;
6490       return;
6491     }
6492
6493   // Read processor-specific flags in ELF file header.
6494   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6495                                               elfcpp::Elf_sizes<32>::ehdr_size,
6496                                               true, false);
6497   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6498   this->processor_specific_flags_ = ehdr.get_e_flags();
6499
6500   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6501   // sections.
6502   std::vector<unsigned int> deferred_exidx_sections;
6503   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6504   const unsigned char* pshdrs = sd->section_headers->data();
6505   const unsigned char *ps = pshdrs + shdr_size;
6506   bool must_merge_flags_and_attributes = false;
6507   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6508     {
6509       elfcpp::Shdr<32, big_endian> shdr(ps);
6510
6511       // Sometimes an object has no contents except the section name string
6512       // table and an empty symbol table with the undefined symbol.  We
6513       // don't want to merge processor-specific flags from such an object.
6514       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6515         {
6516           // Symbol table is not empty.
6517           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6518              elfcpp::Elf_sizes<32>::sym_size;
6519           if (shdr.get_sh_size() > sym_size)
6520             must_merge_flags_and_attributes = true;
6521         }
6522       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6523         // If this is neither an empty symbol table nor a string table,
6524         // be conservative.
6525         must_merge_flags_and_attributes = true;
6526
6527       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6528         {
6529           gold_assert(this->attributes_section_data_ == NULL);
6530           section_offset_type section_offset = shdr.get_sh_offset();
6531           section_size_type section_size =
6532             convert_to_section_size_type(shdr.get_sh_size());
6533           File_view* view = this->get_lasting_view(section_offset,
6534                                                    section_size, true, false);
6535           this->attributes_section_data_ =
6536             new Attributes_section_data(view->data(), section_size);
6537         }
6538       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6539         {
6540           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6541           if (text_shndx >= this->shnum())
6542             gold_error(_("EXIDX section %u linked to invalid section %u"),
6543                        i, text_shndx);
6544           else if (text_shndx == elfcpp::SHN_UNDEF)
6545             deferred_exidx_sections.push_back(i);
6546           else
6547             this->make_exidx_input_section(i, shdr, text_shndx);
6548         }
6549     }
6550
6551   // This is rare.
6552   if (!must_merge_flags_and_attributes)
6553     {
6554       this->merge_flags_and_attributes_ = false;
6555       return;
6556     }
6557
6558   // Some tools are broken and they do not set the link of EXIDX sections. 
6559   // We look at the first relocation to figure out the linked sections.
6560   if (!deferred_exidx_sections.empty())
6561     {
6562       // We need to go over the section headers again to find the mapping
6563       // from sections being relocated to their relocation sections.  This is
6564       // a bit inefficient as we could do that in the loop above.  However,
6565       // we do not expect any deferred EXIDX sections normally.  So we do not
6566       // want to slow down the most common path.
6567       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6568       Reloc_map reloc_map;
6569       ps = pshdrs + shdr_size;
6570       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6571         {
6572           elfcpp::Shdr<32, big_endian> shdr(ps);
6573           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6574           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6575             {
6576               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6577               if (info_shndx >= this->shnum())
6578                 gold_error(_("relocation section %u has invalid info %u"),
6579                            i, info_shndx);
6580               Reloc_map::value_type value(info_shndx, i);
6581               std::pair<Reloc_map::iterator, bool> result =
6582                 reloc_map.insert(value);
6583               if (!result.second)
6584                 gold_error(_("section %u has multiple relocation sections "
6585                              "%u and %u"),
6586                            info_shndx, i, reloc_map[info_shndx]);
6587             }
6588         }
6589
6590       // Read the symbol table section header.
6591       const unsigned int symtab_shndx = this->symtab_shndx();
6592       elfcpp::Shdr<32, big_endian>
6593           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6594       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6595
6596       // Read the local symbols.
6597       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6598       const unsigned int loccount = this->local_symbol_count();
6599       gold_assert(loccount == symtabshdr.get_sh_info());
6600       off_t locsize = loccount * sym_size;
6601       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6602                                                   locsize, true, true);
6603
6604       // Process the deferred EXIDX sections. 
6605       for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6606         {
6607           unsigned int shndx = deferred_exidx_sections[i];
6608           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6609           unsigned int text_shndx;
6610           Reloc_map::const_iterator it = reloc_map.find(shndx);
6611           if (it != reloc_map.end()
6612               && find_linked_text_section(pshdrs + it->second * shdr_size,
6613                                           psyms, &text_shndx))
6614             this->make_exidx_input_section(shndx, shdr, text_shndx);
6615           else
6616             gold_error(_("EXIDX section %u has no linked text section."),
6617                        shndx);
6618         }
6619     }
6620 }
6621
6622 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6623 // sections for unwinding.  These sections are referenced implicitly by 
6624 // text sections linked in the section headers.  If we ignore these implict
6625 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6626 // will be garbage-collected incorrectly.  Hence we override the same function
6627 // in the base class to handle these implicit references.
6628
6629 template<bool big_endian>
6630 void
6631 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6632                                              Layout* layout,
6633                                              Read_relocs_data* rd)
6634 {
6635   // First, call base class method to process relocations in this object.
6636   Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6637
6638   // If --gc-sections is not specified, there is nothing more to do.
6639   // This happens when --icf is used but --gc-sections is not.
6640   if (!parameters->options().gc_sections())
6641     return;
6642   
6643   unsigned int shnum = this->shnum();
6644   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6645   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6646                                                shnum * shdr_size,
6647                                                true, true);
6648
6649   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6650   // to these from the linked text sections.
6651   const unsigned char* ps = pshdrs + shdr_size;
6652   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6653     {
6654       elfcpp::Shdr<32, big_endian> shdr(ps);
6655       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6656         {
6657           // Found an .ARM.exidx section, add it to the set of reachable
6658           // sections from its linked text section.
6659           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6660           symtab->gc()->add_reference(this, text_shndx, this, i);
6661         }
6662     }
6663 }
6664
6665 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6666 // symbols  will be removed in output.  Adjust output local symbol count
6667 // accordingly.  We can only changed the static output local symbol count.  It
6668 // is too late to change the dynamic symbols.
6669
6670 template<bool big_endian>
6671 void
6672 Arm_relobj<big_endian>::update_output_local_symbol_count()
6673 {
6674   // Caller should check that this needs updating.  We want caller checking
6675   // because output_local_symbol_count_needs_update() is most likely inlined.
6676   gold_assert(this->output_local_symbol_count_needs_update_);
6677
6678   gold_assert(this->symtab_shndx() != -1U);
6679   if (this->symtab_shndx() == 0)
6680     {
6681       // This object has no symbols.  Weird but legal.
6682       return;
6683     }
6684
6685   // Read the symbol table section header.
6686   const unsigned int symtab_shndx = this->symtab_shndx();
6687   elfcpp::Shdr<32, big_endian>
6688     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6689   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6690
6691   // Read the local symbols.
6692   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6693   const unsigned int loccount = this->local_symbol_count();
6694   gold_assert(loccount == symtabshdr.get_sh_info());
6695   off_t locsize = loccount * sym_size;
6696   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6697                                               locsize, true, true);
6698
6699   // Loop over the local symbols.
6700
6701   typedef typename Sized_relobj<32, big_endian>::Output_sections
6702      Output_sections;
6703   const Output_sections& out_sections(this->output_sections());
6704   unsigned int shnum = this->shnum();
6705   unsigned int count = 0;
6706   // Skip the first, dummy, symbol.
6707   psyms += sym_size;
6708   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6709     {
6710       elfcpp::Sym<32, big_endian> sym(psyms);
6711
6712       Symbol_value<32>& lv((*this->local_values())[i]);
6713
6714       // This local symbol was already discarded by do_count_local_symbols.
6715       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6716         continue;
6717
6718       bool is_ordinary;
6719       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6720                                                   &is_ordinary);
6721
6722       if (shndx < shnum)
6723         {
6724           Output_section* os = out_sections[shndx];
6725
6726           // This local symbol no longer has an output section.  Discard it.
6727           if (os == NULL)
6728             {
6729               lv.set_no_output_symtab_entry();
6730               continue;
6731             }
6732
6733           // Currently we only discard parts of EXIDX input sections.
6734           // We explicitly check for a merged EXIDX input section to avoid
6735           // calling Output_section_data::output_offset unless necessary.
6736           if ((this->get_output_section_offset(shndx) == invalid_address)
6737               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6738             {
6739               section_offset_type output_offset =
6740                 os->output_offset(this, shndx, lv.input_value());
6741               if (output_offset == -1)
6742                 {
6743                   // This symbol is defined in a part of an EXIDX input section
6744                   // that is discarded due to entry merging.
6745                   lv.set_no_output_symtab_entry();
6746                   continue;
6747                 }       
6748             }
6749         }
6750
6751       ++count;
6752     }
6753
6754   this->set_output_local_symbol_count(count);
6755   this->output_local_symbol_count_needs_update_ = false;
6756 }
6757
6758 // Arm_dynobj methods.
6759
6760 // Read the symbol information.
6761
6762 template<bool big_endian>
6763 void
6764 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6765 {
6766   // Call parent class to read symbol information.
6767   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6768
6769   // Read processor-specific flags in ELF file header.
6770   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6771                                               elfcpp::Elf_sizes<32>::ehdr_size,
6772                                               true, false);
6773   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6774   this->processor_specific_flags_ = ehdr.get_e_flags();
6775
6776   // Read the attributes section if there is one.
6777   // We read from the end because gas seems to put it near the end of
6778   // the section headers.
6779   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6780   const unsigned char *ps =
6781     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6782   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6783     {
6784       elfcpp::Shdr<32, big_endian> shdr(ps);
6785       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6786         {
6787           section_offset_type section_offset = shdr.get_sh_offset();
6788           section_size_type section_size =
6789             convert_to_section_size_type(shdr.get_sh_size());
6790           File_view* view = this->get_lasting_view(section_offset,
6791                                                    section_size, true, false);
6792           this->attributes_section_data_ =
6793             new Attributes_section_data(view->data(), section_size);
6794           break;
6795         }
6796     }
6797 }
6798
6799 // Stub_addend_reader methods.
6800
6801 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6802
6803 template<bool big_endian>
6804 elfcpp::Elf_types<32>::Elf_Swxword
6805 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6806     unsigned int r_type,
6807     const unsigned char* view,
6808     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6809 {
6810   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6811   
6812   switch (r_type)
6813     {
6814     case elfcpp::R_ARM_CALL:
6815     case elfcpp::R_ARM_JUMP24:
6816     case elfcpp::R_ARM_PLT32:
6817       {
6818         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6819         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6820         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6821         return utils::sign_extend<26>(val << 2);
6822       }
6823
6824     case elfcpp::R_ARM_THM_CALL:
6825     case elfcpp::R_ARM_THM_JUMP24:
6826     case elfcpp::R_ARM_THM_XPC22:
6827       {
6828         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6829         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6830         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6831         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6832         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6833       }
6834
6835     case elfcpp::R_ARM_THM_JUMP19:
6836       {
6837         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6838         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6839         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6840         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6841         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6842       }
6843
6844     default:
6845       gold_unreachable();
6846     }
6847 }
6848
6849 // Arm_output_data_got methods.
6850
6851 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
6852 // The first one is initialized to be 1, which is the module index for
6853 // the main executable and the second one 0.  A reloc of the type
6854 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6855 // be applied by gold.  GSYM is a global symbol.
6856 //
6857 template<bool big_endian>
6858 void
6859 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6860     unsigned int got_type,
6861     Symbol* gsym)
6862 {
6863   if (gsym->has_got_offset(got_type))
6864     return;
6865
6866   // We are doing a static link.  Just mark it as belong to module 1,
6867   // the executable.
6868   unsigned int got_offset = this->add_constant(1);
6869   gsym->set_got_offset(got_type, got_offset); 
6870   got_offset = this->add_constant(0);
6871   this->static_relocs_.push_back(Static_reloc(got_offset,
6872                                               elfcpp::R_ARM_TLS_DTPOFF32,
6873                                               gsym));
6874 }
6875
6876 // Same as the above but for a local symbol.
6877
6878 template<bool big_endian>
6879 void
6880 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6881   unsigned int got_type,
6882   Sized_relobj<32, big_endian>* object,
6883   unsigned int index)
6884 {
6885   if (object->local_has_got_offset(index, got_type))
6886     return;
6887
6888   // We are doing a static link.  Just mark it as belong to module 1,
6889   // the executable.
6890   unsigned int got_offset = this->add_constant(1);
6891   object->set_local_got_offset(index, got_type, got_offset);
6892   got_offset = this->add_constant(0);
6893   this->static_relocs_.push_back(Static_reloc(got_offset, 
6894                                               elfcpp::R_ARM_TLS_DTPOFF32, 
6895                                               object, index));
6896 }
6897
6898 template<bool big_endian>
6899 void
6900 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6901 {
6902   // Call parent to write out GOT.
6903   Output_data_got<32, big_endian>::do_write(of);
6904
6905   // We are done if there is no fix up.
6906   if (this->static_relocs_.empty())
6907     return;
6908
6909   gold_assert(parameters->doing_static_link());
6910
6911   const off_t offset = this->offset();
6912   const section_size_type oview_size =
6913     convert_to_section_size_type(this->data_size());
6914   unsigned char* const oview = of->get_output_view(offset, oview_size);
6915
6916   Output_segment* tls_segment = this->layout_->tls_segment();
6917   gold_assert(tls_segment != NULL);
6918   
6919   // The thread pointer $tp points to the TCB, which is followed by the
6920   // TLS.  So we need to adjust $tp relative addressing by this amount.
6921   Arm_address aligned_tcb_size =
6922     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6923
6924   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6925     {
6926       Static_reloc& reloc(this->static_relocs_[i]);
6927       
6928       Arm_address value;
6929       if (!reloc.symbol_is_global())
6930         {
6931           Sized_relobj<32, big_endian>* object = reloc.relobj();
6932           const Symbol_value<32>* psymval =
6933             reloc.relobj()->local_symbol(reloc.index());
6934
6935           // We are doing static linking.  Issue an error and skip this
6936           // relocation if the symbol is undefined or in a discarded_section.
6937           bool is_ordinary;
6938           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6939           if ((shndx == elfcpp::SHN_UNDEF)
6940               || (is_ordinary
6941                   && shndx != elfcpp::SHN_UNDEF
6942                   && !object->is_section_included(shndx)
6943                   && !this->symbol_table_->is_section_folded(object, shndx)))
6944             {
6945               gold_error(_("undefined or discarded local symbol %u from "
6946                            " object %s in GOT"),
6947                          reloc.index(), reloc.relobj()->name().c_str());
6948               continue;
6949             }
6950           
6951           value = psymval->value(object, 0);
6952         }
6953       else
6954         {
6955           const Symbol* gsym = reloc.symbol();
6956           gold_assert(gsym != NULL);
6957           if (gsym->is_forwarder())
6958             gsym = this->symbol_table_->resolve_forwards(gsym);
6959
6960           // We are doing static linking.  Issue an error and skip this
6961           // relocation if the symbol is undefined or in a discarded_section
6962           // unless it is a weakly_undefined symbol.
6963           if ((gsym->is_defined_in_discarded_section()
6964                || gsym->is_undefined())
6965               && !gsym->is_weak_undefined())
6966             {
6967               gold_error(_("undefined or discarded symbol %s in GOT"),
6968                          gsym->name());
6969               continue;
6970             }
6971
6972           if (!gsym->is_weak_undefined())
6973             {
6974               const Sized_symbol<32>* sym =
6975                 static_cast<const Sized_symbol<32>*>(gsym);
6976               value = sym->value();
6977             }
6978           else
6979               value = 0;
6980         }
6981
6982       unsigned got_offset = reloc.got_offset();
6983       gold_assert(got_offset < oview_size);
6984
6985       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6986       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6987       Valtype x;
6988       switch (reloc.r_type())
6989         {
6990         case elfcpp::R_ARM_TLS_DTPOFF32:
6991           x = value;
6992           break;
6993         case elfcpp::R_ARM_TLS_TPOFF32:
6994           x = value + aligned_tcb_size;
6995           break;
6996         default:
6997           gold_unreachable();
6998         }
6999       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7000     }
7001
7002   of->write_output_view(offset, oview_size, oview);
7003 }
7004
7005 // A class to handle the PLT data.
7006
7007 template<bool big_endian>
7008 class Output_data_plt_arm : public Output_section_data
7009 {
7010  public:
7011   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7012     Reloc_section;
7013
7014   Output_data_plt_arm(Layout*, Output_data_space*);
7015
7016   // Add an entry to the PLT.
7017   void
7018   add_entry(Symbol* gsym);
7019
7020   // Return the .rel.plt section data.
7021   const Reloc_section*
7022   rel_plt() const
7023   { return this->rel_; }
7024
7025  protected:
7026   void
7027   do_adjust_output_section(Output_section* os);
7028
7029   // Write to a map file.
7030   void
7031   do_print_to_mapfile(Mapfile* mapfile) const
7032   { mapfile->print_output_data(this, _("** PLT")); }
7033
7034  private:
7035   // Template for the first PLT entry.
7036   static const uint32_t first_plt_entry[5];
7037
7038   // Template for subsequent PLT entries. 
7039   static const uint32_t plt_entry[3];
7040
7041   // Set the final size.
7042   void
7043   set_final_data_size()
7044   {
7045     this->set_data_size(sizeof(first_plt_entry)
7046                         + this->count_ * sizeof(plt_entry));
7047   }
7048
7049   // Write out the PLT data.
7050   void
7051   do_write(Output_file*);
7052
7053   // The reloc section.
7054   Reloc_section* rel_;
7055   // The .got.plt section.
7056   Output_data_space* got_plt_;
7057   // The number of PLT entries.
7058   unsigned int count_;
7059 };
7060
7061 // Create the PLT section.  The ordinary .got section is an argument,
7062 // since we need to refer to the start.  We also create our own .got
7063 // section just for PLT entries.
7064
7065 template<bool big_endian>
7066 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7067                                                      Output_data_space* got_plt)
7068   : Output_section_data(4), got_plt_(got_plt), count_(0)
7069 {
7070   this->rel_ = new Reloc_section(false);
7071   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7072                                   elfcpp::SHF_ALLOC, this->rel_, true, false,
7073                                   false, false);
7074 }
7075
7076 template<bool big_endian>
7077 void
7078 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7079 {
7080   os->set_entsize(0);
7081 }
7082
7083 // Add an entry to the PLT.
7084
7085 template<bool big_endian>
7086 void
7087 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7088 {
7089   gold_assert(!gsym->has_plt_offset());
7090
7091   // Note that when setting the PLT offset we skip the initial
7092   // reserved PLT entry.
7093   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7094                        + sizeof(first_plt_entry));
7095
7096   ++this->count_;
7097
7098   section_offset_type got_offset = this->got_plt_->current_data_size();
7099
7100   // Every PLT entry needs a GOT entry which points back to the PLT
7101   // entry (this will be changed by the dynamic linker, normally
7102   // lazily when the function is called).
7103   this->got_plt_->set_current_data_size(got_offset + 4);
7104
7105   // Every PLT entry needs a reloc.
7106   gsym->set_needs_dynsym_entry();
7107   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7108                          got_offset);
7109
7110   // Note that we don't need to save the symbol.  The contents of the
7111   // PLT are independent of which symbols are used.  The symbols only
7112   // appear in the relocations.
7113 }
7114
7115 // ARM PLTs.
7116 // FIXME:  This is not very flexible.  Right now this has only been tested
7117 // on armv5te.  If we are to support additional architecture features like
7118 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7119
7120 // The first entry in the PLT.
7121 template<bool big_endian>
7122 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7123 {
7124   0xe52de004,   // str   lr, [sp, #-4]!
7125   0xe59fe004,   // ldr   lr, [pc, #4]
7126   0xe08fe00e,   // add   lr, pc, lr 
7127   0xe5bef008,   // ldr   pc, [lr, #8]!
7128   0x00000000,   // &GOT[0] - .
7129 };
7130
7131 // Subsequent entries in the PLT.
7132
7133 template<bool big_endian>
7134 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7135 {
7136   0xe28fc600,   // add   ip, pc, #0xNN00000
7137   0xe28cca00,   // add   ip, ip, #0xNN000
7138   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7139 };
7140
7141 // Write out the PLT.  This uses the hand-coded instructions above,
7142 // and adjusts them as needed.  This is all specified by the arm ELF
7143 // Processor Supplement.
