2010-03-25 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is invalid index.  This points to a global symbol.
602     // Otherwise, this points a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj.  This is done to avoid making the stub class a template
605     // as most of the stub machinery is endianity-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB with using KEY.  Caller is reponsible for avoid adding
899   // if already a STUB with the same key has been added. 
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // Caller is reponsible for avoid adding if already a STUB with the same
919   // address has been added. 
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067  private:
1068   // Implement do_write for a given endianity.
1069   template<bool big_endian>
1070   void inline
1071   do_fixed_endian_write(Output_file*);
1072   
1073   // The object containing the section pointed by this.
1074   Relobj* relobj_;
1075   // The section index of the section pointed by this.
1076   unsigned int shndx_;
1077 };
1078
1079 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section. 
1082
1083 typedef std::map<section_offset_type, section_offset_type>
1084         Arm_exidx_section_offset_map;
1085
1086 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1087 // with some of its entries merged.
1088
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1090 {
1091  public:
1092   // Constructor for Arm_exidx_merged_section.
1093   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094   // SECTION_OFFSET_MAP points to a section offset map describing how
1095   // parts of the input section are mapped to output.  DELETED_BYTES is
1096   // the number of bytes deleted from the EXIDX input section.
1097   Arm_exidx_merged_section(
1098       const Arm_exidx_input_section& exidx_input_section,
1099       const Arm_exidx_section_offset_map& section_offset_map,
1100       uint32_t deleted_bytes);
1101
1102   // Return the original EXIDX input section.
1103   const Arm_exidx_input_section&
1104   exidx_input_section() const
1105   { return this->exidx_input_section_; }
1106
1107   // Return the section offset map.
1108   const Arm_exidx_section_offset_map&
1109   section_offset_map() const
1110   { return this->section_offset_map_; }
1111
1112  protected:
1113   // Write merged section into file OF.
1114   void
1115   do_write(Output_file* of);
1116
1117   bool
1118   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119                   section_offset_type*) const;
1120
1121  private:
1122   // Original EXIDX input section.
1123   const Arm_exidx_input_section& exidx_input_section_;
1124   // Section offset map.
1125   const Arm_exidx_section_offset_map& section_offset_map_;
1126 };
1127
1128 // A class to wrap an ordinary input section containing executable code.
1129
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1132 {
1133  public:
1134   Arm_input_section(Relobj* relobj, unsigned int shndx)
1135     : Output_relaxed_input_section(relobj, shndx, 1),
1136       original_addralign_(1), original_size_(0), stub_table_(NULL)
1137   { }
1138
1139   ~Arm_input_section()
1140   { }
1141
1142   // Initialize.
1143   void
1144   init();
1145   
1146   // Whether this is a stub table owner.
1147   bool
1148   is_stub_table_owner() const
1149   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151   // Return the stub table.
1152   Stub_table<big_endian>*
1153   stub_table() const
1154   { return this->stub_table_; }
1155
1156   // Set the stub_table.
1157   void
1158   set_stub_table(Stub_table<big_endian>* stub_table)
1159   { this->stub_table_ = stub_table; }
1160
1161   // Downcast a base pointer to an Arm_input_section pointer.  This is
1162   // not type-safe but we only use Arm_input_section not the base class.
1163   static Arm_input_section<big_endian>*
1164   as_arm_input_section(Output_relaxed_input_section* poris)
1165   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
1167  protected:
1168   // Write data to output file.
1169   void
1170   do_write(Output_file*);
1171
1172   // Return required alignment of this.
1173   uint64_t
1174   do_addralign() const
1175   {
1176     if (this->is_stub_table_owner())
1177       return std::max(this->stub_table_->addralign(),
1178                       this->original_addralign_);
1179     else
1180       return this->original_addralign_;
1181   }
1182
1183   // Finalize data size.
1184   void
1185   set_final_data_size();
1186
1187   // Reset address and file offset.
1188   void
1189   do_reset_address_and_file_offset();
1190
1191   // Output offset.
1192   bool
1193   do_output_offset(const Relobj* object, unsigned int shndx,
1194                    section_offset_type offset,
1195                    section_offset_type* poutput) const
1196   {
1197     if ((object == this->relobj())
1198         && (shndx == this->shndx())
1199         && (offset >= 0)
1200         && (convert_types<uint64_t, section_offset_type>(offset)
1201             <= this->original_size_))
1202       {
1203         *poutput = offset;
1204         return true;
1205       }
1206     else
1207       return false;
1208   }
1209
1210  private:
1211   // Copying is not allowed.
1212   Arm_input_section(const Arm_input_section&);
1213   Arm_input_section& operator=(const Arm_input_section&);
1214
1215   // Address alignment of the original input section.
1216   uint64_t original_addralign_;
1217   // Section size of the original input section.
1218   uint64_t original_size_;
1219   // Stub table.
1220   Stub_table<big_endian>* stub_table_;
1221 };
1222
1223 // Arm_exidx_fixup class.  This is used to define a number of methods
1224 // and keep states for fixing up EXIDX coverage.
1225
1226 class Arm_exidx_fixup
1227 {
1228  public:
1229   Arm_exidx_fixup(Output_section* exidx_output_section)
1230     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1231       last_inlined_entry_(0), last_input_section_(NULL),
1232       section_offset_map_(NULL), first_output_text_section_(NULL)
1233   { }
1234
1235   ~Arm_exidx_fixup()
1236   { delete this->section_offset_map_; }
1237
1238   // Process an EXIDX section for entry merging.  Return  number of bytes to
1239   // be deleted in output.  If parts of the input EXIDX section are merged
1240   // a heap allocated Arm_exidx_section_offset_map is store in the located
1241   // PSECTION_OFFSET_MAP.  The caller owns the map and is reponsible for
1242   // releasing it.
1243   template<bool big_endian>
1244   uint32_t
1245   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1246                         Arm_exidx_section_offset_map** psection_offset_map);
1247   
1248   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1249   // input section, if there is not one already.
1250   void
1251   add_exidx_cantunwind_as_needed();
1252
1253   // Return the output section for the text section which is linked to the
1254   // first exidx input in output.
1255   Output_section*
1256   first_output_text_section() const
1257   { return this->first_output_text_section_; }
1258
1259  private:
1260   // Copying is not allowed.
1261   Arm_exidx_fixup(const Arm_exidx_fixup&);
1262   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1263
1264   // Type of EXIDX unwind entry.
1265   enum Unwind_type
1266   {
1267     // No type.
1268     UT_NONE,
1269     // EXIDX_CANTUNWIND.
1270     UT_EXIDX_CANTUNWIND,
1271     // Inlined entry.
1272     UT_INLINED_ENTRY,
1273     // Normal entry.
1274     UT_NORMAL_ENTRY,
1275   };
1276
1277   // Process an EXIDX entry.  We only care about the second word of the
1278   // entry.  Return true if the entry can be deleted.
1279   bool
1280   process_exidx_entry(uint32_t second_word);
1281
1282   // Update the current section offset map during EXIDX section fix-up.
1283   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1284   // reference point, DELETED_BYTES is the number of deleted by in the
1285   // section so far.  If DELETE_ENTRY is true, the reference point and
1286   // all offsets after the previous reference point are discarded.
1287   void
1288   update_offset_map(section_offset_type input_offset,
1289                     section_size_type deleted_bytes, bool delete_entry);
1290
1291   // EXIDX output section.
1292   Output_section* exidx_output_section_;
1293   // Unwind type of the last EXIDX entry processed.
1294   Unwind_type last_unwind_type_;
1295   // Last seen inlined EXIDX entry.
1296   uint32_t last_inlined_entry_;
1297   // Last processed EXIDX input section.
1298   const Arm_exidx_input_section* last_input_section_;
1299   // Section offset map created in process_exidx_section.
1300   Arm_exidx_section_offset_map* section_offset_map_;
1301   // Output section for the text section which is linked to the first exidx
1302   // input in output.
1303   Output_section* first_output_text_section_;
1304 };
1305
1306 // Arm output section class.  This is defined mainly to add a number of
1307 // stub generation methods.
1308
1309 template<bool big_endian>
1310 class Arm_output_section : public Output_section
1311 {
1312  public:
1313   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1314
1315   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1316                      elfcpp::Elf_Xword flags)
1317     : Output_section(name, type, flags)
1318   { }
1319
1320   ~Arm_output_section()
1321   { }
1322   
1323   // Group input sections for stub generation.
1324   void
1325   group_sections(section_size_type, bool, Target_arm<big_endian>*);
1326
1327   // Downcast a base pointer to an Arm_output_section pointer.  This is
1328   // not type-safe but we only use Arm_output_section not the base class.
1329   static Arm_output_section<big_endian>*
1330   as_arm_output_section(Output_section* os)
1331   { return static_cast<Arm_output_section<big_endian>*>(os); }
1332
1333   // Append all input text sections in this into LIST.
1334   void
1335   append_text_sections_to_list(Text_section_list* list);
1336
1337   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1338   // is a list of text input sections sorted in ascending order of their
1339   // output addresses.
1340   void
1341   fix_exidx_coverage(Layout* layout,
1342                      const Text_section_list& sorted_text_section,
1343                      Symbol_table* symtab);
1344
1345  private:
1346   // For convenience.
