2011-06-27 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is an invalid index, this points to a global symbol.
602     // Otherwise, it points to a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj, in order to avoid making the stub class a template
605     // as most of the stub machinery is endianness-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB using KEY.  The caller is responsible for avoiding addition
899   // if a STUB with the same key has already been added.
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // The caller is responsible for avoiding addition if a STUB with the same
919   // address has already been added.
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067   // Write to a map file.
1068   void
1069   do_print_to_mapfile(Mapfile* mapfile) const
1070   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072  private:
1073   // Implement do_write for a given endianness.
1074   template<bool big_endian>
1075   void inline
1076   do_fixed_endian_write(Output_file*);
1077   
1078   // The object containing the section pointed by this.
1079   Relobj* relobj_;
1080   // The section index of the section pointed by this.
1081   unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section. 
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089         Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096  public:
1097   // Constructor for Arm_exidx_merged_section.
1098   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099   // SECTION_OFFSET_MAP points to a section offset map describing how
1100   // parts of the input section are mapped to output.  DELETED_BYTES is
1101   // the number of bytes deleted from the EXIDX input section.
1102   Arm_exidx_merged_section(
1103       const Arm_exidx_input_section& exidx_input_section,
1104       const Arm_exidx_section_offset_map& section_offset_map,
1105       uint32_t deleted_bytes);
1106
1107   // Build output contents.
1108   void
1109   build_contents(const unsigned char*, section_size_type);
1110
1111   // Return the original EXIDX input section.
1112   const Arm_exidx_input_section&
1113   exidx_input_section() const
1114   { return this->exidx_input_section_; }
1115
1116   // Return the section offset map.
1117   const Arm_exidx_section_offset_map&
1118   section_offset_map() const
1119   { return this->section_offset_map_; }
1120
1121  protected:
1122   // Write merged section into file OF.
1123   void
1124   do_write(Output_file* of);
1125
1126   bool
1127   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128                   section_offset_type*) const;
1129
1130  private:
1131   // Original EXIDX input section.
1132   const Arm_exidx_input_section& exidx_input_section_;
1133   // Section offset map.
1134   const Arm_exidx_section_offset_map& section_offset_map_;
1135   // Merged section contents.  We need to keep build the merged section 
1136   // and save it here to avoid accessing the original EXIDX section when
1137   // we cannot lock the sections' object.
1138   unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146  public:
1147   Arm_input_section(Relobj* relobj, unsigned int shndx)
1148     : Output_relaxed_input_section(relobj, shndx, 1),
1149       original_addralign_(1), original_size_(0), stub_table_(NULL),
1150       original_contents_(NULL)
1151   { }
1152
1153   ~Arm_input_section()
1154   { delete[] this->original_contents_; }
1155
1156   // Initialize.
1157   void
1158   init();
1159   
1160   // Whether this is a stub table owner.
1161   bool
1162   is_stub_table_owner() const
1163   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165   // Return the stub table.
1166   Stub_table<big_endian>*
1167   stub_table() const
1168   { return this->stub_table_; }
1169
1170   // Set the stub_table.
1171   void
1172   set_stub_table(Stub_table<big_endian>* stub_table)
1173   { this->stub_table_ = stub_table; }
1174
1175   // Downcast a base pointer to an Arm_input_section pointer.  This is
1176   // not type-safe but we only use Arm_input_section not the base class.
1177   static Arm_input_section<big_endian>*
1178   as_arm_input_section(Output_relaxed_input_section* poris)
1179   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181   // Return the original size of the section.
1182   uint32_t
1183   original_size() const
1184   { return this->original_size_; }
1185
1186  protected:
1187   // Write data to output file.
1188   void
1189   do_write(Output_file*);
1190
1191   // Return required alignment of this.
1192   uint64_t
1193   do_addralign() const
1194   {
1195     if (this->is_stub_table_owner())
1196       return std::max(this->stub_table_->addralign(),
1197                       static_cast<uint64_t>(this->original_addralign_));
1198     else
1199       return this->original_addralign_;
1200   }
1201
1202   // Finalize data size.
1203   void
1204   set_final_data_size();
1205
1206   // Reset address and file offset.
1207   void
1208   do_reset_address_and_file_offset();
1209
1210   // Output offset.
1211   bool
1212   do_output_offset(const Relobj* object, unsigned int shndx,
1213                    section_offset_type offset,
1214                    section_offset_type* poutput) const
1215   {
1216     if ((object == this->relobj())
1217         && (shndx == this->shndx())
1218         && (offset >= 0)
1219         && (offset <=
1220             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221       {
1222         *poutput = offset;
1223         return true;
1224       }
1225     else
1226       return false;
1227   }
1228
1229  private:
1230   // Copying is not allowed.
1231   Arm_input_section(const Arm_input_section&);
1232   Arm_input_section& operator=(const Arm_input_section&);
1233
1234   // Address alignment of the original input section.
1235   uint32_t original_addralign_;
1236   // Section size of the original input section.
1237   uint32_t original_size_;
1238   // Stub table.
1239   Stub_table<big_endian>* stub_table_;
1240   // Original section contents.  We have to make a copy here since the file
1241   // containing the original section may not be locked when we need to access
1242   // the contents.
1243   unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class.  This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251  public:
1252   Arm_exidx_fixup(Output_section* exidx_output_section,
1253                   bool merge_exidx_entries = true)
1254     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255       last_inlined_entry_(0), last_input_section_(NULL),
1256       section_offset_map_(NULL), first_output_text_section_(NULL),
1257       merge_exidx_entries_(merge_exidx_entries)
1258   { }
1259
1260   ~Arm_exidx_fixup()
1261   { delete this->section_offset_map_; }
1262
1263   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1264   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265   // number of bytes to be deleted in output.  If parts of the input EXIDX
1266   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1268   // responsible for releasing it.
1269   template<bool big_endian>
1270   uint32_t
1271   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272                         const unsigned char* section_contents,
1273                         section_size_type section_size,
1274                         Arm_exidx_section_offset_map** psection_offset_map);
1275   
1276   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277   // input section, if there is not one already.
1278   void
1279   add_exidx_cantunwind_as_needed();
1280
1281   // Return the output section for the text section which is linked to the
1282   // first exidx input in output.
1283   Output_section*
1284   first_output_text_section() const
1285   { return this->first_output_text_section_; }
1286
1287  private:
1288   // Copying is not allowed.
1289   Arm_exidx_fixup(const Arm_exidx_fixup&);
1290   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292   // Type of EXIDX unwind entry.
1293   enum Unwind_type
1294   {
1295     // No type.
1296     UT_NONE,
1297     // EXIDX_CANTUNWIND.
1298     UT_EXIDX_CANTUNWIND,
1299     // Inlined entry.
1300     UT_INLINED_ENTRY,
1301     // Normal entry.
1302     UT_NORMAL_ENTRY,
1303   };
1304
1305   // Process an EXIDX entry.  We only care about the second word of the
1306   // entry.  Return true if the entry can be deleted.
1307   bool
1308   process_exidx_entry(uint32_t second_word);
1309
1310   // Update the current section offset map during EXIDX section fix-up.
1311   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1312   // reference point, DELETED_BYTES is the number of deleted by in the
1313   // section so far.  If DELETE_ENTRY is true, the reference point and
1314   // all offsets after the previous reference point are discarded.
1315   void
1316   update_offset_map(section_offset_type input_offset,
1317                     section_size_type deleted_bytes, bool delete_entry);
1318
1319   // EXIDX output section.
1320   Output_section* exidx_output_section_;
1321   // Unwind type of the last EXIDX entry processed.
1322   Unwind_type last_unwind_type_;
1323   // Last seen inlined EXIDX entry.
1324   uint32_t last_inlined_entry_;
1325   // Last processed EXIDX input section.
1326   const Arm_exidx_input_section* last_input_section_;
1327   // Section offset map created in process_exidx_section.
1328   Arm_exidx_section_offset_map* section_offset_map_;
1329   // Output section for the text section which is linked to the first exidx
1330   // input in output.
1331   Output_section* first_output_text_section_;
1332
1333   bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class.  This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342  public:
1343   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347                      elfcpp::Elf_Xword flags)
1348     : Output_section(name, type,
1349                      (type == elfcpp::SHT_ARM_EXIDX
1350                       ? flags | elfcpp::SHF_LINK_ORDER
1351                       : flags))
1352   {
1353     if (type == elfcpp::SHT_ARM_EXIDX)
1354       this->set_always_keeps_input_sections();
1355   }
1356
1357   ~Arm_output_section()
1358   { }
1359   
1360   // Group input sections for stub generation.
1361   void
1362   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364   // Downcast a base pointer to an Arm_output_section pointer.  This is
1365   // not type-safe but we only use Arm_output_section not the base class.
1366   static Arm_output_section<big_endian>*
1367   as_arm_output_section(Output_section* os)
1368   { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370   // Append all input text sections in this into LIST.
1371   void
1372   append_text_sections_to_list(Text_section_list* list);
1373
1374   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1375   // is a list of text input sections sorted in ascending order of their
1376   // output addresses.
1377   void
1378   fix_exidx_coverage(Layout* layout,
1379                      const Text_section_list& sorted_text_section,
1380                      Symbol_table* symtab,
1381                      bool merge_exidx_entries,
1382                      const Task* task);
1383
1384   // Link an EXIDX section into its corresponding text section.
1385   void
1386   set_exidx_section_link();
1387
1388  private:
1389   // For convenience.
1390   typedef Output_section::Input_section Input_section;
1391   typedef Output_section::Input_section_list Input_section_list;
1392
1393   // Create a stub group.
1394   void create_stub_group(Input_section_list::const_iterator,
1395                          Input_section_list::const_iterator,
1396                          Input_section_list::const_iterator,
1397                          Target_arm<big_endian>*,
1398                          std::vector<Output_relaxed_input_section*>*,
1399                          const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406  public:
1407   static const section_offset_type invalid_offset =
1408     static_cast<section_offset_type>(-1);
1409
1410   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411                           unsigned int link, uint32_t size,
1412                           uint32_t addralign, uint32_t text_size)
1413     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414       addralign_(addralign), text_size_(text_size), has_errors_(false)
1415   { }
1416
1417   ~Arm_exidx_input_section()
1418   { }
1419         
1420   // Accessors:  This is a read-only class.
1421
1422   // Return the object containing this EXIDX input section.
1423   Relobj*
1424   relobj() const
1425   { return this->relobj_; }
1426
1427   // Return the section index of this EXIDX input section.
1428   unsigned int
1429   shndx() const
1430   { return this->shndx_; }
1431
1432   // Return the section index of linked text section in the same object.
1433   unsigned int
1434   link() const
1435   { return this->link_; }
1436
1437   // Return size of the EXIDX input section.
1438   uint32_t
1439   size() const
1440   { return this->size_; }
1441
1442   // Return address alignment of EXIDX input section.
1443   uint32_t
1444   addralign() const
1445   { return this->addralign_; }
1446
1447   // Return size of the associated text input section.
1448   uint32_t
1449   text_size() const
1450   { return this->text_size_; }
1451
1452   // Whether there are any errors in the EXIDX input section.
1453   bool
1454   has_errors() const
1455   { return this->has_errors_; }
1456
1457   // Set has-errors flag.
1458   void
1459   set_has_errors()
1460   { this->has_errors_ = true; }
1461
1462  private:
1463   // Object containing this.
1464   Relobj* relobj_;
1465   // Section index of this.
1466   unsigned int shndx_;
1467   // text section linked to this in the same object.
1468   unsigned int link_;
1469   // Size of this.  For ARM 32-bit is sufficient.
1470   uint32_t size_;
1471   // Address alignment of this.  For ARM 32-bit is sufficient.
1472   uint32_t addralign_;
1473   // Size of associated text section.
1474   uint32_t text_size_;
1475   // Whether this has any errors.
1476   bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484  public:
1485   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490       stub_tables_(), local_symbol_is_thumb_function_(),
1491       attributes_section_data_(NULL), mapping_symbols_info_(),
1492       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493       output_local_symbol_count_needs_update_(false),
1494       merge_flags_and_attributes_(true)
1495   { }
1496
1497   ~Arm_relobj()
1498   { delete this->attributes_section_data_; }
1499  
1500   // Return the stub table of the SHNDX-th section if there is one.
1501   Stub_table<big_endian>*
1502   stub_table(unsigned int shndx) const
1503   {
1504     gold_assert(shndx < this->stub_tables_.size());
1505     return this->stub_tables_[shndx];
1506   }
1507
1508   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509   void
1510   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511   {
1512     gold_assert(shndx < this->stub_tables_.size());
1513     this->stub_tables_[shndx] = stub_table;
1514   }
1515
1516   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1517   // index.  This is only valid after do_count_local_symbol is called.
1518   bool
1519   local_symbol_is_thumb_function(unsigned int r_sym) const
1520   {
1521     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522     return this->local_symbol_is_thumb_function_[r_sym];
1523   }
1524   
1525   // Scan all relocation sections for stub generation.
1526   void
1527   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528                           const Layout*);
1529
1530   // Convert regular input section with index SHNDX to a relaxed section.
1531   void
1532   convert_input_section_to_relaxed_section(unsigned shndx)
1533   {
1534     // The stubs have relocations and we need to process them after writing
1535     // out the stubs.  So relocation now must follow section write.
1536     this->set_section_offset(shndx, -1ULL);
1537     this->set_relocs_must_follow_section_writes();
1538   }
1539
1540   // Downcast a base pointer to an Arm_relobj pointer.  This is
1541   // not type-safe but we only use Arm_relobj not the base class.
1542   static Arm_relobj<big_endian>*
1543   as_arm_relobj(Relobj* relobj)
1544   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546   // Processor-specific flags in ELF file header.  This is valid only after
1547   // reading symbols.
1548   elfcpp::Elf_Word
1549   processor_specific_flags() const
1550   { return this->processor_specific_flags_; }
1551
1552   // Attribute section data  This is the contents of the .ARM.attribute section
1553   // if there is one.
1554   const Attributes_section_data*
1555   attributes_section_data() const
1556   { return this->attributes_section_data_; }
1557
1558   // Mapping symbol location.
1559   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561   // Functor for STL container.
1562   struct Mapping_symbol_position_less
1563   {
1564     bool
1565     operator()(const Mapping_symbol_position& p1,
1566                const Mapping_symbol_position& p2) const
1567     {
1568       return (p1.first < p2.first
1569               || (p1.first == p2.first && p1.second < p2.second));
1570     }
1571   };
1572   
1573   // We only care about the first character of a mapping symbol, so
1574   // we only store that instead of the whole symbol name.
1575   typedef std::map<Mapping_symbol_position, char,
1576                    Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578   // Whether a section contains any Cortex-A8 workaround.
1579   bool
1580   section_has_cortex_a8_workaround(unsigned int shndx) const
1581   { 
1582     return (this->section_has_cortex_a8_workaround_ != NULL
1583             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584   }
1585   
1586   // Mark a section that has Cortex-A8 workaround.
1587   void
1588   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589   {
1590     if (this->section_has_cortex_a8_workaround_ == NULL)
1591       this->section_has_cortex_a8_workaround_ =
1592         new std::vector<bool>(this->shnum(), false);
1593     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594   }
1595
1596   // Return the EXIDX section of an text section with index SHNDX or NULL
1597   // if the text section has no associated EXIDX section.
1598   const Arm_exidx_input_section*
1599   exidx_input_section_by_link(unsigned int shndx) const
1600   {
1601     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602     return ((p != this->exidx_section_map_.end()
1603              && p->second->link() == shndx)
1604             ? p->second
1605             : NULL);
1606   }
1607
1608   // Return the EXIDX section with index SHNDX or NULL if there is none.
1609   const Arm_exidx_input_section*
1610   exidx_input_section_by_shndx(unsigned shndx) const
1611   {
1612     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613     return ((p != this->exidx_section_map_.end()
1614              && p->second->shndx() == shndx)
1615             ? p->second
1616             : NULL);
1617   }
1618
1619   // Whether output local symbol count needs updating.
1620   bool
1621   output_local_symbol_count_needs_update() const
1622   { return this->output_local_symbol_count_needs_update_; }
1623
1624   // Set output_local_symbol_count_needs_update flag to be true.
1625   void
1626   set_output_local_symbol_count_needs_update()
1627   { this->output_local_symbol_count_needs_update_ = true; }
1628   
1629   // Update output local symbol count at the end of relaxation.
1630   void
1631   update_output_local_symbol_count();
1632
1633   // Whether we want to merge processor-specific flags and attributes.
1634   bool
1635   merge_flags_and_attributes() const
1636   { return this->merge_flags_and_attributes_; }
1637   
1638   // Export list of EXIDX section indices.
1639   void
1640   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641   {
1642     list->clear();
1643     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644          p != this->exidx_section_map_.end();
1645          ++p)
1646       {
1647         if (p->second->shndx() == p->first)
1648           list->push_back(p->first);
1649       }
1650     // Sort list to make result independent of implementation of map. 
1651     std::sort(list->begin(), list->end());
1652   }
1653
1654  protected:
1655   // Post constructor setup.
1656   void
1657   do_setup()
1658   {
1659     // Call parent's setup method.
1660     Sized_relobj_file<32, big_endian>::do_setup();
1661
1662     // Initialize look-up tables.
1663     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664     this->stub_tables_.swap(empty_stub_table_list);
1665   }
1666
1667   // Count the local symbols.
1668   void
1669   do_count_local_symbols(Stringpool_template<char>*,
1670                          Stringpool_template<char>*);
1671
1672   void
1673   do_relocate_sections(
1674       const Symbol_table* symtab, const Layout* layout,
1675       const unsigned char* pshdrs, Output_file* of,
1676       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678   // Read the symbol information.
1679   void
1680   do_read_symbols(Read_symbols_data* sd);
1681
1682   // Process relocs for garbage collection.
1683   void
1684   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686  private:
1687
1688   // Whether a section needs to be scanned for relocation stubs.
1689   bool
1690   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691                                     const Relobj::Output_sections&,
1692                                     const Symbol_table*, const unsigned char*);
1693
1694   // Whether a section is a scannable text section.
1695   bool
1696   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697                        const Output_section*, const Symbol_table*);
1698
1699   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700   bool
1701   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702                                         unsigned int, Output_section*,
1703                                         const Symbol_table*);
1704
1705   // Scan a section for the Cortex-A8 erratum.
1706   void
1707   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708                                      unsigned int, Output_section*,
1709                                      Target_arm<big_endian>*);
1710
1711   // Find the linked text section of an EXIDX section by looking at the
1712   // first relocation of the EXIDX section.  PSHDR points to the section
1713   // headers of a relocation section and PSYMS points to the local symbols.
1714   // PSHNDX points to a location storing the text section index if found.
1715   // Return whether we can find the linked section.
1716   bool
1717   find_linked_text_section(const unsigned char* pshdr,
1718                            const unsigned char* psyms, unsigned int* pshndx);
1719
1720   //
1721   // Make a new Arm_exidx_input_section object for EXIDX section with
1722   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1723   // index of the linked text section.
1724   void
1725   make_exidx_input_section(unsigned int shndx,
1726                            const elfcpp::Shdr<32, big_endian>& shdr,
1727                            unsigned int text_shndx,
1728                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730   // Return the output address of either a plain input section or a
1731   // relaxed input section.  SHNDX is the section index.
1732   Arm_address
1733   simple_input_section_output_address(unsigned int, Output_section*);
1734
1735   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737     Exidx_section_map;
1738
1739   // List of stub tables.
1740   Stub_table_list stub_tables_;
1741   // Bit vector to tell if a local symbol is a thumb function or not.
1742   // This is only valid after do_count_local_symbol is called.
1743   std::vector<bool> local_symbol_is_thumb_function_;
1744   // processor-specific flags in ELF file header.
1745   elfcpp::Elf_Word processor_specific_flags_;
1746   // Object attributes if there is an .ARM.attributes section or NULL.
1747   Attributes_section_data* attributes_section_data_;
1748   // Mapping symbols information.
1749   Mapping_symbols_info mapping_symbols_info_;
1750   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751   std::vector<bool>* section_has_cortex_a8_workaround_;
1752   // Map a text section to its associated .ARM.exidx section, if there is one.
1753   Exidx_section_map exidx_section_map_;
1754   // Whether output local symbol count needs updating.
1755   bool output_local_symbol_count_needs_update_;
1756   // Whether we merge processor flags and attributes of this object to
1757   // output.
1758   bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766  public:
1767   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768              const elfcpp::Ehdr<32, big_endian>& ehdr)
1769     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770       processor_specific_flags_(0), attributes_section_data_(NULL)
1771   { }
1772  
1773   ~Arm_dynobj()
1774   { delete this->attributes_section_data_; }
1775
1776   // Downcast a base pointer to an Arm_relobj pointer.  This is
1777   // not type-safe but we only use Arm_relobj not the base class.
1778   static Arm_dynobj<big_endian>*
1779   as_arm_dynobj(Dynobj* dynobj)
1780   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782   // Processor-specific flags in ELF file header.  This is valid only after
1783   // reading symbols.
1784   elfcpp::Elf_Word
1785   processor_specific_flags() const
1786   { return this->processor_specific_flags_; }
1787
1788   // Attributes section data.
1789   const Attributes_section_data*
1790   attributes_section_data() const
1791   { return this->attributes_section_data_; }
1792
1793  protected:
1794   // Read the symbol information.
1795   void
1796   do_read_symbols(Read_symbols_data* sd);
1797
1798  private:
1799   // processor-specific flags in ELF file header.
1800   elfcpp::Elf_Word processor_specific_flags_;
1801   // Object attributes if there is an .ARM.attributes section or NULL.
1802   Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810   // Return the addend for a relocation of a particular type.  Depending
1811   // on whether this is a REL or RELA relocation, read the addend from a
1812   // view or from a Reloc object.
1813   elfcpp::Elf_types<32>::Elf_Swxword
1814   operator()(
1815     unsigned int /* r_type */,
1816     const unsigned char* /* view */,
1817     const typename Reloc_types<sh_type,
1818                                32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826   elfcpp::Elf_types<32>::Elf_Swxword
1827   operator()(
1828     unsigned int,
1829     const unsigned char*,
1830     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader.  This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841   elfcpp::Elf_types<32>::Elf_Swxword
1842   operator()(
1843     unsigned int,
1844     const unsigned char*,
1845     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846                                big_endian>::Reloc& reloc) const
1847   { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class.  We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855  public:
1856   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857                   Arm_address destination)
1858     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859   { }
1860
1861   ~Cortex_a8_reloc()
1862   { }
1863
1864   // Accessors:  This is a read-only class.
1865   
1866   // Return the relocation stub associated with this relocation if there is
1867   // one.
1868   const Reloc_stub*
1869   reloc_stub() const
1870   { return this->reloc_stub_; } 
1871   
1872   // Return the relocation type.
1873   unsigned int
1874   r_type() const
1875   { return this->r_type_; }
1876
1877   // Return the destination address of the relocation.  LSB stores the THUMB
1878   // bit.
1879   Arm_address
1880   destination() const
1881   { return this->destination_; }
1882
1883  private:
1884   // Associated relocation stub if there is one, or NULL.
1885   const Reloc_stub* reloc_stub_;
1886   // Relocation type.
1887   unsigned int r_type_;
1888   // Destination address of this relocation.  LSB is used to distinguish
1889   // ARM/THUMB mode.
1890   Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class.  We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899  public:
1900   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902   { }
1903
1904   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1905   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906   // applied in a static link.
1907   void
1908   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1912   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1913   // relocation that needs to be applied in a static link.
1914   void
1915   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916                    Sized_relobj_file<32, big_endian>* relobj,
1917                    unsigned int index)
1918   {
1919     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920                                                 index));
1921   }
1922
1923   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1924   // The first one is initialized to be 1, which is the module index for
1925   // the main executable and the second one 0.  A reloc of the type
1926   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927   // be applied by gold.  GSYM is a global symbol.
1928   void
1929   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931   // Same as the above but for a local symbol in OBJECT with INDEX.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type,
1934                                  Sized_relobj_file<32, big_endian>* object,
1935                                  unsigned int index);
1936
1937  protected:
1938   // Write out the GOT table.
1939   void
1940   do_write(Output_file*);
1941
1942  private:
1943   // This class represent dynamic relocations that need to be applied by
1944   // gold because we are using TLS relocations in a static link.
1945   class Static_reloc
1946   {
1947    public:
1948     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950     { this->u_.global.symbol = gsym; }
1951
1952     Static_reloc(unsigned int got_offset, unsigned int r_type,
1953           Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955     {
1956       this->u_.local.relobj = relobj;
1957       this->u_.local.index = index;
1958     }
1959
1960     // Return the GOT offset.
1961     unsigned int
1962     got_offset() const
1963     { return this->got_offset_; }
1964
1965     // Relocation type.
1966     unsigned int
1967     r_type() const
1968     { return this->r_type_; }
1969
1970     // Whether the symbol is global or not.
1971     bool
1972     symbol_is_global() const
1973     { return this->symbol_is_global_; }
1974
1975     // For a relocation against a global symbol, the global symbol.
1976     Symbol*
1977     symbol() const
1978     {
1979       gold_assert(this->symbol_is_global_);
1980       return this->u_.global.symbol;
1981     }
1982
1983     // For a relocation against a local symbol, the defining object.
1984     Sized_relobj_file<32, big_endian>*
1985     relobj() const
1986     {
1987       gold_assert(!this->symbol_is_global_);
1988       return this->u_.local.relobj;
1989     }
1990
1991     // For a relocation against a local symbol, the local symbol index.
1992     unsigned int
1993     index() const
1994     {
1995       gold_assert(!this->symbol_is_global_);
1996       return this->u_.local.index;
1997     }
1998
1999    private:
2000     // GOT offset of the entry to which this relocation is applied.
2001     unsigned int got_offset_;
2002     // Type of relocation.
2003     unsigned int r_type_;
2004     // Whether this relocation is against a global symbol.
2005     bool symbol_is_global_;
2006     // A global or local symbol.
2007     union
2008     {
2009       struct
2010       {
2011         // For a global symbol, the symbol itself.
2012         Symbol* symbol;
2013       } global;
2014       struct
2015       {
2016         // For a local symbol, the object defining object.
2017         Sized_relobj_file<32, big_endian>* relobj;
2018         // For a local symbol, the symbol index.
2019         unsigned int index;
2020       } local;
2021     } u_;
2022   };
2023
2024   // Symbol table of the output object.
2025   Symbol_table* symbol_table_;
2026   // Layout of the output object.
2027   Layout* layout_;
2028   // Static relocs to be applied to the GOT.
2029   std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits.  The default handling of relocatable relocation cannot process these
2034 // relocations.  So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040  public:
2041   // Return the strategy to use for a local symbol which is a section
2042   // symbol, given the relocation type.
2043   inline Relocatable_relocs::Reloc_strategy
2044   local_section_strategy(unsigned int r_type, Relobj*)
2045   {
2046     if (sh_type == elfcpp::SHT_RELA)
2047       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048     else
2049       {
2050         if (r_type == elfcpp::R_ARM_TARGET1
2051             || r_type == elfcpp::R_ARM_TARGET2)
2052           {
2053             const Target_arm<big_endian>* arm_target =
2054               Target_arm<big_endian>::default_target();
2055             r_type = arm_target->get_real_reloc_type(r_type);
2056           }
2057
2058         switch(r_type)
2059           {
2060           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2061           // and R_ARM_TARGET2.
2062           case elfcpp::R_ARM_NONE:
2063           case elfcpp::R_ARM_V4BX:
2064           case elfcpp::R_ARM_TLS_GOTDESC:
2065           case elfcpp::R_ARM_TLS_CALL:
2066           case elfcpp::R_ARM_TLS_DESCSEQ:
2067           case elfcpp::R_ARM_THM_TLS_CALL:
2068           case elfcpp::R_ARM_GOTRELAX:
2069           case elfcpp::R_ARM_GNU_VTENTRY:
2070           case elfcpp::R_ARM_GNU_VTINHERIT:
2071           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074           // These should have been converted to something else above.
2075           case elfcpp::R_ARM_TARGET1:
2076           case elfcpp::R_ARM_TARGET2:
2077             gold_unreachable();
2078           // Relocations that write full 32 bits.
2079           case elfcpp::R_ARM_ABS32:
2080           case elfcpp::R_ARM_REL32:
2081           case elfcpp::R_ARM_SBREL32:
2082           case elfcpp::R_ARM_GOTOFF32:
2083           case elfcpp::R_ARM_BASE_PREL:
2084           case elfcpp::R_ARM_GOT_BREL:
2085           case elfcpp::R_ARM_BASE_ABS:
2086           case elfcpp::R_ARM_ABS32_NOI:
2087           case elfcpp::R_ARM_REL32_NOI:
2088           case elfcpp::R_ARM_PLT32_ABS:
2089           case elfcpp::R_ARM_GOT_ABS:
2090           case elfcpp::R_ARM_GOT_PREL:
2091           case elfcpp::R_ARM_TLS_GD32:
2092           case elfcpp::R_ARM_TLS_LDM32:
2093           case elfcpp::R_ARM_TLS_LDO32:
2094           case elfcpp::R_ARM_TLS_IE32:
2095           case elfcpp::R_ARM_TLS_LE32:
2096             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097           default:
2098             // For all other static relocations, return RELOC_SPECIAL.
2099             return Relocatable_relocs::RELOC_SPECIAL;
2100           }
2101       }
2102   }
2103 };
2104
2105 // Utilities for manipulating integers of up to 32-bits
2106
2107 namespace utils
2108 {
2109   // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110   // an int32_t.  NO_BITS must be between 1 to 32.
2111   template<int no_bits>
2112   static inline int32_t
2113   sign_extend(uint32_t bits)
2114   {
2115     gold_assert(no_bits >= 0 && no_bits <= 32);
2116     if (no_bits == 32)
2117       return static_cast<int32_t>(bits);
2118     uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119     bits &= mask;
2120     uint32_t top_bit = 1U << (no_bits - 1);
2121     int32_t as_signed = static_cast<int32_t>(bits);
2122     return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123   }
2124
2125   // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126   template<int no_bits>
2127   static inline bool
2128   has_overflow(uint32_t bits)
2129   {
2130     gold_assert(no_bits >= 0 && no_bits <= 32);
2131     if (no_bits == 32)
2132       return false;
2133     int32_t max = (1 << (no_bits - 1)) - 1;
2134     int32_t min = -(1 << (no_bits - 1));
2135     int32_t as_signed = static_cast<int32_t>(bits);
2136     return as_signed > max || as_signed < min;
2137   }
2138
2139   // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140   // fits in the given number of bits as either a signed or unsigned value.
2141   // For example, has_signed_unsigned_overflow<8> would check
2142   // -128 <= bits <= 255
2143   template<int no_bits>
2144   static inline bool
2145   has_signed_unsigned_overflow(uint32_t bits)
2146   {
2147     gold_assert(no_bits >= 2 && no_bits <= 32);
2148     if (no_bits == 32)
2149       return false;
2150     int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151     int32_t min = -(1 << (no_bits - 1));
2152     int32_t as_signed = static_cast<int32_t>(bits);
2153     return as_signed > max || as_signed < min;
2154   }
2155
2156   // Select bits from A and B using bits in MASK.  For each n in [0..31],
2157   // the n-th bit in the result is chosen from the n-th bits of A and B.
2158   // A zero selects A and a one selects B.
2159   static inline uint32_t
2160   bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161   { return (a & ~mask) | (b & mask); }
2162 };
2163
2164 template<bool big_endian>
2165 class Target_arm : public Sized_target<32, big_endian>
2166 {
2167  public:
2168   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169     Reloc_section;
2170
2171   // When were are relocating a stub, we pass this as the relocation number.
2172   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
2174   Target_arm()
2175     : Sized_target<32, big_endian>(&arm_info),
2176       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2178       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180       may_use_blx_(false), should_force_pic_veneer_(false),
2181       arm_input_section_map_(), attributes_section_data_(NULL),
2182       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2183   { }
2184
2185   // Virtual function which is set to return true by a target if
2186   // it can use relocation types to determine if a function's
2187   // pointer is taken.
2188   virtual bool
2189   can_check_for_function_pointers() const
2190   { return true; }
2191
2192   // Whether a section called SECTION_NAME may have function pointers to
2193   // sections not eligible for safe ICF folding.
2194   virtual bool
2195   section_may_have_icf_unsafe_pointers(const char* section_name) const
2196   {
2197     return (!is_prefix_of(".ARM.exidx", section_name)
2198             && !is_prefix_of(".ARM.extab", section_name)
2199             && Target::section_may_have_icf_unsafe_pointers(section_name));
2200   }
2201   
2202   // Whether we can use BLX.
2203   bool
2204   may_use_blx() const
2205   { return this->may_use_blx_; }
2206
2207   // Set use-BLX flag.
2208   void
2209   set_may_use_blx(bool value)
2210   { this->may_use_blx_ = value; }
2211   
2212   // Whether we force PCI branch veneers.
2213   bool
2214   should_force_pic_veneer() const
2215   { return this->should_force_pic_veneer_; }
2216
2217   // Set PIC veneer flag.
2218   void
2219   set_should_force_pic_veneer(bool value)
2220   { this->should_force_pic_veneer_ = value; }
2221   
2222   // Whether we use THUMB-2 instructions.
2223   bool
2224   using_thumb2() const
2225   {
2226     Object_attribute* attr =
2227       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2228     int arch = attr->int_value();
2229     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2230   }
2231
2232   // Whether we use THUMB/THUMB-2 instructions only.
2233   bool
2234   using_thumb_only() const
2235   {
2236     Object_attribute* attr =
2237       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2238
2239     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2240         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2241       return true;
2242     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2243         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2244       return false;
2245     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2246     return attr->int_value() == 'M';
2247   }
2248
2249   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2250   bool
2251   may_use_arm_nop() const
2252   {
2253     Object_attribute* attr =
2254       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2255     int arch = attr->int_value();
2256     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2257             || arch == elfcpp::TAG_CPU_ARCH_V6K
2258             || arch == elfcpp::TAG_CPU_ARCH_V7
2259             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2260   }
2261
2262   // Whether we have THUMB-2 NOP.W instruction.
2263   bool
2264   may_use_thumb2_nop() const
2265   {
2266     Object_attribute* attr =
2267       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2268     int arch = attr->int_value();
2269     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2270             || arch == elfcpp::TAG_CPU_ARCH_V7
2271             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2272   }
2273   
2274   // Process the relocations to determine unreferenced sections for 
2275   // garbage collection.
2276   void
2277   gc_process_relocs(Symbol_table* symtab,
2278                     Layout* layout,
2279                     Sized_relobj_file<32, big_endian>* object,
2280                     unsigned int data_shndx,
2281                     unsigned int sh_type,
2282                     const unsigned char* prelocs,
2283                     size_t reloc_count,
2284                     Output_section* output_section,
2285                     bool needs_special_offset_handling,
2286                     size_t local_symbol_count,
2287                     const unsigned char* plocal_symbols);
2288
2289   // Scan the relocations to look for symbol adjustments.
2290   void
2291   scan_relocs(Symbol_table* symtab,
2292               Layout* layout,
2293               Sized_relobj_file<32, big_endian>* object,
2294               unsigned int data_shndx,
2295               unsigned int sh_type,
2296               const unsigned char* prelocs,
2297               size_t reloc_count,
2298               Output_section* output_section,
2299               bool needs_special_offset_handling,
2300               size_t local_symbol_count,
2301               const unsigned char* plocal_symbols);
2302
2303   // Finalize the sections.
2304   void
2305   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2306
2307   // Return the value to use for a dynamic symbol which requires special
2308   // treatment.
2309   uint64_t
2310   do_dynsym_value(const Symbol*) const;
2311
2312   // Relocate a section.
2313   void
2314   relocate_section(const Relocate_info<32, big_endian>*,
2315                    unsigned int sh_type,
2316                    const unsigned char* prelocs,
2317                    size_t reloc_count,
2318                    Output_section* output_section,
2319                    bool needs_special_offset_handling,
2320                    unsigned char* view,
2321                    Arm_address view_address,
2322                    section_size_type view_size,
2323                    const Reloc_symbol_changes*);
2324
2325   // Scan the relocs during a relocatable link.
2326   void
2327   scan_relocatable_relocs(Symbol_table* symtab,
2328                           Layout* layout,
2329                           Sized_relobj_file<32, big_endian>* object,
2330                           unsigned int data_shndx,
2331                           unsigned int sh_type,
2332                           const unsigned char* prelocs,
2333                           size_t reloc_count,
2334                           Output_section* output_section,
2335                           bool needs_special_offset_handling,
2336                           size_t local_symbol_count,
2337                           const unsigned char* plocal_symbols,
2338                           Relocatable_relocs*);
2339
2340   // Relocate a section during a relocatable link.
2341   void
2342   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2343                            unsigned int sh_type,
2344                            const unsigned char* prelocs,
2345                            size_t reloc_count,
2346                            Output_section* output_section,
2347                            off_t offset_in_output_section,
2348                            const Relocatable_relocs*,
2349                            unsigned char* view,
2350                            Arm_address view_address,
2351                            section_size_type view_size,
2352                            unsigned char* reloc_view,
2353                            section_size_type reloc_view_size);
2354
2355   // Perform target-specific processing in a relocatable link.  This is
2356   // only used if we use the relocation strategy RELOC_SPECIAL.
2357   void
2358   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2359                                unsigned int sh_type,
2360                                const unsigned char* preloc_in,
2361                                size_t relnum,
2362                                Output_section* output_section,
2363                                off_t offset_in_output_section,
2364                                unsigned char* view,
2365                                typename elfcpp::Elf_types<32>::Elf_Addr
2366                                  view_address,
2367                                section_size_type view_size,
2368                                unsigned char* preloc_out);
2369  
2370   // Return whether SYM is defined by the ABI.
2371   bool
2372   do_is_defined_by_abi(Symbol* sym) const
2373   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2374
2375   // Return whether there is a GOT section.
2376   bool
2377   has_got_section() const
2378   { return this->got_ != NULL; }
2379
2380   // Return the size of the GOT section.
2381   section_size_type
2382   got_size() const
2383   {
2384     gold_assert(this->got_ != NULL);
2385     return this->got_->data_size();
2386   }
2387
2388   // Return the number of entries in the GOT.
2389   unsigned int
2390   got_entry_count() const
2391   {
2392     if (!this->has_got_section())
2393       return 0;
2394     return this->got_size() / 4;
2395   }
2396
2397   // Return the number of entries in the PLT.
2398   unsigned int
2399   plt_entry_count() const;
2400
2401   // Return the offset of the first non-reserved PLT entry.
2402   unsigned int
2403   first_plt_entry_offset() const;
2404
2405   // Return the size of each PLT entry.
2406   unsigned int
2407   plt_entry_size() const;
2408
2409   // Map platform-specific reloc types
2410   static unsigned int
2411   get_real_reloc_type(unsigned int r_type);
2412
2413   //
2414   // Methods to support stub-generations.
2415   //
2416   
2417   // Return the stub factory
2418   const Stub_factory&
2419   stub_factory() const
2420   { return this->stub_factory_; }
2421
2422   // Make a new Arm_input_section object.
2423   Arm_input_section<big_endian>*
2424   new_arm_input_section(Relobj*, unsigned int);
2425
2426   // Find the Arm_input_section object corresponding to the SHNDX-th input
2427   // section of RELOBJ.
2428   Arm_input_section<big_endian>*
2429   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2430
2431   // Make a new Stub_table
2432   Stub_table<big_endian>*
2433   new_stub_table(Arm_input_section<big_endian>*);
2434
2435   // Scan a section for stub generation.
2436   void
2437   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2438                          const unsigned char*, size_t, Output_section*,
2439                          bool, const unsigned char*, Arm_address,
2440                          section_size_type);
2441
2442   // Relocate a stub. 
2443   void
2444   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2445                 Output_section*, unsigned char*, Arm_address,
2446                 section_size_type);
2447  
2448   // Get the default ARM target.
2449   static Target_arm<big_endian>*
2450   default_target()
2451   {
2452     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2453                 && parameters->target().is_big_endian() == big_endian);
2454     return static_cast<Target_arm<big_endian>*>(
2455              parameters->sized_target<32, big_endian>());
2456   }
2457
2458   // Whether NAME belongs to a mapping symbol.
2459   static bool
2460   is_mapping_symbol_name(const char* name)
2461   {
2462     return (name
2463             && name[0] == '$'
2464             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2465             && (name[2] == '\0' || name[2] == '.'));
2466   }
2467
2468   // Whether we work around the Cortex-A8 erratum.
2469   bool
2470   fix_cortex_a8() const
2471   { return this->fix_cortex_a8_; }
2472
2473   // Whether we merge exidx entries in debuginfo.
2474   bool
2475   merge_exidx_entries() const
2476   { return parameters->options().merge_exidx_entries(); }
2477
2478   // Whether we fix R_ARM_V4BX relocation.
2479   // 0 - do not fix
2480   // 1 - replace with MOV instruction (armv4 target)
2481   // 2 - make interworking veneer (>= armv4t targets only)
2482   General_options::Fix_v4bx
2483   fix_v4bx() const
2484   { return parameters->options().fix_v4bx(); }
2485
2486   // Scan a span of THUMB code section for Cortex-A8 erratum.
2487   void
2488   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2489                                   section_size_type, section_size_type,
2490                                   const unsigned char*, Arm_address);
2491
2492   // Apply Cortex-A8 workaround to a branch.
2493   void
2494   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2495                              unsigned char*, Arm_address);
2496
2497  protected:
2498   // Make an ELF object.
2499   Object*
2500   do_make_elf_object(const std::string&, Input_file*, off_t,
2501                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2502
2503   Object*
2504   do_make_elf_object(const std::string&, Input_file*, off_t,
2505                      const elfcpp::Ehdr<32, !big_endian>&)
2506   { gold_unreachable(); }
2507
2508   Object*
2509   do_make_elf_object(const std::string&, Input_file*, off_t,
2510                       const elfcpp::Ehdr<64, false>&)
2511   { gold_unreachable(); }
2512
2513   Object*
2514   do_make_elf_object(const std::string&, Input_file*, off_t,
2515                      const elfcpp::Ehdr<64, true>&)
2516   { gold_unreachable(); }
2517
2518   // Make an output section.
2519   Output_section*
2520   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2521                          elfcpp::Elf_Xword flags)
2522   { return new Arm_output_section<big_endian>(name, type, flags); }
2523
2524   void
2525   do_adjust_elf_header(unsigned char* view, int len) const;
2526
2527   // We only need to generate stubs, and hence perform relaxation if we are
2528   // not doing relocatable linking.
2529   bool
2530   do_may_relax() const
2531   { return !parameters->options().relocatable(); }
2532
2533   bool
2534   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2535
2536   // Determine whether an object attribute tag takes an integer, a
2537   // string or both.
2538   int
2539   do_attribute_arg_type(int tag) const;
2540
2541   // Reorder tags during output.
2542   int
2543   do_attributes_order(int num) const;
2544
2545   // This is called when the target is selected as the default.
2546   void
2547   do_select_as_default_target()
2548   {
2549     // No locking is required since there should only be one default target.
2550     // We cannot have both the big-endian and little-endian ARM targets
2551     // as the default.
2552     gold_assert(arm_reloc_property_table == NULL);
2553     arm_reloc_property_table = new Arm_reloc_property_table();
2554   }
2555
2556  private:
2557   // The class which scans relocations.