7144
7145 template<bool big_endian>
7146 void
7147 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7148 {
7149   const off_t offset = this->offset();
7150   const section_size_type oview_size =
7151     convert_to_section_size_type(this->data_size());
7152   unsigned char* const oview = of->get_output_view(offset, oview_size);
7153
7154   const off_t got_file_offset = this->got_plt_->offset();
7155   const section_size_type got_size =
7156     convert_to_section_size_type(this->got_plt_->data_size());
7157   unsigned char* const got_view = of->get_output_view(got_file_offset,
7158                                                       got_size);
7159   unsigned char* pov = oview;
7160
7161   Arm_address plt_address = this->address();
7162   Arm_address got_address = this->got_plt_->address();
7163
7164   // Write first PLT entry.  All but the last word are constants.
7165   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7166                                       / sizeof(plt_entry[0]));
7167   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7168     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7169   // Last word in first PLT entry is &GOT[0] - .
7170   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7171                                          got_address - (plt_address + 16));
7172   pov += sizeof(first_plt_entry);
7173
7174   unsigned char* got_pov = got_view;
7175
7176   memset(got_pov, 0, 12);
7177   got_pov += 12;
7178
7179   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7180   unsigned int plt_offset = sizeof(first_plt_entry);
7181   unsigned int plt_rel_offset = 0;
7182   unsigned int got_offset = 12;
7183   const unsigned int count = this->count_;
7184   for (unsigned int i = 0;
7185        i < count;
7186        ++i,
7187          pov += sizeof(plt_entry),
7188          got_pov += 4,
7189          plt_offset += sizeof(plt_entry),
7190          plt_rel_offset += rel_size,
7191          got_offset += 4)
7192     {
7193       // Set and adjust the PLT entry itself.
7194       int32_t offset = ((got_address + got_offset)
7195                          - (plt_address + plt_offset + 8));
7196
7197       gold_assert(offset >= 0 && offset < 0x0fffffff);
7198       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7199       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7200       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7201       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7202       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7203       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7204
7205       // Set the entry in the GOT.
7206       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7207     }
7208
7209   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7210   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7211
7212   of->write_output_view(offset, oview_size, oview);
7213   of->write_output_view(got_file_offset, got_size, got_view);
7214 }
7215
7216 // Create a PLT entry for a global symbol.
7217
7218 template<bool big_endian>
7219 void
7220 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7221                                        Symbol* gsym)
7222 {
7223   if (gsym->has_plt_offset())
7224     return;
7225
7226   if (this->plt_ == NULL)
7227     {
7228       // Create the GOT sections first.
7229       this->got_section(symtab, layout);
7230
7231       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7232       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7233                                       (elfcpp::SHF_ALLOC
7234                                        | elfcpp::SHF_EXECINSTR),
7235                                       this->plt_, false, false, false, false);
7236     }
7237   this->plt_->add_entry(gsym);
7238 }
7239
7240 // Get the section to use for TLS_DESC relocations.
7241
7242 template<bool big_endian>
7243 typename Target_arm<big_endian>::Reloc_section*
7244 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7245 {
7246   return this->plt_section()->rel_tls_desc(layout);
7247 }
7248
7249 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7250
7251 template<bool big_endian>
7252 void
7253 Target_arm<big_endian>::define_tls_base_symbol(
7254     Symbol_table* symtab,
7255     Layout* layout)
7256 {
7257   if (this->tls_base_symbol_defined_)
7258     return;
7259
7260   Output_segment* tls_segment = layout->tls_segment();
7261   if (tls_segment != NULL)
7262     {
7263       bool is_exec = parameters->options().output_is_executable();
7264       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7265                                        Symbol_table::PREDEFINED,
7266                                        tls_segment, 0, 0,
7267                                        elfcpp::STT_TLS,
7268                                        elfcpp::STB_LOCAL,
7269                                        elfcpp::STV_HIDDEN, 0,
7270                                        (is_exec
7271                                         ? Symbol::SEGMENT_END
7272                                         : Symbol::SEGMENT_START),
7273                                        true);
7274     }
7275   this->tls_base_symbol_defined_ = true;
7276 }
7277
7278 // Create a GOT entry for the TLS module index.
7279
7280 template<bool big_endian>
7281 unsigned int
7282 Target_arm<big_endian>::got_mod_index_entry(
7283     Symbol_table* symtab,
7284     Layout* layout,
7285     Sized_relobj<32, big_endian>* object)
7286 {
7287   if (this->got_mod_index_offset_ == -1U)
7288     {
7289       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7290       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7291       unsigned int got_offset;
7292       if (!parameters->doing_static_link())
7293         {
7294           got_offset = got->add_constant(0);
7295           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7296           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7297                              got_offset);
7298         }
7299       else
7300         {
7301           // We are doing a static link.  Just mark it as belong to module 1,
7302           // the executable.
7303           got_offset = got->add_constant(1);
7304         }
7305
7306       got->add_constant(0);
7307       this->got_mod_index_offset_ = got_offset;
7308     }
7309   return this->got_mod_index_offset_;
7310 }
7311
7312 // Optimize the TLS relocation type based on what we know about the
7313 // symbol.  IS_FINAL is true if the final address of this symbol is
7314 // known at link time.
7315
7316 template<bool big_endian>
7317 tls::Tls_optimization
7318 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7319 {
7320   // FIXME: Currently we do not do any TLS optimization.
7321   return tls::TLSOPT_NONE;
7322 }
7323
7324 // Report an unsupported relocation against a local symbol.
7325
7326 template<bool big_endian>
7327 void
7328 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7329     Sized_relobj<32, big_endian>* object,
7330     unsigned int r_type)
7331 {
7332   gold_error(_("%s: unsupported reloc %u against local symbol"),
7333              object->name().c_str(), r_type);
7334 }
7335
7336 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7337 // dynamic linker does not support it, issue an error.  The GNU linker
7338 // only issues a non-PIC error for an allocated read-only section.
7339 // Here we know the section is allocated, but we don't know that it is
7340 // read-only.  But we check for all the relocation types which the
7341 // glibc dynamic linker supports, so it seems appropriate to issue an
7342 // error even if the section is not read-only.
7343
7344 template<bool big_endian>
7345 void
7346 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7347                                             unsigned int r_type)
7348 {
7349   switch (r_type)
7350     {
7351     // These are the relocation types supported by glibc for ARM.
7352     case elfcpp::R_ARM_RELATIVE:
7353     case elfcpp::R_ARM_COPY:
7354     case elfcpp::R_ARM_GLOB_DAT:
7355     case elfcpp::R_ARM_JUMP_SLOT:
7356     case elfcpp::R_ARM_ABS32:
7357     case elfcpp::R_ARM_ABS32_NOI:
7358     case elfcpp::R_ARM_PC24:
7359     // FIXME: The following 3 types are not supported by Android's dynamic
7360     // linker.
7361     case elfcpp::R_ARM_TLS_DTPMOD32:
7362     case elfcpp::R_ARM_TLS_DTPOFF32:
7363     case elfcpp::R_ARM_TLS_TPOFF32:
7364       return;
7365
7366     default:
7367       {
7368         // This prevents us from issuing more than one error per reloc
7369         // section.  But we can still wind up issuing more than one
7370         // error per object file.
7371         if (this->issued_non_pic_error_)
7372           return;
7373         const Arm_reloc_property* reloc_property =
7374           arm_reloc_property_table->get_reloc_property(r_type);
7375         gold_assert(reloc_property != NULL);
7376         object->error(_("requires unsupported dynamic reloc %s; "
7377                       "recompile with -fPIC"),
7378                       reloc_property->name().c_str());
7379         this->issued_non_pic_error_ = true;
7380         return;
7381       }
7382
7383     case elfcpp::R_ARM_NONE:
7384       gold_unreachable();
7385     }
7386 }
7387
7388 // Scan a relocation for a local symbol.
7389 // FIXME: This only handles a subset of relocation types used by Android
7390 // on ARM v5te devices.
7391
7392 template<bool big_endian>
7393 inline void
7394 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7395                                     Layout* layout,
7396                                     Target_arm* target,
7397                                     Sized_relobj<32, big_endian>* object,
7398                                     unsigned int data_shndx,
7399                                     Output_section* output_section,
7400                                     const elfcpp::Rel<32, big_endian>& reloc,
7401                                     unsigned int r_type,
7402                                     const elfcpp::Sym<32, big_endian>& lsym)
7403 {
7404   r_type = get_real_reloc_type(r_type);
7405   switch (r_type)
7406     {
7407     case elfcpp::R_ARM_NONE:
7408     case elfcpp::R_ARM_V4BX:
7409     case elfcpp::R_ARM_GNU_VTENTRY:
7410     case elfcpp::R_ARM_GNU_VTINHERIT:
7411       break;
7412
7413     case elfcpp::R_ARM_ABS32:
7414     case elfcpp::R_ARM_ABS32_NOI:
7415       // If building a shared library (or a position-independent
7416       // executable), we need to create a dynamic relocation for
7417       // this location. The relocation applied at link time will
7418       // apply the link-time value, so we flag the location with
7419       // an R_ARM_RELATIVE relocation so the dynamic loader can
7420       // relocate it easily.
7421       if (parameters->options().output_is_position_independent())
7422         {
7423           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7424           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7425           // If we are to add more other reloc types than R_ARM_ABS32,
7426           // we need to add check_non_pic(object, r_type) here.
7427           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7428                                       output_section, data_shndx,
7429                                       reloc.get_r_offset());
7430         }
7431       break;
7432
7433     case elfcpp::R_ARM_ABS16:
7434     case elfcpp::R_ARM_ABS12:
7435     case elfcpp::R_ARM_THM_ABS5:
7436     case elfcpp::R_ARM_ABS8:
7437     case elfcpp::R_ARM_BASE_ABS:
7438     case elfcpp::R_ARM_MOVW_ABS_NC:
7439     case elfcpp::R_ARM_MOVT_ABS:
7440     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7441     case elfcpp::R_ARM_THM_MOVT_ABS:
7442       // If building a shared library (or a position-independent
7443       // executable), we need to create a dynamic relocation for
7444       // this location. Because the addend needs to remain in the
7445       // data section, we need to be careful not to apply this
7446       // relocation statically.
7447       if (parameters->options().output_is_position_independent())
7448         {
7449           check_non_pic(object, r_type);
7450           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7451           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7452           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7453             rel_dyn->add_local(object, r_sym, r_type, output_section,
7454                                data_shndx, reloc.get_r_offset());
7455           else
7456             {
7457               gold_assert(lsym.get_st_value() == 0);
7458               unsigned int shndx = lsym.get_st_shndx();
7459               bool is_ordinary;
7460               shndx = object->adjust_sym_shndx(r_sym, shndx,
7461                                                &is_ordinary);
7462               if (!is_ordinary)
7463                 object->error(_("section symbol %u has bad shndx %u"),
7464                               r_sym, shndx);
7465               else
7466                 rel_dyn->add_local_section(object, shndx,
7467                                            r_type, output_section,
7468                                            data_shndx, reloc.get_r_offset());
7469             }
7470         }
7471       break;
7472
7473     case elfcpp::R_ARM_PC24:
7474     case elfcpp::R_ARM_REL32:
7475     case elfcpp::R_ARM_LDR_PC_G0:
7476     case elfcpp::R_ARM_SBREL32:
7477     case elfcpp::R_ARM_THM_CALL:
7478     case elfcpp::R_ARM_THM_PC8:
7479     case elfcpp::R_ARM_BASE_PREL:
7480     case elfcpp::R_ARM_PLT32:
7481     case elfcpp::R_ARM_CALL:
7482     case elfcpp::R_ARM_JUMP24:
7483     case elfcpp::R_ARM_THM_JUMP24:
7484     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7485     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7486     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7487     case elfcpp::R_ARM_SBREL31:
7488     case elfcpp::R_ARM_PREL31:
7489     case elfcpp::R_ARM_MOVW_PREL_NC:
7490     case elfcpp::R_ARM_MOVT_PREL:
7491     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7492     case elfcpp::R_ARM_THM_MOVT_PREL:
7493     case elfcpp::R_ARM_THM_JUMP19:
7494     case elfcpp::R_ARM_THM_JUMP6:
7495     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7496     case elfcpp::R_ARM_THM_PC12:
7497     case elfcpp::R_ARM_REL32_NOI:
7498     case elfcpp::R_ARM_ALU_PC_G0_NC:
7499     case elfcpp::R_ARM_ALU_PC_G0:
7500     case elfcpp::R_ARM_ALU_PC_G1_NC:
7501     case elfcpp::R_ARM_ALU_PC_G1:
7502     case elfcpp::R_ARM_ALU_PC_G2:
7503     case elfcpp::R_ARM_LDR_PC_G1:
7504     case elfcpp::R_ARM_LDR_PC_G2:
7505     case elfcpp::R_ARM_LDRS_PC_G0:
7506     case elfcpp::R_ARM_LDRS_PC_G1:
7507     case elfcpp::R_ARM_LDRS_PC_G2:
7508     case elfcpp::R_ARM_LDC_PC_G0:
7509     case elfcpp::R_ARM_LDC_PC_G1:
7510     case elfcpp::R_ARM_LDC_PC_G2:
7511     case elfcpp::R_ARM_ALU_SB_G0_NC:
7512     case elfcpp::R_ARM_ALU_SB_G0:
7513     case elfcpp::R_ARM_ALU_SB_G1_NC:
7514     case elfcpp::R_ARM_ALU_SB_G1:
7515     case elfcpp::R_ARM_ALU_SB_G2:
7516     case elfcpp::R_ARM_LDR_SB_G0:
7517     case elfcpp::R_ARM_LDR_SB_G1:
7518     case elfcpp::R_ARM_LDR_SB_G2:
7519     case elfcpp::R_ARM_LDRS_SB_G0:
7520     case elfcpp::R_ARM_LDRS_SB_G1:
7521     case elfcpp::R_ARM_LDRS_SB_G2:
7522     case elfcpp::R_ARM_LDC_SB_G0:
7523     case elfcpp::R_ARM_LDC_SB_G1:
7524     case elfcpp::R_ARM_LDC_SB_G2:
7525     case elfcpp::R_ARM_MOVW_BREL_NC:
7526     case elfcpp::R_ARM_MOVT_BREL:
7527     case elfcpp::R_ARM_MOVW_BREL:
7528     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7529     case elfcpp::R_ARM_THM_MOVT_BREL:
7530     case elfcpp::R_ARM_THM_MOVW_BREL:
7531     case elfcpp::R_ARM_THM_JUMP11:
7532     case elfcpp::R_ARM_THM_JUMP8:
7533       // We don't need to do anything for a relative addressing relocation
7534       // against a local symbol if it does not reference the GOT.
7535       break;
7536
7537     case elfcpp::R_ARM_GOTOFF32:
7538     case elfcpp::R_ARM_GOTOFF12:
7539       // We need a GOT section:
7540       target->got_section(symtab, layout);
7541       break;
7542
7543     case elfcpp::R_ARM_GOT_BREL:
7544     case elfcpp::R_ARM_GOT_PREL:
7545       {
7546         // The symbol requires a GOT entry.
7547         Arm_output_data_got<big_endian>* got =
7548           target->got_section(symtab, layout);
7549         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7550         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7551           {
7552             // If we are generating a shared object, we need to add a
7553             // dynamic RELATIVE relocation for this symbol's GOT entry.
7554             if (parameters->options().output_is_position_independent())
7555               {
7556                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7557                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7558                 rel_dyn->add_local_relative(
7559                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7560                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7561               }
7562           }
7563       }
7564       break;
7565
7566     case elfcpp::R_ARM_TARGET1:
7567     case elfcpp::R_ARM_TARGET2:
7568       // This should have been mapped to another type already.
7569       // Fall through.
7570     case elfcpp::R_ARM_COPY:
7571     case elfcpp::R_ARM_GLOB_DAT:
7572     case elfcpp::R_ARM_JUMP_SLOT:
7573     case elfcpp::R_ARM_RELATIVE:
7574       // These are relocations which should only be seen by the
7575       // dynamic linker, and should never be seen here.
7576       gold_error(_("%s: unexpected reloc %u in object file"),
7577                  object->name().c_str(), r_type);
7578       break;
7579
7580
7581       // These are initial TLS relocs, which are expected when
7582       // linking.
7583     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7584     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7585     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7586     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7587     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7588       {
7589         bool output_is_shared = parameters->options().shared();
7590         const tls::Tls_optimization optimized_type
7591             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7592                                                          r_type);
7593         switch (r_type)
7594           {
7595           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7596             if (optimized_type == tls::TLSOPT_NONE)
7597               {
7598                 // Create a pair of GOT entries for the module index and
7599                 // dtv-relative offset.
7600                 Arm_output_data_got<big_endian>* got
7601                     = target->got_section(symtab, layout);
7602                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7603                 unsigned int shndx = lsym.get_st_shndx();
7604                 bool is_ordinary;
7605                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7606                 if (!is_ordinary)
7607                   {
7608                     object->error(_("local symbol %u has bad shndx %u"),
7609                                   r_sym, shndx);
7610                     break;
7611                   }
7612
7613                 if (!parameters->doing_static_link())
7614                   got->add_local_pair_with_rel(object, r_sym, shndx,
7615                                                GOT_TYPE_TLS_PAIR,
7616                                                target->rel_dyn_section(layout),
7617                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7618                 else
7619                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7620                                                       object, r_sym);
7621               }
7622             else
7623               // FIXME: TLS optimization not supported yet.
7624               gold_unreachable();
7625             break;
7626
7627           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7628             if (optimized_type == tls::TLSOPT_NONE)
7629               {
7630                 // Create a GOT entry for the module index.
7631                 target->got_mod_index_entry(symtab, layout, object);
7632               }
7633             else
7634               // FIXME: TLS optimization not supported yet.
7635               gold_unreachable();
7636             break;
7637
7638           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7639             break;
7640
7641           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7642             layout->set_has_static_tls();
7643             if (optimized_type == tls::TLSOPT_NONE)
7644               {
7645                 // Create a GOT entry for the tp-relative offset.
7646                 Arm_output_data_got<big_endian>* got
7647                   = target->got_section(symtab, layout);
7648                 unsigned int r_sym =
7649                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
7650                 if (!parameters->doing_static_link())
7651                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7652                                             target->rel_dyn_section(layout),
7653                                             elfcpp::R_ARM_TLS_TPOFF32);
7654                 else if (!object->local_has_got_offset(r_sym,
7655                                                        GOT_TYPE_TLS_OFFSET))
7656                   {
7657                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7658                     unsigned int got_offset =
7659                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7660                     got->add_static_reloc(got_offset,
7661                                           elfcpp::R_ARM_TLS_TPOFF32, object,
7662                                           r_sym);
7663                   }
7664               }
7665             else
7666               // FIXME: TLS optimization not supported yet.
7667               gold_unreachable();
7668             break;
7669
7670           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
7671             layout->set_has_static_tls();
7672             if (output_is_shared)
7673               {
7674                 // We need to create a dynamic relocation.
7675                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7676                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7677                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7678                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7679                                    output_section, data_shndx,
7680                                    reloc.get_r_offset());
7681               }
7682             break;
7683
7684           default:
7685             gold_unreachable();
7686           }
7687       }
7688       break;
7689
7690     default:
7691       unsupported_reloc_local(object, r_type);
7692       break;
7693     }
7694 }
7695
7696 // Report an unsupported relocation against a global symbol.
7697
7698 template<bool big_endian>
7699 void
7700 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7701     Sized_relobj<32, big_endian>* object,
7702     unsigned int r_type,
7703     Symbol* gsym)
7704 {
7705   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7706              object->name().c_str(), r_type, gsym->demangled_name().c_str());
7707 }
7708
7709 template<bool big_endian>
7710 inline bool
7711 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
7712     unsigned int r_type)
7713 {
7714   switch (r_type)
7715     {
7716     case elfcpp::R_ARM_PC24:
7717     case elfcpp::R_ARM_THM_CALL:
7718     case elfcpp::R_ARM_PLT32:
7719     case elfcpp::R_ARM_CALL:
7720     case elfcpp::R_ARM_JUMP24:
7721     case elfcpp::R_ARM_THM_JUMP24:
7722     case elfcpp::R_ARM_SBREL31:
7723     case elfcpp::R_ARM_PREL31:
7724     case elfcpp::R_ARM_THM_JUMP19:
7725     case elfcpp::R_ARM_THM_JUMP6:
7726     case elfcpp::R_ARM_THM_JUMP11:
7727     case elfcpp::R_ARM_THM_JUMP8:
7728       // All the relocations above are branches except SBREL31 and PREL31.
7729       return false;
7730
7731     default:
7732       // Be conservative and assume this is a function pointer.