1347   typedef Output_section::Input_section Input_section;
1348   typedef Output_section::Input_section_list Input_section_list;
1349
1350   // Create a stub group.
1351   void create_stub_group(Input_section_list::const_iterator,
1352                          Input_section_list::const_iterator,
1353                          Input_section_list::const_iterator,
1354                          Target_arm<big_endian>*,
1355                          std::vector<Output_relaxed_input_section*>*);
1356 };
1357
1358 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1359
1360 class Arm_exidx_input_section
1361 {
1362  public:
1363   static const section_offset_type invalid_offset =
1364     static_cast<section_offset_type>(-1);
1365
1366   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1367                           unsigned int link, uint32_t size, uint32_t addralign)
1368     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1369       addralign_(addralign)
1370   { }
1371
1372   ~Arm_exidx_input_section()
1373   { }
1374         
1375   // Accessors:  This is a read-only class.
1376
1377   // Return the object containing this EXIDX input section.
1378   Relobj*
1379   relobj() const
1380   { return this->relobj_; }
1381
1382   // Return the section index of this EXIDX input section.
1383   unsigned int
1384   shndx() const
1385   { return this->shndx_; }
1386
1387   // Return the section index of linked text section in the same object.
1388   unsigned int
1389   link() const
1390   { return this->link_; }
1391
1392   // Return size of the EXIDX input section.
1393   uint32_t
1394   size() const
1395   { return this->size_; }
1396
1397   // Reutnr address alignment of EXIDX input section.
1398   uint32_t
1399   addralign() const
1400   { return this->addralign_; }
1401
1402  private:
1403   // Object containing this.
1404   Relobj* relobj_;
1405   // Section index of this.
1406   unsigned int shndx_;
1407   // text section linked to this in the same object.
1408   unsigned int link_;
1409   // Size of this.  For ARM 32-bit is sufficient.
1410   uint32_t size_;
1411   // Address alignment of this.  For ARM 32-bit is sufficient.
1412   uint32_t addralign_;
1413 };
1414
1415 // Arm_relobj class.
1416
1417 template<bool big_endian>
1418 class Arm_relobj : public Sized_relobj<32, big_endian>
1419 {
1420  public:
1421   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1422
1423   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1424              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1425     : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1426       stub_tables_(), local_symbol_is_thumb_function_(),
1427       attributes_section_data_(NULL), mapping_symbols_info_(),
1428       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1429       output_local_symbol_count_needs_update_(false)
1430   { }
1431
1432   ~Arm_relobj()
1433   { delete this->attributes_section_data_; }
1434  
1435   // Return the stub table of the SHNDX-th section if there is one.
1436   Stub_table<big_endian>*
1437   stub_table(unsigned int shndx) const
1438   {
1439     gold_assert(shndx < this->stub_tables_.size());
1440     return this->stub_tables_[shndx];
1441   }
1442
1443   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1444   void
1445   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1446   {
1447     gold_assert(shndx < this->stub_tables_.size());
1448     this->stub_tables_[shndx] = stub_table;
1449   }
1450
1451   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1452   // index.  This is only valid after do_count_local_symbol is called.
1453   bool
1454   local_symbol_is_thumb_function(unsigned int r_sym) const
1455   {
1456     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1457     return this->local_symbol_is_thumb_function_[r_sym];
1458   }
1459   
1460   // Scan all relocation sections for stub generation.
1461   void
1462   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1463                           const Layout*);
1464
1465   // Convert regular input section with index SHNDX to a relaxed section.
1466   void
1467   convert_input_section_to_relaxed_section(unsigned shndx)
1468   {
1469     // The stubs have relocations and we need to process them after writing
1470     // out the stubs.  So relocation now must follow section write.
1471     this->set_section_offset(shndx, -1ULL);
1472     this->set_relocs_must_follow_section_writes();
1473   }
1474
1475   // Downcast a base pointer to an Arm_relobj pointer.  This is
1476   // not type-safe but we only use Arm_relobj not the base class.
1477   static Arm_relobj<big_endian>*
1478   as_arm_relobj(Relobj* relobj)
1479   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1480
1481   // Processor-specific flags in ELF file header.  This is valid only after
1482   // reading symbols.
1483   elfcpp::Elf_Word
1484   processor_specific_flags() const
1485   { return this->processor_specific_flags_; }
1486
1487   // Attribute section data  This is the contents of the .ARM.attribute section
1488   // if there is one.
1489   const Attributes_section_data*
1490   attributes_section_data() const
1491   { return this->attributes_section_data_; }
1492
1493   // Mapping symbol location.
1494   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1495
1496   // Functor for STL container.
1497   struct Mapping_symbol_position_less
1498   {
1499     bool
1500     operator()(const Mapping_symbol_position& p1,
1501                const Mapping_symbol_position& p2) const
1502     {
1503       return (p1.first < p2.first
1504               || (p1.first == p2.first && p1.second < p2.second));
1505     }
1506   };
1507   
1508   // We only care about the first character of a mapping symbol, so
1509   // we only store that instead of the whole symbol name.
1510   typedef std::map<Mapping_symbol_position, char,
1511                    Mapping_symbol_position_less> Mapping_symbols_info;
1512
1513   // Whether a section contains any Cortex-A8 workaround.
1514   bool
1515   section_has_cortex_a8_workaround(unsigned int shndx) const
1516   { 
1517     return (this->section_has_cortex_a8_workaround_ != NULL
1518             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1519   }
1520   
1521   // Mark a section that has Cortex-A8 workaround.
1522   void
1523   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1524   {
1525     if (this->section_has_cortex_a8_workaround_ == NULL)
1526       this->section_has_cortex_a8_workaround_ =
1527         new std::vector<bool>(this->shnum(), false);
1528     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1529   }
1530
1531   // Return the EXIDX section of an text section with index SHNDX or NULL
1532   // if the text section has no associated EXIDX section.
1533   const Arm_exidx_input_section*
1534   exidx_input_section_by_link(unsigned int shndx) const
1535   {
1536     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1537     return ((p != this->exidx_section_map_.end()
1538              && p->second->link() == shndx)
1539             ? p->second
1540             : NULL);
1541   }
1542
1543   // Return the EXIDX section with index SHNDX or NULL if there is none.
1544   const Arm_exidx_input_section*
1545   exidx_input_section_by_shndx(unsigned shndx) const
1546   {
1547     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1548     return ((p != this->exidx_section_map_.end()
1549              && p->second->shndx() == shndx)
1550             ? p->second
1551             : NULL);
1552   }
1553
1554   // Whether output local symbol count needs updating.
1555   bool
1556   output_local_symbol_count_needs_update() const
1557   { return this->output_local_symbol_count_needs_update_; }
1558
1559   // Set output_local_symbol_count_needs_update flag to be true.
1560   void
1561   set_output_local_symbol_count_needs_update()
1562   { this->output_local_symbol_count_needs_update_ = true; }
1563   
1564   // Update output local symbol count at the end of relaxation.
1565   void
1566   update_output_local_symbol_count();
1567
1568  protected:
1569   // Post constructor setup.
1570   void
1571   do_setup()
1572   {
1573     // Call parent's setup method.
1574     Sized_relobj<32, big_endian>::do_setup();
1575
1576     // Initialize look-up tables.
1577     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1578     this->stub_tables_.swap(empty_stub_table_list);
1579   }
1580
1581   // Count the local symbols.
1582   void
1583   do_count_local_symbols(Stringpool_template<char>*,
1584                          Stringpool_template<char>*);
1585
1586   void
1587   do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1588                        const unsigned char* pshdrs,
1589                        typename Sized_relobj<32, big_endian>::Views* pivews);
1590
1591   // Read the symbol information.
1592   void
1593   do_read_symbols(Read_symbols_data* sd);
1594
1595   // Process relocs for garbage collection.
1596   void
1597   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1598
1599  private:
1600
1601   // Whether a section needs to be scanned for relocation stubs.
1602   bool
1603   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1604                                     const Relobj::Output_sections&,
1605                                     const Symbol_table *, const unsigned char*);
1606
1607   // Whether a section is a scannable text section.
1608   bool
1609   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1610                        const Output_section*, const Symbol_table *);
1611
1612   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1613   bool
1614   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1615                                         unsigned int, Output_section*,
1616                                         const Symbol_table *);
1617
1618   // Scan a section for the Cortex-A8 erratum.
1619   void
1620   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1621                                      unsigned int, Output_section*,
1622                                      Target_arm<big_endian>*);
1623
1624   // Find the linked text section of an EXIDX section by looking at the
1625   // first reloction of the EXIDX section.  PSHDR points to the section
1626   // headers of a relocation section and PSYMS points to the local symbols.
1627   // PSHNDX points to a location storing the text section index if found.
1628   // Return whether we can find the linked section.
1629   bool
1630   find_linked_text_section(const unsigned char* pshdr,
1631                            const unsigned char* psyms, unsigned int* pshndx);
1632
1633   //
1634   // Make a new Arm_exidx_input_section object for EXIDX section with
1635   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1636   // index of the linked text section.
1637   void
1638   make_exidx_input_section(unsigned int shndx,
1639                            const elfcpp::Shdr<32, big_endian>& shdr,
1640                            unsigned int text_shndx);
1641
1642   // Return the output address of either a plain input section or a
1643   // relaxed input section.  SHNDX is the section index.