2558   class Scan
2559   {
2560    public:
2561     Scan()
2562       : issued_non_pic_error_(false)
2563     { }
2564
2565     static inline int
2566     get_reference_flags(unsigned int r_type);
2567
2568     inline void
2569     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2570           Sized_relobj_file<32, big_endian>* object,
2571           unsigned int data_shndx,
2572           Output_section* output_section,
2573           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2574           const elfcpp::Sym<32, big_endian>& lsym);
2575
2576     inline void
2577     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2578            Sized_relobj_file<32, big_endian>* object,
2579            unsigned int data_shndx,
2580            Output_section* output_section,
2581            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2582            Symbol* gsym);
2583
2584     inline bool
2585     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2586                                         Sized_relobj_file<32, big_endian>* ,
2587                                         unsigned int ,
2588                                         Output_section* ,
2589                                         const elfcpp::Rel<32, big_endian>& ,
2590                                         unsigned int ,
2591                                         const elfcpp::Sym<32, big_endian>&);
2592
2593     inline bool
2594     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2595                                          Sized_relobj_file<32, big_endian>* ,
2596                                          unsigned int ,
2597                                          Output_section* ,
2598                                          const elfcpp::Rel<32, big_endian>& ,
2599                                          unsigned int , Symbol*);
2600
2601    private:
2602     static void
2603     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2604                             unsigned int r_type);
2605
2606     static void
2607     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2608                              unsigned int r_type, Symbol*);
2609
2610     void
2611     check_non_pic(Relobj*, unsigned int r_type);
2612
2613     // Almost identical to Symbol::needs_plt_entry except that it also
2614     // handles STT_ARM_TFUNC.
2615     static bool
2616     symbol_needs_plt_entry(const Symbol* sym)
2617     {
2618       // An undefined symbol from an executable does not need a PLT entry.
2619       if (sym->is_undefined() && !parameters->options().shared())
2620         return false;
2621
2622       return (!parameters->doing_static_link()
2623               && (sym->type() == elfcpp::STT_FUNC
2624                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2625               && (sym->is_from_dynobj()
2626                   || sym->is_undefined()
2627                   || sym->is_preemptible()));
2628     }
2629
2630     inline bool
2631     possible_function_pointer_reloc(unsigned int r_type);
2632
2633     // Whether we have issued an error about a non-PIC compilation.
2634     bool issued_non_pic_error_;
2635   };
2636
2637   // The class which implements relocation.
2638   class Relocate
2639   {
2640    public:
2641     Relocate()
2642     { }
2643
2644     ~Relocate()
2645     { }
2646
2647     // Return whether the static relocation needs to be applied.
2648     inline bool
2649     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2650                               unsigned int r_type,
2651                               bool is_32bit,
2652                               Output_section* output_section);
2653
2654     // Do a relocation.  Return false if the caller should not issue
2655     // any warnings about this relocation.
2656     inline bool
2657     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2658              Output_section*,  size_t relnum,
2659              const elfcpp::Rel<32, big_endian>&,
2660              unsigned int r_type, const Sized_symbol<32>*,
2661              const Symbol_value<32>*,
2662              unsigned char*, Arm_address,
2663              section_size_type);
2664
2665     // Return whether we want to pass flag NON_PIC_REF for this
2666     // reloc.  This means the relocation type accesses a symbol not via
2667     // GOT or PLT.
2668     static inline bool
2669     reloc_is_non_pic(unsigned int r_type)
2670     {
2671       switch (r_type)
2672         {
2673         // These relocation types reference GOT or PLT entries explicitly.
2674         case elfcpp::R_ARM_GOT_BREL:
2675         case elfcpp::R_ARM_GOT_ABS:
2676         case elfcpp::R_ARM_GOT_PREL:
2677         case elfcpp::R_ARM_GOT_BREL12:
2678         case elfcpp::R_ARM_PLT32_ABS:
2679         case elfcpp::R_ARM_TLS_GD32:
2680         case elfcpp::R_ARM_TLS_LDM32:
2681         case elfcpp::R_ARM_TLS_IE32:
2682         case elfcpp::R_ARM_TLS_IE12GP:
2683
2684         // These relocate types may use PLT entries.
2685         case elfcpp::R_ARM_CALL:
2686         case elfcpp::R_ARM_THM_CALL:
2687         case elfcpp::R_ARM_JUMP24:
2688         case elfcpp::R_ARM_THM_JUMP24:
2689         case elfcpp::R_ARM_THM_JUMP19:
2690         case elfcpp::R_ARM_PLT32:
2691         case elfcpp::R_ARM_THM_XPC22:
2692         case elfcpp::R_ARM_PREL31:
2693         case elfcpp::R_ARM_SBREL31:
2694           return false;
2695
2696         default:
2697           return true;
2698         }
2699     }
2700
2701    private:
2702     // Do a TLS relocation.
2703     inline typename Arm_relocate_functions<big_endian>::Status
2704     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2705                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2706                  const Sized_symbol<32>*, const Symbol_value<32>*,
2707                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2708                  section_size_type);
2709
2710   };
2711
2712   // A class which returns the size required for a relocation type,
2713   // used while scanning relocs during a relocatable link.
2714   class Relocatable_size_for_reloc
2715   {
2716    public:
2717     unsigned int
2718     get_size_for_reloc(unsigned int, Relobj*);
2719   };
2720
2721   // Adjust TLS relocation type based on the options and whether this
2722   // is a local symbol.
2723   static tls::Tls_optimization
2724   optimize_tls_reloc(bool is_final, int r_type);
2725
2726   // Get the GOT section, creating it if necessary.
2727   Arm_output_data_got<big_endian>*
2728   got_section(Symbol_table*, Layout*);
2729
2730   // Get the GOT PLT section.
2731   Output_data_space*
2732   got_plt_section() const
2733   {
2734     gold_assert(this->got_plt_ != NULL);
2735     return this->got_plt_;
2736   }
2737
2738   // Create a PLT entry for a global symbol.
2739   void
2740   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2741
2742   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2743   void
2744   define_tls_base_symbol(Symbol_table*, Layout*);
2745
2746   // Create a GOT entry for the TLS module index.
2747   unsigned int
2748   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2749                       Sized_relobj_file<32, big_endian>* object);
2750
2751   // Get the PLT section.
2752   const Output_data_plt_arm<big_endian>*
2753   plt_section() const
2754   {
2755     gold_assert(this->plt_ != NULL);
2756     return this->plt_;
2757   }
2758
2759   // Get the dynamic reloc section, creating it if necessary.
2760   Reloc_section*
2761   rel_dyn_section(Layout*);
2762
2763   // Get the section to use for TLS_DESC relocations.
2764   Reloc_section*
2765   rel_tls_desc_section(Layout*) const;
2766
2767   // Return true if the symbol may need a COPY relocation.
2768   // References from an executable object to non-function symbols
2769   // defined in a dynamic object may need a COPY relocation.
2770   bool
2771   may_need_copy_reloc(Symbol* gsym)
2772   {
2773     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2774             && gsym->may_need_copy_reloc());
2775   }
2776
2777   // Add a potential copy relocation.
2778   void
2779   copy_reloc(Symbol_table* symtab, Layout* layout,
2780              Sized_relobj_file<32, big_endian>* object,
2781              unsigned int shndx, Output_section* output_section,
2782              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2783   {
2784     this->copy_relocs_.copy_reloc(symtab, layout,
2785                                   symtab->get_sized_symbol<32>(sym),
2786                                   object, shndx, output_section, reloc,
2787                                   this->rel_dyn_section(layout));
2788   }
2789
2790   // Whether two EABI versions are compatible.
2791   static bool
2792   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2793
2794   // Merge processor-specific flags from input object and those in the ELF
2795   // header of the output.
2796   void
2797   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2798
2799   // Get the secondary compatible architecture.
2800   static int
2801   get_secondary_compatible_arch(const Attributes_section_data*);
2802
2803   // Set the secondary compatible architecture.
2804   static void
2805   set_secondary_compatible_arch(Attributes_section_data*, int);
2806
2807   static int
2808   tag_cpu_arch_combine(const char*, int, int*, int, int);
2809
2810   // Helper to print AEABI enum tag value.
2811   static std::string
2812   aeabi_enum_name(unsigned int);
2813
2814   // Return string value for TAG_CPU_name.
2815   static std::string
2816   tag_cpu_name_value(unsigned int);
2817
2818   // Merge object attributes from input object and those in the output.
2819   void
2820   merge_object_attributes(const char*, const Attributes_section_data*);
2821
2822   // Helper to get an AEABI object attribute
2823   Object_attribute*
2824   get_aeabi_object_attribute(int tag) const
2825   {
2826     Attributes_section_data* pasd = this->attributes_section_data_;
2827     gold_assert(pasd != NULL);
2828     Object_attribute* attr =
2829       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2830     gold_assert(attr != NULL);
2831     return attr;
2832   }
2833
2834   //
2835   // Methods to support stub-generations.
2836   //
2837
2838   // Group input sections for stub generation.
2839   void
2840   group_sections(Layout*, section_size_type, bool, const Task*);
2841
2842   // Scan a relocation for stub generation.
2843   void
2844   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2845                       const Sized_symbol<32>*, unsigned int,
2846                       const Symbol_value<32>*,
2847                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2848
2849   // Scan a relocation section for stub.
2850   template<int sh_type>
2851   void
2852   scan_reloc_section_for_stubs(
2853       const Relocate_info<32, big_endian>* relinfo,
2854       const unsigned char* prelocs,
2855       size_t reloc_count,
2856       Output_section* output_section,
2857       bool needs_special_offset_handling,
2858       const unsigned char* view,
2859       elfcpp::Elf_types<32>::Elf_Addr view_address,
2860       section_size_type);
2861
2862   // Fix .ARM.exidx section coverage.
2863   void
2864   fix_exidx_coverage(Layout*, const Input_objects*,
2865                      Arm_output_section<big_endian>*, Symbol_table*,
2866                      const Task*);
2867
2868   // Functors for STL set.
2869   struct output_section_address_less_than
2870   {
2871     bool
2872     operator()(const Output_section* s1, const Output_section* s2) const
2873     { return s1->address() < s2->address(); }
2874   };
2875
2876   // Information about this specific target which we pass to the
2877   // general Target structure.
2878   static const Target::Target_info arm_info;
2879
2880   // The types of GOT entries needed for this platform.
2881   // These values are exposed to the ABI in an incremental link.
2882   // Do not renumber existing values without changing the version
2883   // number of the .gnu_incremental_inputs section.
2884   enum Got_type
2885   {
2886     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2887     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2888     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2889     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2890     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2891   };
2892
2893   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2894
2895   // Map input section to Arm_input_section.
2896   typedef Unordered_map<Section_id,
2897                         Arm_input_section<big_endian>*,
2898                         Section_id_hash>
2899           Arm_input_section_map;
2900     
2901   // Map output addresses to relocs for Cortex-A8 erratum.
2902   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2903           Cortex_a8_relocs_info;
2904
2905   // The GOT section.
2906   Arm_output_data_got<big_endian>* got_;
2907   // The PLT section.
2908   Output_data_plt_arm<big_endian>* plt_;
2909   // The GOT PLT section.
2910   Output_data_space* got_plt_;
2911   // The dynamic reloc section.
2912   Reloc_section* rel_dyn_;
2913   // Relocs saved to avoid a COPY reloc.
2914   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2915   // Space for variables copied with a COPY reloc.
2916   Output_data_space* dynbss_;
2917   // Offset of the GOT entry for the TLS module index.
2918   unsigned int got_mod_index_offset_;
2919   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2920   bool tls_base_symbol_defined_;
2921   // Vector of Stub_tables created.
2922   Stub_table_list stub_tables_;
2923   // Stub factory.
2924   const Stub_factory &stub_factory_;
2925   // Whether we can use BLX.
2926   bool may_use_blx_;
2927   // Whether we force PIC branch veneers.
2928   bool should_force_pic_veneer_;
2929   // Map for locating Arm_input_sections.
2930   Arm_input_section_map arm_input_section_map_;
2931   // Attributes section data in output.
2932   Attributes_section_data* attributes_section_data_;
2933   // Whether we want to fix code for Cortex-A8 erratum.
2934   bool fix_cortex_a8_;
2935   // Map addresses to relocs for Cortex-A8 erratum.
2936   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2937 };
2938
2939 template<bool big_endian>
2940 const Target::Target_info Target_arm<big_endian>::arm_info =
2941 {
2942   32,                   // size
2943   big_endian,           // is_big_endian
2944   elfcpp::EM_ARM,       // machine_code
2945   false,                // has_make_symbol
2946   false,                // has_resolve
2947   false,                // has_code_fill
2948   true,                 // is_default_stack_executable
2949   '\0',                 // wrap_char
2950   "/usr/lib/libc.so.1", // dynamic_linker
2951   0x8000,               // default_text_segment_address
2952   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2953   0x1000,               // common_pagesize (overridable by -z common-page-size)
2954   elfcpp::SHN_UNDEF,    // small_common_shndx
2955   elfcpp::SHN_UNDEF,    // large_common_shndx
2956   0,                    // small_common_section_flags
2957   0,                    // large_common_section_flags
2958   ".ARM.attributes",    // attributes_section
2959   "aeabi"               // attributes_vendor
2960 };
2961
2962 // Arm relocate functions class
2963 //
2964
2965 template<bool big_endian>
2966 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2967 {
2968  public:
2969   typedef enum
2970   {
2971     STATUS_OKAY,        // No error during relocation.
2972     STATUS_OVERFLOW,    // Relocation overflow.
2973     STATUS_BAD_RELOC    // Relocation cannot be applied.
2974   } Status;
2975
2976  private:
2977   typedef Relocate_functions<32, big_endian> Base;
2978   typedef Arm_relocate_functions<big_endian> This;
2979
2980   // Encoding of imm16 argument for movt and movw ARM instructions
2981   // from ARM ARM:
2982   //     
2983   //     imm16 := imm4 | imm12
2984   //
2985   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2986   // +-------+---------------+-------+-------+-----------------------+
2987   // |       |               |imm4   |       |imm12                  |
2988   // +-------+---------------+-------+-------+-----------------------+
2989
2990   // Extract the relocation addend from VAL based on the ARM
2991   // instruction encoding described above.
2992   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2993   extract_arm_movw_movt_addend(
2994       typename elfcpp::Swap<32, big_endian>::Valtype val)
2995   {
2996     // According to the Elf ABI for ARM Architecture the immediate
2997     // field is sign-extended to form the addend.
2998     return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2999   }
3000
3001   // Insert X into VAL based on the ARM instruction encoding described
3002   // above.
3003   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3004   insert_val_arm_movw_movt(
3005       typename elfcpp::Swap<32, big_endian>::Valtype val,
3006       typename elfcpp::Swap<32, big_endian>::Valtype x)
3007   {
3008     val &= 0xfff0f000;
3009     val |= x & 0x0fff;
3010     val |= (x & 0xf000) << 4;
3011     return val;
3012   }
3013
3014   // Encoding of imm16 argument for movt and movw Thumb2 instructions
3015   // from ARM ARM:
3016   //     
3017   //     imm16 := imm4 | i | imm3 | imm8
3018   //
3019   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
3020   // +---------+-+-----------+-------++-+-----+-------+---------------+
3021   // |         |i|           |imm4   || |imm3 |       |imm8           |
3022   // +---------+-+-----------+-------++-+-----+-------+---------------+
3023
3024   // Extract the relocation addend from VAL based on the Thumb2
3025   // instruction encoding described above.
3026   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3027   extract_thumb_movw_movt_addend(
3028       typename elfcpp::Swap<32, big_endian>::Valtype val)
3029   {
3030     // According to the Elf ABI for ARM Architecture the immediate
3031     // field is sign-extended to form the addend.
3032     return utils::sign_extend<16>(((val >> 4) & 0xf000)
3033                                   | ((val >> 15) & 0x0800)
3034                                   | ((val >> 4) & 0x0700)
3035                                   | (val & 0x00ff));
3036   }
3037
3038   // Insert X into VAL based on the Thumb2 instruction encoding
3039   // described above.
3040   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3041   insert_val_thumb_movw_movt(
3042       typename elfcpp::Swap<32, big_endian>::Valtype val,
3043       typename elfcpp::Swap<32, big_endian>::Valtype x)
3044   {
3045     val &= 0xfbf08f00;
3046     val |= (x & 0xf000) << 4;
3047     val |= (x & 0x0800) << 15;
3048     val |= (x & 0x0700) << 4;
3049     val |= (x & 0x00ff);
3050     return val;
3051   }
3052
3053   // Calculate the smallest constant Kn for the specified residual.
3054   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3055   static uint32_t
3056   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3057   {
3058     int32_t msb;
3059
3060     if (residual == 0)
3061       return 0;
3062     // Determine the most significant bit in the residual and
3063     // align the resulting value to a 2-bit boundary.
3064     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3065       ;
3066     // The desired shift is now (msb - 6), or zero, whichever
3067     // is the greater.
3068     return (((msb - 6) < 0) ? 0 : (msb - 6));
3069   }
3070
3071   // Calculate the final residual for the specified group index.
3072   // If the passed group index is less than zero, the method will return
3073   // the value of the specified residual without any change.
3074   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3075   static typename elfcpp::Swap<32, big_endian>::Valtype
3076   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3077                     const int group)
3078   {
3079     for (int n = 0; n <= group; n++)
3080       {
3081         // Calculate which part of the value to mask.
3082         uint32_t shift = calc_grp_kn(residual);
3083         // Calculate the residual for the next time around.
3084         residual &= ~(residual & (0xff << shift));
3085       }
3086
3087     return residual;
3088   }
3089
3090   // Calculate the value of Gn for the specified group index.
3091   // We return it in the form of an encoded constant-and-rotation.
3092   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3093   static typename elfcpp::Swap<32, big_endian>::Valtype
3094   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3095               const int group)
3096   {
3097     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3098     uint32_t shift = 0;
3099
3100     for (int n = 0; n <= group; n++)
3101       {
3102         // Calculate which part of the value to mask.
3103         shift = calc_grp_kn(residual);
3104         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3105         gn = residual & (0xff << shift);
3106         // Calculate the residual for the next time around.
3107         residual &= ~gn;
3108       }
3109     // Return Gn in the form of an encoded constant-and-rotation.
3110     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3111   }
3112
3113  public:
3114   // Handle ARM long branches.
3115   static typename This::Status
3116   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3117                     unsigned char*, const Sized_symbol<32>*,
3118                     const Arm_relobj<big_endian>*, unsigned int,
3119                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3120
3121   // Handle THUMB long branches.
3122   static typename This::Status
3123   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3124                       unsigned char*, const Sized_symbol<32>*,
3125                       const Arm_relobj<big_endian>*, unsigned int,
3126                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3127
3128
3129   // Return the branch offset of a 32-bit THUMB branch.
3130   static inline int32_t
3131   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3132   {
3133     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3134     // involving the J1 and J2 bits.
3135     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3136     uint32_t upper = upper_insn & 0x3ffU;
3137     uint32_t lower = lower_insn & 0x7ffU;
3138     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3139     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3140     uint32_t i1 = j1 ^ s ? 0 : 1;
3141     uint32_t i2 = j2 ^ s ? 0 : 1;
3142
3143     return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3144                                   | (upper << 12) | (lower << 1));
3145   }
3146
3147   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3148   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3149   // responsible for overflow checking and BLX offset adjustment.
3150   static inline uint16_t
3151   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3152   {
3153     uint32_t s = offset < 0 ? 1 : 0;
3154     uint32_t bits = static_cast<uint32_t>(offset);
3155     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3156   }
3157
3158   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3159   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3160   // responsible for overflow checking and BLX offset adjustment.
3161   static inline uint16_t
3162   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3163   {
3164     uint32_t s = offset < 0 ? 1 : 0;
3165     uint32_t bits = static_cast<uint32_t>(offset);
3166     return ((lower_insn & ~0x2fffU)
3167             | ((((bits >> 23) & 1) ^ !s) << 13)
3168             | ((((bits >> 22) & 1) ^ !s) << 11)
3169             | ((bits >> 1) & 0x7ffU));
3170   }
3171
3172   // Return the branch offset of a 32-bit THUMB conditional branch.
3173   static inline int32_t
3174   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3175   {
3176     uint32_t s = (upper_insn & 0x0400U) >> 10;
3177     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3178     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3179     uint32_t lower = (lower_insn & 0x07ffU);
3180     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3181
3182     return utils::sign_extend<21>((upper << 12) | (lower << 1));
3183   }
3184
3185   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3186   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3187   // Caller is responsible for overflow checking.
3188   static inline uint16_t
3189   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3190   {
3191     uint32_t s = offset < 0 ? 1 : 0;
3192     uint32_t bits = static_cast<uint32_t>(offset);
3193     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3194   }
3195
3196   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3197   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3198   // The caller is responsible for overflow checking.
3199   static inline uint16_t
3200   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3201   {
3202     uint32_t bits = static_cast<uint32_t>(offset);
3203     uint32_t j2 = (bits & 0x00080000U) >> 19;
3204     uint32_t j1 = (bits & 0x00040000U) >> 18;
3205     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3206
3207     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3208   }
3209
3210   // R_ARM_ABS8: S + A
3211   static inline typename This::Status
3212   abs8(unsigned char* view,
3213        const Sized_relobj_file<32, big_endian>* object,
3214        const Symbol_value<32>* psymval)
3215   {
3216     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3217     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3218     Valtype* wv = reinterpret_cast<Valtype*>(view);
3219     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3220     Reltype addend = utils::sign_extend<8>(val);
3221     Reltype x = psymval->value(object, addend);
3222     val = utils::bit_select(val, x, 0xffU);
3223     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3224
3225     // R_ARM_ABS8 permits signed or unsigned results.
3226     int signed_x = static_cast<int32_t>(x);
3227     return ((signed_x < -128 || signed_x > 255)
3228             ? This::STATUS_OVERFLOW
3229             : This::STATUS_OKAY);
3230   }
3231
3232   // R_ARM_THM_ABS5: S + A
3233   static inline typename This::Status
3234   thm_abs5(unsigned char* view,
3235        const Sized_relobj_file<32, big_endian>* object,
3236        const Symbol_value<32>* psymval)
3237   {
3238     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3239     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240     Valtype* wv = reinterpret_cast<Valtype*>(view);
3241     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3242     Reltype addend = (val & 0x7e0U) >> 6;
3243     Reltype x = psymval->value(object, addend);
3244     val = utils::bit_select(val, x << 6, 0x7e0U);
3245     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3246
3247     // R_ARM_ABS16 permits signed or unsigned results.
3248     int signed_x = static_cast<int32_t>(x);
3249     return ((signed_x < -32768 || signed_x > 65535)
3250             ? This::STATUS_OVERFLOW
3251             : This::STATUS_OKAY);
3252   }
3253
3254   // R_ARM_ABS12: S + A
3255   static inline typename This::Status
3256   abs12(unsigned char* view,
3257         const Sized_relobj_file<32, big_endian>* object,
3258         const Symbol_value<32>* psymval)
3259   {
3260     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3261     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3262     Valtype* wv = reinterpret_cast<Valtype*>(view);
3263     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3264     Reltype addend = val & 0x0fffU;
3265     Reltype x = psymval->value(object, addend);
3266     val = utils::bit_select(val, x, 0x0fffU);
3267     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3268     return (utils::has_overflow<12>(x)
3269             ? This::STATUS_OVERFLOW
3270             : This::STATUS_OKAY);
3271   }
3272
3273   // R_ARM_ABS16: S + A
3274   static inline typename This::Status
3275   abs16(unsigned char* view,
3276         const Sized_relobj_file<32, big_endian>* object,
3277         const Symbol_value<32>* psymval)
3278   {
3279     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3280     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3281     Valtype* wv = reinterpret_cast<Valtype*>(view);
3282     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3283     Reltype addend = utils::sign_extend<16>(val);
3284     Reltype x = psymval->value(object, addend);
3285     val = utils::bit_select(val, x, 0xffffU);
3286     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3287     return (utils::has_signed_unsigned_overflow<16>(x)
3288             ? This::STATUS_OVERFLOW
3289             : This::STATUS_OKAY);
3290   }
3291
3292   // R_ARM_ABS32: (S + A) | T
3293   static inline typename This::Status
3294   abs32(unsigned char* view,
3295         const Sized_relobj_file<32, big_endian>* object,
3296         const Symbol_value<32>* psymval,
3297         Arm_address thumb_bit)
3298   {
3299     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3300     Valtype* wv = reinterpret_cast<Valtype*>(view);
3301     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3302     Valtype x = psymval->value(object, addend) | thumb_bit;
3303     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3304     return This::STATUS_OKAY;
3305   }
3306
3307   // R_ARM_REL32: (S + A) | T - P
3308   static inline typename This::Status
3309   rel32(unsigned char* view,
3310         const Sized_relobj_file<32, big_endian>* object,
3311         const Symbol_value<32>* psymval,
3312         Arm_address address,
3313         Arm_address thumb_bit)
3314   {
3315     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3316     Valtype* wv = reinterpret_cast<Valtype*>(view);
3317     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3318     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3319     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3320     return This::STATUS_OKAY;
3321   }
3322
3323   // R_ARM_THM_JUMP24: (S + A) | T - P
3324   static typename This::Status
3325   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3326              const Symbol_value<32>* psymval, Arm_address address,
3327              Arm_address thumb_bit);
3328
3329   // R_ARM_THM_JUMP6: S + A â€“ P
3330   static inline typename This::Status
3331   thm_jump6(unsigned char* view,
3332             const Sized_relobj_file<32, big_endian>* object,
3333             const Symbol_value<32>* psymval,
3334             Arm_address address)
3335   {
3336     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3337     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3338     Valtype* wv = reinterpret_cast<Valtype*>(view);
3339     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3340     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3341     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3342     Reltype x = (psymval->value(object, addend) - address);
3343     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3344     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3345     // CZB does only forward jumps.
3346     return ((x > 0x007e)
3347             ? This::STATUS_OVERFLOW
3348             : This::STATUS_OKAY);
3349   }
3350
3351   // R_ARM_THM_JUMP8: S + A â€“ P
3352   static inline typename This::Status
3353   thm_jump8(unsigned char* view,
3354             const Sized_relobj_file<32, big_endian>* object,
3355             const Symbol_value<32>* psymval,
3356             Arm_address address)
3357   {
3358     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3359     Valtype* wv = reinterpret_cast<Valtype*>(view);
3360     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3361     int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3362     int32_t x = (psymval->value(object, addend) - address);
3363     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3364                                                 | ((x & 0x01fe) >> 1)));
3365     // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3366     return (utils::has_overflow<9>(x)
3367             ? This::STATUS_OVERFLOW
3368             : This::STATUS_OKAY);
3369   }
3370
3371   // R_ARM_THM_JUMP11: S + A â€“ P
3372   static inline typename This::Status
3373   thm_jump11(unsigned char* view,
3374             const Sized_relobj_file<32, big_endian>* object,
3375             const Symbol_value<32>* psymval,
3376             Arm_address address)
3377   {
3378     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3379     Valtype* wv = reinterpret_cast<Valtype*>(view);
3380     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3381     int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3382     int32_t x = (psymval->value(object, addend) - address);
3383     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3384                                                 | ((x & 0x0ffe) >> 1)));
3385     // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3386     return (utils::has_overflow<12>(x)
3387             ? This::STATUS_OVERFLOW
3388             : This::STATUS_OKAY);
3389   }
3390
3391   // R_ARM_BASE_PREL: B(S) + A - P
3392   static inline typename This::Status
3393   base_prel(unsigned char* view,
3394             Arm_address origin,
3395             Arm_address address)
3396   {
3397     Base::rel32(view, origin - address);
3398     return STATUS_OKAY;
3399   }
3400
3401   // R_ARM_BASE_ABS: B(S) + A
3402   static inline typename This::Status
3403   base_abs(unsigned char* view,
3404            Arm_address origin)
3405   {
3406     Base::rel32(view, origin);
3407     return STATUS_OKAY;
3408   }
3409
3410   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3411   static inline typename This::Status
3412   got_brel(unsigned char* view,
3413            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3414   {
3415     Base::rel32(view, got_offset);
3416     return This::STATUS_OKAY;
3417   }
3418
3419   // R_ARM_GOT_PREL: GOT(S) + A - P
3420   static inline typename This::Status
3421   got_prel(unsigned char* view,
3422            Arm_address got_entry,
3423            Arm_address address)
3424   {
3425     Base::rel32(view, got_entry - address);
3426     return This::STATUS_OKAY;
3427   }
3428
3429   // R_ARM_PREL: (S + A) | T - P
3430   static inline typename This::Status
3431   prel31(unsigned char* view,
3432          const Sized_relobj_file<32, big_endian>* object,
3433          const Symbol_value<32>* psymval,
3434          Arm_address address,
3435          Arm_address thumb_bit)
3436   {
3437     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3438     Valtype* wv = reinterpret_cast<Valtype*>(view);
3439     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3440     Valtype addend = utils::sign_extend<31>(val);
3441     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3442     val = utils::bit_select(val, x, 0x7fffffffU);
3443     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3444     return (utils::has_overflow<31>(x) ?
3445             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3446   }
3447
3448   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3449   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3450   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3451   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3452   static inline typename This::Status
3453   movw(unsigned char* view,
3454        const Sized_relobj_file<32, big_endian>* object,
3455        const Symbol_value<32>* psymval,
3456        Arm_address relative_address_base,
3457        Arm_address thumb_bit,
3458        bool check_overflow)
3459   {
3460     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3461     Valtype* wv = reinterpret_cast<Valtype*>(view);
3462     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3463     Valtype addend = This::extract_arm_movw_movt_addend(val);
3464     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3465                  - relative_address_base);
3466     val = This::insert_val_arm_movw_movt(val, x);
3467     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3468     return ((check_overflow && utils::has_overflow<16>(x))
3469             ? This::STATUS_OVERFLOW
3470             : This::STATUS_OKAY);
3471   }
3472
3473   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3474   // R_ARM_MOVT_PREL: S + A - P
3475   // R_ARM_MOVT_BREL: S + A - B(S)
3476   static inline typename This::Status
3477   movt(unsigned char* view,
3478        const Sized_relobj_file<32, big_endian>* object,
3479        const Symbol_value<32>* psymval,
3480        Arm_address relative_address_base)
3481   {
3482     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3483     Valtype* wv = reinterpret_cast<Valtype*>(view);
3484     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3485     Valtype addend = This::extract_arm_movw_movt_addend(val);
3486     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3487     val = This::insert_val_arm_movw_movt(val, x);
3488     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3489     // FIXME: IHI0044D says that we should check for overflow.
3490     return This::STATUS_OKAY;
3491   }
3492
3493   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3494   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3495   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3496   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3497   static inline typename This::Status
3498   thm_movw(unsigned char* view,
3499            const Sized_relobj_file<32, big_endian>* object,
3500            const Symbol_value<32>* psymval,
3501            Arm_address relative_address_base,
3502            Arm_address thumb_bit,
3503            bool check_overflow)
3504   {
3505     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3506     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3507     Valtype* wv = reinterpret_cast<Valtype*>(view);
3508     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3509                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3510     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3511     Reltype x =
3512       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3513     val = This::insert_val_thumb_movw_movt(val, x);
3514     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3515     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3516     return ((check_overflow && utils::has_overflow<16>(x))
3517             ? This::STATUS_OVERFLOW
3518             : This::STATUS_OKAY);
3519   }
3520
3521   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3522   // R_ARM_THM_MOVT_PREL: S + A - P
3523   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3524   static inline typename This::Status
3525   thm_movt(unsigned char* view,
3526            const Sized_relobj_file<32, big_endian>* object,
3527            const Symbol_value<32>* psymval,
3528            Arm_address relative_address_base)
3529   {
3530     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3531     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3532     Valtype* wv = reinterpret_cast<Valtype*>(view);
3533     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3534                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3535     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3536     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3537     val = This::insert_val_thumb_movw_movt(val, x);
3538     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3539     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3540     return This::STATUS_OKAY;
3541   }
3542
3543   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3544   static inline typename This::Status
3545   thm_alu11(unsigned char* view,
3546             const Sized_relobj_file<32, big_endian>* object,
3547             const Symbol_value<32>* psymval,
3548             Arm_address address,
3549             Arm_address thumb_bit)
3550   {
3551     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3552     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3553     Valtype* wv = reinterpret_cast<Valtype*>(view);
3554     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3555                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3556
3557     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3558     // -----------------------------------------------------------------------
3559     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3560     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3561     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3562     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3563     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3564     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3565
3566     // Determine a sign for the addend.
3567     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3568                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3569     // Thumb2 addend encoding:
3570     // imm12 := i | imm3 | imm8
3571     int32_t addend = (insn & 0xff)
3572                      | ((insn & 0x00007000) >> 4)
3573                      | ((insn & 0x04000000) >> 15);
3574     // Apply a sign to the added.
3575     addend *= sign;
3576
3577     int32_t x = (psymval->value(object, addend) | thumb_bit)
3578                 - (address & 0xfffffffc);
3579     Reltype val = abs(x);
3580     // Mask out the value and a distinct part of the ADD/SUB opcode
3581     // (bits 7:5 of opword).
3582     insn = (insn & 0xfb0f8f00)
3583            | (val & 0xff)
3584            | ((val & 0x700) << 4)
3585            | ((val & 0x800) << 15);
3586     // Set the opcode according to whether the value to go in the
3587     // place is negative.
3588     if (x < 0)
3589       insn |= 0x00a00000;
3590
3591     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3592     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3593     return ((val > 0xfff) ?
3594             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3595   }
3596
3597   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3598   static inline typename This::Status
3599   thm_pc8(unsigned char* view,
3600           const Sized_relobj_file<32, big_endian>* object,
3601           const Symbol_value<32>* psymval,
3602           Arm_address address)
3603   {
3604     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3605     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3606     Valtype* wv = reinterpret_cast<Valtype*>(view);
3607     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3608     Reltype addend = ((insn & 0x00ff) << 2);
3609     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3610     Reltype val = abs(x);
3611     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3612
3613     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3614     return ((val > 0x03fc)
3615             ? This::STATUS_OVERFLOW
3616             : This::STATUS_OKAY);
3617   }
3618
3619   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3620   static inline typename This::Status
3621   thm_pc12(unsigned char* view,
3622            const Sized_relobj_file<32, big_endian>* object,
3623            const Symbol_value<32>* psymval,
3624            Arm_address address)
3625   {
3626     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3627     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3628     Valtype* wv = reinterpret_cast<Valtype*>(view);
3629     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3630                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3631     // Determine a sign for the addend (positive if the U bit is 1).
3632     const int sign = (insn & 0x00800000) ? 1 : -1;
3633     int32_t addend = (insn & 0xfff);
3634     // Apply a sign to the added.
3635     addend *= sign;
3636
3637     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3638     Reltype val = abs(x);
3639     // Mask out and apply the value and the U bit.
3640     insn = (insn & 0xff7ff000) | (val & 0xfff);
3641     // Set the U bit according to whether the value to go in the
3642     // place is positive.
3643     if (x >= 0)
3644       insn |= 0x00800000;
3645
3646     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3647     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3648     return ((val > 0xfff) ?
3649             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3650   }
3651
3652   // R_ARM_V4BX
3653   static inline typename This::Status
3654   v4bx(const Relocate_info<32, big_endian>* relinfo,
3655        unsigned char* view,
3656        const Arm_relobj<big_endian>* object,
3657        const Arm_address address,
3658        const bool is_interworking)
3659   {
3660
3661     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3662     Valtype* wv = reinterpret_cast<Valtype*>(view);
3663     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3664
3665     // Ensure that we have a BX instruction.
3666     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3667     const uint32_t reg = (val & 0xf);
3668     if (is_interworking && reg != 0xf)
3669       {
3670         Stub_table<big_endian>* stub_table =
3671             object->stub_table(relinfo->data_shndx);
3672         gold_assert(stub_table != NULL);
3673
3674         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3675         gold_assert(stub != NULL);
3676
3677         int32_t veneer_address =
3678             stub_table->address() + stub->offset() - 8 - address;
3679         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3680                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3681         // Replace with a branch to veneer (B <addr>)
3682         val = (val & 0xf0000000) | 0x0a000000
3683               | ((veneer_address >> 2) & 0x00ffffff);
3684       }
3685     else
3686       {
3687         // Preserve Rm (lowest four bits) and the condition code
3688         // (highest four bits). Other bits encode MOV PC,Rm.
3689         val = (val & 0xf000000f) | 0x01a0f000;
3690       }
3691     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3692     return This::STATUS_OKAY;
3693   }
3694
3695   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3696   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3697   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3698   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3699   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3700   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3701   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3702   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3703   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3704   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3705   static inline typename This::Status
3706   arm_grp_alu(unsigned char* view,
3707         const Sized_relobj_file<32, big_endian>* object,
3708         const Symbol_value<32>* psymval,
3709         const int group,
3710         Arm_address address,
3711         Arm_address thumb_bit,
3712         bool check_overflow)
3713   {
3714     gold_assert(group >= 0 && group < 3);
3715     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3716     Valtype* wv = reinterpret_cast<Valtype*>(view);
3717     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3718
3719     // ALU group relocations are allowed only for the ADD/SUB instructions.
3720     // (0x00800000 - ADD, 0x00400000 - SUB)
3721     const Valtype opcode = insn & 0x01e00000;
3722     if (opcode != 0x00800000 && opcode != 0x00400000)
3723       return This::STATUS_BAD_RELOC;
3724
3725     // Determine a sign for the addend.
3726     const int sign = (opcode == 0x00800000) ? 1 : -1;
3727     // shifter = rotate_imm * 2
3728     const uint32_t shifter = (insn & 0xf00) >> 7;
3729     // Initial addend value.
3730     int32_t addend = insn & 0xff;
3731     // Rotate addend right by shifter.
3732     addend = (addend >> shifter) | (addend << (32 - shifter));
3733     // Apply a sign to the added.
3734     addend *= sign;
3735
3736     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3737     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3738     // Check for overflow if required
3739     if (check_overflow
3740         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3741       return This::STATUS_OVERFLOW;
3742
3743     // Mask out the value and the ADD/SUB part of the opcode; take care
3744     // not to destroy the S bit.
3745     insn &= 0xff1ff000;
3746     // Set the opcode according to whether the value to go in the
3747     // place is negative.
3748     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3749     // Encode the offset (encoded Gn).
3750     insn |= gn;
3751
3752     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3753     return This::STATUS_OKAY;
3754   }
3755
3756   // R_ARM_LDR_PC_G0: S + A - P
3757   // R_ARM_LDR_PC_G1: S + A - P
3758   // R_ARM_LDR_PC_G2: S + A - P
3759   // R_ARM_LDR_SB_G0: S + A - B(S)
3760   // R_ARM_LDR_SB_G1: S + A - B(S)
3761   // R_ARM_LDR_SB_G2: S + A - B(S)
3762   static inline typename This::Status
3763   arm_grp_ldr(unsigned char* view,
3764         const Sized_relobj_file<32, big_endian>* object,
3765         const Symbol_value<32>* psymval,
3766         const int group,
3767         Arm_address address)
3768   {
3769     gold_assert(group >= 0 && group < 3);
3770     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3771     Valtype* wv = reinterpret_cast<Valtype*>(view);
3772     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3773
3774     const int sign = (insn & 0x00800000) ? 1 : -1;
3775     int32_t addend = (insn & 0xfff) * sign;
3776     int32_t x = (psymval->value(object, addend) - address);
3777     // Calculate the relevant G(n-1) value to obtain this stage residual.
3778     Valtype residual =
3779         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3780     if (residual >= 0x1000)
3781       return This::STATUS_OVERFLOW;
3782
3783     // Mask out the value and U bit.
3784     insn &= 0xff7ff000;
3785     // Set the U bit for non-negative values.
3786     if (x >= 0)
3787       insn |= 0x00800000;
3788     insn |= residual;
3789
3790     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3791     return This::STATUS_OKAY;
3792   }
3793
3794   // R_ARM_LDRS_PC_G0: S + A - P
3795   // R_ARM_LDRS_PC_G1: S + A - P
3796   // R_ARM_LDRS_PC_G2: S + A - P
3797   // R_ARM_LDRS_SB_G0: S + A - B(S)
3798   // R_ARM_LDRS_SB_G1: S + A - B(S)
3799   // R_ARM_LDRS_SB_G2: S + A - B(S)
3800   static inline typename This::Status
3801   arm_grp_ldrs(unsigned char* view,
3802         const Sized_relobj_file<32, big_endian>* object,
3803         const Symbol_value<32>* psymval,
3804         const int group,
3805         Arm_address address)
3806   {
3807     gold_assert(group >= 0 && group < 3);
3808     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3809     Valtype* wv = reinterpret_cast<Valtype*>(view);
3810     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3811
3812     const int sign = (insn & 0x00800000) ? 1 : -1;
3813     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3814     int32_t x = (psymval->value(object, addend) - address);
3815     // Calculate the relevant G(n-1) value to obtain this stage residual.
3816     Valtype residual =
3817         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3818    if (residual >= 0x100)
3819       return This::STATUS_OVERFLOW;
3820
3821     // Mask out the value and U bit.
3822     insn &= 0xff7ff0f0;
3823     // Set the U bit for non-negative values.
3824     if (x >= 0)
3825       insn |= 0x00800000;
3826     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3827
3828     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3829     return This::STATUS_OKAY;
3830   }
3831
3832   // R_ARM_LDC_PC_G0: S + A - P
3833   // R_ARM_LDC_PC_G1: S + A - P
3834   // R_ARM_LDC_PC_G2: S + A - P
3835   // R_ARM_LDC_SB_G0: S + A - B(S)
3836   // R_ARM_LDC_SB_G1: S + A - B(S)
3837   // R_ARM_LDC_SB_G2: S + A - B(S)
3838   static inline typename This::Status
3839   arm_grp_ldc(unsigned char* view,
3840       const Sized_relobj_file<32, big_endian>* object,
3841       const Symbol_value<32>* psymval,
3842       const int group,
3843       Arm_address address)
3844   {
3845     gold_assert(group >= 0 && group < 3);
3846     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3847     Valtype* wv = reinterpret_cast<Valtype*>(view);
3848     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3849
3850     const int sign = (insn & 0x00800000) ? 1 : -1;
3851     int32_t addend = ((insn & 0xff) << 2) * sign;
3852     int32_t x = (psymval->value(object, addend) - address);
3853     // Calculate the relevant G(n-1) value to obtain this stage residual.
3854     Valtype residual =
3855       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3856     if ((residual & 0x3) != 0 || residual >= 0x400)
3857       return This::STATUS_OVERFLOW;
3858
3859     // Mask out the value and U bit.
3860     insn &= 0xff7fff00;
3861     // Set the U bit for non-negative values.
3862     if (x >= 0)
3863       insn |= 0x00800000;
3864     insn |= (residual >> 2);
3865
3866     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3867     return This::STATUS_OKAY;
3868   }
3869 };
3870
3871 // Relocate ARM long branches.  This handles relocation types
3872 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3873 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3874 // undefined and we do not use PLT in this relocation.  In such a case,
3875 // the branch is converted into an NOP.
3876
3877 template<bool big_endian>
3878 typename Arm_relocate_functions<big_endian>::Status
3879 Arm_relocate_functions<big_endian>::arm_branch_common(
3880     unsigned int r_type,
3881     const Relocate_info<32, big_endian>* relinfo,
3882     unsigned char* view,
3883     const Sized_symbol<32>* gsym,
3884     const Arm_relobj<big_endian>* object,
3885     unsigned int r_sym,
3886     const Symbol_value<32>* psymval,
3887     Arm_address address,
3888     Arm_address thumb_bit,
3889     bool is_weakly_undefined_without_plt)
3890 {
3891   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3892   Valtype* wv = reinterpret_cast<Valtype*>(view);
3893   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3894      
3895   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3896                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3897   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3898   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3899                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3900   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3901   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3902
3903   // Check that the instruction is valid.