7733       return true;
7734     }
7735 }
7736
7737 template<bool big_endian>
7738 inline bool
7739 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
7740   Symbol_table*,
7741   Layout*,
7742   Target_arm<big_endian>* target,
7743   Sized_relobj<32, big_endian>*,
7744   unsigned int,
7745   Output_section*,
7746   const elfcpp::Rel<32, big_endian>&,
7747   unsigned int r_type,
7748   const elfcpp::Sym<32, big_endian>&)
7749 {
7750   r_type = target->get_real_reloc_type(r_type);
7751   return possible_function_pointer_reloc(r_type);
7752 }
7753
7754 template<bool big_endian>
7755 inline bool
7756 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
7757   Symbol_table*,
7758   Layout*,
7759   Target_arm<big_endian>* target,
7760   Sized_relobj<32, big_endian>*,
7761   unsigned int,
7762   Output_section*,
7763   const elfcpp::Rel<32, big_endian>&,
7764   unsigned int r_type,
7765   Symbol* gsym)
7766 {
7767   // GOT is not a function.
7768   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7769     return false;
7770
7771   r_type = target->get_real_reloc_type(r_type);
7772   return possible_function_pointer_reloc(r_type);
7773 }
7774
7775 // Scan a relocation for a global symbol.
7776
7777 template<bool big_endian>
7778 inline void
7779 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7780                                      Layout* layout,
7781                                      Target_arm* target,
7782                                      Sized_relobj<32, big_endian>* object,
7783                                      unsigned int data_shndx,
7784                                      Output_section* output_section,
7785                                      const elfcpp::Rel<32, big_endian>& reloc,
7786                                      unsigned int r_type,
7787                                      Symbol* gsym)
7788 {
7789   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7790   // section.  We check here to avoid creating a dynamic reloc against
7791   // _GLOBAL_OFFSET_TABLE_.
7792   if (!target->has_got_section()
7793       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7794     target->got_section(symtab, layout);
7795
7796   r_type = get_real_reloc_type(r_type);
7797   switch (r_type)
7798     {
7799     case elfcpp::R_ARM_NONE:
7800     case elfcpp::R_ARM_V4BX:
7801     case elfcpp::R_ARM_GNU_VTENTRY:
7802     case elfcpp::R_ARM_GNU_VTINHERIT:
7803       break;
7804
7805     case elfcpp::R_ARM_ABS32:
7806     case elfcpp::R_ARM_ABS16:
7807     case elfcpp::R_ARM_ABS12:
7808     case elfcpp::R_ARM_THM_ABS5:
7809     case elfcpp::R_ARM_ABS8:
7810     case elfcpp::R_ARM_BASE_ABS:
7811     case elfcpp::R_ARM_MOVW_ABS_NC:
7812     case elfcpp::R_ARM_MOVT_ABS:
7813     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7814     case elfcpp::R_ARM_THM_MOVT_ABS:
7815     case elfcpp::R_ARM_ABS32_NOI:
7816       // Absolute addressing relocations.
7817       {
7818         // Make a PLT entry if necessary.
7819         if (this->symbol_needs_plt_entry(gsym))
7820           {
7821             target->make_plt_entry(symtab, layout, gsym);
7822             // Since this is not a PC-relative relocation, we may be
7823             // taking the address of a function. In that case we need to
7824             // set the entry in the dynamic symbol table to the address of
7825             // the PLT entry.
7826             if (gsym->is_from_dynobj() && !parameters->options().shared())
7827               gsym->set_needs_dynsym_value();
7828           }
7829         // Make a dynamic relocation if necessary.
7830         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7831           {
7832             if (gsym->may_need_copy_reloc())
7833               {
7834                 target->copy_reloc(symtab, layout, object,
7835                                    data_shndx, output_section, gsym, reloc);
7836               }
7837             else if ((r_type == elfcpp::R_ARM_ABS32
7838                       || r_type == elfcpp::R_ARM_ABS32_NOI)
7839                      && gsym->can_use_relative_reloc(false))
7840               {
7841                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7842                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7843                                              output_section, object,
7844                                              data_shndx, reloc.get_r_offset());
7845               }
7846             else
7847               {
7848                 check_non_pic(object, r_type);
7849                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7850                 rel_dyn->add_global(gsym, r_type, output_section, object,
7851                                     data_shndx, reloc.get_r_offset());
7852               }
7853           }
7854       }
7855       break;
7856
7857     case elfcpp::R_ARM_GOTOFF32:
7858     case elfcpp::R_ARM_GOTOFF12:
7859       // We need a GOT section.
7860       target->got_section(symtab, layout);
7861       break;
7862       
7863     case elfcpp::R_ARM_REL32:
7864     case elfcpp::R_ARM_LDR_PC_G0:
7865     case elfcpp::R_ARM_SBREL32:
7866     case elfcpp::R_ARM_THM_PC8:
7867     case elfcpp::R_ARM_BASE_PREL:
7868     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7869     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7870     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7871     case elfcpp::R_ARM_MOVW_PREL_NC:
7872     case elfcpp::R_ARM_MOVT_PREL:
7873     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7874     case elfcpp::R_ARM_THM_MOVT_PREL:
7875     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7876     case elfcpp::R_ARM_THM_PC12:
7877     case elfcpp::R_ARM_REL32_NOI:
7878     case elfcpp::R_ARM_ALU_PC_G0_NC:
7879     case elfcpp::R_ARM_ALU_PC_G0:
7880     case elfcpp::R_ARM_ALU_PC_G1_NC:
7881     case elfcpp::R_ARM_ALU_PC_G1:
7882     case elfcpp::R_ARM_ALU_PC_G2:
7883     case elfcpp::R_ARM_LDR_PC_G1:
7884     case elfcpp::R_ARM_LDR_PC_G2:
7885     case elfcpp::R_ARM_LDRS_PC_G0:
7886     case elfcpp::R_ARM_LDRS_PC_G1:
7887     case elfcpp::R_ARM_LDRS_PC_G2:
7888     case elfcpp::R_ARM_LDC_PC_G0:
7889     case elfcpp::R_ARM_LDC_PC_G1:
7890     case elfcpp::R_ARM_LDC_PC_G2:
7891     case elfcpp::R_ARM_ALU_SB_G0_NC:
7892     case elfcpp::R_ARM_ALU_SB_G0:
7893     case elfcpp::R_ARM_ALU_SB_G1_NC:
7894     case elfcpp::R_ARM_ALU_SB_G1:
7895     case elfcpp::R_ARM_ALU_SB_G2:
7896     case elfcpp::R_ARM_LDR_SB_G0:
7897     case elfcpp::R_ARM_LDR_SB_G1:
7898     case elfcpp::R_ARM_LDR_SB_G2:
7899     case elfcpp::R_ARM_LDRS_SB_G0:
7900     case elfcpp::R_ARM_LDRS_SB_G1:
7901     case elfcpp::R_ARM_LDRS_SB_G2:
7902     case elfcpp::R_ARM_LDC_SB_G0:
7903     case elfcpp::R_ARM_LDC_SB_G1:
7904     case elfcpp::R_ARM_LDC_SB_G2:
7905     case elfcpp::R_ARM_MOVW_BREL_NC:
7906     case elfcpp::R_ARM_MOVT_BREL:
7907     case elfcpp::R_ARM_MOVW_BREL:
7908     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7909     case elfcpp::R_ARM_THM_MOVT_BREL:
7910     case elfcpp::R_ARM_THM_MOVW_BREL:
7911       // Relative addressing relocations.
7912       {
7913         // Make a dynamic relocation if necessary.
7914         int flags = Symbol::NON_PIC_REF;
7915         if (gsym->needs_dynamic_reloc(flags))
7916           {
7917             if (target->may_need_copy_reloc(gsym))
7918               {
7919                 target->copy_reloc(symtab, layout, object,
7920                                    data_shndx, output_section, gsym, reloc);
7921               }
7922             else
7923               {
7924                 check_non_pic(object, r_type);
7925                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7926                 rel_dyn->add_global(gsym, r_type, output_section, object,
7927                                     data_shndx, reloc.get_r_offset());
7928               }
7929           }
7930       }
7931       break;
7932
7933     case elfcpp::R_ARM_PC24:
7934     case elfcpp::R_ARM_THM_CALL:
7935     case elfcpp::R_ARM_PLT32:
7936     case elfcpp::R_ARM_CALL:
7937     case elfcpp::R_ARM_JUMP24:
7938     case elfcpp::R_ARM_THM_JUMP24:
7939     case elfcpp::R_ARM_SBREL31:
7940     case elfcpp::R_ARM_PREL31:
7941     case elfcpp::R_ARM_THM_JUMP19:
7942     case elfcpp::R_ARM_THM_JUMP6:
7943     case elfcpp::R_ARM_THM_JUMP11:
7944     case elfcpp::R_ARM_THM_JUMP8:
7945       // All the relocation above are branches except for the PREL31 ones.
7946       // A PREL31 relocation can point to a personality function in a shared
7947       // library.  In that case we want to use a PLT because we want to
7948       // call the personality routine and the dyanmic linkers we care about
7949       // do not support dynamic PREL31 relocations. An REL31 relocation may
7950       // point to a function whose unwinding behaviour is being described but
7951       // we will not mistakenly generate a PLT for that because we should use
7952       // a local section symbol.
7953
7954       // If the symbol is fully resolved, this is just a relative
7955       // local reloc.  Otherwise we need a PLT entry.
7956       if (gsym->final_value_is_known())
7957         break;
7958       // If building a shared library, we can also skip the PLT entry
7959       // if the symbol is defined in the output file and is protected
7960       // or hidden.
7961       if (gsym->is_defined()
7962           && !gsym->is_from_dynobj()
7963           && !gsym->is_preemptible())
7964         break;
7965       target->make_plt_entry(symtab, layout, gsym);
7966       break;
7967
7968     case elfcpp::R_ARM_GOT_BREL:
7969     case elfcpp::R_ARM_GOT_ABS:
7970     case elfcpp::R_ARM_GOT_PREL:
7971       {
7972         // The symbol requires a GOT entry.
7973         Arm_output_data_got<big_endian>* got =
7974           target->got_section(symtab, layout);
7975         if (gsym->final_value_is_known())
7976           got->add_global(gsym, GOT_TYPE_STANDARD);
7977         else
7978           {
7979             // If this symbol is not fully resolved, we need to add a
7980             // GOT entry with a dynamic relocation.
7981             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7982             if (gsym->is_from_dynobj()
7983                 || gsym->is_undefined()
7984                 || gsym->is_preemptible())
7985               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7986                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7987             else
7988               {
7989                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7990                   rel_dyn->add_global_relative(
7991                       gsym, elfcpp::R_ARM_RELATIVE, got,
7992                       gsym->got_offset(GOT_TYPE_STANDARD));
7993               }
7994           }
7995       }
7996       break;
7997
7998     case elfcpp::R_ARM_TARGET1:
7999     case elfcpp::R_ARM_TARGET2:
8000       // These should have been mapped to other types already.
8001       // Fall through.
8002     case elfcpp::R_ARM_COPY:
8003     case elfcpp::R_ARM_GLOB_DAT:
8004     case elfcpp::R_ARM_JUMP_SLOT:
8005     case elfcpp::R_ARM_RELATIVE:
8006       // These are relocations which should only be seen by the
8007       // dynamic linker, and should never be seen here.
8008       gold_error(_("%s: unexpected reloc %u in object file"),
8009                  object->name().c_str(), r_type);
8010       break;
8011
8012       // These are initial tls relocs, which are expected when
8013       // linking.
8014     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8015     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8016     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8017     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8018     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8019       {
8020         const bool is_final = gsym->final_value_is_known();
8021         const tls::Tls_optimization optimized_type
8022             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8023         switch (r_type)
8024           {
8025           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8026             if (optimized_type == tls::TLSOPT_NONE)
8027               {
8028                 // Create a pair of GOT entries for the module index and
8029                 // dtv-relative offset.
8030                 Arm_output_data_got<big_endian>* got
8031                     = target->got_section(symtab, layout);
8032                 if (!parameters->doing_static_link())
8033                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8034                                                 target->rel_dyn_section(layout),
8035                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8036                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8037                 else
8038                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8039               }
8040             else
8041               // FIXME: TLS optimization not supported yet.
8042               gold_unreachable();
8043             break;
8044
8045           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8046             if (optimized_type == tls::TLSOPT_NONE)
8047               {
8048                 // Create a GOT entry for the module index.
8049                 target->got_mod_index_entry(symtab, layout, object);
8050               }
8051             else
8052               // FIXME: TLS optimization not supported yet.
8053               gold_unreachable();
8054             break;
8055
8056           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8057             break;
8058
8059           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8060             layout->set_has_static_tls();
8061             if (optimized_type == tls::TLSOPT_NONE)
8062               {
8063                 // Create a GOT entry for the tp-relative offset.
8064                 Arm_output_data_got<big_endian>* got
8065                   = target->got_section(symtab, layout);
8066                 if (!parameters->doing_static_link())
8067                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8068                                            target->rel_dyn_section(layout),
8069                                            elfcpp::R_ARM_TLS_TPOFF32);
8070                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8071                   {
8072                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8073                     unsigned int got_offset =
8074                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8075                     got->add_static_reloc(got_offset,
8076                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
8077                   }
8078               }
8079             else
8080               // FIXME: TLS optimization not supported yet.
8081               gold_unreachable();
8082             break;
8083
8084           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8085             layout->set_has_static_tls();
8086             if (parameters->options().shared())
8087               {
8088                 // We need to create a dynamic relocation.
8089                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8090                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8091                                     output_section, object,
8092                                     data_shndx, reloc.get_r_offset());
8093               }
8094             break;
8095
8096           default:
8097             gold_unreachable();
8098           }
8099       }
8100       break;
8101
8102     default:
8103       unsupported_reloc_global(object, r_type, gsym);
8104       break;
8105     }
8106 }
8107
8108 // Process relocations for gc.
8109
8110 template<bool big_endian>
8111 void
8112 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8113                                           Layout* layout,
8114                                           Sized_relobj<32, big_endian>* object,
8115                                           unsigned int data_shndx,
8116                                           unsigned int,
8117                                           const unsigned char* prelocs,
8118                                           size_t reloc_count,
8119                                           Output_section* output_section,
8120                                           bool needs_special_offset_handling,
8121                                           size_t local_symbol_count,
8122                                           const unsigned char* plocal_symbols)
8123 {
8124   typedef Target_arm<big_endian> Arm;
8125   typedef typename Target_arm<big_endian>::Scan Scan;
8126
8127   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
8128     symtab,
8129     layout,
8130     this,
8131     object,
8132     data_shndx,
8133     prelocs,
8134     reloc_count,
8135     output_section,
8136     needs_special_offset_handling,
8137     local_symbol_count,
8138     plocal_symbols);
8139 }
8140
8141 // Scan relocations for a section.
8142
8143 template<bool big_endian>
8144 void
8145 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8146                                     Layout* layout,
8147                                     Sized_relobj<32, big_endian>* object,
8148                                     unsigned int data_shndx,
8149                                     unsigned int sh_type,
8150                                     const unsigned char* prelocs,
8151                                     size_t reloc_count,
8152                                     Output_section* output_section,
8153                                     bool needs_special_offset_handling,
8154                                     size_t local_symbol_count,
8155                                     const unsigned char* plocal_symbols)
8156 {
8157   typedef typename Target_arm<big_endian>::Scan Scan;
8158   if (sh_type == elfcpp::SHT_RELA)
8159     {
8160       gold_error(_("%s: unsupported RELA reloc section"),
8161                  object->name().c_str());
8162       return;
8163     }
8164
8165   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8166     symtab,
8167     layout,
8168     this,
8169     object,
8170     data_shndx,
8171     prelocs,
8172     reloc_count,
8173     output_section,
8174     needs_special_offset_handling,
8175     local_symbol_count,
8176     plocal_symbols);
8177 }
8178
8179 // Finalize the sections.
8180
8181 template<bool big_endian>
8182 void
8183 Target_arm<big_endian>::do_finalize_sections(
8184     Layout* layout,
8185     const Input_objects* input_objects,
8186     Symbol_table* symtab)
8187 {
8188   bool merged_any_attributes = false;
8189   // Merge processor-specific flags.
8190   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8191        p != input_objects->relobj_end();
8192        ++p)
8193     {
8194       Arm_relobj<big_endian>* arm_relobj =
8195         Arm_relobj<big_endian>::as_arm_relobj(*p);
8196       if (arm_relobj->merge_flags_and_attributes())
8197         {
8198           this->merge_processor_specific_flags(
8199               arm_relobj->name(),
8200               arm_relobj->processor_specific_flags());
8201           this->merge_object_attributes(arm_relobj->name().c_str(),
8202                                         arm_relobj->attributes_section_data());
8203           merged_any_attributes = true;
8204         }
8205     } 
8206
8207   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8208        p != input_objects->dynobj_end();
8209        ++p)
8210     {
8211       Arm_dynobj<big_endian>* arm_dynobj =
8212         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8213       this->merge_processor_specific_flags(
8214           arm_dynobj->name(),
8215           arm_dynobj->processor_specific_flags());
8216       this->merge_object_attributes(arm_dynobj->name().c_str(),
8217                                     arm_dynobj->attributes_section_data());
8218       merged_any_attributes = true;
8219     }
8220
8221   // Create an empty uninitialized attribute section if we still don't have it
8222   // at this moment.  This happens if there is no attributes sections in all
8223   // inputs.
8224   if (this->attributes_section_data_ == NULL)
8225     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8226
8227   // Check BLX use.
8228   const Object_attribute* cpu_arch_attr =
8229     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8230   if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8231     this->set_may_use_blx(true);
8232  
8233   // Check if we need to use Cortex-A8 workaround.
8234   if (parameters->options().user_set_fix_cortex_a8())
8235     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8236   else
8237     {
8238       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8239       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8240       // profile.  
8241       const Object_attribute* cpu_arch_profile_attr =
8242         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8243       this->fix_cortex_a8_ =
8244         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8245          && (cpu_arch_profile_attr->int_value() == 'A'
8246              || cpu_arch_profile_attr->int_value() == 0));
8247     }
8248   
8249   // Check if we can use V4BX interworking.
8250   // The V4BX interworking stub contains BX instruction,
8251   // which is not specified for some profiles.
8252   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8253       && !this->may_use_blx())
8254     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8255                  "the target profile does not support BX instruction"));
8256
8257   // Fill in some more dynamic tags.
8258   const Reloc_section* rel_plt = (this->plt_ == NULL
8259                                   ? NULL
8260                                   : this->plt_->rel_plt());
8261   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8262                                   this->rel_dyn_, true, false);
8263
8264   // Emit any relocs we saved in an attempt to avoid generating COPY
8265   // relocs.
8266   if (this->copy_relocs_.any_saved_relocs())
8267     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8268
8269   // Handle the .ARM.exidx section.
8270   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8271   if (exidx_section != NULL
8272       && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8273       && !parameters->options().relocatable())
8274     {
8275       // Create __exidx_start and __exdix_end symbols.
8276       symtab->define_in_output_data("__exidx_start", NULL,
8277                                     Symbol_table::PREDEFINED,
8278                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8279                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8280                                     false, true);
8281       symtab->define_in_output_data("__exidx_end", NULL,
8282                                     Symbol_table::PREDEFINED,
8283                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8284                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8285                                     true, true);
8286
8287       // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8288       // the .ARM.exidx section.
8289       if (!layout->script_options()->saw_phdrs_clause())
8290         {
8291           gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8292                       == NULL);
8293           Output_segment*  exidx_segment =
8294             layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8295           exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8296                                             false);
8297         }
8298     }
8299
8300   // Create an .ARM.attributes section if we have merged any attributes
8301   // from inputs.
8302   if (merged_any_attributes)
8303     {
8304       Output_attributes_section_data* attributes_section =
8305       new Output_attributes_section_data(*this->attributes_section_data_);
8306       layout->add_output_section_data(".ARM.attributes",
8307                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8308                                       attributes_section, false, false, false,
8309                                       false);
8310     }
8311 }
8312
8313 // Return whether a direct absolute static relocation needs to be applied.
8314 // In cases where Scan::local() or Scan::global() has created
8315 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8316 // of the relocation is carried in the data, and we must not
8317 // apply the static relocation.
8318
8319 template<bool big_endian>
8320 inline bool
8321 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8322     const Sized_symbol<32>* gsym,
8323     int ref_flags,
8324     bool is_32bit,
8325     Output_section* output_section)
8326 {
8327   // If the output section is not allocated, then we didn't call
8328   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8329   // the reloc here.
