1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_; }
193 // Return the instruction sequence type of this.
196 { return this->type_; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_; }
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
275 arm_stub_type_last = arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type, const Insn_template*, size_t);
294 { return this->type_; }
296 // Return an array of instruction templates.
299 { return this->insns_; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_; }
306 // Return size of template in bytes.
309 { return this->size_; }
311 // Return alignment of the stub template.
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian>
451 do_fixed_endian_write(unsigned char*, section_size_type);
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
576 // Functors for STL associative containers.
580 operator()(const Key& k) const
581 { return k.hash_value(); }
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol* symbol;
610 const Relobj* relobj;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
634 return this->destination_address_;
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
755 // Return the associated register.
758 { return this->reg_; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
785 // A template to implement do_write.
786 template<bool big_endian>
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory&
815 static Stub_factory singleton;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
882 { return this->owner_; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
981 // Write out section contents.
983 do_write(Output_file*);
985 // Return the required alignment.
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_; }
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1064 this->do_fixed_endian_write<false>(of);
1068 // Implement do_write for a given endianness.
1069 template<bool big_endian>
1071 do_fixed_endian_write(Output_file*);
1073 // The object containing the section pointed by this.
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1079 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section.
1083 typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1086 // Arm_exidx_merged_section class. This represents an EXIDX input section
1087 // with some of its entries merged.
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1113 // Write merged section into file OF.
1115 do_write(Output_file* of);
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1128 // A class to wrap an ordinary input section containing executable code.
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1139 ~Arm_input_section()
1146 // Whether this is a stub table owner.
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1154 { return this->stub_table_; }
1156 // Set the stub_table.
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1167 // Return the original size of the section.
1169 original_size() const
1170 { return this->original_size_; }
1173 // Write data to output file.
1175 do_write(Output_file*);
1177 // Return required alignment of this.
1179 do_addralign() const
1181 if (this->is_stub_table_owner())
1182 return std::max(this->stub_table_->addralign(),
1183 static_cast<uint64_t>(this->original_addralign_));
1185 return this->original_addralign_;
1188 // Finalize data size.
1190 set_final_data_size();
1192 // Reset address and file offset.
1194 do_reset_address_and_file_offset();
1198 do_output_offset(const Relobj* object, unsigned int shndx,
1199 section_offset_type offset,
1200 section_offset_type* poutput) const
1202 if ((object == this->relobj())
1203 && (shndx == this->shndx())
1206 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1216 // Copying is not allowed.
1217 Arm_input_section(const Arm_input_section&);
1218 Arm_input_section& operator=(const Arm_input_section&);
1220 // Address alignment of the original input section.
1221 uint32_t original_addralign_;
1222 // Section size of the original input section.
1223 uint32_t original_size_;
1225 Stub_table<big_endian>* stub_table_;
1228 // Arm_exidx_fixup class. This is used to define a number of methods
1229 // and keep states for fixing up EXIDX coverage.
1231 class Arm_exidx_fixup
1234 Arm_exidx_fixup(Output_section* exidx_output_section,
1235 bool merge_exidx_entries = true)
1236 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1237 last_inlined_entry_(0), last_input_section_(NULL),
1238 section_offset_map_(NULL), first_output_text_section_(NULL),
1239 merge_exidx_entries_(merge_exidx_entries)
1243 { delete this->section_offset_map_; }
1245 // Process an EXIDX section for entry merging. Return number of bytes to
1246 // be deleted in output. If parts of the input EXIDX section are merged
1247 // a heap allocated Arm_exidx_section_offset_map is store in the located
1248 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1250 template<bool big_endian>
1252 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1253 Arm_exidx_section_offset_map** psection_offset_map);
1255 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1256 // input section, if there is not one already.
1258 add_exidx_cantunwind_as_needed();
1260 // Return the output section for the text section which is linked to the
1261 // first exidx input in output.
1263 first_output_text_section() const
1264 { return this->first_output_text_section_; }
1267 // Copying is not allowed.
1268 Arm_exidx_fixup(const Arm_exidx_fixup&);
1269 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1271 // Type of EXIDX unwind entry.
1276 // EXIDX_CANTUNWIND.
1277 UT_EXIDX_CANTUNWIND,
1284 // Process an EXIDX entry. We only care about the second word of the
1285 // entry. Return true if the entry can be deleted.
1287 process_exidx_entry(uint32_t second_word);
1289 // Update the current section offset map during EXIDX section fix-up.
1290 // If there is no map, create one. INPUT_OFFSET is the offset of a
1291 // reference point, DELETED_BYTES is the number of deleted by in the
1292 // section so far. If DELETE_ENTRY is true, the reference point and
1293 // all offsets after the previous reference point are discarded.
1295 update_offset_map(section_offset_type input_offset,
1296 section_size_type deleted_bytes, bool delete_entry);
1298 // EXIDX output section.
1299 Output_section* exidx_output_section_;
1300 // Unwind type of the last EXIDX entry processed.
1301 Unwind_type last_unwind_type_;
1302 // Last seen inlined EXIDX entry.
1303 uint32_t last_inlined_entry_;
1304 // Last processed EXIDX input section.
1305 const Arm_exidx_input_section* last_input_section_;
1306 // Section offset map created in process_exidx_section.
1307 Arm_exidx_section_offset_map* section_offset_map_;
1308 // Output section for the text section which is linked to the first exidx
1310 Output_section* first_output_text_section_;
1312 bool merge_exidx_entries_;
1315 // Arm output section class. This is defined mainly to add a number of
1316 // stub generation methods.
1318 template<bool big_endian>
1319 class Arm_output_section : public Output_section
1322 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1324 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1325 elfcpp::Elf_Xword flags)
1326 : Output_section(name, type, flags)
1328 if (type == elfcpp::SHT_ARM_EXIDX)
1329 this->set_always_keeps_input_sections();
1332 ~Arm_output_section()
1335 // Group input sections for stub generation.
1337 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1339 // Downcast a base pointer to an Arm_output_section pointer. This is
1340 // not type-safe but we only use Arm_output_section not the base class.
1341 static Arm_output_section<big_endian>*
1342 as_arm_output_section(Output_section* os)
1343 { return static_cast<Arm_output_section<big_endian>*>(os); }
1345 // Append all input text sections in this into LIST.
1347 append_text_sections_to_list(Text_section_list* list);
1349 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1350 // is a list of text input sections sorted in ascending order of their
1351 // output addresses.
1353 fix_exidx_coverage(Layout* layout,
1354 const Text_section_list& sorted_text_section,
1355 Symbol_table* symtab,
1356 bool merge_exidx_entries);
1358 // Link an EXIDX section into its corresponding text section.
1360 set_exidx_section_link();
1364 typedef Output_section::Input_section Input_section;
1365 typedef Output_section::Input_section_list Input_section_list;
1367 // Create a stub group.
1368 void create_stub_group(Input_section_list::const_iterator,
1369 Input_section_list::const_iterator,
1370 Input_section_list::const_iterator,
1371 Target_arm<big_endian>*,
1372 std::vector<Output_relaxed_input_section*>*);
1375 // Arm_exidx_input_section class. This represents an EXIDX input section.
1377 class Arm_exidx_input_section
1380 static const section_offset_type invalid_offset =
1381 static_cast<section_offset_type>(-1);
1383 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1384 unsigned int link, uint32_t size, uint32_t addralign)
1385 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1386 addralign_(addralign), has_errors_(false)
1389 ~Arm_exidx_input_section()
1392 // Accessors: This is a read-only class.
1394 // Return the object containing this EXIDX input section.
1397 { return this->relobj_; }
1399 // Return the section index of this EXIDX input section.
1402 { return this->shndx_; }
1404 // Return the section index of linked text section in the same object.
1407 { return this->link_; }
1409 // Return size of the EXIDX input section.
1412 { return this->size_; }
1414 // Reutnr address alignment of EXIDX input section.
1417 { return this->addralign_; }
1419 // Whether there are any errors in the EXIDX input section.
1422 { return this->has_errors_; }
1424 // Set has-errors flag.
1427 { this->has_errors_ = true; }
1430 // Object containing this.
1432 // Section index of this.
1433 unsigned int shndx_;
1434 // text section linked to this in the same object.
1436 // Size of this. For ARM 32-bit is sufficient.
1438 // Address alignment of this. For ARM 32-bit is sufficient.
1439 uint32_t addralign_;
1440 // Whether this has any errors.
1444 // Arm_relobj class.
1446 template<bool big_endian>
1447 class Arm_relobj : public Sized_relobj<32, big_endian>
1450 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1452 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1453 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1454 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1455 stub_tables_(), local_symbol_is_thumb_function_(),
1456 attributes_section_data_(NULL), mapping_symbols_info_(),
1457 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1458 output_local_symbol_count_needs_update_(false),
1459 merge_flags_and_attributes_(true)
1463 { delete this->attributes_section_data_; }
1465 // Return the stub table of the SHNDX-th section if there is one.
1466 Stub_table<big_endian>*
1467 stub_table(unsigned int shndx) const
1469 gold_assert(shndx < this->stub_tables_.size());
1470 return this->stub_tables_[shndx];
1473 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1475 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1477 gold_assert(shndx < this->stub_tables_.size());
1478 this->stub_tables_[shndx] = stub_table;
1481 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1482 // index. This is only valid after do_count_local_symbol is called.
1484 local_symbol_is_thumb_function(unsigned int r_sym) const
1486 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1487 return this->local_symbol_is_thumb_function_[r_sym];
1490 // Scan all relocation sections for stub generation.
1492 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1495 // Convert regular input section with index SHNDX to a relaxed section.
1497 convert_input_section_to_relaxed_section(unsigned shndx)
1499 // The stubs have relocations and we need to process them after writing
1500 // out the stubs. So relocation now must follow section write.
1501 this->set_section_offset(shndx, -1ULL);
1502 this->set_relocs_must_follow_section_writes();
1505 // Downcast a base pointer to an Arm_relobj pointer. This is
1506 // not type-safe but we only use Arm_relobj not the base class.
1507 static Arm_relobj<big_endian>*
1508 as_arm_relobj(Relobj* relobj)
1509 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1511 // Processor-specific flags in ELF file header. This is valid only after
1514 processor_specific_flags() const
1515 { return this->processor_specific_flags_; }
1517 // Attribute section data This is the contents of the .ARM.attribute section
1519 const Attributes_section_data*
1520 attributes_section_data() const
1521 { return this->attributes_section_data_; }
1523 // Mapping symbol location.
1524 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1526 // Functor for STL container.
1527 struct Mapping_symbol_position_less
1530 operator()(const Mapping_symbol_position& p1,
1531 const Mapping_symbol_position& p2) const
1533 return (p1.first < p2.first
1534 || (p1.first == p2.first && p1.second < p2.second));
1538 // We only care about the first character of a mapping symbol, so
1539 // we only store that instead of the whole symbol name.
1540 typedef std::map<Mapping_symbol_position, char,
1541 Mapping_symbol_position_less> Mapping_symbols_info;
1543 // Whether a section contains any Cortex-A8 workaround.
1545 section_has_cortex_a8_workaround(unsigned int shndx) const
1547 return (this->section_has_cortex_a8_workaround_ != NULL
1548 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1551 // Mark a section that has Cortex-A8 workaround.
1553 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1555 if (this->section_has_cortex_a8_workaround_ == NULL)
1556 this->section_has_cortex_a8_workaround_ =
1557 new std::vector<bool>(this->shnum(), false);
1558 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1561 // Return the EXIDX section of an text section with index SHNDX or NULL
1562 // if the text section has no associated EXIDX section.
1563 const Arm_exidx_input_section*
1564 exidx_input_section_by_link(unsigned int shndx) const
1566 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1567 return ((p != this->exidx_section_map_.end()
1568 && p->second->link() == shndx)
1573 // Return the EXIDX section with index SHNDX or NULL if there is none.
1574 const Arm_exidx_input_section*
1575 exidx_input_section_by_shndx(unsigned shndx) const
1577 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1578 return ((p != this->exidx_section_map_.end()
1579 && p->second->shndx() == shndx)
1584 // Whether output local symbol count needs updating.
1586 output_local_symbol_count_needs_update() const
1587 { return this->output_local_symbol_count_needs_update_; }
1589 // Set output_local_symbol_count_needs_update flag to be true.
1591 set_output_local_symbol_count_needs_update()
1592 { this->output_local_symbol_count_needs_update_ = true; }
1594 // Update output local symbol count at the end of relaxation.
1596 update_output_local_symbol_count();
1598 // Whether we want to merge processor-specific flags and attributes.
1600 merge_flags_and_attributes() const
1601 { return this->merge_flags_and_attributes_; }
1603 // Export list of EXIDX section indices.
1605 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1608 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1609 p != this->exidx_section_map_.end();
1612 if (p->second->shndx() == p->first)
1613 list->push_back(p->first);
1615 // Sort list to make result independent of implementation of map.
1616 std::sort(list->begin(), list->end());
1620 // Post constructor setup.
1624 // Call parent's setup method.
1625 Sized_relobj<32, big_endian>::do_setup();
1627 // Initialize look-up tables.
1628 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1629 this->stub_tables_.swap(empty_stub_table_list);
1632 // Count the local symbols.
1634 do_count_local_symbols(Stringpool_template<char>*,
1635 Stringpool_template<char>*);
1638 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1639 const unsigned char* pshdrs,
1640 typename Sized_relobj<32, big_endian>::Views* pivews);
1642 // Read the symbol information.
1644 do_read_symbols(Read_symbols_data* sd);
1646 // Process relocs for garbage collection.
1648 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1652 // Whether a section needs to be scanned for relocation stubs.
1654 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1655 const Relobj::Output_sections&,
1656 const Symbol_table*, const unsigned char*);
1658 // Whether a section is a scannable text section.
1660 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1661 const Output_section*, const Symbol_table*);
1663 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1665 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1666 unsigned int, Output_section*,
1667 const Symbol_table*);
1669 // Scan a section for the Cortex-A8 erratum.
1671 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1672 unsigned int, Output_section*,
1673 Target_arm<big_endian>*);
1675 // Find the linked text section of an EXIDX section by looking at the
1676 // first reloction of the EXIDX section. PSHDR points to the section
1677 // headers of a relocation section and PSYMS points to the local symbols.
1678 // PSHNDX points to a location storing the text section index if found.
1679 // Return whether we can find the linked section.
1681 find_linked_text_section(const unsigned char* pshdr,
1682 const unsigned char* psyms, unsigned int* pshndx);
1685 // Make a new Arm_exidx_input_section object for EXIDX section with
1686 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1687 // index of the linked text section.
1689 make_exidx_input_section(unsigned int shndx,
1690 const elfcpp::Shdr<32, big_endian>& shdr,
1691 unsigned int text_shndx,
1692 const elfcpp::Shdr<32, big_endian>& text_shdr);
1694 // Return the output address of either a plain input section or a
1695 // relaxed input section. SHNDX is the section index.
1697 simple_input_section_output_address(unsigned int, Output_section*);
1699 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1700 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1703 // List of stub tables.
1704 Stub_table_list stub_tables_;
1705 // Bit vector to tell if a local symbol is a thumb function or not.
1706 // This is only valid after do_count_local_symbol is called.
1707 std::vector<bool> local_symbol_is_thumb_function_;
1708 // processor-specific flags in ELF file header.
1709 elfcpp::Elf_Word processor_specific_flags_;
1710 // Object attributes if there is an .ARM.attributes section or NULL.
1711 Attributes_section_data* attributes_section_data_;
1712 // Mapping symbols information.
1713 Mapping_symbols_info mapping_symbols_info_;
1714 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1715 std::vector<bool>* section_has_cortex_a8_workaround_;
1716 // Map a text section to its associated .ARM.exidx section, if there is one.
1717 Exidx_section_map exidx_section_map_;
1718 // Whether output local symbol count needs updating.
1719 bool output_local_symbol_count_needs_update_;
1720 // Whether we merge processor flags and attributes of this object to
1722 bool merge_flags_and_attributes_;
1725 // Arm_dynobj class.
1727 template<bool big_endian>
1728 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1731 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1732 const elfcpp::Ehdr<32, big_endian>& ehdr)
1733 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1734 processor_specific_flags_(0), attributes_section_data_(NULL)
1738 { delete this->attributes_section_data_; }
1740 // Downcast a base pointer to an Arm_relobj pointer. This is
1741 // not type-safe but we only use Arm_relobj not the base class.
1742 static Arm_dynobj<big_endian>*
1743 as_arm_dynobj(Dynobj* dynobj)
1744 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1746 // Processor-specific flags in ELF file header. This is valid only after
1749 processor_specific_flags() const
1750 { return this->processor_specific_flags_; }
1752 // Attributes section data.
1753 const Attributes_section_data*
1754 attributes_section_data() const
1755 { return this->attributes_section_data_; }
1758 // Read the symbol information.
1760 do_read_symbols(Read_symbols_data* sd);
1763 // processor-specific flags in ELF file header.
1764 elfcpp::Elf_Word processor_specific_flags_;
1765 // Object attributes if there is an .ARM.attributes section or NULL.
1766 Attributes_section_data* attributes_section_data_;
1769 // Functor to read reloc addends during stub generation.
1771 template<int sh_type, bool big_endian>
1772 struct Stub_addend_reader
1774 // Return the addend for a relocation of a particular type. Depending
1775 // on whether this is a REL or RELA relocation, read the addend from a
1776 // view or from a Reloc object.
1777 elfcpp::Elf_types<32>::Elf_Swxword
1779 unsigned int /* r_type */,
1780 const unsigned char* /* view */,
1781 const typename Reloc_types<sh_type,
1782 32, big_endian>::Reloc& /* reloc */) const;
1785 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1787 template<bool big_endian>
1788 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1790 elfcpp::Elf_types<32>::Elf_Swxword
1793 const unsigned char*,
1794 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1797 // Specialized Stub_addend_reader for RELA type relocation sections.
1798 // We currently do not handle RELA type relocation sections but it is trivial
1799 // to implement the addend reader. This is provided for completeness and to
1800 // make it easier to add support for RELA relocation sections in the future.
1802 template<bool big_endian>
1803 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1805 elfcpp::Elf_types<32>::Elf_Swxword
1808 const unsigned char*,
1809 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1810 big_endian>::Reloc& reloc) const
1811 { return reloc.get_r_addend(); }
1814 // Cortex_a8_reloc class. We keep record of relocation that may need
1815 // the Cortex-A8 erratum workaround.
1817 class Cortex_a8_reloc
1820 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1821 Arm_address destination)
1822 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1828 // Accessors: This is a read-only class.
1830 // Return the relocation stub associated with this relocation if there is
1834 { return this->reloc_stub_; }
1836 // Return the relocation type.
1839 { return this->r_type_; }
1841 // Return the destination address of the relocation. LSB stores the THUMB
1845 { return this->destination_; }
1848 // Associated relocation stub if there is one, or NULL.
1849 const Reloc_stub* reloc_stub_;
1851 unsigned int r_type_;
1852 // Destination address of this relocation. LSB is used to distinguish
1854 Arm_address destination_;
1857 // Arm_output_data_got class. We derive this from Output_data_got to add
1858 // extra methods to handle TLS relocations in a static link.
1860 template<bool big_endian>
1861 class Arm_output_data_got : public Output_data_got<32, big_endian>
1864 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1865 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1868 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1869 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1870 // applied in a static link.
1872 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1873 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1875 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1876 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1877 // relocation that needs to be applied in a static link.
1879 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1880 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1882 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1886 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1887 // The first one is initialized to be 1, which is the module index for
1888 // the main executable and the second one 0. A reloc of the type
1889 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1890 // be applied by gold. GSYM is a global symbol.
1892 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1894 // Same as the above but for a local symbol in OBJECT with INDEX.
1896 add_tls_gd32_with_static_reloc(unsigned int got_type,
1897 Sized_relobj<32, big_endian>* object,
1898 unsigned int index);
1901 // Write out the GOT table.
1903 do_write(Output_file*);
1906 // This class represent dynamic relocations that need to be applied by
1907 // gold because we are using TLS relocations in a static link.
1911 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1912 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1913 { this->u_.global.symbol = gsym; }
1915 Static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1917 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1919 this->u_.local.relobj = relobj;
1920 this->u_.local.index = index;
1923 // Return the GOT offset.
1926 { return this->got_offset_; }
1931 { return this->r_type_; }
1933 // Whether the symbol is global or not.
1935 symbol_is_global() const
1936 { return this->symbol_is_global_; }
1938 // For a relocation against a global symbol, the global symbol.
1942 gold_assert(this->symbol_is_global_);
1943 return this->u_.global.symbol;
1946 // For a relocation against a local symbol, the defining object.
1947 Sized_relobj<32, big_endian>*
1950 gold_assert(!this->symbol_is_global_);
1951 return this->u_.local.relobj;
1954 // For a relocation against a local symbol, the local symbol index.
1958 gold_assert(!this->symbol_is_global_);
1959 return this->u_.local.index;
1963 // GOT offset of the entry to which this relocation is applied.
1964 unsigned int got_offset_;
1965 // Type of relocation.
1966 unsigned int r_type_;
1967 // Whether this relocation is against a global symbol.
1968 bool symbol_is_global_;
1969 // A global or local symbol.
1974 // For a global symbol, the symbol itself.
1979 // For a local symbol, the object defining object.
1980 Sized_relobj<32, big_endian>* relobj;
1981 // For a local symbol, the symbol index.
1987 // Symbol table of the output object.
1988 Symbol_table* symbol_table_;
1989 // Layout of the output object.
1991 // Static relocs to be applied to the GOT.
1992 std::vector<Static_reloc> static_relocs_;
1995 // The ARM target has many relocation types with odd-sizes or incontigious
1996 // bits. The default handling of relocatable relocation cannot process these
1997 // relocations. So we have to extend the default code.
1999 template<bool big_endian, int sh_type, typename Classify_reloc>
2000 class Arm_scan_relocatable_relocs :
2001 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2004 // Return the strategy to use for a local symbol which is a section
2005 // symbol, given the relocation type.
2006 inline Relocatable_relocs::Reloc_strategy
2007 local_section_strategy(unsigned int r_type, Relobj*)
2009 if (sh_type == elfcpp::SHT_RELA)
2010 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2013 if (r_type == elfcpp::R_ARM_TARGET1
2014 || r_type == elfcpp::R_ARM_TARGET2)
2016 const Target_arm<big_endian>* arm_target =
2017 Target_arm<big_endian>::default_target();
2018 r_type = arm_target->get_real_reloc_type(r_type);
2023 // Relocations that write nothing. These exclude R_ARM_TARGET1
2024 // and R_ARM_TARGET2.
2025 case elfcpp::R_ARM_NONE:
2026 case elfcpp::R_ARM_V4BX:
2027 case elfcpp::R_ARM_TLS_GOTDESC:
2028 case elfcpp::R_ARM_TLS_CALL:
2029 case elfcpp::R_ARM_TLS_DESCSEQ:
2030 case elfcpp::R_ARM_THM_TLS_CALL:
2031 case elfcpp::R_ARM_GOTRELAX:
2032 case elfcpp::R_ARM_GNU_VTENTRY:
2033 case elfcpp::R_ARM_GNU_VTINHERIT:
2034 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2035 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2036 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2037 // These should have been converted to something else above.
2038 case elfcpp::R_ARM_TARGET1:
2039 case elfcpp::R_ARM_TARGET2:
2041 // Relocations that write full 32 bits.
2042 case elfcpp::R_ARM_ABS32:
2043 case elfcpp::R_ARM_REL32:
2044 case elfcpp::R_ARM_SBREL32:
2045 case elfcpp::R_ARM_GOTOFF32:
2046 case elfcpp::R_ARM_BASE_PREL:
2047 case elfcpp::R_ARM_GOT_BREL:
2048 case elfcpp::R_ARM_BASE_ABS:
2049 case elfcpp::R_ARM_ABS32_NOI:
2050 case elfcpp::R_ARM_REL32_NOI:
2051 case elfcpp::R_ARM_PLT32_ABS:
2052 case elfcpp::R_ARM_GOT_ABS:
2053 case elfcpp::R_ARM_GOT_PREL:
2054 case elfcpp::R_ARM_TLS_GD32:
2055 case elfcpp::R_ARM_TLS_LDM32:
2056 case elfcpp::R_ARM_TLS_LDO32:
2057 case elfcpp::R_ARM_TLS_IE32:
2058 case elfcpp::R_ARM_TLS_LE32:
2059 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2061 // For all other static relocations, return RELOC_SPECIAL.
2062 return Relocatable_relocs::RELOC_SPECIAL;
2068 // Utilities for manipulating integers of up to 32-bits
2072 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2073 // an int32_t. NO_BITS must be between 1 to 32.
2074 template<int no_bits>
2075 static inline int32_t
2076 sign_extend(uint32_t bits)
2078 gold_assert(no_bits >= 0 && no_bits <= 32);
2080 return static_cast<int32_t>(bits);
2081 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2083 uint32_t top_bit = 1U << (no_bits - 1);
2084 int32_t as_signed = static_cast<int32_t>(bits);
2085 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2088 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2089 template<int no_bits>
2091 has_overflow(uint32_t bits)
2093 gold_assert(no_bits >= 0 && no_bits <= 32);
2096 int32_t max = (1 << (no_bits - 1)) - 1;
2097 int32_t min = -(1 << (no_bits - 1));
2098 int32_t as_signed = static_cast<int32_t>(bits);
2099 return as_signed > max || as_signed < min;
2102 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2103 // fits in the given number of bits as either a signed or unsigned value.
2104 // For example, has_signed_unsigned_overflow<8> would check
2105 // -128 <= bits <= 255
2106 template<int no_bits>
2108 has_signed_unsigned_overflow(uint32_t bits)
2110 gold_assert(no_bits >= 2 && no_bits <= 32);
2113 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2114 int32_t min = -(1 << (no_bits - 1));
2115 int32_t as_signed = static_cast<int32_t>(bits);
2116 return as_signed > max || as_signed < min;
2119 // Select bits from A and B using bits in MASK. For each n in [0..31],
2120 // the n-th bit in the result is chosen from the n-th bits of A and B.
2121 // A zero selects A and a one selects B.
2122 static inline uint32_t
2123 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2124 { return (a & ~mask) | (b & mask); }
2127 template<bool big_endian>
2128 class Target_arm : public Sized_target<32, big_endian>
2131 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2134 // When were are relocating a stub, we pass this as the relocation number.
2135 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2138 : Sized_target<32, big_endian>(&arm_info),
2139 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2140 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2141 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2142 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2143 may_use_blx_(false), should_force_pic_veneer_(false),
2144 arm_input_section_map_(), attributes_section_data_(NULL),
2145 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2148 // Virtual function which is set to return true by a target if
2149 // it can use relocation types to determine if a function's
2150 // pointer is taken.
2152 can_check_for_function_pointers() const
2155 // Whether a section called SECTION_NAME may have function pointers to
2156 // sections not eligible for safe ICF folding.
2158 section_may_have_icf_unsafe_pointers(const char* section_name) const
2160 return (!is_prefix_of(".ARM.exidx", section_name)
2161 && !is_prefix_of(".ARM.extab", section_name)
2162 && Target::section_may_have_icf_unsafe_pointers(section_name));
2165 // Whether we can use BLX.
2168 { return this->may_use_blx_; }
2170 // Set use-BLX flag.
2172 set_may_use_blx(bool value)
2173 { this->may_use_blx_ = value; }
2175 // Whether we force PCI branch veneers.
2177 should_force_pic_veneer() const
2178 { return this->should_force_pic_veneer_; }
2180 // Set PIC veneer flag.
2182 set_should_force_pic_veneer(bool value)
2183 { this->should_force_pic_veneer_ = value; }
2185 // Whether we use THUMB-2 instructions.
2187 using_thumb2() const
2189 Object_attribute* attr =
2190 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2191 int arch = attr->int_value();
2192 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2195 // Whether we use THUMB/THUMB-2 instructions only.
2197 using_thumb_only() const
2199 Object_attribute* attr =
2200 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2202 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2203 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2205 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2206 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2208 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2209 return attr->int_value() == 'M';
2212 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2214 may_use_arm_nop() const
2216 Object_attribute* attr =
2217 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2218 int arch = attr->int_value();
2219 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2220 || arch == elfcpp::TAG_CPU_ARCH_V6K
2221 || arch == elfcpp::TAG_CPU_ARCH_V7
2222 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2225 // Whether we have THUMB-2 NOP.W instruction.
2227 may_use_thumb2_nop() const
2229 Object_attribute* attr =
2230 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2231 int arch = attr->int_value();
2232 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2233 || arch == elfcpp::TAG_CPU_ARCH_V7
2234 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2237 // Process the relocations to determine unreferenced sections for
2238 // garbage collection.
2240 gc_process_relocs(Symbol_table* symtab,
2242 Sized_relobj<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2252 // Scan the relocations to look for symbol adjustments.
2254 scan_relocs(Symbol_table* symtab,
2256 Sized_relobj<32, big_endian>* object,
2257 unsigned int data_shndx,
2258 unsigned int sh_type,
2259 const unsigned char* prelocs,
2261 Output_section* output_section,
2262 bool needs_special_offset_handling,
2263 size_t local_symbol_count,
2264 const unsigned char* plocal_symbols);
2266 // Finalize the sections.
2268 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2270 // Return the value to use for a dynamic symbol which requires special
2273 do_dynsym_value(const Symbol*) const;
2275 // Relocate a section.
2277 relocate_section(const Relocate_info<32, big_endian>*,
2278 unsigned int sh_type,
2279 const unsigned char* prelocs,
2281 Output_section* output_section,
2282 bool needs_special_offset_handling,
2283 unsigned char* view,
2284 Arm_address view_address,
2285 section_size_type view_size,
2286 const Reloc_symbol_changes*);
2288 // Scan the relocs during a relocatable link.
2290 scan_relocatable_relocs(Symbol_table* symtab,
2292 Sized_relobj<32, big_endian>* object,
2293 unsigned int data_shndx,
2294 unsigned int sh_type,
2295 const unsigned char* prelocs,
2297 Output_section* output_section,
2298 bool needs_special_offset_handling,
2299 size_t local_symbol_count,
2300 const unsigned char* plocal_symbols,
2301 Relocatable_relocs*);
2303 // Relocate a section during a relocatable link.
2305 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2306 unsigned int sh_type,
2307 const unsigned char* prelocs,
2309 Output_section* output_section,
2310 off_t offset_in_output_section,
2311 const Relocatable_relocs*,
2312 unsigned char* view,
2313 Arm_address view_address,
2314 section_size_type view_size,
2315 unsigned char* reloc_view,
2316 section_size_type reloc_view_size);
2318 // Perform target-specific processing in a relocatable link. This is
2319 // only used if we use the relocation strategy RELOC_SPECIAL.
2321 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2322 unsigned int sh_type,
2323 const unsigned char* preloc_in,
2325 Output_section* output_section,
2326 off_t offset_in_output_section,
2327 unsigned char* view,
2328 typename elfcpp::Elf_types<32>::Elf_Addr
2330 section_size_type view_size,
2331 unsigned char* preloc_out);
2333 // Return whether SYM is defined by the ABI.
2335 do_is_defined_by_abi(Symbol* sym) const
2336 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2338 // Return whether there is a GOT section.
2340 has_got_section() const
2341 { return this->got_ != NULL; }
2343 // Return the size of the GOT section.
2347 gold_assert(this->got_ != NULL);
2348 return this->got_->data_size();
2351 // Return the number of entries in the GOT.
2353 got_entry_count() const
2355 if (!this->has_got_section())
2357 return this->got_size() / 4;
2360 // Return the number of entries in the PLT.
2362 plt_entry_count() const;
2364 // Return the offset of the first non-reserved PLT entry.
2366 first_plt_entry_offset() const;
2368 // Return the size of each PLT entry.
2370 plt_entry_size() const;
2372 // Map platform-specific reloc types
2374 get_real_reloc_type(unsigned int r_type);
2377 // Methods to support stub-generations.
2380 // Return the stub factory
2382 stub_factory() const
2383 { return this->stub_factory_; }
2385 // Make a new Arm_input_section object.
2386 Arm_input_section<big_endian>*
2387 new_arm_input_section(Relobj*, unsigned int);
2389 // Find the Arm_input_section object corresponding to the SHNDX-th input
2390 // section of RELOBJ.
2391 Arm_input_section<big_endian>*
2392 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2394 // Make a new Stub_table
2395 Stub_table<big_endian>*
2396 new_stub_table(Arm_input_section<big_endian>*);
2398 // Scan a section for stub generation.
2400 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2401 const unsigned char*, size_t, Output_section*,
2402 bool, const unsigned char*, Arm_address,
2407 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2408 Output_section*, unsigned char*, Arm_address,
2411 // Get the default ARM target.
2412 static Target_arm<big_endian>*
2415 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2416 && parameters->target().is_big_endian() == big_endian);
2417 return static_cast<Target_arm<big_endian>*>(
2418 parameters->sized_target<32, big_endian>());
2421 // Whether NAME belongs to a mapping symbol.
2423 is_mapping_symbol_name(const char* name)
2427 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2428 && (name[2] == '\0' || name[2] == '.'));
2431 // Whether we work around the Cortex-A8 erratum.
2433 fix_cortex_a8() const
2434 { return this->fix_cortex_a8_; }
2436 // Whether we merge exidx entries in debuginfo.
2438 merge_exidx_entries() const
2439 { return parameters->options().merge_exidx_entries(); }
2441 // Whether we fix R_ARM_V4BX relocation.
2443 // 1 - replace with MOV instruction (armv4 target)
2444 // 2 - make interworking veneer (>= armv4t targets only)
2445 General_options::Fix_v4bx
2447 { return parameters->options().fix_v4bx(); }
2449 // Scan a span of THUMB code section for Cortex-A8 erratum.
2451 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2452 section_size_type, section_size_type,
2453 const unsigned char*, Arm_address);
2455 // Apply Cortex-A8 workaround to a branch.
2457 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2458 unsigned char*, Arm_address);
2461 // Make an ELF object.
2463 do_make_elf_object(const std::string&, Input_file*, off_t,
2464 const elfcpp::Ehdr<32, big_endian>& ehdr);
2467 do_make_elf_object(const std::string&, Input_file*, off_t,
2468 const elfcpp::Ehdr<32, !big_endian>&)
2469 { gold_unreachable(); }
2472 do_make_elf_object(const std::string&, Input_file*, off_t,
2473 const elfcpp::Ehdr<64, false>&)
2474 { gold_unreachable(); }
2477 do_make_elf_object(const std::string&, Input_file*, off_t,
2478 const elfcpp::Ehdr<64, true>&)
2479 { gold_unreachable(); }
2481 // Make an output section.