1644   Arm_address
1645   simple_input_section_output_address(unsigned int, Output_section*);
1646
1647   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1648   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1649     Exidx_section_map;
1650
1651   // List of stub tables.
1652   Stub_table_list stub_tables_;
1653   // Bit vector to tell if a local symbol is a thumb function or not.
1654   // This is only valid after do_count_local_symbol is called.
1655   std::vector<bool> local_symbol_is_thumb_function_;
1656   // processor-specific flags in ELF file header.
1657   elfcpp::Elf_Word processor_specific_flags_;
1658   // Object attributes if there is an .ARM.attributes section or NULL.
1659   Attributes_section_data* attributes_section_data_;
1660   // Mapping symbols information.
1661   Mapping_symbols_info mapping_symbols_info_;
1662   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1663   std::vector<bool>* section_has_cortex_a8_workaround_;
1664   // Map a text section to its associated .ARM.exidx section, if there is one.
1665   Exidx_section_map exidx_section_map_;
1666   // Whether output local symbol count needs updating.
1667   bool output_local_symbol_count_needs_update_;
1668 };
1669
1670 // Arm_dynobj class.
1671
1672 template<bool big_endian>
1673 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1674 {
1675  public:
1676   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1677              const elfcpp::Ehdr<32, big_endian>& ehdr)
1678     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1679       processor_specific_flags_(0), attributes_section_data_(NULL)
1680   { }
1681  
1682   ~Arm_dynobj()
1683   { delete this->attributes_section_data_; }
1684
1685   // Downcast a base pointer to an Arm_relobj pointer.  This is
1686   // not type-safe but we only use Arm_relobj not the base class.
1687   static Arm_dynobj<big_endian>*
1688   as_arm_dynobj(Dynobj* dynobj)
1689   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1690
1691   // Processor-specific flags in ELF file header.  This is valid only after
1692   // reading symbols.
1693   elfcpp::Elf_Word
1694   processor_specific_flags() const
1695   { return this->processor_specific_flags_; }
1696
1697   // Attributes section data.
1698   const Attributes_section_data*
1699   attributes_section_data() const
1700   { return this->attributes_section_data_; }
1701
1702  protected:
1703   // Read the symbol information.
1704   void
1705   do_read_symbols(Read_symbols_data* sd);
1706
1707  private:
1708   // processor-specific flags in ELF file header.
1709   elfcpp::Elf_Word processor_specific_flags_;
1710   // Object attributes if there is an .ARM.attributes section or NULL.
1711   Attributes_section_data* attributes_section_data_;
1712 };
1713
1714 // Functor to read reloc addends during stub generation.
1715
1716 template<int sh_type, bool big_endian>
1717 struct Stub_addend_reader
1718 {
1719   // Return the addend for a relocation of a particular type.  Depending
1720   // on whether this is a REL or RELA relocation, read the addend from a
1721   // view or from a Reloc object.
1722   elfcpp::Elf_types<32>::Elf_Swxword
1723   operator()(
1724     unsigned int /* r_type */,
1725     const unsigned char* /* view */,
1726     const typename Reloc_types<sh_type,
1727                                32, big_endian>::Reloc& /* reloc */) const;
1728 };
1729
1730 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1731
1732 template<bool big_endian>
1733 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1734 {
1735   elfcpp::Elf_types<32>::Elf_Swxword
1736   operator()(
1737     unsigned int,
1738     const unsigned char*,
1739     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1740 };
1741
1742 // Specialized Stub_addend_reader for RELA type relocation sections.
1743 // We currently do not handle RELA type relocation sections but it is trivial
1744 // to implement the addend reader.  This is provided for completeness and to
1745 // make it easier to add support for RELA relocation sections in the future.
1746
1747 template<bool big_endian>
1748 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1749 {
1750   elfcpp::Elf_types<32>::Elf_Swxword
1751   operator()(
1752     unsigned int,
1753     const unsigned char*,
1754     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1755                                big_endian>::Reloc& reloc) const
1756   { return reloc.get_r_addend(); }
1757 };
1758
1759 // Cortex_a8_reloc class.  We keep record of relocation that may need
1760 // the Cortex-A8 erratum workaround.
1761
1762 class Cortex_a8_reloc
1763 {
1764  public:
1765   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1766                   Arm_address destination)
1767     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1768   { }
1769
1770   ~Cortex_a8_reloc()
1771   { }
1772
1773   // Accessors:  This is a read-only class.
1774   
1775   // Return the relocation stub associated with this relocation if there is
1776   // one.
1777   const Reloc_stub*
1778   reloc_stub() const
1779   { return this->reloc_stub_; } 
1780   
1781   // Return the relocation type.
1782   unsigned int
1783   r_type() const
1784   { return this->r_type_; }
1785
1786   // Return the destination address of the relocation.  LSB stores the THUMB
1787   // bit.
1788   Arm_address
1789   destination() const
1790   { return this->destination_; }
1791
1792  private:
1793   // Associated relocation stub if there is one, or NULL.
1794   const Reloc_stub* reloc_stub_;
1795   // Relocation type.
1796   unsigned int r_type_;
1797   // Destination address of this relocation.  LSB is used to distinguish
1798   // ARM/THUMB mode.
1799   Arm_address destination_;
1800 };
1801
1802 // Arm_output_data_got class.  We derive this from Output_data_got to add
1803 // extra methods to handle TLS relocations in a static link.
1804
1805 template<bool big_endian>
1806 class Arm_output_data_got : public Output_data_got<32, big_endian>
1807 {
1808  public:
1809   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1810     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1811   { }
1812
1813   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1814   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1815   // applied in a static link.
1816   void
1817   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1818   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1819
1820   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1821   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1822   // relocation that needs to be applied in a static link.
1823   void
1824   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1825                    Sized_relobj<32, big_endian>* relobj, unsigned int index)
1826   {
1827     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1828                                                 index));
1829   }
1830
1831   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1832   // The first one is initialized to be 1, which is the module index for
1833   // the main executable and the second one 0.  A reloc of the type
1834   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1835   // be applied by gold.  GSYM is a global symbol.
1836   void
1837   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1838
1839   // Same as the above but for a local symbol in OBJECT with INDEX.
1840   void
1841   add_tls_gd32_with_static_reloc(unsigned int got_type,
1842                                  Sized_relobj<32, big_endian>* object,
1843                                  unsigned int index);
1844
1845  protected:
1846   // Write out the GOT table.
1847   void
1848   do_write(Output_file*);
1849
1850  private:
1851   // This class represent dynamic relocations that need to be applied by
1852   // gold because we are using TLS relocations in a static link.
1853   class Static_reloc
1854   {
1855    public:
1856     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1857       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1858     { this->u_.global.symbol = gsym; }
1859
1860     Static_reloc(unsigned int got_offset, unsigned int r_type,
1861           Sized_relobj<32, big_endian>* relobj, unsigned int index)
1862       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1863     {
1864       this->u_.local.relobj = relobj;
1865       this->u_.local.index = index;
1866     }
1867
1868     // Return the GOT offset.
1869     unsigned int
1870     got_offset() const
1871     { return this->got_offset_; }
1872
1873     // Relocation type.
1874     unsigned int
1875     r_type() const
1876     { return this->r_type_; }
1877
1878     // Whether the symbol is global or not.
1879     bool
1880     symbol_is_global() const
1881     { return this->symbol_is_global_; }
1882
1883     // For a relocation against a global symbol, the global symbol.
1884     Symbol*
1885     symbol() const
1886     {
1887       gold_assert(this->symbol_is_global_);
1888       return this->u_.global.symbol;
1889     }
1890
1891     // For a relocation against a local symbol, the defining object.
1892     Sized_relobj<32, big_endian>*
1893     relobj() const
1894     {
1895       gold_assert(!this->symbol_is_global_);
1896       return this->u_.local.relobj;
1897     }
1898
1899     // For a relocation against a local symbol, the local symbol index.
1900     unsigned int
1901     index() const
1902     {
1903       gold_assert(!this->symbol_is_global_);
1904       return this->u_.local.index;
1905     }
1906
1907    private:
1908     // GOT offset of the entry to which this relocation is applied.
1909     unsigned int got_offset_;
1910     // Type of relocation.
1911     unsigned int r_type_;
1912     // Whether this relocation is against a global symbol.
1913     bool symbol_is_global_;
1914     // A global or local symbol.
1915     union
1916     {
1917       struct
1918       {
1919         // For a global symbol, the symbol itself.
1920         Symbol* symbol;
1921       } global;
1922       struct
1923       {
1924         // For a local symbol, the object defining object.
1925         Sized_relobj<32, big_endian>* relobj;
1926         // For a local symbol, the symbol index.
1927         unsigned int index;
1928       } local;
1929     } u_;
1930   };
1931
1932   // Symbol table of the output object.
1933   Symbol_table* symbol_table_;
1934   // Layout of the output object.
1935   Layout* layout_;
1936   // Static relocs to be applied to the GOT.