8330   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8331       return true;
8332
8333   // For local symbols, we will have created a non-RELATIVE dynamic
8334   // relocation only if (a) the output is position independent,
8335   // (b) the relocation is absolute (not pc- or segment-relative), and
8336   // (c) the relocation is not 32 bits wide.
8337   if (gsym == NULL)
8338     return !(parameters->options().output_is_position_independent()
8339              && (ref_flags & Symbol::ABSOLUTE_REF)
8340              && !is_32bit);
8341
8342   // For global symbols, we use the same helper routines used in the
8343   // scan pass.  If we did not create a dynamic relocation, or if we
8344   // created a RELATIVE dynamic relocation, we should apply the static
8345   // relocation.
8346   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8347   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8348                  && gsym->can_use_relative_reloc(ref_flags
8349                                                  & Symbol::FUNCTION_CALL);
8350   return !has_dyn || is_rel;
8351 }
8352
8353 // Perform a relocation.
8354
8355 template<bool big_endian>
8356 inline bool
8357 Target_arm<big_endian>::Relocate::relocate(
8358     const Relocate_info<32, big_endian>* relinfo,
8359     Target_arm* target,
8360     Output_section *output_section,
8361     size_t relnum,
8362     const elfcpp::Rel<32, big_endian>& rel,
8363     unsigned int r_type,
8364     const Sized_symbol<32>* gsym,
8365     const Symbol_value<32>* psymval,
8366     unsigned char* view,
8367     Arm_address address,
8368     section_size_type view_size)
8369 {
8370   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8371
8372   r_type = get_real_reloc_type(r_type);
8373   const Arm_reloc_property* reloc_property =
8374     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8375   if (reloc_property == NULL)
8376     {
8377       std::string reloc_name =
8378         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8379       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8380                              _("cannot relocate %s in object file"),
8381                              reloc_name.c_str());
8382       return true;
8383     }
8384
8385   const Arm_relobj<big_endian>* object =
8386     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8387
8388   // If the final branch target of a relocation is THUMB instruction, this
8389   // is 1.  Otherwise it is 0.
8390   Arm_address thumb_bit = 0;
8391   Symbol_value<32> symval;
8392   bool is_weakly_undefined_without_plt = false;
8393   if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8394     {
8395       if (gsym != NULL)
8396         {
8397           // This is a global symbol.  Determine if we use PLT and if the
8398           // final target is THUMB.
8399           if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8400             {
8401               // This uses a PLT, change the symbol value.
8402               symval.set_output_value(target->plt_section()->address()
8403                                       + gsym->plt_offset());
8404               psymval = &symval;
8405             }
8406           else if (gsym->is_weak_undefined())
8407             {
8408               // This is a weakly undefined symbol and we do not use PLT
8409               // for this relocation.  A branch targeting this symbol will
8410               // be converted into an NOP.
8411               is_weakly_undefined_without_plt = true;
8412             }
8413           else
8414             {
8415               // Set thumb bit if symbol:
8416               // -Has type STT_ARM_TFUNC or
8417               // -Has type STT_FUNC, is defined and with LSB in value set.
8418               thumb_bit =
8419                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8420                  || (gsym->type() == elfcpp::STT_FUNC
8421                      && !gsym->is_undefined()
8422                      && ((psymval->value(object, 0) & 1) != 0)))
8423                 ? 1
8424                 : 0);
8425             }
8426         }
8427       else
8428         {
8429           // This is a local symbol.  Determine if the final target is THUMB.
8430           // We saved this information when all the local symbols were read.
8431           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8432           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8433           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8434         }
8435     }
8436   else
8437     {
8438       // This is a fake relocation synthesized for a stub.  It does not have
8439       // a real symbol.  We just look at the LSB of the symbol value to
8440       // determine if the target is THUMB or not.
8441       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8442     }
8443
8444   // Strip LSB if this points to a THUMB target.
8445   if (thumb_bit != 0
8446       && reloc_property->uses_thumb_bit() 
8447       && ((psymval->value(object, 0) & 1) != 0))
8448     {
8449       Arm_address stripped_value =
8450         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8451       symval.set_output_value(stripped_value);
8452       psymval = &symval;
8453     } 
8454
8455   // Get the GOT offset if needed.
8456   // The GOT pointer points to the end of the GOT section.
8457   // We need to subtract the size of the GOT section to get
8458   // the actual offset to use in the relocation.
8459   bool have_got_offset = false;
8460   unsigned int got_offset = 0;
8461   switch (r_type)
8462     {
8463     case elfcpp::R_ARM_GOT_BREL:
8464     case elfcpp::R_ARM_GOT_PREL:
8465       if (gsym != NULL)
8466         {
8467           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8468           got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8469                         - target->got_size());
8470         }
8471       else
8472         {
8473           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8474           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8475           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8476                         - target->got_size());
8477         }
8478       have_got_offset = true;
8479       break;
8480
8481     default:
8482       break;
8483     }
8484
8485   // To look up relocation stubs, we need to pass the symbol table index of
8486   // a local symbol.
8487   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8488
8489   // Get the addressing origin of the output segment defining the
8490   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8491   Arm_address sym_origin = 0;
8492   if (reloc_property->uses_symbol_base())
8493     {
8494       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8495         // R_ARM_BASE_ABS with the NULL symbol will give the
8496         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8497         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8498         sym_origin = target->got_plt_section()->address();
8499       else if (gsym == NULL)
8500         sym_origin = 0;
8501       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8502         sym_origin = gsym->output_segment()->vaddr();
8503       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8504         sym_origin = gsym->output_data()->address();
8505
8506       // TODO: Assumes the segment base to be zero for the global symbols
8507       // till the proper support for the segment-base-relative addressing
8508       // will be implemented.  This is consistent with GNU ld.
8509     }
8510
8511   // For relative addressing relocation, find out the relative address base.
8512   Arm_address relative_address_base = 0;
8513   switch(reloc_property->relative_address_base())
8514     {
8515     case Arm_reloc_property::RAB_NONE:
8516     // Relocations with relative address bases RAB_TLS and RAB_tp are
8517     // handled by relocate_tls.  So we do not need to do anything here.
8518     case Arm_reloc_property::RAB_TLS:
8519     case Arm_reloc_property::RAB_tp:
8520       break;
8521     case Arm_reloc_property::RAB_B_S:
8522       relative_address_base = sym_origin;
8523       break;
8524     case Arm_reloc_property::RAB_GOT_ORG:
8525       relative_address_base = target->got_plt_section()->address();
8526       break;
8527     case Arm_reloc_property::RAB_P:
8528       relative_address_base = address;
8529       break;
8530     case Arm_reloc_property::RAB_Pa:
8531       relative_address_base = address & 0xfffffffcU;
8532       break;
8533     default:
8534       gold_unreachable(); 
8535     }
8536     
8537   typename Arm_relocate_functions::Status reloc_status =
8538         Arm_relocate_functions::STATUS_OKAY;
8539   bool check_overflow = reloc_property->checks_overflow();
8540   switch (r_type)
8541     {
8542     case elfcpp::R_ARM_NONE:
8543       break;
8544
8545     case elfcpp::R_ARM_ABS8:
8546       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8547                                     output_section))
8548         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8549       break;
8550
8551     case elfcpp::R_ARM_ABS12:
8552       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8553                                     output_section))
8554         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8555       break;
8556
8557     case elfcpp::R_ARM_ABS16:
8558       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8559                                     output_section))
8560         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8561       break;
8562
8563     case elfcpp::R_ARM_ABS32:
8564       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8565                                     output_section))
8566         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8567                                                      thumb_bit);
8568       break;
8569
8570     case elfcpp::R_ARM_ABS32_NOI:
8571       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8572                                     output_section))
8573         // No thumb bit for this relocation: (S + A)
8574         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8575                                                      0);
8576       break;
8577
8578     case elfcpp::R_ARM_MOVW_ABS_NC:
8579       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8580                                     output_section))
8581         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8582                                                     0, thumb_bit,
8583                                                     check_overflow);
8584       break;
8585
8586     case elfcpp::R_ARM_MOVT_ABS:
8587       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8588                                     output_section))
8589         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8590       break;
8591
8592     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8593       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8594                                     output_section))
8595         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8596                                                         0, thumb_bit, false);
8597       break;
8598
8599     case elfcpp::R_ARM_THM_MOVT_ABS:
8600       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8601                                     output_section))
8602         reloc_status = Arm_relocate_functions::thm_movt(view, object,
8603                                                         psymval, 0);
8604       break;
8605
8606     case elfcpp::R_ARM_MOVW_PREL_NC:
8607     case elfcpp::R_ARM_MOVW_BREL_NC:
8608     case elfcpp::R_ARM_MOVW_BREL:
8609       reloc_status =
8610         Arm_relocate_functions::movw(view, object, psymval,
8611                                      relative_address_base, thumb_bit,
8612                                      check_overflow);
8613       break;
8614
8615     case elfcpp::R_ARM_MOVT_PREL:
8616     case elfcpp::R_ARM_MOVT_BREL:
8617       reloc_status =
8618         Arm_relocate_functions::movt(view, object, psymval,
8619                                      relative_address_base);
8620       break;
8621
8622     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8623     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8624     case elfcpp::R_ARM_THM_MOVW_BREL:
8625       reloc_status =
8626         Arm_relocate_functions::thm_movw(view, object, psymval,
8627                                          relative_address_base,
8628                                          thumb_bit, check_overflow);
8629       break;
8630
8631     case elfcpp::R_ARM_THM_MOVT_PREL:
8632     case elfcpp::R_ARM_THM_MOVT_BREL:
8633       reloc_status =
8634         Arm_relocate_functions::thm_movt(view, object, psymval,
8635                                          relative_address_base);
8636       break;
8637         
8638     case elfcpp::R_ARM_REL32:
8639       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8640                                                    address, thumb_bit);
8641       break;
8642
8643     case elfcpp::R_ARM_THM_ABS5:
8644       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8645                                     output_section))
8646         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8647       break;
8648
8649     // Thumb long branches.
8650     case elfcpp::R_ARM_THM_CALL:
8651     case elfcpp::R_ARM_THM_XPC22:
8652     case elfcpp::R_ARM_THM_JUMP24:
8653       reloc_status =
8654         Arm_relocate_functions::thumb_branch_common(
8655             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8656             thumb_bit, is_weakly_undefined_without_plt);
8657       break;
8658
8659     case elfcpp::R_ARM_GOTOFF32:
8660       {
8661         Arm_address got_origin;
8662         got_origin = target->got_plt_section()->address();
8663         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8664                                                      got_origin, thumb_bit);
8665       }
8666       break;
8667
8668     case elfcpp::R_ARM_BASE_PREL:
8669       gold_assert(gsym != NULL);
8670       reloc_status =
8671           Arm_relocate_functions::base_prel(view, sym_origin, address);
8672       break;
8673
8674     case elfcpp::R_ARM_BASE_ABS:
8675       {
8676         if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8677                                       output_section))
8678           break;
8679
8680         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8681       }
8682       break;
8683
8684     case elfcpp::R_ARM_GOT_BREL:
8685       gold_assert(have_got_offset);
8686       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8687       break;
8688
8689     case elfcpp::R_ARM_GOT_PREL:
8690       gold_assert(have_got_offset);
8691       // Get the address origin for GOT PLT, which is allocated right
8692       // after the GOT section, to calculate an absolute address of
8693       // the symbol GOT entry (got_origin + got_offset).
8694       Arm_address got_origin;
8695       got_origin = target->got_plt_section()->address();
8696       reloc_status = Arm_relocate_functions::got_prel(view,
8697                                                       got_origin + got_offset,
8698                                                       address);
8699       break;
8700
8701     case elfcpp::R_ARM_PLT32:
8702     case elfcpp::R_ARM_CALL:
8703     case elfcpp::R_ARM_JUMP24:
8704     case elfcpp::R_ARM_XPC25:
8705       gold_assert(gsym == NULL
8706                   || gsym->has_plt_offset()
8707                   || gsym->final_value_is_known()
8708                   || (gsym->is_defined()
8709                       && !gsym->is_from_dynobj()
8710                       && !gsym->is_preemptible()));
8711       reloc_status =
8712         Arm_relocate_functions::arm_branch_common(
8713             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8714             thumb_bit, is_weakly_undefined_without_plt);
8715       break;
8716
8717     case elfcpp::R_ARM_THM_JUMP19:
8718       reloc_status =
8719         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8720                                            thumb_bit);
8721       break;
8722
8723     case elfcpp::R_ARM_THM_JUMP6:
8724       reloc_status =
8725         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8726       break;
8727
8728     case elfcpp::R_ARM_THM_JUMP8:
8729       reloc_status =
8730         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8731       break;
8732
8733     case elfcpp::R_ARM_THM_JUMP11:
8734       reloc_status =
8735         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8736       break;
8737
8738     case elfcpp::R_ARM_PREL31:
8739       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8740                                                     address, thumb_bit);
8741       break;
8742
8743     case elfcpp::R_ARM_V4BX:
8744       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8745         {
8746           const bool is_v4bx_interworking =
8747               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8748           reloc_status =
8749             Arm_relocate_functions::v4bx(relinfo, view, object, address,
8750                                          is_v4bx_interworking);
8751         }
8752       break;
8753
8754     case elfcpp::R_ARM_THM_PC8:
8755       reloc_status =
8756         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8757       break;
8758
8759     case elfcpp::R_ARM_THM_PC12:
8760       reloc_status =
8761         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8762       break;
8763
8764     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8765       reloc_status =
8766         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8767                                           thumb_bit);
8768       break;
8769
8770     case elfcpp::R_ARM_ALU_PC_G0_NC:
8771     case elfcpp::R_ARM_ALU_PC_G0:
8772     case elfcpp::R_ARM_ALU_PC_G1_NC:
8773     case elfcpp::R_ARM_ALU_PC_G1:
8774     case elfcpp::R_ARM_ALU_PC_G2:
8775     case elfcpp::R_ARM_ALU_SB_G0_NC:
8776     case elfcpp::R_ARM_ALU_SB_G0:
8777     case elfcpp::R_ARM_ALU_SB_G1_NC:
8778     case elfcpp::R_ARM_ALU_SB_G1:
8779     case elfcpp::R_ARM_ALU_SB_G2:
8780       reloc_status =
8781         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8782                                             reloc_property->group_index(),
8783                                             relative_address_base,
8784                                             thumb_bit, check_overflow);
8785       break;
8786
8787     case elfcpp::R_ARM_LDR_PC_G0:
8788     case elfcpp::R_ARM_LDR_PC_G1:
8789     case elfcpp::R_ARM_LDR_PC_G2:
8790     case elfcpp::R_ARM_LDR_SB_G0:
8791     case elfcpp::R_ARM_LDR_SB_G1:
8792     case elfcpp::R_ARM_LDR_SB_G2:
8793       reloc_status =
8794           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8795                                               reloc_property->group_index(),
8796                                               relative_address_base);
8797       break;
8798
8799     case elfcpp::R_ARM_LDRS_PC_G0:
8800     case elfcpp::R_ARM_LDRS_PC_G1:
8801     case elfcpp::R_ARM_LDRS_PC_G2:
8802     case elfcpp::R_ARM_LDRS_SB_G0:
8803     case elfcpp::R_ARM_LDRS_SB_G1:
8804     case elfcpp::R_ARM_LDRS_SB_G2:
8805       reloc_status =
8806           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8807                                                reloc_property->group_index(),
8808                                                relative_address_base);
8809       break;
8810
8811     case elfcpp::R_ARM_LDC_PC_G0:
8812     case elfcpp::R_ARM_LDC_PC_G1:
8813     case elfcpp::R_ARM_LDC_PC_G2:
8814     case elfcpp::R_ARM_LDC_SB_G0:
8815     case elfcpp::R_ARM_LDC_SB_G1:
8816     case elfcpp::R_ARM_LDC_SB_G2:
8817       reloc_status =
8818           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8819                                               reloc_property->group_index(),
8820                                               relative_address_base);
8821       break;
8822
8823       // These are initial tls relocs, which are expected when
8824       // linking.
8825     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8826     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8827     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8828     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8829     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8830       reloc_status =
8831         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8832                            view, address, view_size);
8833       break;
8834
8835     default:
8836       gold_unreachable();
8837     }
8838
8839   // Report any errors.
8840   switch (reloc_status)
8841     {
8842     case Arm_relocate_functions::STATUS_OKAY:
8843       break;
8844     case Arm_relocate_functions::STATUS_OVERFLOW:
8845       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8846                              _("relocation overflow in %s"),
8847                              reloc_property->name().c_str());
8848       break;
8849     case Arm_relocate_functions::STATUS_BAD_RELOC:
8850       gold_error_at_location(
8851         relinfo,
8852         relnum,
8853         rel.get_r_offset(),
8854         _("unexpected opcode while processing relocation %s"),
8855         reloc_property->name().c_str());
8856       break;
8857     default:
8858       gold_unreachable();
8859     }
8860
8861   return true;
8862 }
8863
8864 // Perform a TLS relocation.
8865
8866 template<bool big_endian>
8867 inline typename Arm_relocate_functions<big_endian>::Status
8868 Target_arm<big_endian>::Relocate::relocate_tls(
8869     const Relocate_info<32, big_endian>* relinfo,
8870     Target_arm<big_endian>* target,
8871     size_t relnum,
8872     const elfcpp::Rel<32, big_endian>& rel,
8873     unsigned int r_type,
8874     const Sized_symbol<32>* gsym,
8875     const Symbol_value<32>* psymval,
8876     unsigned char* view,
8877     elfcpp::Elf_types<32>::Elf_Addr address,
8878     section_size_type /*view_size*/ )
8879 {
8880   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8881   typedef Relocate_functions<32, big_endian> RelocFuncs;
8882   Output_segment* tls_segment = relinfo->layout->tls_segment();
8883
8884   const Sized_relobj<32, big_endian>* object = relinfo->object;
8885
8886   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8887
8888   const bool is_final = (gsym == NULL
8889                          ? !parameters->options().shared()
8890                          : gsym->final_value_is_known());
8891   const tls::Tls_optimization optimized_type
8892       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8893   switch (r_type)
8894     {
8895     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8896         {
8897           unsigned int got_type = GOT_TYPE_TLS_PAIR;
8898           unsigned int got_offset;
8899           if (gsym != NULL)
8900             {
8901               gold_assert(gsym->has_got_offset(got_type));
8902               got_offset = gsym->got_offset(got_type) - target->got_size();
8903             }
8904           else
8905             {
8906               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8907               gold_assert(object->local_has_got_offset(r_sym, got_type));
8908               got_offset = (object->local_got_offset(r_sym, got_type)
8909                             - target->got_size());
8910             }
8911           if (optimized_type == tls::TLSOPT_NONE)
8912             {
8913               Arm_address got_entry =
8914                 target->got_plt_section()->address() + got_offset;
8915               
8916               // Relocate the field with the PC relative offset of the pair of
8917               // GOT entries.
8918               RelocFuncs::pcrel32(view, got_entry, address);
8919               return ArmRelocFuncs::STATUS_OKAY;
8920             }
8921         }
8922       break;
8923
8924     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8925       if (optimized_type == tls::TLSOPT_NONE)
8926         {
8927           // Relocate the field with the offset of the GOT entry for
8928           // the module index.
8929           unsigned int got_offset;
8930           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8931                         - target->got_size());
8932           Arm_address got_entry =
8933             target->got_plt_section()->address() + got_offset;
8934
8935           // Relocate the field with the PC relative offset of the pair of
8936           // GOT entries.
8937           RelocFuncs::pcrel32(view, got_entry, address);
8938           return ArmRelocFuncs::STATUS_OKAY;
8939         }
8940       break;
8941
8942     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8943       RelocFuncs::rel32(view, value);
8944       return ArmRelocFuncs::STATUS_OKAY;
8945
8946     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8947       if (optimized_type == tls::TLSOPT_NONE)
8948         {
8949           // Relocate the field with the offset of the GOT entry for
8950           // the tp-relative offset of the symbol.
8951           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8952           unsigned int got_offset;
8953           if (gsym != NULL)
8954             {
8955               gold_assert(gsym->has_got_offset(got_type));
8956               got_offset = gsym->got_offset(got_type);
8957             }
8958           else
8959             {
8960               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8961               gold_assert(object->local_has_got_offset(r_sym, got_type));
8962               got_offset = object->local_got_offset(r_sym, got_type);
8963             }
8964
8965           // All GOT offsets are relative to the end of the GOT.
8966           got_offset -= target->got_size();
8967
8968           Arm_address got_entry =
8969             target->got_plt_section()->address() + got_offset;
8970
8971           // Relocate the field with the PC relative offset of the GOT entry.