3904   if (r_type == elfcpp::R_ARM_CALL)
3905     {
3906       if (!insn_is_uncond_bl && !insn_is_blx)
3907         return This::STATUS_BAD_RELOC;
3908     }
3909   else if (r_type == elfcpp::R_ARM_JUMP24)
3910     {
3911       if (!insn_is_b && !insn_is_cond_bl)
3912         return This::STATUS_BAD_RELOC;
3913     }
3914   else if (r_type == elfcpp::R_ARM_PLT32)
3915     {
3916       if (!insn_is_any_branch)
3917         return This::STATUS_BAD_RELOC;
3918     }
3919   else if (r_type == elfcpp::R_ARM_XPC25)
3920     {
3921       // FIXME: AAELF document IH0044C does not say much about it other
3922       // than it being obsolete.
3923       if (!insn_is_any_branch)
3924         return This::STATUS_BAD_RELOC;
3925     }
3926   else
3927     gold_unreachable();
3928
3929   // A branch to an undefined weak symbol is turned into a jump to
3930   // the next instruction unless a PLT entry will be created.
3931   // Do the same for local undefined symbols.
3932   // The jump to the next instruction is optimized as a NOP depending
3933   // on the architecture.
3934   const Target_arm<big_endian>* arm_target =
3935     Target_arm<big_endian>::default_target();
3936   if (is_weakly_undefined_without_plt)
3937     {
3938       gold_assert(!parameters->options().relocatable());
3939       Valtype cond = val & 0xf0000000U;
3940       if (arm_target->may_use_arm_nop())
3941         val = cond | 0x0320f000;
3942       else
3943         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3944       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3945       return This::STATUS_OKAY;
3946     }
3947  
3948   Valtype addend = utils::sign_extend<26>(val << 2);
3949   Valtype branch_target = psymval->value(object, addend);
3950   int32_t branch_offset = branch_target - address;
3951
3952   // We need a stub if the branch offset is too large or if we need
3953   // to switch mode.
3954   bool may_use_blx = arm_target->may_use_blx();
3955   Reloc_stub* stub = NULL;
3956
3957   if (!parameters->options().relocatable()
3958       && (utils::has_overflow<26>(branch_offset)
3959           || ((thumb_bit != 0)
3960               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3961     {
3962       Valtype unadjusted_branch_target = psymval->value(object, 0);
3963
3964       Stub_type stub_type =
3965         Reloc_stub::stub_type_for_reloc(r_type, address,
3966                                         unadjusted_branch_target,
3967                                         (thumb_bit != 0));
3968       if (stub_type != arm_stub_none)
3969         {
3970           Stub_table<big_endian>* stub_table =
3971             object->stub_table(relinfo->data_shndx);
3972           gold_assert(stub_table != NULL);
3973
3974           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3975           stub = stub_table->find_reloc_stub(stub_key);
3976           gold_assert(stub != NULL);
3977           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3978           branch_target = stub_table->address() + stub->offset() + addend;
3979           branch_offset = branch_target - address;
3980           gold_assert(!utils::has_overflow<26>(branch_offset));
3981         }
3982     }
3983
3984   // At this point, if we still need to switch mode, the instruction
3985   // must either be a BLX or a BL that can be converted to a BLX.
3986   if (thumb_bit != 0)
3987     {
3988       // Turn BL to BLX.
3989       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3990       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3991     }
3992
3993   val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3994   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3995   return (utils::has_overflow<26>(branch_offset)
3996           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3997 }
3998
3999 // Relocate THUMB long branches.  This handles relocation types
4000 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4001 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4002 // undefined and we do not use PLT in this relocation.  In such a case,
4003 // the branch is converted into an NOP.
4004
4005 template<bool big_endian>
4006 typename Arm_relocate_functions<big_endian>::Status
4007 Arm_relocate_functions<big_endian>::thumb_branch_common(
4008     unsigned int r_type,
4009     const Relocate_info<32, big_endian>* relinfo,
4010     unsigned char* view,
4011     const Sized_symbol<32>* gsym,
4012     const Arm_relobj<big_endian>* object,
4013     unsigned int r_sym,
4014     const Symbol_value<32>* psymval,
4015     Arm_address address,
4016     Arm_address thumb_bit,
4017     bool is_weakly_undefined_without_plt)
4018 {
4019   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4020   Valtype* wv = reinterpret_cast<Valtype*>(view);
4021   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4022   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4023
4024   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4025   // into account.
4026   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4027   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4028      
4029   // Check that the instruction is valid.
4030   if (r_type == elfcpp::R_ARM_THM_CALL)
4031     {
4032       if (!is_bl_insn && !is_blx_insn)
4033         return This::STATUS_BAD_RELOC;
4034     }
4035   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4036     {
4037       // This cannot be a BLX.
4038       if (!is_bl_insn)
4039         return This::STATUS_BAD_RELOC;
4040     }
4041   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4042     {
4043       // Check for Thumb to Thumb call.
4044       if (!is_blx_insn)
4045         return This::STATUS_BAD_RELOC;
4046       if (thumb_bit != 0)
4047         {
4048           gold_warning(_("%s: Thumb BLX instruction targets "
4049                          "thumb function '%s'."),
4050                          object->name().c_str(),
4051                          (gsym ? gsym->name() : "(local)")); 
4052           // Convert BLX to BL.
4053           lower_insn |= 0x1000U;
4054         }
4055     }
4056   else
4057     gold_unreachable();
4058
4059   // A branch to an undefined weak symbol is turned into a jump to
4060   // the next instruction unless a PLT entry will be created.
4061   // The jump to the next instruction is optimized as a NOP.W for
4062   // Thumb-2 enabled architectures.
4063   const Target_arm<big_endian>* arm_target =
4064     Target_arm<big_endian>::default_target();
4065   if (is_weakly_undefined_without_plt)
4066     {
4067       gold_assert(!parameters->options().relocatable());
4068       if (arm_target->may_use_thumb2_nop())
4069         {
4070           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4071           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4072         }
4073       else
4074         {
4075           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4076           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4077         }
4078       return This::STATUS_OKAY;
4079     }
4080  
4081   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4082   Arm_address branch_target = psymval->value(object, addend);
4083
4084   // For BLX, bit 1 of target address comes from bit 1 of base address.
4085   bool may_use_blx = arm_target->may_use_blx();
4086   if (thumb_bit == 0 && may_use_blx)
4087     branch_target = utils::bit_select(branch_target, address, 0x2);
4088
4089   int32_t branch_offset = branch_target - address;
4090
4091   // We need a stub if the branch offset is too large or if we need
4092   // to switch mode.
4093   bool thumb2 = arm_target->using_thumb2();
4094   if (!parameters->options().relocatable()
4095       && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4096           || (thumb2 && utils::has_overflow<25>(branch_offset))
4097           || ((thumb_bit == 0)
4098               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4099                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4100     {
4101       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4102
4103       Stub_type stub_type =
4104         Reloc_stub::stub_type_for_reloc(r_type, address,
4105                                         unadjusted_branch_target,
4106                                         (thumb_bit != 0));
4107
4108       if (stub_type != arm_stub_none)
4109         {
4110           Stub_table<big_endian>* stub_table =
4111             object->stub_table(relinfo->data_shndx);
4112           gold_assert(stub_table != NULL);
4113
4114           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4115           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4116           gold_assert(stub != NULL);
4117           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4118           branch_target = stub_table->address() + stub->offset() + addend;
4119           if (thumb_bit == 0 && may_use_blx) 
4120             branch_target = utils::bit_select(branch_target, address, 0x2);
4121           branch_offset = branch_target - address;
4122         }
4123     }
4124
4125   // At this point, if we still need to switch mode, the instruction
4126   // must either be a BLX or a BL that can be converted to a BLX.
4127   if (thumb_bit == 0)
4128     {
4129       gold_assert(may_use_blx
4130                   && (r_type == elfcpp::R_ARM_THM_CALL
4131                       || r_type == elfcpp::R_ARM_THM_XPC22));
4132       // Make sure this is a BLX.
4133       lower_insn &= ~0x1000U;
4134     }
4135   else
4136     {
4137       // Make sure this is a BL.
4138       lower_insn |= 0x1000U;
4139     }
4140
4141   // For a BLX instruction, make sure that the relocation is rounded up
4142   // to a word boundary.  This follows the semantics of the instruction
4143   // which specifies that bit 1 of the target address will come from bit
4144   // 1 of the base address.
4145   if ((lower_insn & 0x5000U) == 0x4000U)
4146     gold_assert((branch_offset & 3) == 0);
4147
4148   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4149   // We use the Thumb-2 encoding, which is safe even if dealing with
4150   // a Thumb-1 instruction by virtue of our overflow check above.  */
4151   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4152   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4153
4154   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4155   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4156
4157   gold_assert(!utils::has_overflow<25>(branch_offset));
4158
4159   return ((thumb2
4160            ? utils::has_overflow<25>(branch_offset)
4161            : utils::has_overflow<23>(branch_offset))
4162           ? This::STATUS_OVERFLOW
4163           : This::STATUS_OKAY);
4164 }
4165
4166 // Relocate THUMB-2 long conditional branches.
4167 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4168 // undefined and we do not use PLT in this relocation.  In such a case,
4169 // the branch is converted into an NOP.
4170
4171 template<bool big_endian>
4172 typename Arm_relocate_functions<big_endian>::Status
4173 Arm_relocate_functions<big_endian>::thm_jump19(
4174     unsigned char* view,
4175     const Arm_relobj<big_endian>* object,
4176     const Symbol_value<32>* psymval,
4177     Arm_address address,
4178     Arm_address thumb_bit)
4179 {
4180   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4181   Valtype* wv = reinterpret_cast<Valtype*>(view);
4182   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4183   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4184   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4185
4186   Arm_address branch_target = psymval->value(object, addend);
4187   int32_t branch_offset = branch_target - address;
4188
4189   // ??? Should handle interworking?  GCC might someday try to
4190   // use this for tail calls.
4191   // FIXME: We do support thumb entry to PLT yet.
4192   if (thumb_bit == 0)
4193     {
4194       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4195       return This::STATUS_BAD_RELOC;
4196     }
4197
4198   // Put RELOCATION back into the insn.
4199   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4200   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4201
4202   // Put the relocated value back in the object file:
4203   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4204   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4205
4206   return (utils::has_overflow<21>(branch_offset)
4207           ? This::STATUS_OVERFLOW
4208           : This::STATUS_OKAY);
4209 }
4210
4211 // Get the GOT section, creating it if necessary.
4212
4213 template<bool big_endian>
4214 Arm_output_data_got<big_endian>*
4215 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4216 {
4217   if (this->got_ == NULL)
4218     {
4219       gold_assert(symtab != NULL && layout != NULL);
4220
4221       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4222
4223       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4224                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4225                                       this->got_, ORDER_DATA, false);
4226
4227       // The old GNU linker creates a .got.plt section.  We just
4228       // create another set of data in the .got section.  Note that we
4229       // always create a PLT if we create a GOT, although the PLT
4230       // might be empty.
4231       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4232       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4233                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4234                                       this->got_plt_, ORDER_DATA, false);
4235
4236       // The first three entries are reserved.
4237       this->got_plt_->set_current_data_size(3 * 4);
4238
4239       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4240       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4241                                     Symbol_table::PREDEFINED,
4242                                     this->got_plt_,
4243                                     0, 0, elfcpp::STT_OBJECT,
4244                                     elfcpp::STB_LOCAL,
4245                                     elfcpp::STV_HIDDEN, 0,
4246                                     false, false);
4247     }
4248   return this->got_;
4249 }
4250
4251 // Get the dynamic reloc section, creating it if necessary.
4252
4253 template<bool big_endian>
4254 typename Target_arm<big_endian>::Reloc_section*
4255 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4256 {
4257   if (this->rel_dyn_ == NULL)
4258     {
4259       gold_assert(layout != NULL);
4260       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4261       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4262                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4263                                       ORDER_DYNAMIC_RELOCS, false);
4264     }
4265   return this->rel_dyn_;
4266 }
4267
4268 // Insn_template methods.
4269
4270 // Return byte size of an instruction template.
4271
4272 size_t
4273 Insn_template::size() const
4274 {
4275   switch (this->type())
4276     {
4277     case THUMB16_TYPE:
4278     case THUMB16_SPECIAL_TYPE:
4279       return 2;
4280     case ARM_TYPE:
4281     case THUMB32_TYPE:
4282     case DATA_TYPE:
4283       return 4;
4284     default:
4285       gold_unreachable();
4286     }
4287 }
4288
4289 // Return alignment of an instruction template.
4290
4291 unsigned
4292 Insn_template::alignment() const
4293 {
4294   switch (this->type())
4295     {
4296     case THUMB16_TYPE:
4297     case THUMB16_SPECIAL_TYPE:
4298     case THUMB32_TYPE:
4299       return 2;
4300     case ARM_TYPE:
4301     case DATA_TYPE:
4302       return 4;
4303     default:
4304       gold_unreachable();
4305     }
4306 }
4307
4308 // Stub_template methods.
4309
4310 Stub_template::Stub_template(
4311     Stub_type type, const Insn_template* insns,
4312      size_t insn_count)
4313   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4314     entry_in_thumb_mode_(false), relocs_()
4315 {
4316   off_t offset = 0;
4317
4318   // Compute byte size and alignment of stub template.
4319   for (size_t i = 0; i < insn_count; i++)
4320     {
4321       unsigned insn_alignment = insns[i].alignment();
4322       size_t insn_size = insns[i].size();
4323       gold_assert((offset & (insn_alignment - 1)) == 0);
4324       this->alignment_ = std::max(this->alignment_, insn_alignment);
4325       switch (insns[i].type())
4326         {
4327         case Insn_template::THUMB16_TYPE:
4328         case Insn_template::THUMB16_SPECIAL_TYPE:
4329           if (i == 0)
4330             this->entry_in_thumb_mode_ = true;
4331           break;
4332
4333         case Insn_template::THUMB32_TYPE:
4334           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4335             this->relocs_.push_back(Reloc(i, offset));
4336           if (i == 0)
4337             this->entry_in_thumb_mode_ = true;
4338           break;
4339
4340         case Insn_template::ARM_TYPE:
4341           // Handle cases where the target is encoded within the
4342           // instruction.
4343           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4344             this->relocs_.push_back(Reloc(i, offset));
4345           break;
4346
4347         case Insn_template::DATA_TYPE:
4348           // Entry point cannot be data.
4349           gold_assert(i != 0);
4350           this->relocs_.push_back(Reloc(i, offset));
4351           break;
4352
4353         default:
4354           gold_unreachable();
4355         }
4356       offset += insn_size; 
4357     }
4358   this->size_ = offset;
4359 }
4360
4361 // Stub methods.
4362
4363 // Template to implement do_write for a specific target endianness.
4364
4365 template<bool big_endian>
4366 void inline
4367 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4368 {
4369   const Stub_template* stub_template = this->stub_template();
4370   const Insn_template* insns = stub_template->insns();
4371
4372   // FIXME:  We do not handle BE8 encoding yet.
4373   unsigned char* pov = view;
4374   for (size_t i = 0; i < stub_template->insn_count(); i++)
4375     {
4376       switch (insns[i].type())
4377         {
4378         case Insn_template::THUMB16_TYPE:
4379           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4380           break;
4381         case Insn_template::THUMB16_SPECIAL_TYPE:
4382           elfcpp::Swap<16, big_endian>::writeval(
4383               pov,
4384               this->thumb16_special(i));
4385           break;
4386         case Insn_template::THUMB32_TYPE:
4387           {
4388             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4389             uint32_t lo = insns[i].data() & 0xffff;
4390             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4391             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4392           }
4393           break;
4394         case Insn_template::ARM_TYPE:
4395         case Insn_template::DATA_TYPE:
4396           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4397           break;
4398         default:
4399           gold_unreachable();
4400         }
4401       pov += insns[i].size();
4402     }
4403   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4404
4405
4406 // Reloc_stub::Key methods.
4407
4408 // Dump a Key as a string for debugging.
4409
4410 std::string
4411 Reloc_stub::Key::name() const
4412 {
4413   if (this->r_sym_ == invalid_index)
4414     {
4415       // Global symbol key name
4416       // <stub-type>:<symbol name>:<addend>.
4417       const std::string sym_name = this->u_.symbol->name();
4418       // We need to print two hex number and two colons.  So just add 100 bytes
4419       // to the symbol name size.
4420       size_t len = sym_name.size() + 100;
4421       char* buffer = new char[len];
4422       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4423                        sym_name.c_str(), this->addend_);
4424       gold_assert(c > 0 && c < static_cast<int>(len));
4425       delete[] buffer;
4426       return std::string(buffer);
4427     }
4428   else
4429     {
4430       // local symbol key name
4431       // <stub-type>:<object>:<r_sym>:<addend>.
4432       const size_t len = 200;
4433       char buffer[len];
4434       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4435                        this->u_.relobj, this->r_sym_, this->addend_);
4436       gold_assert(c > 0 && c < static_cast<int>(len));
4437       return std::string(buffer);
4438     }
4439 }
4440
4441 // Reloc_stub methods.
4442
4443 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4444 // LOCATION to DESTINATION.
4445 // This code is based on the arm_type_of_stub function in
4446 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4447 // class simple.
4448
4449 Stub_type
4450 Reloc_stub::stub_type_for_reloc(
4451    unsigned int r_type,
4452    Arm_address location,
4453    Arm_address destination,
4454    bool target_is_thumb)
4455 {
4456   Stub_type stub_type = arm_stub_none;
4457
4458   // This is a bit ugly but we want to avoid using a templated class for
4459   // big and little endianities.
4460   bool may_use_blx;
4461   bool should_force_pic_veneer;
4462   bool thumb2;
4463   bool thumb_only;
4464   if (parameters->target().is_big_endian())
4465     {
4466       const Target_arm<true>* big_endian_target =
4467         Target_arm<true>::default_target();
4468       may_use_blx = big_endian_target->may_use_blx();
4469       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4470       thumb2 = big_endian_target->using_thumb2();
4471       thumb_only = big_endian_target->using_thumb_only();
4472     }
4473   else
4474     {
4475       const Target_arm<false>* little_endian_target =
4476         Target_arm<false>::default_target();
4477       may_use_blx = little_endian_target->may_use_blx();
4478       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4479       thumb2 = little_endian_target->using_thumb2();
4480       thumb_only = little_endian_target->using_thumb_only();
4481     }
4482
4483   int64_t branch_offset;
4484   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4485     {
4486       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4487       // base address (instruction address + 4).
4488       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4489         destination = utils::bit_select(destination, location, 0x2);
4490       branch_offset = static_cast<int64_t>(destination) - location;
4491         
4492       // Handle cases where:
4493       // - this call goes too far (different Thumb/Thumb2 max
4494       //   distance)
4495       // - it's a Thumb->Arm call and blx is not available, or it's a
4496       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4497       if ((!thumb2
4498             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4499                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4500           || (thumb2
4501               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4502                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4503           || ((!target_is_thumb)
4504               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4505                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4506         {
4507           if (target_is_thumb)
4508             {
4509               // Thumb to thumb.
4510               if (!thumb_only)
4511                 {
4512                   stub_type = (parameters->options().shared()
4513                                || should_force_pic_veneer)
4514                     // PIC stubs.
4515                     ? ((may_use_blx
4516                         && (r_type == elfcpp::R_ARM_THM_CALL))
4517                        // V5T and above. Stub starts with ARM code, so
4518                        // we must be able to switch mode before
4519                        // reaching it, which is only possible for 'bl'
4520                        // (ie R_ARM_THM_CALL relocation).
4521                        ? arm_stub_long_branch_any_thumb_pic
4522                        // On V4T, use Thumb code only.
4523                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4524
4525                     // non-PIC stubs.
4526                     : ((may_use_blx
4527                         && (r_type == elfcpp::R_ARM_THM_CALL))
4528                        ? arm_stub_long_branch_any_any // V5T and above.
4529                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4530                 }
4531               else
4532                 {
4533                   stub_type = (parameters->options().shared()
4534                                || should_force_pic_veneer)
4535                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4536                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4537                 }
4538             }
4539           else
4540             {
4541               // Thumb to arm.
4542              
4543               // FIXME: We should check that the input section is from an
4544               // object that has interwork enabled.
4545
4546               stub_type = (parameters->options().shared()
4547                            || should_force_pic_veneer)
4548                 // PIC stubs.
4549                 ? ((may_use_blx
4550                     && (r_type == elfcpp::R_ARM_THM_CALL))
4551                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4552                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4553
4554                 // non-PIC stubs.
4555                 : ((may_use_blx
4556                     && (r_type == elfcpp::R_ARM_THM_CALL))
4557                    ? arm_stub_long_branch_any_any       // V5T and above.
4558                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4559
4560               // Handle v4t short branches.
4561               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4562                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4563                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4564                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4565             }
4566         }
4567     }
4568   else if (r_type == elfcpp::R_ARM_CALL
4569            || r_type == elfcpp::R_ARM_JUMP24
4570            || r_type == elfcpp::R_ARM_PLT32)
4571     {
4572       branch_offset = static_cast<int64_t>(destination) - location;
4573       if (target_is_thumb)
4574         {
4575           // Arm to thumb.
4576
4577           // FIXME: We should check that the input section is from an
4578           // object that has interwork enabled.
4579
4580           // We have an extra 2-bytes reach because of
4581           // the mode change (bit 24 (H) of BLX encoding).
4582           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4583               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4584               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4585               || (r_type == elfcpp::R_ARM_JUMP24)
4586               || (r_type == elfcpp::R_ARM_PLT32))
4587             {
4588               stub_type = (parameters->options().shared()
4589                            || should_force_pic_veneer)
4590                 // PIC stubs.
4591                 ? (may_use_blx
4592                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4593                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4594
4595                 // non-PIC stubs.
4596                 : (may_use_blx
4597                    ? arm_stub_long_branch_any_any       // V5T and above.
4598                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4599             }
4600         }
4601       else
4602         {
4603           // Arm to arm.
4604           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4605               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4606             {
4607               stub_type = (parameters->options().shared()
4608                            || should_force_pic_veneer)
4609                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4610                 : arm_stub_long_branch_any_any;         /// non-PIC.
4611             }
4612         }
4613     }
4614
4615   return stub_type;
4616 }
4617
4618 // Cortex_a8_stub methods.
4619
4620 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4621 // I is the position of the instruction template in the stub template.
4622
4623 uint16_t
4624 Cortex_a8_stub::do_thumb16_special(size_t i)
4625 {
4626   // The only use of this is to copy condition code from a conditional
4627   // branch being worked around to the corresponding conditional branch in
4628   // to the stub.
4629   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4630               && i == 0);
4631   uint16_t data = this->stub_template()->insns()[i].data();
4632   gold_assert((data & 0xff00U) == 0xd000U);
4633   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4634   return data;
4635 }
4636
4637 // Stub_factory methods.
4638
4639 Stub_factory::Stub_factory()
4640 {
4641   // The instruction template sequences are declared as static
4642   // objects and initialized first time the constructor runs.
4643  
4644   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4645   // to reach the stub if necessary.
4646   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4647     {
4648       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4649       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4650                                                 // dcd   R_ARM_ABS32(X)
4651     };
4652   
4653   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4654   // available.
4655   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4656     {
4657       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4658       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4659       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4660                                                 // dcd   R_ARM_ABS32(X)
4661     };
4662   
4663   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4664   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4665     {
4666       Insn_template::thumb16_insn(0xb401),      // push {r0}
4667       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4668       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4669       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4670       Insn_template::thumb16_insn(0x4760),      // bx   ip
4671       Insn_template::thumb16_insn(0xbf00),      // nop
4672       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4673                                                 // dcd  R_ARM_ABS32(X)
4674     };
4675   
4676   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4677   // allowed.
4678   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4679     {
4680       Insn_template::thumb16_insn(0x4778),      // bx   pc
4681       Insn_template::thumb16_insn(0x46c0),      // nop
4682       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4683       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4684       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4685                                                 // dcd  R_ARM_ABS32(X)
4686     };
4687   
4688   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4689   // available.
4690   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4691     {
4692       Insn_template::thumb16_insn(0x4778),      // bx   pc
4693       Insn_template::thumb16_insn(0x46c0),      // nop
4694       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4695       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4696                                                 // dcd   R_ARM_ABS32(X)
4697     };
4698   
4699   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4700   // one, when the destination is close enough.
4701   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4702     {
4703       Insn_template::thumb16_insn(0x4778),              // bx   pc
4704       Insn_template::thumb16_insn(0x46c0),              // nop
4705       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4706     };
4707   
4708   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4709   // blx to reach the stub if necessary.
4710   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4711     {
4712       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4713       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4714       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4715                                                 // dcd   R_ARM_REL32(X-4)
4716     };
4717   
4718   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4719   // blx to reach the stub if necessary.  We can not add into pc;
4720   // it is not guaranteed to mode switch (different in ARMv6 and
4721   // ARMv7).
4722   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4723     {
4724       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4725       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4726       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4727       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4728                                                 // dcd   R_ARM_REL32(X)
4729     };
4730   
4731   // V4T ARM -> ARM long branch stub, PIC.
4732   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4733     {
4734       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4735       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4736       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4737       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4738                                                 // dcd   R_ARM_REL32(X)
4739     };
4740   
4741   // V4T Thumb -> ARM long branch stub, PIC.
4742   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4743     {
4744       Insn_template::thumb16_insn(0x4778),      // bx   pc
4745       Insn_template::thumb16_insn(0x46c0),      // nop
4746       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4747       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4748       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4749                                                 // dcd  R_ARM_REL32(X)
4750     };
4751   
4752   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4753   // architectures.
4754   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4755     {
4756       Insn_template::thumb16_insn(0xb401),      // push {r0}
4757       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4758       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4759       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4760       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4761       Insn_template::thumb16_insn(0x4760),      // bx   ip
4762       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4763                                                 // dcd  R_ARM_REL32(X)
4764     };
4765   
4766   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4767   // allowed.
4768   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4769     {
4770       Insn_template::thumb16_insn(0x4778),      // bx   pc
4771       Insn_template::thumb16_insn(0x46c0),      // nop
4772       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4773       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4774       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4775       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4776                                                 // dcd  R_ARM_REL32(X)
4777     };
4778   
4779   // Cortex-A8 erratum-workaround stubs.
4780   
4781   // Stub used for conditional branches (which may be beyond +/-1MB away,
4782   // so we can't use a conditional branch to reach this stub).
4783   
4784   // original code:
4785   //
4786   //    b<cond> X
4787   // after:
4788   //
4789   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4790     {
4791       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4792       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4793       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4794                                                         //      b.w X
4795     };
4796   
4797   // Stub used for b.w and bl.w instructions.
4798   
4799   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4800     {
4801       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4802     };
4803   
4804   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4805     {
4806       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4807     };
4808   
4809   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4810   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4811   // the real destination using an ARM-mode branch.
4812   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4813     {
4814       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4815     };
4816
4817   // Stub used to provide an interworking for R_ARM_V4BX relocation
4818   // (bx r[n] instruction).
4819   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4820     {
4821       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4822       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4823       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4824     };
4825
4826   // Fill in the stub template look-up table.  Stub templates are constructed
4827   // per instance of Stub_factory for fast look-up without locking
4828   // in a thread-enabled environment.
4829
4830   this->stub_templates_[arm_stub_none] =
4831     new Stub_template(arm_stub_none, NULL, 0);
4832
4833 #define DEF_STUB(x)     \
4834   do \
4835     { \
4836       size_t array_size \
4837         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4838       Stub_type type = arm_stub_##x; \
4839       this->stub_templates_[type] = \
4840         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4841     } \
4842   while (0);
4843
4844   DEF_STUBS
4845 #undef DEF_STUB
4846 }
4847
4848 // Stub_table methods.
4849
4850 // Remove all Cortex-A8 stub.
4851
4852 template<bool big_endian>
4853 void
4854 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4855 {
4856   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4857        p != this->cortex_a8_stubs_.end();
4858        ++p)
4859     delete p->second;
4860   this->cortex_a8_stubs_.clear();
4861 }
4862
4863 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4864
4865 template<bool big_endian>
4866 void
4867 Stub_table<big_endian>::relocate_stub(
4868     Stub* stub,
4869     const Relocate_info<32, big_endian>* relinfo,
4870     Target_arm<big_endian>* arm_target,
4871     Output_section* output_section,
4872     unsigned char* view,
4873     Arm_address address,
4874     section_size_type view_size)
4875 {
4876   const Stub_template* stub_template = stub->stub_template();
4877   if (stub_template->reloc_count() != 0)
4878     {
4879       // Adjust view to cover the stub only.
4880       section_size_type offset = stub->offset();
4881       section_size_type stub_size = stub_template->size();
4882       gold_assert(offset + stub_size <= view_size);
4883
4884       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4885                                 address + offset, stub_size);
4886     }
4887 }
4888
4889 // Relocate all stubs in this stub table.
4890
4891 template<bool big_endian>
4892 void
4893 Stub_table<big_endian>::relocate_stubs(
4894     const Relocate_info<32, big_endian>* relinfo,
4895     Target_arm<big_endian>* arm_target,
4896     Output_section* output_section,
4897     unsigned char* view,
4898     Arm_address address,
4899     section_size_type view_size)
4900 {
4901   // If we are passed a view bigger than the stub table's.  we need to
4902   // adjust the view.
4903   gold_assert(address == this->address()
4904               && (view_size
4905                   == static_cast<section_size_type>(this->data_size())));
4906
4907   // Relocate all relocation stubs.
4908   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4909       p != this->reloc_stubs_.end();
4910       ++p)
4911     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4912                         address, view_size);
4913
4914   // Relocate all Cortex-A8 stubs.
4915   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4916        p != this->cortex_a8_stubs_.end();
4917        ++p)
4918     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4919                         address, view_size);
4920
4921   // Relocate all ARM V4BX stubs.
4922   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4923        p != this->arm_v4bx_stubs_.end();
4924        ++p)
4925     {
4926       if (*p != NULL)
4927         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4928                             address, view_size);
4929     }
4930 }
4931
4932 // Write out the stubs to file.
4933
4934 template<bool big_endian>
4935 void
4936 Stub_table<big_endian>::do_write(Output_file* of)
4937 {
4938   off_t offset = this->offset();
4939   const section_size_type oview_size =
4940     convert_to_section_size_type(this->data_size());
4941   unsigned char* const oview = of->get_output_view(offset, oview_size);
4942
4943   // Write relocation stubs.
4944   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4945       p != this->reloc_stubs_.end();
4946       ++p)
4947     {
4948       Reloc_stub* stub = p->second;
4949       Arm_address address = this->address() + stub->offset();
4950       gold_assert(address
4951                   == align_address(address,
4952                                    stub->stub_template()->alignment()));
4953       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4954                   big_endian);
4955     }
4956
4957   // Write Cortex-A8 stubs.
4958   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4959        p != this->cortex_a8_stubs_.end();
4960        ++p)
4961     {
4962       Cortex_a8_stub* stub = p->second;
4963       Arm_address address = this->address() + stub->offset();
4964       gold_assert(address
4965                   == align_address(address,
4966                                    stub->stub_template()->alignment()));
4967       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4968                   big_endian);
4969     }
4970
4971   // Write ARM V4BX relocation stubs.
4972   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4973        p != this->arm_v4bx_stubs_.end();
4974        ++p)
4975     {
4976       if (*p == NULL)
4977         continue;
4978
4979       Arm_address address = this->address() + (*p)->offset();
4980       gold_assert(address
4981                   == align_address(address,
4982                                    (*p)->stub_template()->alignment()));
4983       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4984                   big_endian);
4985     }
4986
4987   of->write_output_view(this->offset(), oview_size, oview);
4988 }
4989
4990 // Update the data size and address alignment of the stub table at the end
4991 // of a relaxation pass.   Return true if either the data size or the
4992 // alignment changed in this relaxation pass.
4993
4994 template<bool big_endian>
4995 bool
4996 Stub_table<big_endian>::update_data_size_and_addralign()
4997 {
4998   // Go over all stubs in table to compute data size and address alignment.
4999   off_t size = this->reloc_stubs_size_;
5000   unsigned addralign = this->reloc_stubs_addralign_;
5001
5002   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5003        p != this->cortex_a8_stubs_.end();
5004        ++p)
5005     {
5006       const Stub_template* stub_template = p->second->stub_template();
5007       addralign = std::max(addralign, stub_template->alignment());
5008       size = (align_address(size, stub_template->alignment())
5009               + stub_template->size());
5010     }
5011
5012   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5013        p != this->arm_v4bx_stubs_.end();
5014        ++p)
5015     {
5016       if (*p == NULL)
5017         continue;
5018
5019       const Stub_template* stub_template = (*p)->stub_template();
5020       addralign = std::max(addralign, stub_template->alignment());
5021       size = (align_address(size, stub_template->alignment())
5022               + stub_template->size());
5023     }
5024
5025   // Check if either data size or alignment changed in this pass.
5026   // Update prev_data_size_ and prev_addralign_.  These will be used
5027   // as the current data size and address alignment for the next pass.
5028   bool changed = size != this->prev_data_size_;
5029   this->prev_data_size_ = size; 
5030
5031   if (addralign != this->prev_addralign_)
5032     changed = true;
5033   this->prev_addralign_ = addralign;
5034
5035   return changed;
5036 }
5037
5038 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5039 // table.  It also marks all input sections needing Cortex-A8 workaround.
5040
5041 template<bool big_endian>
5042 void
5043 Stub_table<big_endian>::finalize_stubs()
5044 {
5045   off_t off = this->reloc_stubs_size_;
5046   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5047        p != this->cortex_a8_stubs_.end();
5048        ++p)
5049     {
5050       Cortex_a8_stub* stub = p->second;
5051       const Stub_template* stub_template = stub->stub_template();
5052       uint64_t stub_addralign = stub_template->alignment();
5053       off = align_address(off, stub_addralign);
5054       stub->set_offset(off);
5055       off += stub_template->size();
5056
5057       // Mark input section so that we can determine later if a code section
5058       // needs the Cortex-A8 workaround quickly.
5059       Arm_relobj<big_endian>* arm_relobj =
5060         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5061       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5062     }
5063
5064   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5065       p != this->arm_v4bx_stubs_.end();
5066       ++p)
5067     {
5068       if (*p == NULL)
5069         continue;
5070
5071       const Stub_template* stub_template = (*p)->stub_template();
5072       uint64_t stub_addralign = stub_template->alignment();
5073       off = align_address(off, stub_addralign);
5074       (*p)->set_offset(off);
5075       off += stub_template->size();
5076     }
5077
5078   gold_assert(off <= this->prev_data_size_);
5079 }
5080
5081 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5082 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5083 // of the address range seen by the linker.
5084
5085 template<bool big_endian>
5086 void
5087 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5088     Target_arm<big_endian>* arm_target,
5089     unsigned char* view,
5090     Arm_address view_address,
5091     section_size_type view_size)
5092 {
5093   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5094   for (Cortex_a8_stub_list::const_iterator p =
5095          this->cortex_a8_stubs_.lower_bound(view_address);
5096        ((p != this->cortex_a8_stubs_.end())
5097         && (p->first < (view_address + view_size)));
5098        ++p)
5099     {
5100       // We do not store the THUMB bit in the LSB of either the branch address
5101       // or the stub offset.  There is no need to strip the LSB.
5102       Arm_address branch_address = p->first;
5103       const Cortex_a8_stub* stub = p->second;
5104       Arm_address stub_address = this->address() + stub->offset();
5105
5106       // Offset of the branch instruction relative to this view.
5107       section_size_type offset =
5108         convert_to_section_size_type(branch_address - view_address);
5109       gold_assert((offset + 4) <= view_size);
5110
5111       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5112                                              view + offset, branch_address);
5113     }
5114 }
5115
5116 // Arm_input_section methods.
5117
5118 // Initialize an Arm_input_section.
5119
5120 template<bool big_endian>
5121 void
5122 Arm_input_section<big_endian>::init()
5123 {
5124   Relobj* relobj = this->relobj();
5125   unsigned int shndx = this->shndx();
5126
5127   // We have to cache original size, alignment and contents to avoid locking
5128   // the original file.
5129   this->original_addralign_ =
5130     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5131
5132   // This is not efficient but we expect only a small number of relaxed
5133   // input sections for stubs.
5134   section_size_type section_size;
5135   const unsigned char* section_contents =
5136     relobj->section_contents(shndx, &section_size, false);
5137   this->original_size_ =
5138     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5139
5140   gold_assert(this->original_contents_ == NULL);
5141   this->original_contents_ = new unsigned char[section_size];
5142   memcpy(this->original_contents_, section_contents, section_size);
5143
5144   // We want to make this look like the original input section after
5145   // output sections are finalized.
5146   Output_section* os = relobj->output_section(shndx);
5147   off_t offset = relobj->output_section_offset(shndx);
5148   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5149   this->set_address(os->address() + offset);
5150   this->set_file_offset(os->offset() + offset);
5151
5152   this->set_current_data_size(this->original_size_);
5153   this->finalize_data_size();
5154 }
5155
5156 template<bool big_endian>
5157 void
5158 Arm_input_section<big_endian>::do_write(Output_file* of)
5159 {
5160   // We have to write out the original section content.
5161   gold_assert(this->original_contents_ != NULL);
5162   of->write(this->offset(), this->original_contents_,
5163             this->original_size_); 
5164
5165   // If this owns a stub table and it is not empty, write it.
5166   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5167     this->stub_table_->write(of);
5168 }
5169
5170 // Finalize data size.
5171
5172 template<bool big_endian>
5173 void
5174 Arm_input_section<big_endian>::set_final_data_size()
5175 {
5176   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5177
5178   if (this->is_stub_table_owner())
5179     {
5180       this->stub_table_->finalize_data_size();
5181       off = align_address(off, this->stub_table_->addralign());
5182       off += this->stub_table_->data_size();
5183     }
5184   this->set_data_size(off);
5185 }
5186
5187 // Reset address and file offset.
5188
5189 template<bool big_endian>
5190 void
5191 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5192 {
5193   // Size of the original input section contents.
5194   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5195
5196   // If this is a stub table owner, account for the stub table size.
5197   if (this->is_stub_table_owner())
5198     {
5199       Stub_table<big_endian>* stub_table = this->stub_table_;
5200
5201       // Reset the stub table's address and file offset.  The
5202       // current data size for child will be updated after that.
5203       stub_table_->reset_address_and_file_offset();
5204       off = align_address(off, stub_table_->addralign());
5205       off += stub_table->current_data_size();
5206     }
5207
5208   this->set_current_data_size(off);
5209 }
5210
5211 // Arm_exidx_cantunwind methods.
5212
5213 // Write this to Output file OF for a fixed endianness.
5214
5215 template<bool big_endian>
5216 void
5217 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5218 {
5219   off_t offset = this->offset();
5220   const section_size_type oview_size = 8;
5221   unsigned char* const oview = of->get_output_view(offset, oview_size);
5222   
5223   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5224   Valtype* wv = reinterpret_cast<Valtype*>(oview);
5225
5226   Output_section* os = this->relobj_->output_section(this->shndx_);
5227   gold_assert(os != NULL);
5228
5229   Arm_relobj<big_endian>* arm_relobj =
5230     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5231   Arm_address output_offset =
5232     arm_relobj->get_output_section_offset(this->shndx_);
5233   Arm_address section_start;
5234   section_size_type section_size;
5235
5236   // Find out the end of the text section referred by this.
5237   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5238     {
5239       section_start = os->address() + output_offset;
5240       const Arm_exidx_input_section* exidx_input_section =
5241         arm_relobj->exidx_input_section_by_link(this->shndx_);
5242       gold_assert(exidx_input_section != NULL);
5243       section_size =
5244         convert_to_section_size_type(exidx_input_section->text_size());
5245     }
5246   else
5247     {
5248       // Currently this only happens for a relaxed section.
5249       const Output_relaxed_input_section* poris =
5250         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5251       gold_assert(poris != NULL);
5252       section_start = poris->address();
5253       section_size = convert_to_section_size_type(poris->data_size());
5254     }
5255
5256   // We always append this to the end of an EXIDX section.
5257   Arm_address output_address = section_start + section_size;
5258
5259   // Write out the entry.  The first word either points to the beginning
5260   // or after the end of a text section.  The second word is the special
5261   // EXIDX_CANTUNWIND value.
5262   uint32_t prel31_offset = output_address - this->address();
5263   if (utils::has_overflow<31>(offset))
5264     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5265   elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5266   elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5267
5268   of->write_output_view(this->offset(), oview_size, oview);
5269 }
5270
5271 // Arm_exidx_merged_section methods.
5272
5273 // Constructor for Arm_exidx_merged_section.
5274 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5275 // SECTION_OFFSET_MAP points to a section offset map describing how
5276 // parts of the input section are mapped to output.  DELETED_BYTES is
5277 // the number of bytes deleted from the EXIDX input section.
5278
5279 Arm_exidx_merged_section::Arm_exidx_merged_section(
5280     const Arm_exidx_input_section& exidx_input_section,
5281     const Arm_exidx_section_offset_map& section_offset_map,
5282     uint32_t deleted_bytes)
5283   : Output_relaxed_input_section(exidx_input_section.relobj(),
5284                                  exidx_input_section.shndx(),
5285                                  exidx_input_section.addralign()),
5286     exidx_input_section_(exidx_input_section),
5287     section_offset_map_(section_offset_map)
5288 {
5289   // If we retain or discard the whole EXIDX input section,  we would
5290   // not be here.
5291   gold_assert(deleted_bytes != 0
5292               && deleted_bytes != this->exidx_input_section_.size());
5293
5294   // Fix size here so that we do not need to implement set_final_data_size.
5295   uint32_t size = exidx_input_section.size() - deleted_bytes;
5296   this->set_data_size(size);
5297   this->fix_data_size();
5298
5299   // Allocate buffer for section contents and build contents.
5300   this->section_contents_ = new unsigned char[size];
5301 }
5302
5303 // Build the contents of a merged EXIDX output section.
5304
5305 void
5306 Arm_exidx_merged_section::build_contents(
5307     const unsigned char* original_contents,
5308     section_size_type original_size)
5309 {
5310   // Go over spans of input offsets and write only those that are not
5311   // discarded.
5312   section_offset_type in_start = 0;
5313   section_offset_type out_start = 0;
5314   section_offset_type in_max =
5315     convert_types<section_offset_type>(original_size);
5316   section_offset_type out_max =
5317     convert_types<section_offset_type>(this->data_size());
5318   for (Arm_exidx_section_offset_map::const_iterator p =
5319         this->section_offset_map_.begin();
5320       p != this->section_offset_map_.end();
5321       ++p)
5322     {
5323       section_offset_type in_end = p->first;
5324       gold_assert(in_end >= in_start);
5325       section_offset_type out_end = p->second;
5326       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5327       if (out_end != -1)
5328         {
5329           size_t out_chunk_size =
5330             convert_types<size_t>(out_end - out_start + 1);
5331
5332           gold_assert(out_chunk_size == in_chunk_size
5333                       && in_end < in_max && out_end < out_max);
5334
5335           memcpy(this->section_contents_ + out_start,
5336                  original_contents + in_start,
5337                  out_chunk_size);
5338           out_start += out_chunk_size;
5339         }
5340       in_start += in_chunk_size;
5341     }
5342 }
5343
5344 // Given an input OBJECT, an input section index SHNDX within that
5345 // object, and an OFFSET relative to the start of that input
5346 // section, return whether or not the corresponding offset within
5347 // the output section is known.  If this function returns true, it
5348 // sets *POUTPUT to the output offset.  The value -1 indicates that
5349 // this input offset is being discarded.