1937   std::vector<Static_reloc> static_relocs_;
1938 };
1939
1940 // Utilities for manipulating integers of up to 32-bits
1941
1942 namespace utils
1943 {
1944   // Sign extend an n-bit unsigned integer stored in an uint32_t into
1945   // an int32_t.  NO_BITS must be between 1 to 32.
1946   template<int no_bits>
1947   static inline int32_t
1948   sign_extend(uint32_t bits)
1949   {
1950     gold_assert(no_bits >= 0 && no_bits <= 32);
1951     if (no_bits == 32)
1952       return static_cast<int32_t>(bits);
1953     uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1954     bits &= mask;
1955     uint32_t top_bit = 1U << (no_bits - 1);
1956     int32_t as_signed = static_cast<int32_t>(bits);
1957     return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1958   }
1959
1960   // Detects overflow of an NO_BITS integer stored in a uint32_t.
1961   template<int no_bits>
1962   static inline bool
1963   has_overflow(uint32_t bits)
1964   {
1965     gold_assert(no_bits >= 0 && no_bits <= 32);
1966     if (no_bits == 32)
1967       return false;
1968     int32_t max = (1 << (no_bits - 1)) - 1;
1969     int32_t min = -(1 << (no_bits - 1));
1970     int32_t as_signed = static_cast<int32_t>(bits);
1971     return as_signed > max || as_signed < min;
1972   }
1973
1974   // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1975   // fits in the given number of bits as either a signed or unsigned value.
1976   // For example, has_signed_unsigned_overflow<8> would check
1977   // -128 <= bits <= 255
1978   template<int no_bits>
1979   static inline bool
1980   has_signed_unsigned_overflow(uint32_t bits)
1981   {
1982     gold_assert(no_bits >= 2 && no_bits <= 32);
1983     if (no_bits == 32)
1984       return false;
1985     int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1986     int32_t min = -(1 << (no_bits - 1));
1987     int32_t as_signed = static_cast<int32_t>(bits);
1988     return as_signed > max || as_signed < min;
1989   }
1990
1991   // Select bits from A and B using bits in MASK.  For each n in [0..31],
1992   // the n-th bit in the result is chosen from the n-th bits of A and B.
1993   // A zero selects A and a one selects B.
1994   static inline uint32_t
1995   bit_select(uint32_t a, uint32_t b, uint32_t mask)
1996   { return (a & ~mask) | (b & mask); }
1997 };
1998
1999 template<bool big_endian>
2000 class Target_arm : public Sized_target<32, big_endian>
2001 {
2002  public:
2003   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2004     Reloc_section;
2005
2006   // When were are relocating a stub, we pass this as the relocation number.
2007   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2008
2009   Target_arm()
2010     : Sized_target<32, big_endian>(&arm_info),
2011       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2012       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2013       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2014       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2015       may_use_blx_(false), should_force_pic_veneer_(false),
2016       arm_input_section_map_(), attributes_section_data_(NULL),
2017       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2018   { }
2019
2020   // Whether we can use BLX.
2021   bool
2022   may_use_blx() const
2023   { return this->may_use_blx_; }
2024
2025   // Set use-BLX flag.
2026   void
2027   set_may_use_blx(bool value)
2028   { this->may_use_blx_ = value; }
2029   
2030   // Whether we force PCI branch veneers.
2031   bool
2032   should_force_pic_veneer() const
2033   { return this->should_force_pic_veneer_; }
2034
2035   // Set PIC veneer flag.
2036   void
2037   set_should_force_pic_veneer(bool value)
2038   { this->should_force_pic_veneer_ = value; }
2039   
2040   // Whether we use THUMB-2 instructions.
2041   bool
2042   using_thumb2() const
2043   {
2044     Object_attribute* attr =
2045       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2046     int arch = attr->int_value();
2047     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2048   }
2049
2050   // Whether we use THUMB/THUMB-2 instructions only.
2051   bool
2052   using_thumb_only() const
2053   {
2054     Object_attribute* attr =
2055       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2056     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2057         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2058       return false;
2059     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2060     return attr->int_value() == 'M';
2061   }
2062
2063   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2064   bool
2065   may_use_arm_nop() const
2066   {
2067     Object_attribute* attr =
2068       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2069     int arch = attr->int_value();
2070     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2071             || arch == elfcpp::TAG_CPU_ARCH_V6K
2072             || arch == elfcpp::TAG_CPU_ARCH_V7
2073             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2074   }
2075
2076   // Whether we have THUMB-2 NOP.W instruction.
2077   bool
2078   may_use_thumb2_nop() const
2079   {
2080     Object_attribute* attr =
2081       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2082     int arch = attr->int_value();
2083     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2084             || arch == elfcpp::TAG_CPU_ARCH_V7
2085             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2086   }
2087   
2088   // Process the relocations to determine unreferenced sections for 
2089   // garbage collection.
2090   void
2091   gc_process_relocs(Symbol_table* symtab,
2092                     Layout* layout,
2093                     Sized_relobj<32, big_endian>* object,
2094                     unsigned int data_shndx,
2095                     unsigned int sh_type,
2096                     const unsigned char* prelocs,
2097                     size_t reloc_count,
2098                     Output_section* output_section,
2099                     bool needs_special_offset_handling,
2100                     size_t local_symbol_count,
2101                     const unsigned char* plocal_symbols);
2102
2103   // Scan the relocations to look for symbol adjustments.
2104   void
2105   scan_relocs(Symbol_table* symtab,
2106               Layout* layout,
2107               Sized_relobj<32, big_endian>* object,
2108               unsigned int data_shndx,
2109               unsigned int sh_type,
2110               const unsigned char* prelocs,
2111               size_t reloc_count,
2112               Output_section* output_section,
2113               bool needs_special_offset_handling,
2114               size_t local_symbol_count,
2115               const unsigned char* plocal_symbols);
2116
2117   // Finalize the sections.
2118   void
2119   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2120
2121   // Return the value to use for a dynamic symbol which requires special
2122   // treatment.
2123   uint64_t
2124   do_dynsym_value(const Symbol*) const;
2125
2126   // Relocate a section.
2127   void
2128   relocate_section(const Relocate_info<32, big_endian>*,
2129                    unsigned int sh_type,
2130                    const unsigned char* prelocs,
2131                    size_t reloc_count,
2132                    Output_section* output_section,
2133                    bool needs_special_offset_handling,
2134                    unsigned char* view,
2135                    Arm_address view_address,
2136                    section_size_type view_size,
2137                    const Reloc_symbol_changes*);
2138
2139   // Scan the relocs during a relocatable link.
2140   void
2141   scan_relocatable_relocs(Symbol_table* symtab,
2142                           Layout* layout,
2143                           Sized_relobj<32, big_endian>* object,
2144                           unsigned int data_shndx,
2145                           unsigned int sh_type,
2146                           const unsigned char* prelocs,
2147                           size_t reloc_count,
2148                           Output_section* output_section,
2149                           bool needs_special_offset_handling,
2150                           size_t local_symbol_count,
2151                           const unsigned char* plocal_symbols,
2152                           Relocatable_relocs*);
2153
2154   // Relocate a section during a relocatable link.
2155   void
2156   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2157                            unsigned int sh_type,
2158                            const unsigned char* prelocs,
2159                            size_t reloc_count,
2160                            Output_section* output_section,
2161                            off_t offset_in_output_section,
2162                            const Relocatable_relocs*,
2163                            unsigned char* view,
2164                            Arm_address view_address,
2165                            section_size_type view_size,
2166                            unsigned char* reloc_view,
2167                            section_size_type reloc_view_size);
2168
2169   // Return whether SYM is defined by the ABI.
2170   bool
2171   do_is_defined_by_abi(Symbol* sym) const
2172   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2173
2174   // Return whether there is a GOT section.
2175   bool
2176   has_got_section() const
2177   { return this->got_ != NULL; }
2178
2179   // Return the size of the GOT section.
2180   section_size_type
2181   got_size()
2182   {
2183     gold_assert(this->got_ != NULL);
2184     return this->got_->data_size();
2185   }
2186
2187   // Map platform-specific reloc types
2188   static unsigned int
2189   get_real_reloc_type (unsigned int r_type);
2190
2191   //
2192   // Methods to support stub-generations.
2193   //
2194   
2195   // Return the stub factory
2196   const Stub_factory&
2197   stub_factory() const
2198   { return this->stub_factory_; }
2199
2200   // Make a new Arm_input_section object.
2201   Arm_input_section<big_endian>*
2202   new_arm_input_section(Relobj*, unsigned int);
2203
2204   // Find the Arm_input_section object corresponding to the SHNDX-th input
2205   // section of RELOBJ.
2206   Arm_input_section<big_endian>*
2207   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2208
2209   // Make a new Stub_table
2210   Stub_table<big_endian>*
2211   new_stub_table(Arm_input_section<big_endian>*);
2212
2213   // Scan a section for stub generation.
2214   void
2215   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2216                          const unsigned char*, size_t, Output_section*,
2217                          bool, const unsigned char*, Arm_address,
2218                          section_size_type);
2219
2220   // Relocate a stub. 
2221   void
2222   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2223                 Output_section*, unsigned char*, Arm_address,
2224                 section_size_type);
2225  
2226   // Get the default ARM target.