2483 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2484 elfcpp::Elf_Xword flags)
2485 { return new Arm_output_section<big_endian>(name, type, flags); }
2488 do_adjust_elf_header(unsigned char* view, int len) const;
2490 // We only need to generate stubs, and hence perform relaxation if we are
2491 // not doing relocatable linking.
2493 do_may_relax() const
2494 { return !parameters->options().relocatable(); }
2497 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2499 // Determine whether an object attribute tag takes an integer, a
2502 do_attribute_arg_type(int tag) const;
2504 // Reorder tags during output.
2506 do_attributes_order(int num) const;
2508 // This is called when the target is selected as the default.
2510 do_select_as_default_target()
2512 // No locking is required since there should only be one default target.
2513 // We cannot have both the big-endian and little-endian ARM targets
2515 gold_assert(arm_reloc_property_table == NULL);
2516 arm_reloc_property_table = new Arm_reloc_property_table();
2520 // The class which scans relocations.
2525 : issued_non_pic_error_(false)
2529 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2530 Sized_relobj<32, big_endian>* object,
2531 unsigned int data_shndx,
2532 Output_section* output_section,
2533 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2534 const elfcpp::Sym<32, big_endian>& lsym);
2537 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2538 Sized_relobj<32, big_endian>* object,
2539 unsigned int data_shndx,
2540 Output_section* output_section,
2541 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2545 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2546 Sized_relobj<32, big_endian>* ,
2549 const elfcpp::Rel<32, big_endian>& ,
2551 const elfcpp::Sym<32, big_endian>&);
2554 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2555 Sized_relobj<32, big_endian>* ,
2558 const elfcpp::Rel<32, big_endian>& ,
2559 unsigned int , Symbol*);
2563 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2564 unsigned int r_type);
2567 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2568 unsigned int r_type, Symbol*);
2571 check_non_pic(Relobj*, unsigned int r_type);
2573 // Almost identical to Symbol::needs_plt_entry except that it also
2574 // handles STT_ARM_TFUNC.
2576 symbol_needs_plt_entry(const Symbol* sym)
2578 // An undefined symbol from an executable does not need a PLT entry.
2579 if (sym->is_undefined() && !parameters->options().shared())
2582 return (!parameters->doing_static_link()
2583 && (sym->type() == elfcpp::STT_FUNC
2584 || sym->type() == elfcpp::STT_ARM_TFUNC)
2585 && (sym->is_from_dynobj()
2586 || sym->is_undefined()
2587 || sym->is_preemptible()));
2591 possible_function_pointer_reloc(unsigned int r_type);
2593 // Whether we have issued an error about a non-PIC compilation.
2594 bool issued_non_pic_error_;
2597 // The class which implements relocation.
2607 // Return whether the static relocation needs to be applied.
2609 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2612 Output_section* output_section);
2614 // Do a relocation. Return false if the caller should not issue
2615 // any warnings about this relocation.
2617 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2618 Output_section*, size_t relnum,
2619 const elfcpp::Rel<32, big_endian>&,
2620 unsigned int r_type, const Sized_symbol<32>*,
2621 const Symbol_value<32>*,
2622 unsigned char*, Arm_address,
2625 // Return whether we want to pass flag NON_PIC_REF for this
2626 // reloc. This means the relocation type accesses a symbol not via
2629 reloc_is_non_pic(unsigned int r_type)
2633 // These relocation types reference GOT or PLT entries explicitly.
2634 case elfcpp::R_ARM_GOT_BREL:
2635 case elfcpp::R_ARM_GOT_ABS:
2636 case elfcpp::R_ARM_GOT_PREL:
2637 case elfcpp::R_ARM_GOT_BREL12:
2638 case elfcpp::R_ARM_PLT32_ABS:
2639 case elfcpp::R_ARM_TLS_GD32:
2640 case elfcpp::R_ARM_TLS_LDM32:
2641 case elfcpp::R_ARM_TLS_IE32:
2642 case elfcpp::R_ARM_TLS_IE12GP:
2644 // These relocate types may use PLT entries.
2645 case elfcpp::R_ARM_CALL:
2646 case elfcpp::R_ARM_THM_CALL:
2647 case elfcpp::R_ARM_JUMP24:
2648 case elfcpp::R_ARM_THM_JUMP24:
2649 case elfcpp::R_ARM_THM_JUMP19:
2650 case elfcpp::R_ARM_PLT32:
2651 case elfcpp::R_ARM_THM_XPC22:
2652 case elfcpp::R_ARM_PREL31:
2653 case elfcpp::R_ARM_SBREL31:
2662 // Do a TLS relocation.
2663 inline typename Arm_relocate_functions<big_endian>::Status
2664 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2665 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2666 const Sized_symbol<32>*, const Symbol_value<32>*,
2667 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2672 // A class which returns the size required for a relocation type,
2673 // used while scanning relocs during a relocatable link.
2674 class Relocatable_size_for_reloc
2678 get_size_for_reloc(unsigned int, Relobj*);
2681 // Adjust TLS relocation type based on the options and whether this
2682 // is a local symbol.
2683 static tls::Tls_optimization
2684 optimize_tls_reloc(bool is_final, int r_type);
2686 // Get the GOT section, creating it if necessary.
2687 Arm_output_data_got<big_endian>*
2688 got_section(Symbol_table*, Layout*);
2690 // Get the GOT PLT section.
2692 got_plt_section() const
2694 gold_assert(this->got_plt_ != NULL);
2695 return this->got_plt_;
2698 // Create a PLT entry for a global symbol.
2700 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2702 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2704 define_tls_base_symbol(Symbol_table*, Layout*);
2706 // Create a GOT entry for the TLS module index.
2708 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2709 Sized_relobj<32, big_endian>* object);
2711 // Get the PLT section.
2712 const Output_data_plt_arm<big_endian>*
2715 gold_assert(this->plt_ != NULL);
2719 // Get the dynamic reloc section, creating it if necessary.
2721 rel_dyn_section(Layout*);
2723 // Get the section to use for TLS_DESC relocations.
2725 rel_tls_desc_section(Layout*) const;
2727 // Return true if the symbol may need a COPY relocation.
2728 // References from an executable object to non-function symbols
2729 // defined in a dynamic object may need a COPY relocation.
2731 may_need_copy_reloc(Symbol* gsym)
2733 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2734 && gsym->may_need_copy_reloc());
2737 // Add a potential copy relocation.
2739 copy_reloc(Symbol_table* symtab, Layout* layout,
2740 Sized_relobj<32, big_endian>* object,
2741 unsigned int shndx, Output_section* output_section,
2742 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2744 this->copy_relocs_.copy_reloc(symtab, layout,
2745 symtab->get_sized_symbol<32>(sym),
2746 object, shndx, output_section, reloc,
2747 this->rel_dyn_section(layout));
2750 // Whether two EABI versions are compatible.
2752 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2754 // Merge processor-specific flags from input object and those in the ELF
2755 // header of the output.
2757 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2759 // Get the secondary compatible architecture.
2761 get_secondary_compatible_arch(const Attributes_section_data*);
2763 // Set the secondary compatible architecture.
2765 set_secondary_compatible_arch(Attributes_section_data*, int);
2768 tag_cpu_arch_combine(const char*, int, int*, int, int);
2770 // Helper to print AEABI enum tag value.
2772 aeabi_enum_name(unsigned int);
2774 // Return string value for TAG_CPU_name.
2776 tag_cpu_name_value(unsigned int);
2778 // Merge object attributes from input object and those in the output.
2780 merge_object_attributes(const char*, const Attributes_section_data*);
2782 // Helper to get an AEABI object attribute
2784 get_aeabi_object_attribute(int tag) const
2786 Attributes_section_data* pasd = this->attributes_section_data_;
2787 gold_assert(pasd != NULL);
2788 Object_attribute* attr =
2789 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2790 gold_assert(attr != NULL);
2795 // Methods to support stub-generations.
2798 // Group input sections for stub generation.
2800 group_sections(Layout*, section_size_type, bool);
2802 // Scan a relocation for stub generation.
2804 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2805 const Sized_symbol<32>*, unsigned int,
2806 const Symbol_value<32>*,
2807 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2809 // Scan a relocation section for stub.
2810 template<int sh_type>
2812 scan_reloc_section_for_stubs(
2813 const Relocate_info<32, big_endian>* relinfo,
2814 const unsigned char* prelocs,
2816 Output_section* output_section,
2817 bool needs_special_offset_handling,
2818 const unsigned char* view,
2819 elfcpp::Elf_types<32>::Elf_Addr view_address,
2822 // Fix .ARM.exidx section coverage.
2824 fix_exidx_coverage(Layout*, const Input_objects*,
2825 Arm_output_section<big_endian>*, Symbol_table*);
2827 // Functors for STL set.
2828 struct output_section_address_less_than
2831 operator()(const Output_section* s1, const Output_section* s2) const
2832 { return s1->address() < s2->address(); }
2835 // Information about this specific target which we pass to the
2836 // general Target structure.
2837 static const Target::Target_info arm_info;
2839 // The types of GOT entries needed for this platform.
2840 // These values are exposed to the ABI in an incremental link.
2841 // Do not renumber existing values without changing the version
2842 // number of the .gnu_incremental_inputs section.
2845 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2846 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2847 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2848 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2849 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2852 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2854 // Map input section to Arm_input_section.
2855 typedef Unordered_map<Section_id,
2856 Arm_input_section<big_endian>*,
2858 Arm_input_section_map;
2860 // Map output addresses to relocs for Cortex-A8 erratum.
2861 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2862 Cortex_a8_relocs_info;
2865 Arm_output_data_got<big_endian>* got_;
2867 Output_data_plt_arm<big_endian>* plt_;
2868 // The GOT PLT section.
2869 Output_data_space* got_plt_;
2870 // The dynamic reloc section.
2871 Reloc_section* rel_dyn_;
2872 // Relocs saved to avoid a COPY reloc.
2873 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2874 // Space for variables copied with a COPY reloc.
2875 Output_data_space* dynbss_;
2876 // Offset of the GOT entry for the TLS module index.
2877 unsigned int got_mod_index_offset_;
2878 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2879 bool tls_base_symbol_defined_;
2880 // Vector of Stub_tables created.
2881 Stub_table_list stub_tables_;
2883 const Stub_factory &stub_factory_;
2884 // Whether we can use BLX.
2886 // Whether we force PIC branch veneers.
2887 bool should_force_pic_veneer_;
2888 // Map for locating Arm_input_sections.
2889 Arm_input_section_map arm_input_section_map_;
2890 // Attributes section data in output.
2891 Attributes_section_data* attributes_section_data_;
2892 // Whether we want to fix code for Cortex-A8 erratum.
2893 bool fix_cortex_a8_;
2894 // Map addresses to relocs for Cortex-A8 erratum.
2895 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2898 template<bool big_endian>
2899 const Target::Target_info Target_arm<big_endian>::arm_info =
2902 big_endian, // is_big_endian
2903 elfcpp::EM_ARM, // machine_code
2904 false, // has_make_symbol
2905 false, // has_resolve
2906 false, // has_code_fill
2907 true, // is_default_stack_executable
2909 "/usr/lib/libc.so.1", // dynamic_linker
2910 0x8000, // default_text_segment_address
2911 0x1000, // abi_pagesize (overridable by -z max-page-size)
2912 0x1000, // common_pagesize (overridable by -z common-page-size)
2913 elfcpp::SHN_UNDEF, // small_common_shndx
2914 elfcpp::SHN_UNDEF, // large_common_shndx
2915 0, // small_common_section_flags
2916 0, // large_common_section_flags
2917 ".ARM.attributes", // attributes_section
2918 "aeabi" // attributes_vendor
2921 // Arm relocate functions class
2924 template<bool big_endian>
2925 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2930 STATUS_OKAY, // No error during relocation.
2931 STATUS_OVERFLOW, // Relocation oveflow.
2932 STATUS_BAD_RELOC // Relocation cannot be applied.
2936 typedef Relocate_functions<32, big_endian> Base;
2937 typedef Arm_relocate_functions<big_endian> This;
2939 // Encoding of imm16 argument for movt and movw ARM instructions
2942 // imm16 := imm4 | imm12
2944 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2945 // +-------+---------------+-------+-------+-----------------------+
2946 // | | |imm4 | |imm12 |
2947 // +-------+---------------+-------+-------+-----------------------+
2949 // Extract the relocation addend from VAL based on the ARM
2950 // instruction encoding described above.
2951 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2952 extract_arm_movw_movt_addend(
2953 typename elfcpp::Swap<32, big_endian>::Valtype val)
2955 // According to the Elf ABI for ARM Architecture the immediate
2956 // field is sign-extended to form the addend.
2957 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2960 // Insert X into VAL based on the ARM instruction encoding described
2962 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2963 insert_val_arm_movw_movt(
2964 typename elfcpp::Swap<32, big_endian>::Valtype val,
2965 typename elfcpp::Swap<32, big_endian>::Valtype x)
2969 val |= (x & 0xf000) << 4;
2973 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2976 // imm16 := imm4 | i | imm3 | imm8
2978 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2979 // +---------+-+-----------+-------++-+-----+-------+---------------+
2980 // | |i| |imm4 || |imm3 | |imm8 |
2981 // +---------+-+-----------+-------++-+-----+-------+---------------+
2983 // Extract the relocation addend from VAL based on the Thumb2
2984 // instruction encoding described above.
2985 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2986 extract_thumb_movw_movt_addend(
2987 typename elfcpp::Swap<32, big_endian>::Valtype val)
2989 // According to the Elf ABI for ARM Architecture the immediate
2990 // field is sign-extended to form the addend.
2991 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2992 | ((val >> 15) & 0x0800)
2993 | ((val >> 4) & 0x0700)
2997 // Insert X into VAL based on the Thumb2 instruction encoding
2999 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3000 insert_val_thumb_movw_movt(
3001 typename elfcpp::Swap<32, big_endian>::Valtype val,
3002 typename elfcpp::Swap<32, big_endian>::Valtype x)
3005 val |= (x & 0xf000) << 4;
3006 val |= (x & 0x0800) << 15;
3007 val |= (x & 0x0700) << 4;
3008 val |= (x & 0x00ff);
3012 // Calculate the smallest constant Kn for the specified residual.
3013 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3015 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3021 // Determine the most significant bit in the residual and
3022 // align the resulting value to a 2-bit boundary.
3023 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3025 // The desired shift is now (msb - 6), or zero, whichever
3027 return (((msb - 6) < 0) ? 0 : (msb - 6));
3030 // Calculate the final residual for the specified group index.
3031 // If the passed group index is less than zero, the method will return
3032 // the value of the specified residual without any change.
3033 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3034 static typename elfcpp::Swap<32, big_endian>::Valtype
3035 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3038 for (int n = 0; n <= group; n++)
3040 // Calculate which part of the value to mask.
3041 uint32_t shift = calc_grp_kn(residual);
3042 // Calculate the residual for the next time around.
3043 residual &= ~(residual & (0xff << shift));
3049 // Calculate the value of Gn for the specified group index.
3050 // We return it in the form of an encoded constant-and-rotation.
3051 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3052 static typename elfcpp::Swap<32, big_endian>::Valtype
3053 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3056 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3059 for (int n = 0; n <= group; n++)
3061 // Calculate which part of the value to mask.
3062 shift = calc_grp_kn(residual);
3063 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3064 gn = residual & (0xff << shift);
3065 // Calculate the residual for the next time around.
3068 // Return Gn in the form of an encoded constant-and-rotation.
3069 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3073 // Handle ARM long branches.
3074 static typename This::Status
3075 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3076 unsigned char*, const Sized_symbol<32>*,
3077 const Arm_relobj<big_endian>*, unsigned int,
3078 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3080 // Handle THUMB long branches.
3081 static typename This::Status
3082 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3083 unsigned char*, const Sized_symbol<32>*,
3084 const Arm_relobj<big_endian>*, unsigned int,
3085 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3088 // Return the branch offset of a 32-bit THUMB branch.
3089 static inline int32_t
3090 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3092 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3093 // involving the J1 and J2 bits.
3094 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3095 uint32_t upper = upper_insn & 0x3ffU;
3096 uint32_t lower = lower_insn & 0x7ffU;
3097 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3098 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3099 uint32_t i1 = j1 ^ s ? 0 : 1;
3100 uint32_t i2 = j2 ^ s ? 0 : 1;
3102 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3103 | (upper << 12) | (lower << 1));
3106 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3107 // UPPER_INSN is the original upper instruction of the branch. Caller is
3108 // responsible for overflow checking and BLX offset adjustment.
3109 static inline uint16_t
3110 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3112 uint32_t s = offset < 0 ? 1 : 0;
3113 uint32_t bits = static_cast<uint32_t>(offset);
3114 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3117 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3118 // LOWER_INSN is the original lower instruction of the branch. Caller is
3119 // responsible for overflow checking and BLX offset adjustment.
3120 static inline uint16_t
3121 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3123 uint32_t s = offset < 0 ? 1 : 0;
3124 uint32_t bits = static_cast<uint32_t>(offset);
3125 return ((lower_insn & ~0x2fffU)
3126 | ((((bits >> 23) & 1) ^ !s) << 13)
3127 | ((((bits >> 22) & 1) ^ !s) << 11)
3128 | ((bits >> 1) & 0x7ffU));
3131 // Return the branch offset of a 32-bit THUMB conditional branch.
3132 static inline int32_t
3133 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3135 uint32_t s = (upper_insn & 0x0400U) >> 10;
3136 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3137 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3138 uint32_t lower = (lower_insn & 0x07ffU);
3139 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3141 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3144 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3145 // instruction. UPPER_INSN is the original upper instruction of the branch.
3146 // Caller is responsible for overflow checking.
3147 static inline uint16_t
3148 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3150 uint32_t s = offset < 0 ? 1 : 0;
3151 uint32_t bits = static_cast<uint32_t>(offset);
3152 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3155 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3156 // instruction. LOWER_INSN is the original lower instruction of the branch.
3157 // Caller is reponsible for overflow checking.
3158 static inline uint16_t
3159 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3161 uint32_t bits = static_cast<uint32_t>(offset);
3162 uint32_t j2 = (bits & 0x00080000U) >> 19;
3163 uint32_t j1 = (bits & 0x00040000U) >> 18;
3164 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3166 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3169 // R_ARM_ABS8: S + A
3170 static inline typename This::Status
3171 abs8(unsigned char* view,
3172 const Sized_relobj<32, big_endian>* object,
3173 const Symbol_value<32>* psymval)
3175 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3176 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3177 Valtype* wv = reinterpret_cast<Valtype*>(view);
3178 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3179 Reltype addend = utils::sign_extend<8>(val);
3180 Reltype x = psymval->value(object, addend);
3181 val = utils::bit_select(val, x, 0xffU);
3182 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3184 // R_ARM_ABS8 permits signed or unsigned results.
3185 int signed_x = static_cast<int32_t>(x);
3186 return ((signed_x < -128 || signed_x > 255)
3187 ? This::STATUS_OVERFLOW
3188 : This::STATUS_OKAY);
3191 // R_ARM_THM_ABS5: S + A
3192 static inline typename This::Status
3193 thm_abs5(unsigned char* view,
3194 const Sized_relobj<32, big_endian>* object,
3195 const Symbol_value<32>* psymval)
3197 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3198 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3199 Valtype* wv = reinterpret_cast<Valtype*>(view);
3200 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3201 Reltype addend = (val & 0x7e0U) >> 6;
3202 Reltype x = psymval->value(object, addend);
3203 val = utils::bit_select(val, x << 6, 0x7e0U);
3204 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3206 // R_ARM_ABS16 permits signed or unsigned results.
3207 int signed_x = static_cast<int32_t>(x);
3208 return ((signed_x < -32768 || signed_x > 65535)
3209 ? This::STATUS_OVERFLOW
3210 : This::STATUS_OKAY);
3213 // R_ARM_ABS12: S + A
3214 static inline typename This::Status
3215 abs12(unsigned char* view,
3216 const Sized_relobj<32, big_endian>* object,
3217 const Symbol_value<32>* psymval)
3219 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3220 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3221 Valtype* wv = reinterpret_cast<Valtype*>(view);
3222 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3223 Reltype addend = val & 0x0fffU;
3224 Reltype x = psymval->value(object, addend);
3225 val = utils::bit_select(val, x, 0x0fffU);
3226 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3227 return (utils::has_overflow<12>(x)
3228 ? This::STATUS_OVERFLOW
3229 : This::STATUS_OKAY);
3232 // R_ARM_ABS16: S + A
3233 static inline typename This::Status
3234 abs16(unsigned char* view,
3235 const Sized_relobj<32, big_endian>* object,
3236 const Symbol_value<32>* psymval)
3238 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3239 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240 Valtype* wv = reinterpret_cast<Valtype*>(view);
3241 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3242 Reltype addend = utils::sign_extend<16>(val);
3243 Reltype x = psymval->value(object, addend);
3244 val = utils::bit_select(val, x, 0xffffU);
3245 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3246 return (utils::has_signed_unsigned_overflow<16>(x)
3247 ? This::STATUS_OVERFLOW
3248 : This::STATUS_OKAY);
3251 // R_ARM_ABS32: (S + A) | T
3252 static inline typename This::Status
3253 abs32(unsigned char* view,
3254 const Sized_relobj<32, big_endian>* object,
3255 const Symbol_value<32>* psymval,
3256 Arm_address thumb_bit)
3258 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3259 Valtype* wv = reinterpret_cast<Valtype*>(view);
3260 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3261 Valtype x = psymval->value(object, addend) | thumb_bit;
3262 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3263 return This::STATUS_OKAY;
3266 // R_ARM_REL32: (S + A) | T - P
3267 static inline typename This::Status
3268 rel32(unsigned char* view,
3269 const Sized_relobj<32, big_endian>* object,
3270 const Symbol_value<32>* psymval,
3271 Arm_address address,
3272 Arm_address thumb_bit)
3274 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3275 Valtype* wv = reinterpret_cast<Valtype*>(view);
3276 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3277 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3278 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3279 return This::STATUS_OKAY;
3282 // R_ARM_THM_JUMP24: (S + A) | T - P
3283 static typename This::Status
3284 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3285 const Symbol_value<32>* psymval, Arm_address address,
3286 Arm_address thumb_bit);
3288 // R_ARM_THM_JUMP6: S + A – P
3289 static inline typename This::Status
3290 thm_jump6(unsigned char* view,
3291 const Sized_relobj<32, big_endian>* object,
3292 const Symbol_value<32>* psymval,
3293 Arm_address address)
3295 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3296 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3297 Valtype* wv = reinterpret_cast<Valtype*>(view);
3298 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3299 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3300 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3301 Reltype x = (psymval->value(object, addend) - address);
3302 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3303 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3304 // CZB does only forward jumps.
3305 return ((x > 0x007e)
3306 ? This::STATUS_OVERFLOW
3307 : This::STATUS_OKAY);
3310 // R_ARM_THM_JUMP8: S + A – P
3311 static inline typename This::Status
3312 thm_jump8(unsigned char* view,
3313 const Sized_relobj<32, big_endian>* object,
3314 const Symbol_value<32>* psymval,
3315 Arm_address address)
3317 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3318 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3319 Valtype* wv = reinterpret_cast<Valtype*>(view);
3320 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3321 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3322 Reltype x = (psymval->value(object, addend) - address);
3323 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3324 return (utils::has_overflow<8>(x)
3325 ? This::STATUS_OVERFLOW
3326 : This::STATUS_OKAY);
3329 // R_ARM_THM_JUMP11: S + A – P
3330 static inline typename This::Status
3331 thm_jump11(unsigned char* view,
3332 const Sized_relobj<32, big_endian>* object,
3333 const Symbol_value<32>* psymval,
3334 Arm_address address)
3336 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3337 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3338 Valtype* wv = reinterpret_cast<Valtype*>(view);
3339 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3340 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3341 Reltype x = (psymval->value(object, addend) - address);
3342 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3343 return (utils::has_overflow<11>(x)
3344 ? This::STATUS_OVERFLOW
3345 : This::STATUS_OKAY);
3348 // R_ARM_BASE_PREL: B(S) + A - P
3349 static inline typename This::Status
3350 base_prel(unsigned char* view,
3352 Arm_address address)
3354 Base::rel32(view, origin - address);
3358 // R_ARM_BASE_ABS: B(S) + A
3359 static inline typename This::Status
3360 base_abs(unsigned char* view,
3363 Base::rel32(view, origin);
3367 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3368 static inline typename This::Status
3369 got_brel(unsigned char* view,
3370 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3372 Base::rel32(view, got_offset);
3373 return This::STATUS_OKAY;
3376 // R_ARM_GOT_PREL: GOT(S) + A - P
3377 static inline typename This::Status
3378 got_prel(unsigned char* view,
3379 Arm_address got_entry,
3380 Arm_address address)
3382 Base::rel32(view, got_entry - address);
3383 return This::STATUS_OKAY;
3386 // R_ARM_PREL: (S + A) | T - P
3387 static inline typename This::Status
3388 prel31(unsigned char* view,
3389 const Sized_relobj<32, big_endian>* object,
3390 const Symbol_value<32>* psymval,
3391 Arm_address address,
3392 Arm_address thumb_bit)
3394 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3395 Valtype* wv = reinterpret_cast<Valtype*>(view);
3396 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3397 Valtype addend = utils::sign_extend<31>(val);
3398 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3399 val = utils::bit_select(val, x, 0x7fffffffU);
3400 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3401 return (utils::has_overflow<31>(x) ?
3402 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3405 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3406 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3407 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3408 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3409 static inline typename This::Status
3410 movw(unsigned char* view,
3411 const Sized_relobj<32, big_endian>* object,
3412 const Symbol_value<32>* psymval,
3413 Arm_address relative_address_base,
3414 Arm_address thumb_bit,
3415 bool check_overflow)
3417 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3418 Valtype* wv = reinterpret_cast<Valtype*>(view);
3419 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3420 Valtype addend = This::extract_arm_movw_movt_addend(val);
3421 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3422 - relative_address_base);
3423 val = This::insert_val_arm_movw_movt(val, x);
3424 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3425 return ((check_overflow && utils::has_overflow<16>(x))
3426 ? This::STATUS_OVERFLOW
3427 : This::STATUS_OKAY);
3430 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3431 // R_ARM_MOVT_PREL: S + A - P
3432 // R_ARM_MOVT_BREL: S + A - B(S)
3433 static inline typename This::Status
3434 movt(unsigned char* view,
3435 const Sized_relobj<32, big_endian>* object,
3436 const Symbol_value<32>* psymval,
3437 Arm_address relative_address_base)
3439 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3440 Valtype* wv = reinterpret_cast<Valtype*>(view);
3441 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3442 Valtype addend = This::extract_arm_movw_movt_addend(val);
3443 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3444 val = This::insert_val_arm_movw_movt(val, x);
3445 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3446 // FIXME: IHI0044D says that we should check for overflow.
3447 return This::STATUS_OKAY;
3450 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3451 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3452 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3453 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3454 static inline typename This::Status
3455 thm_movw(unsigned char* view,
3456 const Sized_relobj<32, big_endian>* object,
3457 const Symbol_value<32>* psymval,
3458 Arm_address relative_address_base,
3459 Arm_address thumb_bit,
3460 bool check_overflow)
3462 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3463 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3464 Valtype* wv = reinterpret_cast<Valtype*>(view);
3465 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3466 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3467 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3469 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3470 val = This::insert_val_thumb_movw_movt(val, x);
3471 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3472 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3473 return ((check_overflow && utils::has_overflow<16>(x))
3474 ? This::STATUS_OVERFLOW
3475 : This::STATUS_OKAY);
3478 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3479 // R_ARM_THM_MOVT_PREL: S + A - P
3480 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3481 static inline typename This::Status
3482 thm_movt(unsigned char* view,
3483 const Sized_relobj<32, big_endian>* object,
3484 const Symbol_value<32>* psymval,
3485 Arm_address relative_address_base)
3487 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3488 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3489 Valtype* wv = reinterpret_cast<Valtype*>(view);
3490 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3491 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3492 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3493 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3494 val = This::insert_val_thumb_movw_movt(val, x);
3495 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3496 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3497 return This::STATUS_OKAY;
3500 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3501 static inline typename This::Status
3502 thm_alu11(unsigned char* view,
3503 const Sized_relobj<32, big_endian>* object,
3504 const Symbol_value<32>* psymval,
3505 Arm_address address,
3506 Arm_address thumb_bit)
3508 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3509 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3510 Valtype* wv = reinterpret_cast<Valtype*>(view);
3511 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3512 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3514 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3515 // -----------------------------------------------------------------------
3516 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3517 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3518 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3519 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3520 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3521 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3523 // Determine a sign for the addend.
3524 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3525 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3526 // Thumb2 addend encoding:
3527 // imm12 := i | imm3 | imm8
3528 int32_t addend = (insn & 0xff)
3529 | ((insn & 0x00007000) >> 4)
3530 | ((insn & 0x04000000) >> 15);
3531 // Apply a sign to the added.
3534 int32_t x = (psymval->value(object, addend) | thumb_bit)
3535 - (address & 0xfffffffc);
3536 Reltype val = abs(x);
3537 // Mask out the value and a distinct part of the ADD/SUB opcode
3538 // (bits 7:5 of opword).
3539 insn = (insn & 0xfb0f8f00)
3541 | ((val & 0x700) << 4)
3542 | ((val & 0x800) << 15);
3543 // Set the opcode according to whether the value to go in the
3544 // place is negative.
3548 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3549 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3550 return ((val > 0xfff) ?
3551 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3554 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3555 static inline typename This::Status
3556 thm_pc8(unsigned char* view,
3557 const Sized_relobj<32, big_endian>* object,
3558 const Symbol_value<32>* psymval,
3559 Arm_address address)
3561 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3562 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3563 Valtype* wv = reinterpret_cast<Valtype*>(view);
3564 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3565 Reltype addend = ((insn & 0x00ff) << 2);
3566 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3567 Reltype val = abs(x);
3568 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3570 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3571 return ((val > 0x03fc)
3572 ? This::STATUS_OVERFLOW
3573 : This::STATUS_OKAY);
3576 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3577 static inline typename This::Status
3578 thm_pc12(unsigned char* view,
3579 const Sized_relobj<32, big_endian>* object,
3580 const Symbol_value<32>* psymval,
3581 Arm_address address)
3583 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3584 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3585 Valtype* wv = reinterpret_cast<Valtype*>(view);
3586 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3587 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3588 // Determine a sign for the addend (positive if the U bit is 1).
3589 const int sign = (insn & 0x00800000) ? 1 : -1;
3590 int32_t addend = (insn & 0xfff);
3591 // Apply a sign to the added.
3594 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3595 Reltype val = abs(x);
3596 // Mask out and apply the value and the U bit.
3597 insn = (insn & 0xff7ff000) | (val & 0xfff);
3598 // Set the U bit according to whether the value to go in the
3599 // place is positive.
3603 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3604 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3605 return ((val > 0xfff) ?
3606 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3610 static inline typename This::Status
3611 v4bx(const Relocate_info<32, big_endian>* relinfo,
3612 unsigned char* view,
3613 const Arm_relobj<big_endian>* object,
3614 const Arm_address address,
3615 const bool is_interworking)
3618 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3619 Valtype* wv = reinterpret_cast<Valtype*>(view);
3620 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3622 // Ensure that we have a BX instruction.
3623 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3624 const uint32_t reg = (val & 0xf);
3625 if (is_interworking && reg != 0xf)
3627 Stub_table<big_endian>* stub_table =
3628 object->stub_table(relinfo->data_shndx);
3629 gold_assert(stub_table != NULL);
3631 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3632 gold_assert(stub != NULL);
3634 int32_t veneer_address =
3635 stub_table->address() + stub->offset() - 8 - address;
3636 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3637 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3638 // Replace with a branch to veneer (B <addr>)
3639 val = (val & 0xf0000000) | 0x0a000000
3640 | ((veneer_address >> 2) & 0x00ffffff);
3644 // Preserve Rm (lowest four bits) and the condition code
3645 // (highest four bits). Other bits encode MOV PC,Rm.
3646 val = (val & 0xf000000f) | 0x01a0f000;
3648 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3649 return This::STATUS_OKAY;
3652 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3653 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3654 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3655 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3656 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3657 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3658 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3659 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3660 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3661 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3662 static inline typename This::Status
3663 arm_grp_alu(unsigned char* view,
3664 const Sized_relobj<32, big_endian>* object,
3665 const Symbol_value<32>* psymval,
3667 Arm_address address,
3668 Arm_address thumb_bit,
3669 bool check_overflow)
3671 gold_assert(group >= 0 && group < 3);
3672 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3673 Valtype* wv = reinterpret_cast<Valtype*>(view);
3674 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3676 // ALU group relocations are allowed only for the ADD/SUB instructions.
3677 // (0x00800000 - ADD, 0x00400000 - SUB)
3678 const Valtype opcode = insn & 0x01e00000;
3679 if (opcode != 0x00800000 && opcode != 0x00400000)
3680 return This::STATUS_BAD_RELOC;
3682 // Determine a sign for the addend.
3683 const int sign = (opcode == 0x00800000) ? 1 : -1;
3684 // shifter = rotate_imm * 2
3685 const uint32_t shifter = (insn & 0xf00) >> 7;
3686 // Initial addend value.
3687 int32_t addend = insn & 0xff;
3688 // Rotate addend right by shifter.
3689 addend = (addend >> shifter) | (addend << (32 - shifter));
3690 // Apply a sign to the added.
3693 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3694 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3695 // Check for overflow if required
3697 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3698 return This::STATUS_OVERFLOW;
3700 // Mask out the value and the ADD/SUB part of the opcode; take care
3701 // not to destroy the S bit.
3703 // Set the opcode according to whether the value to go in the
3704 // place is negative.
3705 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3706 // Encode the offset (encoded Gn).