5350
5351 bool
5352 Arm_exidx_merged_section::do_output_offset(
5353     const Relobj* relobj,
5354     unsigned int shndx,
5355     section_offset_type offset,
5356     section_offset_type* poutput) const
5357 {
5358   // We only handle offsets for the original EXIDX input section.
5359   if (relobj != this->exidx_input_section_.relobj()
5360       || shndx != this->exidx_input_section_.shndx())
5361     return false;
5362
5363   section_offset_type section_size =
5364     convert_types<section_offset_type>(this->exidx_input_section_.size());
5365   if (offset < 0 || offset >= section_size)
5366     // Input offset is out of valid range.
5367     *poutput = -1;
5368   else
5369     {
5370       // We need to look up the section offset map to determine the output
5371       // offset.  Find the reference point in map that is first offset
5372       // bigger than or equal to this offset.
5373       Arm_exidx_section_offset_map::const_iterator p =
5374         this->section_offset_map_.lower_bound(offset);
5375
5376       // The section offset maps are build such that this should not happen if
5377       // input offset is in the valid range.
5378       gold_assert(p != this->section_offset_map_.end());
5379
5380       // We need to check if this is dropped.
5381      section_offset_type ref = p->first;
5382      section_offset_type mapped_ref = p->second;
5383
5384       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5385         // Offset is present in output.
5386         *poutput = mapped_ref + (offset - ref);
5387       else
5388         // Offset is discarded owing to EXIDX entry merging.
5389         *poutput = -1;
5390     }
5391   
5392   return true;
5393 }
5394
5395 // Write this to output file OF.
5396
5397 void
5398 Arm_exidx_merged_section::do_write(Output_file* of)
5399 {
5400   off_t offset = this->offset();
5401   const section_size_type oview_size = this->data_size();
5402   unsigned char* const oview = of->get_output_view(offset, oview_size);
5403   
5404   Output_section* os = this->relobj()->output_section(this->shndx());
5405   gold_assert(os != NULL);
5406
5407   memcpy(oview, this->section_contents_, oview_size);
5408   of->write_output_view(this->offset(), oview_size, oview);
5409 }
5410
5411 // Arm_exidx_fixup methods.
5412
5413 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5414 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5415 // points to the end of the last seen EXIDX section.
5416
5417 void
5418 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5419 {
5420   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5421       && this->last_input_section_ != NULL)
5422     {
5423       Relobj* relobj = this->last_input_section_->relobj();
5424       unsigned int text_shndx = this->last_input_section_->link();
5425       Arm_exidx_cantunwind* cantunwind =
5426         new Arm_exidx_cantunwind(relobj, text_shndx);
5427       this->exidx_output_section_->add_output_section_data(cantunwind);
5428       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5429     }
5430 }
5431
5432 // Process an EXIDX section entry in input.  Return whether this entry
5433 // can be deleted in the output.  SECOND_WORD in the second word of the
5434 // EXIDX entry.
5435
5436 bool
5437 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5438 {
5439   bool delete_entry;
5440   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5441     {
5442       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5443       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5444       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5445     }
5446   else if ((second_word & 0x80000000) != 0)
5447     {
5448       // Inlined unwinding data.  Merge if equal to previous.
5449       delete_entry = (merge_exidx_entries_
5450                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5451                       && this->last_inlined_entry_ == second_word);
5452       this->last_unwind_type_ = UT_INLINED_ENTRY;
5453       this->last_inlined_entry_ = second_word;
5454     }
5455   else
5456     {
5457       // Normal table entry.  In theory we could merge these too,
5458       // but duplicate entries are likely to be much less common.
5459       delete_entry = false;
5460       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5461     }
5462   return delete_entry;
5463 }
5464
5465 // Update the current section offset map during EXIDX section fix-up.
5466 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5467 // reference point, DELETED_BYTES is the number of deleted by in the
5468 // section so far.  If DELETE_ENTRY is true, the reference point and
5469 // all offsets after the previous reference point are discarded.
5470
5471 void
5472 Arm_exidx_fixup::update_offset_map(
5473     section_offset_type input_offset,
5474     section_size_type deleted_bytes,
5475     bool delete_entry)
5476 {
5477   if (this->section_offset_map_ == NULL)
5478     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5479   section_offset_type output_offset;
5480   if (delete_entry)
5481     output_offset = Arm_exidx_input_section::invalid_offset;
5482   else
5483     output_offset = input_offset - deleted_bytes;
5484   (*this->section_offset_map_)[input_offset] = output_offset;
5485 }
5486
5487 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5488 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5489 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5490 // If some entries are merged, also store a pointer to a newly created
5491 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5492 // owns the map and is responsible for releasing it after use.
5493
5494 template<bool big_endian>
5495 uint32_t
5496 Arm_exidx_fixup::process_exidx_section(
5497     const Arm_exidx_input_section* exidx_input_section,
5498     const unsigned char* section_contents,
5499     section_size_type section_size,
5500     Arm_exidx_section_offset_map** psection_offset_map)
5501 {
5502   Relobj* relobj = exidx_input_section->relobj();
5503   unsigned shndx = exidx_input_section->shndx();
5504
5505   if ((section_size % 8) != 0)
5506     {
5507       // Something is wrong with this section.  Better not touch it.
5508       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5509                  relobj->name().c_str(), shndx);
5510       this->last_input_section_ = exidx_input_section;
5511       this->last_unwind_type_ = UT_NONE;
5512       return 0;
5513     }
5514   
5515   uint32_t deleted_bytes = 0;
5516   bool prev_delete_entry = false;
5517   gold_assert(this->section_offset_map_ == NULL);
5518
5519   for (section_size_type i = 0; i < section_size; i += 8)
5520     {
5521       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5522       const Valtype* wv =
5523           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5524       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5525
5526       bool delete_entry = this->process_exidx_entry(second_word);
5527
5528       // Entry deletion causes changes in output offsets.  We use a std::map
5529       // to record these.  And entry (x, y) means input offset x
5530       // is mapped to output offset y.  If y is invalid_offset, then x is
5531       // dropped in the output.  Because of the way std::map::lower_bound
5532       // works, we record the last offset in a region w.r.t to keeping or
5533       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5534       // the output offset y0 of it is determined by the output offset y1 of
5535       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5536       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5537       // y0 is also -1.
5538       if (delete_entry != prev_delete_entry && i != 0)
5539         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5540
5541       // Update total deleted bytes for this entry.
5542       if (delete_entry)
5543         deleted_bytes += 8;
5544
5545       prev_delete_entry = delete_entry;
5546     }
5547   
5548   // If section offset map is not NULL, make an entry for the end of
5549   // section.
5550   if (this->section_offset_map_ != NULL)
5551     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5552
5553   *psection_offset_map = this->section_offset_map_;
5554   this->section_offset_map_ = NULL;
5555   this->last_input_section_ = exidx_input_section;
5556   
5557   // Set the first output text section so that we can link the EXIDX output
5558   // section to it.  Ignore any EXIDX input section that is completely merged.
5559   if (this->first_output_text_section_ == NULL
5560       && deleted_bytes != section_size)
5561     {
5562       unsigned int link = exidx_input_section->link();
5563       Output_section* os = relobj->output_section(link);
5564       gold_assert(os != NULL);
5565       this->first_output_text_section_ = os;
5566     }
5567
5568   return deleted_bytes;
5569 }
5570
5571 // Arm_output_section methods.
5572
5573 // Create a stub group for input sections from BEGIN to END.  OWNER
5574 // points to the input section to be the owner a new stub table.
5575
5576 template<bool big_endian>
5577 void
5578 Arm_output_section<big_endian>::create_stub_group(
5579   Input_section_list::const_iterator begin,
5580   Input_section_list::const_iterator end,
5581   Input_section_list::const_iterator owner,
5582   Target_arm<big_endian>* target,
5583   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5584   const Task* task)
5585 {
5586   // We use a different kind of relaxed section in an EXIDX section.
5587   // The static casting from Output_relaxed_input_section to
5588   // Arm_input_section is invalid in an EXIDX section.  We are okay
5589   // because we should not be calling this for an EXIDX section. 
5590   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5591
5592   // Currently we convert ordinary input sections into relaxed sections only
5593   // at this point but we may want to support creating relaxed input section
5594   // very early.  So we check here to see if owner is already a relaxed
5595   // section.
5596   
5597   Arm_input_section<big_endian>* arm_input_section;
5598   if (owner->is_relaxed_input_section())
5599     {
5600       arm_input_section =
5601         Arm_input_section<big_endian>::as_arm_input_section(
5602           owner->relaxed_input_section());
5603     }
5604   else
5605     {
5606       gold_assert(owner->is_input_section());
5607       // Create a new relaxed input section.  We need to lock the original
5608       // file.
5609       Task_lock_obj<Object> tl(task, owner->relobj());
5610       arm_input_section =
5611         target->new_arm_input_section(owner->relobj(), owner->shndx());
5612       new_relaxed_sections->push_back(arm_input_section);
5613     }
5614
5615   // Create a stub table.
5616   Stub_table<big_endian>* stub_table =
5617     target->new_stub_table(arm_input_section);
5618
5619   arm_input_section->set_stub_table(stub_table);
5620   
5621   Input_section_list::const_iterator p = begin;
5622   Input_section_list::const_iterator prev_p;
5623
5624   // Look for input sections or relaxed input sections in [begin ... end].
5625   do
5626     {
5627       if (p->is_input_section() || p->is_relaxed_input_section())
5628         {
5629           // The stub table information for input sections live
5630           // in their objects.
5631           Arm_relobj<big_endian>* arm_relobj =
5632             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5633           arm_relobj->set_stub_table(p->shndx(), stub_table);
5634         }
5635       prev_p = p++;
5636     }
5637   while (prev_p != end);
5638 }
5639
5640 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5641 // of stub groups.  We grow a stub group by adding input section until the
5642 // size is just below GROUP_SIZE.  The last input section will be converted
5643 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5644 // input section after the stub table, effectively double the group size.
5645 // 
5646 // This is similar to the group_sections() function in elf32-arm.c but is
5647 // implemented differently.
5648
5649 template<bool big_endian>
5650 void
5651 Arm_output_section<big_endian>::group_sections(
5652     section_size_type group_size,
5653     bool stubs_always_after_branch,
5654     Target_arm<big_endian>* target,
5655     const Task* task)
5656 {
5657   // We only care about sections containing code.
5658   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5659     return;
5660
5661   // States for grouping.
5662   typedef enum
5663   {
5664     // No group is being built.
5665     NO_GROUP,
5666     // A group is being built but the stub table is not found yet.
5667     // We keep group a stub group until the size is just under GROUP_SIZE.
5668     // The last input section in the group will be used as the stub table.
5669     FINDING_STUB_SECTION,
5670     // A group is being built and we have already found a stub table.
5671     // We enter this state to grow a stub group by adding input section
5672     // after the stub table.  This effectively doubles the group size.
5673     HAS_STUB_SECTION
5674   } State;
5675
5676   // Any newly created relaxed sections are stored here.
5677   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5678
5679   State state = NO_GROUP;
5680   section_size_type off = 0;
5681   section_size_type group_begin_offset = 0;
5682   section_size_type group_end_offset = 0;
5683   section_size_type stub_table_end_offset = 0;
5684   Input_section_list::const_iterator group_begin =
5685     this->input_sections().end();
5686   Input_section_list::const_iterator stub_table =
5687     this->input_sections().end();
5688   Input_section_list::const_iterator group_end = this->input_sections().end();
5689   for (Input_section_list::const_iterator p = this->input_sections().begin();
5690        p != this->input_sections().end();
5691        ++p)
5692     {
5693       section_size_type section_begin_offset =
5694         align_address(off, p->addralign());
5695       section_size_type section_end_offset =
5696         section_begin_offset + p->data_size(); 
5697       
5698       // Check to see if we should group the previously seen sections.
5699       switch (state)
5700         {
5701         case NO_GROUP:
5702           break;
5703
5704         case FINDING_STUB_SECTION:
5705           // Adding this section makes the group larger than GROUP_SIZE.
5706           if (section_end_offset - group_begin_offset >= group_size)
5707             {
5708               if (stubs_always_after_branch)
5709                 {       
5710                   gold_assert(group_end != this->input_sections().end());
5711                   this->create_stub_group(group_begin, group_end, group_end,
5712                                           target, &new_relaxed_sections,
5713                                           task);
5714                   state = NO_GROUP;
5715                 }
5716               else
5717                 {
5718                   // But wait, there's more!  Input sections up to
5719                   // stub_group_size bytes after the stub table can be
5720                   // handled by it too.
5721                   state = HAS_STUB_SECTION;
5722                   stub_table = group_end;
5723                   stub_table_end_offset = group_end_offset;
5724                 }
5725             }
5726             break;
5727
5728         case HAS_STUB_SECTION:
5729           // Adding this section makes the post stub-section group larger
5730           // than GROUP_SIZE.
5731           if (section_end_offset - stub_table_end_offset >= group_size)
5732            {
5733              gold_assert(group_end != this->input_sections().end());
5734              this->create_stub_group(group_begin, group_end, stub_table,
5735                                      target, &new_relaxed_sections, task);
5736              state = NO_GROUP;
5737            }
5738            break;
5739
5740           default:
5741             gold_unreachable();
5742         }       
5743
5744       // If we see an input section and currently there is no group, start
5745       // a new one.  Skip any empty sections.  We look at the data size
5746       // instead of calling p->relobj()->section_size() to avoid locking.
5747       if ((p->is_input_section() || p->is_relaxed_input_section())
5748           && (p->data_size() != 0))
5749         {
5750           if (state == NO_GROUP)
5751             {
5752               state = FINDING_STUB_SECTION;
5753               group_begin = p;
5754               group_begin_offset = section_begin_offset;
5755             }
5756
5757           // Keep track of the last input section seen.
5758           group_end = p;
5759           group_end_offset = section_end_offset;
5760         }
5761
5762       off = section_end_offset;
5763     }
5764
5765   // Create a stub group for any ungrouped sections.
5766   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5767     {
5768       gold_assert(group_end != this->input_sections().end());
5769       this->create_stub_group(group_begin, group_end,
5770                               (state == FINDING_STUB_SECTION
5771                                ? group_end
5772                                : stub_table),
5773                                target, &new_relaxed_sections, task);
5774     }
5775
5776   // Convert input section into relaxed input section in a batch.
5777   if (!new_relaxed_sections.empty())
5778     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5779
5780   // Update the section offsets
5781   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5782     {
5783       Arm_relobj<big_endian>* arm_relobj =
5784         Arm_relobj<big_endian>::as_arm_relobj(
5785           new_relaxed_sections[i]->relobj());
5786       unsigned int shndx = new_relaxed_sections[i]->shndx();
5787       // Tell Arm_relobj that this input section is converted.
5788       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5789     }
5790 }
5791
5792 // Append non empty text sections in this to LIST in ascending
5793 // order of their position in this.
5794
5795 template<bool big_endian>
5796 void
5797 Arm_output_section<big_endian>::append_text_sections_to_list(
5798     Text_section_list* list)
5799 {
5800   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5801
5802   for (Input_section_list::const_iterator p = this->input_sections().begin();
5803        p != this->input_sections().end();
5804        ++p)
5805     {
5806       // We only care about plain or relaxed input sections.  We also
5807       // ignore any merged sections.
5808       if (p->is_input_section() || p->is_relaxed_input_section())
5809         list->push_back(Text_section_list::value_type(p->relobj(),
5810                                                       p->shndx()));
5811     }
5812 }
5813
5814 template<bool big_endian>
5815 void
5816 Arm_output_section<big_endian>::fix_exidx_coverage(
5817     Layout* layout,
5818     const Text_section_list& sorted_text_sections,
5819     Symbol_table* symtab,
5820     bool merge_exidx_entries,
5821     const Task* task)
5822 {
5823   // We should only do this for the EXIDX output section.
5824   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5825
5826   // We don't want the relaxation loop to undo these changes, so we discard
5827   // the current saved states and take another one after the fix-up.
5828   this->discard_states();
5829
5830   // Remove all input sections.
5831   uint64_t address = this->address();
5832   typedef std::list<Output_section::Input_section> Input_section_list;
5833   Input_section_list input_sections;
5834   this->reset_address_and_file_offset();
5835   this->get_input_sections(address, std::string(""), &input_sections);
5836
5837   if (!this->input_sections().empty())
5838     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5839   
5840   // Go through all the known input sections and record them.
5841   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5842   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5843                         Section_id_hash> Text_to_exidx_map;
5844   Text_to_exidx_map text_to_exidx_map;
5845   for (Input_section_list::const_iterator p = input_sections.begin();
5846        p != input_sections.end();
5847        ++p)
5848     {
5849       // This should never happen.  At this point, we should only see
5850       // plain EXIDX input sections.
5851       gold_assert(!p->is_relaxed_input_section());
5852       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5853     }
5854
5855   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5856
5857   // Go over the sorted text sections.
5858   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5859   Section_id_set processed_input_sections;
5860   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5861        p != sorted_text_sections.end();
5862        ++p)
5863     {
5864       Relobj* relobj = p->first;
5865       unsigned int shndx = p->second;
5866
5867       Arm_relobj<big_endian>* arm_relobj =
5868          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5869       const Arm_exidx_input_section* exidx_input_section =
5870          arm_relobj->exidx_input_section_by_link(shndx);
5871
5872       // If this text section has no EXIDX section or if the EXIDX section
5873       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5874       // of the last seen EXIDX section.
5875       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5876         {
5877           exidx_fixup.add_exidx_cantunwind_as_needed();
5878           continue;
5879         }
5880
5881       Relobj* exidx_relobj = exidx_input_section->relobj();
5882       unsigned int exidx_shndx = exidx_input_section->shndx();
5883       Section_id sid(exidx_relobj, exidx_shndx);
5884       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5885       if (iter == text_to_exidx_map.end())
5886         {
5887           // This is odd.  We have not seen this EXIDX input section before.
5888           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5889           // issue a warning instead.  We assume the user knows what he
5890           // or she is doing.  Otherwise, this is an error.
5891           if (layout->script_options()->saw_sections_clause())
5892             gold_warning(_("unwinding may not work because EXIDX input section"
5893                            " %u of %s is not in EXIDX output section"),
5894                          exidx_shndx, exidx_relobj->name().c_str());
5895           else
5896             gold_error(_("unwinding may not work because EXIDX input section"
5897                          " %u of %s is not in EXIDX output section"),
5898                        exidx_shndx, exidx_relobj->name().c_str());
5899
5900           exidx_fixup.add_exidx_cantunwind_as_needed();
5901           continue;
5902         }
5903
5904       // We need to access the contents of the EXIDX section, lock the
5905       // object here.
5906       Task_lock_obj<Object> tl(task, exidx_relobj);
5907       section_size_type exidx_size;
5908       const unsigned char* exidx_contents =
5909         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); 
5910
5911       // Fix up coverage and append input section to output data list.
5912       Arm_exidx_section_offset_map* section_offset_map = NULL;
5913       uint32_t deleted_bytes =
5914         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5915                                                       exidx_contents,
5916                                                       exidx_size,
5917                                                       &section_offset_map);
5918
5919       if (deleted_bytes == exidx_input_section->size())
5920         {
5921           // The whole EXIDX section got merged.  Remove it from output.
5922           gold_assert(section_offset_map == NULL);
5923           exidx_relobj->set_output_section(exidx_shndx, NULL);
5924
5925           // All local symbols defined in this input section will be dropped.
5926           // We need to adjust output local symbol count.
5927           arm_relobj->set_output_local_symbol_count_needs_update();
5928         }
5929       else if (deleted_bytes > 0)
5930         {
5931           // Some entries are merged.  We need to convert this EXIDX input
5932           // section into a relaxed section.
5933           gold_assert(section_offset_map != NULL);
5934
5935           Arm_exidx_merged_section* merged_section =
5936             new Arm_exidx_merged_section(*exidx_input_section,
5937                                          *section_offset_map, deleted_bytes);
5938           merged_section->build_contents(exidx_contents, exidx_size);
5939
5940           const std::string secname = exidx_relobj->section_name(exidx_shndx);
5941           this->add_relaxed_input_section(layout, merged_section, secname);
5942           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5943
5944           // All local symbols defined in discarded portions of this input
5945           // section will be dropped.  We need to adjust output local symbol
5946           // count.
5947           arm_relobj->set_output_local_symbol_count_needs_update();
5948         }
5949       else
5950         {
5951           // Just add back the EXIDX input section.
5952           gold_assert(section_offset_map == NULL);
5953           const Output_section::Input_section* pis = iter->second;
5954           gold_assert(pis->is_input_section());
5955           this->add_script_input_section(*pis);
5956         }
5957
5958       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5959     }
5960
5961   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5962   exidx_fixup.add_exidx_cantunwind_as_needed();
5963
5964   // Remove any known EXIDX input sections that are not processed.
5965   for (Input_section_list::const_iterator p = input_sections.begin();
5966        p != input_sections.end();
5967        ++p)
5968     {
5969       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5970           == processed_input_sections.end())
5971         {
5972           // We discard a known EXIDX section because its linked
5973           // text section has been folded by ICF.  We also discard an
5974           // EXIDX section with error, the output does not matter in this
5975           // case.  We do this to avoid triggering asserts.
5976           Arm_relobj<big_endian>* arm_relobj =
5977             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5978           const Arm_exidx_input_section* exidx_input_section =
5979             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5980           gold_assert(exidx_input_section != NULL);
5981           if (!exidx_input_section->has_errors())
5982             {
5983               unsigned int text_shndx = exidx_input_section->link();
5984               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5985             }
5986
5987           // Remove this from link.  We also need to recount the
5988           // local symbols.
5989           p->relobj()->set_output_section(p->shndx(), NULL);
5990           arm_relobj->set_output_local_symbol_count_needs_update();
5991         }
5992     }
5993     
5994   // Link exidx output section to the first seen output section and
5995   // set correct entry size.
5996   this->set_link_section(exidx_fixup.first_output_text_section());
5997   this->set_entsize(8);
5998
5999   // Make changes permanent.
6000   this->save_states();
6001   this->set_section_offsets_need_adjustment();
6002 }
6003
6004 // Link EXIDX output sections to text output sections.
6005
6006 template<bool big_endian>
6007 void
6008 Arm_output_section<big_endian>::set_exidx_section_link()
6009 {
6010   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6011   if (!this->input_sections().empty())
6012     {
6013       Input_section_list::const_iterator p = this->input_sections().begin();
6014       Arm_relobj<big_endian>* arm_relobj =
6015         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6016       unsigned exidx_shndx = p->shndx();
6017       const Arm_exidx_input_section* exidx_input_section =
6018         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6019       gold_assert(exidx_input_section != NULL);
6020       unsigned int text_shndx = exidx_input_section->link();
6021       Output_section* os = arm_relobj->output_section(text_shndx);
6022       this->set_link_section(os);
6023     }
6024 }
6025
6026 // Arm_relobj methods.
6027
6028 // Determine if an input section is scannable for stub processing.  SHDR is
6029 // the header of the section and SHNDX is the section index.  OS is the output
6030 // section for the input section and SYMTAB is the global symbol table used to
6031 // look up ICF information.
6032
6033 template<bool big_endian>
6034 bool
6035 Arm_relobj<big_endian>::section_is_scannable(
6036     const elfcpp::Shdr<32, big_endian>& shdr,
6037     unsigned int shndx,
6038     const Output_section* os,
6039     const Symbol_table* symtab)
6040 {
6041   // Skip any empty sections, unallocated sections or sections whose
6042   // type are not SHT_PROGBITS.
6043   if (shdr.get_sh_size() == 0
6044       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6045       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6046     return false;
6047
6048   // Skip any discarded or ICF'ed sections.
6049   if (os == NULL || symtab->is_section_folded(this, shndx))
6050     return false;
6051
6052   // If this requires special offset handling, check to see if it is
6053   // a relaxed section.  If this is not, then it is a merged section that
6054   // we cannot handle.
6055   if (this->is_output_section_offset_invalid(shndx))
6056     {
6057       const Output_relaxed_input_section* poris =
6058         os->find_relaxed_input_section(this, shndx);
6059       if (poris == NULL)
6060         return false;
6061     }
6062
6063   return true;
6064 }
6065
6066 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6067 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6068
6069 template<bool big_endian>
6070 bool
6071 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6072     const elfcpp::Shdr<32, big_endian>& shdr,
6073     const Relobj::Output_sections& out_sections,
6074     const Symbol_table* symtab,
6075     const unsigned char* pshdrs)
6076 {
6077   unsigned int sh_type = shdr.get_sh_type();
6078   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6079     return false;
6080
6081   // Ignore empty section.
6082   off_t sh_size = shdr.get_sh_size();
6083   if (sh_size == 0)
6084     return false;
6085
6086   // Ignore reloc section with unexpected symbol table.  The
6087   // error will be reported in the final link.
6088   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6089     return false;
6090
6091   unsigned int reloc_size;
6092   if (sh_type == elfcpp::SHT_REL)
6093     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6094   else
6095     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6096
6097   // Ignore reloc section with unexpected entsize or uneven size.
6098   // The error will be reported in the final link.
6099   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6100     return false;
6101
6102   // Ignore reloc section with bad info.  This error will be
6103   // reported in the final link.
6104   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6105   if (index >= this->shnum())
6106     return false;
6107
6108   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6109   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6110   return this->section_is_scannable(text_shdr, index,
6111                                    out_sections[index], symtab);
6112 }
6113
6114 // Return the output address of either a plain input section or a relaxed
6115 // input section.  SHNDX is the section index.  We define and use this
6116 // instead of calling Output_section::output_address because that is slow
6117 // for large output.
6118
6119 template<bool big_endian>
6120 Arm_address
6121 Arm_relobj<big_endian>::simple_input_section_output_address(
6122     unsigned int shndx,
6123     Output_section* os)
6124 {
6125   if (this->is_output_section_offset_invalid(shndx))
6126     {
6127       const Output_relaxed_input_section* poris =
6128         os->find_relaxed_input_section(this, shndx);
6129       // We do not handle merged sections here.
6130       gold_assert(poris != NULL);
6131       return poris->address();
6132     }
6133   else
6134     return os->address() + this->get_output_section_offset(shndx);
6135 }
6136
6137 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6138 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6139
6140 template<bool big_endian>
6141 bool
6142 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6143     const elfcpp::Shdr<32, big_endian>& shdr,
6144     unsigned int shndx,
6145     Output_section* os,
6146     const Symbol_table* symtab)
6147 {
6148   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6149     return false;
6150
6151   // If the section does not cross any 4K-boundaries, it does not need to
6152   // be scanned.
6153   Arm_address address = this->simple_input_section_output_address(shndx, os);
6154   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6155     return false;
6156
6157   return true;
6158 }
6159
6160 // Scan a section for Cortex-A8 workaround.
6161
6162 template<bool big_endian>
6163 void
6164 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6165     const elfcpp::Shdr<32, big_endian>& shdr,
6166     unsigned int shndx,
6167     Output_section* os,
6168     Target_arm<big_endian>* arm_target)
6169 {
6170   // Look for the first mapping symbol in this section.  It should be
6171   // at (shndx, 0).
6172   Mapping_symbol_position section_start(shndx, 0);
6173   typename Mapping_symbols_info::const_iterator p =
6174     this->mapping_symbols_info_.lower_bound(section_start);
6175
6176   // There are no mapping symbols for this section.  Treat it as a data-only
6177   // section.  Issue a warning if section is marked as containing
6178   // instructions.
6179   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6180     {
6181       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6182         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6183                        "erratum because it has no mapping symbols."),
6184                      shndx, this->name().c_str());
6185       return;
6186     }
6187
6188   Arm_address output_address =
6189     this->simple_input_section_output_address(shndx, os);
6190
6191   // Get the section contents.
6192   section_size_type input_view_size = 0;
6193   const unsigned char* input_view =
6194     this->section_contents(shndx, &input_view_size, false);
6195
6196   // We need to go through the mapping symbols to determine what to
6197   // scan.  There are two reasons.  First, we should look at THUMB code and
6198   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6199   // to speed up the scanning.
6200   
6201   while (p != this->mapping_symbols_info_.end()
6202         && p->first.first == shndx)
6203     {
6204       typename Mapping_symbols_info::const_iterator next =
6205         this->mapping_symbols_info_.upper_bound(p->first);
6206
6207       // Only scan part of a section with THUMB code.
6208       if (p->second == 't')
6209         {
6210           // Determine the end of this range.
6211           section_size_type span_start =
6212             convert_to_section_size_type(p->first.second);
6213           section_size_type span_end;
6214           if (next != this->mapping_symbols_info_.end()
6215               && next->first.first == shndx)
6216             span_end = convert_to_section_size_type(next->first.second);
6217           else
6218             span_end = convert_to_section_size_type(shdr.get_sh_size());
6219           
6220           if (((span_start + output_address) & ~0xfffUL)
6221               != ((span_end + output_address - 1) & ~0xfffUL))
6222             {
6223               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6224                                                           span_start, span_end,
6225                                                           input_view,
6226                                                           output_address);
6227             }
6228         }
6229
6230       p = next; 
6231     }
6232 }
6233
6234 // Scan relocations for stub generation.
6235
6236 template<bool big_endian>
6237 void
6238 Arm_relobj<big_endian>::scan_sections_for_stubs(
6239     Target_arm<big_endian>* arm_target,
6240     const Symbol_table* symtab,
6241     const Layout* layout)
6242 {
6243   unsigned int shnum = this->shnum();
6244   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6245
6246   // Read the section headers.
6247   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6248                                                shnum * shdr_size,
6249                                                true, true);
6250
6251   // To speed up processing, we set up hash tables for fast lookup of
6252   // input offsets to output addresses.
6253   this->initialize_input_to_output_maps();
6254
6255   const Relobj::Output_sections& out_sections(this->output_sections());
6256
6257   Relocate_info<32, big_endian> relinfo;
6258   relinfo.symtab = symtab;
6259   relinfo.layout = layout;
6260   relinfo.object = this;
6261
6262   // Do relocation stubs scanning.
6263   const unsigned char* p = pshdrs + shdr_size;
6264   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6265     {
6266       const elfcpp::Shdr<32, big_endian> shdr(p);
6267       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6268                                                   pshdrs))
6269         {
6270           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6271           Arm_address output_offset = this->get_output_section_offset(index);
6272           Arm_address output_address;
6273           if (output_offset != invalid_address)
6274             output_address = out_sections[index]->address() + output_offset;
6275           else
6276             {
6277               // Currently this only happens for a relaxed section.
6278               const Output_relaxed_input_section* poris =
6279               out_sections[index]->find_relaxed_input_section(this, index);
6280               gold_assert(poris != NULL);
6281               output_address = poris->address();
6282             }
6283
6284           // Get the relocations.
6285           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6286                                                         shdr.get_sh_size(),
6287                                                         true, false);
6288
6289           // Get the section contents.  This does work for the case in which
6290           // we modify the contents of an input section.  We need to pass the
6291           // output view under such circumstances.
6292           section_size_type input_view_size = 0;
6293           const unsigned char* input_view =
6294             this->section_contents(index, &input_view_size, false);
6295
6296           relinfo.reloc_shndx = i;
6297           relinfo.data_shndx = index;
6298           unsigned int sh_type = shdr.get_sh_type();
6299           unsigned int reloc_size;
6300           if (sh_type == elfcpp::SHT_REL)
6301             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6302           else
6303             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6304
6305           Output_section* os = out_sections[index];
6306           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6307                                              shdr.get_sh_size() / reloc_size,
6308                                              os,
6309                                              output_offset == invalid_address,
6310                                              input_view, output_address,
6311                                              input_view_size);
6312         }
6313     }
6314
6315   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6316   // after its relocation section, if there is one, is processed for
6317   // relocation stubs.  Merging this loop with the one above would have been
6318   // complicated since we would have had to make sure that relocation stub
6319   // scanning is done first.
6320   if (arm_target->fix_cortex_a8())
6321     {
6322       const unsigned char* p = pshdrs + shdr_size;
6323       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6324         {
6325           const elfcpp::Shdr<32, big_endian> shdr(p);
6326           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6327                                                           out_sections[i],
6328                                                           symtab))
6329             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6330                                                      arm_target);
6331         }
6332     }
6333
6334   // After we've done the relocations, we release the hash tables,
6335   // since we no longer need them.
6336   this->free_input_to_output_maps();
6337 }
6338
6339 // Count the local symbols.  The ARM backend needs to know if a symbol
6340 // is a THUMB function or not.  For global symbols, it is easy because
6341 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6342 // harder because we cannot access this information.   So we override the
6343 // do_count_local_symbol in parent and scan local symbols to mark
6344 // THUMB functions.  This is not the most efficient way but I do not want to
6345 // slow down other ports by calling a per symbol target hook inside
6346 // Sized_relobj_file<size, big_endian>::do_count_local_symbols. 
6347
6348 template<bool big_endian>
6349 void
6350 Arm_relobj<big_endian>::do_count_local_symbols(
6351     Stringpool_template<char>* pool,
6352     Stringpool_template<char>* dynpool)
6353 {
6354   // We need to fix-up the values of any local symbols whose type are
6355   // STT_ARM_TFUNC.
6356   
6357   // Ask parent to count the local symbols.
6358   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6359   const unsigned int loccount = this->local_symbol_count();
6360   if (loccount == 0)
6361     return;
6362
6363   // Initialize the thumb function bit-vector.
6364   std::vector<bool> empty_vector(loccount, false);
6365   this->local_symbol_is_thumb_function_.swap(empty_vector);
6366
6367   // Read the symbol table section header.
6368   const unsigned int symtab_shndx = this->symtab_shndx();
6369   elfcpp::Shdr<32, big_endian>
6370       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6371   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6372
6373   // Read the local symbols.
6374   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6375   gold_assert(loccount == symtabshdr.get_sh_info());
6376   off_t locsize = loccount * sym_size;
6377   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6378                                               locsize, true, true);
6379
6380   // For mapping symbol processing, we need to read the symbol names.
6381   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6382   if (strtab_shndx >= this->shnum())
6383     {
6384       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6385       return;
6386     }
6387
6388   elfcpp::Shdr<32, big_endian>
6389     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6390   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6391     {
6392       this->error(_("symbol table name section has wrong type: %u"),
6393                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6394       return;
6395     }
6396   const char* pnames =
6397     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6398                                                  strtabshdr.get_sh_size(),
6399                                                  false, false));
6400
6401   // Loop over the local symbols and mark any local symbols pointing
6402   // to THUMB functions.
6403
6404   // Skip the first dummy symbol.
6405   psyms += sym_size;
6406   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6407     this->local_values();
6408   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6409     {
6410       elfcpp::Sym<32, big_endian> sym(psyms);
6411       elfcpp::STT st_type = sym.get_st_type();
6412       Symbol_value<32>& lv((*plocal_values)[i]);
6413       Arm_address input_value = lv.input_value();
6414
6415       // Check to see if this is a mapping symbol.
6416       const char* sym_name = pnames + sym.get_st_name();
6417       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6418         {
6419           bool is_ordinary;
6420           unsigned int input_shndx =
6421             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6422           gold_assert(is_ordinary);
6423
6424           // Strip of LSB in case this is a THUMB symbol.
6425           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6426           this->mapping_symbols_info_[msp] = sym_name[1];
6427         }
6428
6429       if (st_type == elfcpp::STT_ARM_TFUNC
6430           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6431         {
6432           // This is a THUMB function.  Mark this and canonicalize the
6433           // symbol value by setting LSB.
6434           this->local_symbol_is_thumb_function_[i] = true;
6435           if ((input_value & 1) == 0)
6436             lv.set_input_value(input_value | 1);
6437         }
6438     }
6439 }
6440
6441 // Relocate sections.
6442 template<bool big_endian>
6443 void
6444 Arm_relobj<big_endian>::do_relocate_sections(
6445     const Symbol_table* symtab,
6446     const Layout* layout,
6447     const unsigned char* pshdrs,
6448     Output_file* of,
6449     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6450 {
6451   // Call parent to relocate sections.
6452   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6453                                                           pshdrs, of, pviews); 
6454
6455   // We do not generate stubs if doing a relocatable link.
6456   if (parameters->options().relocatable())
6457     return;
6458
6459   // Relocate stub tables.
6460   unsigned int shnum = this->shnum();
6461
6462   Target_arm<big_endian>* arm_target =
6463     Target_arm<big_endian>::default_target();
6464
6465   Relocate_info<32, big_endian> relinfo;
6466   relinfo.symtab = symtab;
6467   relinfo.layout = layout;
6468   relinfo.object = this;
6469
6470   for (unsigned int i = 1; i < shnum; ++i)
6471     {
6472       Arm_input_section<big_endian>* arm_input_section =
6473         arm_target->find_arm_input_section(this, i);
6474
6475       if (arm_input_section != NULL
6476           && arm_input_section->is_stub_table_owner()
6477           && !arm_input_section->stub_table()->empty())
6478         {
6479           // We cannot discard a section if it owns a stub table.
6480           Output_section* os = this->output_section(i);
6481           gold_assert(os != NULL);
6482
6483           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6484           relinfo.reloc_shdr = NULL;
6485           relinfo.data_shndx = i;
6486           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6487
6488           gold_assert((*pviews)[i].view != NULL);
6489
6490           // We are passed the output section view.  Adjust it to cover the
6491           // stub table only.
6492           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6493           gold_assert((stub_table->address() >= (*pviews)[i].address)
6494                       && ((stub_table->address() + stub_table->data_size())
6495                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6496
6497           off_t offset = stub_table->address() - (*pviews)[i].address;
6498           unsigned char* view = (*pviews)[i].view + offset;
6499           Arm_address address = stub_table->address();
6500           section_size_type view_size = stub_table->data_size();
6501  
6502           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6503                                      view_size);
6504         }
6505
6506       // Apply Cortex A8 workaround if applicable.
6507       if (this->section_has_cortex_a8_workaround(i))
6508         {
6509           unsigned char* view = (*pviews)[i].view;
6510           Arm_address view_address = (*pviews)[i].address;
6511           section_size_type view_size = (*pviews)[i].view_size;
6512           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6513
6514           // Adjust view to cover section.
6515           Output_section* os = this->output_section(i);
6516           gold_assert(os != NULL);
6517           Arm_address section_address =
6518             this->simple_input_section_output_address(i, os);
6519           uint64_t section_size = this->section_size(i);
6520
6521           gold_assert(section_address >= view_address
6522                       && ((section_address + section_size)
6523                           <= (view_address + view_size)));
6524
6525           unsigned char* section_view = view + (section_address - view_address);
6526
6527           // Apply the Cortex-A8 workaround to the output address range
6528           // corresponding to this input section.
6529           stub_table->apply_cortex_a8_workaround_to_address_range(
6530               arm_target,
6531               section_view,
6532               section_address,
6533               section_size);
6534         }
6535     }
6536 }
6537
6538 // Find the linked text section of an EXIDX section by looking at the first
6539 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6540 // must be linked to its associated code section via the sh_link field of
6541 // its section header.  However, some tools are broken and the link is not
6542 // always set.  LD just drops such an EXIDX section silently, causing the
6543 // associated code not unwindabled.   Here we try a little bit harder to
6544 // discover the linked code section.
6545 //
6546 // PSHDR points to the section header of a relocation section of an EXIDX
6547 // section.  If we can find a linked text section, return true and
6548 // store the text section index in the location PSHNDX.  Otherwise
6549 // return false.
6550
6551 template<bool big_endian>
6552 bool
6553 Arm_relobj<big_endian>::find_linked_text_section(
6554     const unsigned char* pshdr,
6555     const unsigned char* psyms,
6556     unsigned int* pshndx)
6557 {
6558   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6559   
6560   // If there is no relocation, we cannot find the linked text section.
6561   size_t reloc_size;
6562   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6563       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6564   else
6565       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6566   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6567  
6568   // Get the relocations.
6569   const unsigned char* prelocs =
6570       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6571
6572   // Find the REL31 relocation for the first word of the first EXIDX entry.
6573   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6574     {
6575       Arm_address r_offset;
6576       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6577       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6578         {
6579           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6580           r_info = reloc.get_r_info();
6581           r_offset = reloc.get_r_offset();
6582         }
6583       else
6584         {
6585           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6586           r_info = reloc.get_r_info();
6587           r_offset = reloc.get_r_offset();
6588         }
6589
6590       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6591       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6592         continue;
6593
6594       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6595       if (r_sym == 0
6596           || r_sym >= this->local_symbol_count()
6597           || r_offset != 0)
6598         continue;
6599
6600       // This is the relocation for the first word of the first EXIDX entry.
6601       // We expect to see a local section symbol.
6602       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6603       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6604       if (sym.get_st_type() == elfcpp::STT_SECTION)
6605         {
6606           bool is_ordinary;
6607           *pshndx =
6608             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6609           gold_assert(is_ordinary);
6610           return true;
6611         }
6612       else
6613         return false;
6614     }
6615
6616   return false;
6617 }
6618
6619 // Make an EXIDX input section object for an EXIDX section whose index is
6620 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6621 // is the section index of the linked text section.
6622
6623 template<bool big_endian>
6624 void
6625 Arm_relobj<big_endian>::make_exidx_input_section(
6626     unsigned int shndx,
6627     const elfcpp::Shdr<32, big_endian>& shdr,
6628     unsigned int text_shndx,
6629     const elfcpp::Shdr<32, big_endian>& text_shdr)
6630 {
6631   // Create an Arm_exidx_input_section object for this EXIDX section.
6632   Arm_exidx_input_section* exidx_input_section =
6633     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6634                                 shdr.get_sh_addralign(),
6635                                 text_shdr.get_sh_size());
6636
6637   gold_assert(this->exidx_section_map_[shndx] == NULL);
6638   this->exidx_section_map_[shndx] = exidx_input_section;
6639
6640   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6641     {
6642       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6643                  this->section_name(shndx).c_str(), shndx, text_shndx,
6644                  this->name().c_str());
6645       exidx_input_section->set_has_errors();
6646     } 
6647   else if (this->exidx_section_map_[text_shndx] != NULL)
6648     {
6649       unsigned other_exidx_shndx =
6650         this->exidx_section_map_[text_shndx]->shndx();
6651       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6652                    "%s(%u) in %s"),
6653                  this->section_name(shndx).c_str(), shndx,
6654                  this->section_name(other_exidx_shndx).c_str(),
6655                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6656                  text_shndx, this->name().c_str());
6657       exidx_input_section->set_has_errors();
6658     }
6659   else
6660      this->exidx_section_map_[text_shndx] = exidx_input_section;
6661
6662   // Check section flags of text section.
6663   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6664     {
6665       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6666                    " in %s"),
6667                  this->section_name(shndx).c_str(), shndx,
6668                  this->section_name(text_shndx).c_str(), text_shndx,
6669                  this->name().c_str());
6670       exidx_input_section->set_has_errors();
6671     }
6672   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6673     // I would like to make this an error but currently ld just ignores
6674     // this.
6675     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6676                    "%s(%u) in %s"),
6677                  this->section_name(shndx).c_str(), shndx,
6678                  this->section_name(text_shndx).c_str(), text_shndx,
6679                  this->name().c_str());
6680 }
6681
6682 // Read the symbol information.
6683
6684 template<bool big_endian>
6685 void
6686 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6687 {
6688   // Call parent class to read symbol information.
6689   Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6690
6691   // If this input file is a binary file, it has no processor
6692   // specific flags and attributes section.