2227   static Target_arm<big_endian>*
2228   default_target()
2229   {
2230     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2231                 && parameters->target().is_big_endian() == big_endian);
2232     return static_cast<Target_arm<big_endian>*>(
2233              parameters->sized_target<32, big_endian>());
2234   }
2235
2236   // Whether NAME belongs to a mapping symbol.
2237   static bool
2238   is_mapping_symbol_name(const char* name)
2239   {
2240     return (name
2241             && name[0] == '$'
2242             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2243             && (name[2] == '\0' || name[2] == '.'));
2244   }
2245
2246   // Whether we work around the Cortex-A8 erratum.
2247   bool
2248   fix_cortex_a8() const
2249   { return this->fix_cortex_a8_; }
2250
2251   // Whether we fix R_ARM_V4BX relocation.
2252   // 0 - do not fix
2253   // 1 - replace with MOV instruction (armv4 target)
2254   // 2 - make interworking veneer (>= armv4t targets only)
2255   General_options::Fix_v4bx
2256   fix_v4bx() const
2257   { return parameters->options().fix_v4bx(); }
2258
2259   // Scan a span of THUMB code section for Cortex-A8 erratum.
2260   void
2261   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2262                                   section_size_type, section_size_type,
2263                                   const unsigned char*, Arm_address);
2264
2265   // Apply Cortex-A8 workaround to a branch.
2266   void
2267   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2268                              unsigned char*, Arm_address);
2269
2270  protected:
2271   // Make an ELF object.
2272   Object*
2273   do_make_elf_object(const std::string&, Input_file*, off_t,
2274                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2275
2276   Object*
2277   do_make_elf_object(const std::string&, Input_file*, off_t,
2278                      const elfcpp::Ehdr<32, !big_endian>&)
2279   { gold_unreachable(); }
2280
2281   Object*
2282   do_make_elf_object(const std::string&, Input_file*, off_t,
2283                       const elfcpp::Ehdr<64, false>&)
2284   { gold_unreachable(); }
2285
2286   Object*
2287   do_make_elf_object(const std::string&, Input_file*, off_t,
2288                      const elfcpp::Ehdr<64, true>&)
2289   { gold_unreachable(); }
2290
2291   // Make an output section.
2292   Output_section*
2293   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2294                          elfcpp::Elf_Xword flags)
2295   { return new Arm_output_section<big_endian>(name, type, flags); }
2296
2297   void
2298   do_adjust_elf_header(unsigned char* view, int len) const;
2299
2300   // We only need to generate stubs, and hence perform relaxation if we are
2301   // not doing relocatable linking.
2302   bool
2303   do_may_relax() const
2304   { return !parameters->options().relocatable(); }
2305
2306   bool
2307   do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2308
2309   // Determine whether an object attribute tag takes an integer, a
2310   // string or both.
2311   int
2312   do_attribute_arg_type(int tag) const;
2313
2314   // Reorder tags during output.
2315   int
2316   do_attributes_order(int num) const;
2317
2318   // This is called when the target is selected as the default.
2319   void
2320   do_select_as_default_target()
2321   {
2322     // No locking is required since there should only be one default target.
2323     // We cannot have both the big-endian and little-endian ARM targets
2324     // as the default.
2325     gold_assert(arm_reloc_property_table == NULL);
2326     arm_reloc_property_table = new Arm_reloc_property_table();
2327   }
2328
2329  private:
2330   // The class which scans relocations.
2331   class Scan
2332   {
2333    public:
2334     Scan()
2335       : issued_non_pic_error_(false)
2336     { }
2337
2338     inline void
2339     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2340           Sized_relobj<32, big_endian>* object,
2341           unsigned int data_shndx,
2342           Output_section* output_section,
2343           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2344           const elfcpp::Sym<32, big_endian>& lsym);
2345
2346     inline void
2347     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2348            Sized_relobj<32, big_endian>* object,
2349            unsigned int data_shndx,
2350            Output_section* output_section,
2351            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2352            Symbol* gsym);
2353
2354     inline bool
2355     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2356                                         Sized_relobj<32, big_endian>* ,
2357                                         unsigned int ,
2358                                         Output_section* ,
2359                                         const elfcpp::Rel<32, big_endian>& ,
2360                                         unsigned int ,
2361                                         const elfcpp::Sym<32, big_endian>&)
2362     { return false; }
2363
2364     inline bool
2365     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2366                                          Sized_relobj<32, big_endian>* ,
2367                                          unsigned int ,
2368                                          Output_section* ,
2369                                          const elfcpp::Rel<32, big_endian>& ,
2370                                          unsigned int , Symbol*)
2371     { return false; }
2372
2373    private:
2374     static void
2375     unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2376                             unsigned int r_type);
2377
2378     static void
2379     unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2380                              unsigned int r_type, Symbol*);
2381
2382     void
2383     check_non_pic(Relobj*, unsigned int r_type);
2384
2385     // Almost identical to Symbol::needs_plt_entry except that it also
2386     // handles STT_ARM_TFUNC.
2387     static bool
2388     symbol_needs_plt_entry(const Symbol* sym)
2389     {
2390       // An undefined symbol from an executable does not need a PLT entry.
2391       if (sym->is_undefined() && !parameters->options().shared())
2392         return false;
2393
2394       return (!parameters->doing_static_link()
2395               && (sym->type() == elfcpp::STT_FUNC
2396                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2397               && (sym->is_from_dynobj()
2398                   || sym->is_undefined()
2399                   || sym->is_preemptible()));
2400     }
2401
2402     // Whether we have issued an error about a non-PIC compilation.
2403     bool issued_non_pic_error_;
2404   };
2405
2406   // The class which implements relocation.
2407   class Relocate
2408   {
2409    public:
2410     Relocate()
2411     { }
2412
2413     ~Relocate()
2414     { }
2415
2416     // Return whether the static relocation needs to be applied.
2417     inline bool
2418     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2419                               int ref_flags,
2420                               bool is_32bit,
2421                               Output_section* output_section);
2422
2423     // Do a relocation.  Return false if the caller should not issue
2424     // any warnings about this relocation.
2425     inline bool
2426     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2427              Output_section*,  size_t relnum,
2428              const elfcpp::Rel<32, big_endian>&,
2429              unsigned int r_type, const Sized_symbol<32>*,
2430              const Symbol_value<32>*,
2431              unsigned char*, Arm_address,
2432              section_size_type);
2433
2434     // Return whether we want to pass flag NON_PIC_REF for this
2435     // reloc.  This means the relocation type accesses a symbol not via
2436     // GOT or PLT.
2437     static inline bool
2438     reloc_is_non_pic (unsigned int r_type)
2439     {
2440       switch (r_type)
2441         {
2442         // These relocation types reference GOT or PLT entries explicitly.
2443         case elfcpp::R_ARM_GOT_BREL:
2444         case elfcpp::R_ARM_GOT_ABS:
2445         case elfcpp::R_ARM_GOT_PREL:
2446         case elfcpp::R_ARM_GOT_BREL12:
2447         case elfcpp::R_ARM_PLT32_ABS:
2448         case elfcpp::R_ARM_TLS_GD32:
2449         case elfcpp::R_ARM_TLS_LDM32:
2450         case elfcpp::R_ARM_TLS_IE32:
2451         case elfcpp::R_ARM_TLS_IE12GP:
2452
2453         // These relocate types may use PLT entries.
2454         case elfcpp::R_ARM_CALL:
2455         case elfcpp::R_ARM_THM_CALL:
2456         case elfcpp::R_ARM_JUMP24:
2457         case elfcpp::R_ARM_THM_JUMP24:
2458         case elfcpp::R_ARM_THM_JUMP19:
2459         case elfcpp::R_ARM_PLT32:
2460         case elfcpp::R_ARM_THM_XPC22:
2461         case elfcpp::R_ARM_PREL31:
2462         case elfcpp::R_ARM_SBREL31:
2463           return false;
2464
2465         default:
2466           return true;
2467         }
2468     }
2469
2470    private:
2471     // Do a TLS relocation.
2472     inline typename Arm_relocate_functions<big_endian>::Status
2473     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2474                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2475                  const Sized_symbol<32>*, const Symbol_value<32>*,
2476                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2477                  section_size_type);
2478
2479   };
2480
2481   // A class which returns the size required for a relocation type,
2482   // used while scanning relocs during a relocatable link.
2483   class Relocatable_size_for_reloc
2484   {
2485    public:
2486     unsigned int
2487     get_size_for_reloc(unsigned int, Relobj*);
2488   };
2489
2490   // Adjust TLS relocation type based on the options and whether this
2491   // is a local symbol.
2492   static tls::Tls_optimization
2493   optimize_tls_reloc(bool is_final, int r_type);
2494
2495   // Get the GOT section, creating it if necessary.
2496   Arm_output_data_got<big_endian>*
2497   got_section(Symbol_table*, Layout*);
2498
2499   // Get the GOT PLT section.
2500   Output_data_space*
2501   got_plt_section() const
2502   {
2503     gold_assert(this->got_plt_ != NULL);
2504     return this->got_plt_;
2505   }
2506
2507   // Create a PLT entry for a global symbol.
2508   void
2509   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2510
2511   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2512   void
2513   define_tls_base_symbol(Symbol_table*, Layout*);
2514
2515   // Create a GOT entry for the TLS module index.