3709 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3710 return This::STATUS_OKAY;
3713 // R_ARM_LDR_PC_G0: S + A - P
3714 // R_ARM_LDR_PC_G1: S + A - P
3715 // R_ARM_LDR_PC_G2: S + A - P
3716 // R_ARM_LDR_SB_G0: S + A - B(S)
3717 // R_ARM_LDR_SB_G1: S + A - B(S)
3718 // R_ARM_LDR_SB_G2: S + A - B(S)
3719 static inline typename This::Status
3720 arm_grp_ldr(unsigned char* view,
3721 const Sized_relobj<32, big_endian>* object,
3722 const Symbol_value<32>* psymval,
3724 Arm_address address)
3726 gold_assert(group >= 0 && group < 3);
3727 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3728 Valtype* wv = reinterpret_cast<Valtype*>(view);
3729 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3731 const int sign = (insn & 0x00800000) ? 1 : -1;
3732 int32_t addend = (insn & 0xfff) * sign;
3733 int32_t x = (psymval->value(object, addend) - address);
3734 // Calculate the relevant G(n-1) value to obtain this stage residual.
3736 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3737 if (residual >= 0x1000)
3738 return This::STATUS_OVERFLOW;
3740 // Mask out the value and U bit.
3742 // Set the U bit for non-negative values.
3747 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3748 return This::STATUS_OKAY;
3751 // R_ARM_LDRS_PC_G0: S + A - P
3752 // R_ARM_LDRS_PC_G1: S + A - P
3753 // R_ARM_LDRS_PC_G2: S + A - P
3754 // R_ARM_LDRS_SB_G0: S + A - B(S)
3755 // R_ARM_LDRS_SB_G1: S + A - B(S)
3756 // R_ARM_LDRS_SB_G2: S + A - B(S)
3757 static inline typename This::Status
3758 arm_grp_ldrs(unsigned char* view,
3759 const Sized_relobj<32, big_endian>* object,
3760 const Symbol_value<32>* psymval,
3762 Arm_address address)
3764 gold_assert(group >= 0 && group < 3);
3765 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3766 Valtype* wv = reinterpret_cast<Valtype*>(view);
3767 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3769 const int sign = (insn & 0x00800000) ? 1 : -1;
3770 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3771 int32_t x = (psymval->value(object, addend) - address);
3772 // Calculate the relevant G(n-1) value to obtain this stage residual.
3774 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3775 if (residual >= 0x100)
3776 return This::STATUS_OVERFLOW;
3778 // Mask out the value and U bit.
3780 // Set the U bit for non-negative values.
3783 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3785 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3786 return This::STATUS_OKAY;
3789 // R_ARM_LDC_PC_G0: S + A - P
3790 // R_ARM_LDC_PC_G1: S + A - P
3791 // R_ARM_LDC_PC_G2: S + A - P
3792 // R_ARM_LDC_SB_G0: S + A - B(S)
3793 // R_ARM_LDC_SB_G1: S + A - B(S)
3794 // R_ARM_LDC_SB_G2: S + A - B(S)
3795 static inline typename This::Status
3796 arm_grp_ldc(unsigned char* view,
3797 const Sized_relobj<32, big_endian>* object,
3798 const Symbol_value<32>* psymval,
3800 Arm_address address)
3802 gold_assert(group >= 0 && group < 3);
3803 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3804 Valtype* wv = reinterpret_cast<Valtype*>(view);
3805 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3807 const int sign = (insn & 0x00800000) ? 1 : -1;
3808 int32_t addend = ((insn & 0xff) << 2) * sign;
3809 int32_t x = (psymval->value(object, addend) - address);
3810 // Calculate the relevant G(n-1) value to obtain this stage residual.
3812 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3813 if ((residual & 0x3) != 0 || residual >= 0x400)
3814 return This::STATUS_OVERFLOW;
3816 // Mask out the value and U bit.
3818 // Set the U bit for non-negative values.
3821 insn |= (residual >> 2);
3823 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3824 return This::STATUS_OKAY;
3828 // Relocate ARM long branches. This handles relocation types
3829 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3830 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3831 // undefined and we do not use PLT in this relocation. In such a case,
3832 // the branch is converted into an NOP.
3834 template<bool big_endian>
3835 typename Arm_relocate_functions<big_endian>::Status
3836 Arm_relocate_functions<big_endian>::arm_branch_common(
3837 unsigned int r_type,
3838 const Relocate_info<32, big_endian>* relinfo,
3839 unsigned char* view,
3840 const Sized_symbol<32>* gsym,
3841 const Arm_relobj<big_endian>* object,
3843 const Symbol_value<32>* psymval,
3844 Arm_address address,
3845 Arm_address thumb_bit,
3846 bool is_weakly_undefined_without_plt)
3848 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3849 Valtype* wv = reinterpret_cast<Valtype*>(view);
3850 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3852 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3853 && ((val & 0x0f000000UL) == 0x0a000000UL);
3854 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3855 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3856 && ((val & 0x0f000000UL) == 0x0b000000UL);
3857 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3858 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3860 // Check that the instruction is valid.
3861 if (r_type == elfcpp::R_ARM_CALL)
3863 if (!insn_is_uncond_bl && !insn_is_blx)
3864 return This::STATUS_BAD_RELOC;
3866 else if (r_type == elfcpp::R_ARM_JUMP24)
3868 if (!insn_is_b && !insn_is_cond_bl)
3869 return This::STATUS_BAD_RELOC;
3871 else if (r_type == elfcpp::R_ARM_PLT32)
3873 if (!insn_is_any_branch)
3874 return This::STATUS_BAD_RELOC;
3876 else if (r_type == elfcpp::R_ARM_XPC25)
3878 // FIXME: AAELF document IH0044C does not say much about it other
3879 // than it being obsolete.
3880 if (!insn_is_any_branch)
3881 return This::STATUS_BAD_RELOC;
3886 // A branch to an undefined weak symbol is turned into a jump to
3887 // the next instruction unless a PLT entry will be created.
3888 // Do the same for local undefined symbols.
3889 // The jump to the next instruction is optimized as a NOP depending
3890 // on the architecture.
3891 const Target_arm<big_endian>* arm_target =
3892 Target_arm<big_endian>::default_target();
3893 if (is_weakly_undefined_without_plt)
3895 gold_assert(!parameters->options().relocatable());
3896 Valtype cond = val & 0xf0000000U;
3897 if (arm_target->may_use_arm_nop())
3898 val = cond | 0x0320f000;
3900 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3901 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3902 return This::STATUS_OKAY;
3905 Valtype addend = utils::sign_extend<26>(val << 2);
3906 Valtype branch_target = psymval->value(object, addend);
3907 int32_t branch_offset = branch_target - address;
3909 // We need a stub if the branch offset is too large or if we need
3911 bool may_use_blx = arm_target->may_use_blx();
3912 Reloc_stub* stub = NULL;
3914 if (!parameters->options().relocatable()
3915 && (utils::has_overflow<26>(branch_offset)
3916 || ((thumb_bit != 0)
3917 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3919 Valtype unadjusted_branch_target = psymval->value(object, 0);
3921 Stub_type stub_type =
3922 Reloc_stub::stub_type_for_reloc(r_type, address,
3923 unadjusted_branch_target,
3925 if (stub_type != arm_stub_none)
3927 Stub_table<big_endian>* stub_table =
3928 object->stub_table(relinfo->data_shndx);
3929 gold_assert(stub_table != NULL);
3931 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3932 stub = stub_table->find_reloc_stub(stub_key);
3933 gold_assert(stub != NULL);
3934 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3935 branch_target = stub_table->address() + stub->offset() + addend;
3936 branch_offset = branch_target - address;
3937 gold_assert(!utils::has_overflow<26>(branch_offset));
3941 // At this point, if we still need to switch mode, the instruction
3942 // must either be a BLX or a BL that can be converted to a BLX.
3946 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3947 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3950 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3951 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3952 return (utils::has_overflow<26>(branch_offset)
3953 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3956 // Relocate THUMB long branches. This handles relocation types
3957 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3958 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3959 // undefined and we do not use PLT in this relocation. In such a case,
3960 // the branch is converted into an NOP.
3962 template<bool big_endian>
3963 typename Arm_relocate_functions<big_endian>::Status
3964 Arm_relocate_functions<big_endian>::thumb_branch_common(
3965 unsigned int r_type,
3966 const Relocate_info<32, big_endian>* relinfo,
3967 unsigned char* view,
3968 const Sized_symbol<32>* gsym,
3969 const Arm_relobj<big_endian>* object,
3971 const Symbol_value<32>* psymval,
3972 Arm_address address,
3973 Arm_address thumb_bit,
3974 bool is_weakly_undefined_without_plt)
3976 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3977 Valtype* wv = reinterpret_cast<Valtype*>(view);
3978 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3979 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3981 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3983 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3984 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3986 // Check that the instruction is valid.
3987 if (r_type == elfcpp::R_ARM_THM_CALL)
3989 if (!is_bl_insn && !is_blx_insn)
3990 return This::STATUS_BAD_RELOC;
3992 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3994 // This cannot be a BLX.
3996 return This::STATUS_BAD_RELOC;
3998 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4000 // Check for Thumb to Thumb call.
4002 return This::STATUS_BAD_RELOC;
4005 gold_warning(_("%s: Thumb BLX instruction targets "
4006 "thumb function '%s'."),
4007 object->name().c_str(),
4008 (gsym ? gsym->name() : "(local)"));
4009 // Convert BLX to BL.
4010 lower_insn |= 0x1000U;
4016 // A branch to an undefined weak symbol is turned into a jump to
4017 // the next instruction unless a PLT entry will be created.
4018 // The jump to the next instruction is optimized as a NOP.W for
4019 // Thumb-2 enabled architectures.
4020 const Target_arm<big_endian>* arm_target =
4021 Target_arm<big_endian>::default_target();
4022 if (is_weakly_undefined_without_plt)
4024 gold_assert(!parameters->options().relocatable());
4025 if (arm_target->may_use_thumb2_nop())
4027 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4028 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4032 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4033 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4035 return This::STATUS_OKAY;
4038 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4039 Arm_address branch_target = psymval->value(object, addend);
4041 // For BLX, bit 1 of target address comes from bit 1 of base address.
4042 bool may_use_blx = arm_target->may_use_blx();
4043 if (thumb_bit == 0 && may_use_blx)
4044 branch_target = utils::bit_select(branch_target, address, 0x2);
4046 int32_t branch_offset = branch_target - address;
4048 // We need a stub if the branch offset is too large or if we need
4050 bool thumb2 = arm_target->using_thumb2();
4051 if (!parameters->options().relocatable()
4052 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4053 || (thumb2 && utils::has_overflow<25>(branch_offset))
4054 || ((thumb_bit == 0)
4055 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4056 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4058 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4060 Stub_type stub_type =
4061 Reloc_stub::stub_type_for_reloc(r_type, address,
4062 unadjusted_branch_target,
4065 if (stub_type != arm_stub_none)
4067 Stub_table<big_endian>* stub_table =
4068 object->stub_table(relinfo->data_shndx);
4069 gold_assert(stub_table != NULL);
4071 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4072 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4073 gold_assert(stub != NULL);
4074 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4075 branch_target = stub_table->address() + stub->offset() + addend;
4076 if (thumb_bit == 0 && may_use_blx)
4077 branch_target = utils::bit_select(branch_target, address, 0x2);
4078 branch_offset = branch_target - address;
4082 // At this point, if we still need to switch mode, the instruction
4083 // must either be a BLX or a BL that can be converted to a BLX.
4086 gold_assert(may_use_blx
4087 && (r_type == elfcpp::R_ARM_THM_CALL
4088 || r_type == elfcpp::R_ARM_THM_XPC22));
4089 // Make sure this is a BLX.
4090 lower_insn &= ~0x1000U;
4094 // Make sure this is a BL.
4095 lower_insn |= 0x1000U;
4098 // For a BLX instruction, make sure that the relocation is rounded up
4099 // to a word boundary. This follows the semantics of the instruction
4100 // which specifies that bit 1 of the target address will come from bit
4101 // 1 of the base address.
4102 if ((lower_insn & 0x5000U) == 0x4000U)
4103 gold_assert((branch_offset & 3) == 0);
4105 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4106 // We use the Thumb-2 encoding, which is safe even if dealing with
4107 // a Thumb-1 instruction by virtue of our overflow check above. */
4108 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4109 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4111 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4112 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4114 gold_assert(!utils::has_overflow<25>(branch_offset));
4117 ? utils::has_overflow<25>(branch_offset)
4118 : utils::has_overflow<23>(branch_offset))
4119 ? This::STATUS_OVERFLOW
4120 : This::STATUS_OKAY);
4123 // Relocate THUMB-2 long conditional branches.
4124 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4125 // undefined and we do not use PLT in this relocation. In such a case,
4126 // the branch is converted into an NOP.
4128 template<bool big_endian>
4129 typename Arm_relocate_functions<big_endian>::Status
4130 Arm_relocate_functions<big_endian>::thm_jump19(
4131 unsigned char* view,
4132 const Arm_relobj<big_endian>* object,
4133 const Symbol_value<32>* psymval,
4134 Arm_address address,
4135 Arm_address thumb_bit)
4137 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4138 Valtype* wv = reinterpret_cast<Valtype*>(view);
4139 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4140 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4141 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4143 Arm_address branch_target = psymval->value(object, addend);
4144 int32_t branch_offset = branch_target - address;
4146 // ??? Should handle interworking? GCC might someday try to
4147 // use this for tail calls.
4148 // FIXME: We do support thumb entry to PLT yet.
4151 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4152 return This::STATUS_BAD_RELOC;
4155 // Put RELOCATION back into the insn.
4156 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4157 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4159 // Put the relocated value back in the object file:
4160 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4161 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4163 return (utils::has_overflow<21>(branch_offset)
4164 ? This::STATUS_OVERFLOW
4165 : This::STATUS_OKAY);
4168 // Get the GOT section, creating it if necessary.
4170 template<bool big_endian>
4171 Arm_output_data_got<big_endian>*
4172 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4174 if (this->got_ == NULL)
4176 gold_assert(symtab != NULL && layout != NULL);
4178 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4180 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4182 | elfcpp::SHF_WRITE),
4183 this->got_, ORDER_RELRO, true);
4185 // The old GNU linker creates a .got.plt section. We just
4186 // create another set of data in the .got section. Note that we
4187 // always create a PLT if we create a GOT, although the PLT
4189 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4190 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4192 | elfcpp::SHF_WRITE),
4193 this->got_plt_, ORDER_DATA, false);
4195 // The first three entries are reserved.
4196 this->got_plt_->set_current_data_size(3 * 4);
4198 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4199 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4200 Symbol_table::PREDEFINED,
4202 0, 0, elfcpp::STT_OBJECT,
4204 elfcpp::STV_HIDDEN, 0,
4210 // Get the dynamic reloc section, creating it if necessary.
4212 template<bool big_endian>
4213 typename Target_arm<big_endian>::Reloc_section*
4214 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4216 if (this->rel_dyn_ == NULL)
4218 gold_assert(layout != NULL);
4219 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4220 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4221 elfcpp::SHF_ALLOC, this->rel_dyn_,
4222 ORDER_DYNAMIC_RELOCS, false);
4224 return this->rel_dyn_;
4227 // Insn_template methods.
4229 // Return byte size of an instruction template.
4232 Insn_template::size() const
4234 switch (this->type())
4237 case THUMB16_SPECIAL_TYPE:
4248 // Return alignment of an instruction template.
4251 Insn_template::alignment() const
4253 switch (this->type())
4256 case THUMB16_SPECIAL_TYPE:
4267 // Stub_template methods.
4269 Stub_template::Stub_template(
4270 Stub_type type, const Insn_template* insns,
4272 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4273 entry_in_thumb_mode_(false), relocs_()
4277 // Compute byte size and alignment of stub template.
4278 for (size_t i = 0; i < insn_count; i++)
4280 unsigned insn_alignment = insns[i].alignment();
4281 size_t insn_size = insns[i].size();
4282 gold_assert((offset & (insn_alignment - 1)) == 0);
4283 this->alignment_ = std::max(this->alignment_, insn_alignment);
4284 switch (insns[i].type())
4286 case Insn_template::THUMB16_TYPE:
4287 case Insn_template::THUMB16_SPECIAL_TYPE:
4289 this->entry_in_thumb_mode_ = true;
4292 case Insn_template::THUMB32_TYPE:
4293 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4294 this->relocs_.push_back(Reloc(i, offset));
4296 this->entry_in_thumb_mode_ = true;
4299 case Insn_template::ARM_TYPE:
4300 // Handle cases where the target is encoded within the
4302 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4303 this->relocs_.push_back(Reloc(i, offset));
4306 case Insn_template::DATA_TYPE:
4307 // Entry point cannot be data.
4308 gold_assert(i != 0);
4309 this->relocs_.push_back(Reloc(i, offset));
4315 offset += insn_size;
4317 this->size_ = offset;
4322 // Template to implement do_write for a specific target endianness.
4324 template<bool big_endian>
4326 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4328 const Stub_template* stub_template = this->stub_template();
4329 const Insn_template* insns = stub_template->insns();
4331 // FIXME: We do not handle BE8 encoding yet.
4332 unsigned char* pov = view;
4333 for (size_t i = 0; i < stub_template->insn_count(); i++)
4335 switch (insns[i].type())
4337 case Insn_template::THUMB16_TYPE:
4338 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4340 case Insn_template::THUMB16_SPECIAL_TYPE:
4341 elfcpp::Swap<16, big_endian>::writeval(
4343 this->thumb16_special(i));
4345 case Insn_template::THUMB32_TYPE:
4347 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4348 uint32_t lo = insns[i].data() & 0xffff;
4349 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4350 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4353 case Insn_template::ARM_TYPE:
4354 case Insn_template::DATA_TYPE:
4355 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4360 pov += insns[i].size();
4362 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4365 // Reloc_stub::Key methods.
4367 // Dump a Key as a string for debugging.
4370 Reloc_stub::Key::name() const
4372 if (this->r_sym_ == invalid_index)
4374 // Global symbol key name
4375 // <stub-type>:<symbol name>:<addend>.
4376 const std::string sym_name = this->u_.symbol->name();
4377 // We need to print two hex number and two colons. So just add 100 bytes
4378 // to the symbol name size.
4379 size_t len = sym_name.size() + 100;
4380 char* buffer = new char[len];
4381 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4382 sym_name.c_str(), this->addend_);
4383 gold_assert(c > 0 && c < static_cast<int>(len));
4385 return std::string(buffer);
4389 // local symbol key name
4390 // <stub-type>:<object>:<r_sym>:<addend>.
4391 const size_t len = 200;
4393 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4394 this->u_.relobj, this->r_sym_, this->addend_);
4395 gold_assert(c > 0 && c < static_cast<int>(len));
4396 return std::string(buffer);
4400 // Reloc_stub methods.
4402 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4403 // LOCATION to DESTINATION.
4404 // This code is based on the arm_type_of_stub function in
4405 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4409 Reloc_stub::stub_type_for_reloc(
4410 unsigned int r_type,
4411 Arm_address location,
4412 Arm_address destination,
4413 bool target_is_thumb)
4415 Stub_type stub_type = arm_stub_none;
4417 // This is a bit ugly but we want to avoid using a templated class for
4418 // big and little endianities.
4420 bool should_force_pic_veneer;
4423 if (parameters->target().is_big_endian())
4425 const Target_arm<true>* big_endian_target =
4426 Target_arm<true>::default_target();
4427 may_use_blx = big_endian_target->may_use_blx();
4428 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4429 thumb2 = big_endian_target->using_thumb2();
4430 thumb_only = big_endian_target->using_thumb_only();
4434 const Target_arm<false>* little_endian_target =
4435 Target_arm<false>::default_target();
4436 may_use_blx = little_endian_target->may_use_blx();
4437 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4438 thumb2 = little_endian_target->using_thumb2();
4439 thumb_only = little_endian_target->using_thumb_only();
4442 int64_t branch_offset;
4443 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4445 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4446 // base address (instruction address + 4).
4447 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4448 destination = utils::bit_select(destination, location, 0x2);
4449 branch_offset = static_cast<int64_t>(destination) - location;
4451 // Handle cases where:
4452 // - this call goes too far (different Thumb/Thumb2 max
4454 // - it's a Thumb->Arm call and blx is not available, or it's a
4455 // Thumb->Arm branch (not bl). A stub is needed in this case.
4457 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4458 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4460 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4461 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4462 || ((!target_is_thumb)
4463 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4464 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4466 if (target_is_thumb)
4471 stub_type = (parameters->options().shared()
4472 || should_force_pic_veneer)
4475 && (r_type == elfcpp::R_ARM_THM_CALL))
4476 // V5T and above. Stub starts with ARM code, so
4477 // we must be able to switch mode before
4478 // reaching it, which is only possible for 'bl'
4479 // (ie R_ARM_THM_CALL relocation).
4480 ? arm_stub_long_branch_any_thumb_pic
4481 // On V4T, use Thumb code only.
4482 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4486 && (r_type == elfcpp::R_ARM_THM_CALL))
4487 ? arm_stub_long_branch_any_any // V5T and above.
4488 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4492 stub_type = (parameters->options().shared()
4493 || should_force_pic_veneer)
4494 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4495 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4502 // FIXME: We should check that the input section is from an
4503 // object that has interwork enabled.
4505 stub_type = (parameters->options().shared()
4506 || should_force_pic_veneer)
4509 && (r_type == elfcpp::R_ARM_THM_CALL))
4510 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4511 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4515 && (r_type == elfcpp::R_ARM_THM_CALL))
4516 ? arm_stub_long_branch_any_any // V5T and above.
4517 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4519 // Handle v4t short branches.
4520 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4521 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4522 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4523 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4527 else if (r_type == elfcpp::R_ARM_CALL
4528 || r_type == elfcpp::R_ARM_JUMP24
4529 || r_type == elfcpp::R_ARM_PLT32)
4531 branch_offset = static_cast<int64_t>(destination) - location;
4532 if (target_is_thumb)
4536 // FIXME: We should check that the input section is from an
4537 // object that has interwork enabled.
4539 // We have an extra 2-bytes reach because of
4540 // the mode change (bit 24 (H) of BLX encoding).
4541 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4542 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4543 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4544 || (r_type == elfcpp::R_ARM_JUMP24)
4545 || (r_type == elfcpp::R_ARM_PLT32))
4547 stub_type = (parameters->options().shared()
4548 || should_force_pic_veneer)
4551 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4552 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4556 ? arm_stub_long_branch_any_any // V5T and above.
4557 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4563 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4564 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4566 stub_type = (parameters->options().shared()
4567 || should_force_pic_veneer)
4568 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4569 : arm_stub_long_branch_any_any; /// non-PIC.
4577 // Cortex_a8_stub methods.
4579 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4580 // I is the position of the instruction template in the stub template.
4583 Cortex_a8_stub::do_thumb16_special(size_t i)
4585 // The only use of this is to copy condition code from a conditional
4586 // branch being worked around to the corresponding conditional branch in
4588 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4590 uint16_t data = this->stub_template()->insns()[i].data();
4591 gold_assert((data & 0xff00U) == 0xd000U);
4592 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4596 // Stub_factory methods.
4598 Stub_factory::Stub_factory()
4600 // The instruction template sequences are declared as static
4601 // objects and initialized first time the constructor runs.
4603 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4604 // to reach the stub if necessary.
4605 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4607 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4608 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4609 // dcd R_ARM_ABS32(X)
4612 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4614 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4616 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4617 Insn_template::arm_insn(0xe12fff1c), // bx ip
4618 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4619 // dcd R_ARM_ABS32(X)
4622 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4623 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4625 Insn_template::thumb16_insn(0xb401), // push {r0}
4626 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4627 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4628 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4629 Insn_template::thumb16_insn(0x4760), // bx ip
4630 Insn_template::thumb16_insn(0xbf00), // nop
4631 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4632 // dcd R_ARM_ABS32(X)
4635 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4637 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4639 Insn_template::thumb16_insn(0x4778), // bx pc
4640 Insn_template::thumb16_insn(0x46c0), // nop
4641 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4642 Insn_template::arm_insn(0xe12fff1c), // bx ip
4643 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4644 // dcd R_ARM_ABS32(X)
4647 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4649 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4651 Insn_template::thumb16_insn(0x4778), // bx pc
4652 Insn_template::thumb16_insn(0x46c0), // nop
4653 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4654 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4655 // dcd R_ARM_ABS32(X)
4658 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4659 // one, when the destination is close enough.
4660 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4662 Insn_template::thumb16_insn(0x4778), // bx pc
4663 Insn_template::thumb16_insn(0x46c0), // nop
4664 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4667 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4668 // blx to reach the stub if necessary.
4669 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4671 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4672 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4673 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4674 // dcd R_ARM_REL32(X-4)
4677 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4678 // blx to reach the stub if necessary. We can not add into pc;
4679 // it is not guaranteed to mode switch (different in ARMv6 and
4681 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4683 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4684 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4685 Insn_template::arm_insn(0xe12fff1c), // bx ip
4686 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4687 // dcd R_ARM_REL32(X)
4690 // V4T ARM -> ARM long branch stub, PIC.
4691 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4693 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4694 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4695 Insn_template::arm_insn(0xe12fff1c), // bx ip
4696 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4697 // dcd R_ARM_REL32(X)
4700 // V4T Thumb -> ARM long branch stub, PIC.
4701 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4703 Insn_template::thumb16_insn(0x4778), // bx pc
4704 Insn_template::thumb16_insn(0x46c0), // nop
4705 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4706 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4707 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4708 // dcd R_ARM_REL32(X)
4711 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4713 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4715 Insn_template::thumb16_insn(0xb401), // push {r0}
4716 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4717 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4718 Insn_template::thumb16_insn(0x4484), // add ip, r0
4719 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4720 Insn_template::thumb16_insn(0x4760), // bx ip
4721 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4722 // dcd R_ARM_REL32(X)
4725 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4727 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4729 Insn_template::thumb16_insn(0x4778), // bx pc
4730 Insn_template::thumb16_insn(0x46c0), // nop
4731 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4732 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4733 Insn_template::arm_insn(0xe12fff1c), // bx ip
4734 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4735 // dcd R_ARM_REL32(X)
4738 // Cortex-A8 erratum-workaround stubs.
4740 // Stub used for conditional branches (which may be beyond +/-1MB away,
4741 // so we can't use a conditional branch to reach this stub).
4748 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4750 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4751 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4752 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4756 // Stub used for b.w and bl.w instructions.
4758 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4760 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4763 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4765 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4768 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4769 // instruction (which switches to ARM mode) to point to this stub. Jump to
4770 // the real destination using an ARM-mode branch.
4771 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4773 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4776 // Stub used to provide an interworking for R_ARM_V4BX relocation
4777 // (bx r[n] instruction).
4778 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4780 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4781 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4782 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4785 // Fill in the stub template look-up table. Stub templates are constructed
4786 // per instance of Stub_factory for fast look-up without locking
4787 // in a thread-enabled environment.
4789 this->stub_templates_[arm_stub_none] =
4790 new Stub_template(arm_stub_none, NULL, 0);
4792 #define DEF_STUB(x) \
4796 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4797 Stub_type type = arm_stub_##x; \
4798 this->stub_templates_[type] = \
4799 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4807 // Stub_table methods.
4809 // Removel all Cortex-A8 stub.
4811 template<bool big_endian>
4813 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4815 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4816 p != this->cortex_a8_stubs_.end();
4819 this->cortex_a8_stubs_.clear();
4822 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4824 template<bool big_endian>
4826 Stub_table<big_endian>::relocate_stub(
4828 const Relocate_info<32, big_endian>* relinfo,
4829 Target_arm<big_endian>* arm_target,
4830 Output_section* output_section,
4831 unsigned char* view,
4832 Arm_address address,
4833 section_size_type view_size)
4835 const Stub_template* stub_template = stub->stub_template();
4836 if (stub_template->reloc_count() != 0)
4838 // Adjust view to cover the stub only.
4839 section_size_type offset = stub->offset();
4840 section_size_type stub_size = stub_template->size();
4841 gold_assert(offset + stub_size <= view_size);
4843 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4844 address + offset, stub_size);
4848 // Relocate all stubs in this stub table.
4850 template<bool big_endian>
4852 Stub_table<big_endian>::relocate_stubs(
4853 const Relocate_info<32, big_endian>* relinfo,
4854 Target_arm<big_endian>* arm_target,
4855 Output_section* output_section,
4856 unsigned char* view,
4857 Arm_address address,
4858 section_size_type view_size)
4860 // If we are passed a view bigger than the stub table's. we need to
4862 gold_assert(address == this->address()
4864 == static_cast<section_size_type>(this->data_size())));
4866 // Relocate all relocation stubs.
4867 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4868 p != this->reloc_stubs_.end();
4870 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4871 address, view_size);
4873 // Relocate all Cortex-A8 stubs.
4874 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4875 p != this->cortex_a8_stubs_.end();
4877 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4878 address, view_size);
4880 // Relocate all ARM V4BX stubs.
4881 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4882 p != this->arm_v4bx_stubs_.end();
4886 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4887 address, view_size);
4891 // Write out the stubs to file.
4893 template<bool big_endian>
4895 Stub_table<big_endian>::do_write(Output_file* of)
4897 off_t offset = this->offset();
4898 const section_size_type oview_size =
4899 convert_to_section_size_type(this->data_size());
4900 unsigned char* const oview = of->get_output_view(offset, oview_size);
4902 // Write relocation stubs.
4903 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4904 p != this->reloc_stubs_.end();
4907 Reloc_stub* stub = p->second;
4908 Arm_address address = this->address() + stub->offset();
4910 == align_address(address,
4911 stub->stub_template()->alignment()));
4912 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4916 // Write Cortex-A8 stubs.
4917 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4918 p != this->cortex_a8_stubs_.end();
4921 Cortex_a8_stub* stub = p->second;
4922 Arm_address address = this->address() + stub->offset();
4924 == align_address(address,
4925 stub->stub_template()->alignment()));
4926 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4930 // Write ARM V4BX relocation stubs.
4931 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4932 p != this->arm_v4bx_stubs_.end();
4938 Arm_address address = this->address() + (*p)->offset();
4940 == align_address(address,
4941 (*p)->stub_template()->alignment()));
4942 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4946 of->write_output_view(this->offset(), oview_size, oview);
4949 // Update the data size and address alignment of the stub table at the end
4950 // of a relaxation pass. Return true if either the data size or the
4951 // alignment changed in this relaxation pass.
4953 template<bool big_endian>
4955 Stub_table<big_endian>::update_data_size_and_addralign()
4957 // Go over all stubs in table to compute data size and address alignment.
4958 off_t size = this->reloc_stubs_size_;
4959 unsigned addralign = this->reloc_stubs_addralign_;
4961 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4962 p != this->cortex_a8_stubs_.end();
4965 const Stub_template* stub_template = p->second->stub_template();
4966 addralign = std::max(addralign, stub_template->alignment());
4967 size = (align_address(size, stub_template->alignment())
4968 + stub_template->size());
4971 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4972 p != this->arm_v4bx_stubs_.end();
4978 const Stub_template* stub_template = (*p)->stub_template();
4979 addralign = std::max(addralign, stub_template->alignment());
4980 size = (align_address(size, stub_template->alignment())
4981 + stub_template->size());
4984 // Check if either data size or alignment changed in this pass.
4985 // Update prev_data_size_ and prev_addralign_. These will be used
4986 // as the current data size and address alignment for the next pass.
4987 bool changed = size != this->prev_data_size_;
4988 this->prev_data_size_ = size;
4990 if (addralign != this->prev_addralign_)
4992 this->prev_addralign_ = addralign;
4997 // Finalize the stubs. This sets the offsets of the stubs within the stub
4998 // table. It also marks all input sections needing Cortex-A8 workaround.
5000 template<bool big_endian>
5002 Stub_table<big_endian>::finalize_stubs()
5004 off_t off = this->reloc_stubs_size_;
5005 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5006 p != this->cortex_a8_stubs_.end();
5009 Cortex_a8_stub* stub = p->second;
5010 const Stub_template* stub_template = stub->stub_template();
5011 uint64_t stub_addralign = stub_template->alignment();
5012 off = align_address(off, stub_addralign);
5013 stub->set_offset(off);
5014 off += stub_template->size();
5016 // Mark input section so that we can determine later if a code section
5017 // needs the Cortex-A8 workaround quickly.
5018 Arm_relobj<big_endian>* arm_relobj =
5019 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5020 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5023 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5024 p != this->arm_v4bx_stubs_.end();
5030 const Stub_template* stub_template = (*p)->stub_template();
5031 uint64_t stub_addralign = stub_template->alignment();
5032 off = align_address(off, stub_addralign);
5033 (*p)->set_offset(off);
5034 off += stub_template->size();
5037 gold_assert(off <= this->prev_data_size_);
5040 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5041 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5042 // of the address range seen by the linker.
5044 template<bool big_endian>
5046 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5047 Target_arm<big_endian>* arm_target,
5048 unsigned char* view,
5049 Arm_address view_address,
5050 section_size_type view_size)
5052 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5053 for (Cortex_a8_stub_list::const_iterator p =
5054 this->cortex_a8_stubs_.lower_bound(view_address);
5055 ((p != this->cortex_a8_stubs_.end())
5056 && (p->first < (view_address + view_size)));
5059 // We do not store the THUMB bit in the LSB of either the branch address
5060 // or the stub offset. There is no need to strip the LSB.
5061 Arm_address branch_address = p->first;
5062 const Cortex_a8_stub* stub = p->second;
5063 Arm_address stub_address = this->address() + stub->offset();
5065 // Offset of the branch instruction relative to this view.
5066 section_size_type offset =
5067 convert_to_section_size_type(branch_address - view_address);
5068 gold_assert((offset + 4) <= view_size);
5070 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5071 view + offset, branch_address);
5075 // Arm_input_section methods.
5077 // Initialize an Arm_input_section.
5079 template<bool big_endian>
5081 Arm_input_section<big_endian>::init()
5083 Relobj* relobj = this->relobj();
5084 unsigned int shndx = this->shndx();
5086 // Cache these to speed up size and alignment queries. It is too slow
5087 // to call section_addraglin and section_size every time.
5088 this->original_addralign_ =
5089 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5090 this->original_size_ =
5091 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5093 // We want to make this look like the original input section after
5094 // output sections are finalized.
5095 Output_section* os = relobj->output_section(shndx);
5096 off_t offset = relobj->output_section_offset(shndx);
5097 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5098 this->set_address(os->address() + offset);
5099 this->set_file_offset(os->offset() + offset);
5101 this->set_current_data_size(this->original_size_);
5102 this->finalize_data_size();
5105 template<bool big_endian>
5107 Arm_input_section<big_endian>::do_write(Output_file* of)
5109 // We have to write out the original section content.
5110 section_size_type section_size;
5111 const unsigned char* section_contents =
5112 this->relobj()->section_contents(this->shndx(), §ion_size, false);
5113 of->write(this->offset(), section_contents, section_size);
5115 // If this owns a stub table and it is not empty, write it.