8972           RelocFuncs::pcrel32(view, got_entry, address);
8973           return ArmRelocFuncs::STATUS_OKAY;
8974         }
8975       break;
8976
8977     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8978       // If we're creating a shared library, a dynamic relocation will
8979       // have been created for this location, so do not apply it now.
8980       if (!parameters->options().shared())
8981         {
8982           gold_assert(tls_segment != NULL);
8983
8984           // $tp points to the TCB, which is followed by the TLS, so we
8985           // need to add TCB size to the offset.
8986           Arm_address aligned_tcb_size =
8987             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8988           RelocFuncs::rel32(view, value + aligned_tcb_size);
8989
8990         }
8991       return ArmRelocFuncs::STATUS_OKAY;
8992     
8993     default:
8994       gold_unreachable();
8995     }
8996
8997   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8998                          _("unsupported reloc %u"),
8999                          r_type);
9000   return ArmRelocFuncs::STATUS_BAD_RELOC;
9001 }
9002
9003 // Relocate section data.
9004
9005 template<bool big_endian>
9006 void
9007 Target_arm<big_endian>::relocate_section(
9008     const Relocate_info<32, big_endian>* relinfo,
9009     unsigned int sh_type,
9010     const unsigned char* prelocs,
9011     size_t reloc_count,
9012     Output_section* output_section,
9013     bool needs_special_offset_handling,
9014     unsigned char* view,
9015     Arm_address address,
9016     section_size_type view_size,
9017     const Reloc_symbol_changes* reloc_symbol_changes)
9018 {
9019   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9020   gold_assert(sh_type == elfcpp::SHT_REL);
9021
9022   // See if we are relocating a relaxed input section.  If so, the view
9023   // covers the whole output section and we need to adjust accordingly.
9024   if (needs_special_offset_handling)
9025     {
9026       const Output_relaxed_input_section* poris =
9027         output_section->find_relaxed_input_section(relinfo->object,
9028                                                    relinfo->data_shndx);
9029       if (poris != NULL)
9030         {
9031           Arm_address section_address = poris->address();
9032           section_size_type section_size = poris->data_size();
9033
9034           gold_assert((section_address >= address)
9035                       && ((section_address + section_size)
9036                           <= (address + view_size)));
9037
9038           off_t offset = section_address - address;
9039           view += offset;
9040           address += offset;
9041           view_size = section_size;
9042         }
9043     }
9044
9045   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9046                          Arm_relocate>(
9047     relinfo,
9048     this,
9049     prelocs,
9050     reloc_count,
9051     output_section,
9052     needs_special_offset_handling,
9053     view,
9054     address,
9055     view_size,
9056     reloc_symbol_changes);
9057 }
9058
9059 // Return the size of a relocation while scanning during a relocatable
9060 // link.
9061
9062 template<bool big_endian>
9063 unsigned int
9064 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9065     unsigned int r_type,
9066     Relobj* object)
9067 {
9068   r_type = get_real_reloc_type(r_type);
9069   const Arm_reloc_property* arp =
9070       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9071   if (arp != NULL)
9072     return arp->size();
9073   else
9074     {
9075       std::string reloc_name =
9076         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9077       gold_error(_("%s: unexpected %s in object file"),
9078                  object->name().c_str(), reloc_name.c_str());
9079       return 0;
9080     }
9081 }
9082
9083 // Scan the relocs during a relocatable link.
9084
9085 template<bool big_endian>
9086 void
9087 Target_arm<big_endian>::scan_relocatable_relocs(
9088     Symbol_table* symtab,
9089     Layout* layout,
9090     Sized_relobj<32, big_endian>* object,
9091     unsigned int data_shndx,
9092     unsigned int sh_type,
9093     const unsigned char* prelocs,
9094     size_t reloc_count,
9095     Output_section* output_section,
9096     bool needs_special_offset_handling,
9097     size_t local_symbol_count,
9098     const unsigned char* plocal_symbols,
9099     Relocatable_relocs* rr)
9100 {
9101   gold_assert(sh_type == elfcpp::SHT_REL);
9102
9103   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9104     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9105
9106   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9107       Scan_relocatable_relocs>(
9108     symtab,
9109     layout,
9110     object,
9111     data_shndx,
9112     prelocs,
9113     reloc_count,
9114     output_section,
9115     needs_special_offset_handling,
9116     local_symbol_count,
9117     plocal_symbols,
9118     rr);
9119 }
9120
9121 // Relocate a section during a relocatable link.
9122
9123 template<bool big_endian>
9124 void
9125 Target_arm<big_endian>::relocate_for_relocatable(
9126     const Relocate_info<32, big_endian>* relinfo,
9127     unsigned int sh_type,
9128     const unsigned char* prelocs,
9129     size_t reloc_count,
9130     Output_section* output_section,
9131     off_t offset_in_output_section,
9132     const Relocatable_relocs* rr,
9133     unsigned char* view,
9134     Arm_address view_address,
9135     section_size_type view_size,
9136     unsigned char* reloc_view,
9137     section_size_type reloc_view_size)
9138 {
9139   gold_assert(sh_type == elfcpp::SHT_REL);
9140
9141   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9142     relinfo,
9143     prelocs,
9144     reloc_count,
9145     output_section,
9146     offset_in_output_section,
9147     rr,
9148     view,
9149     view_address,
9150     view_size,
9151     reloc_view,
9152     reloc_view_size);
9153 }
9154
9155 // Perform target-specific processing in a relocatable link.  This is
9156 // only used if we use the relocation strategy RELOC_SPECIAL.
9157
9158 template<bool big_endian>
9159 void
9160 Target_arm<big_endian>::relocate_special_relocatable(
9161     const Relocate_info<32, big_endian>* relinfo,
9162     unsigned int sh_type,
9163     const unsigned char* preloc_in,
9164     size_t relnum,
9165     Output_section* output_section,
9166     off_t offset_in_output_section,
9167     unsigned char* view,
9168     elfcpp::Elf_types<32>::Elf_Addr view_address,
9169     section_size_type,
9170     unsigned char* preloc_out)
9171 {
9172   // We can only handle REL type relocation sections.
9173   gold_assert(sh_type == elfcpp::SHT_REL);
9174
9175   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9176   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9177     Reltype_write;
9178   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9179
9180   const Arm_relobj<big_endian>* object =
9181     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9182   const unsigned int local_count = object->local_symbol_count();
9183
9184   Reltype reloc(preloc_in);
9185   Reltype_write reloc_write(preloc_out);
9186
9187   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9188   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9189   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9190
9191   const Arm_reloc_property* arp =
9192     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9193   gold_assert(arp != NULL);
9194
9195   // Get the new symbol index.
9196   // We only use RELOC_SPECIAL strategy in local relocations.
9197   gold_assert(r_sym < local_count);
9198
9199   // We are adjusting a section symbol.  We need to find
9200   // the symbol table index of the section symbol for
9201   // the output section corresponding to input section
9202   // in which this symbol is defined.
9203   bool is_ordinary;
9204   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9205   gold_assert(is_ordinary);
9206   Output_section* os = object->output_section(shndx);
9207   gold_assert(os != NULL);
9208   gold_assert(os->needs_symtab_index());
9209   unsigned int new_symndx = os->symtab_index();
9210
9211   // Get the new offset--the location in the output section where
9212   // this relocation should be applied.
9213
9214   Arm_address offset = reloc.get_r_offset();
9215   Arm_address new_offset;
9216   if (offset_in_output_section != invalid_address)
9217     new_offset = offset + offset_in_output_section;
9218   else
9219     {
9220       section_offset_type sot_offset =
9221           convert_types<section_offset_type, Arm_address>(offset);
9222       section_offset_type new_sot_offset =
9223           output_section->output_offset(object, relinfo->data_shndx,
9224                                         sot_offset);
9225       gold_assert(new_sot_offset != -1);
9226       new_offset = new_sot_offset;
9227     }
9228
9229   // In an object file, r_offset is an offset within the section.
9230   // In an executable or dynamic object, generated by
9231   // --emit-relocs, r_offset is an absolute address.
9232   if (!parameters->options().relocatable())
9233     {
9234       new_offset += view_address;
9235       if (offset_in_output_section != invalid_address)
9236         new_offset -= offset_in_output_section;
9237     }
9238
9239   reloc_write.put_r_offset(new_offset);
9240   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9241
9242   // Handle the reloc addend.
9243   // The relocation uses a section symbol in the input file.
9244   // We are adjusting it to use a section symbol in the output
9245   // file.  The input section symbol refers to some address in
9246   // the input section.  We need the relocation in the output
9247   // file to refer to that same address.  This adjustment to
9248   // the addend is the same calculation we use for a simple
9249   // absolute relocation for the input section symbol.
9250
9251   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9252
9253   // Handle THUMB bit.
9254   Symbol_value<32> symval;
9255   Arm_address thumb_bit =
9256      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9257   if (thumb_bit != 0
9258       && arp->uses_thumb_bit() 
9259       && ((psymval->value(object, 0) & 1) != 0))
9260     {
9261       Arm_address stripped_value =
9262         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9263       symval.set_output_value(stripped_value);
9264       psymval = &symval;
9265     } 
9266
9267   unsigned char* paddend = view + offset;
9268   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9269         Arm_relocate_functions<big_endian>::STATUS_OKAY;
9270   switch (r_type)
9271     {
9272     case elfcpp::R_ARM_ABS8:
9273       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9274                                                               psymval);
9275       break;
9276
9277     case elfcpp::R_ARM_ABS12:
9278       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9279                                                                psymval);
9280       break;
9281
9282     case elfcpp::R_ARM_ABS16:
9283       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9284                                                                psymval);
9285       break;
9286
9287     case elfcpp::R_ARM_THM_ABS5:
9288       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9289                                                                   object,
9290                                                                   psymval);
9291       break;
9292
9293     case elfcpp::R_ARM_MOVW_ABS_NC:
9294     case elfcpp::R_ARM_MOVW_PREL_NC:
9295     case elfcpp::R_ARM_MOVW_BREL_NC:
9296     case elfcpp::R_ARM_MOVW_BREL:
9297       reloc_status = Arm_relocate_functions<big_endian>::movw(
9298           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9299       break;
9300
9301     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9302     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9303     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9304     case elfcpp::R_ARM_THM_MOVW_BREL:
9305       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9306           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9307       break;
9308
9309     case elfcpp::R_ARM_THM_CALL:
9310     case elfcpp::R_ARM_THM_XPC22:
9311     case elfcpp::R_ARM_THM_JUMP24:
9312       reloc_status =
9313         Arm_relocate_functions<big_endian>::thumb_branch_common(
9314             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9315             false);
9316       break;
9317
9318     case elfcpp::R_ARM_PLT32:
9319     case elfcpp::R_ARM_CALL:
9320     case elfcpp::R_ARM_JUMP24:
9321     case elfcpp::R_ARM_XPC25:
9322       reloc_status =
9323         Arm_relocate_functions<big_endian>::arm_branch_common(
9324             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9325             false);
9326       break;
9327
9328     case elfcpp::R_ARM_THM_JUMP19:
9329       reloc_status =
9330         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9331                                                        psymval, 0, thumb_bit);
9332       break;
9333
9334     case elfcpp::R_ARM_THM_JUMP6:
9335       reloc_status =
9336         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9337                                                       0);
9338       break;
9339
9340     case elfcpp::R_ARM_THM_JUMP8:
9341       reloc_status =
9342         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9343                                                       0);
9344       break;
9345
9346     case elfcpp::R_ARM_THM_JUMP11:
9347       reloc_status =
9348         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9349                                                        0);
9350       break;
9351
9352     case elfcpp::R_ARM_PREL31:
9353       reloc_status =
9354         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9355                                                    thumb_bit);
9356       break;
9357
9358     case elfcpp::R_ARM_THM_PC8:
9359       reloc_status =
9360         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9361                                                     0);
9362       break;
9363
9364     case elfcpp::R_ARM_THM_PC12:
9365       reloc_status =
9366         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9367                                                      0);
9368       break;
9369
9370     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9371       reloc_status =
9372         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9373                                                       0, thumb_bit);
9374       break;
9375
9376     // These relocation truncate relocation results so we cannot handle them
9377     // in a relocatable link.
9378     case elfcpp::R_ARM_MOVT_ABS:
9379     case elfcpp::R_ARM_THM_MOVT_ABS:
9380     case elfcpp::R_ARM_MOVT_PREL:
9381     case elfcpp::R_ARM_MOVT_BREL:
9382     case elfcpp::R_ARM_THM_MOVT_PREL:
9383     case elfcpp::R_ARM_THM_MOVT_BREL:
9384     case elfcpp::R_ARM_ALU_PC_G0_NC:
9385     case elfcpp::R_ARM_ALU_PC_G0:
9386     case elfcpp::R_ARM_ALU_PC_G1_NC:
9387     case elfcpp::R_ARM_ALU_PC_G1:
9388     case elfcpp::R_ARM_ALU_PC_G2:
9389     case elfcpp::R_ARM_ALU_SB_G0_NC:
9390     case elfcpp::R_ARM_ALU_SB_G0:
9391     case elfcpp::R_ARM_ALU_SB_G1_NC:
9392     case elfcpp::R_ARM_ALU_SB_G1:
9393     case elfcpp::R_ARM_ALU_SB_G2:
9394     case elfcpp::R_ARM_LDR_PC_G0:
9395     case elfcpp::R_ARM_LDR_PC_G1:
9396     case elfcpp::R_ARM_LDR_PC_G2:
9397     case elfcpp::R_ARM_LDR_SB_G0:
9398     case elfcpp::R_ARM_LDR_SB_G1:
9399     case elfcpp::R_ARM_LDR_SB_G2:
9400     case elfcpp::R_ARM_LDRS_PC_G0:
9401     case elfcpp::R_ARM_LDRS_PC_G1:
9402     case elfcpp::R_ARM_LDRS_PC_G2:
9403     case elfcpp::R_ARM_LDRS_SB_G0:
9404     case elfcpp::R_ARM_LDRS_SB_G1:
9405     case elfcpp::R_ARM_LDRS_SB_G2:
9406     case elfcpp::R_ARM_LDC_PC_G0:
9407     case elfcpp::R_ARM_LDC_PC_G1:
9408     case elfcpp::R_ARM_LDC_PC_G2:
9409     case elfcpp::R_ARM_LDC_SB_G0:
9410     case elfcpp::R_ARM_LDC_SB_G1:
9411     case elfcpp::R_ARM_LDC_SB_G2:
9412       gold_error(_("cannot handle %s in a relocatable link"),
9413                  arp->name().c_str());
9414       break;
9415
9416     default:
9417       gold_unreachable();
9418     }
9419
9420   // Report any errors.
9421   switch (reloc_status)
9422     {
9423     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9424       break;
9425     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9426       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9427                              _("relocation overflow in %s"),
9428                              arp->name().c_str());
9429       break;
9430     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9431       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9432         _("unexpected opcode while processing relocation %s"),
9433         arp->name().c_str());
9434       break;
9435     default:
9436       gold_unreachable();
9437     }
9438 }
9439
9440 // Return the value to use for a dynamic symbol which requires special
9441 // treatment.  This is how we support equality comparisons of function
9442 // pointers across shared library boundaries, as described in the
9443 // processor specific ABI supplement.
9444
9445 template<bool big_endian>
9446 uint64_t
9447 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9448 {
9449   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9450   return this->plt_section()->address() + gsym->plt_offset();
9451 }
9452
9453 // Map platform-specific relocs to real relocs
9454 //
9455 template<bool big_endian>
9456 unsigned int
9457 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
9458 {
9459   switch (r_type)
9460     {
9461     case elfcpp::R_ARM_TARGET1:
9462       // This is either R_ARM_ABS32 or R_ARM_REL32;
9463       return elfcpp::R_ARM_ABS32;
9464
9465     case elfcpp::R_ARM_TARGET2:
9466       // This can be any reloc type but ususally is R_ARM_GOT_PREL
9467       return elfcpp::R_ARM_GOT_PREL;
9468
9469     default:
9470       return r_type;
9471     }
9472 }
9473
9474 // Whether if two EABI versions V1 and V2 are compatible.
9475
9476 template<bool big_endian>
9477 bool
9478 Target_arm<big_endian>::are_eabi_versions_compatible(
9479     elfcpp::Elf_Word v1,
9480     elfcpp::Elf_Word v2)
9481 {
9482   // v4 and v5 are the same spec before and after it was released,
9483   // so allow mixing them.
9484   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9485       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9486       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9487     return true;
9488
9489   return v1 == v2;
9490 }
9491
9492 // Combine FLAGS from an input object called NAME and the processor-specific
9493 // flags in the ELF header of the output.  Much of this is adapted from the
9494 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9495 // in bfd/elf32-arm.c.
9496
9497 template<bool big_endian>
9498 void
9499 Target_arm<big_endian>::merge_processor_specific_flags(
9500     const std::string& name,
9501     elfcpp::Elf_Word flags)
9502 {
9503   if (this->are_processor_specific_flags_set())
9504     {
9505       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9506
9507       // Nothing to merge if flags equal to those in output.
9508       if (flags == out_flags)
9509         return;
9510
9511       // Complain about various flag mismatches.
9512       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9513       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9514       if (!this->are_eabi_versions_compatible(version1, version2)
9515           && parameters->options().warn_mismatch())
9516         gold_error(_("Source object %s has EABI version %d but output has "
9517                      "EABI version %d."),
9518                    name.c_str(),
9519                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9520                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9521     }
9522   else
9523     {
9524       // If the input is the default architecture and had the default
9525       // flags then do not bother setting the flags for the output
9526       // architecture, instead allow future merges to do this.  If no
9527       // future merges ever set these flags then they will retain their
9528       // uninitialised values, which surprise surprise, correspond
9529       // to the default values.
9530       if (flags == 0)
9531         return;
9532
9533       // This is the first time, just copy the flags.
9534       // We only copy the EABI version for now.
9535       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9536     }
9537 }
9538
9539 // Adjust ELF file header.
9540 template<bool big_endian>
9541 void
9542 Target_arm<big_endian>::do_adjust_elf_header(
9543     unsigned char* view,
9544     int len) const
9545 {
9546   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9547
9548   elfcpp::Ehdr<32, big_endian> ehdr(view);
9549   unsigned char e_ident[elfcpp::EI_NIDENT];
9550   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9551
9552   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9553       == elfcpp::EF_ARM_EABI_UNKNOWN)
9554     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9555   else
9556     e_ident[elfcpp::EI_OSABI] = 0;
9557   e_ident[elfcpp::EI_ABIVERSION] = 0;
9558
9559   // FIXME: Do EF_ARM_BE8 adjustment.
9560
9561   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9562   oehdr.put_e_ident(e_ident);
9563 }
9564
9565 // do_make_elf_object to override the same function in the base class.
9566 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9567 // to store ARM specific information.  Hence we need to have our own
9568 // ELF object creation.
9569
9570 template<bool big_endian>
9571 Object*
9572 Target_arm<big_endian>::do_make_elf_object(
9573     const std::string& name,
9574     Input_file* input_file,
9575     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9576 {
9577   int et = ehdr.get_e_type();
9578   if (et == elfcpp::ET_REL)
9579     {
9580       Arm_relobj<big_endian>* obj =
9581         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9582       obj->setup();
9583       return obj;
9584     }
9585   else if (et == elfcpp::ET_DYN)
9586     {
9587       Sized_dynobj<32, big_endian>* obj =
9588         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9589       obj->setup();
9590       return obj;
9591     }
9592   else
9593     {
9594       gold_error(_("%s: unsupported ELF file type %d"),
9595                  name.c_str(), et);
9596       return NULL;
9597     }
9598 }
9599
9600 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9601 // Returns -1 if no architecture could be read.
9602 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9603
9604 template<bool big_endian>
9605 int
9606 Target_arm<big_endian>::get_secondary_compatible_arch(
9607     const Attributes_section_data* pasd)
9608 {
9609   const Object_attribute *known_attributes =
9610     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9611
9612   // Note: the tag and its argument below are uleb128 values, though
9613   // currently-defined values fit in one byte for each.
9614   const std::string& sv =
9615     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9616   if (sv.size() == 2
9617       && sv.data()[0] == elfcpp::Tag_CPU_arch
9618       && (sv.data()[1] & 128) != 128)
9619    return sv.data()[1];
9620
9621   // This tag is "safely ignorable", so don't complain if it looks funny.
9622   return -1;
9623 }
9624
9625 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9626 // The tag is removed if ARCH is -1.