6693   Input_file::Format format = this->input_file()->format();
6694   if (format != Input_file::FORMAT_ELF)
6695     {
6696       gold_assert(format == Input_file::FORMAT_BINARY);
6697       this->merge_flags_and_attributes_ = false;
6698       return;
6699     }
6700
6701   // Read processor-specific flags in ELF file header.
6702   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6703                                               elfcpp::Elf_sizes<32>::ehdr_size,
6704                                               true, false);
6705   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6706   this->processor_specific_flags_ = ehdr.get_e_flags();
6707
6708   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6709   // sections.
6710   std::vector<unsigned int> deferred_exidx_sections;
6711   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6712   const unsigned char* pshdrs = sd->section_headers->data();
6713   const unsigned char* ps = pshdrs + shdr_size;
6714   bool must_merge_flags_and_attributes = false;
6715   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6716     {
6717       elfcpp::Shdr<32, big_endian> shdr(ps);
6718
6719       // Sometimes an object has no contents except the section name string
6720       // table and an empty symbol table with the undefined symbol.  We
6721       // don't want to merge processor-specific flags from such an object.
6722       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6723         {
6724           // Symbol table is not empty.
6725           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6726              elfcpp::Elf_sizes<32>::sym_size;
6727           if (shdr.get_sh_size() > sym_size)
6728             must_merge_flags_and_attributes = true;
6729         }
6730       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6731         // If this is neither an empty symbol table nor a string table,
6732         // be conservative.
6733         must_merge_flags_and_attributes = true;
6734
6735       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6736         {
6737           gold_assert(this->attributes_section_data_ == NULL);
6738           section_offset_type section_offset = shdr.get_sh_offset();
6739           section_size_type section_size =
6740             convert_to_section_size_type(shdr.get_sh_size());
6741           const unsigned char* view =
6742              this->get_view(section_offset, section_size, true, false);
6743           this->attributes_section_data_ =
6744             new Attributes_section_data(view, section_size);
6745         }
6746       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6747         {
6748           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6749           if (text_shndx == elfcpp::SHN_UNDEF)
6750             deferred_exidx_sections.push_back(i);
6751           else
6752             {
6753               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6754                                                      + text_shndx * shdr_size);
6755               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6756             }
6757           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6758           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6759             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6760                          this->section_name(i).c_str(), this->name().c_str());
6761         }
6762     }
6763
6764   // This is rare.
6765   if (!must_merge_flags_and_attributes)
6766     {
6767       gold_assert(deferred_exidx_sections.empty());
6768       this->merge_flags_and_attributes_ = false;
6769       return;
6770     }
6771
6772   // Some tools are broken and they do not set the link of EXIDX sections. 
6773   // We look at the first relocation to figure out the linked sections.
6774   if (!deferred_exidx_sections.empty())
6775     {
6776       // We need to go over the section headers again to find the mapping
6777       // from sections being relocated to their relocation sections.  This is
6778       // a bit inefficient as we could do that in the loop above.  However,
6779       // we do not expect any deferred EXIDX sections normally.  So we do not
6780       // want to slow down the most common path.
6781       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6782       Reloc_map reloc_map;
6783       ps = pshdrs + shdr_size;
6784       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6785         {
6786           elfcpp::Shdr<32, big_endian> shdr(ps);
6787           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6788           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6789             {
6790               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6791               if (info_shndx >= this->shnum())
6792                 gold_error(_("relocation section %u has invalid info %u"),
6793                            i, info_shndx);
6794               Reloc_map::value_type value(info_shndx, i);
6795               std::pair<Reloc_map::iterator, bool> result =
6796                 reloc_map.insert(value);
6797               if (!result.second)
6798                 gold_error(_("section %u has multiple relocation sections "
6799                              "%u and %u"),
6800                            info_shndx, i, reloc_map[info_shndx]);
6801             }
6802         }
6803
6804       // Read the symbol table section header.
6805       const unsigned int symtab_shndx = this->symtab_shndx();
6806       elfcpp::Shdr<32, big_endian>
6807           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6808       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6809
6810       // Read the local symbols.
6811       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6812       const unsigned int loccount = this->local_symbol_count();
6813       gold_assert(loccount == symtabshdr.get_sh_info());
6814       off_t locsize = loccount * sym_size;
6815       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6816                                                   locsize, true, true);
6817
6818       // Process the deferred EXIDX sections. 
6819       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6820         {
6821           unsigned int shndx = deferred_exidx_sections[i];
6822           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6823           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6824           Reloc_map::const_iterator it = reloc_map.find(shndx);
6825           if (it != reloc_map.end())
6826             find_linked_text_section(pshdrs + it->second * shdr_size,
6827                                      psyms, &text_shndx);
6828           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6829                                                  + text_shndx * shdr_size);
6830           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6831         }
6832     }
6833 }
6834
6835 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6836 // sections for unwinding.  These sections are referenced implicitly by 
6837 // text sections linked in the section headers.  If we ignore these implicit
6838 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6839 // will be garbage-collected incorrectly.  Hence we override the same function
6840 // in the base class to handle these implicit references.
6841
6842 template<bool big_endian>
6843 void
6844 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6845                                              Layout* layout,
6846                                              Read_relocs_data* rd)
6847 {
6848   // First, call base class method to process relocations in this object.
6849   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6850
6851   // If --gc-sections is not specified, there is nothing more to do.
6852   // This happens when --icf is used but --gc-sections is not.
6853   if (!parameters->options().gc_sections())
6854     return;
6855   
6856   unsigned int shnum = this->shnum();
6857   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6858   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6859                                                shnum * shdr_size,
6860                                                true, true);
6861
6862   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6863   // to these from the linked text sections.
6864   const unsigned char* ps = pshdrs + shdr_size;
6865   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6866     {
6867       elfcpp::Shdr<32, big_endian> shdr(ps);
6868       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6869         {
6870           // Found an .ARM.exidx section, add it to the set of reachable
6871           // sections from its linked text section.
6872           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6873           symtab->gc()->add_reference(this, text_shndx, this, i);
6874         }
6875     }
6876 }
6877
6878 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6879 // symbols  will be removed in output.  Adjust output local symbol count
6880 // accordingly.  We can only changed the static output local symbol count.  It
6881 // is too late to change the dynamic symbols.
6882
6883 template<bool big_endian>
6884 void
6885 Arm_relobj<big_endian>::update_output_local_symbol_count()
6886 {
6887   // Caller should check that this needs updating.  We want caller checking
6888   // because output_local_symbol_count_needs_update() is most likely inlined.
6889   gold_assert(this->output_local_symbol_count_needs_update_);
6890
6891   gold_assert(this->symtab_shndx() != -1U);
6892   if (this->symtab_shndx() == 0)
6893     {
6894       // This object has no symbols.  Weird but legal.
6895       return;
6896     }
6897
6898   // Read the symbol table section header.
6899   const unsigned int symtab_shndx = this->symtab_shndx();
6900   elfcpp::Shdr<32, big_endian>
6901     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6902   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6903
6904   // Read the local symbols.
6905   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6906   const unsigned int loccount = this->local_symbol_count();
6907   gold_assert(loccount == symtabshdr.get_sh_info());
6908   off_t locsize = loccount * sym_size;
6909   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6910                                               locsize, true, true);
6911
6912   // Loop over the local symbols.
6913
6914   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6915      Output_sections;
6916   const Output_sections& out_sections(this->output_sections());
6917   unsigned int shnum = this->shnum();
6918   unsigned int count = 0;
6919   // Skip the first, dummy, symbol.
6920   psyms += sym_size;
6921   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6922     {
6923       elfcpp::Sym<32, big_endian> sym(psyms);
6924
6925       Symbol_value<32>& lv((*this->local_values())[i]);
6926
6927       // This local symbol was already discarded by do_count_local_symbols.
6928       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6929         continue;
6930
6931       bool is_ordinary;
6932       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6933                                                   &is_ordinary);
6934
6935       if (shndx < shnum)
6936         {
6937           Output_section* os = out_sections[shndx];
6938
6939           // This local symbol no longer has an output section.  Discard it.
6940           if (os == NULL)
6941             {
6942               lv.set_no_output_symtab_entry();
6943               continue;
6944             }
6945
6946           // Currently we only discard parts of EXIDX input sections.
6947           // We explicitly check for a merged EXIDX input section to avoid
6948           // calling Output_section_data::output_offset unless necessary.
6949           if ((this->get_output_section_offset(shndx) == invalid_address)
6950               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6951             {
6952               section_offset_type output_offset =
6953                 os->output_offset(this, shndx, lv.input_value());
6954               if (output_offset == -1)
6955                 {
6956                   // This symbol is defined in a part of an EXIDX input section
6957                   // that is discarded due to entry merging.
6958                   lv.set_no_output_symtab_entry();
6959                   continue;
6960                 }       
6961             }
6962         }
6963
6964       ++count;
6965     }
6966
6967   this->set_output_local_symbol_count(count);
6968   this->output_local_symbol_count_needs_update_ = false;
6969 }
6970
6971 // Arm_dynobj methods.
6972
6973 // Read the symbol information.
6974
6975 template<bool big_endian>
6976 void
6977 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6978 {
6979   // Call parent class to read symbol information.
6980   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6981
6982   // Read processor-specific flags in ELF file header.
6983   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6984                                               elfcpp::Elf_sizes<32>::ehdr_size,
6985                                               true, false);
6986   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6987   this->processor_specific_flags_ = ehdr.get_e_flags();
6988
6989   // Read the attributes section if there is one.
6990   // We read from the end because gas seems to put it near the end of
6991   // the section headers.
6992   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6993   const unsigned char* ps =
6994     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6995   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6996     {
6997       elfcpp::Shdr<32, big_endian> shdr(ps);
6998       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6999         {
7000           section_offset_type section_offset = shdr.get_sh_offset();
7001           section_size_type section_size =
7002             convert_to_section_size_type(shdr.get_sh_size());
7003           const unsigned char* view =
7004             this->get_view(section_offset, section_size, true, false);
7005           this->attributes_section_data_ =
7006             new Attributes_section_data(view, section_size);
7007           break;
7008         }
7009     }
7010 }
7011
7012 // Stub_addend_reader methods.
7013
7014 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7015
7016 template<bool big_endian>
7017 elfcpp::Elf_types<32>::Elf_Swxword
7018 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7019     unsigned int r_type,
7020     const unsigned char* view,
7021     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7022 {
7023   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7024   
7025   switch (r_type)
7026     {
7027     case elfcpp::R_ARM_CALL:
7028     case elfcpp::R_ARM_JUMP24:
7029     case elfcpp::R_ARM_PLT32:
7030       {
7031         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7032         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7033         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7034         return utils::sign_extend<26>(val << 2);
7035       }
7036
7037     case elfcpp::R_ARM_THM_CALL:
7038     case elfcpp::R_ARM_THM_JUMP24:
7039     case elfcpp::R_ARM_THM_XPC22:
7040       {
7041         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7042         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7043         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7044         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7045         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7046       }
7047
7048     case elfcpp::R_ARM_THM_JUMP19:
7049       {
7050         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7051         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7052         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7053         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7054         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7055       }
7056
7057     default:
7058       gold_unreachable();
7059     }
7060 }
7061
7062 // Arm_output_data_got methods.
7063
7064 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7065 // The first one is initialized to be 1, which is the module index for
7066 // the main executable and the second one 0.  A reloc of the type
7067 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7068 // be applied by gold.  GSYM is a global symbol.
7069 //
7070 template<bool big_endian>
7071 void
7072 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7073     unsigned int got_type,
7074     Symbol* gsym)
7075 {
7076   if (gsym->has_got_offset(got_type))
7077     return;
7078
7079   // We are doing a static link.  Just mark it as belong to module 1,
7080   // the executable.
7081   unsigned int got_offset = this->add_constant(1);
7082   gsym->set_got_offset(got_type, got_offset); 
7083   got_offset = this->add_constant(0);
7084   this->static_relocs_.push_back(Static_reloc(got_offset,
7085                                               elfcpp::R_ARM_TLS_DTPOFF32,
7086                                               gsym));
7087 }
7088
7089 // Same as the above but for a local symbol.
7090
7091 template<bool big_endian>
7092 void
7093 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7094   unsigned int got_type,
7095   Sized_relobj_file<32, big_endian>* object,
7096   unsigned int index)
7097 {
7098   if (object->local_has_got_offset(index, got_type))
7099     return;
7100
7101   // We are doing a static link.  Just mark it as belong to module 1,
7102   // the executable.
7103   unsigned int got_offset = this->add_constant(1);
7104   object->set_local_got_offset(index, got_type, got_offset);
7105   got_offset = this->add_constant(0);
7106   this->static_relocs_.push_back(Static_reloc(got_offset, 
7107                                               elfcpp::R_ARM_TLS_DTPOFF32, 
7108                                               object, index));
7109 }
7110
7111 template<bool big_endian>
7112 void
7113 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7114 {
7115   // Call parent to write out GOT.
7116   Output_data_got<32, big_endian>::do_write(of);
7117
7118   // We are done if there is no fix up.
7119   if (this->static_relocs_.empty())
7120     return;
7121
7122   gold_assert(parameters->doing_static_link());
7123
7124   const off_t offset = this->offset();
7125   const section_size_type oview_size =
7126     convert_to_section_size_type(this->data_size());
7127   unsigned char* const oview = of->get_output_view(offset, oview_size);
7128
7129   Output_segment* tls_segment = this->layout_->tls_segment();
7130   gold_assert(tls_segment != NULL);
7131   
7132   // The thread pointer $tp points to the TCB, which is followed by the
7133   // TLS.  So we need to adjust $tp relative addressing by this amount.
7134   Arm_address aligned_tcb_size =
7135     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7136
7137   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7138     {
7139       Static_reloc& reloc(this->static_relocs_[i]);
7140       
7141       Arm_address value;
7142       if (!reloc.symbol_is_global())
7143         {
7144           Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7145           const Symbol_value<32>* psymval =
7146             reloc.relobj()->local_symbol(reloc.index());
7147
7148           // We are doing static linking.  Issue an error and skip this
7149           // relocation if the symbol is undefined or in a discarded_section.
7150           bool is_ordinary;
7151           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7152           if ((shndx == elfcpp::SHN_UNDEF)
7153               || (is_ordinary
7154                   && shndx != elfcpp::SHN_UNDEF
7155                   && !object->is_section_included(shndx)
7156                   && !this->symbol_table_->is_section_folded(object, shndx)))
7157             {
7158               gold_error(_("undefined or discarded local symbol %u from "
7159                            " object %s in GOT"),
7160                          reloc.index(), reloc.relobj()->name().c_str());
7161               continue;
7162             }
7163           
7164           value = psymval->value(object, 0);
7165         }
7166       else
7167         {
7168           const Symbol* gsym = reloc.symbol();
7169           gold_assert(gsym != NULL);
7170           if (gsym->is_forwarder())
7171             gsym = this->symbol_table_->resolve_forwards(gsym);
7172
7173           // We are doing static linking.  Issue an error and skip this
7174           // relocation if the symbol is undefined or in a discarded_section
7175           // unless it is a weakly_undefined symbol.
7176           if ((gsym->is_defined_in_discarded_section()
7177                || gsym->is_undefined())
7178               && !gsym->is_weak_undefined())
7179             {
7180               gold_error(_("undefined or discarded symbol %s in GOT"),
7181                          gsym->name());
7182               continue;
7183             }
7184
7185           if (!gsym->is_weak_undefined())
7186             {
7187               const Sized_symbol<32>* sym =
7188                 static_cast<const Sized_symbol<32>*>(gsym);
7189               value = sym->value();
7190             }
7191           else
7192               value = 0;
7193         }
7194
7195       unsigned got_offset = reloc.got_offset();
7196       gold_assert(got_offset < oview_size);
7197
7198       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7199       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7200       Valtype x;
7201       switch (reloc.r_type())
7202         {
7203         case elfcpp::R_ARM_TLS_DTPOFF32:
7204           x = value;
7205           break;
7206         case elfcpp::R_ARM_TLS_TPOFF32:
7207           x = value + aligned_tcb_size;
7208           break;
7209         default:
7210           gold_unreachable();
7211         }
7212       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7213     }
7214
7215   of->write_output_view(offset, oview_size, oview);
7216 }
7217
7218 // A class to handle the PLT data.
7219
7220 template<bool big_endian>
7221 class Output_data_plt_arm : public Output_section_data
7222 {
7223  public:
7224   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7225     Reloc_section;
7226
7227   Output_data_plt_arm(Layout*, Output_data_space*);
7228
7229   // Add an entry to the PLT.
7230   void
7231   add_entry(Symbol* gsym);
7232
7233   // Return the .rel.plt section data.
7234   const Reloc_section*
7235   rel_plt() const
7236   { return this->rel_; }
7237
7238   // Return the number of PLT entries.
7239   unsigned int
7240   entry_count() const
7241   { return this->count_; }
7242
7243   // Return the offset of the first non-reserved PLT entry.
7244   static unsigned int
7245   first_plt_entry_offset()
7246   { return sizeof(first_plt_entry); }
7247
7248   // Return the size of a PLT entry.
7249   static unsigned int
7250   get_plt_entry_size()
7251   { return sizeof(plt_entry); }
7252
7253  protected:
7254   void
7255   do_adjust_output_section(Output_section* os);
7256
7257   // Write to a map file.
7258   void
7259   do_print_to_mapfile(Mapfile* mapfile) const
7260   { mapfile->print_output_data(this, _("** PLT")); }
7261
7262  private:
7263   // Template for the first PLT entry.
7264   static const uint32_t first_plt_entry[5];
7265
7266   // Template for subsequent PLT entries. 
7267   static const uint32_t plt_entry[3];
7268
7269   // Set the final size.
7270   void
7271   set_final_data_size()
7272   {
7273     this->set_data_size(sizeof(first_plt_entry)
7274                         + this->count_ * sizeof(plt_entry));
7275   }
7276
7277   // Write out the PLT data.
7278   void
7279   do_write(Output_file*);
7280
7281   // The reloc section.
7282   Reloc_section* rel_;
7283   // The .got.plt section.
7284   Output_data_space* got_plt_;
7285   // The number of PLT entries.
7286   unsigned int count_;
7287 };
7288
7289 // Create the PLT section.  The ordinary .got section is an argument,
7290 // since we need to refer to the start.  We also create our own .got
7291 // section just for PLT entries.
7292
7293 template<bool big_endian>
7294 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7295                                                      Output_data_space* got_plt)
7296   : Output_section_data(4), got_plt_(got_plt), count_(0)
7297 {
7298   this->rel_ = new Reloc_section(false);
7299   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7300                                   elfcpp::SHF_ALLOC, this->rel_,
7301                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7302 }
7303
7304 template<bool big_endian>
7305 void
7306 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7307 {
7308   os->set_entsize(0);
7309 }
7310
7311 // Add an entry to the PLT.
7312
7313 template<bool big_endian>
7314 void
7315 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7316 {
7317   gold_assert(!gsym->has_plt_offset());
7318
7319   // Note that when setting the PLT offset we skip the initial
7320   // reserved PLT entry.
7321   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7322                        + sizeof(first_plt_entry));
7323
7324   ++this->count_;
7325
7326   section_offset_type got_offset = this->got_plt_->current_data_size();
7327
7328   // Every PLT entry needs a GOT entry which points back to the PLT
7329   // entry (this will be changed by the dynamic linker, normally
7330   // lazily when the function is called).
7331   this->got_plt_->set_current_data_size(got_offset + 4);
7332
7333   // Every PLT entry needs a reloc.
7334   gsym->set_needs_dynsym_entry();
7335   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7336                          got_offset);
7337
7338   // Note that we don't need to save the symbol.  The contents of the
7339   // PLT are independent of which symbols are used.  The symbols only
7340   // appear in the relocations.
7341 }
7342
7343 // ARM PLTs.
7344 // FIXME:  This is not very flexible.  Right now this has only been tested
7345 // on armv5te.  If we are to support additional architecture features like
7346 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7347
7348 // The first entry in the PLT.
7349 template<bool big_endian>
7350 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7351 {
7352   0xe52de004,   // str   lr, [sp, #-4]!
7353   0xe59fe004,   // ldr   lr, [pc, #4]
7354   0xe08fe00e,   // add   lr, pc, lr 
7355   0xe5bef008,   // ldr   pc, [lr, #8]!
7356   0x00000000,   // &GOT[0] - .
7357 };
7358
7359 // Subsequent entries in the PLT.
7360
7361 template<bool big_endian>
7362 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7363 {
7364   0xe28fc600,   // add   ip, pc, #0xNN00000
7365   0xe28cca00,   // add   ip, ip, #0xNN000
7366   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7367 };
7368
7369 // Write out the PLT.  This uses the hand-coded instructions above,
7370 // and adjusts them as needed.  This is all specified by the arm ELF
7371 // Processor Supplement.
7372
7373 template<bool big_endian>
7374 void
7375 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7376 {
7377   const off_t offset = this->offset();
7378   const section_size_type oview_size =
7379     convert_to_section_size_type(this->data_size());
7380   unsigned char* const oview = of->get_output_view(offset, oview_size);
7381
7382   const off_t got_file_offset = this->got_plt_->offset();
7383   const section_size_type got_size =
7384     convert_to_section_size_type(this->got_plt_->data_size());
7385   unsigned char* const got_view = of->get_output_view(got_file_offset,
7386                                                       got_size);
7387   unsigned char* pov = oview;
7388
7389   Arm_address plt_address = this->address();
7390   Arm_address got_address = this->got_plt_->address();
7391
7392   // Write first PLT entry.  All but the last word are constants.
7393   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7394                                       / sizeof(plt_entry[0]));
7395   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7396     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7397   // Last word in first PLT entry is &GOT[0] - .
7398   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7399                                          got_address - (plt_address + 16));
7400   pov += sizeof(first_plt_entry);
7401
7402   unsigned char* got_pov = got_view;
7403
7404   memset(got_pov, 0, 12);
7405   got_pov += 12;
7406
7407   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7408   unsigned int plt_offset = sizeof(first_plt_entry);
7409   unsigned int plt_rel_offset = 0;
7410   unsigned int got_offset = 12;
7411   const unsigned int count = this->count_;
7412   for (unsigned int i = 0;
7413        i < count;
7414        ++i,
7415          pov += sizeof(plt_entry),
7416          got_pov += 4,
7417          plt_offset += sizeof(plt_entry),
7418          plt_rel_offset += rel_size,
7419          got_offset += 4)
7420     {
7421       // Set and adjust the PLT entry itself.
7422       int32_t offset = ((got_address + got_offset)
7423                          - (plt_address + plt_offset + 8));
7424
7425       gold_assert(offset >= 0 && offset < 0x0fffffff);
7426       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7427       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7428       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7429       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7430       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7431       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7432
7433       // Set the entry in the GOT.
7434       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7435     }
7436
7437   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7438   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7439
7440   of->write_output_view(offset, oview_size, oview);
7441   of->write_output_view(got_file_offset, got_size, got_view);
7442 }
7443
7444 // Create a PLT entry for a global symbol.
7445
7446 template<bool big_endian>
7447 void
7448 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7449                                        Symbol* gsym)
7450 {
7451   if (gsym->has_plt_offset())
7452     return;
7453
7454   if (this->plt_ == NULL)
7455     {
7456       // Create the GOT sections first.
7457       this->got_section(symtab, layout);
7458
7459       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7460       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7461                                       (elfcpp::SHF_ALLOC
7462                                        | elfcpp::SHF_EXECINSTR),
7463                                       this->plt_, ORDER_PLT, false);
7464     }
7465   this->plt_->add_entry(gsym);
7466 }
7467
7468 // Return the number of entries in the PLT.
7469
7470 template<bool big_endian>
7471 unsigned int
7472 Target_arm<big_endian>::plt_entry_count() const
7473 {
7474   if (this->plt_ == NULL)
7475     return 0;
7476   return this->plt_->entry_count();
7477 }
7478
7479 // Return the offset of the first non-reserved PLT entry.
7480
7481 template<bool big_endian>
7482 unsigned int
7483 Target_arm<big_endian>::first_plt_entry_offset() const
7484 {
7485   return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7486 }
7487
7488 // Return the size of each PLT entry.
7489
7490 template<bool big_endian>
7491 unsigned int
7492 Target_arm<big_endian>::plt_entry_size() const
7493 {
7494   return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7495 }
7496
7497 // Get the section to use for TLS_DESC relocations.
7498
7499 template<bool big_endian>
7500 typename Target_arm<big_endian>::Reloc_section*
7501 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7502 {
7503   return this->plt_section()->rel_tls_desc(layout);
7504 }
7505
7506 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7507
7508 template<bool big_endian>
7509 void
7510 Target_arm<big_endian>::define_tls_base_symbol(
7511     Symbol_table* symtab,
7512     Layout* layout)
7513 {
7514   if (this->tls_base_symbol_defined_)
7515     return;
7516
7517   Output_segment* tls_segment = layout->tls_segment();
7518   if (tls_segment != NULL)
7519     {
7520       bool is_exec = parameters->options().output_is_executable();
7521       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7522                                        Symbol_table::PREDEFINED,
7523                                        tls_segment, 0, 0,
7524                                        elfcpp::STT_TLS,
7525                                        elfcpp::STB_LOCAL,
7526                                        elfcpp::STV_HIDDEN, 0,
7527                                        (is_exec
7528                                         ? Symbol::SEGMENT_END
7529                                         : Symbol::SEGMENT_START),
7530                                        true);
7531     }
7532   this->tls_base_symbol_defined_ = true;
7533 }
7534
7535 // Create a GOT entry for the TLS module index.
7536
7537 template<bool big_endian>
7538 unsigned int
7539 Target_arm<big_endian>::got_mod_index_entry(
7540     Symbol_table* symtab,
7541     Layout* layout,
7542     Sized_relobj_file<32, big_endian>* object)
7543 {
7544   if (this->got_mod_index_offset_ == -1U)
7545     {
7546       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7547       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7548       unsigned int got_offset;
7549       if (!parameters->doing_static_link())
7550         {
7551           got_offset = got->add_constant(0);
7552           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7553           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7554                              got_offset);
7555         }
7556       else
7557         {
7558           // We are doing a static link.  Just mark it as belong to module 1,
7559           // the executable.
7560           got_offset = got->add_constant(1);
7561         }
7562
7563       got->add_constant(0);
7564       this->got_mod_index_offset_ = got_offset;
7565     }
7566   return this->got_mod_index_offset_;
7567 }
7568
7569 // Optimize the TLS relocation type based on what we know about the
7570 // symbol.  IS_FINAL is true if the final address of this symbol is
7571 // known at link time.
7572
7573 template<bool big_endian>
7574 tls::Tls_optimization
7575 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7576 {
7577   // FIXME: Currently we do not do any TLS optimization.
7578   return tls::TLSOPT_NONE;
7579 }
7580
7581 // Get the Reference_flags for a particular relocation.
7582
7583 template<bool big_endian>
7584 int
7585 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7586 {
7587   switch (r_type)
7588     {
7589     case elfcpp::R_ARM_NONE:
7590     case elfcpp::R_ARM_V4BX:
7591     case elfcpp::R_ARM_GNU_VTENTRY:
7592     case elfcpp::R_ARM_GNU_VTINHERIT:
7593       // No symbol reference.
7594       return 0;
7595
7596     case elfcpp::R_ARM_ABS32:
7597     case elfcpp::R_ARM_ABS16:
7598     case elfcpp::R_ARM_ABS12:
7599     case elfcpp::R_ARM_THM_ABS5:
7600     case elfcpp::R_ARM_ABS8:
7601     case elfcpp::R_ARM_BASE_ABS:
7602     case elfcpp::R_ARM_MOVW_ABS_NC:
7603     case elfcpp::R_ARM_MOVT_ABS:
7604     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7605     case elfcpp::R_ARM_THM_MOVT_ABS:
7606     case elfcpp::R_ARM_ABS32_NOI:
7607       return Symbol::ABSOLUTE_REF;
7608
7609     case elfcpp::R_ARM_REL32:
7610     case elfcpp::R_ARM_LDR_PC_G0:
7611     case elfcpp::R_ARM_SBREL32:
7612     case elfcpp::R_ARM_THM_PC8:
7613     case elfcpp::R_ARM_BASE_PREL:
7614     case elfcpp::R_ARM_MOVW_PREL_NC:
7615     case elfcpp::R_ARM_MOVT_PREL:
7616     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7617     case elfcpp::R_ARM_THM_MOVT_PREL:
7618     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7619     case elfcpp::R_ARM_THM_PC12:
7620     case elfcpp::R_ARM_REL32_NOI:
7621     case elfcpp::R_ARM_ALU_PC_G0_NC:
7622     case elfcpp::R_ARM_ALU_PC_G0:
7623     case elfcpp::R_ARM_ALU_PC_G1_NC:
7624     case elfcpp::R_ARM_ALU_PC_G1:
7625     case elfcpp::R_ARM_ALU_PC_G2:
7626     case elfcpp::R_ARM_LDR_PC_G1:
7627     case elfcpp::R_ARM_LDR_PC_G2:
7628     case elfcpp::R_ARM_LDRS_PC_G0:
7629     case elfcpp::R_ARM_LDRS_PC_G1:
7630     case elfcpp::R_ARM_LDRS_PC_G2:
7631     case elfcpp::R_ARM_LDC_PC_G0:
7632     case elfcpp::R_ARM_LDC_PC_G1:
7633     case elfcpp::R_ARM_LDC_PC_G2:
7634     case elfcpp::R_ARM_ALU_SB_G0_NC:
7635     case elfcpp::R_ARM_ALU_SB_G0:
7636     case elfcpp::R_ARM_ALU_SB_G1_NC:
7637     case elfcpp::R_ARM_ALU_SB_G1:
7638     case elfcpp::R_ARM_ALU_SB_G2:
7639     case elfcpp::R_ARM_LDR_SB_G0:
7640     case elfcpp::R_ARM_LDR_SB_G1:
7641     case elfcpp::R_ARM_LDR_SB_G2:
7642     case elfcpp::R_ARM_LDRS_SB_G0:
7643     case elfcpp::R_ARM_LDRS_SB_G1:
7644     case elfcpp::R_ARM_LDRS_SB_G2:
7645     case elfcpp::R_ARM_LDC_SB_G0:
7646     case elfcpp::R_ARM_LDC_SB_G1:
7647     case elfcpp::R_ARM_LDC_SB_G2:
7648     case elfcpp::R_ARM_MOVW_BREL_NC:
7649     case elfcpp::R_ARM_MOVT_BREL:
7650     case elfcpp::R_ARM_MOVW_BREL:
7651     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7652     case elfcpp::R_ARM_THM_MOVT_BREL:
7653     case elfcpp::R_ARM_THM_MOVW_BREL:
7654     case elfcpp::R_ARM_GOTOFF32:
7655     case elfcpp::R_ARM_GOTOFF12:
7656     case elfcpp::R_ARM_SBREL31:
7657       return Symbol::RELATIVE_REF;
7658
7659     case elfcpp::R_ARM_PLT32:
7660     case elfcpp::R_ARM_CALL:
7661     case elfcpp::R_ARM_JUMP24:
7662     case elfcpp::R_ARM_THM_CALL:
7663     case elfcpp::R_ARM_THM_JUMP24:
7664     case elfcpp::R_ARM_THM_JUMP19:
7665     case elfcpp::R_ARM_THM_JUMP6:
7666     case elfcpp::R_ARM_THM_JUMP11:
7667     case elfcpp::R_ARM_THM_JUMP8:
7668     // R_ARM_PREL31 is not used to relocate call/jump instructions but
7669     // in unwind tables. It may point to functions via PLTs.
7670     // So we treat it like call/jump relocations above.
7671     case elfcpp::R_ARM_PREL31:
7672       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7673
7674     case elfcpp::R_ARM_GOT_BREL:
7675     case elfcpp::R_ARM_GOT_ABS:
7676     case elfcpp::R_ARM_GOT_PREL:
7677       // Absolute in GOT.
7678       return Symbol::ABSOLUTE_REF;
7679
7680     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7681     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7682     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7683     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7684     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7685       return Symbol::TLS_REF;
7686
7687     case elfcpp::R_ARM_TARGET1:
7688     case elfcpp::R_ARM_TARGET2:
7689     case elfcpp::R_ARM_COPY:
7690     case elfcpp::R_ARM_GLOB_DAT:
7691     case elfcpp::R_ARM_JUMP_SLOT:
7692     case elfcpp::R_ARM_RELATIVE:
7693     case elfcpp::R_ARM_PC24:
7694     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7695     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7696     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7697     default:
7698       // Not expected.  We will give an error later.
7699       return 0;
7700     }
7701 }
7702
7703 // Report an unsupported relocation against a local symbol.
7704
7705 template<bool big_endian>
7706 void
7707 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7708     Sized_relobj_file<32, big_endian>* object,
7709     unsigned int r_type)
7710 {
7711   gold_error(_("%s: unsupported reloc %u against local symbol"),
7712              object->name().c_str(), r_type);
7713 }
7714
7715 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7716 // dynamic linker does not support it, issue an error.  The GNU linker
7717 // only issues a non-PIC error for an allocated read-only section.
7718 // Here we know the section is allocated, but we don't know that it is
7719 // read-only.  But we check for all the relocation types which the
7720 // glibc dynamic linker supports, so it seems appropriate to issue an
7721 // error even if the section is not read-only.
7722
7723 template<bool big_endian>
7724 void
7725 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7726                                             unsigned int r_type)
7727 {
7728   switch (r_type)
7729     {
7730     // These are the relocation types supported by glibc for ARM.
7731     case elfcpp::R_ARM_RELATIVE:
7732     case elfcpp::R_ARM_COPY:
7733     case elfcpp::R_ARM_GLOB_DAT:
7734     case elfcpp::R_ARM_JUMP_SLOT:
7735     case elfcpp::R_ARM_ABS32:
7736     case elfcpp::R_ARM_ABS32_NOI:
7737     case elfcpp::R_ARM_PC24:
7738     // FIXME: The following 3 types are not supported by Android's dynamic
7739     // linker.
7740     case elfcpp::R_ARM_TLS_DTPMOD32:
7741     case elfcpp::R_ARM_TLS_DTPOFF32:
7742     case elfcpp::R_ARM_TLS_TPOFF32:
7743       return;
7744
7745     default:
7746       {
7747         // This prevents us from issuing more than one error per reloc
7748         // section.  But we can still wind up issuing more than one
7749         // error per object file.
7750         if (this->issued_non_pic_error_)
7751           return;
7752         const Arm_reloc_property* reloc_property =
7753           arm_reloc_property_table->get_reloc_property(r_type);
7754         gold_assert(reloc_property != NULL);
7755         object->error(_("requires unsupported dynamic reloc %s; "
7756                       "recompile with -fPIC"),
7757                       reloc_property->name().c_str());
7758         this->issued_non_pic_error_ = true;
7759         return;
7760       }
7761
7762     case elfcpp::R_ARM_NONE:
7763       gold_unreachable();
7764     }
7765 }
7766
7767 // Scan a relocation for a local symbol.
7768 // FIXME: This only handles a subset of relocation types used by Android
7769 // on ARM v5te devices.
7770
7771 template<bool big_endian>
7772 inline void
7773 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7774                                     Layout* layout,
7775                                     Target_arm* target,
7776                                     Sized_relobj_file<32, big_endian>* object,
7777                                     unsigned int data_shndx,
7778                                     Output_section* output_section,
7779                                     const elfcpp::Rel<32, big_endian>& reloc,
7780                                     unsigned int r_type,
7781                                     const elfcpp::Sym<32, big_endian>& lsym)
7782 {
7783   r_type = get_real_reloc_type(r_type);
7784   switch (r_type)
7785     {
7786     case elfcpp::R_ARM_NONE:
7787     case elfcpp::R_ARM_V4BX:
7788     case elfcpp::R_ARM_GNU_VTENTRY:
7789     case elfcpp::R_ARM_GNU_VTINHERIT:
7790       break;
7791
7792     case elfcpp::R_ARM_ABS32:
7793     case elfcpp::R_ARM_ABS32_NOI:
7794       // If building a shared library (or a position-independent
7795       // executable), we need to create a dynamic relocation for
7796       // this location. The relocation applied at link time will
7797       // apply the link-time value, so we flag the location with
7798       // an R_ARM_RELATIVE relocation so the dynamic loader can
7799       // relocate it easily.
7800       if (parameters->options().output_is_position_independent())
7801         {
7802           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7803           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7804           // If we are to add more other reloc types than R_ARM_ABS32,
7805           // we need to add check_non_pic(object, r_type) here.
7806           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7807                                       output_section, data_shndx,
7808                                       reloc.get_r_offset());
7809         }
7810       break;
7811
7812     case elfcpp::R_ARM_ABS16:
7813     case elfcpp::R_ARM_ABS12:
7814     case elfcpp::R_ARM_THM_ABS5:
7815     case elfcpp::R_ARM_ABS8:
7816     case elfcpp::R_ARM_BASE_ABS:
7817     case elfcpp::R_ARM_MOVW_ABS_NC:
7818     case elfcpp::R_ARM_MOVT_ABS:
7819     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7820     case elfcpp::R_ARM_THM_MOVT_ABS:
7821       // If building a shared library (or a position-independent
7822       // executable), we need to create a dynamic relocation for
7823       // this location. Because the addend needs to remain in the
7824       // data section, we need to be careful not to apply this
7825       // relocation statically.
7826       if (parameters->options().output_is_position_independent())
7827         {
7828           check_non_pic(object, r_type);
7829           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7830           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7831           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7832             rel_dyn->add_local(object, r_sym, r_type, output_section,
7833                                data_shndx, reloc.get_r_offset());
7834           else
7835             {
7836               gold_assert(lsym.get_st_value() == 0);
7837               unsigned int shndx = lsym.get_st_shndx();
7838               bool is_ordinary;
7839               shndx = object->adjust_sym_shndx(r_sym, shndx,
7840                                                &is_ordinary);
7841               if (!is_ordinary)
7842                 object->error(_("section symbol %u has bad shndx %u"),
7843                               r_sym, shndx);
7844               else
7845                 rel_dyn->add_local_section(object, shndx,
7846                                            r_type, output_section,
7847                                            data_shndx, reloc.get_r_offset());
7848             }
7849         }
7850       break;
7851
7852     case elfcpp::R_ARM_REL32:
7853     case elfcpp::R_ARM_LDR_PC_G0:
7854     case elfcpp::R_ARM_SBREL32:
7855     case elfcpp::R_ARM_THM_CALL:
7856     case elfcpp::R_ARM_THM_PC8:
7857     case elfcpp::R_ARM_BASE_PREL:
7858     case elfcpp::R_ARM_PLT32:
7859     case elfcpp::R_ARM_CALL:
7860     case elfcpp::R_ARM_JUMP24:
7861     case elfcpp::R_ARM_THM_JUMP24:
7862     case elfcpp::R_ARM_SBREL31:
7863     case elfcpp::R_ARM_PREL31:
7864     case elfcpp::R_ARM_MOVW_PREL_NC:
7865     case elfcpp::R_ARM_MOVT_PREL:
7866     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7867     case elfcpp::R_ARM_THM_MOVT_PREL:
7868     case elfcpp::R_ARM_THM_JUMP19:
7869     case elfcpp::R_ARM_THM_JUMP6:
7870     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7871     case elfcpp::R_ARM_THM_PC12:
7872     case elfcpp::R_ARM_REL32_NOI:
7873     case elfcpp::R_ARM_ALU_PC_G0_NC:
7874     case elfcpp::R_ARM_ALU_PC_G0:
7875     case elfcpp::R_ARM_ALU_PC_G1_NC:
7876     case elfcpp::R_ARM_ALU_PC_G1:
7877     case elfcpp::R_ARM_ALU_PC_G2:
7878     case elfcpp::R_ARM_LDR_PC_G1:
7879     case elfcpp::R_ARM_LDR_PC_G2:
7880     case elfcpp::R_ARM_LDRS_PC_G0:
7881     case elfcpp::R_ARM_LDRS_PC_G1:
7882     case elfcpp::R_ARM_LDRS_PC_G2:
7883     case elfcpp::R_ARM_LDC_PC_G0:
7884     case elfcpp::R_ARM_LDC_PC_G1:
7885     case elfcpp::R_ARM_LDC_PC_G2:
7886     case elfcpp::R_ARM_ALU_SB_G0_NC:
7887     case elfcpp::R_ARM_ALU_SB_G0:
7888     case elfcpp::R_ARM_ALU_SB_G1_NC:
7889     case elfcpp::R_ARM_ALU_SB_G1:
7890     case elfcpp::R_ARM_ALU_SB_G2:
7891     case elfcpp::R_ARM_LDR_SB_G0:
7892     case elfcpp::R_ARM_LDR_SB_G1:
7893     case elfcpp::R_ARM_LDR_SB_G2:
7894     case elfcpp::R_ARM_LDRS_SB_G0:
7895     case elfcpp::R_ARM_LDRS_SB_G1:
7896     case elfcpp::R_ARM_LDRS_SB_G2:
7897     case elfcpp::R_ARM_LDC_SB_G0:
7898     case elfcpp::R_ARM_LDC_SB_G1:
7899     case elfcpp::R_ARM_LDC_SB_G2:
7900     case elfcpp::R_ARM_MOVW_BREL_NC:
7901     case elfcpp::R_ARM_MOVT_BREL:
7902     case elfcpp::R_ARM_MOVW_BREL:
7903     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7904     case elfcpp::R_ARM_THM_MOVT_BREL:
7905     case elfcpp::R_ARM_THM_MOVW_BREL:
7906     case elfcpp::R_ARM_THM_JUMP11:
7907     case elfcpp::R_ARM_THM_JUMP8:
7908       // We don't need to do anything for a relative addressing relocation
7909       // against a local symbol if it does not reference the GOT.
7910       break;
7911
7912     case elfcpp::R_ARM_GOTOFF32:
7913     case elfcpp::R_ARM_GOTOFF12:
7914       // We need a GOT section:
7915       target->got_section(symtab, layout);
7916       break;
7917
7918     case elfcpp::R_ARM_GOT_BREL:
7919     case elfcpp::R_ARM_GOT_PREL:
7920       {
7921         // The symbol requires a GOT entry.
7922         Arm_output_data_got<big_endian>* got =
7923           target->got_section(symtab, layout);
7924         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7925         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7926           {
7927             // If we are generating a shared object, we need to add a
7928             // dynamic RELATIVE relocation for this symbol's GOT entry.
7929             if (parameters->options().output_is_position_independent())
7930               {
7931                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7932                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7933                 rel_dyn->add_local_relative(
7934                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7935                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7936               }
7937           }
7938       }
7939       break;
7940
7941     case elfcpp::R_ARM_TARGET1:
7942     case elfcpp::R_ARM_TARGET2:
7943       // This should have been mapped to another type already.
7944       // Fall through.
7945     case elfcpp::R_ARM_COPY:
7946     case elfcpp::R_ARM_GLOB_DAT:
7947     case elfcpp::R_ARM_JUMP_SLOT:
7948     case elfcpp::R_ARM_RELATIVE:
7949       // These are relocations which should only be seen by the
7950       // dynamic linker, and should never be seen here.
7951       gold_error(_("%s: unexpected reloc %u in object file"),
7952                  object->name().c_str(), r_type);
7953       break;
7954
7955
7956       // These are initial TLS relocs, which are expected when
7957       // linking.
7958     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7959     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7960     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7961     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7962     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7963       {
7964         bool output_is_shared = parameters->options().shared();
7965         const tls::Tls_optimization optimized_type
7966             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7967                                                          r_type);
7968         switch (r_type)
7969           {
7970           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7971             if (optimized_type == tls::TLSOPT_NONE)
7972               {
7973                 // Create a pair of GOT entries for the module index and
7974                 // dtv-relative offset.