5116 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5117 this->stub_table_->write(of);
5120 // Finalize data size.
5122 template<bool big_endian>
5124 Arm_input_section<big_endian>::set_final_data_size()
5126 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5128 if (this->is_stub_table_owner())
5130 this->stub_table_->finalize_data_size();
5131 off = align_address(off, this->stub_table_->addralign());
5132 off += this->stub_table_->data_size();
5134 this->set_data_size(off);
5137 // Reset address and file offset.
5139 template<bool big_endian>
5141 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5143 // Size of the original input section contents.
5144 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5146 // If this is a stub table owner, account for the stub table size.
5147 if (this->is_stub_table_owner())
5149 Stub_table<big_endian>* stub_table = this->stub_table_;
5151 // Reset the stub table's address and file offset. The
5152 // current data size for child will be updated after that.
5153 stub_table_->reset_address_and_file_offset();
5154 off = align_address(off, stub_table_->addralign());
5155 off += stub_table->current_data_size();
5158 this->set_current_data_size(off);
5161 // Arm_exidx_cantunwind methods.
5163 // Write this to Output file OF for a fixed endianness.
5165 template<bool big_endian>
5167 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5169 off_t offset = this->offset();
5170 const section_size_type oview_size = 8;
5171 unsigned char* const oview = of->get_output_view(offset, oview_size);
5173 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5174 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5176 Output_section* os = this->relobj_->output_section(this->shndx_);
5177 gold_assert(os != NULL);
5179 Arm_relobj<big_endian>* arm_relobj =
5180 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5181 Arm_address output_offset =
5182 arm_relobj->get_output_section_offset(this->shndx_);
5183 Arm_address section_start;
5184 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5185 section_start = os->address() + output_offset;
5188 // Currently this only happens for a relaxed section.
5189 const Output_relaxed_input_section* poris =
5190 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5191 gold_assert(poris != NULL);
5192 section_start = poris->address();
5195 // We always append this to the end of an EXIDX section.
5196 Arm_address output_address =
5197 section_start + this->relobj_->section_size(this->shndx_);
5199 // Write out the entry. The first word either points to the beginning
5200 // or after the end of a text section. The second word is the special
5201 // EXIDX_CANTUNWIND value.
5202 uint32_t prel31_offset = output_address - this->address();
5203 if (utils::has_overflow<31>(offset))
5204 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5205 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5206 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5208 of->write_output_view(this->offset(), oview_size, oview);
5211 // Arm_exidx_merged_section methods.
5213 // Constructor for Arm_exidx_merged_section.
5214 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5215 // SECTION_OFFSET_MAP points to a section offset map describing how
5216 // parts of the input section are mapped to output. DELETED_BYTES is
5217 // the number of bytes deleted from the EXIDX input section.
5219 Arm_exidx_merged_section::Arm_exidx_merged_section(
5220 const Arm_exidx_input_section& exidx_input_section,
5221 const Arm_exidx_section_offset_map& section_offset_map,
5222 uint32_t deleted_bytes)
5223 : Output_relaxed_input_section(exidx_input_section.relobj(),
5224 exidx_input_section.shndx(),
5225 exidx_input_section.addralign()),
5226 exidx_input_section_(exidx_input_section),
5227 section_offset_map_(section_offset_map)
5229 // Fix size here so that we do not need to implement set_final_data_size.
5230 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5231 this->fix_data_size();
5234 // Given an input OBJECT, an input section index SHNDX within that
5235 // object, and an OFFSET relative to the start of that input
5236 // section, return whether or not the corresponding offset within
5237 // the output section is known. If this function returns true, it
5238 // sets *POUTPUT to the output offset. The value -1 indicates that
5239 // this input offset is being discarded.
5242 Arm_exidx_merged_section::do_output_offset(
5243 const Relobj* relobj,
5245 section_offset_type offset,
5246 section_offset_type* poutput) const
5248 // We only handle offsets for the original EXIDX input section.
5249 if (relobj != this->exidx_input_section_.relobj()
5250 || shndx != this->exidx_input_section_.shndx())
5253 section_offset_type section_size =
5254 convert_types<section_offset_type>(this->exidx_input_section_.size());
5255 if (offset < 0 || offset >= section_size)
5256 // Input offset is out of valid range.
5260 // We need to look up the section offset map to determine the output
5261 // offset. Find the reference point in map that is first offset
5262 // bigger than or equal to this offset.
5263 Arm_exidx_section_offset_map::const_iterator p =
5264 this->section_offset_map_.lower_bound(offset);
5266 // The section offset maps are build such that this should not happen if
5267 // input offset is in the valid range.
5268 gold_assert(p != this->section_offset_map_.end());
5270 // We need to check if this is dropped.
5271 section_offset_type ref = p->first;
5272 section_offset_type mapped_ref = p->second;
5274 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5275 // Offset is present in output.
5276 *poutput = mapped_ref + (offset - ref);
5278 // Offset is discarded owing to EXIDX entry merging.
5285 // Write this to output file OF.
5288 Arm_exidx_merged_section::do_write(Output_file* of)
5290 // If we retain or discard the whole EXIDX input section, we would
5292 gold_assert(this->data_size() != this->exidx_input_section_.size()
5293 && this->data_size() != 0);
5295 off_t offset = this->offset();
5296 const section_size_type oview_size = this->data_size();
5297 unsigned char* const oview = of->get_output_view(offset, oview_size);
5299 Output_section* os = this->relobj()->output_section(this->shndx());
5300 gold_assert(os != NULL);
5302 // Get contents of EXIDX input section.
5303 section_size_type section_size;
5304 const unsigned char* section_contents =
5305 this->relobj()->section_contents(this->shndx(), §ion_size, false);
5306 gold_assert(section_size == this->exidx_input_section_.size());
5308 // Go over spans of input offsets and write only those that are not
5310 section_offset_type in_start = 0;
5311 section_offset_type out_start = 0;
5312 for(Arm_exidx_section_offset_map::const_iterator p =
5313 this->section_offset_map_.begin();
5314 p != this->section_offset_map_.end();
5317 section_offset_type in_end = p->first;
5318 gold_assert(in_end >= in_start);
5319 section_offset_type out_end = p->second;
5320 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5323 size_t out_chunk_size =
5324 convert_types<size_t>(out_end - out_start + 1);
5325 gold_assert(out_chunk_size == in_chunk_size);
5326 memcpy(oview + out_start, section_contents + in_start,
5328 out_start += out_chunk_size;
5330 in_start += in_chunk_size;
5333 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5334 of->write_output_view(this->offset(), oview_size, oview);
5337 // Arm_exidx_fixup methods.
5339 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5340 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5341 // points to the end of the last seen EXIDX section.
5344 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5346 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5347 && this->last_input_section_ != NULL)
5349 Relobj* relobj = this->last_input_section_->relobj();
5350 unsigned int text_shndx = this->last_input_section_->link();
5351 Arm_exidx_cantunwind* cantunwind =
5352 new Arm_exidx_cantunwind(relobj, text_shndx);
5353 this->exidx_output_section_->add_output_section_data(cantunwind);
5354 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5358 // Process an EXIDX section entry in input. Return whether this entry
5359 // can be deleted in the output. SECOND_WORD in the second word of the
5363 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5366 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5368 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5369 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5370 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5372 else if ((second_word & 0x80000000) != 0)
5374 // Inlined unwinding data. Merge if equal to previous.
5375 delete_entry = (merge_exidx_entries_
5376 && this->last_unwind_type_ == UT_INLINED_ENTRY
5377 && this->last_inlined_entry_ == second_word);
5378 this->last_unwind_type_ = UT_INLINED_ENTRY;
5379 this->last_inlined_entry_ = second_word;
5383 // Normal table entry. In theory we could merge these too,
5384 // but duplicate entries are likely to be much less common.
5385 delete_entry = false;
5386 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5388 return delete_entry;
5391 // Update the current section offset map during EXIDX section fix-up.
5392 // If there is no map, create one. INPUT_OFFSET is the offset of a
5393 // reference point, DELETED_BYTES is the number of deleted by in the
5394 // section so far. If DELETE_ENTRY is true, the reference point and
5395 // all offsets after the previous reference point are discarded.
5398 Arm_exidx_fixup::update_offset_map(
5399 section_offset_type input_offset,
5400 section_size_type deleted_bytes,
5403 if (this->section_offset_map_ == NULL)
5404 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5405 section_offset_type output_offset;
5407 output_offset = Arm_exidx_input_section::invalid_offset;
5409 output_offset = input_offset - deleted_bytes;
5410 (*this->section_offset_map_)[input_offset] = output_offset;
5413 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5414 // bytes deleted. If some entries are merged, also store a pointer to a newly
5415 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5416 // caller owns the map and is responsible for releasing it after use.
5418 template<bool big_endian>
5420 Arm_exidx_fixup::process_exidx_section(
5421 const Arm_exidx_input_section* exidx_input_section,
5422 Arm_exidx_section_offset_map** psection_offset_map)
5424 Relobj* relobj = exidx_input_section->relobj();
5425 unsigned shndx = exidx_input_section->shndx();
5426 section_size_type section_size;
5427 const unsigned char* section_contents =
5428 relobj->section_contents(shndx, §ion_size, false);
5430 if ((section_size % 8) != 0)
5432 // Something is wrong with this section. Better not touch it.
5433 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5434 relobj->name().c_str(), shndx);
5435 this->last_input_section_ = exidx_input_section;
5436 this->last_unwind_type_ = UT_NONE;
5440 uint32_t deleted_bytes = 0;
5441 bool prev_delete_entry = false;
5442 gold_assert(this->section_offset_map_ == NULL);
5444 for (section_size_type i = 0; i < section_size; i += 8)
5446 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5448 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5449 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5451 bool delete_entry = this->process_exidx_entry(second_word);
5453 // Entry deletion causes changes in output offsets. We use a std::map
5454 // to record these. And entry (x, y) means input offset x
5455 // is mapped to output offset y. If y is invalid_offset, then x is
5456 // dropped in the output. Because of the way std::map::lower_bound
5457 // works, we record the last offset in a region w.r.t to keeping or
5458 // dropping. If there is no entry (x0, y0) for an input offset x0,
5459 // the output offset y0 of it is determined by the output offset y1 of
5460 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5461 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5463 if (delete_entry != prev_delete_entry && i != 0)
5464 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5466 // Update total deleted bytes for this entry.
5470 prev_delete_entry = delete_entry;
5473 // If section offset map is not NULL, make an entry for the end of
5475 if (this->section_offset_map_ != NULL)
5476 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5478 *psection_offset_map = this->section_offset_map_;
5479 this->section_offset_map_ = NULL;
5480 this->last_input_section_ = exidx_input_section;
5482 // Set the first output text section so that we can link the EXIDX output
5483 // section to it. Ignore any EXIDX input section that is completely merged.
5484 if (this->first_output_text_section_ == NULL
5485 && deleted_bytes != section_size)
5487 unsigned int link = exidx_input_section->link();
5488 Output_section* os = relobj->output_section(link);
5489 gold_assert(os != NULL);
5490 this->first_output_text_section_ = os;
5493 return deleted_bytes;
5496 // Arm_output_section methods.
5498 // Create a stub group for input sections from BEGIN to END. OWNER
5499 // points to the input section to be the owner a new stub table.
5501 template<bool big_endian>
5503 Arm_output_section<big_endian>::create_stub_group(
5504 Input_section_list::const_iterator begin,
5505 Input_section_list::const_iterator end,
5506 Input_section_list::const_iterator owner,
5507 Target_arm<big_endian>* target,
5508 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5510 // We use a different kind of relaxed section in an EXIDX section.
5511 // The static casting from Output_relaxed_input_section to
5512 // Arm_input_section is invalid in an EXIDX section. We are okay
5513 // because we should not be calling this for an EXIDX section.
5514 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5516 // Currently we convert ordinary input sections into relaxed sections only
5517 // at this point but we may want to support creating relaxed input section
5518 // very early. So we check here to see if owner is already a relaxed
5521 Arm_input_section<big_endian>* arm_input_section;
5522 if (owner->is_relaxed_input_section())
5525 Arm_input_section<big_endian>::as_arm_input_section(
5526 owner->relaxed_input_section());
5530 gold_assert(owner->is_input_section());
5531 // Create a new relaxed input section.
5533 target->new_arm_input_section(owner->relobj(), owner->shndx());
5534 new_relaxed_sections->push_back(arm_input_section);
5537 // Create a stub table.
5538 Stub_table<big_endian>* stub_table =
5539 target->new_stub_table(arm_input_section);
5541 arm_input_section->set_stub_table(stub_table);
5543 Input_section_list::const_iterator p = begin;
5544 Input_section_list::const_iterator prev_p;
5546 // Look for input sections or relaxed input sections in [begin ... end].
5549 if (p->is_input_section() || p->is_relaxed_input_section())
5551 // The stub table information for input sections live
5552 // in their objects.
5553 Arm_relobj<big_endian>* arm_relobj =
5554 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5555 arm_relobj->set_stub_table(p->shndx(), stub_table);
5559 while (prev_p != end);
5562 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5563 // of stub groups. We grow a stub group by adding input section until the
5564 // size is just below GROUP_SIZE. The last input section will be converted
5565 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5566 // input section after the stub table, effectively double the group size.
5568 // This is similar to the group_sections() function in elf32-arm.c but is
5569 // implemented differently.
5571 template<bool big_endian>
5573 Arm_output_section<big_endian>::group_sections(
5574 section_size_type group_size,
5575 bool stubs_always_after_branch,
5576 Target_arm<big_endian>* target)
5578 // We only care about sections containing code.
5579 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5582 // States for grouping.
5585 // No group is being built.
5587 // A group is being built but the stub table is not found yet.
5588 // We keep group a stub group until the size is just under GROUP_SIZE.
5589 // The last input section in the group will be used as the stub table.
5590 FINDING_STUB_SECTION,
5591 // A group is being built and we have already found a stub table.
5592 // We enter this state to grow a stub group by adding input section
5593 // after the stub table. This effectively doubles the group size.
5597 // Any newly created relaxed sections are stored here.
5598 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5600 State state = NO_GROUP;
5601 section_size_type off = 0;
5602 section_size_type group_begin_offset = 0;
5603 section_size_type group_end_offset = 0;
5604 section_size_type stub_table_end_offset = 0;
5605 Input_section_list::const_iterator group_begin =
5606 this->input_sections().end();
5607 Input_section_list::const_iterator stub_table =
5608 this->input_sections().end();
5609 Input_section_list::const_iterator group_end = this->input_sections().end();
5610 for (Input_section_list::const_iterator p = this->input_sections().begin();
5611 p != this->input_sections().end();
5614 section_size_type section_begin_offset =
5615 align_address(off, p->addralign());
5616 section_size_type section_end_offset =
5617 section_begin_offset + p->data_size();
5619 // Check to see if we should group the previously seens sections.
5625 case FINDING_STUB_SECTION:
5626 // Adding this section makes the group larger than GROUP_SIZE.
5627 if (section_end_offset - group_begin_offset >= group_size)
5629 if (stubs_always_after_branch)
5631 gold_assert(group_end != this->input_sections().end());
5632 this->create_stub_group(group_begin, group_end, group_end,
5633 target, &new_relaxed_sections);
5638 // But wait, there's more! Input sections up to
5639 // stub_group_size bytes after the stub table can be
5640 // handled by it too.
5641 state = HAS_STUB_SECTION;
5642 stub_table = group_end;
5643 stub_table_end_offset = group_end_offset;
5648 case HAS_STUB_SECTION:
5649 // Adding this section makes the post stub-section group larger
5651 if (section_end_offset - stub_table_end_offset >= group_size)
5653 gold_assert(group_end != this->input_sections().end());
5654 this->create_stub_group(group_begin, group_end, stub_table,
5655 target, &new_relaxed_sections);
5664 // If we see an input section and currently there is no group, start
5665 // a new one. Skip any empty sections.
5666 if ((p->is_input_section() || p->is_relaxed_input_section())
5667 && (p->relobj()->section_size(p->shndx()) != 0))
5669 if (state == NO_GROUP)
5671 state = FINDING_STUB_SECTION;
5673 group_begin_offset = section_begin_offset;
5676 // Keep track of the last input section seen.
5678 group_end_offset = section_end_offset;
5681 off = section_end_offset;
5684 // Create a stub group for any ungrouped sections.
5685 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5687 gold_assert(group_end != this->input_sections().end());
5688 this->create_stub_group(group_begin, group_end,
5689 (state == FINDING_STUB_SECTION
5692 target, &new_relaxed_sections);
5695 // Convert input section into relaxed input section in a batch.
5696 if (!new_relaxed_sections.empty())
5697 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5699 // Update the section offsets
5700 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5702 Arm_relobj<big_endian>* arm_relobj =
5703 Arm_relobj<big_endian>::as_arm_relobj(
5704 new_relaxed_sections[i]->relobj());
5705 unsigned int shndx = new_relaxed_sections[i]->shndx();
5706 // Tell Arm_relobj that this input section is converted.
5707 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5711 // Append non empty text sections in this to LIST in ascending
5712 // order of their position in this.
5714 template<bool big_endian>
5716 Arm_output_section<big_endian>::append_text_sections_to_list(
5717 Text_section_list* list)
5719 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5721 for (Input_section_list::const_iterator p = this->input_sections().begin();
5722 p != this->input_sections().end();
5725 // We only care about plain or relaxed input sections. We also
5726 // ignore any merged sections.
5727 if ((p->is_input_section() || p->is_relaxed_input_section())
5728 && p->data_size() != 0)
5729 list->push_back(Text_section_list::value_type(p->relobj(),
5734 template<bool big_endian>
5736 Arm_output_section<big_endian>::fix_exidx_coverage(
5738 const Text_section_list& sorted_text_sections,
5739 Symbol_table* symtab,
5740 bool merge_exidx_entries)
5742 // We should only do this for the EXIDX output section.
5743 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5745 // We don't want the relaxation loop to undo these changes, so we discard
5746 // the current saved states and take another one after the fix-up.
5747 this->discard_states();
5749 // Remove all input sections.
5750 uint64_t address = this->address();
5751 typedef std::list<Output_section::Input_section> Input_section_list;
5752 Input_section_list input_sections;
5753 this->reset_address_and_file_offset();
5754 this->get_input_sections(address, std::string(""), &input_sections);
5756 if (!this->input_sections().empty())
5757 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5759 // Go through all the known input sections and record them.
5760 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5761 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5762 Section_id_hash> Text_to_exidx_map;
5763 Text_to_exidx_map text_to_exidx_map;
5764 for (Input_section_list::const_iterator p = input_sections.begin();
5765 p != input_sections.end();
5768 // This should never happen. At this point, we should only see
5769 // plain EXIDX input sections.
5770 gold_assert(!p->is_relaxed_input_section());
5771 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5774 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5776 // Go over the sorted text sections.
5777 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5778 Section_id_set processed_input_sections;
5779 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5780 p != sorted_text_sections.end();
5783 Relobj* relobj = p->first;
5784 unsigned int shndx = p->second;
5786 Arm_relobj<big_endian>* arm_relobj =
5787 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5788 const Arm_exidx_input_section* exidx_input_section =
5789 arm_relobj->exidx_input_section_by_link(shndx);
5791 // If this text section has no EXIDX section or if the EXIDX section
5792 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5793 // of the last seen EXIDX section.
5794 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5796 exidx_fixup.add_exidx_cantunwind_as_needed();
5800 Relobj* exidx_relobj = exidx_input_section->relobj();
5801 unsigned int exidx_shndx = exidx_input_section->shndx();
5802 Section_id sid(exidx_relobj, exidx_shndx);
5803 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5804 if (iter == text_to_exidx_map.end())
5806 // This is odd. We have not seen this EXIDX input section before.
5807 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5808 // issue a warning instead. We assume the user knows what he
5809 // or she is doing. Otherwise, this is an error.
5810 if (layout->script_options()->saw_sections_clause())
5811 gold_warning(_("unwinding may not work because EXIDX input section"
5812 " %u of %s is not in EXIDX output section"),
5813 exidx_shndx, exidx_relobj->name().c_str());
5815 gold_error(_("unwinding may not work because EXIDX input section"
5816 " %u of %s is not in EXIDX output section"),
5817 exidx_shndx, exidx_relobj->name().c_str());
5819 exidx_fixup.add_exidx_cantunwind_as_needed();
5823 // Fix up coverage and append input section to output data list.
5824 Arm_exidx_section_offset_map* section_offset_map = NULL;
5825 uint32_t deleted_bytes =
5826 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5827 §ion_offset_map);
5829 if (deleted_bytes == exidx_input_section->size())
5831 // The whole EXIDX section got merged. Remove it from output.
5832 gold_assert(section_offset_map == NULL);
5833 exidx_relobj->set_output_section(exidx_shndx, NULL);
5835 // All local symbols defined in this input section will be dropped.
5836 // We need to adjust output local symbol count.
5837 arm_relobj->set_output_local_symbol_count_needs_update();
5839 else if (deleted_bytes > 0)
5841 // Some entries are merged. We need to convert this EXIDX input
5842 // section into a relaxed section.
5843 gold_assert(section_offset_map != NULL);
5844 Arm_exidx_merged_section* merged_section =
5845 new Arm_exidx_merged_section(*exidx_input_section,
5846 *section_offset_map, deleted_bytes);
5847 this->add_relaxed_input_section(merged_section);
5848 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5850 // All local symbols defined in discarded portions of this input
5851 // section will be dropped. We need to adjust output local symbol
5853 arm_relobj->set_output_local_symbol_count_needs_update();
5857 // Just add back the EXIDX input section.
5858 gold_assert(section_offset_map == NULL);
5859 const Output_section::Input_section* pis = iter->second;
5860 gold_assert(pis->is_input_section());
5861 this->add_script_input_section(*pis);
5864 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5867 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5868 exidx_fixup.add_exidx_cantunwind_as_needed();
5870 // Remove any known EXIDX input sections that are not processed.
5871 for (Input_section_list::const_iterator p = input_sections.begin();
5872 p != input_sections.end();
5875 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5876 == processed_input_sections.end())
5878 // We discard a known EXIDX section because its linked
5879 // text section has been folded by ICF. We also discard an
5880 // EXIDX section with error, the output does not matter in this
5881 // case. We do this to avoid triggering asserts.
5882 Arm_relobj<big_endian>* arm_relobj =
5883 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5884 const Arm_exidx_input_section* exidx_input_section =
5885 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5886 gold_assert(exidx_input_section != NULL);
5887 if (!exidx_input_section->has_errors())
5889 unsigned int text_shndx = exidx_input_section->link();
5890 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5893 // Remove this from link. We also need to recount the
5895 p->relobj()->set_output_section(p->shndx(), NULL);
5896 arm_relobj->set_output_local_symbol_count_needs_update();
5900 // Link exidx output section to the first seen output section and
5901 // set correct entry size.
5902 this->set_link_section(exidx_fixup.first_output_text_section());
5903 this->set_entsize(8);
5905 // Make changes permanent.
5906 this->save_states();
5907 this->set_section_offsets_need_adjustment();
5910 // Link EXIDX output sections to text output sections.
5912 template<bool big_endian>
5914 Arm_output_section<big_endian>::set_exidx_section_link()
5916 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5917 if (!this->input_sections().empty())
5919 Input_section_list::const_iterator p = this->input_sections().begin();
5920 Arm_relobj<big_endian>* arm_relobj =
5921 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5922 unsigned exidx_shndx = p->shndx();
5923 const Arm_exidx_input_section* exidx_input_section =
5924 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5925 gold_assert(exidx_input_section != NULL);
5926 unsigned int text_shndx = exidx_input_section->link();
5927 Output_section* os = arm_relobj->output_section(text_shndx);
5928 this->set_link_section(os);
5932 // Arm_relobj methods.
5934 // Determine if an input section is scannable for stub processing. SHDR is
5935 // the header of the section and SHNDX is the section index. OS is the output
5936 // section for the input section and SYMTAB is the global symbol table used to
5937 // look up ICF information.
5939 template<bool big_endian>
5941 Arm_relobj<big_endian>::section_is_scannable(
5942 const elfcpp::Shdr<32, big_endian>& shdr,
5944 const Output_section* os,
5945 const Symbol_table* symtab)
5947 // Skip any empty sections, unallocated sections or sections whose
5948 // type are not SHT_PROGBITS.
5949 if (shdr.get_sh_size() == 0
5950 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5951 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5954 // Skip any discarded or ICF'ed sections.
5955 if (os == NULL || symtab->is_section_folded(this, shndx))
5958 // If this requires special offset handling, check to see if it is
5959 // a relaxed section. If this is not, then it is a merged section that
5960 // we cannot handle.
5961 if (this->is_output_section_offset_invalid(shndx))
5963 const Output_relaxed_input_section* poris =
5964 os->find_relaxed_input_section(this, shndx);
5972 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5973 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5975 template<bool big_endian>
5977 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5978 const elfcpp::Shdr<32, big_endian>& shdr,
5979 const Relobj::Output_sections& out_sections,
5980 const Symbol_table* symtab,
5981 const unsigned char* pshdrs)
5983 unsigned int sh_type = shdr.get_sh_type();
5984 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5987 // Ignore empty section.
5988 off_t sh_size = shdr.get_sh_size();
5992 // Ignore reloc section with unexpected symbol table. The
5993 // error will be reported in the final link.
5994 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5997 unsigned int reloc_size;
5998 if (sh_type == elfcpp::SHT_REL)
5999 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6001 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6003 // Ignore reloc section with unexpected entsize or uneven size.
6004 // The error will be reported in the final link.
6005 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6008 // Ignore reloc section with bad info. This error will be
6009 // reported in the final link.
6010 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6011 if (index >= this->shnum())
6014 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6015 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6016 return this->section_is_scannable(text_shdr, index,
6017 out_sections[index], symtab);
6020 // Return the output address of either a plain input section or a relaxed
6021 // input section. SHNDX is the section index. We define and use this
6022 // instead of calling Output_section::output_address because that is slow
6023 // for large output.
6025 template<bool big_endian>
6027 Arm_relobj<big_endian>::simple_input_section_output_address(
6031 if (this->is_output_section_offset_invalid(shndx))
6033 const Output_relaxed_input_section* poris =
6034 os->find_relaxed_input_section(this, shndx);
6035 // We do not handle merged sections here.
6036 gold_assert(poris != NULL);
6037 return poris->address();
6040 return os->address() + this->get_output_section_offset(shndx);
6043 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6044 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6046 template<bool big_endian>
6048 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6049 const elfcpp::Shdr<32, big_endian>& shdr,
6052 const Symbol_table* symtab)
6054 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6057 // If the section does not cross any 4K-boundaries, it does not need to
6059 Arm_address address = this->simple_input_section_output_address(shndx, os);
6060 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6066 // Scan a section for Cortex-A8 workaround.
6068 template<bool big_endian>
6070 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6071 const elfcpp::Shdr<32, big_endian>& shdr,
6074 Target_arm<big_endian>* arm_target)
6076 // Look for the first mapping symbol in this section. It should be
6078 Mapping_symbol_position section_start(shndx, 0);
6079 typename Mapping_symbols_info::const_iterator p =
6080 this->mapping_symbols_info_.lower_bound(section_start);
6082 // There are no mapping symbols for this section. Treat it as a data-only
6083 // section. Issue a warning if section is marked as containing
6085 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6087 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6088 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6089 "erratum because it has no mapping symbols."),
6090 shndx, this->name().c_str());
6094 Arm_address output_address =
6095 this->simple_input_section_output_address(shndx, os);
6097 // Get the section contents.
6098 section_size_type input_view_size = 0;
6099 const unsigned char* input_view =
6100 this->section_contents(shndx, &input_view_size, false);
6102 // We need to go through the mapping symbols to determine what to
6103 // scan. There are two reasons. First, we should look at THUMB code and
6104 // THUMB code only. Second, we only want to look at the 4K-page boundary
6105 // to speed up the scanning.
6107 while (p != this->mapping_symbols_info_.end()
6108 && p->first.first == shndx)
6110 typename Mapping_symbols_info::const_iterator next =
6111 this->mapping_symbols_info_.upper_bound(p->first);
6113 // Only scan part of a section with THUMB code.
6114 if (p->second == 't')
6116 // Determine the end of this range.
6117 section_size_type span_start =
6118 convert_to_section_size_type(p->first.second);
6119 section_size_type span_end;
6120 if (next != this->mapping_symbols_info_.end()
6121 && next->first.first == shndx)
6122 span_end = convert_to_section_size_type(next->first.second);
6124 span_end = convert_to_section_size_type(shdr.get_sh_size());
6126 if (((span_start + output_address) & ~0xfffUL)
6127 != ((span_end + output_address - 1) & ~0xfffUL))
6129 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6130 span_start, span_end,
6140 // Scan relocations for stub generation.
6142 template<bool big_endian>
6144 Arm_relobj<big_endian>::scan_sections_for_stubs(
6145 Target_arm<big_endian>* arm_target,
6146 const Symbol_table* symtab,
6147 const Layout* layout)
6149 unsigned int shnum = this->shnum();
6150 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6152 // Read the section headers.
6153 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6157 // To speed up processing, we set up hash tables for fast lookup of
6158 // input offsets to output addresses.
6159 this->initialize_input_to_output_maps();
6161 const Relobj::Output_sections& out_sections(this->output_sections());
6163 Relocate_info<32, big_endian> relinfo;
6164 relinfo.symtab = symtab;
6165 relinfo.layout = layout;
6166 relinfo.object = this;
6168 // Do relocation stubs scanning.
6169 const unsigned char* p = pshdrs + shdr_size;
6170 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6172 const elfcpp::Shdr<32, big_endian> shdr(p);
6173 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6176 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6177 Arm_address output_offset = this->get_output_section_offset(index);
6178 Arm_address output_address;
6179 if (output_offset != invalid_address)
6180 output_address = out_sections[index]->address() + output_offset;
6183 // Currently this only happens for a relaxed section.
6184 const Output_relaxed_input_section* poris =
6185 out_sections[index]->find_relaxed_input_section(this, index);
6186 gold_assert(poris != NULL);
6187 output_address = poris->address();
6190 // Get the relocations.
6191 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6195 // Get the section contents. This does work for the case in which
6196 // we modify the contents of an input section. We need to pass the
6197 // output view under such circumstances.
6198 section_size_type input_view_size = 0;
6199 const unsigned char* input_view =
6200 this->section_contents(index, &input_view_size, false);
6202 relinfo.reloc_shndx = i;
6203 relinfo.data_shndx = index;
6204 unsigned int sh_type = shdr.get_sh_type();
6205 unsigned int reloc_size;
6206 if (sh_type == elfcpp::SHT_REL)
6207 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6209 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6211 Output_section* os = out_sections[index];
6212 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6213 shdr.get_sh_size() / reloc_size,
6215 output_offset == invalid_address,
6216 input_view, output_address,
6221 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6222 // after its relocation section, if there is one, is processed for
6223 // relocation stubs. Merging this loop with the one above would have been
6224 // complicated since we would have had to make sure that relocation stub
6225 // scanning is done first.
6226 if (arm_target->fix_cortex_a8())
6228 const unsigned char* p = pshdrs + shdr_size;
6229 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6231 const elfcpp::Shdr<32, big_endian> shdr(p);
6232 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6235 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6240 // After we've done the relocations, we release the hash tables,
6241 // since we no longer need them.
6242 this->free_input_to_output_maps();
6245 // Count the local symbols. The ARM backend needs to know if a symbol
6246 // is a THUMB function or not. For global symbols, it is easy because
6247 // the Symbol object keeps the ELF symbol type. For local symbol it is
6248 // harder because we cannot access this information. So we override the
6249 // do_count_local_symbol in parent and scan local symbols to mark
6250 // THUMB functions. This is not the most efficient way but I do not want to
6251 // slow down other ports by calling a per symbol targer hook inside
6252 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6254 template<bool big_endian>
6256 Arm_relobj<big_endian>::do_count_local_symbols(
6257 Stringpool_template<char>* pool,
6258 Stringpool_template<char>* dynpool)
6260 // We need to fix-up the values of any local symbols whose type are
6263 // Ask parent to count the local symbols.
6264 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6265 const unsigned int loccount = this->local_symbol_count();
6269 // Intialize the thumb function bit-vector.
6270 std::vector<bool> empty_vector(loccount, false);
6271 this->local_symbol_is_thumb_function_.swap(empty_vector);
6273 // Read the symbol table section header.
6274 const unsigned int symtab_shndx = this->symtab_shndx();
6275 elfcpp::Shdr<32, big_endian>
6276 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6277 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6279 // Read the local symbols.
6280 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6281 gold_assert(loccount == symtabshdr.get_sh_info());
6282 off_t locsize = loccount * sym_size;
6283 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6284 locsize, true, true);
6286 // For mapping symbol processing, we need to read the symbol names.
6287 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6288 if (strtab_shndx >= this->shnum())
6290 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6294 elfcpp::Shdr<32, big_endian>
6295 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6296 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6298 this->error(_("symbol table name section has wrong type: %u"),
6299 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6302 const char* pnames =
6303 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6304 strtabshdr.get_sh_size(),
6307 // Loop over the local symbols and mark any local symbols pointing
6308 // to THUMB functions.
6310 // Skip the first dummy symbol.
6312 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6313 this->local_values();
6314 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6316 elfcpp::Sym<32, big_endian> sym(psyms);
6317 elfcpp::STT st_type = sym.get_st_type();
6318 Symbol_value<32>& lv((*plocal_values)[i]);
6319 Arm_address input_value = lv.input_value();
6321 // Check to see if this is a mapping symbol.
6322 const char* sym_name = pnames + sym.get_st_name();
6323 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6326 unsigned int input_shndx =
6327 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6328 gold_assert(is_ordinary);
6330 // Strip of LSB in case this is a THUMB symbol.
6331 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6332 this->mapping_symbols_info_[msp] = sym_name[1];
6335 if (st_type == elfcpp::STT_ARM_TFUNC
6336 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6338 // This is a THUMB function. Mark this and canonicalize the
6339 // symbol value by setting LSB.
6340 this->local_symbol_is_thumb_function_[i] = true;
6341 if ((input_value & 1) == 0)
6342 lv.set_input_value(input_value | 1);
6347 // Relocate sections.
6348 template<bool big_endian>
6350 Arm_relobj<big_endian>::do_relocate_sections(
6351 const Symbol_table* symtab,
6352 const Layout* layout,
6353 const unsigned char* pshdrs,
6354 typename Sized_relobj<32, big_endian>::Views* pviews)
6356 // Call parent to relocate sections.