9627 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9628
9629 template<bool big_endian>
9630 void
9631 Target_arm<big_endian>::set_secondary_compatible_arch(
9632     Attributes_section_data* pasd,
9633     int arch)
9634 {
9635   Object_attribute *known_attributes =
9636     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9637
9638   if (arch == -1)
9639     {
9640       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9641       return;
9642     }
9643
9644   // Note: the tag and its argument below are uleb128 values, though
9645   // currently-defined values fit in one byte for each.
9646   char sv[3];
9647   sv[0] = elfcpp::Tag_CPU_arch;
9648   gold_assert(arch != 0);
9649   sv[1] = arch;
9650   sv[2] = '\0';
9651
9652   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9653 }
9654
9655 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9656 // into account.
9657 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9658
9659 template<bool big_endian>
9660 int
9661 Target_arm<big_endian>::tag_cpu_arch_combine(
9662     const char* name,
9663     int oldtag,
9664     int* secondary_compat_out,
9665     int newtag,
9666     int secondary_compat)
9667 {
9668 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9669   static const int v6t2[] =
9670     {
9671       T(V6T2),   // PRE_V4.
9672       T(V6T2),   // V4.
9673       T(V6T2),   // V4T.
9674       T(V6T2),   // V5T.
9675       T(V6T2),   // V5TE.
9676       T(V6T2),   // V5TEJ.
9677       T(V6T2),   // V6.
9678       T(V7),     // V6KZ.
9679       T(V6T2)    // V6T2.
9680     };
9681   static const int v6k[] =
9682     {
9683       T(V6K),    // PRE_V4.
9684       T(V6K),    // V4.
9685       T(V6K),    // V4T.
9686       T(V6K),    // V5T.
9687       T(V6K),    // V5TE.
9688       T(V6K),    // V5TEJ.
9689       T(V6K),    // V6.
9690       T(V6KZ),   // V6KZ.
9691       T(V7),     // V6T2.
9692       T(V6K)     // V6K.
9693     };
9694   static const int v7[] =
9695     {
9696       T(V7),     // PRE_V4.
9697       T(V7),     // V4.
9698       T(V7),     // V4T.
9699       T(V7),     // V5T.
9700       T(V7),     // V5TE.
9701       T(V7),     // V5TEJ.
9702       T(V7),     // V6.
9703       T(V7),     // V6KZ.
9704       T(V7),     // V6T2.
9705       T(V7),     // V6K.
9706       T(V7)      // V7.
9707     };
9708   static const int v6_m[] =
9709     {
9710       -1,        // PRE_V4.
9711       -1,        // V4.
9712       T(V6K),    // V4T.
9713       T(V6K),    // V5T.
9714       T(V6K),    // V5TE.
9715       T(V6K),    // V5TEJ.
9716       T(V6K),    // V6.
9717       T(V6KZ),   // V6KZ.
9718       T(V7),     // V6T2.
9719       T(V6K),    // V6K.
9720       T(V7),     // V7.
9721       T(V6_M)    // V6_M.
9722     };
9723   static const int v6s_m[] =
9724     {
9725       -1,        // PRE_V4.
9726       -1,        // V4.
9727       T(V6K),    // V4T.
9728       T(V6K),    // V5T.
9729       T(V6K),    // V5TE.
9730       T(V6K),    // V5TEJ.
9731       T(V6K),    // V6.
9732       T(V6KZ),   // V6KZ.
9733       T(V7),     // V6T2.
9734       T(V6K),    // V6K.
9735       T(V7),     // V7.
9736       T(V6S_M),  // V6_M.
9737       T(V6S_M)   // V6S_M.
9738     };
9739   static const int v7e_m[] =
9740     {
9741       -1,       // PRE_V4.
9742       -1,       // V4.
9743       T(V7E_M), // V4T.
9744       T(V7E_M), // V5T.
9745       T(V7E_M), // V5TE.
9746       T(V7E_M), // V5TEJ.
9747       T(V7E_M), // V6.
9748       T(V7E_M), // V6KZ.
9749       T(V7E_M), // V6T2.
9750       T(V7E_M), // V6K.
9751       T(V7E_M), // V7.
9752       T(V7E_M), // V6_M.
9753       T(V7E_M), // V6S_M.
9754       T(V7E_M)  // V7E_M.
9755     };
9756   static const int v4t_plus_v6_m[] =
9757     {
9758       -1,               // PRE_V4.
9759       -1,               // V4.
9760       T(V4T),           // V4T.
9761       T(V5T),           // V5T.
9762       T(V5TE),          // V5TE.
9763       T(V5TEJ),         // V5TEJ.
9764       T(V6),            // V6.
9765       T(V6KZ),          // V6KZ.
9766       T(V6T2),          // V6T2.
9767       T(V6K),           // V6K.
9768       T(V7),            // V7.
9769       T(V6_M),          // V6_M.
9770       T(V6S_M),         // V6S_M.
9771       T(V7E_M),         // V7E_M.
9772       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
9773     };
9774   static const int *comb[] =
9775     {
9776       v6t2,
9777       v6k,
9778       v7,
9779       v6_m,
9780       v6s_m,
9781       v7e_m,
9782       // Pseudo-architecture.
9783       v4t_plus_v6_m
9784     };
9785
9786   // Check we've not got a higher architecture than we know about.
9787
9788   if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9789     {
9790       gold_error(_("%s: unknown CPU architecture"), name);
9791       return -1;
9792     }
9793
9794   // Override old tag if we have a Tag_also_compatible_with on the output.
9795
9796   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9797       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9798     oldtag = T(V4T_PLUS_V6_M);
9799
9800   // And override the new tag if we have a Tag_also_compatible_with on the
9801   // input.
9802
9803   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9804       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9805     newtag = T(V4T_PLUS_V6_M);
9806
9807   // Architectures before V6KZ add features monotonically.
9808   int tagh = std::max(oldtag, newtag);
9809   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9810     return tagh;
9811
9812   int tagl = std::min(oldtag, newtag);
9813   int result = comb[tagh - T(V6T2)][tagl];
9814
9815   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9816   // as the canonical version.
9817   if (result == T(V4T_PLUS_V6_M))
9818     {
9819       result = T(V4T);
9820       *secondary_compat_out = T(V6_M);
9821     }
9822   else
9823     *secondary_compat_out = -1;
9824
9825   if (result == -1)
9826     {
9827       gold_error(_("%s: conflicting CPU architectures %d/%d"),
9828                  name, oldtag, newtag);
9829       return -1;
9830     }
9831
9832   return result;
9833 #undef T
9834 }
9835
9836 // Helper to print AEABI enum tag value.
9837
9838 template<bool big_endian>
9839 std::string
9840 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9841 {
9842   static const char *aeabi_enum_names[] =
9843     { "", "variable-size", "32-bit", "" };
9844   const size_t aeabi_enum_names_size =
9845     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9846
9847   if (value < aeabi_enum_names_size)
9848     return std::string(aeabi_enum_names[value]);
9849   else
9850     {
9851       char buffer[100];
9852       sprintf(buffer, "<unknown value %u>", value);
9853       return std::string(buffer);
9854     }
9855 }
9856
9857 // Return the string value to store in TAG_CPU_name.
9858
9859 template<bool big_endian>
9860 std::string
9861 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9862 {
9863   static const char *name_table[] = {
9864     // These aren't real CPU names, but we can't guess
9865     // that from the architecture version alone.
9866    "Pre v4",
9867    "ARM v4",
9868    "ARM v4T",
9869    "ARM v5T",
9870    "ARM v5TE",
9871    "ARM v5TEJ",
9872    "ARM v6",
9873    "ARM v6KZ",
9874    "ARM v6T2",
9875    "ARM v6K",
9876    "ARM v7",
9877    "ARM v6-M",
9878    "ARM v6S-M",
9879    "ARM v7E-M"
9880  };
9881  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9882
9883   if (value < name_table_size)
9884     return std::string(name_table[value]);
9885   else
9886     {
9887       char buffer[100];
9888       sprintf(buffer, "<unknown CPU value %u>", value);
9889       return std::string(buffer);
9890     } 
9891 }
9892
9893 // Merge object attributes from input file called NAME with those of the
9894 // output.  The input object attributes are in the object pointed by PASD.
9895
9896 template<bool big_endian>
9897 void
9898 Target_arm<big_endian>::merge_object_attributes(
9899     const char* name,
9900     const Attributes_section_data* pasd)
9901 {
9902   // Return if there is no attributes section data.
9903   if (pasd == NULL)
9904     return;
9905
9906   // If output has no object attributes, just copy.
9907   const int vendor = Object_attribute::OBJ_ATTR_PROC;
9908   if (this->attributes_section_data_ == NULL)
9909     {
9910       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9911       Object_attribute* out_attr =
9912         this->attributes_section_data_->known_attributes(vendor);
9913
9914       // We do not output objects with Tag_MPextension_use_legacy - we move
9915       //  the attribute's value to Tag_MPextension_use.  */
9916       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
9917         {
9918           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
9919               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
9920                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
9921             {
9922               gold_error(_("%s has both the current and legacy "
9923                            "Tag_MPextension_use attributes"),
9924                          name);
9925             }
9926
9927           out_attr[elfcpp::Tag_MPextension_use] =
9928             out_attr[elfcpp::Tag_MPextension_use_legacy];
9929           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
9930           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
9931         }
9932
9933       return;
9934     }
9935
9936   const Object_attribute* in_attr = pasd->known_attributes(vendor);
9937   Object_attribute* out_attr =
9938     this->attributes_section_data_->known_attributes(vendor);
9939
9940   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
9941   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9942       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9943     {
9944       // Ignore mismatches if the object doesn't use floating point.  */
9945       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9946         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9947             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9948       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9949                && parameters->options().warn_mismatch())
9950         gold_error(_("%s uses VFP register arguments, output does not"),
9951                    name);
9952     }
9953
9954   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9955     {
9956       // Merge this attribute with existing attributes.
9957       switch (i)
9958         {
9959         case elfcpp::Tag_CPU_raw_name:
9960         case elfcpp::Tag_CPU_name:
9961           // These are merged after Tag_CPU_arch.
9962           break;
9963
9964         case elfcpp::Tag_ABI_optimization_goals:
9965         case elfcpp::Tag_ABI_FP_optimization_goals:
9966           // Use the first value seen.
9967           break;
9968
9969         case elfcpp::Tag_CPU_arch:
9970           {
9971             unsigned int saved_out_attr = out_attr->int_value();
9972             // Merge Tag_CPU_arch and Tag_also_compatible_with.
9973             int secondary_compat =
9974               this->get_secondary_compatible_arch(pasd);
9975             int secondary_compat_out =
9976               this->get_secondary_compatible_arch(
9977                   this->attributes_section_data_);
9978             out_attr[i].set_int_value(
9979                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9980                                      &secondary_compat_out,
9981                                      in_attr[i].int_value(),
9982                                      secondary_compat));
9983             this->set_secondary_compatible_arch(this->attributes_section_data_,
9984                                                 secondary_compat_out);
9985
9986             // Merge Tag_CPU_name and Tag_CPU_raw_name.
9987             if (out_attr[i].int_value() == saved_out_attr)
9988               ; // Leave the names alone.
9989             else if (out_attr[i].int_value() == in_attr[i].int_value())
9990               {
9991                 // The output architecture has been changed to match the
9992                 // input architecture.  Use the input names.
9993                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9994                     in_attr[elfcpp::Tag_CPU_name].string_value());
9995                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9996                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9997               }
9998             else
9999               {
10000                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10001                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10002               }
10003
10004             // If we still don't have a value for Tag_CPU_name,
10005             // make one up now.  Tag_CPU_raw_name remains blank.
10006             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10007               {
10008                 const std::string cpu_name =
10009                   this->tag_cpu_name_value(out_attr[i].int_value());
10010                 // FIXME:  If we see an unknown CPU, this will be set
10011                 // to "<unknown CPU n>", where n is the attribute value.
10012                 // This is different from BFD, which leaves the name alone.
10013                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10014               }
10015           }
10016           break;
10017
10018         case elfcpp::Tag_ARM_ISA_use:
10019         case elfcpp::Tag_THUMB_ISA_use:
10020         case elfcpp::Tag_WMMX_arch:
10021         case elfcpp::Tag_Advanced_SIMD_arch:
10022           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10023         case elfcpp::Tag_ABI_FP_rounding:
10024         case elfcpp::Tag_ABI_FP_exceptions:
10025         case elfcpp::Tag_ABI_FP_user_exceptions:
10026         case elfcpp::Tag_ABI_FP_number_model:
10027         case elfcpp::Tag_VFP_HP_extension:
10028         case elfcpp::Tag_CPU_unaligned_access:
10029         case elfcpp::Tag_T2EE_use:
10030         case elfcpp::Tag_Virtualization_use:
10031         case elfcpp::Tag_MPextension_use:
10032           // Use the largest value specified.
10033           if (in_attr[i].int_value() > out_attr[i].int_value())
10034             out_attr[i].set_int_value(in_attr[i].int_value());
10035           break;
10036
10037         case elfcpp::Tag_ABI_align8_preserved:
10038         case elfcpp::Tag_ABI_PCS_RO_data:
10039           // Use the smallest value specified.
10040           if (in_attr[i].int_value() < out_attr[i].int_value())
10041             out_attr[i].set_int_value(in_attr[i].int_value());
10042           break;
10043
10044         case elfcpp::Tag_ABI_align8_needed:
10045           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10046               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10047                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10048                       == 0)))
10049             {
10050               // This error message should be enabled once all non-conformant
10051               // binaries in the toolchain have had the attributes set
10052               // properly.
10053               // gold_error(_("output 8-byte data alignment conflicts with %s"),
10054               //            name);
10055             }
10056           // Fall through.
10057         case elfcpp::Tag_ABI_FP_denormal:
10058         case elfcpp::Tag_ABI_PCS_GOT_use:
10059           {
10060             // These tags have 0 = don't care, 1 = strong requirement,
10061             // 2 = weak requirement.
10062             static const int order_021[3] = {0, 2, 1};
10063
10064             // Use the "greatest" from the sequence 0, 2, 1, or the largest
10065             // value if greater than 2 (for future-proofing).
10066             if ((in_attr[i].int_value() > 2
10067                  && in_attr[i].int_value() > out_attr[i].int_value())
10068                 || (in_attr[i].int_value() <= 2
10069                     && out_attr[i].int_value() <= 2
10070                     && (order_021[in_attr[i].int_value()]
10071                         > order_021[out_attr[i].int_value()])))
10072               out_attr[i].set_int_value(in_attr[i].int_value());
10073           }
10074           break;
10075
10076         case elfcpp::Tag_CPU_arch_profile:
10077           if (out_attr[i].int_value() != in_attr[i].int_value())
10078             {
10079               // 0 will merge with anything.
10080               // 'A' and 'S' merge to 'A'.
10081               // 'R' and 'S' merge to 'R'.
10082               // 'M' and 'A|R|S' is an error.
10083               if (out_attr[i].int_value() == 0
10084                   || (out_attr[i].int_value() == 'S'
10085                       && (in_attr[i].int_value() == 'A'
10086                           || in_attr[i].int_value() == 'R')))
10087                 out_attr[i].set_int_value(in_attr[i].int_value());
10088               else if (in_attr[i].int_value() == 0
10089                        || (in_attr[i].int_value() == 'S'
10090                            && (out_attr[i].int_value() == 'A'
10091                                || out_attr[i].int_value() == 'R')))
10092                 ; // Do nothing.
10093               else if (parameters->options().warn_mismatch())
10094                 {
10095                   gold_error
10096                     (_("conflicting architecture profiles %c/%c"),
10097                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10098                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10099                 }
10100             }
10101           break;
10102         case elfcpp::Tag_VFP_arch:
10103             {
10104               static const struct
10105               {
10106                   int ver;
10107                   int regs;
10108               } vfp_versions[7] =
10109                 {
10110                   {0, 0},
10111                   {1, 16},
10112                   {2, 16},
10113                   {3, 32},
10114                   {3, 16},
10115                   {4, 32},
10116                   {4, 16}
10117                 };
10118
10119               // Values greater than 6 aren't defined, so just pick the
10120               // biggest.
10121               if (in_attr[i].int_value() > 6
10122                   && in_attr[i].int_value() > out_attr[i].int_value())
10123                 {
10124                   *out_attr = *in_attr;
10125                   break;
10126                 }
10127               // The output uses the superset of input features
10128               // (ISA version) and registers.
10129               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10130                                  vfp_versions[out_attr[i].int_value()].ver);
10131               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10132                                   vfp_versions[out_attr[i].int_value()].regs);
10133               // This assumes all possible supersets are also a valid
10134               // options.
10135               int newval;
10136               for (newval = 6; newval > 0; newval--)
10137                 {
10138                   if (regs == vfp_versions[newval].regs
10139                       && ver == vfp_versions[newval].ver)
10140                     break;
10141                 }
10142               out_attr[i].set_int_value(newval);
10143             }
10144           break;
10145         case elfcpp::Tag_PCS_config:
10146           if (out_attr[i].int_value() == 0)
10147             out_attr[i].set_int_value(in_attr[i].int_value());
10148           else if (in_attr[i].int_value() != 0
10149                    && out_attr[i].int_value() != 0
10150                    && parameters->options().warn_mismatch())
10151             {
10152               // It's sometimes ok to mix different configs, so this is only
10153               // a warning.
10154               gold_warning(_("%s: conflicting platform configuration"), name);
10155             }
10156           break;
10157         case elfcpp::Tag_ABI_PCS_R9_use:
10158           if (in_attr[i].int_value() != out_attr[i].int_value()
10159               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10160               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10161               && parameters->options().warn_mismatch())
10162             {
10163               gold_error(_("%s: conflicting use of R9"), name);
10164             }
10165           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10166             out_attr[i].set_int_value(in_attr[i].int_value());
10167           break;
10168         case elfcpp::Tag_ABI_PCS_RW_data:
10169           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10170               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10171                   != elfcpp::AEABI_R9_SB)
10172               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10173                   != elfcpp::AEABI_R9_unused)
10174               && parameters->options().warn_mismatch())
10175             {
10176               gold_error(_("%s: SB relative addressing conflicts with use "
10177                            "of R9"),
10178                            name);
10179             }
10180           // Use the smallest value specified.
10181           if (in_attr[i].int_value() < out_attr[i].int_value())
10182             out_attr[i].set_int_value(in_attr[i].int_value());
10183           break;
10184         case elfcpp::Tag_ABI_PCS_wchar_t:
10185           // FIXME: Make it possible to turn off this warning.
10186           if (out_attr[i].int_value()
10187               && in_attr[i].int_value()
10188               && out_attr[i].int_value() != in_attr[i].int_value()
10189               && parameters->options().warn_mismatch())
10190             {
10191               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10192                              "use %u-byte wchar_t; use of wchar_t values "
10193                              "across objects may fail"),
10194                            name, in_attr[i].int_value(),
10195                            out_attr[i].int_value());
10196             }
10197           else if (in_attr[i].int_value() && !out_attr[i].int_value())
10198             out_attr[i].set_int_value(in_attr[i].int_value());
10199           break;
10200         case elfcpp::Tag_ABI_enum_size:
10201           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10202             {
10203               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10204                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10205                 {
10206                   // The existing object is compatible with anything.
10207                   // Use whatever requirements the new object has.
10208                   out_attr[i].set_int_value(in_attr[i].int_value());
10209                 }
10210               // FIXME: Make it possible to turn off this warning.
10211               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10212                        && out_attr[i].int_value() != in_attr[i].int_value()
10213                        && parameters->options().warn_mismatch())
10214                 {
10215                   unsigned int in_value = in_attr[i].int_value();
10216                   unsigned int out_value = out_attr[i].int_value();
10217                   gold_warning(_("%s uses %s enums yet the output is to use "
10218                                  "%s enums; use of enum values across objects "
10219                                  "may fail"),
10220                                name,
10221                                this->aeabi_enum_name(in_value).c_str(),
10222                                this->aeabi_enum_name(out_value).c_str());
10223                 }
10224             }
10225           break;
10226         case elfcpp::Tag_ABI_VFP_args:
10227           // Aready done.
10228           break;
10229         case elfcpp::Tag_ABI_WMMX_args:
10230           if (in_attr[i].int_value() != out_attr[i].int_value()
10231               && parameters->options().warn_mismatch())
10232             {
10233               gold_error(_("%s uses iWMMXt register arguments, output does "
10234                            "not"),
10235                          name);
10236             }
10237           break;
10238         case Object_attribute::Tag_compatibility:
10239           // Merged in target-independent code.