2516   unsigned int
2517   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2518                       Sized_relobj<32, big_endian>* object);
2519
2520   // Get the PLT section.
2521   const Output_data_plt_arm<big_endian>*
2522   plt_section() const
2523   {
2524     gold_assert(this->plt_ != NULL);
2525     return this->plt_;
2526   }
2527
2528   // Get the dynamic reloc section, creating it if necessary.
2529   Reloc_section*
2530   rel_dyn_section(Layout*);
2531
2532   // Get the section to use for TLS_DESC relocations.
2533   Reloc_section*
2534   rel_tls_desc_section(Layout*) const;
2535
2536   // Return true if the symbol may need a COPY relocation.
2537   // References from an executable object to non-function symbols
2538   // defined in a dynamic object may need a COPY relocation.
2539   bool
2540   may_need_copy_reloc(Symbol* gsym)
2541   {
2542     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2543             && gsym->may_need_copy_reloc());
2544   }
2545
2546   // Add a potential copy relocation.
2547   void
2548   copy_reloc(Symbol_table* symtab, Layout* layout,
2549              Sized_relobj<32, big_endian>* object,
2550              unsigned int shndx, Output_section* output_section,
2551              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2552   {
2553     this->copy_relocs_.copy_reloc(symtab, layout,
2554                                   symtab->get_sized_symbol<32>(sym),
2555                                   object, shndx, output_section, reloc,
2556                                   this->rel_dyn_section(layout));
2557   }
2558
2559   // Whether two EABI versions are compatible.
2560   static bool
2561   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2562
2563   // Merge processor-specific flags from input object and those in the ELF
2564   // header of the output.
2565   void
2566   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2567
2568   // Get the secondary compatible architecture.
2569   static int
2570   get_secondary_compatible_arch(const Attributes_section_data*);
2571
2572   // Set the secondary compatible architecture.
2573   static void
2574   set_secondary_compatible_arch(Attributes_section_data*, int);
2575
2576   static int
2577   tag_cpu_arch_combine(const char*, int, int*, int, int);
2578
2579   // Helper to print AEABI enum tag value.
2580   static std::string
2581   aeabi_enum_name(unsigned int);
2582
2583   // Return string value for TAG_CPU_name.
2584   static std::string
2585   tag_cpu_name_value(unsigned int);
2586
2587   // Merge object attributes from input object and those in the output.
2588   void
2589   merge_object_attributes(const char*, const Attributes_section_data*);
2590
2591   // Helper to get an AEABI object attribute
2592   Object_attribute*
2593   get_aeabi_object_attribute(int tag) const
2594   {
2595     Attributes_section_data* pasd = this->attributes_section_data_;
2596     gold_assert(pasd != NULL);
2597     Object_attribute* attr =
2598       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2599     gold_assert(attr != NULL);
2600     return attr;
2601   }
2602
2603   //
2604   // Methods to support stub-generations.
2605   //
2606
2607   // Group input sections for stub generation.
2608   void
2609   group_sections(Layout*, section_size_type, bool);
2610
2611   // Scan a relocation for stub generation.
2612   void
2613   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2614                       const Sized_symbol<32>*, unsigned int,
2615                       const Symbol_value<32>*,
2616                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2617
2618   // Scan a relocation section for stub.
2619   template<int sh_type>
2620   void
2621   scan_reloc_section_for_stubs(
2622       const Relocate_info<32, big_endian>* relinfo,
2623       const unsigned char* prelocs,
2624       size_t reloc_count,
2625       Output_section* output_section,
2626       bool needs_special_offset_handling,
2627       const unsigned char* view,
2628       elfcpp::Elf_types<32>::Elf_Addr view_address,
2629       section_size_type);
2630
2631   // Fix .ARM.exidx section coverage.
2632   void
2633   fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2634
2635   // Functors for STL set.
2636   struct output_section_address_less_than
2637   {
2638     bool
2639     operator()(const Output_section* s1, const Output_section* s2) const
2640     { return s1->address() < s2->address(); }
2641   };
2642
2643   // Information about this specific target which we pass to the
2644   // general Target structure.
2645   static const Target::Target_info arm_info;
2646
2647   // The types of GOT entries needed for this platform.
2648   enum Got_type
2649   {
2650     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2651     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2652     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2653     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2654     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2655   };
2656
2657   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2658
2659   // Map input section to Arm_input_section.
2660   typedef Unordered_map<Section_id,
2661                         Arm_input_section<big_endian>*,
2662                         Section_id_hash>
2663           Arm_input_section_map;
2664     
2665   // Map output addresses to relocs for Cortex-A8 erratum.
2666   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2667           Cortex_a8_relocs_info;
2668
2669   // The GOT section.
2670   Arm_output_data_got<big_endian>* got_;
2671   // The PLT section.
2672   Output_data_plt_arm<big_endian>* plt_;
2673   // The GOT PLT section.
2674   Output_data_space* got_plt_;
2675   // The dynamic reloc section.
2676   Reloc_section* rel_dyn_;
2677   // Relocs saved to avoid a COPY reloc.
2678   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2679   // Space for variables copied with a COPY reloc.
2680   Output_data_space* dynbss_;
2681   // Offset of the GOT entry for the TLS module index.
2682   unsigned int got_mod_index_offset_;
2683   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2684   bool tls_base_symbol_defined_;
2685   // Vector of Stub_tables created.
2686   Stub_table_list stub_tables_;
2687   // Stub factory.
2688   const Stub_factory &stub_factory_;
2689   // Whether we can use BLX.
2690   bool may_use_blx_;
2691   // Whether we force PIC branch veneers.
2692   bool should_force_pic_veneer_;
2693   // Map for locating Arm_input_sections.
2694   Arm_input_section_map arm_input_section_map_;
2695   // Attributes section data in output.
2696   Attributes_section_data* attributes_section_data_;
2697   // Whether we want to fix code for Cortex-A8 erratum.
2698   bool fix_cortex_a8_;
2699   // Map addresses to relocs for Cortex-A8 erratum.
2700   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2701 };
2702
2703 template<bool big_endian>
2704 const Target::Target_info Target_arm<big_endian>::arm_info =
2705 {
2706   32,                   // size
2707   big_endian,           // is_big_endian
2708   elfcpp::EM_ARM,       // machine_code
2709   false,                // has_make_symbol
2710   false,                // has_resolve
2711   false,                // has_code_fill
2712   true,                 // is_default_stack_executable
2713   '\0',                 // wrap_char
2714   "/usr/lib/libc.so.1", // dynamic_linker
2715   0x8000,               // default_text_segment_address
2716   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2717   0x1000,               // common_pagesize (overridable by -z common-page-size)
2718   elfcpp::SHN_UNDEF,    // small_common_shndx
2719   elfcpp::SHN_UNDEF,    // large_common_shndx
2720   0,                    // small_common_section_flags
2721   0,                    // large_common_section_flags
2722   ".ARM.attributes",    // attributes_section
2723   "aeabi"               // attributes_vendor
2724 };
2725
2726 // Arm relocate functions class
2727 //
2728
2729 template<bool big_endian>
2730 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2731 {
2732  public:
2733   typedef enum
2734   {
2735     STATUS_OKAY,        // No error during relocation.
2736     STATUS_OVERFLOW,    // Relocation oveflow.
2737     STATUS_BAD_RELOC    // Relocation cannot be applied.
2738   } Status;
2739
2740  private:
2741   typedef Relocate_functions<32, big_endian> Base;
2742   typedef Arm_relocate_functions<big_endian> This;
2743
2744   // Encoding of imm16 argument for movt and movw ARM instructions
2745   // from ARM ARM:
2746   //     
2747   //     imm16 := imm4 | imm12
2748   //
2749   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2750   // +-------+---------------+-------+-------+-----------------------+
2751   // |       |               |imm4   |       |imm12                  |
2752   // +-------+---------------+-------+-------+-----------------------+
2753
2754   // Extract the relocation addend from VAL based on the ARM
2755   // instruction encoding described above.
2756   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2757   extract_arm_movw_movt_addend(
2758       typename elfcpp::Swap<32, big_endian>::Valtype val)
2759   {
2760     // According to the Elf ABI for ARM Architecture the immediate
2761     // field is sign-extended to form the addend.
2762     return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2763   }
2764
2765   // Insert X into VAL based on the ARM instruction encoding described
2766   // above.
2767   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2768   insert_val_arm_movw_movt(
2769       typename elfcpp::Swap<32, big_endian>::Valtype val,
2770       typename elfcpp::Swap<32, big_endian>::Valtype x)
2771   {
2772     val &= 0xfff0f000;
2773     val |= x & 0x0fff;
2774     val |= (x & 0xf000) << 4;
2775     return val;
2776   }
2777
2778   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2779   // from ARM ARM:
2780   //     
2781   //     imm16 := imm4 | i | imm3 | imm8
2782   //
2783   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
2784   // +---------+-+-----------+-------++-+-----+-------+---------------+
2785   // |         |i|           |imm4   || |imm3 |       |imm8           |
2786   // +---------+-+-----------+-------++-+-----+-------+---------------+
2787
2788   // Extract the relocation addend from VAL based on the Thumb2
2789   // instruction encoding described above.