6357 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6360 // We do not generate stubs if doing a relocatable link.
6361 if (parameters->options().relocatable())
6364 // Relocate stub tables.
6365 unsigned int shnum = this->shnum();
6367 Target_arm<big_endian>* arm_target =
6368 Target_arm<big_endian>::default_target();
6370 Relocate_info<32, big_endian> relinfo;
6371 relinfo.symtab = symtab;
6372 relinfo.layout = layout;
6373 relinfo.object = this;
6375 for (unsigned int i = 1; i < shnum; ++i)
6377 Arm_input_section<big_endian>* arm_input_section =
6378 arm_target->find_arm_input_section(this, i);
6380 if (arm_input_section != NULL
6381 && arm_input_section->is_stub_table_owner()
6382 && !arm_input_section->stub_table()->empty())
6384 // We cannot discard a section if it owns a stub table.
6385 Output_section* os = this->output_section(i);
6386 gold_assert(os != NULL);
6388 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6389 relinfo.reloc_shdr = NULL;
6390 relinfo.data_shndx = i;
6391 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6393 gold_assert((*pviews)[i].view != NULL);
6395 // We are passed the output section view. Adjust it to cover the
6397 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6398 gold_assert((stub_table->address() >= (*pviews)[i].address)
6399 && ((stub_table->address() + stub_table->data_size())
6400 <= (*pviews)[i].address + (*pviews)[i].view_size));
6402 off_t offset = stub_table->address() - (*pviews)[i].address;
6403 unsigned char* view = (*pviews)[i].view + offset;
6404 Arm_address address = stub_table->address();
6405 section_size_type view_size = stub_table->data_size();
6407 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6411 // Apply Cortex A8 workaround if applicable.
6412 if (this->section_has_cortex_a8_workaround(i))
6414 unsigned char* view = (*pviews)[i].view;
6415 Arm_address view_address = (*pviews)[i].address;
6416 section_size_type view_size = (*pviews)[i].view_size;
6417 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6419 // Adjust view to cover section.
6420 Output_section* os = this->output_section(i);
6421 gold_assert(os != NULL);
6422 Arm_address section_address =
6423 this->simple_input_section_output_address(i, os);
6424 uint64_t section_size = this->section_size(i);
6426 gold_assert(section_address >= view_address
6427 && ((section_address + section_size)
6428 <= (view_address + view_size)));
6430 unsigned char* section_view = view + (section_address - view_address);
6432 // Apply the Cortex-A8 workaround to the output address range
6433 // corresponding to this input section.
6434 stub_table->apply_cortex_a8_workaround_to_address_range(
6443 // Find the linked text section of an EXIDX section by looking the the first
6444 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6445 // must be linked to to its associated code section via the sh_link field of
6446 // its section header. However, some tools are broken and the link is not
6447 // always set. LD just drops such an EXIDX section silently, causing the
6448 // associated code not unwindabled. Here we try a little bit harder to
6449 // discover the linked code section.
6451 // PSHDR points to the section header of a relocation section of an EXIDX
6452 // section. If we can find a linked text section, return true and
6453 // store the text section index in the location PSHNDX. Otherwise
6456 template<bool big_endian>
6458 Arm_relobj<big_endian>::find_linked_text_section(
6459 const unsigned char* pshdr,
6460 const unsigned char* psyms,
6461 unsigned int* pshndx)
6463 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6465 // If there is no relocation, we cannot find the linked text section.
6467 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6468 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6470 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6471 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6473 // Get the relocations.
6474 const unsigned char* prelocs =
6475 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6477 // Find the REL31 relocation for the first word of the first EXIDX entry.
6478 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6480 Arm_address r_offset;
6481 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6482 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6484 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6485 r_info = reloc.get_r_info();
6486 r_offset = reloc.get_r_offset();
6490 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6491 r_info = reloc.get_r_info();
6492 r_offset = reloc.get_r_offset();
6495 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6496 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6499 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6501 || r_sym >= this->local_symbol_count()
6505 // This is the relocation for the first word of the first EXIDX entry.
6506 // We expect to see a local section symbol.
6507 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6508 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6509 if (sym.get_st_type() == elfcpp::STT_SECTION)
6513 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6514 gold_assert(is_ordinary);
6524 // Make an EXIDX input section object for an EXIDX section whose index is
6525 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6526 // is the section index of the linked text section.
6528 template<bool big_endian>
6530 Arm_relobj<big_endian>::make_exidx_input_section(
6532 const elfcpp::Shdr<32, big_endian>& shdr,
6533 unsigned int text_shndx,
6534 const elfcpp::Shdr<32, big_endian>& text_shdr)
6536 // Create an Arm_exidx_input_section object for this EXIDX section.
6537 Arm_exidx_input_section* exidx_input_section =
6538 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6539 shdr.get_sh_addralign());
6541 gold_assert(this->exidx_section_map_[shndx] == NULL);
6542 this->exidx_section_map_[shndx] = exidx_input_section;
6544 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6546 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6547 this->section_name(shndx).c_str(), shndx, text_shndx,
6548 this->name().c_str());
6549 exidx_input_section->set_has_errors();
6551 else if (this->exidx_section_map_[text_shndx] != NULL)
6553 unsigned other_exidx_shndx =
6554 this->exidx_section_map_[text_shndx]->shndx();
6555 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6557 this->section_name(shndx).c_str(), shndx,
6558 this->section_name(other_exidx_shndx).c_str(),
6559 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6560 text_shndx, this->name().c_str());
6561 exidx_input_section->set_has_errors();
6564 this->exidx_section_map_[text_shndx] = exidx_input_section;
6566 // Check section flags of text section.
6567 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6569 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6571 this->section_name(shndx).c_str(), shndx,
6572 this->section_name(text_shndx).c_str(), text_shndx,
6573 this->name().c_str());
6574 exidx_input_section->set_has_errors();
6576 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6577 // I would like to make this an error but currenlty ld just ignores
6579 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6581 this->section_name(shndx).c_str(), shndx,
6582 this->section_name(text_shndx).c_str(), text_shndx,
6583 this->name().c_str());
6586 // Read the symbol information.
6588 template<bool big_endian>
6590 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6592 // Call parent class to read symbol information.
6593 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6595 // If this input file is a binary file, it has no processor
6596 // specific flags and attributes section.
6597 Input_file::Format format = this->input_file()->format();
6598 if (format != Input_file::FORMAT_ELF)
6600 gold_assert(format == Input_file::FORMAT_BINARY);
6601 this->merge_flags_and_attributes_ = false;
6605 // Read processor-specific flags in ELF file header.
6606 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6607 elfcpp::Elf_sizes<32>::ehdr_size,
6609 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6610 this->processor_specific_flags_ = ehdr.get_e_flags();
6612 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6614 std::vector<unsigned int> deferred_exidx_sections;
6615 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6616 const unsigned char* pshdrs = sd->section_headers->data();
6617 const unsigned char* ps = pshdrs + shdr_size;
6618 bool must_merge_flags_and_attributes = false;
6619 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6621 elfcpp::Shdr<32, big_endian> shdr(ps);
6623 // Sometimes an object has no contents except the section name string
6624 // table and an empty symbol table with the undefined symbol. We
6625 // don't want to merge processor-specific flags from such an object.
6626 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6628 // Symbol table is not empty.
6629 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6630 elfcpp::Elf_sizes<32>::sym_size;
6631 if (shdr.get_sh_size() > sym_size)
6632 must_merge_flags_and_attributes = true;
6634 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6635 // If this is neither an empty symbol table nor a string table,
6637 must_merge_flags_and_attributes = true;
6639 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6641 gold_assert(this->attributes_section_data_ == NULL);
6642 section_offset_type section_offset = shdr.get_sh_offset();
6643 section_size_type section_size =
6644 convert_to_section_size_type(shdr.get_sh_size());
6645 File_view* view = this->get_lasting_view(section_offset,
6646 section_size, true, false);
6647 this->attributes_section_data_ =
6648 new Attributes_section_data(view->data(), section_size);
6650 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6652 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6653 if (text_shndx == elfcpp::SHN_UNDEF)
6654 deferred_exidx_sections.push_back(i);
6657 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6658 + text_shndx * shdr_size);
6659 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6665 if (!must_merge_flags_and_attributes)
6667 gold_assert(deferred_exidx_sections.empty());
6668 this->merge_flags_and_attributes_ = false;
6672 // Some tools are broken and they do not set the link of EXIDX sections.
6673 // We look at the first relocation to figure out the linked sections.
6674 if (!deferred_exidx_sections.empty())
6676 // We need to go over the section headers again to find the mapping
6677 // from sections being relocated to their relocation sections. This is
6678 // a bit inefficient as we could do that in the loop above. However,
6679 // we do not expect any deferred EXIDX sections normally. So we do not
6680 // want to slow down the most common path.
6681 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6682 Reloc_map reloc_map;
6683 ps = pshdrs + shdr_size;
6684 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6686 elfcpp::Shdr<32, big_endian> shdr(ps);
6687 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6688 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6690 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6691 if (info_shndx >= this->shnum())
6692 gold_error(_("relocation section %u has invalid info %u"),
6694 Reloc_map::value_type value(info_shndx, i);
6695 std::pair<Reloc_map::iterator, bool> result =
6696 reloc_map.insert(value);
6698 gold_error(_("section %u has multiple relocation sections "
6700 info_shndx, i, reloc_map[info_shndx]);
6704 // Read the symbol table section header.
6705 const unsigned int symtab_shndx = this->symtab_shndx();
6706 elfcpp::Shdr<32, big_endian>
6707 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6708 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6710 // Read the local symbols.
6711 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6712 const unsigned int loccount = this->local_symbol_count();
6713 gold_assert(loccount == symtabshdr.get_sh_info());
6714 off_t locsize = loccount * sym_size;
6715 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6716 locsize, true, true);
6718 // Process the deferred EXIDX sections.
6719 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6721 unsigned int shndx = deferred_exidx_sections[i];
6722 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6723 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6724 Reloc_map::const_iterator it = reloc_map.find(shndx);
6725 if (it != reloc_map.end())
6726 find_linked_text_section(pshdrs + it->second * shdr_size,
6727 psyms, &text_shndx);
6728 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6729 + text_shndx * shdr_size);
6730 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6735 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6736 // sections for unwinding. These sections are referenced implicitly by
6737 // text sections linked in the section headers. If we ignore these implict
6738 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6739 // will be garbage-collected incorrectly. Hence we override the same function
6740 // in the base class to handle these implicit references.
6742 template<bool big_endian>
6744 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6746 Read_relocs_data* rd)
6748 // First, call base class method to process relocations in this object.
6749 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6751 // If --gc-sections is not specified, there is nothing more to do.
6752 // This happens when --icf is used but --gc-sections is not.
6753 if (!parameters->options().gc_sections())
6756 unsigned int shnum = this->shnum();
6757 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6758 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6762 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6763 // to these from the linked text sections.
6764 const unsigned char* ps = pshdrs + shdr_size;
6765 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6767 elfcpp::Shdr<32, big_endian> shdr(ps);
6768 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6770 // Found an .ARM.exidx section, add it to the set of reachable
6771 // sections from its linked text section.
6772 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6773 symtab->gc()->add_reference(this, text_shndx, this, i);
6778 // Update output local symbol count. Owing to EXIDX entry merging, some local
6779 // symbols will be removed in output. Adjust output local symbol count
6780 // accordingly. We can only changed the static output local symbol count. It
6781 // is too late to change the dynamic symbols.
6783 template<bool big_endian>
6785 Arm_relobj<big_endian>::update_output_local_symbol_count()
6787 // Caller should check that this needs updating. We want caller checking
6788 // because output_local_symbol_count_needs_update() is most likely inlined.
6789 gold_assert(this->output_local_symbol_count_needs_update_);
6791 gold_assert(this->symtab_shndx() != -1U);
6792 if (this->symtab_shndx() == 0)
6794 // This object has no symbols. Weird but legal.
6798 // Read the symbol table section header.
6799 const unsigned int symtab_shndx = this->symtab_shndx();
6800 elfcpp::Shdr<32, big_endian>
6801 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6802 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6804 // Read the local symbols.
6805 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6806 const unsigned int loccount = this->local_symbol_count();
6807 gold_assert(loccount == symtabshdr.get_sh_info());
6808 off_t locsize = loccount * sym_size;
6809 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6810 locsize, true, true);
6812 // Loop over the local symbols.
6814 typedef typename Sized_relobj<32, big_endian>::Output_sections
6816 const Output_sections& out_sections(this->output_sections());
6817 unsigned int shnum = this->shnum();
6818 unsigned int count = 0;
6819 // Skip the first, dummy, symbol.
6821 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6823 elfcpp::Sym<32, big_endian> sym(psyms);
6825 Symbol_value<32>& lv((*this->local_values())[i]);
6827 // This local symbol was already discarded by do_count_local_symbols.
6828 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6832 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6837 Output_section* os = out_sections[shndx];
6839 // This local symbol no longer has an output section. Discard it.
6842 lv.set_no_output_symtab_entry();
6846 // Currently we only discard parts of EXIDX input sections.
6847 // We explicitly check for a merged EXIDX input section to avoid
6848 // calling Output_section_data::output_offset unless necessary.
6849 if ((this->get_output_section_offset(shndx) == invalid_address)
6850 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6852 section_offset_type output_offset =
6853 os->output_offset(this, shndx, lv.input_value());
6854 if (output_offset == -1)
6856 // This symbol is defined in a part of an EXIDX input section
6857 // that is discarded due to entry merging.
6858 lv.set_no_output_symtab_entry();
6867 this->set_output_local_symbol_count(count);
6868 this->output_local_symbol_count_needs_update_ = false;
6871 // Arm_dynobj methods.
6873 // Read the symbol information.
6875 template<bool big_endian>
6877 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6879 // Call parent class to read symbol information.
6880 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6882 // Read processor-specific flags in ELF file header.
6883 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6884 elfcpp::Elf_sizes<32>::ehdr_size,
6886 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6887 this->processor_specific_flags_ = ehdr.get_e_flags();
6889 // Read the attributes section if there is one.
6890 // We read from the end because gas seems to put it near the end of
6891 // the section headers.
6892 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6893 const unsigned char* ps =
6894 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6895 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6897 elfcpp::Shdr<32, big_endian> shdr(ps);
6898 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6900 section_offset_type section_offset = shdr.get_sh_offset();
6901 section_size_type section_size =
6902 convert_to_section_size_type(shdr.get_sh_size());
6903 File_view* view = this->get_lasting_view(section_offset,
6904 section_size, true, false);
6905 this->attributes_section_data_ =
6906 new Attributes_section_data(view->data(), section_size);
6912 // Stub_addend_reader methods.
6914 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6916 template<bool big_endian>
6917 elfcpp::Elf_types<32>::Elf_Swxword
6918 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6919 unsigned int r_type,
6920 const unsigned char* view,
6921 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6923 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6927 case elfcpp::R_ARM_CALL:
6928 case elfcpp::R_ARM_JUMP24:
6929 case elfcpp::R_ARM_PLT32:
6931 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6932 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6933 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6934 return utils::sign_extend<26>(val << 2);
6937 case elfcpp::R_ARM_THM_CALL:
6938 case elfcpp::R_ARM_THM_JUMP24:
6939 case elfcpp::R_ARM_THM_XPC22:
6941 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6942 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6943 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6944 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6945 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6948 case elfcpp::R_ARM_THM_JUMP19:
6950 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6951 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6952 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6953 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6954 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6962 // Arm_output_data_got methods.
6964 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6965 // The first one is initialized to be 1, which is the module index for
6966 // the main executable and the second one 0. A reloc of the type
6967 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6968 // be applied by gold. GSYM is a global symbol.
6970 template<bool big_endian>
6972 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6973 unsigned int got_type,
6976 if (gsym->has_got_offset(got_type))
6979 // We are doing a static link. Just mark it as belong to module 1,
6981 unsigned int got_offset = this->add_constant(1);
6982 gsym->set_got_offset(got_type, got_offset);
6983 got_offset = this->add_constant(0);
6984 this->static_relocs_.push_back(Static_reloc(got_offset,
6985 elfcpp::R_ARM_TLS_DTPOFF32,
6989 // Same as the above but for a local symbol.
6991 template<bool big_endian>
6993 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6994 unsigned int got_type,
6995 Sized_relobj<32, big_endian>* object,
6998 if (object->local_has_got_offset(index, got_type))
7001 // We are doing a static link. Just mark it as belong to module 1,
7003 unsigned int got_offset = this->add_constant(1);
7004 object->set_local_got_offset(index, got_type, got_offset);
7005 got_offset = this->add_constant(0);
7006 this->static_relocs_.push_back(Static_reloc(got_offset,
7007 elfcpp::R_ARM_TLS_DTPOFF32,
7011 template<bool big_endian>
7013 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7015 // Call parent to write out GOT.
7016 Output_data_got<32, big_endian>::do_write(of);
7018 // We are done if there is no fix up.
7019 if (this->static_relocs_.empty())
7022 gold_assert(parameters->doing_static_link());
7024 const off_t offset = this->offset();
7025 const section_size_type oview_size =
7026 convert_to_section_size_type(this->data_size());
7027 unsigned char* const oview = of->get_output_view(offset, oview_size);
7029 Output_segment* tls_segment = this->layout_->tls_segment();
7030 gold_assert(tls_segment != NULL);
7032 // The thread pointer $tp points to the TCB, which is followed by the
7033 // TLS. So we need to adjust $tp relative addressing by this amount.
7034 Arm_address aligned_tcb_size =
7035 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7037 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7039 Static_reloc& reloc(this->static_relocs_[i]);
7042 if (!reloc.symbol_is_global())
7044 Sized_relobj<32, big_endian>* object = reloc.relobj();
7045 const Symbol_value<32>* psymval =
7046 reloc.relobj()->local_symbol(reloc.index());
7048 // We are doing static linking. Issue an error and skip this
7049 // relocation if the symbol is undefined or in a discarded_section.
7051 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7052 if ((shndx == elfcpp::SHN_UNDEF)
7054 && shndx != elfcpp::SHN_UNDEF
7055 && !object->is_section_included(shndx)
7056 && !this->symbol_table_->is_section_folded(object, shndx)))
7058 gold_error(_("undefined or discarded local symbol %u from "
7059 " object %s in GOT"),
7060 reloc.index(), reloc.relobj()->name().c_str());
7064 value = psymval->value(object, 0);
7068 const Symbol* gsym = reloc.symbol();
7069 gold_assert(gsym != NULL);
7070 if (gsym->is_forwarder())
7071 gsym = this->symbol_table_->resolve_forwards(gsym);
7073 // We are doing static linking. Issue an error and skip this
7074 // relocation if the symbol is undefined or in a discarded_section
7075 // unless it is a weakly_undefined symbol.
7076 if ((gsym->is_defined_in_discarded_section()
7077 || gsym->is_undefined())
7078 && !gsym->is_weak_undefined())
7080 gold_error(_("undefined or discarded symbol %s in GOT"),
7085 if (!gsym->is_weak_undefined())
7087 const Sized_symbol<32>* sym =
7088 static_cast<const Sized_symbol<32>*>(gsym);
7089 value = sym->value();
7095 unsigned got_offset = reloc.got_offset();
7096 gold_assert(got_offset < oview_size);
7098 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7099 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7101 switch (reloc.r_type())
7103 case elfcpp::R_ARM_TLS_DTPOFF32:
7106 case elfcpp::R_ARM_TLS_TPOFF32:
7107 x = value + aligned_tcb_size;
7112 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7115 of->write_output_view(offset, oview_size, oview);
7118 // A class to handle the PLT data.
7120 template<bool big_endian>
7121 class Output_data_plt_arm : public Output_section_data
7124 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7127 Output_data_plt_arm(Layout*, Output_data_space*);
7129 // Add an entry to the PLT.
7131 add_entry(Symbol* gsym);
7133 // Return the .rel.plt section data.
7134 const Reloc_section*
7136 { return this->rel_; }
7138 // Return the number of PLT entries.
7141 { return this->count_; }
7143 // Return the offset of the first non-reserved PLT entry.
7145 first_plt_entry_offset()
7146 { return sizeof(first_plt_entry); }
7148 // Return the size of a PLT entry.
7150 get_plt_entry_size()
7151 { return sizeof(plt_entry); }
7155 do_adjust_output_section(Output_section* os);
7157 // Write to a map file.
7159 do_print_to_mapfile(Mapfile* mapfile) const
7160 { mapfile->print_output_data(this, _("** PLT")); }
7163 // Template for the first PLT entry.
7164 static const uint32_t first_plt_entry[5];
7166 // Template for subsequent PLT entries.
7167 static const uint32_t plt_entry[3];
7169 // Set the final size.
7171 set_final_data_size()
7173 this->set_data_size(sizeof(first_plt_entry)
7174 + this->count_ * sizeof(plt_entry));
7177 // Write out the PLT data.
7179 do_write(Output_file*);
7181 // The reloc section.
7182 Reloc_section* rel_;
7183 // The .got.plt section.
7184 Output_data_space* got_plt_;
7185 // The number of PLT entries.
7186 unsigned int count_;
7189 // Create the PLT section. The ordinary .got section is an argument,
7190 // since we need to refer to the start. We also create our own .got
7191 // section just for PLT entries.
7193 template<bool big_endian>
7194 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7195 Output_data_space* got_plt)
7196 : Output_section_data(4), got_plt_(got_plt), count_(0)
7198 this->rel_ = new Reloc_section(false);
7199 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7200 elfcpp::SHF_ALLOC, this->rel_,
7201 ORDER_DYNAMIC_PLT_RELOCS, false);
7204 template<bool big_endian>
7206 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7211 // Add an entry to the PLT.
7213 template<bool big_endian>
7215 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7217 gold_assert(!gsym->has_plt_offset());
7219 // Note that when setting the PLT offset we skip the initial
7220 // reserved PLT entry.
7221 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7222 + sizeof(first_plt_entry));
7226 section_offset_type got_offset = this->got_plt_->current_data_size();
7228 // Every PLT entry needs a GOT entry which points back to the PLT
7229 // entry (this will be changed by the dynamic linker, normally
7230 // lazily when the function is called).
7231 this->got_plt_->set_current_data_size(got_offset + 4);
7233 // Every PLT entry needs a reloc.
7234 gsym->set_needs_dynsym_entry();
7235 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7238 // Note that we don't need to save the symbol. The contents of the
7239 // PLT are independent of which symbols are used. The symbols only
7240 // appear in the relocations.
7244 // FIXME: This is not very flexible. Right now this has only been tested
7245 // on armv5te. If we are to support additional architecture features like
7246 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7248 // The first entry in the PLT.
7249 template<bool big_endian>
7250 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7252 0xe52de004, // str lr, [sp, #-4]!
7253 0xe59fe004, // ldr lr, [pc, #4]
7254 0xe08fe00e, // add lr, pc, lr
7255 0xe5bef008, // ldr pc, [lr, #8]!
7256 0x00000000, // &GOT[0] - .
7259 // Subsequent entries in the PLT.
7261 template<bool big_endian>
7262 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7264 0xe28fc600, // add ip, pc, #0xNN00000
7265 0xe28cca00, // add ip, ip, #0xNN000
7266 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7269 // Write out the PLT. This uses the hand-coded instructions above,
7270 // and adjusts them as needed. This is all specified by the arm ELF
7271 // Processor Supplement.
7273 template<bool big_endian>
7275 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7277 const off_t offset = this->offset();
7278 const section_size_type oview_size =
7279 convert_to_section_size_type(this->data_size());
7280 unsigned char* const oview = of->get_output_view(offset, oview_size);
7282 const off_t got_file_offset = this->got_plt_->offset();
7283 const section_size_type got_size =
7284 convert_to_section_size_type(this->got_plt_->data_size());
7285 unsigned char* const got_view = of->get_output_view(got_file_offset,
7287 unsigned char* pov = oview;
7289 Arm_address plt_address = this->address();
7290 Arm_address got_address = this->got_plt_->address();
7292 // Write first PLT entry. All but the last word are constants.
7293 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7294 / sizeof(plt_entry[0]));
7295 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7296 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7297 // Last word in first PLT entry is &GOT[0] - .
7298 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7299 got_address - (plt_address + 16));
7300 pov += sizeof(first_plt_entry);
7302 unsigned char* got_pov = got_view;
7304 memset(got_pov, 0, 12);
7307 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7308 unsigned int plt_offset = sizeof(first_plt_entry);
7309 unsigned int plt_rel_offset = 0;
7310 unsigned int got_offset = 12;
7311 const unsigned int count = this->count_;
7312 for (unsigned int i = 0;
7315 pov += sizeof(plt_entry),
7317 plt_offset += sizeof(plt_entry),
7318 plt_rel_offset += rel_size,
7321 // Set and adjust the PLT entry itself.
7322 int32_t offset = ((got_address + got_offset)
7323 - (plt_address + plt_offset + 8));
7325 gold_assert(offset >= 0 && offset < 0x0fffffff);
7326 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7327 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7328 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7329 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7330 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7331 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7333 // Set the entry in the GOT.
7334 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7337 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7338 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7340 of->write_output_view(offset, oview_size, oview);
7341 of->write_output_view(got_file_offset, got_size, got_view);
7344 // Create a PLT entry for a global symbol.
7346 template<bool big_endian>
7348 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7351 if (gsym->has_plt_offset())
7354 if (this->plt_ == NULL)
7356 // Create the GOT sections first.
7357 this->got_section(symtab, layout);
7359 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7360 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7362 | elfcpp::SHF_EXECINSTR),
7363 this->plt_, ORDER_PLT, false);
7365 this->plt_->add_entry(gsym);
7368 // Return the number of entries in the PLT.
7370 template<bool big_endian>
7372 Target_arm<big_endian>::plt_entry_count() const
7374 if (this->plt_ == NULL)
7376 return this->plt_->entry_count();
7379 // Return the offset of the first non-reserved PLT entry.
7381 template<bool big_endian>
7383 Target_arm<big_endian>::first_plt_entry_offset() const
7385 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7388 // Return the size of each PLT entry.
7390 template<bool big_endian>
7392 Target_arm<big_endian>::plt_entry_size() const
7394 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7397 // Get the section to use for TLS_DESC relocations.
7399 template<bool big_endian>
7400 typename Target_arm<big_endian>::Reloc_section*
7401 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7403 return this->plt_section()->rel_tls_desc(layout);
7406 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7408 template<bool big_endian>
7410 Target_arm<big_endian>::define_tls_base_symbol(
7411 Symbol_table* symtab,
7414 if (this->tls_base_symbol_defined_)
7417 Output_segment* tls_segment = layout->tls_segment();
7418 if (tls_segment != NULL)
7420 bool is_exec = parameters->options().output_is_executable();
7421 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7422 Symbol_table::PREDEFINED,
7426 elfcpp::STV_HIDDEN, 0,
7428 ? Symbol::SEGMENT_END
7429 : Symbol::SEGMENT_START),
7432 this->tls_base_symbol_defined_ = true;
7435 // Create a GOT entry for the TLS module index.
7437 template<bool big_endian>
7439 Target_arm<big_endian>::got_mod_index_entry(
7440 Symbol_table* symtab,
7442 Sized_relobj<32, big_endian>* object)
7444 if (this->got_mod_index_offset_ == -1U)
7446 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7447 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7448 unsigned int got_offset;
7449 if (!parameters->doing_static_link())
7451 got_offset = got->add_constant(0);
7452 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7453 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7458 // We are doing a static link. Just mark it as belong to module 1,
7460 got_offset = got->add_constant(1);
7463 got->add_constant(0);
7464 this->got_mod_index_offset_ = got_offset;
7466 return this->got_mod_index_offset_;
7469 // Optimize the TLS relocation type based on what we know about the
7470 // symbol. IS_FINAL is true if the final address of this symbol is
7471 // known at link time.
7473 template<bool big_endian>
7474 tls::Tls_optimization
7475 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7477 // FIXME: Currently we do not do any TLS optimization.
7478 return tls::TLSOPT_NONE;
7481 // Report an unsupported relocation against a local symbol.
7483 template<bool big_endian>
7485 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7486 Sized_relobj<32, big_endian>* object,
7487 unsigned int r_type)
7489 gold_error(_("%s: unsupported reloc %u against local symbol"),
7490 object->name().c_str(), r_type);
7493 // We are about to emit a dynamic relocation of type R_TYPE. If the
7494 // dynamic linker does not support it, issue an error. The GNU linker
7495 // only issues a non-PIC error for an allocated read-only section.
7496 // Here we know the section is allocated, but we don't know that it is
7497 // read-only. But we check for all the relocation types which the
7498 // glibc dynamic linker supports, so it seems appropriate to issue an
7499 // error even if the section is not read-only.
7501 template<bool big_endian>
7503 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7504 unsigned int r_type)
7508 // These are the relocation types supported by glibc for ARM.
7509 case elfcpp::R_ARM_RELATIVE:
7510 case elfcpp::R_ARM_COPY:
7511 case elfcpp::R_ARM_GLOB_DAT:
7512 case elfcpp::R_ARM_JUMP_SLOT:
7513 case elfcpp::R_ARM_ABS32:
7514 case elfcpp::R_ARM_ABS32_NOI:
7515 case elfcpp::R_ARM_PC24:
7516 // FIXME: The following 3 types are not supported by Android's dynamic
7518 case elfcpp::R_ARM_TLS_DTPMOD32:
7519 case elfcpp::R_ARM_TLS_DTPOFF32:
7520 case elfcpp::R_ARM_TLS_TPOFF32:
7525 // This prevents us from issuing more than one error per reloc
7526 // section. But we can still wind up issuing more than one
7527 // error per object file.
7528 if (this->issued_non_pic_error_)
7530 const Arm_reloc_property* reloc_property =
7531 arm_reloc_property_table->get_reloc_property(r_type);
7532 gold_assert(reloc_property != NULL);
7533 object->error(_("requires unsupported dynamic reloc %s; "
7534 "recompile with -fPIC"),
7535 reloc_property->name().c_str());
7536 this->issued_non_pic_error_ = true;
7540 case elfcpp::R_ARM_NONE:
7545 // Scan a relocation for a local symbol.
7546 // FIXME: This only handles a subset of relocation types used by Android
7547 // on ARM v5te devices.
7549 template<bool big_endian>
7551 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7554 Sized_relobj<32, big_endian>* object,
7555 unsigned int data_shndx,
7556 Output_section* output_section,
7557 const elfcpp::Rel<32, big_endian>& reloc,
7558 unsigned int r_type,
7559 const elfcpp::Sym<32, big_endian>& lsym)
7561 r_type = get_real_reloc_type(r_type);
7564 case elfcpp::R_ARM_NONE:
7565 case elfcpp::R_ARM_V4BX:
7566 case elfcpp::R_ARM_GNU_VTENTRY:
7567 case elfcpp::R_ARM_GNU_VTINHERIT:
7570 case elfcpp::R_ARM_ABS32:
7571 case elfcpp::R_ARM_ABS32_NOI:
7572 // If building a shared library (or a position-independent
7573 // executable), we need to create a dynamic relocation for
7574 // this location. The relocation applied at link time will
7575 // apply the link-time value, so we flag the location with
7576 // an R_ARM_RELATIVE relocation so the dynamic loader can
7577 // relocate it easily.
7578 if (parameters->options().output_is_position_independent())
7580 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7581 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7582 // If we are to add more other reloc types than R_ARM_ABS32,
7583 // we need to add check_non_pic(object, r_type) here.
7584 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7585 output_section, data_shndx,
7586 reloc.get_r_offset());
7590 case elfcpp::R_ARM_ABS16:
7591 case elfcpp::R_ARM_ABS12:
7592 case elfcpp::R_ARM_THM_ABS5:
7593 case elfcpp::R_ARM_ABS8:
7594 case elfcpp::R_ARM_BASE_ABS:
7595 case elfcpp::R_ARM_MOVW_ABS_NC:
7596 case elfcpp::R_ARM_MOVT_ABS:
7597 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7598 case elfcpp::R_ARM_THM_MOVT_ABS:
7599 // If building a shared library (or a position-independent
7600 // executable), we need to create a dynamic relocation for
7601 // this location. Because the addend needs to remain in the
7602 // data section, we need to be careful not to apply this
7603 // relocation statically.
7604 if (parameters->options().output_is_position_independent())
7606 check_non_pic(object, r_type);
7607 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7608 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7609 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7610 rel_dyn->add_local(object, r_sym, r_type, output_section,
7611 data_shndx, reloc.get_r_offset());
7614 gold_assert(lsym.get_st_value() == 0);
7615 unsigned int shndx = lsym.get_st_shndx();
7617 shndx = object->adjust_sym_shndx(r_sym, shndx,
7620 object->error(_("section symbol %u has bad shndx %u"),
7623 rel_dyn->add_local_section(object, shndx,
7624 r_type, output_section,
7625 data_shndx, reloc.get_r_offset());
7630 case elfcpp::R_ARM_PC24:
7631 case elfcpp::R_ARM_REL32:
7632 case elfcpp::R_ARM_LDR_PC_G0:
7633 case elfcpp::R_ARM_SBREL32:
7634 case elfcpp::R_ARM_THM_CALL:
7635 case elfcpp::R_ARM_THM_PC8:
7636 case elfcpp::R_ARM_BASE_PREL:
7637 case elfcpp::R_ARM_PLT32:
7638 case elfcpp::R_ARM_CALL:
7639 case elfcpp::R_ARM_JUMP24:
7640 case elfcpp::R_ARM_THM_JUMP24:
7641 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7642 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7643 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7644 case elfcpp::R_ARM_SBREL31:
7645 case elfcpp::R_ARM_PREL31:
7646 case elfcpp::R_ARM_MOVW_PREL_NC:
7647 case elfcpp::R_ARM_MOVT_PREL:
7648 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7649 case elfcpp::R_ARM_THM_MOVT_PREL:
7650 case elfcpp::R_ARM_THM_JUMP19:
7651 case elfcpp::R_ARM_THM_JUMP6:
7652 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7653 case elfcpp::R_ARM_THM_PC12:
7654 case elfcpp::R_ARM_REL32_NOI:
7655 case elfcpp::R_ARM_ALU_PC_G0_NC:
7656 case elfcpp::R_ARM_ALU_PC_G0:
7657 case elfcpp::R_ARM_ALU_PC_G1_NC:
7658 case elfcpp::R_ARM_ALU_PC_G1:
7659 case elfcpp::R_ARM_ALU_PC_G2:
7660 case elfcpp::R_ARM_LDR_PC_G1:
7661 case elfcpp::R_ARM_LDR_PC_G2:
7662 case elfcpp::R_ARM_LDRS_PC_G0:
7663 case elfcpp::R_ARM_LDRS_PC_G1:
7664 case elfcpp::R_ARM_LDRS_PC_G2:
7665 case elfcpp::R_ARM_LDC_PC_G0:
7666 case elfcpp::R_ARM_LDC_PC_G1:
7667 case elfcpp::R_ARM_LDC_PC_G2:
7668 case elfcpp::R_ARM_ALU_SB_G0_NC:
7669 case elfcpp::R_ARM_ALU_SB_G0:
7670 case elfcpp::R_ARM_ALU_SB_G1_NC:
7671 case elfcpp::R_ARM_ALU_SB_G1:
7672 case elfcpp::R_ARM_ALU_SB_G2:
7673 case elfcpp::R_ARM_LDR_SB_G0:
7674 case elfcpp::R_ARM_LDR_SB_G1:
7675 case elfcpp::R_ARM_LDR_SB_G2:
7676 case elfcpp::R_ARM_LDRS_SB_G0:
7677 case elfcpp::R_ARM_LDRS_SB_G1:
7678 case elfcpp::R_ARM_LDRS_SB_G2:
7679 case elfcpp::R_ARM_LDC_SB_G0:
7680 case elfcpp::R_ARM_LDC_SB_G1:
7681 case elfcpp::R_ARM_LDC_SB_G2:
7682 case elfcpp::R_ARM_MOVW_BREL_NC:
7683 case elfcpp::R_ARM_MOVT_BREL:
7684 case elfcpp::R_ARM_MOVW_BREL:
7685 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7686 case elfcpp::R_ARM_THM_MOVT_BREL:
7687 case elfcpp::R_ARM_THM_MOVW_BREL:
7688 case elfcpp::R_ARM_THM_JUMP11:
7689 case elfcpp::R_ARM_THM_JUMP8:
7690 // We don't need to do anything for a relative addressing relocation
7691 // against a local symbol if it does not reference the GOT.