10240           break;
10241         case elfcpp::Tag_ABI_HardFP_use:
10242           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10243           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10244               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10245             out_attr[i].set_int_value(3);
10246           else if (in_attr[i].int_value() > out_attr[i].int_value())
10247             out_attr[i].set_int_value(in_attr[i].int_value());
10248           break;
10249         case elfcpp::Tag_ABI_FP_16bit_format:
10250           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10251             {
10252               if (in_attr[i].int_value() != out_attr[i].int_value()
10253                   && parameters->options().warn_mismatch())
10254                 gold_error(_("fp16 format mismatch between %s and output"),
10255                            name);
10256             }
10257           if (in_attr[i].int_value() != 0)
10258             out_attr[i].set_int_value(in_attr[i].int_value());
10259           break;
10260
10261         case elfcpp::Tag_DIV_use:
10262           // This tag is set to zero if we can use UDIV and SDIV in Thumb
10263           // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10264           // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10265           // CPU.  We will merge as follows: If the input attribute's value
10266           // is one then the output attribute's value remains unchanged.  If
10267           // the input attribute's value is zero or two then if the output
10268           // attribute's value is one the output value is set to the input
10269           // value, otherwise the output value must be the same as the
10270           // inputs.  */ 
10271           if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) 
10272             { 
10273               if (in_attr[i].int_value() != out_attr[i].int_value())
10274                 {
10275                   gold_error(_("DIV usage mismatch between %s and output"),
10276                              name);
10277                 }
10278             } 
10279
10280           if (in_attr[i].int_value() != 1)
10281             out_attr[i].set_int_value(in_attr[i].int_value()); 
10282           
10283           break;
10284
10285         case elfcpp::Tag_MPextension_use_legacy:
10286           // We don't output objects with Tag_MPextension_use_legacy - we
10287           // move the value to Tag_MPextension_use.
10288           if (in_attr[i].int_value() != 0
10289               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10290             {
10291               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10292                   != in_attr[i].int_value())
10293                 {
10294                   gold_error(_("%s has has both the current and legacy "
10295                                "Tag_MPextension_use attributes"), 
10296                              name);
10297                 }
10298             }
10299
10300           if (in_attr[i].int_value()
10301               > out_attr[elfcpp::Tag_MPextension_use].int_value())
10302             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10303
10304           break;
10305
10306         case elfcpp::Tag_nodefaults:
10307           // This tag is set if it exists, but the value is unused (and is
10308           // typically zero).  We don't actually need to do anything here -
10309           // the merge happens automatically when the type flags are merged
10310           // below.
10311           break;
10312         case elfcpp::Tag_also_compatible_with:
10313           // Already done in Tag_CPU_arch.
10314           break;
10315         case elfcpp::Tag_conformance:
10316           // Keep the attribute if it matches.  Throw it away otherwise.
10317           // No attribute means no claim to conform.
10318           if (in_attr[i].string_value() != out_attr[i].string_value())
10319             out_attr[i].set_string_value("");
10320           break;
10321
10322         default:
10323           {
10324             const char* err_object = NULL;
10325
10326             // The "known_obj_attributes" table does contain some undefined
10327             // attributes.  Ensure that there are unused.
10328             if (out_attr[i].int_value() != 0
10329                 || out_attr[i].string_value() != "")
10330               err_object = "output";
10331             else if (in_attr[i].int_value() != 0
10332                      || in_attr[i].string_value() != "")
10333               err_object = name;
10334
10335             if (err_object != NULL
10336                 && parameters->options().warn_mismatch())
10337               {
10338                 // Attribute numbers >=64 (mod 128) can be safely ignored.
10339                 if ((i & 127) < 64)
10340                   gold_error(_("%s: unknown mandatory EABI object attribute "
10341                                "%d"),
10342                              err_object, i);
10343                 else
10344                   gold_warning(_("%s: unknown EABI object attribute %d"),
10345                                err_object, i);
10346               }
10347
10348             // Only pass on attributes that match in both inputs.
10349             if (!in_attr[i].matches(out_attr[i]))
10350               {
10351                 out_attr[i].set_int_value(0);
10352                 out_attr[i].set_string_value("");
10353               }
10354           }
10355         }
10356
10357       // If out_attr was copied from in_attr then it won't have a type yet.
10358       if (in_attr[i].type() && !out_attr[i].type())
10359         out_attr[i].set_type(in_attr[i].type());
10360     }
10361
10362   // Merge Tag_compatibility attributes and any common GNU ones.
10363   this->attributes_section_data_->merge(name, pasd);
10364
10365   // Check for any attributes not known on ARM.
10366   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10367   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10368   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10369   Other_attributes* out_other_attributes =
10370     this->attributes_section_data_->other_attributes(vendor);
10371   Other_attributes::iterator out_iter = out_other_attributes->begin();
10372
10373   while (in_iter != in_other_attributes->end()
10374          || out_iter != out_other_attributes->end())
10375     {
10376       const char* err_object = NULL;
10377       int err_tag = 0;
10378
10379       // The tags for each list are in numerical order.
10380       // If the tags are equal, then merge.
10381       if (out_iter != out_other_attributes->end()
10382           && (in_iter == in_other_attributes->end()
10383               || in_iter->first > out_iter->first))
10384         {
10385           // This attribute only exists in output.  We can't merge, and we
10386           // don't know what the tag means, so delete it.
10387           err_object = "output";
10388           err_tag = out_iter->first;
10389           int saved_tag = out_iter->first;
10390           delete out_iter->second;
10391           out_other_attributes->erase(out_iter); 
10392           out_iter = out_other_attributes->upper_bound(saved_tag);
10393         }
10394       else if (in_iter != in_other_attributes->end()
10395                && (out_iter != out_other_attributes->end()
10396                    || in_iter->first < out_iter->first))
10397         {
10398           // This attribute only exists in input. We can't merge, and we
10399           // don't know what the tag means, so ignore it.
10400           err_object = name;
10401           err_tag = in_iter->first;
10402           ++in_iter;
10403         }
10404       else // The tags are equal.
10405         {
10406           // As present, all attributes in the list are unknown, and
10407           // therefore can't be merged meaningfully.
10408           err_object = "output";
10409           err_tag = out_iter->first;
10410
10411           //  Only pass on attributes that match in both inputs.
10412           if (!in_iter->second->matches(*(out_iter->second)))
10413             {
10414               // No match.  Delete the attribute.
10415               int saved_tag = out_iter->first;
10416               delete out_iter->second;
10417               out_other_attributes->erase(out_iter);
10418               out_iter = out_other_attributes->upper_bound(saved_tag);
10419             }
10420           else
10421             {
10422               // Matched.  Keep the attribute and move to the next.
10423               ++out_iter;
10424               ++in_iter;
10425             }
10426         }
10427
10428       if (err_object && parameters->options().warn_mismatch())
10429         {
10430           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10431           if ((err_tag & 127) < 64)
10432             {
10433               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10434                          err_object, err_tag);
10435             }
10436           else
10437             {
10438               gold_warning(_("%s: unknown EABI object attribute %d"),
10439                            err_object, err_tag);
10440             }
10441         }
10442     }
10443 }
10444
10445 // Stub-generation methods for Target_arm.
10446
10447 // Make a new Arm_input_section object.
10448
10449 template<bool big_endian>
10450 Arm_input_section<big_endian>*
10451 Target_arm<big_endian>::new_arm_input_section(
10452     Relobj* relobj,
10453     unsigned int shndx)
10454 {
10455   Section_id sid(relobj, shndx);
10456
10457   Arm_input_section<big_endian>* arm_input_section =
10458     new Arm_input_section<big_endian>(relobj, shndx);
10459   arm_input_section->init();
10460
10461   // Register new Arm_input_section in map for look-up.
10462   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10463     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10464
10465   // Make sure that it we have not created another Arm_input_section
10466   // for this input section already.
10467   gold_assert(ins.second);
10468
10469   return arm_input_section; 
10470 }
10471
10472 // Find the Arm_input_section object corresponding to the SHNDX-th input
10473 // section of RELOBJ.
10474
10475 template<bool big_endian>
10476 Arm_input_section<big_endian>*
10477 Target_arm<big_endian>::find_arm_input_section(
10478     Relobj* relobj,
10479     unsigned int shndx) const
10480 {
10481   Section_id sid(relobj, shndx);
10482   typename Arm_input_section_map::const_iterator p =
10483     this->arm_input_section_map_.find(sid);
10484   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10485 }
10486
10487 // Make a new stub table.
10488
10489 template<bool big_endian>
10490 Stub_table<big_endian>*
10491 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10492 {
10493   Stub_table<big_endian>* stub_table =
10494     new Stub_table<big_endian>(owner);
10495   this->stub_tables_.push_back(stub_table);
10496
10497   stub_table->set_address(owner->address() + owner->data_size());
10498   stub_table->set_file_offset(owner->offset() + owner->data_size());
10499   stub_table->finalize_data_size();
10500
10501   return stub_table;
10502 }
10503
10504 // Scan a relocation for stub generation.
10505
10506 template<bool big_endian>
10507 void
10508 Target_arm<big_endian>::scan_reloc_for_stub(
10509     const Relocate_info<32, big_endian>* relinfo,
10510     unsigned int r_type,
10511     const Sized_symbol<32>* gsym,
10512     unsigned int r_sym,
10513     const Symbol_value<32>* psymval,
10514     elfcpp::Elf_types<32>::Elf_Swxword addend,
10515     Arm_address address)
10516 {
10517   typedef typename Target_arm<big_endian>::Relocate Relocate;
10518
10519   const Arm_relobj<big_endian>* arm_relobj =
10520     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10521
10522   bool target_is_thumb;
10523   Symbol_value<32> symval;
10524   if (gsym != NULL)
10525     {
10526       // This is a global symbol.  Determine if we use PLT and if the
10527       // final target is THUMB.
10528       if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
10529         {
10530           // This uses a PLT, change the symbol value.
10531           symval.set_output_value(this->plt_section()->address()
10532                                   + gsym->plt_offset());
10533           psymval = &symval;
10534           target_is_thumb = false;
10535         }
10536       else if (gsym->is_undefined())
10537         // There is no need to generate a stub symbol is undefined.
10538         return;
10539       else
10540         {
10541           target_is_thumb =
10542             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10543              || (gsym->type() == elfcpp::STT_FUNC
10544                  && !gsym->is_undefined()
10545                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10546         }
10547     }
10548   else
10549     {
10550       // This is a local symbol.  Determine if the final target is THUMB.
10551       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10552     }
10553
10554   // Strip LSB if this points to a THUMB target.
10555   const Arm_reloc_property* reloc_property =
10556     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10557   gold_assert(reloc_property != NULL);
10558   if (target_is_thumb
10559       && reloc_property->uses_thumb_bit()
10560       && ((psymval->value(arm_relobj, 0) & 1) != 0))
10561     {
10562       Arm_address stripped_value =
10563         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10564       symval.set_output_value(stripped_value);
10565       psymval = &symval;
10566     } 
10567
10568   // Get the symbol value.
10569   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10570
10571   // Owing to pipelining, the PC relative branches below actually skip
10572   // two instructions when the branch offset is 0.
10573   Arm_address destination;
10574   switch (r_type)
10575     {
10576     case elfcpp::R_ARM_CALL:
10577     case elfcpp::R_ARM_JUMP24:
10578     case elfcpp::R_ARM_PLT32:
10579       // ARM branches.
10580       destination = value + addend + 8;
10581       break;
10582     case elfcpp::R_ARM_THM_CALL:
10583     case elfcpp::R_ARM_THM_XPC22:
10584     case elfcpp::R_ARM_THM_JUMP24:
10585     case elfcpp::R_ARM_THM_JUMP19:
10586       // THUMB branches.
10587       destination = value + addend + 4;
10588       break;
10589     default:
10590       gold_unreachable();
10591     }
10592
10593   Reloc_stub* stub = NULL;
10594   Stub_type stub_type =
10595     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10596                                     target_is_thumb);
10597   if (stub_type != arm_stub_none)
10598     {
10599       // Try looking up an existing stub from a stub table.
10600       Stub_table<big_endian>* stub_table = 
10601         arm_relobj->stub_table(relinfo->data_shndx);
10602       gold_assert(stub_table != NULL);
10603    
10604       // Locate stub by destination.
10605       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10606
10607       // Create a stub if there is not one already
10608       stub = stub_table->find_reloc_stub(stub_key);
10609       if (stub == NULL)
10610         {
10611           // create a new stub and add it to stub table.
10612           stub = this->stub_factory().make_reloc_stub(stub_type);
10613           stub_table->add_reloc_stub(stub, stub_key);
10614         }
10615
10616       // Record the destination address.
10617       stub->set_destination_address(destination
10618                                     | (target_is_thumb ? 1 : 0));
10619     }
10620
10621   // For Cortex-A8, we need to record a relocation at 4K page boundary.
10622   if (this->fix_cortex_a8_
10623       && (r_type == elfcpp::R_ARM_THM_JUMP24
10624           || r_type == elfcpp::R_ARM_THM_JUMP19
10625           || r_type == elfcpp::R_ARM_THM_CALL
10626           || r_type == elfcpp::R_ARM_THM_XPC22)
10627       && (address & 0xfffU) == 0xffeU)
10628     {
10629       // Found a candidate.  Note we haven't checked the destination is
10630       // within 4K here: if we do so (and don't create a record) we can't
10631       // tell that a branch should have been relocated when scanning later.
10632       this->cortex_a8_relocs_info_[address] =
10633         new Cortex_a8_reloc(stub, r_type,
10634                             destination | (target_is_thumb ? 1 : 0));
10635     }
10636 }
10637
10638 // This function scans a relocation sections for stub generation.
10639 // The template parameter Relocate must be a class type which provides
10640 // a single function, relocate(), which implements the machine
10641 // specific part of a relocation.
10642
10643 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
10644 // SHT_REL or SHT_RELA.
10645
10646 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
10647 // of relocs.  OUTPUT_SECTION is the output section.
10648 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10649 // mapped to output offsets.
10650
10651 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10652 // VIEW_SIZE is the size.  These refer to the input section, unless
10653 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10654 // the output section.
10655
10656 template<bool big_endian>
10657 template<int sh_type>
10658 void inline
10659 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10660     const Relocate_info<32, big_endian>* relinfo,
10661     const unsigned char* prelocs,
10662     size_t reloc_count,
10663     Output_section* output_section,
10664     bool needs_special_offset_handling,
10665     const unsigned char* view,
10666     elfcpp::Elf_types<32>::Elf_Addr view_address,
10667     section_size_type)
10668 {
10669   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10670   const int reloc_size =
10671     Reloc_types<sh_type, 32, big_endian>::reloc_size;
10672
10673   Arm_relobj<big_endian>* arm_object =
10674     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10675   unsigned int local_count = arm_object->local_symbol_count();
10676
10677   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10678
10679   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10680     {
10681       Reltype reloc(prelocs);
10682
10683       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10684       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10685       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10686
10687       r_type = this->get_real_reloc_type(r_type);
10688
10689       // Only a few relocation types need stubs.
10690       if ((r_type != elfcpp::R_ARM_CALL)
10691          && (r_type != elfcpp::R_ARM_JUMP24)
10692          && (r_type != elfcpp::R_ARM_PLT32)
10693          && (r_type != elfcpp::R_ARM_THM_CALL)
10694          && (r_type != elfcpp::R_ARM_THM_XPC22)
10695          && (r_type != elfcpp::R_ARM_THM_JUMP24)
10696          && (r_type != elfcpp::R_ARM_THM_JUMP19)
10697          && (r_type != elfcpp::R_ARM_V4BX))
10698         continue;
10699
10700       section_offset_type offset =
10701         convert_to_section_size_type(reloc.get_r_offset());
10702
10703       if (needs_special_offset_handling)
10704         {
10705           offset = output_section->output_offset(relinfo->object,
10706                                                  relinfo->data_shndx,
10707                                                  offset);
10708           if (offset == -1)
10709             continue;
10710         }
10711
10712       // Create a v4bx stub if --fix-v4bx-interworking is used.
10713       if (r_type == elfcpp::R_ARM_V4BX)
10714         {
10715           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10716             {
10717               // Get the BX instruction.
10718               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10719               const Valtype* wv =
10720                 reinterpret_cast<const Valtype*>(view + offset);
10721               elfcpp::Elf_types<32>::Elf_Swxword insn =
10722                 elfcpp::Swap<32, big_endian>::readval(wv);
10723               const uint32_t reg = (insn & 0xf);
10724
10725               if (reg < 0xf)
10726                 {
10727                   // Try looking up an existing stub from a stub table.
10728                   Stub_table<big_endian>* stub_table =
10729                     arm_object->stub_table(relinfo->data_shndx);
10730                   gold_assert(stub_table != NULL);
10731
10732                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10733                     {
10734                       // create a new stub and add it to stub table.
10735                       Arm_v4bx_stub* stub =
10736                         this->stub_factory().make_arm_v4bx_stub(reg);
10737                       gold_assert(stub != NULL);
10738                       stub_table->add_arm_v4bx_stub(stub);
10739                     }
10740                 }
10741             }
10742           continue;
10743         }
10744
10745       // Get the addend.
10746       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10747       elfcpp::Elf_types<32>::Elf_Swxword addend =
10748         stub_addend_reader(r_type, view + offset, reloc);
10749
10750       const Sized_symbol<32>* sym;
10751
10752       Symbol_value<32> symval;
10753       const Symbol_value<32> *psymval;
10754       if (r_sym < local_count)
10755         {
10756           sym = NULL;
10757           psymval = arm_object->local_symbol(r_sym);
10758
10759           // If the local symbol belongs to a section we are discarding,
10760           // and that section is a debug section, try to find the
10761           // corresponding kept section and map this symbol to its
10762           // counterpart in the kept section.  The symbol must not 
10763           // correspond to a section we are folding.
10764           bool is_ordinary;
10765           unsigned int shndx = psymval->input_shndx(&is_ordinary);
10766           if (is_ordinary
10767               && shndx != elfcpp::SHN_UNDEF
10768               && !arm_object->is_section_included(shndx) 
10769               && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10770             {
10771               if (comdat_behavior == CB_UNDETERMINED)
10772                 {
10773                   std::string name =
10774                     arm_object->section_name(relinfo->data_shndx);
10775                   comdat_behavior = get_comdat_behavior(name.c_str());
10776                 }
10777               if (comdat_behavior == CB_PRETEND)
10778                 {
10779                   bool found;
10780                   typename elfcpp::Elf_types<32>::Elf_Addr value =
10781                     arm_object->map_to_kept_section(shndx, &found);
10782                   if (found)
10783                     symval.set_output_value(value + psymval->input_value());
10784                   else
10785                     symval.set_output_value(0);
10786                 }
10787               else
10788                 {
10789                   symval.set_output_value(0);
10790                 }
10791               symval.set_no_output_symtab_entry();
10792               psymval = &symval;
10793             }
10794         }
10795       else
10796         {
10797           const Symbol* gsym = arm_object->global_symbol(r_sym);
10798           gold_assert(gsym != NULL);
10799           if (gsym->is_forwarder())
10800             gsym = relinfo->symtab->resolve_forwards(gsym);
10801
10802           sym = static_cast<const Sized_symbol<32>*>(gsym);
10803           if (sym->has_symtab_index())
10804             symval.set_output_symtab_index(sym->symtab_index());
10805           else
10806             symval.set_no_output_symtab_entry();
10807
10808           // We need to compute the would-be final value of this global
10809           // symbol.
10810           const Symbol_table* symtab = relinfo->symtab;
10811           const Sized_symbol<32>* sized_symbol =
10812             symtab->get_sized_symbol<32>(gsym);
10813           Symbol_table::Compute_final_value_status status;
10814           Arm_address value =
10815             symtab->compute_final_value<32>(sized_symbol, &status);
10816
10817           // Skip this if the symbol has not output section.
10818           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10819             continue;
10820
10821           symval.set_output_value(value);
10822           psymval = &symval;
10823         }
10824
10825       // If symbol is a section symbol, we don't know the actual type of
10826       // destination.  Give up.
10827       if (psymval->is_section_symbol())
10828         continue;
10829
10830       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10831                                 addend, view_address + offset);
10832     }
10833 }
10834
10835 // Scan an input section for stub generation.