2790   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2791   extract_thumb_movw_movt_addend(
2792       typename elfcpp::Swap<32, big_endian>::Valtype val)
2793   {
2794     // According to the Elf ABI for ARM Architecture the immediate
2795     // field is sign-extended to form the addend.
2796     return utils::sign_extend<16>(((val >> 4) & 0xf000)
2797                                   | ((val >> 15) & 0x0800)
2798                                   | ((val >> 4) & 0x0700)
2799                                   | (val & 0x00ff));
2800   }
2801
2802   // Insert X into VAL based on the Thumb2 instruction encoding
2803   // described above.
2804   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2805   insert_val_thumb_movw_movt(
2806       typename elfcpp::Swap<32, big_endian>::Valtype val,
2807       typename elfcpp::Swap<32, big_endian>::Valtype x)
2808   {
2809     val &= 0xfbf08f00;
2810     val |= (x & 0xf000) << 4;
2811     val |= (x & 0x0800) << 15;
2812     val |= (x & 0x0700) << 4;
2813     val |= (x & 0x00ff);
2814     return val;
2815   }
2816
2817   // Calculate the smallest constant Kn for the specified residual.
2818   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2819   static uint32_t
2820   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2821   {
2822     int32_t msb;
2823
2824     if (residual == 0)
2825       return 0;
2826     // Determine the most significant bit in the residual and
2827     // align the resulting value to a 2-bit boundary.
2828     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2829       ;
2830     // The desired shift is now (msb - 6), or zero, whichever
2831     // is the greater.
2832     return (((msb - 6) < 0) ? 0 : (msb - 6));
2833   }
2834
2835   // Calculate the final residual for the specified group index.
2836   // If the passed group index is less than zero, the method will return
2837   // the value of the specified residual without any change.
2838   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2839   static typename elfcpp::Swap<32, big_endian>::Valtype
2840   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2841                     const int group)
2842   {
2843     for (int n = 0; n <= group; n++)
2844       {
2845         // Calculate which part of the value to mask.
2846         uint32_t shift = calc_grp_kn(residual);
2847         // Calculate the residual for the next time around.
2848         residual &= ~(residual & (0xff << shift));
2849       }
2850
2851     return residual;
2852   }
2853
2854   // Calculate the value of Gn for the specified group index.
2855   // We return it in the form of an encoded constant-and-rotation.
2856   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2857   static typename elfcpp::Swap<32, big_endian>::Valtype
2858   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2859               const int group)
2860   {
2861     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2862     uint32_t shift = 0;
2863
2864     for (int n = 0; n <= group; n++)
2865       {
2866         // Calculate which part of the value to mask.
2867         shift = calc_grp_kn(residual);
2868         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2869         gn = residual & (0xff << shift);
2870         // Calculate the residual for the next time around.
2871         residual &= ~gn;
2872       }
2873     // Return Gn in the form of an encoded constant-and-rotation.
2874     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2875   }
2876
2877  public:
2878   // Handle ARM long branches.
2879   static typename This::Status
2880   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2881                     unsigned char *, const Sized_symbol<32>*,
2882                     const Arm_relobj<big_endian>*, unsigned int,
2883                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
2884
2885   // Handle THUMB long branches.
2886   static typename This::Status
2887   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2888                       unsigned char *, const Sized_symbol<32>*,
2889                       const Arm_relobj<big_endian>*, unsigned int,
2890                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
2891
2892
2893   // Return the branch offset of a 32-bit THUMB branch.
2894   static inline int32_t
2895   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2896   {
2897     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2898     // involving the J1 and J2 bits.
2899     uint32_t s = (upper_insn & (1U << 10)) >> 10;
2900     uint32_t upper = upper_insn & 0x3ffU;
2901     uint32_t lower = lower_insn & 0x7ffU;
2902     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
2903     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
2904     uint32_t i1 = j1 ^ s ? 0 : 1;
2905     uint32_t i2 = j2 ^ s ? 0 : 1;
2906
2907     return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
2908                                   | (upper << 12) | (lower << 1));
2909   }
2910
2911   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2912   // UPPER_INSN is the original upper instruction of the branch.  Caller is
2913   // responsible for overflow checking and BLX offset adjustment.
2914   static inline uint16_t
2915   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
2916   {
2917     uint32_t s = offset < 0 ? 1 : 0;
2918     uint32_t bits = static_cast<uint32_t>(offset);
2919     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
2920   }
2921
2922   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2923   // LOWER_INSN is the original lower instruction of the branch.  Caller is
2924   // responsible for overflow checking and BLX offset adjustment.
2925   static inline uint16_t
2926   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
2927   {
2928     uint32_t s = offset < 0 ? 1 : 0;
2929     uint32_t bits = static_cast<uint32_t>(offset);
2930     return ((lower_insn & ~0x2fffU)
2931             | ((((bits >> 23) & 1) ^ !s) << 13)
2932             | ((((bits >> 22) & 1) ^ !s) << 11)
2933             | ((bits >> 1) & 0x7ffU));
2934   }
2935
2936   // Return the branch offset of a 32-bit THUMB conditional branch.
2937   static inline int32_t
2938   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2939   {
2940     uint32_t s = (upper_insn & 0x0400U) >> 10;
2941     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
2942     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
2943     uint32_t lower = (lower_insn & 0x07ffU);
2944     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
2945
2946     return utils::sign_extend<21>((upper << 12) | (lower << 1));
2947   }
2948
2949   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2950   // instruction.  UPPER_INSN is the original upper instruction of the branch.
2951   // Caller is responsible for overflow checking.
2952   static inline uint16_t
2953   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
2954   {
2955     uint32_t s = offset < 0 ? 1 : 0;
2956     uint32_t bits = static_cast<uint32_t>(offset);
2957     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
2958   }
2959
2960   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2961   // instruction.  LOWER_INSN is the original lower instruction of the branch.
2962   // Caller is reponsible for overflow checking.
2963   static inline uint16_t
2964   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
2965   {
2966     uint32_t bits = static_cast<uint32_t>(offset);
2967     uint32_t j2 = (bits & 0x00080000U) >> 19;
2968     uint32_t j1 = (bits & 0x00040000U) >> 18;
2969     uint32_t lo = (bits & 0x00000ffeU) >> 1;
2970
2971     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
2972   }
2973
2974   // R_ARM_ABS8: S + A
2975   static inline typename This::Status
2976   abs8(unsigned char *view,
2977        const Sized_relobj<32, big_endian>* object,
2978        const Symbol_value<32>* psymval)
2979   {
2980     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
2981     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2982     Valtype* wv = reinterpret_cast<Valtype*>(view);
2983     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
2984     Reltype addend = utils::sign_extend<8>(val);
2985     Reltype x = psymval->value(object, addend);
2986     val = utils::bit_select(val, x, 0xffU);
2987     elfcpp::Swap<8, big_endian>::writeval(wv, val);
2988
2989     // R_ARM_ABS8 permits signed or unsigned results.
2990     int signed_x = static_cast<int32_t>(x);
2991     return ((signed_x < -128 || signed_x > 255)
2992             ? This::STATUS_OVERFLOW
2993             : This::STATUS_OKAY);
2994   }
2995
2996   // R_ARM_THM_ABS5: S + A
2997   static inline typename This::Status
2998   thm_abs5(unsigned char *view,
2999        const Sized_relobj<32, big_endian>* object,
3000        const Symbol_value<32>* psymval)
3001   {
3002     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3003     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3004     Valtype* wv = reinterpret_cast<Valtype*>(view);
3005     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3006     Reltype addend = (val & 0x7e0U) >> 6;
3007     Reltype x = psymval->value(object, addend);
3008     val = utils::bit_select(val, x << 6, 0x7e0U);
3009     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3010
3011     // R_ARM_ABS16 permits signed or unsigned results.