7694 case elfcpp::R_ARM_GOTOFF32:
7695 case elfcpp::R_ARM_GOTOFF12:
7696 // We need a GOT section:
7697 target->got_section(symtab, layout);
7700 case elfcpp::R_ARM_GOT_BREL:
7701 case elfcpp::R_ARM_GOT_PREL:
7703 // The symbol requires a GOT entry.
7704 Arm_output_data_got<big_endian>* got =
7705 target->got_section(symtab, layout);
7706 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7707 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7709 // If we are generating a shared object, we need to add a
7710 // dynamic RELATIVE relocation for this symbol's GOT entry.
7711 if (parameters->options().output_is_position_independent())
7713 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7714 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7715 rel_dyn->add_local_relative(
7716 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7717 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7723 case elfcpp::R_ARM_TARGET1:
7724 case elfcpp::R_ARM_TARGET2:
7725 // This should have been mapped to another type already.
7727 case elfcpp::R_ARM_COPY:
7728 case elfcpp::R_ARM_GLOB_DAT:
7729 case elfcpp::R_ARM_JUMP_SLOT:
7730 case elfcpp::R_ARM_RELATIVE:
7731 // These are relocations which should only be seen by the
7732 // dynamic linker, and should never be seen here.
7733 gold_error(_("%s: unexpected reloc %u in object file"),
7734 object->name().c_str(), r_type);
7738 // These are initial TLS relocs, which are expected when
7740 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7741 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7742 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7743 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7744 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7746 bool output_is_shared = parameters->options().shared();
7747 const tls::Tls_optimization optimized_type
7748 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7752 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7753 if (optimized_type == tls::TLSOPT_NONE)
7755 // Create a pair of GOT entries for the module index and
7756 // dtv-relative offset.
7757 Arm_output_data_got<big_endian>* got
7758 = target->got_section(symtab, layout);
7759 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7760 unsigned int shndx = lsym.get_st_shndx();
7762 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7765 object->error(_("local symbol %u has bad shndx %u"),
7770 if (!parameters->doing_static_link())
7771 got->add_local_pair_with_rel(object, r_sym, shndx,
7773 target->rel_dyn_section(layout),
7774 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7776 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7780 // FIXME: TLS optimization not supported yet.
7784 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7785 if (optimized_type == tls::TLSOPT_NONE)
7787 // Create a GOT entry for the module index.
7788 target->got_mod_index_entry(symtab, layout, object);
7791 // FIXME: TLS optimization not supported yet.
7795 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7798 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7799 layout->set_has_static_tls();
7800 if (optimized_type == tls::TLSOPT_NONE)
7802 // Create a GOT entry for the tp-relative offset.
7803 Arm_output_data_got<big_endian>* got
7804 = target->got_section(symtab, layout);
7805 unsigned int r_sym =
7806 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7807 if (!parameters->doing_static_link())
7808 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7809 target->rel_dyn_section(layout),
7810 elfcpp::R_ARM_TLS_TPOFF32);
7811 else if (!object->local_has_got_offset(r_sym,
7812 GOT_TYPE_TLS_OFFSET))
7814 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7815 unsigned int got_offset =
7816 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7817 got->add_static_reloc(got_offset,
7818 elfcpp::R_ARM_TLS_TPOFF32, object,
7823 // FIXME: TLS optimization not supported yet.
7827 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7828 layout->set_has_static_tls();
7829 if (output_is_shared)
7831 // We need to create a dynamic relocation.
7832 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7833 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7834 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7835 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7836 output_section, data_shndx,
7837 reloc.get_r_offset());
7848 unsupported_reloc_local(object, r_type);
7853 // Report an unsupported relocation against a global symbol.
7855 template<bool big_endian>
7857 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7858 Sized_relobj<32, big_endian>* object,
7859 unsigned int r_type,
7862 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7863 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7866 template<bool big_endian>
7868 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
7869 unsigned int r_type)
7873 case elfcpp::R_ARM_PC24:
7874 case elfcpp::R_ARM_THM_CALL:
7875 case elfcpp::R_ARM_PLT32:
7876 case elfcpp::R_ARM_CALL:
7877 case elfcpp::R_ARM_JUMP24:
7878 case elfcpp::R_ARM_THM_JUMP24:
7879 case elfcpp::R_ARM_SBREL31:
7880 case elfcpp::R_ARM_PREL31:
7881 case elfcpp::R_ARM_THM_JUMP19:
7882 case elfcpp::R_ARM_THM_JUMP6:
7883 case elfcpp::R_ARM_THM_JUMP11:
7884 case elfcpp::R_ARM_THM_JUMP8:
7885 // All the relocations above are branches except SBREL31 and PREL31.
7889 // Be conservative and assume this is a function pointer.
7894 template<bool big_endian>
7896 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
7899 Target_arm<big_endian>* target,
7900 Sized_relobj<32, big_endian>*,
7903 const elfcpp::Rel<32, big_endian>&,
7904 unsigned int r_type,
7905 const elfcpp::Sym<32, big_endian>&)
7907 r_type = target->get_real_reloc_type(r_type);
7908 return possible_function_pointer_reloc(r_type);
7911 template<bool big_endian>
7913 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
7916 Target_arm<big_endian>* target,
7917 Sized_relobj<32, big_endian>*,
7920 const elfcpp::Rel<32, big_endian>&,
7921 unsigned int r_type,
7924 // GOT is not a function.
7925 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7928 r_type = target->get_real_reloc_type(r_type);
7929 return possible_function_pointer_reloc(r_type);
7932 // Scan a relocation for a global symbol.
7934 template<bool big_endian>
7936 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7939 Sized_relobj<32, big_endian>* object,
7940 unsigned int data_shndx,
7941 Output_section* output_section,
7942 const elfcpp::Rel<32, big_endian>& reloc,
7943 unsigned int r_type,
7946 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7947 // section. We check here to avoid creating a dynamic reloc against
7948 // _GLOBAL_OFFSET_TABLE_.
7949 if (!target->has_got_section()
7950 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7951 target->got_section(symtab, layout);
7953 r_type = get_real_reloc_type(r_type);
7956 case elfcpp::R_ARM_NONE:
7957 case elfcpp::R_ARM_V4BX:
7958 case elfcpp::R_ARM_GNU_VTENTRY:
7959 case elfcpp::R_ARM_GNU_VTINHERIT:
7962 case elfcpp::R_ARM_ABS32:
7963 case elfcpp::R_ARM_ABS16:
7964 case elfcpp::R_ARM_ABS12:
7965 case elfcpp::R_ARM_THM_ABS5:
7966 case elfcpp::R_ARM_ABS8:
7967 case elfcpp::R_ARM_BASE_ABS:
7968 case elfcpp::R_ARM_MOVW_ABS_NC:
7969 case elfcpp::R_ARM_MOVT_ABS:
7970 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7971 case elfcpp::R_ARM_THM_MOVT_ABS:
7972 case elfcpp::R_ARM_ABS32_NOI:
7973 // Absolute addressing relocations.
7975 // Make a PLT entry if necessary.
7976 if (this->symbol_needs_plt_entry(gsym))
7978 target->make_plt_entry(symtab, layout, gsym);
7979 // Since this is not a PC-relative relocation, we may be
7980 // taking the address of a function. In that case we need to
7981 // set the entry in the dynamic symbol table to the address of
7983 if (gsym->is_from_dynobj() && !parameters->options().shared())
7984 gsym->set_needs_dynsym_value();
7986 // Make a dynamic relocation if necessary.
7987 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7989 if (gsym->may_need_copy_reloc())
7991 target->copy_reloc(symtab, layout, object,
7992 data_shndx, output_section, gsym, reloc);
7994 else if ((r_type == elfcpp::R_ARM_ABS32
7995 || r_type == elfcpp::R_ARM_ABS32_NOI)
7996 && gsym->can_use_relative_reloc(false))
7998 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7999 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8000 output_section, object,
8001 data_shndx, reloc.get_r_offset());
8005 check_non_pic(object, r_type);
8006 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8007 rel_dyn->add_global(gsym, r_type, output_section, object,
8008 data_shndx, reloc.get_r_offset());
8014 case elfcpp::R_ARM_GOTOFF32:
8015 case elfcpp::R_ARM_GOTOFF12:
8016 // We need a GOT section.
8017 target->got_section(symtab, layout);
8020 case elfcpp::R_ARM_REL32:
8021 case elfcpp::R_ARM_LDR_PC_G0:
8022 case elfcpp::R_ARM_SBREL32:
8023 case elfcpp::R_ARM_THM_PC8:
8024 case elfcpp::R_ARM_BASE_PREL:
8025 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8026 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8027 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8028 case elfcpp::R_ARM_MOVW_PREL_NC:
8029 case elfcpp::R_ARM_MOVT_PREL:
8030 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8031 case elfcpp::R_ARM_THM_MOVT_PREL:
8032 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8033 case elfcpp::R_ARM_THM_PC12:
8034 case elfcpp::R_ARM_REL32_NOI:
8035 case elfcpp::R_ARM_ALU_PC_G0_NC:
8036 case elfcpp::R_ARM_ALU_PC_G0:
8037 case elfcpp::R_ARM_ALU_PC_G1_NC:
8038 case elfcpp::R_ARM_ALU_PC_G1:
8039 case elfcpp::R_ARM_ALU_PC_G2:
8040 case elfcpp::R_ARM_LDR_PC_G1:
8041 case elfcpp::R_ARM_LDR_PC_G2:
8042 case elfcpp::R_ARM_LDRS_PC_G0:
8043 case elfcpp::R_ARM_LDRS_PC_G1:
8044 case elfcpp::R_ARM_LDRS_PC_G2:
8045 case elfcpp::R_ARM_LDC_PC_G0:
8046 case elfcpp::R_ARM_LDC_PC_G1:
8047 case elfcpp::R_ARM_LDC_PC_G2:
8048 case elfcpp::R_ARM_ALU_SB_G0_NC:
8049 case elfcpp::R_ARM_ALU_SB_G0:
8050 case elfcpp::R_ARM_ALU_SB_G1_NC:
8051 case elfcpp::R_ARM_ALU_SB_G1:
8052 case elfcpp::R_ARM_ALU_SB_G2:
8053 case elfcpp::R_ARM_LDR_SB_G0:
8054 case elfcpp::R_ARM_LDR_SB_G1:
8055 case elfcpp::R_ARM_LDR_SB_G2:
8056 case elfcpp::R_ARM_LDRS_SB_G0:
8057 case elfcpp::R_ARM_LDRS_SB_G1:
8058 case elfcpp::R_ARM_LDRS_SB_G2:
8059 case elfcpp::R_ARM_LDC_SB_G0:
8060 case elfcpp::R_ARM_LDC_SB_G1:
8061 case elfcpp::R_ARM_LDC_SB_G2:
8062 case elfcpp::R_ARM_MOVW_BREL_NC:
8063 case elfcpp::R_ARM_MOVT_BREL:
8064 case elfcpp::R_ARM_MOVW_BREL:
8065 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8066 case elfcpp::R_ARM_THM_MOVT_BREL:
8067 case elfcpp::R_ARM_THM_MOVW_BREL:
8068 // Relative addressing relocations.
8070 // Make a dynamic relocation if necessary.
8071 int flags = Symbol::NON_PIC_REF;
8072 if (gsym->needs_dynamic_reloc(flags))
8074 if (target->may_need_copy_reloc(gsym))
8076 target->copy_reloc(symtab, layout, object,
8077 data_shndx, output_section, gsym, reloc);
8081 check_non_pic(object, r_type);
8082 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8083 rel_dyn->add_global(gsym, r_type, output_section, object,
8084 data_shndx, reloc.get_r_offset());
8090 case elfcpp::R_ARM_PC24:
8091 case elfcpp::R_ARM_THM_CALL:
8092 case elfcpp::R_ARM_PLT32:
8093 case elfcpp::R_ARM_CALL:
8094 case elfcpp::R_ARM_JUMP24:
8095 case elfcpp::R_ARM_THM_JUMP24:
8096 case elfcpp::R_ARM_SBREL31:
8097 case elfcpp::R_ARM_PREL31:
8098 case elfcpp::R_ARM_THM_JUMP19:
8099 case elfcpp::R_ARM_THM_JUMP6:
8100 case elfcpp::R_ARM_THM_JUMP11:
8101 case elfcpp::R_ARM_THM_JUMP8:
8102 // All the relocation above are branches except for the PREL31 ones.
8103 // A PREL31 relocation can point to a personality function in a shared
8104 // library. In that case we want to use a PLT because we want to
8105 // call the personality routine and the dyanmic linkers we care about
8106 // do not support dynamic PREL31 relocations. An REL31 relocation may
8107 // point to a function whose unwinding behaviour is being described but
8108 // we will not mistakenly generate a PLT for that because we should use
8109 // a local section symbol.
8111 // If the symbol is fully resolved, this is just a relative
8112 // local reloc. Otherwise we need a PLT entry.
8113 if (gsym->final_value_is_known())
8115 // If building a shared library, we can also skip the PLT entry
8116 // if the symbol is defined in the output file and is protected
8118 if (gsym->is_defined()
8119 && !gsym->is_from_dynobj()
8120 && !gsym->is_preemptible())
8122 target->make_plt_entry(symtab, layout, gsym);
8125 case elfcpp::R_ARM_GOT_BREL:
8126 case elfcpp::R_ARM_GOT_ABS:
8127 case elfcpp::R_ARM_GOT_PREL:
8129 // The symbol requires a GOT entry.
8130 Arm_output_data_got<big_endian>* got =
8131 target->got_section(symtab, layout);
8132 if (gsym->final_value_is_known())
8133 got->add_global(gsym, GOT_TYPE_STANDARD);
8136 // If this symbol is not fully resolved, we need to add a
8137 // GOT entry with a dynamic relocation.
8138 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8139 if (gsym->is_from_dynobj()
8140 || gsym->is_undefined()
8141 || gsym->is_preemptible())
8142 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8143 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8146 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8147 rel_dyn->add_global_relative(
8148 gsym, elfcpp::R_ARM_RELATIVE, got,
8149 gsym->got_offset(GOT_TYPE_STANDARD));
8155 case elfcpp::R_ARM_TARGET1:
8156 case elfcpp::R_ARM_TARGET2:
8157 // These should have been mapped to other types already.
8159 case elfcpp::R_ARM_COPY:
8160 case elfcpp::R_ARM_GLOB_DAT:
8161 case elfcpp::R_ARM_JUMP_SLOT:
8162 case elfcpp::R_ARM_RELATIVE:
8163 // These are relocations which should only be seen by the
8164 // dynamic linker, and should never be seen here.
8165 gold_error(_("%s: unexpected reloc %u in object file"),
8166 object->name().c_str(), r_type);
8169 // These are initial tls relocs, which are expected when
8171 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8172 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8173 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8174 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8175 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8177 const bool is_final = gsym->final_value_is_known();
8178 const tls::Tls_optimization optimized_type
8179 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8182 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8183 if (optimized_type == tls::TLSOPT_NONE)
8185 // Create a pair of GOT entries for the module index and
8186 // dtv-relative offset.
8187 Arm_output_data_got<big_endian>* got
8188 = target->got_section(symtab, layout);
8189 if (!parameters->doing_static_link())
8190 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8191 target->rel_dyn_section(layout),
8192 elfcpp::R_ARM_TLS_DTPMOD32,
8193 elfcpp::R_ARM_TLS_DTPOFF32);
8195 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8198 // FIXME: TLS optimization not supported yet.
8202 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8203 if (optimized_type == tls::TLSOPT_NONE)
8205 // Create a GOT entry for the module index.
8206 target->got_mod_index_entry(symtab, layout, object);
8209 // FIXME: TLS optimization not supported yet.
8213 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8216 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8217 layout->set_has_static_tls();
8218 if (optimized_type == tls::TLSOPT_NONE)
8220 // Create a GOT entry for the tp-relative offset.
8221 Arm_output_data_got<big_endian>* got
8222 = target->got_section(symtab, layout);
8223 if (!parameters->doing_static_link())
8224 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8225 target->rel_dyn_section(layout),
8226 elfcpp::R_ARM_TLS_TPOFF32);
8227 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8229 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8230 unsigned int got_offset =
8231 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8232 got->add_static_reloc(got_offset,
8233 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8237 // FIXME: TLS optimization not supported yet.
8241 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8242 layout->set_has_static_tls();
8243 if (parameters->options().shared())
8245 // We need to create a dynamic relocation.
8246 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8247 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8248 output_section, object,
8249 data_shndx, reloc.get_r_offset());
8260 unsupported_reloc_global(object, r_type, gsym);
8265 // Process relocations for gc.
8267 template<bool big_endian>
8269 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8271 Sized_relobj<32, big_endian>* object,
8272 unsigned int data_shndx,
8274 const unsigned char* prelocs,
8276 Output_section* output_section,
8277 bool needs_special_offset_handling,
8278 size_t local_symbol_count,
8279 const unsigned char* plocal_symbols)
8281 typedef Target_arm<big_endian> Arm;
8282 typedef typename Target_arm<big_endian>::Scan Scan;
8284 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8285 typename Target_arm::Relocatable_size_for_reloc>(
8294 needs_special_offset_handling,
8299 // Scan relocations for a section.
8301 template<bool big_endian>
8303 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8305 Sized_relobj<32, big_endian>* object,
8306 unsigned int data_shndx,
8307 unsigned int sh_type,
8308 const unsigned char* prelocs,
8310 Output_section* output_section,
8311 bool needs_special_offset_handling,
8312 size_t local_symbol_count,
8313 const unsigned char* plocal_symbols)
8315 typedef typename Target_arm<big_endian>::Scan Scan;
8316 if (sh_type == elfcpp::SHT_RELA)
8318 gold_error(_("%s: unsupported RELA reloc section"),
8319 object->name().c_str());
8323 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8332 needs_special_offset_handling,
8337 // Finalize the sections.
8339 template<bool big_endian>
8341 Target_arm<big_endian>::do_finalize_sections(
8343 const Input_objects* input_objects,
8344 Symbol_table* symtab)
8346 bool merged_any_attributes = false;
8347 // Merge processor-specific flags.
8348 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8349 p != input_objects->relobj_end();
8352 Arm_relobj<big_endian>* arm_relobj =
8353 Arm_relobj<big_endian>::as_arm_relobj(*p);
8354 if (arm_relobj->merge_flags_and_attributes())
8356 this->merge_processor_specific_flags(
8358 arm_relobj->processor_specific_flags());
8359 this->merge_object_attributes(arm_relobj->name().c_str(),
8360 arm_relobj->attributes_section_data());
8361 merged_any_attributes = true;
8365 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8366 p != input_objects->dynobj_end();
8369 Arm_dynobj<big_endian>* arm_dynobj =
8370 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8371 this->merge_processor_specific_flags(
8373 arm_dynobj->processor_specific_flags());
8374 this->merge_object_attributes(arm_dynobj->name().c_str(),
8375 arm_dynobj->attributes_section_data());
8376 merged_any_attributes = true;
8379 // Create an empty uninitialized attribute section if we still don't have it
8380 // at this moment. This happens if there is no attributes sections in all
8382 if (this->attributes_section_data_ == NULL)
8383 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8386 const Object_attribute* cpu_arch_attr =
8387 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8388 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8389 this->set_may_use_blx(true);
8391 // Check if we need to use Cortex-A8 workaround.
8392 if (parameters->options().user_set_fix_cortex_a8())
8393 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8396 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8397 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8399 const Object_attribute* cpu_arch_profile_attr =
8400 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8401 this->fix_cortex_a8_ =
8402 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8403 && (cpu_arch_profile_attr->int_value() == 'A'
8404 || cpu_arch_profile_attr->int_value() == 0));
8407 // Check if we can use V4BX interworking.
8408 // The V4BX interworking stub contains BX instruction,
8409 // which is not specified for some profiles.
8410 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8411 && !this->may_use_blx())
8412 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8413 "the target profile does not support BX instruction"));
8415 // Fill in some more dynamic tags.
8416 const Reloc_section* rel_plt = (this->plt_ == NULL
8418 : this->plt_->rel_plt());
8419 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8420 this->rel_dyn_, true, false);
8422 // Emit any relocs we saved in an attempt to avoid generating COPY
8424 if (this->copy_relocs_.any_saved_relocs())
8425 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8427 // Handle the .ARM.exidx section.
8428 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8430 if (!parameters->options().relocatable())
8432 if (exidx_section != NULL
8433 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8435 // Create __exidx_start and __exdix_end symbols.
8436 symtab->define_in_output_data("__exidx_start", NULL,
8437 Symbol_table::PREDEFINED,
8438 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8439 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8441 symtab->define_in_output_data("__exidx_end", NULL,
8442 Symbol_table::PREDEFINED,
8443 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8444 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8447 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8448 // the .ARM.exidx section.
8449 if (!layout->script_options()->saw_phdrs_clause())
8451 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8454 Output_segment* exidx_segment =
8455 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8456 exidx_segment->add_output_section_to_nonload(exidx_section,
8462 symtab->define_as_constant("__exidx_start", NULL,
8463 Symbol_table::PREDEFINED,
8464 0, 0, elfcpp::STT_OBJECT,
8465 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8467 symtab->define_as_constant("__exidx_end", NULL,
8468 Symbol_table::PREDEFINED,
8469 0, 0, elfcpp::STT_OBJECT,
8470 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8475 // Create an .ARM.attributes section if we have merged any attributes
8477 if (merged_any_attributes)
8479 Output_attributes_section_data* attributes_section =
8480 new Output_attributes_section_data(*this->attributes_section_data_);
8481 layout->add_output_section_data(".ARM.attributes",
8482 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8483 attributes_section, ORDER_INVALID,
8487 // Fix up links in section EXIDX headers.
8488 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8489 p != layout->section_list().end();
8491 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8493 Arm_output_section<big_endian>* os =
8494 Arm_output_section<big_endian>::as_arm_output_section(*p);
8495 os->set_exidx_section_link();
8499 // Return whether a direct absolute static relocation needs to be applied.
8500 // In cases where Scan::local() or Scan::global() has created
8501 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8502 // of the relocation is carried in the data, and we must not
8503 // apply the static relocation.
8505 template<bool big_endian>
8507 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8508 const Sized_symbol<32>* gsym,
8511 Output_section* output_section)
8513 // If the output section is not allocated, then we didn't call
8514 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8516 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8519 // For local symbols, we will have created a non-RELATIVE dynamic
8520 // relocation only if (a) the output is position independent,
8521 // (b) the relocation is absolute (not pc- or segment-relative), and
8522 // (c) the relocation is not 32 bits wide.
8524 return !(parameters->options().output_is_position_independent()
8525 && (ref_flags & Symbol::ABSOLUTE_REF)
8528 // For global symbols, we use the same helper routines used in the
8529 // scan pass. If we did not create a dynamic relocation, or if we
8530 // created a RELATIVE dynamic relocation, we should apply the static
8532 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8533 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8534 && gsym->can_use_relative_reloc(ref_flags
8535 & Symbol::FUNCTION_CALL);
8536 return !has_dyn || is_rel;
8539 // Perform a relocation.
8541 template<bool big_endian>
8543 Target_arm<big_endian>::Relocate::relocate(
8544 const Relocate_info<32, big_endian>* relinfo,
8546 Output_section* output_section,
8548 const elfcpp::Rel<32, big_endian>& rel,
8549 unsigned int r_type,
8550 const Sized_symbol<32>* gsym,
8551 const Symbol_value<32>* psymval,
8552 unsigned char* view,
8553 Arm_address address,
8554 section_size_type view_size)
8556 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8558 r_type = get_real_reloc_type(r_type);
8559 const Arm_reloc_property* reloc_property =
8560 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8561 if (reloc_property == NULL)
8563 std::string reloc_name =
8564 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8565 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8566 _("cannot relocate %s in object file"),
8567 reloc_name.c_str());
8571 const Arm_relobj<big_endian>* object =
8572 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8574 // If the final branch target of a relocation is THUMB instruction, this
8575 // is 1. Otherwise it is 0.
8576 Arm_address thumb_bit = 0;
8577 Symbol_value<32> symval;
8578 bool is_weakly_undefined_without_plt = false;
8579 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8583 // This is a global symbol. Determine if we use PLT and if the
8584 // final target is THUMB.
8585 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8587 // This uses a PLT, change the symbol value.
8588 symval.set_output_value(target->plt_section()->address()
8589 + gsym->plt_offset());
8592 else if (gsym->is_weak_undefined())
8594 // This is a weakly undefined symbol and we do not use PLT
8595 // for this relocation. A branch targeting this symbol will
8596 // be converted into an NOP.
8597 is_weakly_undefined_without_plt = true;
8599 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8601 // This relocation uses the symbol value but the symbol is
8602 // undefined. Exit early and have the caller reporting an
8608 // Set thumb bit if symbol:
8609 // -Has type STT_ARM_TFUNC or
8610 // -Has type STT_FUNC, is defined and with LSB in value set.
8612 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8613 || (gsym->type() == elfcpp::STT_FUNC
8614 && !gsym->is_undefined()
8615 && ((psymval->value(object, 0) & 1) != 0)))
8622 // This is a local symbol. Determine if the final target is THUMB.
8623 // We saved this information when all the local symbols were read.
8624 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8625 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8626 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8631 // This is a fake relocation synthesized for a stub. It does not have
8632 // a real symbol. We just look at the LSB of the symbol value to
8633 // determine if the target is THUMB or not.
8634 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8637 // Strip LSB if this points to a THUMB target.
8639 && reloc_property->uses_thumb_bit()
8640 && ((psymval->value(object, 0) & 1) != 0))
8642 Arm_address stripped_value =
8643 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8644 symval.set_output_value(stripped_value);
8648 // Get the GOT offset if needed.
8649 // The GOT pointer points to the end of the GOT section.
8650 // We need to subtract the size of the GOT section to get
8651 // the actual offset to use in the relocation.
8652 bool have_got_offset = false;
8653 unsigned int got_offset = 0;
8656 case elfcpp::R_ARM_GOT_BREL:
8657 case elfcpp::R_ARM_GOT_PREL:
8660 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8661 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8662 - target->got_size());
8666 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8667 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8668 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8669 - target->got_size());
8671 have_got_offset = true;
8678 // To look up relocation stubs, we need to pass the symbol table index of
8680 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8682 // Get the addressing origin of the output segment defining the
8683 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8684 Arm_address sym_origin = 0;
8685 if (reloc_property->uses_symbol_base())
8687 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8688 // R_ARM_BASE_ABS with the NULL symbol will give the
8689 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8690 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8691 sym_origin = target->got_plt_section()->address();
8692 else if (gsym == NULL)
8694 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8695 sym_origin = gsym->output_segment()->vaddr();
8696 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8697 sym_origin = gsym->output_data()->address();
8699 // TODO: Assumes the segment base to be zero for the global symbols
8700 // till the proper support for the segment-base-relative addressing
8701 // will be implemented. This is consistent with GNU ld.
8704 // For relative addressing relocation, find out the relative address base.
8705 Arm_address relative_address_base = 0;
8706 switch(reloc_property->relative_address_base())
8708 case Arm_reloc_property::RAB_NONE:
8709 // Relocations with relative address bases RAB_TLS and RAB_tp are
8710 // handled by relocate_tls. So we do not need to do anything here.
8711 case Arm_reloc_property::RAB_TLS:
8712 case Arm_reloc_property::RAB_tp:
8714 case Arm_reloc_property::RAB_B_S:
8715 relative_address_base = sym_origin;
8717 case Arm_reloc_property::RAB_GOT_ORG:
8718 relative_address_base = target->got_plt_section()->address();
8720 case Arm_reloc_property::RAB_P:
8721 relative_address_base = address;
8723 case Arm_reloc_property::RAB_Pa:
8724 relative_address_base = address & 0xfffffffcU;
8730 typename Arm_relocate_functions::Status reloc_status =
8731 Arm_relocate_functions::STATUS_OKAY;
8732 bool check_overflow = reloc_property->checks_overflow();
8735 case elfcpp::R_ARM_NONE:
8738 case elfcpp::R_ARM_ABS8:
8739 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8741 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8744 case elfcpp::R_ARM_ABS12:
8745 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8747 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8750 case elfcpp::R_ARM_ABS16:
8751 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8753 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8756 case elfcpp::R_ARM_ABS32:
8757 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8759 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8763 case elfcpp::R_ARM_ABS32_NOI:
8764 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8766 // No thumb bit for this relocation: (S + A)
8767 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8771 case elfcpp::R_ARM_MOVW_ABS_NC:
8772 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8774 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8779 case elfcpp::R_ARM_MOVT_ABS:
8780 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8782 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8785 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8786 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8788 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8789 0, thumb_bit, false);
8792 case elfcpp::R_ARM_THM_MOVT_ABS:
8793 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8795 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8799 case elfcpp::R_ARM_MOVW_PREL_NC:
8800 case elfcpp::R_ARM_MOVW_BREL_NC:
8801 case elfcpp::R_ARM_MOVW_BREL:
8803 Arm_relocate_functions::movw(view, object, psymval,
8804 relative_address_base, thumb_bit,
8808 case elfcpp::R_ARM_MOVT_PREL:
8809 case elfcpp::R_ARM_MOVT_BREL:
8811 Arm_relocate_functions::movt(view, object, psymval,
8812 relative_address_base);
8815 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8816 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8817 case elfcpp::R_ARM_THM_MOVW_BREL:
8819 Arm_relocate_functions::thm_movw(view, object, psymval,
8820 relative_address_base,
8821 thumb_bit, check_overflow);
8824 case elfcpp::R_ARM_THM_MOVT_PREL:
8825 case elfcpp::R_ARM_THM_MOVT_BREL:
8827 Arm_relocate_functions::thm_movt(view, object, psymval,
8828 relative_address_base);
8831 case elfcpp::R_ARM_REL32:
8832 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8833 address, thumb_bit);
8836 case elfcpp::R_ARM_THM_ABS5:
8837 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8839 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8842 // Thumb long branches.
8843 case elfcpp::R_ARM_THM_CALL:
8844 case elfcpp::R_ARM_THM_XPC22:
8845 case elfcpp::R_ARM_THM_JUMP24:
8847 Arm_relocate_functions::thumb_branch_common(
8848 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8849 thumb_bit, is_weakly_undefined_without_plt);
8852 case elfcpp::R_ARM_GOTOFF32:
8854 Arm_address got_origin;
8855 got_origin = target->got_plt_section()->address();
8856 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8857 got_origin, thumb_bit);
8861 case elfcpp::R_ARM_BASE_PREL:
8862 gold_assert(gsym != NULL);
8864 Arm_relocate_functions::base_prel(view, sym_origin, address);
8867 case elfcpp::R_ARM_BASE_ABS:
8869 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8873 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8877 case elfcpp::R_ARM_GOT_BREL:
8878 gold_assert(have_got_offset);
8879 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8882 case elfcpp::R_ARM_GOT_PREL:
8883 gold_assert(have_got_offset);
8884 // Get the address origin for GOT PLT, which is allocated right
8885 // after the GOT section, to calculate an absolute address of
8886 // the symbol GOT entry (got_origin + got_offset).