7975                 Arm_output_data_got<big_endian>* got
7976                     = target->got_section(symtab, layout);
7977                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7978                 unsigned int shndx = lsym.get_st_shndx();
7979                 bool is_ordinary;
7980                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7981                 if (!is_ordinary)
7982                   {
7983                     object->error(_("local symbol %u has bad shndx %u"),
7984                                   r_sym, shndx);
7985                     break;
7986                   }
7987
7988                 if (!parameters->doing_static_link())
7989                   got->add_local_pair_with_rel(object, r_sym, shndx,
7990                                                GOT_TYPE_TLS_PAIR,
7991                                                target->rel_dyn_section(layout),
7992                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7993                 else
7994                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7995                                                       object, r_sym);
7996               }
7997             else
7998               // FIXME: TLS optimization not supported yet.
7999               gold_unreachable();
8000             break;
8001
8002           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8003             if (optimized_type == tls::TLSOPT_NONE)
8004               {
8005                 // Create a GOT entry for the module index.
8006                 target->got_mod_index_entry(symtab, layout, object);
8007               }
8008             else
8009               // FIXME: TLS optimization not supported yet.
8010               gold_unreachable();
8011             break;
8012
8013           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8014             break;
8015
8016           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8017             layout->set_has_static_tls();
8018             if (optimized_type == tls::TLSOPT_NONE)
8019               {
8020                 // Create a GOT entry for the tp-relative offset.
8021                 Arm_output_data_got<big_endian>* got
8022                   = target->got_section(symtab, layout);
8023                 unsigned int r_sym =
8024                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
8025                 if (!parameters->doing_static_link())
8026                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8027                                             target->rel_dyn_section(layout),
8028                                             elfcpp::R_ARM_TLS_TPOFF32);
8029                 else if (!object->local_has_got_offset(r_sym,
8030                                                        GOT_TYPE_TLS_OFFSET))
8031                   {
8032                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8033                     unsigned int got_offset =
8034                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8035                     got->add_static_reloc(got_offset,
8036                                           elfcpp::R_ARM_TLS_TPOFF32, object,
8037                                           r_sym);
8038                   }
8039               }
8040             else
8041               // FIXME: TLS optimization not supported yet.
8042               gold_unreachable();
8043             break;
8044
8045           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8046             layout->set_has_static_tls();
8047             if (output_is_shared)
8048               {
8049                 // We need to create a dynamic relocation.
8050                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8051                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8052                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8053                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8054                                    output_section, data_shndx,
8055                                    reloc.get_r_offset());
8056               }
8057             break;
8058
8059           default:
8060             gold_unreachable();
8061           }
8062       }
8063       break;
8064
8065     case elfcpp::R_ARM_PC24:
8066     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8067     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8068     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8069     default:
8070       unsupported_reloc_local(object, r_type);
8071       break;
8072     }
8073 }
8074
8075 // Report an unsupported relocation against a global symbol.
8076
8077 template<bool big_endian>
8078 void
8079 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8080     Sized_relobj_file<32, big_endian>* object,
8081     unsigned int r_type,
8082     Symbol* gsym)
8083 {
8084   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8085              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8086 }
8087
8088 template<bool big_endian>
8089 inline bool
8090 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8091     unsigned int r_type)
8092 {
8093   switch (r_type)
8094     {
8095     case elfcpp::R_ARM_PC24:
8096     case elfcpp::R_ARM_THM_CALL:
8097     case elfcpp::R_ARM_PLT32:
8098     case elfcpp::R_ARM_CALL:
8099     case elfcpp::R_ARM_JUMP24:
8100     case elfcpp::R_ARM_THM_JUMP24:
8101     case elfcpp::R_ARM_SBREL31:
8102     case elfcpp::R_ARM_PREL31:
8103     case elfcpp::R_ARM_THM_JUMP19:
8104     case elfcpp::R_ARM_THM_JUMP6:
8105     case elfcpp::R_ARM_THM_JUMP11:
8106     case elfcpp::R_ARM_THM_JUMP8:
8107       // All the relocations above are branches except SBREL31 and PREL31.
8108       return false;
8109
8110     default:
8111       // Be conservative and assume this is a function pointer.
8112       return true;
8113     }
8114 }
8115
8116 template<bool big_endian>
8117 inline bool
8118 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8119   Symbol_table*,
8120   Layout*,
8121   Target_arm<big_endian>* target,
8122   Sized_relobj_file<32, big_endian>*,
8123   unsigned int,
8124   Output_section*,
8125   const elfcpp::Rel<32, big_endian>&,
8126   unsigned int r_type,
8127   const elfcpp::Sym<32, big_endian>&)
8128 {
8129   r_type = target->get_real_reloc_type(r_type);
8130   return possible_function_pointer_reloc(r_type);
8131 }
8132
8133 template<bool big_endian>
8134 inline bool
8135 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8136   Symbol_table*,
8137   Layout*,
8138   Target_arm<big_endian>* target,
8139   Sized_relobj_file<32, big_endian>*,
8140   unsigned int,
8141   Output_section*,
8142   const elfcpp::Rel<32, big_endian>&,
8143   unsigned int r_type,
8144   Symbol* gsym)
8145 {
8146   // GOT is not a function.
8147   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8148     return false;
8149
8150   r_type = target->get_real_reloc_type(r_type);
8151   return possible_function_pointer_reloc(r_type);
8152 }
8153
8154 // Scan a relocation for a global symbol.
8155
8156 template<bool big_endian>
8157 inline void
8158 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8159                                      Layout* layout,
8160                                      Target_arm* target,
8161                                      Sized_relobj_file<32, big_endian>* object,
8162                                      unsigned int data_shndx,
8163                                      Output_section* output_section,
8164                                      const elfcpp::Rel<32, big_endian>& reloc,
8165                                      unsigned int r_type,
8166                                      Symbol* gsym)
8167 {
8168   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8169   // section.  We check here to avoid creating a dynamic reloc against
8170   // _GLOBAL_OFFSET_TABLE_.
8171   if (!target->has_got_section()
8172       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8173     target->got_section(symtab, layout);
8174
8175   r_type = get_real_reloc_type(r_type);
8176   switch (r_type)
8177     {
8178     case elfcpp::R_ARM_NONE:
8179     case elfcpp::R_ARM_V4BX:
8180     case elfcpp::R_ARM_GNU_VTENTRY:
8181     case elfcpp::R_ARM_GNU_VTINHERIT:
8182       break;
8183
8184     case elfcpp::R_ARM_ABS32:
8185     case elfcpp::R_ARM_ABS16:
8186     case elfcpp::R_ARM_ABS12:
8187     case elfcpp::R_ARM_THM_ABS5:
8188     case elfcpp::R_ARM_ABS8:
8189     case elfcpp::R_ARM_BASE_ABS:
8190     case elfcpp::R_ARM_MOVW_ABS_NC:
8191     case elfcpp::R_ARM_MOVT_ABS:
8192     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8193     case elfcpp::R_ARM_THM_MOVT_ABS:
8194     case elfcpp::R_ARM_ABS32_NOI:
8195       // Absolute addressing relocations.
8196       {
8197         // Make a PLT entry if necessary.
8198         if (this->symbol_needs_plt_entry(gsym))
8199           {
8200             target->make_plt_entry(symtab, layout, gsym);
8201             // Since this is not a PC-relative relocation, we may be
8202             // taking the address of a function. In that case we need to
8203             // set the entry in the dynamic symbol table to the address of
8204             // the PLT entry.
8205             if (gsym->is_from_dynobj() && !parameters->options().shared())
8206               gsym->set_needs_dynsym_value();
8207           }
8208         // Make a dynamic relocation if necessary.
8209         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8210           {
8211             if (gsym->may_need_copy_reloc())
8212               {
8213                 target->copy_reloc(symtab, layout, object,
8214                                    data_shndx, output_section, gsym, reloc);
8215               }
8216             else if ((r_type == elfcpp::R_ARM_ABS32
8217                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8218                      && gsym->can_use_relative_reloc(false))
8219               {
8220                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8221                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8222                                              output_section, object,
8223                                              data_shndx, reloc.get_r_offset());
8224               }
8225             else
8226               {
8227                 check_non_pic(object, r_type);
8228                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8229                 rel_dyn->add_global(gsym, r_type, output_section, object,
8230                                     data_shndx, reloc.get_r_offset());
8231               }
8232           }
8233       }
8234       break;
8235
8236     case elfcpp::R_ARM_GOTOFF32:
8237     case elfcpp::R_ARM_GOTOFF12:
8238       // We need a GOT section.
8239       target->got_section(symtab, layout);
8240       break;
8241       
8242     case elfcpp::R_ARM_REL32:
8243     case elfcpp::R_ARM_LDR_PC_G0:
8244     case elfcpp::R_ARM_SBREL32:
8245     case elfcpp::R_ARM_THM_PC8:
8246     case elfcpp::R_ARM_BASE_PREL:
8247     case elfcpp::R_ARM_MOVW_PREL_NC:
8248     case elfcpp::R_ARM_MOVT_PREL:
8249     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8250     case elfcpp::R_ARM_THM_MOVT_PREL:
8251     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8252     case elfcpp::R_ARM_THM_PC12:
8253     case elfcpp::R_ARM_REL32_NOI:
8254     case elfcpp::R_ARM_ALU_PC_G0_NC:
8255     case elfcpp::R_ARM_ALU_PC_G0:
8256     case elfcpp::R_ARM_ALU_PC_G1_NC:
8257     case elfcpp::R_ARM_ALU_PC_G1:
8258     case elfcpp::R_ARM_ALU_PC_G2:
8259     case elfcpp::R_ARM_LDR_PC_G1:
8260     case elfcpp::R_ARM_LDR_PC_G2:
8261     case elfcpp::R_ARM_LDRS_PC_G0:
8262     case elfcpp::R_ARM_LDRS_PC_G1:
8263     case elfcpp::R_ARM_LDRS_PC_G2:
8264     case elfcpp::R_ARM_LDC_PC_G0:
8265     case elfcpp::R_ARM_LDC_PC_G1:
8266     case elfcpp::R_ARM_LDC_PC_G2:
8267     case elfcpp::R_ARM_ALU_SB_G0_NC:
8268     case elfcpp::R_ARM_ALU_SB_G0:
8269     case elfcpp::R_ARM_ALU_SB_G1_NC:
8270     case elfcpp::R_ARM_ALU_SB_G1:
8271     case elfcpp::R_ARM_ALU_SB_G2:
8272     case elfcpp::R_ARM_LDR_SB_G0:
8273     case elfcpp::R_ARM_LDR_SB_G1:
8274     case elfcpp::R_ARM_LDR_SB_G2:
8275     case elfcpp::R_ARM_LDRS_SB_G0:
8276     case elfcpp::R_ARM_LDRS_SB_G1:
8277     case elfcpp::R_ARM_LDRS_SB_G2:
8278     case elfcpp::R_ARM_LDC_SB_G0:
8279     case elfcpp::R_ARM_LDC_SB_G1:
8280     case elfcpp::R_ARM_LDC_SB_G2:
8281     case elfcpp::R_ARM_MOVW_BREL_NC:
8282     case elfcpp::R_ARM_MOVT_BREL:
8283     case elfcpp::R_ARM_MOVW_BREL:
8284     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8285     case elfcpp::R_ARM_THM_MOVT_BREL:
8286     case elfcpp::R_ARM_THM_MOVW_BREL:
8287       // Relative addressing relocations.
8288       {
8289         // Make a dynamic relocation if necessary.
8290         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8291           {
8292             if (target->may_need_copy_reloc(gsym))
8293               {
8294                 target->copy_reloc(symtab, layout, object,
8295                                    data_shndx, output_section, gsym, reloc);
8296               }
8297             else
8298               {
8299                 check_non_pic(object, r_type);
8300                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8301                 rel_dyn->add_global(gsym, r_type, output_section, object,
8302                                     data_shndx, reloc.get_r_offset());
8303               }
8304           }
8305       }
8306       break;
8307
8308     case elfcpp::R_ARM_THM_CALL:
8309     case elfcpp::R_ARM_PLT32:
8310     case elfcpp::R_ARM_CALL:
8311     case elfcpp::R_ARM_JUMP24:
8312     case elfcpp::R_ARM_THM_JUMP24:
8313     case elfcpp::R_ARM_SBREL31:
8314     case elfcpp::R_ARM_PREL31:
8315     case elfcpp::R_ARM_THM_JUMP19:
8316     case elfcpp::R_ARM_THM_JUMP6:
8317     case elfcpp::R_ARM_THM_JUMP11:
8318     case elfcpp::R_ARM_THM_JUMP8:
8319       // All the relocation above are branches except for the PREL31 ones.
8320       // A PREL31 relocation can point to a personality function in a shared
8321       // library.  In that case we want to use a PLT because we want to
8322       // call the personality routine and the dynamic linkers we care about
8323       // do not support dynamic PREL31 relocations. An REL31 relocation may
8324       // point to a function whose unwinding behaviour is being described but
8325       // we will not mistakenly generate a PLT for that because we should use
8326       // a local section symbol.
8327
8328       // If the symbol is fully resolved, this is just a relative
8329       // local reloc.  Otherwise we need a PLT entry.
8330       if (gsym->final_value_is_known())
8331         break;
8332       // If building a shared library, we can also skip the PLT entry
8333       // if the symbol is defined in the output file and is protected
8334       // or hidden.
8335       if (gsym->is_defined()
8336           && !gsym->is_from_dynobj()
8337           && !gsym->is_preemptible())
8338         break;
8339       target->make_plt_entry(symtab, layout, gsym);
8340       break;
8341
8342     case elfcpp::R_ARM_GOT_BREL:
8343     case elfcpp::R_ARM_GOT_ABS:
8344     case elfcpp::R_ARM_GOT_PREL:
8345       {
8346         // The symbol requires a GOT entry.
8347         Arm_output_data_got<big_endian>* got =
8348           target->got_section(symtab, layout);
8349         if (gsym->final_value_is_known())
8350           got->add_global(gsym, GOT_TYPE_STANDARD);
8351         else
8352           {
8353             // If this symbol is not fully resolved, we need to add a
8354             // GOT entry with a dynamic relocation.
8355             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8356             if (gsym->is_from_dynobj()
8357                 || gsym->is_undefined()
8358                 || gsym->is_preemptible())
8359               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8360                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8361             else
8362               {
8363                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8364                   rel_dyn->add_global_relative(
8365                       gsym, elfcpp::R_ARM_RELATIVE, got,
8366                       gsym->got_offset(GOT_TYPE_STANDARD));
8367               }
8368           }
8369       }
8370       break;
8371
8372     case elfcpp::R_ARM_TARGET1:
8373     case elfcpp::R_ARM_TARGET2:
8374       // These should have been mapped to other types already.
8375       // Fall through.
8376     case elfcpp::R_ARM_COPY:
8377     case elfcpp::R_ARM_GLOB_DAT:
8378     case elfcpp::R_ARM_JUMP_SLOT:
8379     case elfcpp::R_ARM_RELATIVE:
8380       // These are relocations which should only be seen by the
8381       // dynamic linker, and should never be seen here.
8382       gold_error(_("%s: unexpected reloc %u in object file"),
8383                  object->name().c_str(), r_type);
8384       break;
8385
8386       // These are initial tls relocs, which are expected when
8387       // linking.
8388     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8389     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8390     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8391     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8392     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8393       {
8394         const bool is_final = gsym->final_value_is_known();
8395         const tls::Tls_optimization optimized_type
8396             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8397         switch (r_type)
8398           {
8399           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8400             if (optimized_type == tls::TLSOPT_NONE)
8401               {
8402                 // Create a pair of GOT entries for the module index and
8403                 // dtv-relative offset.
8404                 Arm_output_data_got<big_endian>* got
8405                     = target->got_section(symtab, layout);
8406                 if (!parameters->doing_static_link())
8407                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8408                                                 target->rel_dyn_section(layout),
8409                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8410                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8411                 else
8412                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8413               }
8414             else
8415               // FIXME: TLS optimization not supported yet.
8416               gold_unreachable();
8417             break;
8418
8419           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8420             if (optimized_type == tls::TLSOPT_NONE)
8421               {
8422                 // Create a GOT entry for the module index.
8423                 target->got_mod_index_entry(symtab, layout, object);
8424               }
8425             else
8426               // FIXME: TLS optimization not supported yet.
8427               gold_unreachable();
8428             break;
8429
8430           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8431             break;
8432
8433           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8434             layout->set_has_static_tls();
8435             if (optimized_type == tls::TLSOPT_NONE)
8436               {
8437                 // Create a GOT entry for the tp-relative offset.
8438                 Arm_output_data_got<big_endian>* got
8439                   = target->got_section(symtab, layout);
8440                 if (!parameters->doing_static_link())
8441                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8442                                            target->rel_dyn_section(layout),
8443                                            elfcpp::R_ARM_TLS_TPOFF32);
8444                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8445                   {
8446                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8447                     unsigned int got_offset =
8448                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8449                     got->add_static_reloc(got_offset,
8450                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
8451                   }
8452               }
8453             else
8454               // FIXME: TLS optimization not supported yet.
8455               gold_unreachable();
8456             break;
8457
8458           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8459             layout->set_has_static_tls();
8460             if (parameters->options().shared())
8461               {
8462                 // We need to create a dynamic relocation.
8463                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8464                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8465                                     output_section, object,
8466                                     data_shndx, reloc.get_r_offset());
8467               }
8468             break;
8469
8470           default:
8471             gold_unreachable();
8472           }
8473       }
8474       break;
8475
8476     case elfcpp::R_ARM_PC24:
8477     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8478     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8479     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8480     default:
8481       unsupported_reloc_global(object, r_type, gsym);
8482       break;
8483     }
8484 }
8485
8486 // Process relocations for gc.
8487
8488 template<bool big_endian>
8489 void
8490 Target_arm<big_endian>::gc_process_relocs(
8491     Symbol_table* symtab,
8492     Layout* layout,
8493     Sized_relobj_file<32, big_endian>* object,
8494     unsigned int data_shndx,
8495     unsigned int,
8496     const unsigned char* prelocs,
8497     size_t reloc_count,
8498     Output_section* output_section,
8499     bool needs_special_offset_handling,
8500     size_t local_symbol_count,
8501     const unsigned char* plocal_symbols)
8502 {
8503   typedef Target_arm<big_endian> Arm;
8504   typedef typename Target_arm<big_endian>::Scan Scan;
8505
8506   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8507                           typename Target_arm::Relocatable_size_for_reloc>(
8508     symtab,
8509     layout,
8510     this,
8511     object,
8512     data_shndx,
8513     prelocs,
8514     reloc_count,
8515     output_section,
8516     needs_special_offset_handling,
8517     local_symbol_count,
8518     plocal_symbols);
8519 }
8520
8521 // Scan relocations for a section.
8522
8523 template<bool big_endian>
8524 void
8525 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8526                                     Layout* layout,
8527                                     Sized_relobj_file<32, big_endian>* object,
8528                                     unsigned int data_shndx,
8529                                     unsigned int sh_type,
8530                                     const unsigned char* prelocs,
8531                                     size_t reloc_count,
8532                                     Output_section* output_section,
8533                                     bool needs_special_offset_handling,
8534                                     size_t local_symbol_count,
8535                                     const unsigned char* plocal_symbols)
8536 {
8537   typedef typename Target_arm<big_endian>::Scan Scan;
8538   if (sh_type == elfcpp::SHT_RELA)
8539     {
8540       gold_error(_("%s: unsupported RELA reloc section"),
8541                  object->name().c_str());
8542       return;
8543     }
8544
8545   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8546     symtab,
8547     layout,
8548     this,
8549     object,
8550     data_shndx,
8551     prelocs,
8552     reloc_count,
8553     output_section,
8554     needs_special_offset_handling,
8555     local_symbol_count,
8556     plocal_symbols);
8557 }
8558
8559 // Finalize the sections.
8560
8561 template<bool big_endian>
8562 void
8563 Target_arm<big_endian>::do_finalize_sections(
8564     Layout* layout,
8565     const Input_objects* input_objects,
8566     Symbol_table* symtab)
8567 {
8568   bool merged_any_attributes = false;
8569   // Merge processor-specific flags.
8570   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8571        p != input_objects->relobj_end();
8572        ++p)
8573     {
8574       Arm_relobj<big_endian>* arm_relobj =
8575         Arm_relobj<big_endian>::as_arm_relobj(*p);
8576       if (arm_relobj->merge_flags_and_attributes())
8577         {
8578           this->merge_processor_specific_flags(
8579               arm_relobj->name(),
8580               arm_relobj->processor_specific_flags());
8581           this->merge_object_attributes(arm_relobj->name().c_str(),
8582                                         arm_relobj->attributes_section_data());
8583           merged_any_attributes = true;
8584         }
8585     } 
8586
8587   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8588        p != input_objects->dynobj_end();
8589        ++p)
8590     {
8591       Arm_dynobj<big_endian>* arm_dynobj =
8592         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8593       this->merge_processor_specific_flags(
8594           arm_dynobj->name(),
8595           arm_dynobj->processor_specific_flags());
8596       this->merge_object_attributes(arm_dynobj->name().c_str(),
8597                                     arm_dynobj->attributes_section_data());
8598       merged_any_attributes = true;
8599     }
8600
8601   // Create an empty uninitialized attribute section if we still don't have it
8602   // at this moment.  This happens if there is no attributes sections in all
8603   // inputs.
8604   if (this->attributes_section_data_ == NULL)
8605     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8606
8607   // Check BLX use.
8608   const Object_attribute* cpu_arch_attr =
8609     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8610   if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8611     this->set_may_use_blx(true);
8612  
8613   // Check if we need to use Cortex-A8 workaround.
8614   if (parameters->options().user_set_fix_cortex_a8())
8615     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8616   else
8617     {
8618       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8619       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8620       // profile.  
8621       const Object_attribute* cpu_arch_profile_attr =
8622         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8623       this->fix_cortex_a8_ =
8624         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8625          && (cpu_arch_profile_attr->int_value() == 'A'
8626              || cpu_arch_profile_attr->int_value() == 0));
8627     }
8628   
8629   // Check if we can use V4BX interworking.
8630   // The V4BX interworking stub contains BX instruction,
8631   // which is not specified for some profiles.
8632   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8633       && !this->may_use_blx())
8634     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8635                  "the target profile does not support BX instruction"));
8636
8637   // Fill in some more dynamic tags.
8638   const Reloc_section* rel_plt = (this->plt_ == NULL
8639                                   ? NULL
8640                                   : this->plt_->rel_plt());
8641   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8642                                   this->rel_dyn_, true, false);
8643
8644   // Emit any relocs we saved in an attempt to avoid generating COPY
8645   // relocs.
8646   if (this->copy_relocs_.any_saved_relocs())
8647     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8648
8649   // Handle the .ARM.exidx section.
8650   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8651
8652   if (!parameters->options().relocatable())
8653     {
8654       if (exidx_section != NULL
8655           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8656         {
8657           // Create __exidx_start and __exidx_end symbols.
8658           symtab->define_in_output_data("__exidx_start", NULL,
8659                                         Symbol_table::PREDEFINED,
8660                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8661                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8662                                         0, false, true);
8663           symtab->define_in_output_data("__exidx_end", NULL,
8664                                         Symbol_table::PREDEFINED,
8665                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8666                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8667                                         0, true, true);
8668
8669           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8670           // the .ARM.exidx section.
8671           if (!layout->script_options()->saw_phdrs_clause())
8672             {
8673               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8674                                                       0)
8675                           == NULL);
8676               Output_segment*  exidx_segment =
8677                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8678               exidx_segment->add_output_section_to_nonload(exidx_section,
8679                                                            elfcpp::PF_R);
8680             }
8681         }
8682       else
8683         {
8684           symtab->define_as_constant("__exidx_start", NULL,
8685                                      Symbol_table::PREDEFINED,
8686                                      0, 0, elfcpp::STT_OBJECT,
8687                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8688                                      true, false);
8689           symtab->define_as_constant("__exidx_end", NULL,
8690                                      Symbol_table::PREDEFINED,
8691                                      0, 0, elfcpp::STT_OBJECT,
8692                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8693                                      true, false);
8694         }
8695     }
8696
8697   // Create an .ARM.attributes section if we have merged any attributes
8698   // from inputs.
8699   if (merged_any_attributes)
8700     {
8701       Output_attributes_section_data* attributes_section =
8702       new Output_attributes_section_data(*this->attributes_section_data_);
8703       layout->add_output_section_data(".ARM.attributes",
8704                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8705                                       attributes_section, ORDER_INVALID,
8706                                       false);
8707     }
8708
8709   // Fix up links in section EXIDX headers.
8710   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8711        p != layout->section_list().end();
8712        ++p)
8713     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8714       {
8715         Arm_output_section<big_endian>* os =
8716           Arm_output_section<big_endian>::as_arm_output_section(*p);
8717         os->set_exidx_section_link();
8718       }
8719 }
8720
8721 // Return whether a direct absolute static relocation needs to be applied.
8722 // In cases where Scan::local() or Scan::global() has created
8723 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8724 // of the relocation is carried in the data, and we must not
8725 // apply the static relocation.
8726
8727 template<bool big_endian>
8728 inline bool
8729 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8730     const Sized_symbol<32>* gsym,
8731     unsigned int r_type,
8732     bool is_32bit,
8733     Output_section* output_section)
8734 {
8735   // If the output section is not allocated, then we didn't call
8736   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8737   // the reloc here.
8738   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8739       return true;
8740
8741   int ref_flags = Scan::get_reference_flags(r_type);
8742
8743   // For local symbols, we will have created a non-RELATIVE dynamic
8744   // relocation only if (a) the output is position independent,
8745   // (b) the relocation is absolute (not pc- or segment-relative), and
8746   // (c) the relocation is not 32 bits wide.
8747   if (gsym == NULL)
8748     return !(parameters->options().output_is_position_independent()
8749              && (ref_flags & Symbol::ABSOLUTE_REF)
8750              && !is_32bit);
8751
8752   // For global symbols, we use the same helper routines used in the
8753   // scan pass.  If we did not create a dynamic relocation, or if we
8754   // created a RELATIVE dynamic relocation, we should apply the static
8755   // relocation.
8756   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8757   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8758                  && gsym->can_use_relative_reloc(ref_flags
8759                                                  & Symbol::FUNCTION_CALL);
8760   return !has_dyn || is_rel;
8761 }
8762
8763 // Perform a relocation.
8764
8765 template<bool big_endian>
8766 inline bool
8767 Target_arm<big_endian>::Relocate::relocate(
8768     const Relocate_info<32, big_endian>* relinfo,
8769     Target_arm* target,
8770     Output_section* output_section,
8771     size_t relnum,
8772     const elfcpp::Rel<32, big_endian>& rel,
8773     unsigned int r_type,
8774     const Sized_symbol<32>* gsym,
8775     const Symbol_value<32>* psymval,
8776     unsigned char* view,
8777     Arm_address address,
8778     section_size_type view_size)
8779 {
8780   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8781
8782   r_type = get_real_reloc_type(r_type);
8783   const Arm_reloc_property* reloc_property =
8784     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8785   if (reloc_property == NULL)
8786     {
8787       std::string reloc_name =
8788         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8789       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8790                              _("cannot relocate %s in object file"),
8791                              reloc_name.c_str());
8792       return true;
8793     }
8794
8795   const Arm_relobj<big_endian>* object =
8796     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8797
8798   // If the final branch target of a relocation is THUMB instruction, this
8799   // is 1.  Otherwise it is 0.
8800   Arm_address thumb_bit = 0;
8801   Symbol_value<32> symval;
8802   bool is_weakly_undefined_without_plt = false;
8803   bool have_got_offset = false;
8804   unsigned int got_offset = 0;
8805
8806   // If the relocation uses the GOT entry of a symbol instead of the symbol
8807   // itself, we don't care about whether the symbol is defined or what kind
8808   // of symbol it is.
8809   if (reloc_property->uses_got_entry())
8810     {
8811       // Get the GOT offset.
8812       // The GOT pointer points to the end of the GOT section.
8813       // We need to subtract the size of the GOT section to get
8814       // the actual offset to use in the relocation.
8815       // TODO: We should move GOT offset computing code in TLS relocations
8816       // to here.
8817       switch (r_type)
8818         {
8819         case elfcpp::R_ARM_GOT_BREL:
8820         case elfcpp::R_ARM_GOT_PREL:
8821           if (gsym != NULL)
8822             {
8823               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8824               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8825                             - target->got_size());
8826             }
8827           else
8828             {
8829               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8830               gold_assert(object->local_has_got_offset(r_sym,
8831                                                        GOT_TYPE_STANDARD));
8832               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8833                             - target->got_size());
8834             }
8835           have_got_offset = true;
8836           break;
8837
8838         default:
8839           break;
8840         }
8841     }
8842   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8843     {
8844       if (gsym != NULL)
8845         {
8846           // This is a global symbol.  Determine if we use PLT and if the
8847           // final target is THUMB.
8848           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8849             {
8850               // This uses a PLT, change the symbol value.
8851               symval.set_output_value(target->plt_section()->address()
8852                                       + gsym->plt_offset());
8853               psymval = &symval;
8854             }
8855           else if (gsym->is_weak_undefined())
8856             {
8857               // This is a weakly undefined symbol and we do not use PLT
8858               // for this relocation.  A branch targeting this symbol will
8859               // be converted into an NOP.
8860               is_weakly_undefined_without_plt = true;
8861             }
8862           else if (gsym->is_undefined() && reloc_property->uses_symbol())
8863             {
8864               // This relocation uses the symbol value but the symbol is
8865               // undefined.  Exit early and have the caller reporting an
8866               // error.
8867               return true;
8868             }
8869           else
8870             {
8871               // Set thumb bit if symbol:
8872               // -Has type STT_ARM_TFUNC or
8873               // -Has type STT_FUNC, is defined and with LSB in value set.
8874               thumb_bit =
8875                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8876                  || (gsym->type() == elfcpp::STT_FUNC
8877                      && !gsym->is_undefined()
8878                      && ((psymval->value(object, 0) & 1) != 0)))
8879                 ? 1
8880                 : 0);
8881             }
8882         }
8883       else
8884         {
8885           // This is a local symbol.  Determine if the final target is THUMB.
8886           // We saved this information when all the local symbols were read.
8887           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8888           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8889           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8890         }
8891     }
8892   else
8893     {
8894       // This is a fake relocation synthesized for a stub.  It does not have
8895       // a real symbol.  We just look at the LSB of the symbol value to
8896       // determine if the target is THUMB or not.
8897       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8898     }
8899
8900   // Strip LSB if this points to a THUMB target.
8901   if (thumb_bit != 0
8902       && reloc_property->uses_thumb_bit() 
8903       && ((psymval->value(object, 0) & 1) != 0))
8904     {
8905       Arm_address stripped_value =
8906         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8907       symval.set_output_value(stripped_value);
8908       psymval = &symval;
8909     } 
8910
8911   // To look up relocation stubs, we need to pass the symbol table index of
8912   // a local symbol.
8913   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8914
8915   // Get the addressing origin of the output segment defining the
8916   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8917   Arm_address sym_origin = 0;
8918   if (reloc_property->uses_symbol_base())
8919     {
8920       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8921         // R_ARM_BASE_ABS with the NULL symbol will give the
8922         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8923         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8924         sym_origin = target->got_plt_section()->address();
8925       else if (gsym == NULL)
8926         sym_origin = 0;
8927       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8928         sym_origin = gsym->output_segment()->vaddr();
8929       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8930         sym_origin = gsym->output_data()->address();
8931
8932       // TODO: Assumes the segment base to be zero for the global symbols
8933       // till the proper support for the segment-base-relative addressing
8934       // will be implemented.  This is consistent with GNU ld.
8935     }
8936
8937   // For relative addressing relocation, find out the relative address base.
8938   Arm_address relative_address_base = 0;
8939   switch(reloc_property->relative_address_base())
8940     {
8941     case Arm_reloc_property::RAB_NONE:
8942     // Relocations with relative address bases RAB_TLS and RAB_tp are
8943     // handled by relocate_tls.  So we do not need to do anything here.
8944     case Arm_reloc_property::RAB_TLS:
8945     case Arm_reloc_property::RAB_tp:
8946       break;
8947     case Arm_reloc_property::RAB_B_S:
8948       relative_address_base = sym_origin;
8949       break;
8950     case Arm_reloc_property::RAB_GOT_ORG:
8951       relative_address_base = target->got_plt_section()->address();
8952       break;
8953     case Arm_reloc_property::RAB_P:
8954       relative_address_base = address;
8955       break;
8956     case Arm_reloc_property::RAB_Pa:
8957       relative_address_base = address & 0xfffffffcU;
8958       break;
8959     default:
8960       gold_unreachable(); 
8961     }
8962     
8963   typename Arm_relocate_functions::Status reloc_status =
8964         Arm_relocate_functions::STATUS_OKAY;
8965   bool check_overflow = reloc_property->checks_overflow();
8966   switch (r_type)
8967     {
8968     case elfcpp::R_ARM_NONE:
8969       break;
8970
8971     case elfcpp::R_ARM_ABS8:
8972       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8973         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8974       break;
8975
8976     case elfcpp::R_ARM_ABS12:
8977       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8978         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8979       break;
8980
8981     case elfcpp::R_ARM_ABS16:
8982       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8983         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8984       break;
8985
8986     case elfcpp::R_ARM_ABS32:
8987       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8988         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8989                                                      thumb_bit);
8990       break;
8991
8992     case elfcpp::R_ARM_ABS32_NOI:
8993       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8994         // No thumb bit for this relocation: (S + A)
8995         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8996                                                      0);
8997       break;
8998
8999     case elfcpp::R_ARM_MOVW_ABS_NC:
9000       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9001         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9002                                                     0, thumb_bit,
9003                                                     check_overflow);
9004       break;
9005
9006     case elfcpp::R_ARM_MOVT_ABS:
9007       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9008         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9009       break;
9010
9011     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9012       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9013         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9014                                                         0, thumb_bit, false);
9015       break;
9016
9017     case elfcpp::R_ARM_THM_MOVT_ABS:
9018       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9019         reloc_status = Arm_relocate_functions::thm_movt(view, object,
9020                                                         psymval, 0);
9021       break;
9022
9023     case elfcpp::R_ARM_MOVW_PREL_NC:
9024     case elfcpp::R_ARM_MOVW_BREL_NC:
9025     case elfcpp::R_ARM_MOVW_BREL:
9026       reloc_status =
9027         Arm_relocate_functions::movw(view, object, psymval,
9028                                      relative_address_base, thumb_bit,
9029                                      check_overflow);
9030       break;
9031
9032     case elfcpp::R_ARM_MOVT_PREL:
9033     case elfcpp::R_ARM_MOVT_BREL:
9034       reloc_status =
9035         Arm_relocate_functions::movt(view, object, psymval,
9036                                      relative_address_base);
9037       break;
9038
9039     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9040     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9041     case elfcpp::R_ARM_THM_MOVW_BREL:
9042       reloc_status =
9043         Arm_relocate_functions::thm_movw(view, object, psymval,
9044                                          relative_address_base,
9045                                          thumb_bit, check_overflow);
9046       break;
9047
9048     case elfcpp::R_ARM_THM_MOVT_PREL:
9049     case elfcpp::R_ARM_THM_MOVT_BREL:
9050       reloc_status =
9051         Arm_relocate_functions::thm_movt(view, object, psymval,
9052                                          relative_address_base);
9053       break;
9054         
9055     case elfcpp::R_ARM_REL32:
9056       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9057                                                    address, thumb_bit);
9058       break;
9059
9060     case elfcpp::R_ARM_THM_ABS5:
9061       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9062         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9063       break;
9064
9065     // Thumb long branches.
9066     case elfcpp::R_ARM_THM_CALL:
9067     case elfcpp::R_ARM_THM_XPC22:
9068     case elfcpp::R_ARM_THM_JUMP24:
9069       reloc_status =
9070         Arm_relocate_functions::thumb_branch_common(
9071             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9072             thumb_bit, is_weakly_undefined_without_plt);
9073       break;
9074
9075     case elfcpp::R_ARM_GOTOFF32:
9076       {
9077         Arm_address got_origin;
9078         got_origin = target->got_plt_section()->address();
9079         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9080                                                      got_origin, thumb_bit);
9081       }
9082       break;
9083
9084     case elfcpp::R_ARM_BASE_PREL:
9085       gold_assert(gsym != NULL);
9086       reloc_status =
9087           Arm_relocate_functions::base_prel(view, sym_origin, address);
9088       break;
9089
9090     case elfcpp::R_ARM_BASE_ABS:
9091       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9092         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9093       break;
9094
9095     case elfcpp::R_ARM_GOT_BREL:
9096       gold_assert(have_got_offset);
9097       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9098       break;
9099
9100     case elfcpp::R_ARM_GOT_PREL:
9101       gold_assert(have_got_offset);
9102       // Get the address origin for GOT PLT, which is allocated right
9103       // after the GOT section, to calculate an absolute address of
9104       // the symbol GOT entry (got_origin + got_offset).
9105       Arm_address got_origin;
9106       got_origin = target->got_plt_section()->address();
9107       reloc_status = Arm_relocate_functions::got_prel(view,
9108                                                       got_origin + got_offset,
9109                                                       address);
9110       break;
9111
9112     case elfcpp::R_ARM_PLT32:
9113     case elfcpp::R_ARM_CALL:
9114     case elfcpp::R_ARM_JUMP24:
9115     case elfcpp::R_ARM_XPC25:
9116       gold_assert(gsym == NULL
9117                   || gsym->has_plt_offset()
9118                   || gsym->final_value_is_known()
9119                   || (gsym->is_defined()
9120                       && !gsym->is_from_dynobj()
9121                       && !gsym->is_preemptible()));
9122       reloc_status =
9123         Arm_relocate_functions::arm_branch_common(
9124             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9125             thumb_bit, is_weakly_undefined_without_plt);
9126       break;
9127
9128     case elfcpp::R_ARM_THM_JUMP19:
9129       reloc_status =
9130         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9131                                            thumb_bit);
9132       break;
9133
9134     case elfcpp::R_ARM_THM_JUMP6:
9135       reloc_status =
9136         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9137       break;
9138
9139     case elfcpp::R_ARM_THM_JUMP8:
9140       reloc_status =
9141         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9142       break;
9143
9144     case elfcpp::R_ARM_THM_JUMP11:
9145       reloc_status =
9146         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9147       break;
9148
9149     case elfcpp::R_ARM_PREL31:
9150       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9151                                                     address, thumb_bit);
9152       break;
9153
9154     case elfcpp::R_ARM_V4BX:
9155       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9156         {
9157           const bool is_v4bx_interworking =
9158               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9159           reloc_status =
9160             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9161                                          is_v4bx_interworking);
9162         }
9163       break;
9164
9165     case elfcpp::R_ARM_THM_PC8:
9166       reloc_status =
9167         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9168       break;
9169
9170     case elfcpp::R_ARM_THM_PC12:
9171       reloc_status =
9172         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9173       break;
9174
9175     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9176       reloc_status =
9177         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9178                                           thumb_bit);
9179       break;
9180
9181     case elfcpp::R_ARM_ALU_PC_G0_NC:
9182     case elfcpp::R_ARM_ALU_PC_G0:
9183     case elfcpp::R_ARM_ALU_PC_G1_NC:
9184     case elfcpp::R_ARM_ALU_PC_G1:
9185     case elfcpp::R_ARM_ALU_PC_G2:
9186     case elfcpp::R_ARM_ALU_SB_G0_NC:
9187     case elfcpp::R_ARM_ALU_SB_G0:
9188     case elfcpp::R_ARM_ALU_SB_G1_NC:
9189     case elfcpp::R_ARM_ALU_SB_G1:
9190     case elfcpp::R_ARM_ALU_SB_G2:
9191       reloc_status =
9192         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9193                                             reloc_property->group_index(),
9194                                             relative_address_base,
9195                                             thumb_bit, check_overflow);
9196       break;
9197
9198     case elfcpp::R_ARM_LDR_PC_G0:
9199     case elfcpp::R_ARM_LDR_PC_G1:
9200     case elfcpp::R_ARM_LDR_PC_G2:
9201     case elfcpp::R_ARM_LDR_SB_G0:
9202     case elfcpp::R_ARM_LDR_SB_G1:
9203     case elfcpp::R_ARM_LDR_SB_G2:
9204       reloc_status =
9205           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9206                                               reloc_property->group_index(),
9207                                               relative_address_base);
9208       break;
9209
9210     case elfcpp::R_ARM_LDRS_PC_G0:
9211     case elfcpp::R_ARM_LDRS_PC_G1:
9212     case elfcpp::R_ARM_LDRS_PC_G2:
9213     case elfcpp::R_ARM_LDRS_SB_G0:
9214     case elfcpp::R_ARM_LDRS_SB_G1:
9215     case elfcpp::R_ARM_LDRS_SB_G2:
9216       reloc_status =
9217           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9218                                                reloc_property->group_index(),
9219                                                relative_address_base);
9220       break;
9221
9222     case elfcpp::R_ARM_LDC_PC_G0:
9223     case elfcpp::R_ARM_LDC_PC_G1:
9224     case elfcpp::R_ARM_LDC_PC_G2:
9225     case elfcpp::R_ARM_LDC_SB_G0:
9226     case elfcpp::R_ARM_LDC_SB_G1:
9227     case elfcpp::R_ARM_LDC_SB_G2:
9228       reloc_status =
9229           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9230                                               reloc_property->group_index(),
9231                                               relative_address_base);
9232       break;
9233
9234       // These are initial tls relocs, which are expected when
9235       // linking.
9236     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9237     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9238     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9239     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9240     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9241       reloc_status =
9242         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9243                            view, address, view_size);
9244       break;
9245
9246     // The known and unknown unsupported and/or deprecated relocations.
9247     case elfcpp::R_ARM_PC24:
9248     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9249     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9250     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9251     default:
9252       // Just silently leave the method. We should get an appropriate error
9253       // message in the scan methods.
9254       break;
9255     }
9256
9257   // Report any errors.
9258   switch (reloc_status)
9259     {
9260     case Arm_relocate_functions::STATUS_OKAY:
9261       break;
9262     case Arm_relocate_functions::STATUS_OVERFLOW:
9263       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9264                              _("relocation overflow in %s"),
9265                              reloc_property->name().c_str());
9266       break;
9267     case Arm_relocate_functions::STATUS_BAD_RELOC:
9268       gold_error_at_location(
9269         relinfo,
9270         relnum,
9271         rel.get_r_offset(),
9272         _("unexpected opcode while processing relocation %s"),
9273         reloc_property->name().c_str());
9274       break;
9275     default:
9276       gold_unreachable();
9277     }
9278
9279   return true;
9280 }
9281
9282 // Perform a TLS relocation.