10836
10837 template<bool big_endian>
10838 void
10839 Target_arm<big_endian>::scan_section_for_stubs(
10840     const Relocate_info<32, big_endian>* relinfo,
10841     unsigned int sh_type,
10842     const unsigned char* prelocs,
10843     size_t reloc_count,
10844     Output_section* output_section,
10845     bool needs_special_offset_handling,
10846     const unsigned char* view,
10847     Arm_address view_address,
10848     section_size_type view_size)
10849 {
10850   if (sh_type == elfcpp::SHT_REL)
10851     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10852         relinfo,
10853         prelocs,
10854         reloc_count,
10855         output_section,
10856         needs_special_offset_handling,
10857         view,
10858         view_address,
10859         view_size);
10860   else if (sh_type == elfcpp::SHT_RELA)
10861     // We do not support RELA type relocations yet.  This is provided for
10862     // completeness.
10863     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10864         relinfo,
10865         prelocs,
10866         reloc_count,
10867         output_section,
10868         needs_special_offset_handling,
10869         view,
10870         view_address,
10871         view_size);
10872   else
10873     gold_unreachable();
10874 }
10875
10876 // Group input sections for stub generation.
10877 //
10878 // We goup input sections in an output sections so that the total size,
10879 // including any padding space due to alignment is smaller than GROUP_SIZE
10880 // unless the only input section in group is bigger than GROUP_SIZE already.
10881 // Then an ARM stub table is created to follow the last input section
10882 // in group.  For each group an ARM stub table is created an is placed
10883 // after the last group.  If STUB_ALWATS_AFTER_BRANCH is false, we further
10884 // extend the group after the stub table.
10885
10886 template<bool big_endian>
10887 void
10888 Target_arm<big_endian>::group_sections(
10889     Layout* layout,
10890     section_size_type group_size,
10891     bool stubs_always_after_branch)
10892 {
10893   // Group input sections and insert stub table
10894   Layout::Section_list section_list;
10895   layout->get_allocated_sections(&section_list);
10896   for (Layout::Section_list::const_iterator p = section_list.begin();
10897        p != section_list.end();
10898        ++p)
10899     {
10900       Arm_output_section<big_endian>* output_section =
10901         Arm_output_section<big_endian>::as_arm_output_section(*p);
10902       output_section->group_sections(group_size, stubs_always_after_branch,
10903                                      this);
10904     }
10905 }
10906
10907 // Relaxation hook.  This is where we do stub generation.
10908
10909 template<bool big_endian>
10910 bool
10911 Target_arm<big_endian>::do_relax(
10912     int pass,
10913     const Input_objects* input_objects,
10914     Symbol_table* symtab,
10915     Layout* layout)
10916 {
10917   // No need to generate stubs if this is a relocatable link.
10918   gold_assert(!parameters->options().relocatable());
10919
10920   // If this is the first pass, we need to group input sections into
10921   // stub groups.
10922   bool done_exidx_fixup = false;
10923   typedef typename Stub_table_list::iterator Stub_table_iterator;
10924   if (pass == 1)
10925     {
10926       // Determine the stub group size.  The group size is the absolute
10927       // value of the parameter --stub-group-size.  If --stub-group-size
10928       // is passed a negative value, we restict stubs to be always after
10929       // the stubbed branches.
10930       int32_t stub_group_size_param =
10931         parameters->options().stub_group_size();
10932       bool stubs_always_after_branch = stub_group_size_param < 0;
10933       section_size_type stub_group_size = abs(stub_group_size_param);
10934
10935       if (stub_group_size == 1)
10936         {
10937           // Default value.
10938           // Thumb branch range is +-4MB has to be used as the default
10939           // maximum size (a given section can contain both ARM and Thumb
10940           // code, so the worst case has to be taken into account).  If we are
10941           // fixing cortex-a8 errata, the branch range has to be even smaller,
10942           // since wide conditional branch has a range of +-1MB only.
10943           //
10944           // This value is 48K less than that, which allows for 4096
10945           // 12-byte stubs.  If we exceed that, then we will fail to link.
10946           // The user will have to relink with an explicit group size
10947           // option.
10948             stub_group_size = 4145152;
10949         }
10950
10951       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10952       // page as the first half of a 32-bit branch straddling two 4K pages.
10953       // This is a crude way of enforcing that.  In addition, long conditional
10954       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
10955       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
10956       // cortex-A8 stubs from long conditional branches.
10957       if (this->fix_cortex_a8_)
10958         {
10959           stubs_always_after_branch = true;
10960           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
10961           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
10962         }
10963
10964       group_sections(layout, stub_group_size, stubs_always_after_branch);
10965      
10966       // Also fix .ARM.exidx section coverage.
10967       Output_section* os = layout->find_output_section(".ARM.exidx");
10968       if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10969         {
10970           Arm_output_section<big_endian>* exidx_output_section =
10971             Arm_output_section<big_endian>::as_arm_output_section(os);
10972           this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10973           done_exidx_fixup = true;
10974         }
10975     }
10976   else
10977     {
10978       // If this is not the first pass, addresses and file offsets have
10979       // been reset at this point, set them here.
10980       for (Stub_table_iterator sp = this->stub_tables_.begin();
10981            sp != this->stub_tables_.end();
10982            ++sp)
10983         {
10984           Arm_input_section<big_endian>* owner = (*sp)->owner();
10985           off_t off = align_address(owner->original_size(),
10986                                     (*sp)->addralign());
10987           (*sp)->set_address_and_file_offset(owner->address() + off,
10988                                              owner->offset() + off);
10989         }
10990     }
10991
10992   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
10993   // beginning of each relaxation pass, just blow away all the stubs.
10994   // Alternatively, we could selectively remove only the stubs and reloc
10995   // information for code sections that have moved since the last pass.
10996   // That would require more book-keeping.
10997   if (this->fix_cortex_a8_)
10998     {
10999       // Clear all Cortex-A8 reloc information.
11000       for (typename Cortex_a8_relocs_info::const_iterator p =
11001              this->cortex_a8_relocs_info_.begin();
11002            p != this->cortex_a8_relocs_info_.end();
11003            ++p)
11004         delete p->second;
11005       this->cortex_a8_relocs_info_.clear();
11006
11007       // Remove all Cortex-A8 stubs.
11008       for (Stub_table_iterator sp = this->stub_tables_.begin();
11009            sp != this->stub_tables_.end();
11010            ++sp)
11011         (*sp)->remove_all_cortex_a8_stubs();
11012     }
11013   
11014   // Scan relocs for relocation stubs
11015   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11016        op != input_objects->relobj_end();
11017        ++op)
11018     {
11019       Arm_relobj<big_endian>* arm_relobj =
11020         Arm_relobj<big_endian>::as_arm_relobj(*op);
11021       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11022     }
11023
11024   // Check all stub tables to see if any of them have their data sizes
11025   // or addresses alignments changed.  These are the only things that
11026   // matter.
11027   bool any_stub_table_changed = false;
11028   Unordered_set<const Output_section*> sections_needing_adjustment;
11029   for (Stub_table_iterator sp = this->stub_tables_.begin();
11030        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11031        ++sp)
11032     {
11033       if ((*sp)->update_data_size_and_addralign())
11034         {
11035           // Update data size of stub table owner.
11036           Arm_input_section<big_endian>* owner = (*sp)->owner();
11037           uint64_t address = owner->address();
11038           off_t offset = owner->offset();
11039           owner->reset_address_and_file_offset();
11040           owner->set_address_and_file_offset(address, offset);
11041
11042           sections_needing_adjustment.insert(owner->output_section());
11043           any_stub_table_changed = true;
11044         }
11045     }
11046
11047   // Output_section_data::output_section() returns a const pointer but we
11048   // need to update output sections, so we record all output sections needing
11049   // update above and scan the sections here to find out what sections need
11050   // to be updated.
11051   for(Layout::Section_list::const_iterator p = layout->section_list().begin();
11052       p != layout->section_list().end();
11053       ++p)
11054     {
11055       if (sections_needing_adjustment.find(*p)
11056           != sections_needing_adjustment.end())
11057         (*p)->set_section_offsets_need_adjustment();
11058     }
11059
11060   // Stop relaxation if no EXIDX fix-up and no stub table change.
11061   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11062
11063   // Finalize the stubs in the last relaxation pass.
11064   if (!continue_relaxation)
11065     {
11066       for (Stub_table_iterator sp = this->stub_tables_.begin();
11067            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11068             ++sp)
11069         (*sp)->finalize_stubs();
11070
11071       // Update output local symbol counts of objects if necessary.
11072       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11073            op != input_objects->relobj_end();
11074            ++op)
11075         {
11076           Arm_relobj<big_endian>* arm_relobj =
11077             Arm_relobj<big_endian>::as_arm_relobj(*op);
11078
11079           // Update output local symbol counts.  We need to discard local
11080           // symbols defined in parts of input sections that are discarded by
11081           // relaxation.
11082           if (arm_relobj->output_local_symbol_count_needs_update())
11083             arm_relobj->update_output_local_symbol_count();
11084         }
11085     }
11086
11087   return continue_relaxation;
11088 }
11089
11090 // Relocate a stub.
11091
11092 template<bool big_endian>
11093 void
11094 Target_arm<big_endian>::relocate_stub(
11095     Stub* stub,
11096     const Relocate_info<32, big_endian>* relinfo,
11097     Output_section* output_section,
11098     unsigned char* view,
11099     Arm_address address,
11100     section_size_type view_size)
11101 {
11102   Relocate relocate;
11103   const Stub_template* stub_template = stub->stub_template();
11104   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11105     {
11106       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11107       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11108
11109       unsigned int r_type = insn->r_type();
11110       section_size_type reloc_offset = stub_template->reloc_offset(i);
11111       section_size_type reloc_size = insn->size();
11112       gold_assert(reloc_offset + reloc_size <= view_size);
11113
11114       // This is the address of the stub destination.
11115       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11116       Symbol_value<32> symval;
11117       symval.set_output_value(target);
11118
11119       // Synthesize a fake reloc just in case.  We don't have a symbol so
11120       // we use 0.
11121       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11122       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11123       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11124       reloc_write.put_r_offset(reloc_offset);
11125       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11126       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11127
11128       relocate.relocate(relinfo, this, output_section,
11129                         this->fake_relnum_for_stubs, rel, r_type,
11130                         NULL, &symval, view + reloc_offset,
11131                         address + reloc_offset, reloc_size);
11132     }
11133 }
11134
11135 // Determine whether an object attribute tag takes an integer, a
11136 // string or both.
11137
11138 template<bool big_endian>
11139 int
11140 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11141 {
11142   if (tag == Object_attribute::Tag_compatibility)
11143     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11144             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11145   else if (tag == elfcpp::Tag_nodefaults)
11146     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11147             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11148   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11149     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11150   else if (tag < 32)
11151     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11152   else
11153     return ((tag & 1) != 0
11154             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11155             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11156 }
11157
11158 // Reorder attributes.
11159 //
11160 // The ABI defines that Tag_conformance should be emitted first, and that
11161 // Tag_nodefaults should be second (if either is defined).  This sets those
11162 // two positions, and bumps up the position of all the remaining tags to
11163 // compensate.
11164
11165 template<bool big_endian>
11166 int
11167 Target_arm<big_endian>::do_attributes_order(int num) const
11168 {
11169   // Reorder the known object attributes in output.  We want to move
11170   // Tag_conformance to position 4 and Tag_conformance to position 5
11171   // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11172   if (num == 4)
11173     return elfcpp::Tag_conformance;
11174   if (num == 5)
11175     return elfcpp::Tag_nodefaults;
11176   if ((num - 2) < elfcpp::Tag_nodefaults)
11177     return num - 2;
11178   if ((num - 1) < elfcpp::Tag_conformance)
11179     return num - 1;
11180   return num;
11181 }
11182
11183 // Scan a span of THUMB code for Cortex-A8 erratum.
11184
11185 template<bool big_endian>
11186 void
11187 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11188     Arm_relobj<big_endian>* arm_relobj,
11189     unsigned int shndx,
11190     section_size_type span_start,
11191     section_size_type span_end,
11192     const unsigned char* view,
11193     Arm_address address)
11194 {
11195   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11196   //
11197   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11198   // The branch target is in the same 4KB region as the
11199   // first half of the branch.
11200   // The instruction before the branch is a 32-bit
11201   // length non-branch instruction.
11202   section_size_type i = span_start;
11203   bool last_was_32bit = false;
11204   bool last_was_branch = false;
11205   while (i < span_end)
11206     {
11207       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11208       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11209       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11210       bool is_blx = false, is_b = false;
11211       bool is_bl = false, is_bcc = false;
11212
11213       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11214       if (insn_32bit)
11215         {
11216           // Load the rest of the insn (in manual-friendly order).
11217           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11218
11219           // Encoding T4: B<c>.W.
11220           is_b = (insn & 0xf800d000U) == 0xf0009000U;
11221           // Encoding T1: BL<c>.W.
11222           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11223           // Encoding T2: BLX<c>.W.
11224           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11225           // Encoding T3: B<c>.W (not permitted in IT block).
11226           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11227                     && (insn & 0x07f00000U) != 0x03800000U);
11228         }
11229
11230       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11231                            
11232       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11233       // page boundary and it follows 32-bit non-branch instruction,
11234       // we need to work around.
11235       if (is_32bit_branch
11236           && ((address + i) & 0xfffU) == 0xffeU
11237           && last_was_32bit
11238           && !last_was_branch)
11239         {
11240           // Check to see if there is a relocation stub for this branch.
11241           bool force_target_arm = false;
11242           bool force_target_thumb = false;
11243           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11244           Cortex_a8_relocs_info::const_iterator p =
11245             this->cortex_a8_relocs_info_.find(address + i);
11246
11247           if (p != this->cortex_a8_relocs_info_.end())
11248             {
11249               cortex_a8_reloc = p->second;
11250               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11251
11252               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11253                   && !target_is_thumb)
11254                 force_target_arm = true;
11255               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11256                        && target_is_thumb)
11257                 force_target_thumb = true;
11258             }
11259
11260           off_t offset;
11261           Stub_type stub_type = arm_stub_none;
11262
11263           // Check if we have an offending branch instruction.
11264           uint16_t upper_insn = (insn >> 16) & 0xffffU;
11265           uint16_t lower_insn = insn & 0xffffU;
11266           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11267
11268           if (cortex_a8_reloc != NULL
11269               && cortex_a8_reloc->reloc_stub() != NULL)
11270             // We've already made a stub for this instruction, e.g.
11271             // it's a long branch or a Thumb->ARM stub.  Assume that
11272             // stub will suffice to work around the A8 erratum (see
11273             // setting of always_after_branch above).
11274             ;
11275           else if (is_bcc)
11276             {
11277               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11278                                                               lower_insn);
11279               stub_type = arm_stub_a8_veneer_b_cond;
11280             }
11281           else if (is_b || is_bl || is_blx)
11282             {
11283               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11284                                                          lower_insn);
11285               if (is_blx)
11286                 offset &= ~3;
11287
11288               stub_type = (is_blx
11289                            ? arm_stub_a8_veneer_blx
11290                            : (is_bl
11291                               ? arm_stub_a8_veneer_bl
11292                               : arm_stub_a8_veneer_b));
11293             }
11294
11295           if (stub_type != arm_stub_none)
11296             {
11297               Arm_address pc_for_insn = address + i + 4;
11298
11299               // The original instruction is a BL, but the target is
11300               // an ARM instruction.  If we were not making a stub,
11301               // the BL would have been converted to a BLX.  Use the
11302               // BLX stub instead in that case.
11303               if (this->may_use_blx() && force_target_arm
11304                   && stub_type == arm_stub_a8_veneer_bl)
11305                 {
11306                   stub_type = arm_stub_a8_veneer_blx;
11307                   is_blx = true;
11308                   is_bl = false;
11309                 }
11310               // Conversely, if the original instruction was
11311               // BLX but the target is Thumb mode, use the BL stub.
11312               else if (force_target_thumb
11313                        && stub_type == arm_stub_a8_veneer_blx)
11314                 {
11315                   stub_type = arm_stub_a8_veneer_bl;
11316                   is_blx = false;
11317                   is_bl = true;
11318                 }
11319
11320               if (is_blx)
11321                 pc_for_insn &= ~3;
11322
11323               // If we found a relocation, use the proper destination,
11324               // not the offset in the (unrelocated) instruction.
11325               // Note this is always done if we switched the stub type above.
11326               if (cortex_a8_reloc != NULL)
11327                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11328
11329               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11330
11331               // Add a new stub if destination address in in the same page.
11332               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11333                 {
11334                   Cortex_a8_stub* stub =
11335                     this->stub_factory_.make_cortex_a8_stub(stub_type,
11336                                                             arm_relobj, shndx,
11337                                                             address + i,
11338                                                             target, insn);
11339                   Stub_table<big_endian>* stub_table =
11340                     arm_relobj->stub_table(shndx);
11341                   gold_assert(stub_table != NULL);
11342                   stub_table->add_cortex_a8_stub(address + i, stub);
11343                 }
11344             }
11345         }
11346
11347       i += insn_32bit ? 4 : 2;
11348       last_was_32bit = insn_32bit;
11349       last_was_branch = is_32bit_branch;
11350     }
11351 }
11352
11353 // Apply the Cortex-A8 workaround.
11354
11355 template<bool big_endian>
11356 void
11357 Target_arm<big_endian>::apply_cortex_a8_workaround(
11358     const Cortex_a8_stub* stub,
11359     Arm_address stub_address,
11360     unsigned char* insn_view,
11361     Arm_address insn_address)
11362 {
11363   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11364   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11365   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11366   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11367   off_t branch_offset = stub_address - (insn_address + 4);
11368
11369   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11370   switch (stub->stub_template()->type())
11371     {
11372     case arm_stub_a8_veneer_b_cond:
11373       // For a conditional branch, we re-write it to be a uncondition
11374       // branch to the stub.  We use the THUMB-2 encoding here.
11375       upper_insn = 0xf000U;
11376       lower_insn = 0xb800U;
11377       // Fall through
11378     case arm_stub_a8_veneer_b:
11379     case arm_stub_a8_veneer_bl:
11380     case arm_stub_a8_veneer_blx:
11381       if ((lower_insn & 0x5000U) == 0x4000U)
11382         // For a BLX instruction, make sure that the relocation is
11383         // rounded up to a word boundary.  This follows the semantics of
11384         // the instruction which specifies that bit 1 of the target
11385         // address will come from bit 1 of the base address.
11386         branch_offset = (branch_offset + 2) & ~3;
11387
11388       // Put BRANCH_OFFSET back into the insn.
11389       gold_assert(!utils::has_overflow<25>(branch_offset));
11390       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11391       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11392       break;
11393
11394     default:
11395       gold_unreachable();
11396     }
11397
11398   // Put the relocated value back in the object file:
11399   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11400   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11401 }
11402
11403 template<bool big_endian>
11404 class Target_selector_arm : public Target_selector
11405 {
11406  public:
11407   Target_selector_arm()
11408     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11409                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11410   { }
11411
11412   Target*
11413   do_instantiate_target()
11414   { return new Target_arm<big_endian>(); }
11415 };
11416
11417 // Fix .ARM.exidx section coverage.
11418
11419 template<bool big_endian>
11420 void
11421 Target_arm<big_endian>::fix_exidx_coverage(
11422     Layout* layout,
11423     Arm_output_section<big_endian>* exidx_section,
11424     Symbol_table* symtab)
11425 {
11426   // We need to look at all the input sections in output in ascending
11427   // order of of output address.  We do that by building a sorted list
11428   // of output sections by addresses.  Then we looks at the output sections
11429   // in order.  The input sections in an output section are already sorted
11430   // by addresses within the output section.
11431
11432   typedef std::set<Output_section*, output_section_address_less_than>
11433       Sorted_output_section_list;
11434   Sorted_output_section_list sorted_output_sections;
11435   Layout::Section_list section_list;
11436   layout->get_allocated_sections(&section_list);
11437   for (Layout::Section_list::const_iterator p = section_list.begin();
11438        p != section_list.end();
11439        ++p)
11440     {
11441       // We only care about output sections that contain executable code.
11442       if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
11443         sorted_output_sections.insert(*p);
11444     }
11445
11446   // Go over the output sections in ascending order of output addresses.
11447   typedef typename Arm_output_section<big_endian>::Text_section_list
11448       Text_section_list;
11449   Text_section_list sorted_text_sections;
11450   for(typename Sorted_output_section_list::iterator p =
11451         sorted_output_sections.begin();
11452       p != sorted_output_sections.end();
11453       ++p)
11454     {
11455       Arm_output_section<big_endian>* arm_output_section =
11456         Arm_output_section<big_endian>::as_arm_output_section(*p);
11457       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11458     } 
11459
11460   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11461                                     merge_exidx_entries());
11462 }
11463
11464 Target_selector_arm<false> target_selector_arm;
11465 Target_selector_arm<true> target_selector_armbe;
11466
11467 } // End anonymous namespace.