8887 Arm_address got_origin;
8888 got_origin = target->got_plt_section()->address();
8889 reloc_status = Arm_relocate_functions::got_prel(view,
8890 got_origin + got_offset,
8894 case elfcpp::R_ARM_PLT32:
8895 case elfcpp::R_ARM_CALL:
8896 case elfcpp::R_ARM_JUMP24:
8897 case elfcpp::R_ARM_XPC25:
8898 gold_assert(gsym == NULL
8899 || gsym->has_plt_offset()
8900 || gsym->final_value_is_known()
8901 || (gsym->is_defined()
8902 && !gsym->is_from_dynobj()
8903 && !gsym->is_preemptible()));
8905 Arm_relocate_functions::arm_branch_common(
8906 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8907 thumb_bit, is_weakly_undefined_without_plt);
8910 case elfcpp::R_ARM_THM_JUMP19:
8912 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8916 case elfcpp::R_ARM_THM_JUMP6:
8918 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8921 case elfcpp::R_ARM_THM_JUMP8:
8923 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8926 case elfcpp::R_ARM_THM_JUMP11:
8928 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8931 case elfcpp::R_ARM_PREL31:
8932 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8933 address, thumb_bit);
8936 case elfcpp::R_ARM_V4BX:
8937 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8939 const bool is_v4bx_interworking =
8940 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8942 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8943 is_v4bx_interworking);
8947 case elfcpp::R_ARM_THM_PC8:
8949 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8952 case elfcpp::R_ARM_THM_PC12:
8954 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8957 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8959 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8963 case elfcpp::R_ARM_ALU_PC_G0_NC:
8964 case elfcpp::R_ARM_ALU_PC_G0:
8965 case elfcpp::R_ARM_ALU_PC_G1_NC:
8966 case elfcpp::R_ARM_ALU_PC_G1:
8967 case elfcpp::R_ARM_ALU_PC_G2:
8968 case elfcpp::R_ARM_ALU_SB_G0_NC:
8969 case elfcpp::R_ARM_ALU_SB_G0:
8970 case elfcpp::R_ARM_ALU_SB_G1_NC:
8971 case elfcpp::R_ARM_ALU_SB_G1:
8972 case elfcpp::R_ARM_ALU_SB_G2:
8974 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8975 reloc_property->group_index(),
8976 relative_address_base,
8977 thumb_bit, check_overflow);
8980 case elfcpp::R_ARM_LDR_PC_G0:
8981 case elfcpp::R_ARM_LDR_PC_G1:
8982 case elfcpp::R_ARM_LDR_PC_G2:
8983 case elfcpp::R_ARM_LDR_SB_G0:
8984 case elfcpp::R_ARM_LDR_SB_G1:
8985 case elfcpp::R_ARM_LDR_SB_G2:
8987 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8988 reloc_property->group_index(),
8989 relative_address_base);
8992 case elfcpp::R_ARM_LDRS_PC_G0:
8993 case elfcpp::R_ARM_LDRS_PC_G1:
8994 case elfcpp::R_ARM_LDRS_PC_G2:
8995 case elfcpp::R_ARM_LDRS_SB_G0:
8996 case elfcpp::R_ARM_LDRS_SB_G1:
8997 case elfcpp::R_ARM_LDRS_SB_G2:
8999 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9000 reloc_property->group_index(),
9001 relative_address_base);
9004 case elfcpp::R_ARM_LDC_PC_G0:
9005 case elfcpp::R_ARM_LDC_PC_G1:
9006 case elfcpp::R_ARM_LDC_PC_G2:
9007 case elfcpp::R_ARM_LDC_SB_G0:
9008 case elfcpp::R_ARM_LDC_SB_G1:
9009 case elfcpp::R_ARM_LDC_SB_G2:
9011 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9012 reloc_property->group_index(),
9013 relative_address_base);
9016 // These are initial tls relocs, which are expected when
9018 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9019 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9020 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9021 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9022 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9024 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9025 view, address, view_size);
9032 // Report any errors.
9033 switch (reloc_status)
9035 case Arm_relocate_functions::STATUS_OKAY:
9037 case Arm_relocate_functions::STATUS_OVERFLOW:
9038 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9039 _("relocation overflow in %s"),
9040 reloc_property->name().c_str());
9042 case Arm_relocate_functions::STATUS_BAD_RELOC:
9043 gold_error_at_location(
9047 _("unexpected opcode while processing relocation %s"),
9048 reloc_property->name().c_str());
9057 // Perform a TLS relocation.
9059 template<bool big_endian>
9060 inline typename Arm_relocate_functions<big_endian>::Status
9061 Target_arm<big_endian>::Relocate::relocate_tls(
9062 const Relocate_info<32, big_endian>* relinfo,
9063 Target_arm<big_endian>* target,
9065 const elfcpp::Rel<32, big_endian>& rel,
9066 unsigned int r_type,
9067 const Sized_symbol<32>* gsym,
9068 const Symbol_value<32>* psymval,
9069 unsigned char* view,
9070 elfcpp::Elf_types<32>::Elf_Addr address,
9071 section_size_type /*view_size*/ )
9073 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9074 typedef Relocate_functions<32, big_endian> RelocFuncs;
9075 Output_segment* tls_segment = relinfo->layout->tls_segment();
9077 const Sized_relobj<32, big_endian>* object = relinfo->object;
9079 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9081 const bool is_final = (gsym == NULL
9082 ? !parameters->options().shared()
9083 : gsym->final_value_is_known());
9084 const tls::Tls_optimization optimized_type
9085 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9088 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9090 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9091 unsigned int got_offset;
9094 gold_assert(gsym->has_got_offset(got_type));
9095 got_offset = gsym->got_offset(got_type) - target->got_size();
9099 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9100 gold_assert(object->local_has_got_offset(r_sym, got_type));
9101 got_offset = (object->local_got_offset(r_sym, got_type)
9102 - target->got_size());
9104 if (optimized_type == tls::TLSOPT_NONE)
9106 Arm_address got_entry =
9107 target->got_plt_section()->address() + got_offset;
9109 // Relocate the field with the PC relative offset of the pair of
9111 RelocFuncs::pcrel32(view, got_entry, address);
9112 return ArmRelocFuncs::STATUS_OKAY;
9117 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9118 if (optimized_type == tls::TLSOPT_NONE)
9120 // Relocate the field with the offset of the GOT entry for
9121 // the module index.
9122 unsigned int got_offset;
9123 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9124 - target->got_size());
9125 Arm_address got_entry =
9126 target->got_plt_section()->address() + got_offset;
9128 // Relocate the field with the PC relative offset of the pair of
9130 RelocFuncs::pcrel32(view, got_entry, address);
9131 return ArmRelocFuncs::STATUS_OKAY;
9135 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9136 RelocFuncs::rel32(view, value);
9137 return ArmRelocFuncs::STATUS_OKAY;
9139 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9140 if (optimized_type == tls::TLSOPT_NONE)
9142 // Relocate the field with the offset of the GOT entry for
9143 // the tp-relative offset of the symbol.
9144 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9145 unsigned int got_offset;
9148 gold_assert(gsym->has_got_offset(got_type));
9149 got_offset = gsym->got_offset(got_type);
9153 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9154 gold_assert(object->local_has_got_offset(r_sym, got_type));
9155 got_offset = object->local_got_offset(r_sym, got_type);
9158 // All GOT offsets are relative to the end of the GOT.
9159 got_offset -= target->got_size();
9161 Arm_address got_entry =
9162 target->got_plt_section()->address() + got_offset;
9164 // Relocate the field with the PC relative offset of the GOT entry.
9165 RelocFuncs::pcrel32(view, got_entry, address);
9166 return ArmRelocFuncs::STATUS_OKAY;
9170 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9171 // If we're creating a shared library, a dynamic relocation will
9172 // have been created for this location, so do not apply it now.
9173 if (!parameters->options().shared())
9175 gold_assert(tls_segment != NULL);
9177 // $tp points to the TCB, which is followed by the TLS, so we
9178 // need to add TCB size to the offset.
9179 Arm_address aligned_tcb_size =
9180 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9181 RelocFuncs::rel32(view, value + aligned_tcb_size);
9184 return ArmRelocFuncs::STATUS_OKAY;
9190 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9191 _("unsupported reloc %u"),
9193 return ArmRelocFuncs::STATUS_BAD_RELOC;
9196 // Relocate section data.
9198 template<bool big_endian>
9200 Target_arm<big_endian>::relocate_section(
9201 const Relocate_info<32, big_endian>* relinfo,
9202 unsigned int sh_type,
9203 const unsigned char* prelocs,
9205 Output_section* output_section,
9206 bool needs_special_offset_handling,
9207 unsigned char* view,
9208 Arm_address address,
9209 section_size_type view_size,
9210 const Reloc_symbol_changes* reloc_symbol_changes)
9212 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9213 gold_assert(sh_type == elfcpp::SHT_REL);
9215 // See if we are relocating a relaxed input section. If so, the view
9216 // covers the whole output section and we need to adjust accordingly.
9217 if (needs_special_offset_handling)
9219 const Output_relaxed_input_section* poris =
9220 output_section->find_relaxed_input_section(relinfo->object,
9221 relinfo->data_shndx);
9224 Arm_address section_address = poris->address();
9225 section_size_type section_size = poris->data_size();
9227 gold_assert((section_address >= address)
9228 && ((section_address + section_size)
9229 <= (address + view_size)));
9231 off_t offset = section_address - address;
9234 view_size = section_size;
9238 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9245 needs_special_offset_handling,
9249 reloc_symbol_changes);
9252 // Return the size of a relocation while scanning during a relocatable
9255 template<bool big_endian>
9257 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9258 unsigned int r_type,
9261 r_type = get_real_reloc_type(r_type);
9262 const Arm_reloc_property* arp =
9263 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9268 std::string reloc_name =
9269 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9270 gold_error(_("%s: unexpected %s in object file"),
9271 object->name().c_str(), reloc_name.c_str());
9276 // Scan the relocs during a relocatable link.
9278 template<bool big_endian>
9280 Target_arm<big_endian>::scan_relocatable_relocs(
9281 Symbol_table* symtab,
9283 Sized_relobj<32, big_endian>* object,
9284 unsigned int data_shndx,
9285 unsigned int sh_type,
9286 const unsigned char* prelocs,
9288 Output_section* output_section,
9289 bool needs_special_offset_handling,
9290 size_t local_symbol_count,
9291 const unsigned char* plocal_symbols,
9292 Relocatable_relocs* rr)
9294 gold_assert(sh_type == elfcpp::SHT_REL);
9296 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9297 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9299 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9300 Scan_relocatable_relocs>(
9308 needs_special_offset_handling,
9314 // Relocate a section during a relocatable link.
9316 template<bool big_endian>
9318 Target_arm<big_endian>::relocate_for_relocatable(
9319 const Relocate_info<32, big_endian>* relinfo,
9320 unsigned int sh_type,
9321 const unsigned char* prelocs,
9323 Output_section* output_section,
9324 off_t offset_in_output_section,
9325 const Relocatable_relocs* rr,
9326 unsigned char* view,
9327 Arm_address view_address,
9328 section_size_type view_size,
9329 unsigned char* reloc_view,
9330 section_size_type reloc_view_size)
9332 gold_assert(sh_type == elfcpp::SHT_REL);
9334 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9339 offset_in_output_section,
9348 // Perform target-specific processing in a relocatable link. This is
9349 // only used if we use the relocation strategy RELOC_SPECIAL.
9351 template<bool big_endian>
9353 Target_arm<big_endian>::relocate_special_relocatable(
9354 const Relocate_info<32, big_endian>* relinfo,
9355 unsigned int sh_type,
9356 const unsigned char* preloc_in,
9358 Output_section* output_section,
9359 off_t offset_in_output_section,
9360 unsigned char* view,
9361 elfcpp::Elf_types<32>::Elf_Addr view_address,
9363 unsigned char* preloc_out)
9365 // We can only handle REL type relocation sections.
9366 gold_assert(sh_type == elfcpp::SHT_REL);
9368 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9369 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9371 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9373 const Arm_relobj<big_endian>* object =
9374 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9375 const unsigned int local_count = object->local_symbol_count();
9377 Reltype reloc(preloc_in);
9378 Reltype_write reloc_write(preloc_out);
9380 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9381 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9382 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9384 const Arm_reloc_property* arp =
9385 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9386 gold_assert(arp != NULL);
9388 // Get the new symbol index.
9389 // We only use RELOC_SPECIAL strategy in local relocations.
9390 gold_assert(r_sym < local_count);
9392 // We are adjusting a section symbol. We need to find
9393 // the symbol table index of the section symbol for
9394 // the output section corresponding to input section
9395 // in which this symbol is defined.
9397 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9398 gold_assert(is_ordinary);
9399 Output_section* os = object->output_section(shndx);
9400 gold_assert(os != NULL);
9401 gold_assert(os->needs_symtab_index());
9402 unsigned int new_symndx = os->symtab_index();
9404 // Get the new offset--the location in the output section where
9405 // this relocation should be applied.
9407 Arm_address offset = reloc.get_r_offset();
9408 Arm_address new_offset;
9409 if (offset_in_output_section != invalid_address)
9410 new_offset = offset + offset_in_output_section;
9413 section_offset_type sot_offset =
9414 convert_types<section_offset_type, Arm_address>(offset);
9415 section_offset_type new_sot_offset =
9416 output_section->output_offset(object, relinfo->data_shndx,
9418 gold_assert(new_sot_offset != -1);
9419 new_offset = new_sot_offset;
9422 // In an object file, r_offset is an offset within the section.
9423 // In an executable or dynamic object, generated by
9424 // --emit-relocs, r_offset is an absolute address.
9425 if (!parameters->options().relocatable())
9427 new_offset += view_address;
9428 if (offset_in_output_section != invalid_address)
9429 new_offset -= offset_in_output_section;
9432 reloc_write.put_r_offset(new_offset);
9433 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9435 // Handle the reloc addend.
9436 // The relocation uses a section symbol in the input file.
9437 // We are adjusting it to use a section symbol in the output
9438 // file. The input section symbol refers to some address in
9439 // the input section. We need the relocation in the output
9440 // file to refer to that same address. This adjustment to
9441 // the addend is the same calculation we use for a simple
9442 // absolute relocation for the input section symbol.
9444 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9446 // Handle THUMB bit.
9447 Symbol_value<32> symval;
9448 Arm_address thumb_bit =
9449 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9451 && arp->uses_thumb_bit()
9452 && ((psymval->value(object, 0) & 1) != 0))
9454 Arm_address stripped_value =
9455 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9456 symval.set_output_value(stripped_value);
9460 unsigned char* paddend = view + offset;
9461 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9462 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9465 case elfcpp::R_ARM_ABS8:
9466 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9470 case elfcpp::R_ARM_ABS12:
9471 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9475 case elfcpp::R_ARM_ABS16:
9476 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9480 case elfcpp::R_ARM_THM_ABS5:
9481 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9486 case elfcpp::R_ARM_MOVW_ABS_NC:
9487 case elfcpp::R_ARM_MOVW_PREL_NC:
9488 case elfcpp::R_ARM_MOVW_BREL_NC:
9489 case elfcpp::R_ARM_MOVW_BREL:
9490 reloc_status = Arm_relocate_functions<big_endian>::movw(
9491 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9494 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9495 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9496 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9497 case elfcpp::R_ARM_THM_MOVW_BREL:
9498 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9499 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9502 case elfcpp::R_ARM_THM_CALL:
9503 case elfcpp::R_ARM_THM_XPC22:
9504 case elfcpp::R_ARM_THM_JUMP24:
9506 Arm_relocate_functions<big_endian>::thumb_branch_common(
9507 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9511 case elfcpp::R_ARM_PLT32:
9512 case elfcpp::R_ARM_CALL:
9513 case elfcpp::R_ARM_JUMP24:
9514 case elfcpp::R_ARM_XPC25:
9516 Arm_relocate_functions<big_endian>::arm_branch_common(
9517 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9521 case elfcpp::R_ARM_THM_JUMP19:
9523 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9524 psymval, 0, thumb_bit);
9527 case elfcpp::R_ARM_THM_JUMP6:
9529 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9533 case elfcpp::R_ARM_THM_JUMP8:
9535 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9539 case elfcpp::R_ARM_THM_JUMP11:
9541 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9545 case elfcpp::R_ARM_PREL31:
9547 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9551 case elfcpp::R_ARM_THM_PC8:
9553 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9557 case elfcpp::R_ARM_THM_PC12:
9559 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9563 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9565 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9569 // These relocation truncate relocation results so we cannot handle them
9570 // in a relocatable link.
9571 case elfcpp::R_ARM_MOVT_ABS:
9572 case elfcpp::R_ARM_THM_MOVT_ABS:
9573 case elfcpp::R_ARM_MOVT_PREL:
9574 case elfcpp::R_ARM_MOVT_BREL:
9575 case elfcpp::R_ARM_THM_MOVT_PREL:
9576 case elfcpp::R_ARM_THM_MOVT_BREL:
9577 case elfcpp::R_ARM_ALU_PC_G0_NC:
9578 case elfcpp::R_ARM_ALU_PC_G0:
9579 case elfcpp::R_ARM_ALU_PC_G1_NC:
9580 case elfcpp::R_ARM_ALU_PC_G1:
9581 case elfcpp::R_ARM_ALU_PC_G2:
9582 case elfcpp::R_ARM_ALU_SB_G0_NC:
9583 case elfcpp::R_ARM_ALU_SB_G0:
9584 case elfcpp::R_ARM_ALU_SB_G1_NC:
9585 case elfcpp::R_ARM_ALU_SB_G1:
9586 case elfcpp::R_ARM_ALU_SB_G2:
9587 case elfcpp::R_ARM_LDR_PC_G0:
9588 case elfcpp::R_ARM_LDR_PC_G1:
9589 case elfcpp::R_ARM_LDR_PC_G2:
9590 case elfcpp::R_ARM_LDR_SB_G0:
9591 case elfcpp::R_ARM_LDR_SB_G1:
9592 case elfcpp::R_ARM_LDR_SB_G2:
9593 case elfcpp::R_ARM_LDRS_PC_G0:
9594 case elfcpp::R_ARM_LDRS_PC_G1:
9595 case elfcpp::R_ARM_LDRS_PC_G2:
9596 case elfcpp::R_ARM_LDRS_SB_G0:
9597 case elfcpp::R_ARM_LDRS_SB_G1:
9598 case elfcpp::R_ARM_LDRS_SB_G2:
9599 case elfcpp::R_ARM_LDC_PC_G0:
9600 case elfcpp::R_ARM_LDC_PC_G1:
9601 case elfcpp::R_ARM_LDC_PC_G2:
9602 case elfcpp::R_ARM_LDC_SB_G0:
9603 case elfcpp::R_ARM_LDC_SB_G1:
9604 case elfcpp::R_ARM_LDC_SB_G2:
9605 gold_error(_("cannot handle %s in a relocatable link"),
9606 arp->name().c_str());
9613 // Report any errors.
9614 switch (reloc_status)
9616 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9618 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9619 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9620 _("relocation overflow in %s"),
9621 arp->name().c_str());
9623 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9624 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9625 _("unexpected opcode while processing relocation %s"),
9626 arp->name().c_str());
9633 // Return the value to use for a dynamic symbol which requires special
9634 // treatment. This is how we support equality comparisons of function
9635 // pointers across shared library boundaries, as described in the
9636 // processor specific ABI supplement.
9638 template<bool big_endian>
9640 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9642 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9643 return this->plt_section()->address() + gsym->plt_offset();
9646 // Map platform-specific relocs to real relocs
9648 template<bool big_endian>
9650 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9654 case elfcpp::R_ARM_TARGET1:
9655 // This is either R_ARM_ABS32 or R_ARM_REL32;
9656 return elfcpp::R_ARM_ABS32;
9658 case elfcpp::R_ARM_TARGET2:
9659 // This can be any reloc type but ususally is R_ARM_GOT_PREL
9660 return elfcpp::R_ARM_GOT_PREL;
9667 // Whether if two EABI versions V1 and V2 are compatible.
9669 template<bool big_endian>
9671 Target_arm<big_endian>::are_eabi_versions_compatible(
9672 elfcpp::Elf_Word v1,
9673 elfcpp::Elf_Word v2)
9675 // v4 and v5 are the same spec before and after it was released,
9676 // so allow mixing them.
9677 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9678 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9679 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9685 // Combine FLAGS from an input object called NAME and the processor-specific
9686 // flags in the ELF header of the output. Much of this is adapted from the
9687 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9688 // in bfd/elf32-arm.c.
9690 template<bool big_endian>
9692 Target_arm<big_endian>::merge_processor_specific_flags(
9693 const std::string& name,
9694 elfcpp::Elf_Word flags)
9696 if (this->are_processor_specific_flags_set())
9698 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9700 // Nothing to merge if flags equal to those in output.
9701 if (flags == out_flags)
9704 // Complain about various flag mismatches.
9705 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9706 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9707 if (!this->are_eabi_versions_compatible(version1, version2)
9708 && parameters->options().warn_mismatch())
9709 gold_error(_("Source object %s has EABI version %d but output has "
9710 "EABI version %d."),
9712 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9713 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9717 // If the input is the default architecture and had the default
9718 // flags then do not bother setting the flags for the output
9719 // architecture, instead allow future merges to do this. If no
9720 // future merges ever set these flags then they will retain their
9721 // uninitialised values, which surprise surprise, correspond
9722 // to the default values.
9726 // This is the first time, just copy the flags.
9727 // We only copy the EABI version for now.
9728 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9732 // Adjust ELF file header.
9733 template<bool big_endian>
9735 Target_arm<big_endian>::do_adjust_elf_header(
9736 unsigned char* view,
9739 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9741 elfcpp::Ehdr<32, big_endian> ehdr(view);
9742 unsigned char e_ident[elfcpp::EI_NIDENT];
9743 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9745 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9746 == elfcpp::EF_ARM_EABI_UNKNOWN)
9747 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9749 e_ident[elfcpp::EI_OSABI] = 0;
9750 e_ident[elfcpp::EI_ABIVERSION] = 0;
9752 // FIXME: Do EF_ARM_BE8 adjustment.
9754 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9755 oehdr.put_e_ident(e_ident);
9758 // do_make_elf_object to override the same function in the base class.
9759 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9760 // to store ARM specific information. Hence we need to have our own
9761 // ELF object creation.
9763 template<bool big_endian>
9765 Target_arm<big_endian>::do_make_elf_object(
9766 const std::string& name,
9767 Input_file* input_file,
9768 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9770 int et = ehdr.get_e_type();
9771 if (et == elfcpp::ET_REL)
9773 Arm_relobj<big_endian>* obj =
9774 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9778 else if (et == elfcpp::ET_DYN)
9780 Sized_dynobj<32, big_endian>* obj =
9781 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9787 gold_error(_("%s: unsupported ELF file type %d"),
9793 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9794 // Returns -1 if no architecture could be read.
9795 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9797 template<bool big_endian>
9799 Target_arm<big_endian>::get_secondary_compatible_arch(
9800 const Attributes_section_data* pasd)
9802 const Object_attribute* known_attributes =
9803 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9805 // Note: the tag and its argument below are uleb128 values, though
9806 // currently-defined values fit in one byte for each.
9807 const std::string& sv =
9808 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9810 && sv.data()[0] == elfcpp::Tag_CPU_arch
9811 && (sv.data()[1] & 128) != 128)
9812 return sv.data()[1];
9814 // This tag is "safely ignorable", so don't complain if it looks funny.
9818 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9819 // The tag is removed if ARCH is -1.
9820 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9822 template<bool big_endian>
9824 Target_arm<big_endian>::set_secondary_compatible_arch(
9825 Attributes_section_data* pasd,
9828 Object_attribute* known_attributes =
9829 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9833 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9837 // Note: the tag and its argument below are uleb128 values, though
9838 // currently-defined values fit in one byte for each.
9840 sv[0] = elfcpp::Tag_CPU_arch;
9841 gold_assert(arch != 0);
9845 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9848 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9850 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9852 template<bool big_endian>
9854 Target_arm<big_endian>::tag_cpu_arch_combine(
9857 int* secondary_compat_out,
9859 int secondary_compat)
9861 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9862 static const int v6t2[] =
9874 static const int v6k[] =
9887 static const int v7[] =
9901 static const int v6_m[] =
9916 static const int v6s_m[] =
9932 static const int v7e_m[] =
9949 static const int v4t_plus_v6_m[] =
9965 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9967 static const int* comb[] =
9975 // Pseudo-architecture.
9979 // Check we've not got a higher architecture than we know about.
9981 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9983 gold_error(_("%s: unknown CPU architecture"), name);
9987 // Override old tag if we have a Tag_also_compatible_with on the output.
9989 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9990 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9991 oldtag = T(V4T_PLUS_V6_M);
9993 // And override the new tag if we have a Tag_also_compatible_with on the
9996 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9997 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9998 newtag = T(V4T_PLUS_V6_M);
10000 // Architectures before V6KZ add features monotonically.
10001 int tagh = std::max(oldtag, newtag);
10002 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10005 int tagl = std::min(oldtag, newtag);
10006 int result = comb[tagh - T(V6T2)][tagl];
10008 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10009 // as the canonical version.
10010 if (result == T(V4T_PLUS_V6_M))
10013 *secondary_compat_out = T(V6_M);
10016 *secondary_compat_out = -1;
10020 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10021 name, oldtag, newtag);
10029 // Helper to print AEABI enum tag value.
10031 template<bool big_endian>
10033 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10035 static const char* aeabi_enum_names[] =
10036 { "", "variable-size", "32-bit", "" };
10037 const size_t aeabi_enum_names_size =
10038 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10040 if (value < aeabi_enum_names_size)
10041 return std::string(aeabi_enum_names[value]);
10045 sprintf(buffer, "<unknown value %u>", value);
10046 return std::string(buffer);
10050 // Return the string value to store in TAG_CPU_name.
10052 template<bool big_endian>
10054 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10056 static const char* name_table[] = {
10057 // These aren't real CPU names, but we can't guess
10058 // that from the architecture version alone.
10074 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10076 if (value < name_table_size)
10077 return std::string(name_table[value]);
10081 sprintf(buffer, "<unknown CPU value %u>", value);
10082 return std::string(buffer);
10086 // Merge object attributes from input file called NAME with those of the
10087 // output. The input object attributes are in the object pointed by PASD.
10089 template<bool big_endian>
10091 Target_arm<big_endian>::merge_object_attributes(
10093 const Attributes_section_data* pasd)
10095 // Return if there is no attributes section data.
10099 // If output has no object attributes, just copy.
10100 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10101 if (this->attributes_section_data_ == NULL)
10103 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10104 Object_attribute* out_attr =
10105 this->attributes_section_data_->known_attributes(vendor);
10107 // We do not output objects with Tag_MPextension_use_legacy - we move
10108 // the attribute's value to Tag_MPextension_use. */
10109 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10111 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10112 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10113 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10115 gold_error(_("%s has both the current and legacy "
10116 "Tag_MPextension_use attributes"),
10120 out_attr[elfcpp::Tag_MPextension_use] =
10121 out_attr[elfcpp::Tag_MPextension_use_legacy];
10122 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10123 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10129 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10130 Object_attribute* out_attr =
10131 this->attributes_section_data_->known_attributes(vendor);
10133 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10134 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10135 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10137 // Ignore mismatches if the object doesn't use floating point. */
10138 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10139 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10140 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10141 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10142 && parameters->options().warn_mismatch())
10143 gold_error(_("%s uses VFP register arguments, output does not"),
10147 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10149 // Merge this attribute with existing attributes.
10152 case elfcpp::Tag_CPU_raw_name:
10153 case elfcpp::Tag_CPU_name:
10154 // These are merged after Tag_CPU_arch.
10157 case elfcpp::Tag_ABI_optimization_goals:
10158 case elfcpp::Tag_ABI_FP_optimization_goals:
10159 // Use the first value seen.
10162 case elfcpp::Tag_CPU_arch:
10164 unsigned int saved_out_attr = out_attr->int_value();
10165 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10166 int secondary_compat =
10167 this->get_secondary_compatible_arch(pasd);
10168 int secondary_compat_out =
10169 this->get_secondary_compatible_arch(
10170 this->attributes_section_data_);
10171 out_attr[i].set_int_value(
10172 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10173 &secondary_compat_out,
10174 in_attr[i].int_value(),
10175 secondary_compat));
10176 this->set_secondary_compatible_arch(this->attributes_section_data_,
10177 secondary_compat_out);
10179 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10180 if (out_attr[i].int_value() == saved_out_attr)
10181 ; // Leave the names alone.
10182 else if (out_attr[i].int_value() == in_attr[i].int_value())
10184 // The output architecture has been changed to match the
10185 // input architecture. Use the input names.
10186 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10187 in_attr[elfcpp::Tag_CPU_name].string_value());
10188 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10189 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10193 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10194 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10197 // If we still don't have a value for Tag_CPU_name,
10198 // make one up now. Tag_CPU_raw_name remains blank.
10199 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10201 const std::string cpu_name =
10202 this->tag_cpu_name_value(out_attr[i].int_value());
10203 // FIXME: If we see an unknown CPU, this will be set
10204 // to "<unknown CPU n>", where n is the attribute value.
10205 // This is different from BFD, which leaves the name alone.
10206 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10211 case elfcpp::Tag_ARM_ISA_use:
10212 case elfcpp::Tag_THUMB_ISA_use:
10213 case elfcpp::Tag_WMMX_arch:
10214 case elfcpp::Tag_Advanced_SIMD_arch:
10215 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10216 case elfcpp::Tag_ABI_FP_rounding:
10217 case elfcpp::Tag_ABI_FP_exceptions:
10218 case elfcpp::Tag_ABI_FP_user_exceptions:
10219 case elfcpp::Tag_ABI_FP_number_model:
10220 case elfcpp::Tag_VFP_HP_extension:
10221 case elfcpp::Tag_CPU_unaligned_access:
10222 case elfcpp::Tag_T2EE_use:
10223 case elfcpp::Tag_Virtualization_use:
10224 case elfcpp::Tag_MPextension_use:
10225 // Use the largest value specified.
10226 if (in_attr[i].int_value() > out_attr[i].int_value())
10227 out_attr[i].set_int_value(in_attr[i].int_value());
10230 case elfcpp::Tag_ABI_align8_preserved:
10231 case elfcpp::Tag_ABI_PCS_RO_data:
10232 // Use the smallest value specified.
10233 if (in_attr[i].int_value() < out_attr[i].int_value())
10234 out_attr[i].set_int_value(in_attr[i].int_value());
10237 case elfcpp::Tag_ABI_align8_needed:
10238 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10239 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10240 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10243 // This error message should be enabled once all non-conformant
10244 // binaries in the toolchain have had the attributes set
10246 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10250 case elfcpp::Tag_ABI_FP_denormal:
10251 case elfcpp::Tag_ABI_PCS_GOT_use:
10253 // These tags have 0 = don't care, 1 = strong requirement,
10254 // 2 = weak requirement.
10255 static const int order_021[3] = {0, 2, 1};
10257 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10258 // value if greater than 2 (for future-proofing).
10259 if ((in_attr[i].int_value() > 2
10260 && in_attr[i].int_value() > out_attr[i].int_value())
10261 || (in_attr[i].int_value() <= 2
10262 && out_attr[i].int_value() <= 2
10263 && (order_021[in_attr[i].int_value()]
10264 > order_021[out_attr[i].int_value()])))
10265 out_attr[i].set_int_value(in_attr[i].int_value());
10269 case elfcpp::Tag_CPU_arch_profile:
10270 if (out_attr[i].int_value() != in_attr[i].int_value())
10272 // 0 will merge with anything.
10273 // 'A' and 'S' merge to 'A'.
10274 // 'R' and 'S' merge to 'R'.
10275 // 'M' and 'A|R|S' is an error.
10276 if (out_attr[i].int_value() == 0
10277 || (out_attr[i].int_value() == 'S'
10278 && (in_attr[i].int_value() == 'A'
10279 || in_attr[i].int_value() == 'R')))
10280 out_attr[i].set_int_value(in_attr[i].int_value());
10281 else if (in_attr[i].int_value() == 0
10282 || (in_attr[i].int_value() == 'S'
10283 && (out_attr[i].int_value() == 'A'
10284 || out_attr[i].int_value() == 'R')))
10286 else if (parameters->options().warn_mismatch())
10289 (_("conflicting architecture profiles %c/%c"),
10290 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10291 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10295 case elfcpp::Tag_VFP_arch:
10297 static const struct
10301 } vfp_versions[7] =
10312 // Values greater than 6 aren't defined, so just pick the
10314 if (in_attr[i].int_value() > 6
10315 && in_attr[i].int_value() > out_attr[i].int_value())
10317 *out_attr = *in_attr;
10320 // The output uses the superset of input features
10321 // (ISA version) and registers.
10322 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10323 vfp_versions[out_attr[i].int_value()].ver);
10324 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10325 vfp_versions[out_attr[i].int_value()].regs);
10326 // This assumes all possible supersets are also a valid
10329 for (newval = 6; newval > 0; newval--)
10331 if (regs == vfp_versions[newval].regs
10332 && ver == vfp_versions[newval].ver)
10335 out_attr[i].set_int_value(newval);
10338 case elfcpp::Tag_PCS_config:
10339 if (out_attr[i].int_value() == 0)
10340 out_attr[i].set_int_value(in_attr[i].int_value());
10341 else if (in_attr[i].int_value() != 0
10342 && out_attr[i].int_value() != 0
10343 && parameters->options().warn_mismatch())
10345 // It's sometimes ok to mix different configs, so this is only
10347 gold_warning(_("%s: conflicting platform configuration"), name);
10350 case elfcpp::Tag_ABI_PCS_R9_use:
10351 if (in_attr[i].int_value() != out_attr[i].int_value()
10352 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10353 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10354 && parameters->options().warn_mismatch())
10356 gold_error(_("%s: conflicting use of R9"), name);
10358 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10359 out_attr[i].set_int_value(in_attr[i].int_value());
10361 case elfcpp::Tag_ABI_PCS_RW_data:
10362 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10363 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10364 != elfcpp::AEABI_R9_SB)
10365 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10366 != elfcpp::AEABI_R9_unused)
10367 && parameters->options().warn_mismatch())
10369 gold_error(_("%s: SB relative addressing conflicts with use "
10373 // Use the smallest value specified.
10374 if (in_attr[i].int_value() < out_attr[i].int_value())
10375 out_attr[i].set_int_value(in_attr[i].int_value());
10377 case elfcpp::Tag_ABI_PCS_wchar_t:
10378 if (out_attr[i].int_value()
10379 && in_attr[i].int_value()
10380 && out_attr[i].int_value() != in_attr[i].int_value()
10381 && parameters->options().warn_mismatch()
10382 && parameters->options().wchar_size_warning())
10384 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10385 "use %u-byte wchar_t; use of wchar_t values "
10386 "across objects may fail"),
10387 name, in_attr[i].int_value(),
10388 out_attr[i].int_value());
10390 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10391 out_attr[i].set_int_value(in_attr[i].int_value());
10393 case elfcpp::Tag_ABI_enum_size:
10394 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10396 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10397 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10399 // The existing object is compatible with anything.
10400 // Use whatever requirements the new object has.
10401 out_attr[i].set_int_value(in_attr[i].int_value());
10403 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10404 && out_attr[i].int_value() != in_attr[i].int_value()
10405 && parameters->options().warn_mismatch()
10406 && parameters->options().enum_size_warning())
10408 unsigned int in_value = in_attr[i].int_value();
10409 unsigned int out_value = out_attr[i].int_value();
10410 gold_warning(_("%s uses %s enums yet the output is to use "
10411 "%s enums; use of enum values across objects "
10414 this->aeabi_enum_name(in_value).c_str(),
10415 this->aeabi_enum_name(out_value).c_str());
10419 case elfcpp::Tag_ABI_VFP_args:
10422 case elfcpp::Tag_ABI_WMMX_args:
10423 if (in_attr[i].int_value() != out_attr[i].int_value()
10424 && parameters->options().warn_mismatch())
10426 gold_error(_("%s uses iWMMXt register arguments, output does "
10431 case Object_attribute::Tag_compatibility:
10432 // Merged in target-independent code.