9283
9284 template<bool big_endian>
9285 inline typename Arm_relocate_functions<big_endian>::Status
9286 Target_arm<big_endian>::Relocate::relocate_tls(
9287     const Relocate_info<32, big_endian>* relinfo,
9288     Target_arm<big_endian>* target,
9289     size_t relnum,
9290     const elfcpp::Rel<32, big_endian>& rel,
9291     unsigned int r_type,
9292     const Sized_symbol<32>* gsym,
9293     const Symbol_value<32>* psymval,
9294     unsigned char* view,
9295     elfcpp::Elf_types<32>::Elf_Addr address,
9296     section_size_type /*view_size*/ )
9297 {
9298   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9299   typedef Relocate_functions<32, big_endian> RelocFuncs;
9300   Output_segment* tls_segment = relinfo->layout->tls_segment();
9301
9302   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9303
9304   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9305
9306   const bool is_final = (gsym == NULL
9307                          ? !parameters->options().shared()
9308                          : gsym->final_value_is_known());
9309   const tls::Tls_optimization optimized_type
9310       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9311   switch (r_type)
9312     {
9313     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9314         {
9315           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9316           unsigned int got_offset;
9317           if (gsym != NULL)
9318             {
9319               gold_assert(gsym->has_got_offset(got_type));
9320               got_offset = gsym->got_offset(got_type) - target->got_size();
9321             }
9322           else
9323             {
9324               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9325               gold_assert(object->local_has_got_offset(r_sym, got_type));
9326               got_offset = (object->local_got_offset(r_sym, got_type)
9327                             - target->got_size());
9328             }
9329           if (optimized_type == tls::TLSOPT_NONE)
9330             {
9331               Arm_address got_entry =
9332                 target->got_plt_section()->address() + got_offset;
9333               
9334               // Relocate the field with the PC relative offset of the pair of
9335               // GOT entries.
9336               RelocFuncs::pcrel32(view, got_entry, address);
9337               return ArmRelocFuncs::STATUS_OKAY;
9338             }
9339         }
9340       break;
9341
9342     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9343       if (optimized_type == tls::TLSOPT_NONE)
9344         {
9345           // Relocate the field with the offset of the GOT entry for
9346           // the module index.
9347           unsigned int got_offset;
9348           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9349                         - target->got_size());
9350           Arm_address got_entry =
9351             target->got_plt_section()->address() + got_offset;
9352
9353           // Relocate the field with the PC relative offset of the pair of
9354           // GOT entries.
9355           RelocFuncs::pcrel32(view, got_entry, address);
9356           return ArmRelocFuncs::STATUS_OKAY;
9357         }
9358       break;
9359
9360     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9361       RelocFuncs::rel32(view, value);
9362       return ArmRelocFuncs::STATUS_OKAY;
9363
9364     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9365       if (optimized_type == tls::TLSOPT_NONE)
9366         {
9367           // Relocate the field with the offset of the GOT entry for
9368           // the tp-relative offset of the symbol.
9369           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9370           unsigned int got_offset;
9371           if (gsym != NULL)
9372             {
9373               gold_assert(gsym->has_got_offset(got_type));
9374               got_offset = gsym->got_offset(got_type);
9375             }
9376           else
9377             {
9378               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9379               gold_assert(object->local_has_got_offset(r_sym, got_type));
9380               got_offset = object->local_got_offset(r_sym, got_type);
9381             }
9382
9383           // All GOT offsets are relative to the end of the GOT.
9384           got_offset -= target->got_size();
9385
9386           Arm_address got_entry =
9387             target->got_plt_section()->address() + got_offset;
9388
9389           // Relocate the field with the PC relative offset of the GOT entry.
9390           RelocFuncs::pcrel32(view, got_entry, address);
9391           return ArmRelocFuncs::STATUS_OKAY;
9392         }
9393       break;
9394
9395     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9396       // If we're creating a shared library, a dynamic relocation will
9397       // have been created for this location, so do not apply it now.
9398       if (!parameters->options().shared())
9399         {
9400           gold_assert(tls_segment != NULL);
9401
9402           // $tp points to the TCB, which is followed by the TLS, so we
9403           // need to add TCB size to the offset.
9404           Arm_address aligned_tcb_size =
9405             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9406           RelocFuncs::rel32(view, value + aligned_tcb_size);
9407
9408         }
9409       return ArmRelocFuncs::STATUS_OKAY;
9410     
9411     default:
9412       gold_unreachable();
9413     }
9414
9415   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9416                          _("unsupported reloc %u"),
9417                          r_type);
9418   return ArmRelocFuncs::STATUS_BAD_RELOC;
9419 }
9420
9421 // Relocate section data.
9422
9423 template<bool big_endian>
9424 void
9425 Target_arm<big_endian>::relocate_section(
9426     const Relocate_info<32, big_endian>* relinfo,
9427     unsigned int sh_type,
9428     const unsigned char* prelocs,
9429     size_t reloc_count,
9430     Output_section* output_section,
9431     bool needs_special_offset_handling,
9432     unsigned char* view,
9433     Arm_address address,
9434     section_size_type view_size,
9435     const Reloc_symbol_changes* reloc_symbol_changes)
9436 {
9437   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9438   gold_assert(sh_type == elfcpp::SHT_REL);
9439
9440   // See if we are relocating a relaxed input section.  If so, the view
9441   // covers the whole output section and we need to adjust accordingly.
9442   if (needs_special_offset_handling)
9443     {
9444       const Output_relaxed_input_section* poris =
9445         output_section->find_relaxed_input_section(relinfo->object,
9446                                                    relinfo->data_shndx);
9447       if (poris != NULL)
9448         {
9449           Arm_address section_address = poris->address();
9450           section_size_type section_size = poris->data_size();
9451
9452           gold_assert((section_address >= address)
9453                       && ((section_address + section_size)
9454                           <= (address + view_size)));
9455
9456           off_t offset = section_address - address;
9457           view += offset;
9458           address += offset;
9459           view_size = section_size;
9460         }
9461     }
9462
9463   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9464                          Arm_relocate>(
9465     relinfo,
9466     this,
9467     prelocs,
9468     reloc_count,
9469     output_section,
9470     needs_special_offset_handling,
9471     view,
9472     address,
9473     view_size,
9474     reloc_symbol_changes);
9475 }
9476
9477 // Return the size of a relocation while scanning during a relocatable
9478 // link.
9479
9480 template<bool big_endian>
9481 unsigned int
9482 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9483     unsigned int r_type,
9484     Relobj* object)
9485 {
9486   r_type = get_real_reloc_type(r_type);
9487   const Arm_reloc_property* arp =
9488       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9489   if (arp != NULL)
9490     return arp->size();
9491   else
9492     {
9493       std::string reloc_name =
9494         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9495       gold_error(_("%s: unexpected %s in object file"),
9496                  object->name().c_str(), reloc_name.c_str());
9497       return 0;
9498     }
9499 }
9500
9501 // Scan the relocs during a relocatable link.
9502
9503 template<bool big_endian>
9504 void
9505 Target_arm<big_endian>::scan_relocatable_relocs(
9506     Symbol_table* symtab,
9507     Layout* layout,
9508     Sized_relobj_file<32, big_endian>* object,
9509     unsigned int data_shndx,
9510     unsigned int sh_type,
9511     const unsigned char* prelocs,
9512     size_t reloc_count,
9513     Output_section* output_section,
9514     bool needs_special_offset_handling,
9515     size_t local_symbol_count,
9516     const unsigned char* plocal_symbols,
9517     Relocatable_relocs* rr)
9518 {
9519   gold_assert(sh_type == elfcpp::SHT_REL);
9520
9521   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9522     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9523
9524   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9525       Scan_relocatable_relocs>(
9526     symtab,
9527     layout,
9528     object,
9529     data_shndx,
9530     prelocs,
9531     reloc_count,
9532     output_section,
9533     needs_special_offset_handling,
9534     local_symbol_count,
9535     plocal_symbols,
9536     rr);
9537 }
9538
9539 // Relocate a section during a relocatable link.
9540
9541 template<bool big_endian>
9542 void
9543 Target_arm<big_endian>::relocate_for_relocatable(
9544     const Relocate_info<32, big_endian>* relinfo,
9545     unsigned int sh_type,
9546     const unsigned char* prelocs,
9547     size_t reloc_count,
9548     Output_section* output_section,
9549     off_t offset_in_output_section,
9550     const Relocatable_relocs* rr,
9551     unsigned char* view,
9552     Arm_address view_address,
9553     section_size_type view_size,
9554     unsigned char* reloc_view,
9555     section_size_type reloc_view_size)
9556 {
9557   gold_assert(sh_type == elfcpp::SHT_REL);
9558
9559   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9560     relinfo,
9561     prelocs,
9562     reloc_count,
9563     output_section,
9564     offset_in_output_section,
9565     rr,
9566     view,
9567     view_address,
9568     view_size,
9569     reloc_view,
9570     reloc_view_size);
9571 }
9572
9573 // Perform target-specific processing in a relocatable link.  This is
9574 // only used if we use the relocation strategy RELOC_SPECIAL.
9575
9576 template<bool big_endian>
9577 void
9578 Target_arm<big_endian>::relocate_special_relocatable(
9579     const Relocate_info<32, big_endian>* relinfo,
9580     unsigned int sh_type,
9581     const unsigned char* preloc_in,
9582     size_t relnum,
9583     Output_section* output_section,
9584     off_t offset_in_output_section,
9585     unsigned char* view,
9586     elfcpp::Elf_types<32>::Elf_Addr view_address,
9587     section_size_type,
9588     unsigned char* preloc_out)
9589 {
9590   // We can only handle REL type relocation sections.
9591   gold_assert(sh_type == elfcpp::SHT_REL);
9592
9593   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9594   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9595     Reltype_write;
9596   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9597
9598   const Arm_relobj<big_endian>* object =
9599     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9600   const unsigned int local_count = object->local_symbol_count();
9601
9602   Reltype reloc(preloc_in);
9603   Reltype_write reloc_write(preloc_out);
9604
9605   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9606   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9607   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9608
9609   const Arm_reloc_property* arp =
9610     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9611   gold_assert(arp != NULL);
9612
9613   // Get the new symbol index.
9614   // We only use RELOC_SPECIAL strategy in local relocations.
9615   gold_assert(r_sym < local_count);
9616
9617   // We are adjusting a section symbol.  We need to find
9618   // the symbol table index of the section symbol for
9619   // the output section corresponding to input section
9620   // in which this symbol is defined.
9621   bool is_ordinary;
9622   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9623   gold_assert(is_ordinary);
9624   Output_section* os = object->output_section(shndx);
9625   gold_assert(os != NULL);
9626   gold_assert(os->needs_symtab_index());
9627   unsigned int new_symndx = os->symtab_index();
9628
9629   // Get the new offset--the location in the output section where
9630   // this relocation should be applied.
9631
9632   Arm_address offset = reloc.get_r_offset();
9633   Arm_address new_offset;
9634   if (offset_in_output_section != invalid_address)
9635     new_offset = offset + offset_in_output_section;
9636   else
9637     {
9638       section_offset_type sot_offset =
9639           convert_types<section_offset_type, Arm_address>(offset);
9640       section_offset_type new_sot_offset =
9641           output_section->output_offset(object, relinfo->data_shndx,
9642                                         sot_offset);
9643       gold_assert(new_sot_offset != -1);
9644       new_offset = new_sot_offset;
9645     }
9646
9647   // In an object file, r_offset is an offset within the section.
9648   // In an executable or dynamic object, generated by
9649   // --emit-relocs, r_offset is an absolute address.
9650   if (!parameters->options().relocatable())
9651     {
9652       new_offset += view_address;
9653       if (offset_in_output_section != invalid_address)
9654         new_offset -= offset_in_output_section;
9655     }
9656
9657   reloc_write.put_r_offset(new_offset);
9658   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9659
9660   // Handle the reloc addend.
9661   // The relocation uses a section symbol in the input file.
9662   // We are adjusting it to use a section symbol in the output
9663   // file.  The input section symbol refers to some address in
9664   // the input section.  We need the relocation in the output
9665   // file to refer to that same address.  This adjustment to
9666   // the addend is the same calculation we use for a simple
9667   // absolute relocation for the input section symbol.
9668
9669   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9670
9671   // Handle THUMB bit.
9672   Symbol_value<32> symval;
9673   Arm_address thumb_bit =
9674      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9675   if (thumb_bit != 0
9676       && arp->uses_thumb_bit() 
9677       && ((psymval->value(object, 0) & 1) != 0))
9678     {
9679       Arm_address stripped_value =
9680         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9681       symval.set_output_value(stripped_value);
9682       psymval = &symval;
9683     } 
9684
9685   unsigned char* paddend = view + offset;
9686   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9687         Arm_relocate_functions<big_endian>::STATUS_OKAY;
9688   switch (r_type)
9689     {
9690     case elfcpp::R_ARM_ABS8:
9691       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9692                                                               psymval);
9693       break;
9694
9695     case elfcpp::R_ARM_ABS12:
9696       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9697                                                                psymval);
9698       break;
9699
9700     case elfcpp::R_ARM_ABS16:
9701       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9702                                                                psymval);
9703       break;
9704
9705     case elfcpp::R_ARM_THM_ABS5:
9706       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9707                                                                   object,
9708                                                                   psymval);
9709       break;
9710
9711     case elfcpp::R_ARM_MOVW_ABS_NC:
9712     case elfcpp::R_ARM_MOVW_PREL_NC:
9713     case elfcpp::R_ARM_MOVW_BREL_NC:
9714     case elfcpp::R_ARM_MOVW_BREL:
9715       reloc_status = Arm_relocate_functions<big_endian>::movw(
9716           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9717       break;
9718
9719     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9720     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9721     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9722     case elfcpp::R_ARM_THM_MOVW_BREL:
9723       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9724           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9725       break;
9726
9727     case elfcpp::R_ARM_THM_CALL:
9728     case elfcpp::R_ARM_THM_XPC22:
9729     case elfcpp::R_ARM_THM_JUMP24:
9730       reloc_status =
9731         Arm_relocate_functions<big_endian>::thumb_branch_common(
9732             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9733             false);
9734       break;
9735
9736     case elfcpp::R_ARM_PLT32:
9737     case elfcpp::R_ARM_CALL:
9738     case elfcpp::R_ARM_JUMP24:
9739     case elfcpp::R_ARM_XPC25:
9740       reloc_status =
9741         Arm_relocate_functions<big_endian>::arm_branch_common(
9742             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9743             false);
9744       break;
9745
9746     case elfcpp::R_ARM_THM_JUMP19:
9747       reloc_status =
9748         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9749                                                        psymval, 0, thumb_bit);
9750       break;
9751
9752     case elfcpp::R_ARM_THM_JUMP6:
9753       reloc_status =
9754         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9755                                                       0);
9756       break;
9757
9758     case elfcpp::R_ARM_THM_JUMP8:
9759       reloc_status =
9760         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9761                                                       0);
9762       break;
9763
9764     case elfcpp::R_ARM_THM_JUMP11:
9765       reloc_status =
9766         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9767                                                        0);
9768       break;
9769
9770     case elfcpp::R_ARM_PREL31:
9771       reloc_status =
9772         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9773                                                    thumb_bit);
9774       break;
9775
9776     case elfcpp::R_ARM_THM_PC8:
9777       reloc_status =
9778         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9779                                                     0);
9780       break;
9781
9782     case elfcpp::R_ARM_THM_PC12:
9783       reloc_status =
9784         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9785                                                      0);
9786       break;
9787
9788     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9789       reloc_status =
9790         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9791                                                       0, thumb_bit);
9792       break;
9793
9794     // These relocation truncate relocation results so we cannot handle them
9795     // in a relocatable link.
9796     case elfcpp::R_ARM_MOVT_ABS:
9797     case elfcpp::R_ARM_THM_MOVT_ABS:
9798     case elfcpp::R_ARM_MOVT_PREL:
9799     case elfcpp::R_ARM_MOVT_BREL:
9800     case elfcpp::R_ARM_THM_MOVT_PREL:
9801     case elfcpp::R_ARM_THM_MOVT_BREL:
9802     case elfcpp::R_ARM_ALU_PC_G0_NC:
9803     case elfcpp::R_ARM_ALU_PC_G0:
9804     case elfcpp::R_ARM_ALU_PC_G1_NC:
9805     case elfcpp::R_ARM_ALU_PC_G1:
9806     case elfcpp::R_ARM_ALU_PC_G2:
9807     case elfcpp::R_ARM_ALU_SB_G0_NC:
9808     case elfcpp::R_ARM_ALU_SB_G0:
9809     case elfcpp::R_ARM_ALU_SB_G1_NC:
9810     case elfcpp::R_ARM_ALU_SB_G1:
9811     case elfcpp::R_ARM_ALU_SB_G2:
9812     case elfcpp::R_ARM_LDR_PC_G0:
9813     case elfcpp::R_ARM_LDR_PC_G1:
9814     case elfcpp::R_ARM_LDR_PC_G2:
9815     case elfcpp::R_ARM_LDR_SB_G0:
9816     case elfcpp::R_ARM_LDR_SB_G1:
9817     case elfcpp::R_ARM_LDR_SB_G2:
9818     case elfcpp::R_ARM_LDRS_PC_G0:
9819     case elfcpp::R_ARM_LDRS_PC_G1:
9820     case elfcpp::R_ARM_LDRS_PC_G2:
9821     case elfcpp::R_ARM_LDRS_SB_G0:
9822     case elfcpp::R_ARM_LDRS_SB_G1:
9823     case elfcpp::R_ARM_LDRS_SB_G2:
9824     case elfcpp::R_ARM_LDC_PC_G0:
9825     case elfcpp::R_ARM_LDC_PC_G1:
9826     case elfcpp::R_ARM_LDC_PC_G2:
9827     case elfcpp::R_ARM_LDC_SB_G0:
9828     case elfcpp::R_ARM_LDC_SB_G1:
9829     case elfcpp::R_ARM_LDC_SB_G2:
9830       gold_error(_("cannot handle %s in a relocatable link"),
9831                  arp->name().c_str());
9832       break;
9833
9834     default:
9835       gold_unreachable();
9836     }
9837
9838   // Report any errors.
9839   switch (reloc_status)
9840     {
9841     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9842       break;
9843     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9844       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9845                              _("relocation overflow in %s"),
9846                              arp->name().c_str());
9847       break;
9848     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9849       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9850         _("unexpected opcode while processing relocation %s"),
9851         arp->name().c_str());
9852       break;
9853     default:
9854       gold_unreachable();
9855     }
9856 }
9857
9858 // Return the value to use for a dynamic symbol which requires special
9859 // treatment.  This is how we support equality comparisons of function
9860 // pointers across shared library boundaries, as described in the
9861 // processor specific ABI supplement.
9862
9863 template<bool big_endian>
9864 uint64_t
9865 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9866 {
9867   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9868   return this->plt_section()->address() + gsym->plt_offset();
9869 }
9870
9871 // Map platform-specific relocs to real relocs
9872 //
9873 template<bool big_endian>
9874 unsigned int
9875 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9876 {
9877   switch (r_type)
9878     {
9879     case elfcpp::R_ARM_TARGET1:
9880       // This is either R_ARM_ABS32 or R_ARM_REL32;
9881       return elfcpp::R_ARM_ABS32;
9882
9883     case elfcpp::R_ARM_TARGET2:
9884       // This can be any reloc type but usually is R_ARM_GOT_PREL
9885       return elfcpp::R_ARM_GOT_PREL;
9886
9887     default:
9888       return r_type;
9889     }
9890 }
9891
9892 // Whether if two EABI versions V1 and V2 are compatible.
9893
9894 template<bool big_endian>
9895 bool
9896 Target_arm<big_endian>::are_eabi_versions_compatible(
9897     elfcpp::Elf_Word v1,
9898     elfcpp::Elf_Word v2)
9899 {
9900   // v4 and v5 are the same spec before and after it was released,
9901   // so allow mixing them.
9902   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9903       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9904       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9905     return true;
9906
9907   return v1 == v2;
9908 }
9909
9910 // Combine FLAGS from an input object called NAME and the processor-specific
9911 // flags in the ELF header of the output.  Much of this is adapted from the
9912 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9913 // in bfd/elf32-arm.c.
9914
9915 template<bool big_endian>
9916 void
9917 Target_arm<big_endian>::merge_processor_specific_flags(
9918     const std::string& name,
9919     elfcpp::Elf_Word flags)
9920 {
9921   if (this->are_processor_specific_flags_set())
9922     {
9923       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9924
9925       // Nothing to merge if flags equal to those in output.
9926       if (flags == out_flags)
9927         return;
9928
9929       // Complain about various flag mismatches.
9930       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9931       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9932       if (!this->are_eabi_versions_compatible(version1, version2)
9933           && parameters->options().warn_mismatch())
9934         gold_error(_("Source object %s has EABI version %d but output has "
9935                      "EABI version %d."),
9936                    name.c_str(),
9937                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9938                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9939     }
9940   else
9941     {
9942       // If the input is the default architecture and had the default
9943       // flags then do not bother setting the flags for the output
9944       // architecture, instead allow future merges to do this.  If no
9945       // future merges ever set these flags then they will retain their
9946       // uninitialised values, which surprise surprise, correspond
9947       // to the default values.
9948       if (flags == 0)
9949         return;
9950
9951       // This is the first time, just copy the flags.
9952       // We only copy the EABI version for now.
9953       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9954     }
9955 }
9956
9957 // Adjust ELF file header.
9958 template<bool big_endian>
9959 void
9960 Target_arm<big_endian>::do_adjust_elf_header(
9961     unsigned char* view,
9962     int len) const
9963 {
9964   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9965
9966   elfcpp::Ehdr<32, big_endian> ehdr(view);
9967   unsigned char e_ident[elfcpp::EI_NIDENT];
9968   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9969
9970   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9971       == elfcpp::EF_ARM_EABI_UNKNOWN)
9972     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9973   else
9974     e_ident[elfcpp::EI_OSABI] = 0;
9975   e_ident[elfcpp::EI_ABIVERSION] = 0;
9976
9977   // FIXME: Do EF_ARM_BE8 adjustment.
9978
9979   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9980   oehdr.put_e_ident(e_ident);
9981 }
9982
9983 // do_make_elf_object to override the same function in the base class.
9984 // We need to use a target-specific sub-class of
9985 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9986 // Hence we need to have our own ELF object creation.
9987
9988 template<bool big_endian>
9989 Object*
9990 Target_arm<big_endian>::do_make_elf_object(
9991     const std::string& name,
9992     Input_file* input_file,
9993     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9994 {
9995   int et = ehdr.get_e_type();
9996   if (et == elfcpp::ET_REL)
9997     {
9998       Arm_relobj<big_endian>* obj =
9999         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10000       obj->setup();
10001       return obj;
10002     }
10003   else if (et == elfcpp::ET_DYN)
10004     {
10005       Sized_dynobj<32, big_endian>* obj =
10006         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10007       obj->setup();
10008       return obj;
10009     }
10010   else
10011     {
10012       gold_error(_("%s: unsupported ELF file type %d"),
10013                  name.c_str(), et);
10014       return NULL;
10015     }
10016 }
10017
10018 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10019 // Returns -1 if no architecture could be read.
10020 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10021
10022 template<bool big_endian>
10023 int
10024 Target_arm<big_endian>::get_secondary_compatible_arch(
10025     const Attributes_section_data* pasd)
10026 {
10027   const Object_attribute* known_attributes =
10028     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10029
10030   // Note: the tag and its argument below are uleb128 values, though
10031   // currently-defined values fit in one byte for each.
10032   const std::string& sv =
10033     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10034   if (sv.size() == 2
10035       && sv.data()[0] == elfcpp::Tag_CPU_arch
10036       && (sv.data()[1] & 128) != 128)
10037    return sv.data()[1];
10038
10039   // This tag is "safely ignorable", so don't complain if it looks funny.
10040   return -1;
10041 }
10042
10043 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10044 // The tag is removed if ARCH is -1.
10045 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10046
10047 template<bool big_endian>
10048 void
10049 Target_arm<big_endian>::set_secondary_compatible_arch(
10050     Attributes_section_data* pasd,
10051     int arch)
10052 {
10053   Object_attribute* known_attributes =
10054     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10055
10056   if (arch == -1)
10057     {
10058       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10059       return;
10060     }
10061
10062   // Note: the tag and its argument below are uleb128 values, though
10063   // currently-defined values fit in one byte for each.
10064   char sv[3];
10065   sv[0] = elfcpp::Tag_CPU_arch;
10066   gold_assert(arch != 0);
10067   sv[1] = arch;
10068   sv[2] = '\0';
10069
10070   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10071 }
10072
10073 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10074 // into account.
10075 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10076
10077 template<bool big_endian>
10078 int
10079 Target_arm<big_endian>::tag_cpu_arch_combine(
10080     const char* name,
10081     int oldtag,
10082     int* secondary_compat_out,
10083     int newtag,
10084     int secondary_compat)
10085 {
10086 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10087   static const int v6t2[] =
10088     {
10089       T(V6T2),   // PRE_V4.
10090       T(V6T2),   // V4.
10091       T(V6T2),   // V4T.
10092       T(V6T2),   // V5T.
10093       T(V6T2),   // V5TE.
10094       T(V6T2),   // V5TEJ.
10095       T(V6T2),   // V6.
10096       T(V7),     // V6KZ.
10097       T(V6T2)    // V6T2.
10098     };
10099   static const int v6k[] =
10100     {
10101       T(V6K),    // PRE_V4.
10102       T(V6K),    // V4.
10103       T(V6K),    // V4T.
10104       T(V6K),    // V5T.
10105       T(V6K),    // V5TE.
10106       T(V6K),    // V5TEJ.
10107       T(V6K),    // V6.
10108       T(V6KZ),   // V6KZ.
10109       T(V7),     // V6T2.
10110       T(V6K)     // V6K.
10111     };
10112   static const int v7[] =
10113     {
10114       T(V7),     // PRE_V4.
10115       T(V7),     // V4.
10116       T(V7),     // V4T.
10117       T(V7),     // V5T.
10118       T(V7),     // V5TE.
10119       T(V7),     // V5TEJ.
10120       T(V7),     // V6.
10121       T(V7),     // V6KZ.
10122       T(V7),     // V6T2.
10123       T(V7),     // V6K.
10124       T(V7)      // V7.
10125     };
10126   static const int v6_m[] =
10127     {
10128       -1,        // PRE_V4.
10129       -1,        // V4.
10130       T(V6K),    // V4T.
10131       T(V6K),    // V5T.
10132       T(V6K),    // V5TE.
10133       T(V6K),    // V5TEJ.
10134       T(V6K),    // V6.
10135       T(V6KZ),   // V6KZ.
10136       T(V7),     // V6T2.
10137       T(V6K),    // V6K.
10138       T(V7),     // V7.
10139       T(V6_M)    // V6_M.
10140     };
10141   static const int v6s_m[] =
10142     {
10143       -1,        // PRE_V4.
10144       -1,        // V4.
10145       T(V6K),    // V4T.
10146       T(V6K),    // V5T.
10147       T(V6K),    // V5TE.
10148       T(V6K),    // V5TEJ.
10149       T(V6K),    // V6.
10150       T(V6KZ),   // V6KZ.
10151       T(V7),     // V6T2.
10152       T(V6K),    // V6K.
10153       T(V7),     // V7.
10154       T(V6S_M),  // V6_M.
10155       T(V6S_M)   // V6S_M.
10156     };
10157   static const int v7e_m[] =
10158     {
10159       -1,       // PRE_V4.
10160       -1,       // V4.
10161       T(V7E_M), // V4T.
10162       T(V7E_M), // V5T.
10163       T(V7E_M), // V5TE.
10164       T(V7E_M), // V5TEJ.
10165       T(V7E_M), // V6.
10166       T(V7E_M), // V6KZ.
10167       T(V7E_M), // V6T2.
10168       T(V7E_M), // V6K.
10169       T(V7E_M), // V7.
10170       T(V7E_M), // V6_M.
10171       T(V7E_M), // V6S_M.
10172       T(V7E_M)  // V7E_M.
10173     };
10174   static const int v4t_plus_v6_m[] =
10175     {
10176       -1,               // PRE_V4.
10177       -1,               // V4.
10178       T(V4T),           // V4T.
10179       T(V5T),           // V5T.
10180       T(V5TE),          // V5TE.
10181       T(V5TEJ),         // V5TEJ.
10182       T(V6),            // V6.
10183       T(V6KZ),          // V6KZ.
10184       T(V6T2),          // V6T2.
10185       T(V6K),           // V6K.
10186       T(V7),            // V7.
10187       T(V6_M),          // V6_M.
10188       T(V6S_M),         // V6S_M.
10189       T(V7E_M),         // V7E_M.
10190       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10191     };
10192   static const int* comb[] =
10193     {
10194       v6t2,
10195       v6k,
10196       v7,
10197       v6_m,
10198       v6s_m,
10199       v7e_m,
10200       // Pseudo-architecture.
10201       v4t_plus_v6_m
10202     };
10203
10204   // Check we've not got a higher architecture than we know about.
10205
10206   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10207     {
10208       gold_error(_("%s: unknown CPU architecture"), name);
10209       return -1;
10210     }
10211
10212   // Override old tag if we have a Tag_also_compatible_with on the output.
10213
10214   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10215       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10216     oldtag = T(V4T_PLUS_V6_M);
10217
10218   // And override the new tag if we have a Tag_also_compatible_with on the
10219   // input.
10220
10221   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10222       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10223     newtag = T(V4T_PLUS_V6_M);
10224
10225   // Architectures before V6KZ add features monotonically.
10226   int tagh = std::max(oldtag, newtag);
10227   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10228     return tagh;
10229
10230   int tagl = std::min(oldtag, newtag);
10231   int result = comb[tagh - T(V6T2)][tagl];
10232
10233   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10234   // as the canonical version.
10235   if (result == T(V4T_PLUS_V6_M))
10236     {
10237       result = T(V4T);
10238       *secondary_compat_out = T(V6_M);
10239     }
10240   else
10241     *secondary_compat_out = -1;
10242
10243   if (result == -1)
10244     {
10245       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10246                  name, oldtag, newtag);
10247       return -1;
10248     }
10249
10250   return result;
10251 #undef T
10252 }
10253
10254 // Helper to print AEABI enum tag value.
10255
10256 template<bool big_endian>
10257 std::string
10258 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10259 {
10260   static const char* aeabi_enum_names[] =
10261     { "", "variable-size", "32-bit", "" };
10262   const size_t aeabi_enum_names_size =
10263     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10264
10265   if (value < aeabi_enum_names_size)
10266     return std::string(aeabi_enum_names[value]);
10267   else
10268     {
10269       char buffer[100];
10270       sprintf(buffer, "<unknown value %u>", value);
10271       return std::string(buffer);
10272     }
10273 }
10274
10275 // Return the string value to store in TAG_CPU_name.
10276
10277 template<bool big_endian>
10278 std::string
10279 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10280 {
10281   static const char* name_table[] = {
10282     // These aren't real CPU names, but we can't guess
10283     // that from the architecture version alone.
10284    "Pre v4",
10285    "ARM v4",
10286    "ARM v4T",
10287    "ARM v5T",
10288    "ARM v5TE",
10289    "ARM v5TEJ",
10290    "ARM v6",
10291    "ARM v6KZ",
10292    "ARM v6T2",
10293    "ARM v6K",
10294    "ARM v7",
10295    "ARM v6-M",
10296    "ARM v6S-M",
10297    "ARM v7E-M"
10298  };
10299  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10300
10301   if (value < name_table_size)
10302     return std::string(name_table[value]);
10303   else
10304     {
10305       char buffer[100];
10306       sprintf(buffer, "<unknown CPU value %u>", value);
10307       return std::string(buffer);
10308     } 
10309 }
10310
10311 // Merge object attributes from input file called NAME with those of the
10312 // output.  The input object attributes are in the object pointed by PASD.
10313
10314 template<bool big_endian>
10315 void
10316 Target_arm<big_endian>::merge_object_attributes(
10317     const char* name,
10318     const Attributes_section_data* pasd)
10319 {
10320   // Return if there is no attributes section data.
10321   if (pasd == NULL)
10322     return;
10323
10324   // If output has no object attributes, just copy.
10325   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10326   if (this->attributes_section_data_ == NULL)
10327     {
10328       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10329       Object_attribute* out_attr =
10330         this->attributes_section_data_->known_attributes(vendor);
10331
10332       // We do not output objects with Tag_MPextension_use_legacy - we move
10333       //  the attribute's value to Tag_MPextension_use.  */
10334       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10335         {
10336           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10337               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10338                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10339             {
10340               gold_error(_("%s has both the current and legacy "
10341                            "Tag_MPextension_use attributes"),
10342                          name);
10343             }
10344
10345           out_attr[elfcpp::Tag_MPextension_use] =
10346             out_attr[elfcpp::Tag_MPextension_use_legacy];
10347           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10348           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10349         }
10350
10351       return;
10352     }
10353
10354   const Object_attribute* in_attr = pasd->known_attributes(vendor);
10355   Object_attribute* out_attr =
10356     this->attributes_section_data_->known_attributes(vendor);
10357
10358   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10359   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10360       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10361     {
10362       // Ignore mismatches if the object doesn't use floating point.  */
10363       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10364         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10365             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10366       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10367                && parameters->options().warn_mismatch())
10368         gold_error(_("%s uses VFP register arguments, output does not"),
10369                    name);
10370     }
10371
10372   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10373     {
10374       // Merge this attribute with existing attributes.
10375       switch (i)
10376         {
10377         case elfcpp::Tag_CPU_raw_name:
10378         case elfcpp::Tag_CPU_name:
10379           // These are merged after Tag_CPU_arch.
10380           break;
10381
10382         case elfcpp::Tag_ABI_optimization_goals:
10383         case elfcpp::Tag_ABI_FP_optimization_goals:
10384           // Use the first value seen.
10385           break;
10386
10387         case elfcpp::Tag_CPU_arch:
10388           {
10389             unsigned int saved_out_attr = out_attr->int_value();
10390             // Merge Tag_CPU_arch and Tag_also_compatible_with.
10391             int secondary_compat =
10392               this->get_secondary_compatible_arch(pasd);
10393             int secondary_compat_out =
10394               this->get_secondary_compatible_arch(
10395                   this->attributes_section_data_);
10396             out_attr[i].set_int_value(
10397                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10398                                      &secondary_compat_out,
10399                                      in_attr[i].int_value(),
10400                                      secondary_compat));
10401             this->set_secondary_compatible_arch(this->attributes_section_data_,
10402                                                 secondary_compat_out);
10403
10404             // Merge Tag_CPU_name and Tag_CPU_raw_name.
10405             if (out_attr[i].int_value() == saved_out_attr)
10406               ; // Leave the names alone.
10407             else if (out_attr[i].int_value() == in_attr[i].int_value())
10408               {
10409                 // The output architecture has been changed to match the
10410                 // input architecture.  Use the input names.
10411                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10412                     in_attr[elfcpp::Tag_CPU_name].string_value());
10413                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10414                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10415               }
10416             else
10417               {
10418                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10419                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10420               }
10421
10422             // If we still don't have a value for Tag_CPU_name,
10423             // make one up now.  Tag_CPU_raw_name remains blank.
10424             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10425               {
10426                 const std::string cpu_name =
10427                   this->tag_cpu_name_value(out_attr[i].int_value());
10428                 // FIXME:  If we see an unknown CPU, this will be set
10429                 // to "<unknown CPU n>", where n is the attribute value.
10430                 // This is different from BFD, which leaves the name alone.
10431                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10432               }
10433           }
10434           break;
10435
10436         case elfcpp::Tag_ARM_ISA_use:
10437         case elfcpp::Tag_THUMB_ISA_use:
10438         case elfcpp::Tag_WMMX_arch:
10439         case elfcpp::Tag_Advanced_SIMD_arch:
10440           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10441         case elfcpp::Tag_ABI_FP_rounding:
10442         case elfcpp::Tag_ABI_FP_exceptions:
10443         case elfcpp::Tag_ABI_FP_user_exceptions:
10444         case elfcpp::Tag_ABI_FP_number_model:
10445         case elfcpp::Tag_VFP_HP_extension:
10446         case elfcpp::Tag_CPU_unaligned_access:
10447         case elfcpp::Tag_T2EE_use:
10448         case elfcpp::Tag_Virtualization_use:
10449         case elfcpp::Tag_MPextension_use:
10450           // Use the largest value specified.
10451           if (in_attr[i].int_value() > out_attr[i].int_value())
10452             out_attr[i].set_int_value(in_attr[i].int_value());
10453           break;
10454
10455         case elfcpp::Tag_ABI_align8_preserved:
10456         case elfcpp::Tag_ABI_PCS_RO_data:
10457           // Use the smallest value specified.
10458           if (in_attr[i].int_value() < out_attr[i].int_value())
10459             out_attr[i].set_int_value(in_attr[i].int_value());
10460           break;
10461
10462         case elfcpp::Tag_ABI_align8_needed:
10463           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10464               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10465                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10466                       == 0)))
10467             {
10468               // This error message should be enabled once all non-conforming
10469               // binaries in the toolchain have had the attributes set
10470               // properly.
10471               // gold_error(_("output 8-byte data alignment conflicts with %s"),
10472               //            name);
10473             }
10474           // Fall through.
10475         case elfcpp::Tag_ABI_FP_denormal:
10476         case elfcpp::Tag_ABI_PCS_GOT_use:
10477           {
10478             // These tags have 0 = don't care, 1 = strong requirement,
10479             // 2 = weak requirement.
10480             static const int order_021[3] = {0, 2, 1};
10481
10482             // Use the "greatest" from the sequence 0, 2, 1, or the largest
10483             // value if greater than 2 (for future-proofing).
10484             if ((in_attr[i].int_value() > 2
10485                  && in_attr[i].int_value() > out_attr[i].int_value())
10486                 || (in_attr[i].int_value() <= 2
10487                     && out_attr[i].int_value() <= 2
10488                     && (order_021[in_attr[i].int_value()]
10489                         > order_021[out_attr[i].int_value()])))
10490               out_attr[i].set_int_value(in_attr[i].int_value());
10491           }
10492           break;
10493
10494         case elfcpp::Tag_CPU_arch_profile:
10495           if (out_attr[i].int_value() != in_attr[i].int_value())
10496             {
10497               // 0 will merge with anything.
10498               // 'A' and 'S' merge to 'A'.
10499               // 'R' and 'S' merge to 'R'.
10500               // 'M' and 'A|R|S' is an error.
10501               if (out_attr[i].int_value() == 0
10502                   || (out_attr[i].int_value() == 'S'
10503                       && (in_attr[i].int_value() == 'A'
10504                           || in_attr[i].int_value() == 'R')))
10505                 out_attr[i].set_int_value(in_attr[i].int_value());
10506               else if (in_attr[i].int_value() == 0
10507                        || (in_attr[i].int_value() == 'S'
10508                            && (out_attr[i].int_value() == 'A'
10509                                || out_attr[i].int_value() == 'R')))
10510                 ; // Do nothing.
10511               else if (parameters->options().warn_mismatch())
10512                 {
10513                   gold_error
10514                     (_("conflicting architecture profiles %c/%c"),
10515                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10516                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10517                 }
10518             }
10519           break;
10520         case elfcpp::Tag_VFP_arch:
10521             {
10522               static const struct
10523               {
10524                   int ver;
10525                   int regs;
10526               } vfp_versions[7] =
10527                 {
10528                   {0, 0},
10529                   {1, 16},
10530                   {2, 16},
10531                   {3, 32},
10532                   {3, 16},
10533                   {4, 32},
10534                   {4, 16}
10535                 };
10536
10537               // Values greater than 6 aren't defined, so just pick the
10538               // biggest.
10539               if (in_attr[i].int_value() > 6
10540                   && in_attr[i].int_value() > out_attr[i].int_value())
10541                 {
10542                   *out_attr = *in_attr;
10543                   break;
10544                 }
10545               // The output uses the superset of input features
10546               // (ISA version) and registers.
10547               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10548                                  vfp_versions[out_attr[i].int_value()].ver);
10549               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10550                                   vfp_versions[out_attr[i].int_value()].regs);
10551               // This assumes all possible supersets are also a valid
10552               // options.
10553               int newval;
10554               for (newval = 6; newval > 0; newval--)
10555                 {
10556                   if (regs == vfp_versions[newval].regs
10557                       && ver == vfp_versions[newval].ver)
10558                     break;
10559                 }
10560               out_attr[i].set_int_value(newval);
10561             }
10562           break;
10563         case elfcpp::Tag_PCS_config:
10564           if (out_attr[i].int_value() == 0)
10565             out_attr[i].set_int_value(in_attr[i].int_value());
10566           else if (in_attr[i].int_value() != 0
10567                    && out_attr[i].int_value() != 0
10568                    && parameters->options().warn_mismatch())
10569             {
10570               // It's sometimes ok to mix different configs, so this is only
10571               // a warning.
10572               gold_warning(_("%s: conflicting platform configuration"), name);
10573             }
10574           break;
10575         case elfcpp::Tag_ABI_PCS_R9_use:
10576           if (in_attr[i].int_value() != out_attr[i].int_value()
10577               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10578               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10579               && parameters->options().warn_mismatch())
10580             {
10581               gold_error(_("%s: conflicting use of R9"), name);
10582             }
10583           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10584             out_attr[i].set_int_value(in_attr[i].int_value());
10585           break;
10586         case elfcpp::Tag_ABI_PCS_RW_data:
10587           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10588               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10589                   != elfcpp::AEABI_R9_SB)
10590               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10591                   != elfcpp::AEABI_R9_unused)
10592               && parameters->options().warn_mismatch())
10593             {
10594               gold_error(_("%s: SB relative addressing conflicts with use "
10595                            "of R9"),
10596                            name);
10597             }
10598           // Use the smallest value specified.
10599           if (in_attr[i].int_value() < out_attr[i].int_value())
10600             out_attr[i].set_int_value(in_attr[i].int_value());
10601           break;
10602         case elfcpp::Tag_ABI_PCS_wchar_t:
10603           if (out_attr[i].int_value()
10604               && in_attr[i].int_value()
10605               && out_attr[i].int_value() != in_attr[i].int_value()
10606               && parameters->options().warn_mismatch()
10607               && parameters->options().wchar_size_warning())
10608             {
10609               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10610                              "use %u-byte wchar_t; use of wchar_t values "
10611                              "across objects may fail"),
10612                            name, in_attr[i].int_value(),
10613                            out_attr[i].int_value());
10614             }
10615           else if (in_attr[i].int_value() && !out_attr[i].int_value())
10616             out_attr[i].set_int_value(in_attr[i].int_value());
10617           break;
10618         case elfcpp::Tag_ABI_enum_size:
10619           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10620             {
10621               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10622                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10623                 {
10624                   // The existing object is compatible with anything.
10625                   // Use whatever requirements the new object has.
10626                   out_attr[i].set_int_value(in_attr[i].int_value());
10627                 }
10628               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10629                        && out_attr[i].int_value() != in_attr[i].int_value()
10630                        && parameters->options().warn_mismatch()
10631                        && parameters->options().enum_size_warning())
10632                 {
10633                   unsigned int in_value = in_attr[i].int_value();
10634                   unsigned int out_value = out_attr[i].int_value();
10635                   gold_warning(_("%s uses %s enums yet the output is to use "
10636                                  "%s enums; use of enum values across objects "
10637                                  "may fail"),
10638                                name,
10639                                this->aeabi_enum_name(in_value).c_str(),
10640                                this->aeabi_enum_name(out_value).c_str());
10641                 }
10642             }
10643           break;
10644         case elfcpp::Tag_ABI_VFP_args:
10645           // Already done.
10646           break;
10647         case elfcpp::Tag_ABI_WMMX_args:
10648           if (in_attr[i].int_value() != out_attr[i].int_value()
10649               && parameters->options().warn_mismatch())
10650             {
10651               gold_error(_("%s uses iWMMXt register arguments, output does "
10652                            "not"),
10653                          name);
10654             }
10655           break;
10656         case Object_attribute::Tag_compatibility:
10657           // Merged in target-independent code.