10434 case elfcpp::Tag_ABI_HardFP_use:
10435 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10436 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10437 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10438 out_attr[i].set_int_value(3);
10439 else if (in_attr[i].int_value() > out_attr[i].int_value())
10440 out_attr[i].set_int_value(in_attr[i].int_value());
10442 case elfcpp::Tag_ABI_FP_16bit_format:
10443 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10445 if (in_attr[i].int_value() != out_attr[i].int_value()
10446 && parameters->options().warn_mismatch())
10447 gold_error(_("fp16 format mismatch between %s and output"),
10450 if (in_attr[i].int_value() != 0)
10451 out_attr[i].set_int_value(in_attr[i].int_value());
10454 case elfcpp::Tag_DIV_use:
10455 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10456 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10457 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10458 // CPU. We will merge as follows: If the input attribute's value
10459 // is one then the output attribute's value remains unchanged. If
10460 // the input attribute's value is zero or two then if the output
10461 // attribute's value is one the output value is set to the input
10462 // value, otherwise the output value must be the same as the
10464 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10466 if (in_attr[i].int_value() != out_attr[i].int_value())
10468 gold_error(_("DIV usage mismatch between %s and output"),
10473 if (in_attr[i].int_value() != 1)
10474 out_attr[i].set_int_value(in_attr[i].int_value());
10478 case elfcpp::Tag_MPextension_use_legacy:
10479 // We don't output objects with Tag_MPextension_use_legacy - we
10480 // move the value to Tag_MPextension_use.
10481 if (in_attr[i].int_value() != 0
10482 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10484 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10485 != in_attr[i].int_value())
10487 gold_error(_("%s has has both the current and legacy "
10488 "Tag_MPextension_use attributes"),
10493 if (in_attr[i].int_value()
10494 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10495 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10499 case elfcpp::Tag_nodefaults:
10500 // This tag is set if it exists, but the value is unused (and is
10501 // typically zero). We don't actually need to do anything here -
10502 // the merge happens automatically when the type flags are merged
10505 case elfcpp::Tag_also_compatible_with:
10506 // Already done in Tag_CPU_arch.
10508 case elfcpp::Tag_conformance:
10509 // Keep the attribute if it matches. Throw it away otherwise.
10510 // No attribute means no claim to conform.
10511 if (in_attr[i].string_value() != out_attr[i].string_value())
10512 out_attr[i].set_string_value("");
10517 const char* err_object = NULL;
10519 // The "known_obj_attributes" table does contain some undefined
10520 // attributes. Ensure that there are unused.
10521 if (out_attr[i].int_value() != 0
10522 || out_attr[i].string_value() != "")
10523 err_object = "output";
10524 else if (in_attr[i].int_value() != 0
10525 || in_attr[i].string_value() != "")
10528 if (err_object != NULL
10529 && parameters->options().warn_mismatch())
10531 // Attribute numbers >=64 (mod 128) can be safely ignored.
10532 if ((i & 127) < 64)
10533 gold_error(_("%s: unknown mandatory EABI object attribute "
10537 gold_warning(_("%s: unknown EABI object attribute %d"),
10541 // Only pass on attributes that match in both inputs.
10542 if (!in_attr[i].matches(out_attr[i]))
10544 out_attr[i].set_int_value(0);
10545 out_attr[i].set_string_value("");
10550 // If out_attr was copied from in_attr then it won't have a type yet.
10551 if (in_attr[i].type() && !out_attr[i].type())
10552 out_attr[i].set_type(in_attr[i].type());
10555 // Merge Tag_compatibility attributes and any common GNU ones.
10556 this->attributes_section_data_->merge(name, pasd);
10558 // Check for any attributes not known on ARM.
10559 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10560 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10561 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10562 Other_attributes* out_other_attributes =
10563 this->attributes_section_data_->other_attributes(vendor);
10564 Other_attributes::iterator out_iter = out_other_attributes->begin();
10566 while (in_iter != in_other_attributes->end()
10567 || out_iter != out_other_attributes->end())
10569 const char* err_object = NULL;
10572 // The tags for each list are in numerical order.
10573 // If the tags are equal, then merge.
10574 if (out_iter != out_other_attributes->end()
10575 && (in_iter == in_other_attributes->end()
10576 || in_iter->first > out_iter->first))
10578 // This attribute only exists in output. We can't merge, and we
10579 // don't know what the tag means, so delete it.
10580 err_object = "output";
10581 err_tag = out_iter->first;
10582 int saved_tag = out_iter->first;
10583 delete out_iter->second;
10584 out_other_attributes->erase(out_iter);
10585 out_iter = out_other_attributes->upper_bound(saved_tag);
10587 else if (in_iter != in_other_attributes->end()
10588 && (out_iter != out_other_attributes->end()
10589 || in_iter->first < out_iter->first))
10591 // This attribute only exists in input. We can't merge, and we
10592 // don't know what the tag means, so ignore it.
10594 err_tag = in_iter->first;
10597 else // The tags are equal.
10599 // As present, all attributes in the list are unknown, and
10600 // therefore can't be merged meaningfully.
10601 err_object = "output";
10602 err_tag = out_iter->first;
10604 // Only pass on attributes that match in both inputs.
10605 if (!in_iter->second->matches(*(out_iter->second)))
10607 // No match. Delete the attribute.
10608 int saved_tag = out_iter->first;
10609 delete out_iter->second;
10610 out_other_attributes->erase(out_iter);
10611 out_iter = out_other_attributes->upper_bound(saved_tag);
10615 // Matched. Keep the attribute and move to the next.
10621 if (err_object && parameters->options().warn_mismatch())
10623 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10624 if ((err_tag & 127) < 64)
10626 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10627 err_object, err_tag);
10631 gold_warning(_("%s: unknown EABI object attribute %d"),
10632 err_object, err_tag);
10638 // Stub-generation methods for Target_arm.
10640 // Make a new Arm_input_section object.
10642 template<bool big_endian>
10643 Arm_input_section<big_endian>*
10644 Target_arm<big_endian>::new_arm_input_section(
10646 unsigned int shndx)
10648 Section_id sid(relobj, shndx);
10650 Arm_input_section<big_endian>* arm_input_section =
10651 new Arm_input_section<big_endian>(relobj, shndx);
10652 arm_input_section->init();
10654 // Register new Arm_input_section in map for look-up.
10655 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10656 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10658 // Make sure that it we have not created another Arm_input_section
10659 // for this input section already.
10660 gold_assert(ins.second);
10662 return arm_input_section;
10665 // Find the Arm_input_section object corresponding to the SHNDX-th input
10666 // section of RELOBJ.
10668 template<bool big_endian>
10669 Arm_input_section<big_endian>*
10670 Target_arm<big_endian>::find_arm_input_section(
10672 unsigned int shndx) const
10674 Section_id sid(relobj, shndx);
10675 typename Arm_input_section_map::const_iterator p =
10676 this->arm_input_section_map_.find(sid);
10677 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10680 // Make a new stub table.
10682 template<bool big_endian>
10683 Stub_table<big_endian>*
10684 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10686 Stub_table<big_endian>* stub_table =
10687 new Stub_table<big_endian>(owner);
10688 this->stub_tables_.push_back(stub_table);
10690 stub_table->set_address(owner->address() + owner->data_size());
10691 stub_table->set_file_offset(owner->offset() + owner->data_size());
10692 stub_table->finalize_data_size();
10697 // Scan a relocation for stub generation.
10699 template<bool big_endian>
10701 Target_arm<big_endian>::scan_reloc_for_stub(
10702 const Relocate_info<32, big_endian>* relinfo,
10703 unsigned int r_type,
10704 const Sized_symbol<32>* gsym,
10705 unsigned int r_sym,
10706 const Symbol_value<32>* psymval,
10707 elfcpp::Elf_types<32>::Elf_Swxword addend,
10708 Arm_address address)
10710 typedef typename Target_arm<big_endian>::Relocate Relocate;
10712 const Arm_relobj<big_endian>* arm_relobj =
10713 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10715 bool target_is_thumb;
10716 Symbol_value<32> symval;
10719 // This is a global symbol. Determine if we use PLT and if the
10720 // final target is THUMB.
10721 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
10723 // This uses a PLT, change the symbol value.
10724 symval.set_output_value(this->plt_section()->address()
10725 + gsym->plt_offset());
10727 target_is_thumb = false;
10729 else if (gsym->is_undefined())
10730 // There is no need to generate a stub symbol is undefined.
10735 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10736 || (gsym->type() == elfcpp::STT_FUNC
10737 && !gsym->is_undefined()
10738 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10743 // This is a local symbol. Determine if the final target is THUMB.
10744 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10747 // Strip LSB if this points to a THUMB target.
10748 const Arm_reloc_property* reloc_property =
10749 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10750 gold_assert(reloc_property != NULL);
10751 if (target_is_thumb
10752 && reloc_property->uses_thumb_bit()
10753 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10755 Arm_address stripped_value =
10756 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10757 symval.set_output_value(stripped_value);
10761 // Get the symbol value.
10762 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10764 // Owing to pipelining, the PC relative branches below actually skip
10765 // two instructions when the branch offset is 0.
10766 Arm_address destination;
10769 case elfcpp::R_ARM_CALL:
10770 case elfcpp::R_ARM_JUMP24:
10771 case elfcpp::R_ARM_PLT32:
10773 destination = value + addend + 8;
10775 case elfcpp::R_ARM_THM_CALL:
10776 case elfcpp::R_ARM_THM_XPC22:
10777 case elfcpp::R_ARM_THM_JUMP24:
10778 case elfcpp::R_ARM_THM_JUMP19:
10780 destination = value + addend + 4;
10783 gold_unreachable();
10786 Reloc_stub* stub = NULL;
10787 Stub_type stub_type =
10788 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10790 if (stub_type != arm_stub_none)
10792 // Try looking up an existing stub from a stub table.
10793 Stub_table<big_endian>* stub_table =
10794 arm_relobj->stub_table(relinfo->data_shndx);
10795 gold_assert(stub_table != NULL);
10797 // Locate stub by destination.
10798 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10800 // Create a stub if there is not one already
10801 stub = stub_table->find_reloc_stub(stub_key);
10804 // create a new stub and add it to stub table.
10805 stub = this->stub_factory().make_reloc_stub(stub_type);
10806 stub_table->add_reloc_stub(stub, stub_key);
10809 // Record the destination address.
10810 stub->set_destination_address(destination
10811 | (target_is_thumb ? 1 : 0));
10814 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10815 if (this->fix_cortex_a8_
10816 && (r_type == elfcpp::R_ARM_THM_JUMP24
10817 || r_type == elfcpp::R_ARM_THM_JUMP19
10818 || r_type == elfcpp::R_ARM_THM_CALL
10819 || r_type == elfcpp::R_ARM_THM_XPC22)
10820 && (address & 0xfffU) == 0xffeU)
10822 // Found a candidate. Note we haven't checked the destination is
10823 // within 4K here: if we do so (and don't create a record) we can't
10824 // tell that a branch should have been relocated when scanning later.
10825 this->cortex_a8_relocs_info_[address] =
10826 new Cortex_a8_reloc(stub, r_type,
10827 destination | (target_is_thumb ? 1 : 0));
10831 // This function scans a relocation sections for stub generation.
10832 // The template parameter Relocate must be a class type which provides
10833 // a single function, relocate(), which implements the machine
10834 // specific part of a relocation.
10836 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10837 // SHT_REL or SHT_RELA.
10839 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10840 // of relocs. OUTPUT_SECTION is the output section.
10841 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10842 // mapped to output offsets.
10844 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10845 // VIEW_SIZE is the size. These refer to the input section, unless
10846 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10847 // the output section.
10849 template<bool big_endian>
10850 template<int sh_type>
10852 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10853 const Relocate_info<32, big_endian>* relinfo,
10854 const unsigned char* prelocs,
10855 size_t reloc_count,
10856 Output_section* output_section,
10857 bool needs_special_offset_handling,
10858 const unsigned char* view,
10859 elfcpp::Elf_types<32>::Elf_Addr view_address,
10862 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10863 const int reloc_size =
10864 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10866 Arm_relobj<big_endian>* arm_object =
10867 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10868 unsigned int local_count = arm_object->local_symbol_count();
10870 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10872 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10874 Reltype reloc(prelocs);
10876 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10877 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10878 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10880 r_type = this->get_real_reloc_type(r_type);
10882 // Only a few relocation types need stubs.
10883 if ((r_type != elfcpp::R_ARM_CALL)
10884 && (r_type != elfcpp::R_ARM_JUMP24)
10885 && (r_type != elfcpp::R_ARM_PLT32)
10886 && (r_type != elfcpp::R_ARM_THM_CALL)
10887 && (r_type != elfcpp::R_ARM_THM_XPC22)
10888 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10889 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10890 && (r_type != elfcpp::R_ARM_V4BX))
10893 section_offset_type offset =
10894 convert_to_section_size_type(reloc.get_r_offset());
10896 if (needs_special_offset_handling)
10898 offset = output_section->output_offset(relinfo->object,
10899 relinfo->data_shndx,
10905 // Create a v4bx stub if --fix-v4bx-interworking is used.
10906 if (r_type == elfcpp::R_ARM_V4BX)
10908 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10910 // Get the BX instruction.
10911 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10912 const Valtype* wv =
10913 reinterpret_cast<const Valtype*>(view + offset);
10914 elfcpp::Elf_types<32>::Elf_Swxword insn =
10915 elfcpp::Swap<32, big_endian>::readval(wv);
10916 const uint32_t reg = (insn & 0xf);
10920 // Try looking up an existing stub from a stub table.
10921 Stub_table<big_endian>* stub_table =
10922 arm_object->stub_table(relinfo->data_shndx);
10923 gold_assert(stub_table != NULL);
10925 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10927 // create a new stub and add it to stub table.
10928 Arm_v4bx_stub* stub =
10929 this->stub_factory().make_arm_v4bx_stub(reg);
10930 gold_assert(stub != NULL);
10931 stub_table->add_arm_v4bx_stub(stub);
10939 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10940 elfcpp::Elf_types<32>::Elf_Swxword addend =
10941 stub_addend_reader(r_type, view + offset, reloc);
10943 const Sized_symbol<32>* sym;
10945 Symbol_value<32> symval;
10946 const Symbol_value<32> *psymval;
10947 if (r_sym < local_count)
10950 psymval = arm_object->local_symbol(r_sym);
10952 // If the local symbol belongs to a section we are discarding,
10953 // and that section is a debug section, try to find the
10954 // corresponding kept section and map this symbol to its
10955 // counterpart in the kept section. The symbol must not
10956 // correspond to a section we are folding.
10958 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10960 && shndx != elfcpp::SHN_UNDEF
10961 && !arm_object->is_section_included(shndx)
10962 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10964 if (comdat_behavior == CB_UNDETERMINED)
10967 arm_object->section_name(relinfo->data_shndx);
10968 comdat_behavior = get_comdat_behavior(name.c_str());
10970 if (comdat_behavior == CB_PRETEND)
10973 typename elfcpp::Elf_types<32>::Elf_Addr value =
10974 arm_object->map_to_kept_section(shndx, &found);
10976 symval.set_output_value(value + psymval->input_value());
10978 symval.set_output_value(0);
10982 symval.set_output_value(0);
10984 symval.set_no_output_symtab_entry();
10990 const Symbol* gsym = arm_object->global_symbol(r_sym);
10991 gold_assert(gsym != NULL);
10992 if (gsym->is_forwarder())
10993 gsym = relinfo->symtab->resolve_forwards(gsym);
10995 sym = static_cast<const Sized_symbol<32>*>(gsym);
10996 if (sym->has_symtab_index())
10997 symval.set_output_symtab_index(sym->symtab_index());
10999 symval.set_no_output_symtab_entry();
11001 // We need to compute the would-be final value of this global
11003 const Symbol_table* symtab = relinfo->symtab;
11004 const Sized_symbol<32>* sized_symbol =
11005 symtab->get_sized_symbol<32>(gsym);
11006 Symbol_table::Compute_final_value_status status;
11007 Arm_address value =
11008 symtab->compute_final_value<32>(sized_symbol, &status);
11010 // Skip this if the symbol has not output section.
11011 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11014 symval.set_output_value(value);
11018 // If symbol is a section symbol, we don't know the actual type of
11019 // destination. Give up.
11020 if (psymval->is_section_symbol())
11023 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11024 addend, view_address + offset);
11028 // Scan an input section for stub generation.
11030 template<bool big_endian>
11032 Target_arm<big_endian>::scan_section_for_stubs(
11033 const Relocate_info<32, big_endian>* relinfo,
11034 unsigned int sh_type,
11035 const unsigned char* prelocs,
11036 size_t reloc_count,
11037 Output_section* output_section,
11038 bool needs_special_offset_handling,
11039 const unsigned char* view,
11040 Arm_address view_address,
11041 section_size_type view_size)
11043 if (sh_type == elfcpp::SHT_REL)
11044 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11049 needs_special_offset_handling,
11053 else if (sh_type == elfcpp::SHT_RELA)
11054 // We do not support RELA type relocations yet. This is provided for
11056 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11061 needs_special_offset_handling,
11066 gold_unreachable();
11069 // Group input sections for stub generation.
11071 // We goup input sections in an output sections so that the total size,
11072 // including any padding space due to alignment is smaller than GROUP_SIZE
11073 // unless the only input section in group is bigger than GROUP_SIZE already.
11074 // Then an ARM stub table is created to follow the last input section
11075 // in group. For each group an ARM stub table is created an is placed
11076 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
11077 // extend the group after the stub table.
11079 template<bool big_endian>
11081 Target_arm<big_endian>::group_sections(
11083 section_size_type group_size,
11084 bool stubs_always_after_branch)
11086 // Group input sections and insert stub table
11087 Layout::Section_list section_list;
11088 layout->get_allocated_sections(§ion_list);
11089 for (Layout::Section_list::const_iterator p = section_list.begin();
11090 p != section_list.end();
11093 Arm_output_section<big_endian>* output_section =
11094 Arm_output_section<big_endian>::as_arm_output_section(*p);
11095 output_section->group_sections(group_size, stubs_always_after_branch,
11100 // Relaxation hook. This is where we do stub generation.
11102 template<bool big_endian>
11104 Target_arm<big_endian>::do_relax(
11106 const Input_objects* input_objects,
11107 Symbol_table* symtab,
11110 // No need to generate stubs if this is a relocatable link.
11111 gold_assert(!parameters->options().relocatable());
11113 // If this is the first pass, we need to group input sections into
11115 bool done_exidx_fixup = false;
11116 typedef typename Stub_table_list::iterator Stub_table_iterator;
11119 // Determine the stub group size. The group size is the absolute
11120 // value of the parameter --stub-group-size. If --stub-group-size
11121 // is passed a negative value, we restict stubs to be always after
11122 // the stubbed branches.
11123 int32_t stub_group_size_param =
11124 parameters->options().stub_group_size();
11125 bool stubs_always_after_branch = stub_group_size_param < 0;
11126 section_size_type stub_group_size = abs(stub_group_size_param);
11128 if (stub_group_size == 1)
11131 // Thumb branch range is +-4MB has to be used as the default
11132 // maximum size (a given section can contain both ARM and Thumb
11133 // code, so the worst case has to be taken into account). If we are
11134 // fixing cortex-a8 errata, the branch range has to be even smaller,
11135 // since wide conditional branch has a range of +-1MB only.
11137 // This value is 48K less than that, which allows for 4096
11138 // 12-byte stubs. If we exceed that, then we will fail to link.
11139 // The user will have to relink with an explicit group size
11141 stub_group_size = 4145152;
11144 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11145 // page as the first half of a 32-bit branch straddling two 4K pages.
11146 // This is a crude way of enforcing that. In addition, long conditional
11147 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11148 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11149 // cortex-A8 stubs from long conditional branches.
11150 if (this->fix_cortex_a8_)
11152 stubs_always_after_branch = true;
11153 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11154 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11157 group_sections(layout, stub_group_size, stubs_always_after_branch);
11159 // Also fix .ARM.exidx section coverage.
11160 Arm_output_section<big_endian>* exidx_output_section = NULL;
11161 for (Layout::Section_list::const_iterator p =
11162 layout->section_list().begin();
11163 p != layout->section_list().end();
11165 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11167 if (exidx_output_section == NULL)
11168 exidx_output_section =
11169 Arm_output_section<big_endian>::as_arm_output_section(*p);
11171 // We cannot handle this now.
11172 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11173 "non-relocatable link"),
11174 exidx_output_section->name(),
11178 if (exidx_output_section != NULL)
11180 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11182 done_exidx_fixup = true;
11187 // If this is not the first pass, addresses and file offsets have
11188 // been reset at this point, set them here.
11189 for (Stub_table_iterator sp = this->stub_tables_.begin();
11190 sp != this->stub_tables_.end();
11193 Arm_input_section<big_endian>* owner = (*sp)->owner();
11194 off_t off = align_address(owner->original_size(),
11195 (*sp)->addralign());
11196 (*sp)->set_address_and_file_offset(owner->address() + off,
11197 owner->offset() + off);
11201 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11202 // beginning of each relaxation pass, just blow away all the stubs.
11203 // Alternatively, we could selectively remove only the stubs and reloc
11204 // information for code sections that have moved since the last pass.
11205 // That would require more book-keeping.
11206 if (this->fix_cortex_a8_)
11208 // Clear all Cortex-A8 reloc information.
11209 for (typename Cortex_a8_relocs_info::const_iterator p =
11210 this->cortex_a8_relocs_info_.begin();
11211 p != this->cortex_a8_relocs_info_.end();
11214 this->cortex_a8_relocs_info_.clear();
11216 // Remove all Cortex-A8 stubs.
11217 for (Stub_table_iterator sp = this->stub_tables_.begin();
11218 sp != this->stub_tables_.end();
11220 (*sp)->remove_all_cortex_a8_stubs();
11223 // Scan relocs for relocation stubs
11224 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11225 op != input_objects->relobj_end();
11228 Arm_relobj<big_endian>* arm_relobj =
11229 Arm_relobj<big_endian>::as_arm_relobj(*op);
11230 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11233 // Check all stub tables to see if any of them have their data sizes
11234 // or addresses alignments changed. These are the only things that
11236 bool any_stub_table_changed = false;
11237 Unordered_set<const Output_section*> sections_needing_adjustment;
11238 for (Stub_table_iterator sp = this->stub_tables_.begin();
11239 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11242 if ((*sp)->update_data_size_and_addralign())
11244 // Update data size of stub table owner.
11245 Arm_input_section<big_endian>* owner = (*sp)->owner();
11246 uint64_t address = owner->address();
11247 off_t offset = owner->offset();
11248 owner->reset_address_and_file_offset();
11249 owner->set_address_and_file_offset(address, offset);
11251 sections_needing_adjustment.insert(owner->output_section());
11252 any_stub_table_changed = true;
11256 // Output_section_data::output_section() returns a const pointer but we
11257 // need to update output sections, so we record all output sections needing
11258 // update above and scan the sections here to find out what sections need
11260 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
11261 p != layout->section_list().end();
11264 if (sections_needing_adjustment.find(*p)
11265 != sections_needing_adjustment.end())
11266 (*p)->set_section_offsets_need_adjustment();
11269 // Stop relaxation if no EXIDX fix-up and no stub table change.
11270 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11272 // Finalize the stubs in the last relaxation pass.
11273 if (!continue_relaxation)
11275 for (Stub_table_iterator sp = this->stub_tables_.begin();
11276 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11278 (*sp)->finalize_stubs();
11280 // Update output local symbol counts of objects if necessary.
11281 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11282 op != input_objects->relobj_end();
11285 Arm_relobj<big_endian>* arm_relobj =
11286 Arm_relobj<big_endian>::as_arm_relobj(*op);
11288 // Update output local symbol counts. We need to discard local
11289 // symbols defined in parts of input sections that are discarded by
11291 if (arm_relobj->output_local_symbol_count_needs_update())
11292 arm_relobj->update_output_local_symbol_count();
11296 return continue_relaxation;
11299 // Relocate a stub.
11301 template<bool big_endian>
11303 Target_arm<big_endian>::relocate_stub(
11305 const Relocate_info<32, big_endian>* relinfo,
11306 Output_section* output_section,
11307 unsigned char* view,
11308 Arm_address address,
11309 section_size_type view_size)
11312 const Stub_template* stub_template = stub->stub_template();
11313 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11315 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11316 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11318 unsigned int r_type = insn->r_type();
11319 section_size_type reloc_offset = stub_template->reloc_offset(i);
11320 section_size_type reloc_size = insn->size();
11321 gold_assert(reloc_offset + reloc_size <= view_size);
11323 // This is the address of the stub destination.
11324 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11325 Symbol_value<32> symval;
11326 symval.set_output_value(target);
11328 // Synthesize a fake reloc just in case. We don't have a symbol so
11330 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11331 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11332 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11333 reloc_write.put_r_offset(reloc_offset);
11334 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11335 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11337 relocate.relocate(relinfo, this, output_section,
11338 this->fake_relnum_for_stubs, rel, r_type,
11339 NULL, &symval, view + reloc_offset,
11340 address + reloc_offset, reloc_size);
11344 // Determine whether an object attribute tag takes an integer, a
11347 template<bool big_endian>
11349 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11351 if (tag == Object_attribute::Tag_compatibility)
11352 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11353 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11354 else if (tag == elfcpp::Tag_nodefaults)
11355 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11356 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11357 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11358 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11360 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11362 return ((tag & 1) != 0
11363 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11364 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11367 // Reorder attributes.
11369 // The ABI defines that Tag_conformance should be emitted first, and that
11370 // Tag_nodefaults should be second (if either is defined). This sets those
11371 // two positions, and bumps up the position of all the remaining tags to
11374 template<bool big_endian>
11376 Target_arm<big_endian>::do_attributes_order(int num) const
11378 // Reorder the known object attributes in output. We want to move
11379 // Tag_conformance to position 4 and Tag_conformance to position 5
11380 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11382 return elfcpp::Tag_conformance;
11384 return elfcpp::Tag_nodefaults;
11385 if ((num - 2) < elfcpp::Tag_nodefaults)
11387 if ((num - 1) < elfcpp::Tag_conformance)
11392 // Scan a span of THUMB code for Cortex-A8 erratum.
11394 template<bool big_endian>
11396 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11397 Arm_relobj<big_endian>* arm_relobj,
11398 unsigned int shndx,
11399 section_size_type span_start,
11400 section_size_type span_end,
11401 const unsigned char* view,
11402 Arm_address address)
11404 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11406 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11407 // The branch target is in the same 4KB region as the
11408 // first half of the branch.
11409 // The instruction before the branch is a 32-bit
11410 // length non-branch instruction.
11411 section_size_type i = span_start;
11412 bool last_was_32bit = false;
11413 bool last_was_branch = false;
11414 while (i < span_end)
11416 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11417 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11418 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11419 bool is_blx = false, is_b = false;
11420 bool is_bl = false, is_bcc = false;
11422 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11425 // Load the rest of the insn (in manual-friendly order).
11426 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11428 // Encoding T4: B<c>.W.
11429 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11430 // Encoding T1: BL<c>.W.
11431 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11432 // Encoding T2: BLX<c>.W.
11433 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11434 // Encoding T3: B<c>.W (not permitted in IT block).
11435 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11436 && (insn & 0x07f00000U) != 0x03800000U);
11439 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11441 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11442 // page boundary and it follows 32-bit non-branch instruction,
11443 // we need to work around.
11444 if (is_32bit_branch
11445 && ((address + i) & 0xfffU) == 0xffeU
11447 && !last_was_branch)
11449 // Check to see if there is a relocation stub for this branch.
11450 bool force_target_arm = false;
11451 bool force_target_thumb = false;
11452 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11453 Cortex_a8_relocs_info::const_iterator p =
11454 this->cortex_a8_relocs_info_.find(address + i);
11456 if (p != this->cortex_a8_relocs_info_.end())
11458 cortex_a8_reloc = p->second;
11459 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11461 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11462 && !target_is_thumb)
11463 force_target_arm = true;
11464 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11465 && target_is_thumb)
11466 force_target_thumb = true;
11470 Stub_type stub_type = arm_stub_none;
11472 // Check if we have an offending branch instruction.
11473 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11474 uint16_t lower_insn = insn & 0xffffU;
11475 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11477 if (cortex_a8_reloc != NULL
11478 && cortex_a8_reloc->reloc_stub() != NULL)
11479 // We've already made a stub for this instruction, e.g.
11480 // it's a long branch or a Thumb->ARM stub. Assume that
11481 // stub will suffice to work around the A8 erratum (see
11482 // setting of always_after_branch above).
11486 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11488 stub_type = arm_stub_a8_veneer_b_cond;
11490 else if (is_b || is_bl || is_blx)
11492 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11497 stub_type = (is_blx
11498 ? arm_stub_a8_veneer_blx
11500 ? arm_stub_a8_veneer_bl
11501 : arm_stub_a8_veneer_b));
11504 if (stub_type != arm_stub_none)
11506 Arm_address pc_for_insn = address + i + 4;
11508 // The original instruction is a BL, but the target is
11509 // an ARM instruction. If we were not making a stub,
11510 // the BL would have been converted to a BLX. Use the
11511 // BLX stub instead in that case.
11512 if (this->may_use_blx() && force_target_arm
11513 && stub_type == arm_stub_a8_veneer_bl)
11515 stub_type = arm_stub_a8_veneer_blx;
11519 // Conversely, if the original instruction was
11520 // BLX but the target is Thumb mode, use the BL stub.
11521 else if (force_target_thumb
11522 && stub_type == arm_stub_a8_veneer_blx)
11524 stub_type = arm_stub_a8_veneer_bl;
11532 // If we found a relocation, use the proper destination,
11533 // not the offset in the (unrelocated) instruction.
11534 // Note this is always done if we switched the stub type above.
11535 if (cortex_a8_reloc != NULL)
11536 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11538 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11540 // Add a new stub if destination address in in the same page.
11541 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11543 Cortex_a8_stub* stub =
11544 this->stub_factory_.make_cortex_a8_stub(stub_type,
11548 Stub_table<big_endian>* stub_table =
11549 arm_relobj->stub_table(shndx);
11550 gold_assert(stub_table != NULL);
11551 stub_table->add_cortex_a8_stub(address + i, stub);
11556 i += insn_32bit ? 4 : 2;
11557 last_was_32bit = insn_32bit;
11558 last_was_branch = is_32bit_branch;
11562 // Apply the Cortex-A8 workaround.
11564 template<bool big_endian>
11566 Target_arm<big_endian>::apply_cortex_a8_workaround(
11567 const Cortex_a8_stub* stub,
11568 Arm_address stub_address,
11569 unsigned char* insn_view,
11570 Arm_address insn_address)
11572 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11573 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11574 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11575 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11576 off_t branch_offset = stub_address - (insn_address + 4);
11578 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11579 switch (stub->stub_template()->type())
11581 case arm_stub_a8_veneer_b_cond:
11582 // For a conditional branch, we re-write it to be a uncondition
11583 // branch to the stub. We use the THUMB-2 encoding here.
11584 upper_insn = 0xf000U;
11585 lower_insn = 0xb800U;
11587 case arm_stub_a8_veneer_b:
11588 case arm_stub_a8_veneer_bl:
11589 case arm_stub_a8_veneer_blx:
11590 if ((lower_insn & 0x5000U) == 0x4000U)
11591 // For a BLX instruction, make sure that the relocation is
11592 // rounded up to a word boundary. This follows the semantics of
11593 // the instruction which specifies that bit 1 of the target
11594 // address will come from bit 1 of the base address.
11595 branch_offset = (branch_offset + 2) & ~3;
11597 // Put BRANCH_OFFSET back into the insn.
11598 gold_assert(!utils::has_overflow<25>(branch_offset));
11599 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11600 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11604 gold_unreachable();
11607 // Put the relocated value back in the object file:
11608 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11609 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11612 template<bool big_endian>
11613 class Target_selector_arm : public Target_selector
11616 Target_selector_arm()
11617 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11618 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11622 do_instantiate_target()
11623 { return new Target_arm<big_endian>(); }
11626 // Fix .ARM.exidx section coverage.
11628 template<bool big_endian>
11630 Target_arm<big_endian>::fix_exidx_coverage(
11632 const Input_objects* input_objects,
11633 Arm_output_section<big_endian>* exidx_section,
11634 Symbol_table* symtab)
11636 // We need to look at all the input sections in output in ascending
11637 // order of of output address. We do that by building a sorted list
11638 // of output sections by addresses. Then we looks at the output sections
11639 // in order. The input sections in an output section are already sorted
11640 // by addresses within the output section.
11642 typedef std::set<Output_section*, output_section_address_less_than>
11643 Sorted_output_section_list;
11644 Sorted_output_section_list sorted_output_sections;
11646 // Find out all the output sections of input sections pointed by
11647 // EXIDX input sections.
11648 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11649 p != input_objects->relobj_end();
11652 Arm_relobj<big_endian>* arm_relobj =
11653 Arm_relobj<big_endian>::as_arm_relobj(*p);
11654 std::vector<unsigned int> shndx_list;
11655 arm_relobj->get_exidx_shndx_list(&shndx_list);
11656 for (size_t i = 0; i < shndx_list.size(); ++i)
11658 const Arm_exidx_input_section* exidx_input_section =
11659 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11660 gold_assert(exidx_input_section != NULL);
11661 if (!exidx_input_section->has_errors())
11663 unsigned int text_shndx = exidx_input_section->link();
11664 Output_section* os = arm_relobj->output_section(text_shndx);
11665 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11666 sorted_output_sections.insert(os);
11671 // Go over the output sections in ascending order of output addresses.
11672 typedef typename Arm_output_section<big_endian>::Text_section_list
11674 Text_section_list sorted_text_sections;
11675 for(typename Sorted_output_section_list::iterator p =
11676 sorted_output_sections.begin();
11677 p != sorted_output_sections.end();
11680 Arm_output_section<big_endian>* arm_output_section =
11681 Arm_output_section<big_endian>::as_arm_output_section(*p);
11682 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11685 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11686 merge_exidx_entries());
11689 Target_selector_arm<false> target_selector_arm;
11690 Target_selector_arm<true> target_selector_armbe;
11692 } // End anonymous namespace.