10658           break;
10659         case elfcpp::Tag_ABI_HardFP_use:
10660           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10661           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10662               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10663             out_attr[i].set_int_value(3);
10664           else if (in_attr[i].int_value() > out_attr[i].int_value())
10665             out_attr[i].set_int_value(in_attr[i].int_value());
10666           break;
10667         case elfcpp::Tag_ABI_FP_16bit_format:
10668           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10669             {
10670               if (in_attr[i].int_value() != out_attr[i].int_value()
10671                   && parameters->options().warn_mismatch())
10672                 gold_error(_("fp16 format mismatch between %s and output"),
10673                            name);
10674             }
10675           if (in_attr[i].int_value() != 0)
10676             out_attr[i].set_int_value(in_attr[i].int_value());
10677           break;
10678
10679         case elfcpp::Tag_DIV_use:
10680           // This tag is set to zero if we can use UDIV and SDIV in Thumb
10681           // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10682           // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10683           // CPU.  We will merge as follows: If the input attribute's value
10684           // is one then the output attribute's value remains unchanged.  If
10685           // the input attribute's value is zero or two then if the output
10686           // attribute's value is one the output value is set to the input
10687           // value, otherwise the output value must be the same as the
10688           // inputs.  */ 
10689           if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) 
10690             { 
10691               if (in_attr[i].int_value() != out_attr[i].int_value())
10692                 {
10693                   gold_error(_("DIV usage mismatch between %s and output"),
10694                              name);
10695                 }
10696             } 
10697
10698           if (in_attr[i].int_value() != 1)
10699             out_attr[i].set_int_value(in_attr[i].int_value()); 
10700           
10701           break;
10702
10703         case elfcpp::Tag_MPextension_use_legacy:
10704           // We don't output objects with Tag_MPextension_use_legacy - we
10705           // move the value to Tag_MPextension_use.
10706           if (in_attr[i].int_value() != 0
10707               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10708             {
10709               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10710                   != in_attr[i].int_value())
10711                 {
10712                   gold_error(_("%s has has both the current and legacy "
10713                                "Tag_MPextension_use attributes"), 
10714                              name);
10715                 }
10716             }
10717
10718           if (in_attr[i].int_value()
10719               > out_attr[elfcpp::Tag_MPextension_use].int_value())
10720             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10721
10722           break;
10723
10724         case elfcpp::Tag_nodefaults:
10725           // This tag is set if it exists, but the value is unused (and is
10726           // typically zero).  We don't actually need to do anything here -
10727           // the merge happens automatically when the type flags are merged
10728           // below.
10729           break;
10730         case elfcpp::Tag_also_compatible_with:
10731           // Already done in Tag_CPU_arch.
10732           break;
10733         case elfcpp::Tag_conformance:
10734           // Keep the attribute if it matches.  Throw it away otherwise.
10735           // No attribute means no claim to conform.
10736           if (in_attr[i].string_value() != out_attr[i].string_value())
10737             out_attr[i].set_string_value("");
10738           break;
10739
10740         default:
10741           {
10742             const char* err_object = NULL;
10743
10744             // The "known_obj_attributes" table does contain some undefined
10745             // attributes.  Ensure that there are unused.
10746             if (out_attr[i].int_value() != 0
10747                 || out_attr[i].string_value() != "")
10748               err_object = "output";
10749             else if (in_attr[i].int_value() != 0
10750                      || in_attr[i].string_value() != "")
10751               err_object = name;
10752
10753             if (err_object != NULL
10754                 && parameters->options().warn_mismatch())
10755               {
10756                 // Attribute numbers >=64 (mod 128) can be safely ignored.
10757                 if ((i & 127) < 64)
10758                   gold_error(_("%s: unknown mandatory EABI object attribute "
10759                                "%d"),
10760                              err_object, i);
10761                 else
10762                   gold_warning(_("%s: unknown EABI object attribute %d"),
10763                                err_object, i);
10764               }
10765
10766             // Only pass on attributes that match in both inputs.
10767             if (!in_attr[i].matches(out_attr[i]))
10768               {
10769                 out_attr[i].set_int_value(0);
10770                 out_attr[i].set_string_value("");
10771               }
10772           }
10773         }
10774
10775       // If out_attr was copied from in_attr then it won't have a type yet.
10776       if (in_attr[i].type() && !out_attr[i].type())
10777         out_attr[i].set_type(in_attr[i].type());
10778     }
10779
10780   // Merge Tag_compatibility attributes and any common GNU ones.
10781   this->attributes_section_data_->merge(name, pasd);
10782
10783   // Check for any attributes not known on ARM.
10784   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10785   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10786   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10787   Other_attributes* out_other_attributes =
10788     this->attributes_section_data_->other_attributes(vendor);
10789   Other_attributes::iterator out_iter = out_other_attributes->begin();
10790
10791   while (in_iter != in_other_attributes->end()
10792          || out_iter != out_other_attributes->end())
10793     {
10794       const char* err_object = NULL;
10795       int err_tag = 0;
10796
10797       // The tags for each list are in numerical order.
10798       // If the tags are equal, then merge.
10799       if (out_iter != out_other_attributes->end()
10800           && (in_iter == in_other_attributes->end()
10801               || in_iter->first > out_iter->first))
10802         {
10803           // This attribute only exists in output.  We can't merge, and we
10804           // don't know what the tag means, so delete it.
10805           err_object = "output";
10806           err_tag = out_iter->first;
10807           int saved_tag = out_iter->first;
10808           delete out_iter->second;
10809           out_other_attributes->erase(out_iter); 
10810           out_iter = out_other_attributes->upper_bound(saved_tag);
10811         }
10812       else if (in_iter != in_other_attributes->end()
10813                && (out_iter != out_other_attributes->end()
10814                    || in_iter->first < out_iter->first))
10815         {
10816           // This attribute only exists in input. We can't merge, and we
10817           // don't know what the tag means, so ignore it.
10818           err_object = name;
10819           err_tag = in_iter->first;
10820           ++in_iter;
10821         }
10822       else // The tags are equal.
10823         {
10824           // As present, all attributes in the list are unknown, and
10825           // therefore can't be merged meaningfully.
10826           err_object = "output";
10827           err_tag = out_iter->first;
10828
10829           //  Only pass on attributes that match in both inputs.
10830           if (!in_iter->second->matches(*(out_iter->second)))
10831             {
10832               // No match.  Delete the attribute.
10833               int saved_tag = out_iter->first;
10834               delete out_iter->second;
10835               out_other_attributes->erase(out_iter);
10836               out_iter = out_other_attributes->upper_bound(saved_tag);
10837             }
10838           else
10839             {
10840               // Matched.  Keep the attribute and move to the next.
10841               ++out_iter;
10842               ++in_iter;
10843             }
10844         }
10845
10846       if (err_object && parameters->options().warn_mismatch())
10847         {
10848           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10849           if ((err_tag & 127) < 64)
10850             {
10851               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10852                          err_object, err_tag);
10853             }
10854           else
10855             {
10856               gold_warning(_("%s: unknown EABI object attribute %d"),
10857                            err_object, err_tag);
10858             }
10859         }
10860     }
10861 }
10862
10863 // Stub-generation methods for Target_arm.
10864
10865 // Make a new Arm_input_section object.
10866
10867 template<bool big_endian>
10868 Arm_input_section<big_endian>*
10869 Target_arm<big_endian>::new_arm_input_section(
10870     Relobj* relobj,
10871     unsigned int shndx)
10872 {
10873   Section_id sid(relobj, shndx);
10874
10875   Arm_input_section<big_endian>* arm_input_section =
10876     new Arm_input_section<big_endian>(relobj, shndx);
10877   arm_input_section->init();
10878
10879   // Register new Arm_input_section in map for look-up.
10880   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10881     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10882
10883   // Make sure that it we have not created another Arm_input_section
10884   // for this input section already.
10885   gold_assert(ins.second);
10886
10887   return arm_input_section; 
10888 }
10889
10890 // Find the Arm_input_section object corresponding to the SHNDX-th input
10891 // section of RELOBJ.
10892
10893 template<bool big_endian>
10894 Arm_input_section<big_endian>*
10895 Target_arm<big_endian>::find_arm_input_section(
10896     Relobj* relobj,
10897     unsigned int shndx) const
10898 {
10899   Section_id sid(relobj, shndx);
10900   typename Arm_input_section_map::const_iterator p =
10901     this->arm_input_section_map_.find(sid);
10902   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10903 }
10904
10905 // Make a new stub table.
10906
10907 template<bool big_endian>
10908 Stub_table<big_endian>*
10909 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10910 {
10911   Stub_table<big_endian>* stub_table =
10912     new Stub_table<big_endian>(owner);
10913   this->stub_tables_.push_back(stub_table);
10914
10915   stub_table->set_address(owner->address() + owner->data_size());
10916   stub_table->set_file_offset(owner->offset() + owner->data_size());
10917   stub_table->finalize_data_size();
10918
10919   return stub_table;
10920 }
10921
10922 // Scan a relocation for stub generation.
10923
10924 template<bool big_endian>
10925 void
10926 Target_arm<big_endian>::scan_reloc_for_stub(
10927     const Relocate_info<32, big_endian>* relinfo,
10928     unsigned int r_type,
10929     const Sized_symbol<32>* gsym,
10930     unsigned int r_sym,
10931     const Symbol_value<32>* psymval,
10932     elfcpp::Elf_types<32>::Elf_Swxword addend,
10933     Arm_address address)
10934 {
10935   typedef typename Target_arm<big_endian>::Relocate Relocate;
10936
10937   const Arm_relobj<big_endian>* arm_relobj =
10938     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10939
10940   bool target_is_thumb;
10941   Symbol_value<32> symval;
10942   if (gsym != NULL)
10943     {
10944       // This is a global symbol.  Determine if we use PLT and if the
10945       // final target is THUMB.
10946       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10947         {
10948           // This uses a PLT, change the symbol value.
10949           symval.set_output_value(this->plt_section()->address()
10950                                   + gsym->plt_offset());
10951           psymval = &symval;
10952           target_is_thumb = false;
10953         }
10954       else if (gsym->is_undefined())
10955         // There is no need to generate a stub symbol is undefined.
10956         return;
10957       else
10958         {
10959           target_is_thumb =
10960             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10961              || (gsym->type() == elfcpp::STT_FUNC
10962                  && !gsym->is_undefined()
10963                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10964         }
10965     }
10966   else
10967     {
10968       // This is a local symbol.  Determine if the final target is THUMB.
10969       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10970     }
10971
10972   // Strip LSB if this points to a THUMB target.
10973   const Arm_reloc_property* reloc_property =
10974     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10975   gold_assert(reloc_property != NULL);
10976   if (target_is_thumb
10977       && reloc_property->uses_thumb_bit()
10978       && ((psymval->value(arm_relobj, 0) & 1) != 0))
10979     {
10980       Arm_address stripped_value =
10981         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10982       symval.set_output_value(stripped_value);
10983       psymval = &symval;
10984     } 
10985
10986   // Get the symbol value.
10987   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10988
10989   // Owing to pipelining, the PC relative branches below actually skip
10990   // two instructions when the branch offset is 0.
10991   Arm_address destination;
10992   switch (r_type)
10993     {
10994     case elfcpp::R_ARM_CALL:
10995     case elfcpp::R_ARM_JUMP24:
10996     case elfcpp::R_ARM_PLT32:
10997       // ARM branches.
10998       destination = value + addend + 8;
10999       break;
11000     case elfcpp::R_ARM_THM_CALL:
11001     case elfcpp::R_ARM_THM_XPC22:
11002     case elfcpp::R_ARM_THM_JUMP24:
11003     case elfcpp::R_ARM_THM_JUMP19:
11004       // THUMB branches.
11005       destination = value + addend + 4;
11006       break;
11007     default:
11008       gold_unreachable();
11009     }
11010
11011   Reloc_stub* stub = NULL;
11012   Stub_type stub_type =
11013     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11014                                     target_is_thumb);
11015   if (stub_type != arm_stub_none)
11016     {
11017       // Try looking up an existing stub from a stub table.
11018       Stub_table<big_endian>* stub_table = 
11019         arm_relobj->stub_table(relinfo->data_shndx);
11020       gold_assert(stub_table != NULL);
11021    
11022       // Locate stub by destination.
11023       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11024
11025       // Create a stub if there is not one already
11026       stub = stub_table->find_reloc_stub(stub_key);
11027       if (stub == NULL)
11028         {
11029           // create a new stub and add it to stub table.
11030           stub = this->stub_factory().make_reloc_stub(stub_type);
11031           stub_table->add_reloc_stub(stub, stub_key);
11032         }
11033
11034       // Record the destination address.
11035       stub->set_destination_address(destination
11036                                     | (target_is_thumb ? 1 : 0));
11037     }
11038
11039   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11040   if (this->fix_cortex_a8_
11041       && (r_type == elfcpp::R_ARM_THM_JUMP24
11042           || r_type == elfcpp::R_ARM_THM_JUMP19
11043           || r_type == elfcpp::R_ARM_THM_CALL
11044           || r_type == elfcpp::R_ARM_THM_XPC22)
11045       && (address & 0xfffU) == 0xffeU)
11046     {
11047       // Found a candidate.  Note we haven't checked the destination is
11048       // within 4K here: if we do so (and don't create a record) we can't
11049       // tell that a branch should have been relocated when scanning later.
11050       this->cortex_a8_relocs_info_[address] =
11051         new Cortex_a8_reloc(stub, r_type,
11052                             destination | (target_is_thumb ? 1 : 0));
11053     }
11054 }
11055
11056 // This function scans a relocation sections for stub generation.
11057 // The template parameter Relocate must be a class type which provides
11058 // a single function, relocate(), which implements the machine
11059 // specific part of a relocation.
11060
11061 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11062 // SHT_REL or SHT_RELA.
11063
11064 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11065 // of relocs.  OUTPUT_SECTION is the output section.
11066 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11067 // mapped to output offsets.
11068
11069 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11070 // VIEW_SIZE is the size.  These refer to the input section, unless
11071 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11072 // the output section.
11073
11074 template<bool big_endian>
11075 template<int sh_type>
11076 void inline
11077 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11078     const Relocate_info<32, big_endian>* relinfo,
11079     const unsigned char* prelocs,
11080     size_t reloc_count,
11081     Output_section* output_section,
11082     bool needs_special_offset_handling,
11083     const unsigned char* view,
11084     elfcpp::Elf_types<32>::Elf_Addr view_address,
11085     section_size_type)
11086 {
11087   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11088   const int reloc_size =
11089     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11090
11091   Arm_relobj<big_endian>* arm_object =
11092     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11093   unsigned int local_count = arm_object->local_symbol_count();
11094
11095   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11096
11097   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11098     {
11099       Reltype reloc(prelocs);
11100
11101       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11102       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11103       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11104
11105       r_type = this->get_real_reloc_type(r_type);
11106
11107       // Only a few relocation types need stubs.
11108       if ((r_type != elfcpp::R_ARM_CALL)
11109          && (r_type != elfcpp::R_ARM_JUMP24)
11110          && (r_type != elfcpp::R_ARM_PLT32)
11111          && (r_type != elfcpp::R_ARM_THM_CALL)
11112          && (r_type != elfcpp::R_ARM_THM_XPC22)
11113          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11114          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11115          && (r_type != elfcpp::R_ARM_V4BX))
11116         continue;
11117
11118       section_offset_type offset =
11119         convert_to_section_size_type(reloc.get_r_offset());
11120
11121       if (needs_special_offset_handling)
11122         {
11123           offset = output_section->output_offset(relinfo->object,
11124                                                  relinfo->data_shndx,
11125                                                  offset);
11126           if (offset == -1)
11127             continue;
11128         }
11129
11130       // Create a v4bx stub if --fix-v4bx-interworking is used.
11131       if (r_type == elfcpp::R_ARM_V4BX)
11132         {
11133           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11134             {
11135               // Get the BX instruction.
11136               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11137               const Valtype* wv =
11138                 reinterpret_cast<const Valtype*>(view + offset);
11139               elfcpp::Elf_types<32>::Elf_Swxword insn =
11140                 elfcpp::Swap<32, big_endian>::readval(wv);
11141               const uint32_t reg = (insn & 0xf);
11142
11143               if (reg < 0xf)
11144                 {
11145                   // Try looking up an existing stub from a stub table.
11146                   Stub_table<big_endian>* stub_table =
11147                     arm_object->stub_table(relinfo->data_shndx);
11148                   gold_assert(stub_table != NULL);
11149
11150                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11151                     {
11152                       // create a new stub and add it to stub table.
11153                       Arm_v4bx_stub* stub =
11154                         this->stub_factory().make_arm_v4bx_stub(reg);
11155                       gold_assert(stub != NULL);
11156                       stub_table->add_arm_v4bx_stub(stub);
11157                     }
11158                 }
11159             }
11160           continue;
11161         }
11162
11163       // Get the addend.
11164       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11165       elfcpp::Elf_types<32>::Elf_Swxword addend =
11166         stub_addend_reader(r_type, view + offset, reloc);
11167
11168       const Sized_symbol<32>* sym;
11169
11170       Symbol_value<32> symval;
11171       const Symbol_value<32> *psymval;
11172       bool is_defined_in_discarded_section;
11173       unsigned int shndx;
11174       if (r_sym < local_count)
11175         {
11176           sym = NULL;
11177           psymval = arm_object->local_symbol(r_sym);
11178
11179           // If the local symbol belongs to a section we are discarding,
11180           // and that section is a debug section, try to find the
11181           // corresponding kept section and map this symbol to its
11182           // counterpart in the kept section.  The symbol must not 
11183           // correspond to a section we are folding.
11184           bool is_ordinary;
11185           shndx = psymval->input_shndx(&is_ordinary);
11186           is_defined_in_discarded_section =
11187             (is_ordinary
11188              && shndx != elfcpp::SHN_UNDEF
11189              && !arm_object->is_section_included(shndx)
11190              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11191
11192           // We need to compute the would-be final value of this local
11193           // symbol.
11194           if (!is_defined_in_discarded_section)
11195             {
11196               typedef Sized_relobj_file<32, big_endian> ObjType;
11197               typename ObjType::Compute_final_local_value_status status =
11198                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11199                                                       relinfo->symtab); 
11200               if (status == ObjType::CFLV_OK)
11201                 {
11202                   // Currently we cannot handle a branch to a target in
11203                   // a merged section.  If this is the case, issue an error
11204                   // and also free the merge symbol value.
11205                   if (!symval.has_output_value())
11206                     {
11207                       const std::string& section_name =
11208                         arm_object->section_name(shndx);
11209                       arm_object->error(_("cannot handle branch to local %u "
11210                                           "in a merged section %s"),
11211                                         r_sym, section_name.c_str());
11212                     }
11213                   psymval = &symval;
11214                 }
11215               else
11216                 {
11217                   // We cannot determine the final value.
11218                   continue;  
11219                 }
11220             }
11221         }
11222       else
11223         {
11224           const Symbol* gsym;
11225           gsym = arm_object->global_symbol(r_sym);
11226           gold_assert(gsym != NULL);
11227           if (gsym->is_forwarder())
11228             gsym = relinfo->symtab->resolve_forwards(gsym);
11229
11230           sym = static_cast<const Sized_symbol<32>*>(gsym);
11231           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11232             symval.set_output_symtab_index(sym->symtab_index());
11233           else
11234             symval.set_no_output_symtab_entry();
11235
11236           // We need to compute the would-be final value of this global
11237           // symbol.
11238           const Symbol_table* symtab = relinfo->symtab;
11239           const Sized_symbol<32>* sized_symbol =
11240             symtab->get_sized_symbol<32>(gsym);
11241           Symbol_table::Compute_final_value_status status;
11242           Arm_address value =
11243             symtab->compute_final_value<32>(sized_symbol, &status);
11244
11245           // Skip this if the symbol has not output section.
11246           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11247             continue;
11248           symval.set_output_value(value);
11249
11250           if (gsym->type() == elfcpp::STT_TLS)
11251             symval.set_is_tls_symbol();
11252           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11253             symval.set_is_ifunc_symbol();
11254           psymval = &symval;
11255
11256           is_defined_in_discarded_section =
11257             (gsym->is_defined_in_discarded_section()
11258              && gsym->is_undefined());
11259           shndx = 0;
11260         }
11261
11262       Symbol_value<32> symval2;
11263       if (is_defined_in_discarded_section)
11264         {
11265           if (comdat_behavior == CB_UNDETERMINED)
11266             {
11267               std::string name = arm_object->section_name(relinfo->data_shndx);
11268               comdat_behavior = get_comdat_behavior(name.c_str());
11269             }
11270           if (comdat_behavior == CB_PRETEND)
11271             {
11272               // FIXME: This case does not work for global symbols.
11273               // We have no place to store the original section index.
11274               // Fortunately this does not matter for comdat sections,
11275               // only for sections explicitly discarded by a linker
11276               // script.
11277               bool found;
11278               typename elfcpp::Elf_types<32>::Elf_Addr value =
11279                 arm_object->map_to_kept_section(shndx, &found);
11280               if (found)
11281                 symval2.set_output_value(value + psymval->input_value());
11282               else
11283                 symval2.set_output_value(0);
11284             }
11285           else
11286             {
11287               if (comdat_behavior == CB_WARNING)
11288                 gold_warning_at_location(relinfo, i, offset,
11289                                          _("relocation refers to discarded "
11290                                            "section"));
11291               symval2.set_output_value(0);
11292             }
11293           symval2.set_no_output_symtab_entry();
11294           psymval = &symval2;
11295         }
11296
11297       // If symbol is a section symbol, we don't know the actual type of
11298       // destination.  Give up.
11299       if (psymval->is_section_symbol())
11300         continue;
11301
11302       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11303                                 addend, view_address + offset);
11304     }
11305 }
11306
11307 // Scan an input section for stub generation.
11308
11309 template<bool big_endian>
11310 void
11311 Target_arm<big_endian>::scan_section_for_stubs(
11312     const Relocate_info<32, big_endian>* relinfo,
11313     unsigned int sh_type,
11314     const unsigned char* prelocs,
11315     size_t reloc_count,
11316     Output_section* output_section,
11317     bool needs_special_offset_handling,
11318     const unsigned char* view,
11319     Arm_address view_address,
11320     section_size_type view_size)
11321 {
11322   if (sh_type == elfcpp::SHT_REL)
11323     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11324         relinfo,
11325         prelocs,
11326         reloc_count,
11327         output_section,
11328         needs_special_offset_handling,
11329         view,
11330         view_address,
11331         view_size);
11332   else if (sh_type == elfcpp::SHT_RELA)
11333     // We do not support RELA type relocations yet.  This is provided for
11334     // completeness.
11335     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11336         relinfo,
11337         prelocs,
11338         reloc_count,
11339         output_section,
11340         needs_special_offset_handling,
11341         view,
11342         view_address,
11343         view_size);
11344   else
11345     gold_unreachable();
11346 }
11347
11348 // Group input sections for stub generation.
11349 //
11350 // We group input sections in an output section so that the total size,
11351 // including any padding space due to alignment is smaller than GROUP_SIZE
11352 // unless the only input section in group is bigger than GROUP_SIZE already.
11353 // Then an ARM stub table is created to follow the last input section
11354 // in group.  For each group an ARM stub table is created an is placed
11355 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11356 // extend the group after the stub table.
11357
11358 template<bool big_endian>
11359 void
11360 Target_arm<big_endian>::group_sections(
11361     Layout* layout,
11362     section_size_type group_size,
11363     bool stubs_always_after_branch,
11364     const Task* task)
11365 {
11366   // Group input sections and insert stub table
11367   Layout::Section_list section_list;
11368   layout->get_allocated_sections(&section_list);
11369   for (Layout::Section_list::const_iterator p = section_list.begin();
11370        p != section_list.end();
11371        ++p)
11372     {
11373       Arm_output_section<big_endian>* output_section =
11374         Arm_output_section<big_endian>::as_arm_output_section(*p);
11375       output_section->group_sections(group_size, stubs_always_after_branch,
11376                                      this, task);
11377     }
11378 }
11379
11380 // Relaxation hook.  This is where we do stub generation.
11381
11382 template<bool big_endian>
11383 bool
11384 Target_arm<big_endian>::do_relax(
11385     int pass,
11386     const Input_objects* input_objects,
11387     Symbol_table* symtab,
11388     Layout* layout,
11389     const Task* task)
11390 {
11391   // No need to generate stubs if this is a relocatable link.
11392   gold_assert(!parameters->options().relocatable());
11393
11394   // If this is the first pass, we need to group input sections into
11395   // stub groups.
11396   bool done_exidx_fixup = false;
11397   typedef typename Stub_table_list::iterator Stub_table_iterator;
11398   if (pass == 1)
11399     {
11400       // Determine the stub group size.  The group size is the absolute
11401       // value of the parameter --stub-group-size.  If --stub-group-size
11402       // is passed a negative value, we restrict stubs to be always after
11403       // the stubbed branches.
11404       int32_t stub_group_size_param =
11405         parameters->options().stub_group_size();
11406       bool stubs_always_after_branch = stub_group_size_param < 0;
11407       section_size_type stub_group_size = abs(stub_group_size_param);
11408
11409       if (stub_group_size == 1)
11410         {
11411           // Default value.
11412           // Thumb branch range is +-4MB has to be used as the default
11413           // maximum size (a given section can contain both ARM and Thumb
11414           // code, so the worst case has to be taken into account).  If we are
11415           // fixing cortex-a8 errata, the branch range has to be even smaller,
11416           // since wide conditional branch has a range of +-1MB only.
11417           //
11418           // This value is 48K less than that, which allows for 4096
11419           // 12-byte stubs.  If we exceed that, then we will fail to link.
11420           // The user will have to relink with an explicit group size
11421           // option.
11422             stub_group_size = 4145152;
11423         }
11424
11425       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11426       // page as the first half of a 32-bit branch straddling two 4K pages.
11427       // This is a crude way of enforcing that.  In addition, long conditional
11428       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11429       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11430       // cortex-A8 stubs from long conditional branches.
11431       if (this->fix_cortex_a8_)
11432         {
11433           stubs_always_after_branch = true;
11434           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11435           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11436         }
11437
11438       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11439      
11440       // Also fix .ARM.exidx section coverage.
11441       Arm_output_section<big_endian>* exidx_output_section = NULL;
11442       for (Layout::Section_list::const_iterator p =
11443              layout->section_list().begin();
11444            p != layout->section_list().end();
11445            ++p)
11446         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11447           {
11448             if (exidx_output_section == NULL)
11449               exidx_output_section =
11450                 Arm_output_section<big_endian>::as_arm_output_section(*p);
11451             else
11452               // We cannot handle this now.
11453               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11454                            "non-relocatable link"),
11455                           exidx_output_section->name(),
11456                           (*p)->name());
11457           }
11458
11459       if (exidx_output_section != NULL)
11460         {
11461           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11462                                    symtab, task);
11463           done_exidx_fixup = true;
11464         }
11465     }
11466   else
11467     {
11468       // If this is not the first pass, addresses and file offsets have
11469       // been reset at this point, set them here.
11470       for (Stub_table_iterator sp = this->stub_tables_.begin();
11471            sp != this->stub_tables_.end();
11472            ++sp)
11473         {
11474           Arm_input_section<big_endian>* owner = (*sp)->owner();
11475           off_t off = align_address(owner->original_size(),
11476                                     (*sp)->addralign());
11477           (*sp)->set_address_and_file_offset(owner->address() + off,
11478                                              owner->offset() + off);
11479         }
11480     }
11481
11482   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11483   // beginning of each relaxation pass, just blow away all the stubs.
11484   // Alternatively, we could selectively remove only the stubs and reloc
11485   // information for code sections that have moved since the last pass.
11486   // That would require more book-keeping.
11487   if (this->fix_cortex_a8_)
11488     {
11489       // Clear all Cortex-A8 reloc information.
11490       for (typename Cortex_a8_relocs_info::const_iterator p =
11491              this->cortex_a8_relocs_info_.begin();
11492            p != this->cortex_a8_relocs_info_.end();
11493            ++p)
11494         delete p->second;
11495       this->cortex_a8_relocs_info_.clear();
11496
11497       // Remove all Cortex-A8 stubs.
11498       for (Stub_table_iterator sp = this->stub_tables_.begin();
11499            sp != this->stub_tables_.end();
11500            ++sp)
11501         (*sp)->remove_all_cortex_a8_stubs();
11502     }
11503   
11504   // Scan relocs for relocation stubs
11505   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11506        op != input_objects->relobj_end();
11507        ++op)
11508     {
11509       Arm_relobj<big_endian>* arm_relobj =
11510         Arm_relobj<big_endian>::as_arm_relobj(*op);
11511       // Lock the object so we can read from it.  This is only called
11512       // single-threaded from Layout::finalize, so it is OK to lock.
11513       Task_lock_obj<Object> tl(task, arm_relobj);
11514       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11515     }
11516
11517   // Check all stub tables to see if any of them have their data sizes
11518   // or addresses alignments changed.  These are the only things that
11519   // matter.
11520   bool any_stub_table_changed = false;
11521   Unordered_set<const Output_section*> sections_needing_adjustment;
11522   for (Stub_table_iterator sp = this->stub_tables_.begin();
11523        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11524        ++sp)
11525     {
11526       if ((*sp)->update_data_size_and_addralign())
11527         {
11528           // Update data size of stub table owner.
11529           Arm_input_section<big_endian>* owner = (*sp)->owner();
11530           uint64_t address = owner->address();
11531           off_t offset = owner->offset();
11532           owner->reset_address_and_file_offset();
11533           owner->set_address_and_file_offset(address, offset);
11534
11535           sections_needing_adjustment.insert(owner->output_section());
11536           any_stub_table_changed = true;
11537         }
11538     }
11539
11540   // Output_section_data::output_section() returns a const pointer but we
11541   // need to update output sections, so we record all output sections needing
11542   // update above and scan the sections here to find out what sections need
11543   // to be updated.
11544   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11545       p != layout->section_list().end();
11546       ++p)
11547     {
11548       if (sections_needing_adjustment.find(*p)
11549           != sections_needing_adjustment.end())
11550         (*p)->set_section_offsets_need_adjustment();
11551     }
11552
11553   // Stop relaxation if no EXIDX fix-up and no stub table change.
11554   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11555
11556   // Finalize the stubs in the last relaxation pass.
11557   if (!continue_relaxation)
11558     {
11559       for (Stub_table_iterator sp = this->stub_tables_.begin();
11560            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11561             ++sp)
11562         (*sp)->finalize_stubs();
11563
11564       // Update output local symbol counts of objects if necessary.
11565       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11566            op != input_objects->relobj_end();
11567            ++op)
11568         {
11569           Arm_relobj<big_endian>* arm_relobj =
11570             Arm_relobj<big_endian>::as_arm_relobj(*op);
11571
11572           // Update output local symbol counts.  We need to discard local
11573           // symbols defined in parts of input sections that are discarded by
11574           // relaxation.
11575           if (arm_relobj->output_local_symbol_count_needs_update())
11576             {
11577               // We need to lock the object's file to update it.
11578               Task_lock_obj<Object> tl(task, arm_relobj);
11579               arm_relobj->update_output_local_symbol_count();
11580             }
11581         }
11582     }
11583
11584   return continue_relaxation;
11585 }
11586
11587 // Relocate a stub.
11588
11589 template<bool big_endian>
11590 void
11591 Target_arm<big_endian>::relocate_stub(
11592     Stub* stub,
11593     const Relocate_info<32, big_endian>* relinfo,
11594     Output_section* output_section,
11595     unsigned char* view,
11596     Arm_address address,
11597     section_size_type view_size)
11598 {
11599   Relocate relocate;
11600   const Stub_template* stub_template = stub->stub_template();
11601   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11602     {
11603       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11604       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11605
11606       unsigned int r_type = insn->r_type();
11607       section_size_type reloc_offset = stub_template->reloc_offset(i);
11608       section_size_type reloc_size = insn->size();
11609       gold_assert(reloc_offset + reloc_size <= view_size);
11610
11611       // This is the address of the stub destination.
11612       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11613       Symbol_value<32> symval;
11614       symval.set_output_value(target);
11615
11616       // Synthesize a fake reloc just in case.  We don't have a symbol so
11617       // we use 0.
11618       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11619       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11620       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11621       reloc_write.put_r_offset(reloc_offset);
11622       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11623       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11624
11625       relocate.relocate(relinfo, this, output_section,
11626                         this->fake_relnum_for_stubs, rel, r_type,
11627                         NULL, &symval, view + reloc_offset,
11628                         address + reloc_offset, reloc_size);
11629     }
11630 }
11631
11632 // Determine whether an object attribute tag takes an integer, a
11633 // string or both.
11634
11635 template<bool big_endian>
11636 int
11637 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11638 {
11639   if (tag == Object_attribute::Tag_compatibility)
11640     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11641             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11642   else if (tag == elfcpp::Tag_nodefaults)
11643     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11644             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11645   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11646     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11647   else if (tag < 32)
11648     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11649   else
11650     return ((tag & 1) != 0
11651             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11652             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11653 }
11654
11655 // Reorder attributes.
11656 //
11657 // The ABI defines that Tag_conformance should be emitted first, and that
11658 // Tag_nodefaults should be second (if either is defined).  This sets those
11659 // two positions, and bumps up the position of all the remaining tags to
11660 // compensate.
11661
11662 template<bool big_endian>
11663 int
11664 Target_arm<big_endian>::do_attributes_order(int num) const
11665 {
11666   // Reorder the known object attributes in output.  We want to move
11667   // Tag_conformance to position 4 and Tag_conformance to position 5
11668   // and shift everything between 4 .. Tag_conformance - 1 to make room.
11669   if (num == 4)
11670     return elfcpp::Tag_conformance;
11671   if (num == 5)
11672     return elfcpp::Tag_nodefaults;
11673   if ((num - 2) < elfcpp::Tag_nodefaults)
11674     return num - 2;
11675   if ((num - 1) < elfcpp::Tag_conformance)
11676     return num - 1;
11677   return num;
11678 }
11679
11680 // Scan a span of THUMB code for Cortex-A8 erratum.
11681
11682 template<bool big_endian>
11683 void
11684 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11685     Arm_relobj<big_endian>* arm_relobj,
11686     unsigned int shndx,
11687     section_size_type span_start,
11688     section_size_type span_end,
11689     const unsigned char* view,
11690     Arm_address address)
11691 {
11692   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11693   //
11694   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11695   // The branch target is in the same 4KB region as the
11696   // first half of the branch.
11697   // The instruction before the branch is a 32-bit
11698   // length non-branch instruction.
11699   section_size_type i = span_start;
11700   bool last_was_32bit = false;
11701   bool last_was_branch = false;
11702   while (i < span_end)
11703     {
11704       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11705       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11706       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11707       bool is_blx = false, is_b = false;
11708       bool is_bl = false, is_bcc = false;
11709
11710       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11711       if (insn_32bit)
11712         {
11713           // Load the rest of the insn (in manual-friendly order).
11714           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11715
11716           // Encoding T4: B<c>.W.
11717           is_b = (insn & 0xf800d000U) == 0xf0009000U;
11718           // Encoding T1: BL<c>.W.
11719           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11720           // Encoding T2: BLX<c>.W.
11721           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11722           // Encoding T3: B<c>.W (not permitted in IT block).
11723           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11724                     && (insn & 0x07f00000U) != 0x03800000U);
11725         }
11726
11727       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11728                            
11729       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11730       // page boundary and it follows 32-bit non-branch instruction,
11731       // we need to work around.
11732       if (is_32bit_branch
11733           && ((address + i) & 0xfffU) == 0xffeU
11734           && last_was_32bit
11735           && !last_was_branch)
11736         {
11737           // Check to see if there is a relocation stub for this branch.
11738           bool force_target_arm = false;
11739           bool force_target_thumb = false;
11740           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11741           Cortex_a8_relocs_info::const_iterator p =
11742             this->cortex_a8_relocs_info_.find(address + i);
11743
11744           if (p != this->cortex_a8_relocs_info_.end())
11745             {
11746               cortex_a8_reloc = p->second;
11747               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11748
11749               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11750                   && !target_is_thumb)
11751                 force_target_arm = true;
11752               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11753                        && target_is_thumb)
11754                 force_target_thumb = true;
11755             }
11756
11757           off_t offset;
11758           Stub_type stub_type = arm_stub_none;
11759
11760           // Check if we have an offending branch instruction.
11761           uint16_t upper_insn = (insn >> 16) & 0xffffU;
11762           uint16_t lower_insn = insn & 0xffffU;
11763           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11764
11765           if (cortex_a8_reloc != NULL
11766               && cortex_a8_reloc->reloc_stub() != NULL)
11767             // We've already made a stub for this instruction, e.g.
11768             // it's a long branch or a Thumb->ARM stub.  Assume that
11769             // stub will suffice to work around the A8 erratum (see
11770             // setting of always_after_branch above).
11771             ;
11772           else if (is_bcc)
11773             {
11774               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11775                                                               lower_insn);
11776               stub_type = arm_stub_a8_veneer_b_cond;
11777             }
11778           else if (is_b || is_bl || is_blx)
11779             {
11780               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11781                                                          lower_insn);
11782               if (is_blx)
11783                 offset &= ~3;
11784
11785               stub_type = (is_blx
11786                            ? arm_stub_a8_veneer_blx
11787                            : (is_bl
11788                               ? arm_stub_a8_veneer_bl
11789                               : arm_stub_a8_veneer_b));
11790             }
11791
11792           if (stub_type != arm_stub_none)
11793             {
11794               Arm_address pc_for_insn = address + i + 4;
11795
11796               // The original instruction is a BL, but the target is
11797               // an ARM instruction.  If we were not making a stub,
11798               // the BL would have been converted to a BLX.  Use the
11799               // BLX stub instead in that case.
11800               if (this->may_use_blx() && force_target_arm
11801                   && stub_type == arm_stub_a8_veneer_bl)
11802                 {
11803                   stub_type = arm_stub_a8_veneer_blx;
11804                   is_blx = true;
11805                   is_bl = false;
11806                 }
11807               // Conversely, if the original instruction was
11808               // BLX but the target is Thumb mode, use the BL stub.
11809               else if (force_target_thumb
11810                        && stub_type == arm_stub_a8_veneer_blx)
11811                 {
11812                   stub_type = arm_stub_a8_veneer_bl;
11813                   is_blx = false;
11814                   is_bl = true;
11815                 }
11816
11817               if (is_blx)
11818                 pc_for_insn &= ~3;
11819
11820               // If we found a relocation, use the proper destination,
11821               // not the offset in the (unrelocated) instruction.
11822               // Note this is always done if we switched the stub type above.
11823               if (cortex_a8_reloc != NULL)
11824                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11825
11826               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11827
11828               // Add a new stub if destination address in in the same page.
11829               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11830                 {
11831                   Cortex_a8_stub* stub =
11832                     this->stub_factory_.make_cortex_a8_stub(stub_type,
11833                                                             arm_relobj, shndx,
11834                                                             address + i,
11835                                                             target, insn);
11836                   Stub_table<big_endian>* stub_table =
11837                     arm_relobj->stub_table(shndx);
11838                   gold_assert(stub_table != NULL);
11839                   stub_table->add_cortex_a8_stub(address + i, stub);
11840                 }
11841             }
11842         }
11843
11844       i += insn_32bit ? 4 : 2;
11845       last_was_32bit = insn_32bit;
11846       last_was_branch = is_32bit_branch;
11847     }
11848 }
11849
11850 // Apply the Cortex-A8 workaround.
11851
11852 template<bool big_endian>
11853 void
11854 Target_arm<big_endian>::apply_cortex_a8_workaround(
11855     const Cortex_a8_stub* stub,
11856     Arm_address stub_address,
11857     unsigned char* insn_view,
11858     Arm_address insn_address)
11859 {
11860   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11861   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11862   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11863   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11864   off_t branch_offset = stub_address - (insn_address + 4);
11865
11866   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11867   switch (stub->stub_template()->type())
11868     {
11869     case arm_stub_a8_veneer_b_cond:
11870       // For a conditional branch, we re-write it to be an unconditional
11871       // branch to the stub.  We use the THUMB-2 encoding here.
11872       upper_insn = 0xf000U;
11873       lower_insn = 0xb800U;
11874       // Fall through
11875     case arm_stub_a8_veneer_b:
11876     case arm_stub_a8_veneer_bl:
11877     case arm_stub_a8_veneer_blx:
11878       if ((lower_insn & 0x5000U) == 0x4000U)
11879         // For a BLX instruction, make sure that the relocation is
11880         // rounded up to a word boundary.  This follows the semantics of
11881         // the instruction which specifies that bit 1 of the target
11882         // address will come from bit 1 of the base address.
11883         branch_offset = (branch_offset + 2) & ~3;
11884
11885       // Put BRANCH_OFFSET back into the insn.
11886       gold_assert(!utils::has_overflow<25>(branch_offset));
11887       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11888       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11889       break;
11890
11891     default:
11892       gold_unreachable();
11893     }
11894
11895   // Put the relocated value back in the object file:
11896   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11897   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11898 }
11899
11900 template<bool big_endian>
11901 class Target_selector_arm : public Target_selector
11902 {
11903  public:
11904   Target_selector_arm()
11905     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11906                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11907   { }
11908
11909   Target*
11910   do_instantiate_target()
11911   { return new Target_arm<big_endian>(); }
11912 };
11913
11914 // Fix .ARM.exidx section coverage.
11915
11916 template<bool big_endian>
11917 void
11918 Target_arm<big_endian>::fix_exidx_coverage(
11919     Layout* layout,
11920     const Input_objects* input_objects,
11921     Arm_output_section<big_endian>* exidx_section,
11922     Symbol_table* symtab,
11923     const Task* task)
11924 {
11925   // We need to look at all the input sections in output in ascending
11926   // order of of output address.  We do that by building a sorted list
11927   // of output sections by addresses.  Then we looks at the output sections
11928   // in order.  The input sections in an output section are already sorted
11929   // by addresses within the output section.
11930
11931   typedef std::set<Output_section*, output_section_address_less_than>
11932       Sorted_output_section_list;
11933   Sorted_output_section_list sorted_output_sections;
11934
11935   // Find out all the output sections of input sections pointed by
11936   // EXIDX input sections.
11937   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11938        p != input_objects->relobj_end();
11939        ++p)
11940     {
11941       Arm_relobj<big_endian>* arm_relobj =
11942         Arm_relobj<big_endian>::as_arm_relobj(*p);
11943       std::vector<unsigned int> shndx_list;
11944       arm_relobj->get_exidx_shndx_list(&shndx_list);
11945       for (size_t i = 0; i < shndx_list.size(); ++i)
11946         {
11947           const Arm_exidx_input_section* exidx_input_section =
11948             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11949           gold_assert(exidx_input_section != NULL);
11950           if (!exidx_input_section->has_errors())
11951             {
11952               unsigned int text_shndx = exidx_input_section->link();
11953               Output_section* os = arm_relobj->output_section(text_shndx);
11954               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11955                 sorted_output_sections.insert(os);
11956             }
11957         }
11958     }
11959
11960   // Go over the output sections in ascending order of output addresses.
11961   typedef typename Arm_output_section<big_endian>::Text_section_list
11962       Text_section_list;
11963   Text_section_list sorted_text_sections;
11964   for (typename Sorted_output_section_list::iterator p =
11965         sorted_output_sections.begin();
11966       p != sorted_output_sections.end();
11967       ++p)
11968     {
11969       Arm_output_section<big_endian>* arm_output_section =
11970         Arm_output_section<big_endian>::as_arm_output_section(*p);
11971       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11972     } 
11973
11974   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11975                                     merge_exidx_entries(), task);
11976 }
11977
11978 Target_selector_arm<false> target_selector_arm;
11979 Target_selector_arm<true> target_selector_armbe;
11980
11981 } // End anonymous namespace.