3012     int signed_x = static_cast<int32_t>(x);
3013     return ((signed_x < -32768 || signed_x > 65535)
3014             ? This::STATUS_OVERFLOW
3015             : This::STATUS_OKAY);
3016   }
3017
3018   // R_ARM_ABS12: S + A
3019   static inline typename This::Status
3020   abs12(unsigned char *view,
3021         const Sized_relobj<32, big_endian>* object,
3022         const Symbol_value<32>* psymval)
3023   {
3024     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3025     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3026     Valtype* wv = reinterpret_cast<Valtype*>(view);
3027     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3028     Reltype addend = val & 0x0fffU;
3029     Reltype x = psymval->value(object, addend);
3030     val = utils::bit_select(val, x, 0x0fffU);
3031     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3032     return (utils::has_overflow<12>(x)
3033             ? This::STATUS_OVERFLOW
3034             : This::STATUS_OKAY);
3035   }
3036
3037   // R_ARM_ABS16: S + A
3038   static inline typename This::Status
3039   abs16(unsigned char *view,
3040         const Sized_relobj<32, big_endian>* object,
3041         const Symbol_value<32>* psymval)
3042   {
3043     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3044     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3045     Valtype* wv = reinterpret_cast<Valtype*>(view);
3046     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3047     Reltype addend = utils::sign_extend<16>(val);
3048     Reltype x = psymval->value(object, addend);
3049     val = utils::bit_select(val, x, 0xffffU);
3050     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3051     return (utils::has_signed_unsigned_overflow<16>(x)
3052             ? This::STATUS_OVERFLOW
3053             : This::STATUS_OKAY);
3054   }
3055
3056   // R_ARM_ABS32: (S + A) | T
3057   static inline typename This::Status
3058   abs32(unsigned char *view,
3059         const Sized_relobj<32, big_endian>* object,
3060         const Symbol_value<32>* psymval,
3061         Arm_address thumb_bit)
3062   {
3063     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3064     Valtype* wv = reinterpret_cast<Valtype*>(view);
3065     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3066     Valtype x = psymval->value(object, addend) | thumb_bit;
3067     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3068     return This::STATUS_OKAY;
3069   }
3070
3071   // R_ARM_REL32: (S + A) | T - P
3072   static inline typename This::Status
3073   rel32(unsigned char *view,
3074         const Sized_relobj<32, big_endian>* object,
3075         const Symbol_value<32>* psymval,
3076         Arm_address address,
3077         Arm_address thumb_bit)
3078   {
3079     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3080     Valtype* wv = reinterpret_cast<Valtype*>(view);
3081     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3082     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3083     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3084     return This::STATUS_OKAY;
3085   }
3086
3087   // R_ARM_THM_JUMP24: (S + A) | T - P
3088   static typename This::Status
3089   thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3090              const Symbol_value<32>* psymval, Arm_address address,
3091              Arm_address thumb_bit);
3092
3093   // R_ARM_THM_JUMP6: S + A â€“ P
3094   static inline typename This::Status
3095   thm_jump6(unsigned char *view,
3096             const Sized_relobj<32, big_endian>* object,
3097             const Symbol_value<32>* psymval,
3098             Arm_address address)
3099   {
3100     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3101     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3102     Valtype* wv = reinterpret_cast<Valtype*>(view);
3103     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3104     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3105     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3106     Reltype x = (psymval->value(object, addend) - address);
3107     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3108     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3109     // CZB does only forward jumps.
3110     return ((x > 0x007e)
3111             ? This::STATUS_OVERFLOW
3112             : This::STATUS_OKAY);
3113   }
3114
3115   // R_ARM_THM_JUMP8: S + A â€“ P
3116   static inline typename This::Status
3117   thm_jump8(unsigned char *view,
3118             const Sized_relobj<32, big_endian>* object,
3119             const Symbol_value<32>* psymval,
3120             Arm_address address)
3121   {
3122     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3123     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3124     Valtype* wv = reinterpret_cast<Valtype*>(view);
3125     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3126     Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3127     Reltype x = (psymval->value(object, addend) - address);
3128     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3129     return (utils::has_overflow<8>(x)
3130             ? This::STATUS_OVERFLOW
3131             : This::STATUS_OKAY);
3132   }
3133
3134   // R_ARM_THM_JUMP11: S + A â€“ P
3135   static inline typename This::Status
3136   thm_jump11(unsigned char *view,
3137             const Sized_relobj<32, big_endian>* object,
3138             const Symbol_value<32>* psymval,
3139             Arm_address address)
3140   {
3141     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3142     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3143     Valtype* wv = reinterpret_cast<Valtype*>(view);
3144     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3145     Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3146     Reltype x = (psymval->value(object, addend) - address);
3147     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3148     return (utils::has_overflow<11>(x)
3149             ? This::STATUS_OVERFLOW
3150             : This::STATUS_OKAY);
3151   }
3152
3153   // R_ARM_BASE_PREL: B(S) + A - P
3154   static inline typename This::Status
3155   base_prel(unsigned char* view,
3156             Arm_address origin,
3157             Arm_address address)
3158   {
3159     Base::rel32(view, origin - address);
3160     return STATUS_OKAY;
3161   }
3162
3163   // R_ARM_BASE_ABS: B(S) + A
3164   static inline typename This::Status
3165   base_abs(unsigned char* view,
3166            Arm_address origin)
3167   {
3168     Base::rel32(view, origin);
3169     return STATUS_OKAY;
3170   }
3171
3172   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3173   static inline typename This::Status
3174   got_brel(unsigned char* view,
3175            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3176   {
3177     Base::rel32(view, got_offset);
3178     return This::STATUS_OKAY;
3179   }
3180
3181   // R_ARM_GOT_PREL: GOT(S) + A - P
3182   static inline typename This::Status
3183   got_prel(unsigned char *view,
3184            Arm_address got_entry,
3185            Arm_address address)
3186   {
3187     Base::rel32(view, got_entry - address);
3188     return This::STATUS_OKAY;
3189   }
3190
3191   // R_ARM_PREL: (S + A) | T - P
3192   static inline typename This::Status
3193   prel31(unsigned char *view,
3194          const Sized_relobj<32, big_endian>* object,
3195          const Symbol_value<32>* psymval,
3196          Arm_address address,
3197          Arm_address thumb_bit)
3198   {
3199     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3200     Valtype* wv = reinterpret_cast<Valtype*>(view);
3201     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3202     Valtype addend = utils::sign_extend<31>(val);
3203     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3204     val = utils::bit_select(val, x, 0x7fffffffU);
3205     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3206     return (utils::has_overflow<31>(x) ?
3207             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3208   }
3209
3210   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3211   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3212   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3213   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3214   static inline typename This::Status
3215   movw(unsigned char* view,
3216        const Sized_relobj<32, big_endian>* object,
3217        const Symbol_value<32>* psymval,
3218        Arm_address relative_address_base,
3219        Arm_address thumb_bit,
3220        bool check_overflow)
3221   {
3222     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3223     Valtype* wv = reinterpret_cast<Valtype*>(view);
3224     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3225     Valtype addend = This::extract_arm_movw_movt_addend(val);
3226     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3227                  - relative_address_base);
3228     val = This::insert_val_arm_movw_movt(val, x);
3229     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3230     return ((check_overflow && utils::has_overflow<16>(x))
3231             ? This::STATUS_OVERFLOW
3232             : This::STATUS_OKAY);
3233   }
3234
3235   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3236   // R_ARM_MOVT_PREL: S + A - P
3237   // R_ARM_MOVT_BREL: S + A - B(S)
3238   static inline typename This::Status
3239   movt(unsigned char* view,
3240        const Sized_relobj<32, big_endian>* object,
3241        const Symbol_value<32>* psymval,
3242        Arm_address relative_address_base)
3243   {
3244     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3245     Valtype* wv = reinterpret_cast<Valtype*>(view);
3246     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3247     Valtype addend = This::extract_arm_movw_movt_addend(val);
3248     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3249     val = This::insert_val_arm_movw_movt(val, x);
3250     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3251     // FIXME: IHI0044D says that we should check for overflow.
3252     return This::STATUS_OKAY;
3253   }
3254
3255   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3256   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3257   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3258   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3259   static inline typename This::Status
3260   thm_movw(unsigned char *view,
3261            const Sized_relobj<32, big_endian>* object,
3262            const Symbol_value<32>* psymval,
3263            Arm_address relative_address_base,
3264            Arm_address thumb_bit,
3265            bool check_overflow)
3266   {
3267     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3268     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3269     Valtype* wv = reinterpret_cast<Valtype*>(view);
3270     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3271                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3272     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3273     Reltype x =
3274       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3275     val = This::insert_val_thumb_movw_movt(val, x);
3276     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3277     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3278     return ((check_overflow && utils::has_overflow<16>(x))
3279             ? This::STATUS_OVERFLOW
3280             : This::STATUS_OKAY);
3281   }
3282
3283   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3284   // R_ARM_THM_MOVT_PREL: S + A - P
3285   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3286   static inline typename This::Status
3287   thm_movt(unsigned char* view,
3288            const Sized_relobj<32, big_endian>* object,
3289            const Symbol_value<32>* psymval,
3290            Arm_address relative_address_base)
3291   {
3292     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3293     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3294     Valtype* wv = reinterpret_cast<Valtype*>(view);
3295     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3296                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3297     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3298     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3299     val = This::insert_val_thumb_movw_movt(val, x);
3300     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3301     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3302     return This::STATUS_OKAY;
3303   }
3304
3305   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3306   static inline typename This::Status
3307   thm_alu11(unsigned char* view,
3308             const Sized_relobj<32, big_endian>* object,
3309             const Symbol_value<32>* psymval,
3310             Arm_address address,
3311             Arm_address thumb_bit)
3312   {
3313     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3314     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3315     Valtype* wv = reinterpret_cast<Valtype*>(view);
3316     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3317                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3318
3319     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3320     // -----------------------------------------------------------------------
3321     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3322     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3323     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3324     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3325     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3326     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3327
3328     // Determine a sign for the addend.
3329     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3330                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3331     // Thumb2 addend encoding:
3332     // imm12 := i | imm3 | imm8
3333     int32_t addend = (insn & 0xff)
3334                      | ((insn & 0x00007000) >> 4)
3335                      | ((insn & 0x04000000) >> 15);
3336     // Apply a sign to the added.
3337     addend *= sign;
3338
3339     int32_t x = (psymval->value(object, addend) | thumb_bit)
3340                 - (address & 0xfffffffc);
3341     Reltype val = abs(x);
3342     // Mask out the value and a distinct part of the ADD/SUB opcode
3343     // (bits 7:5 of opword).
3344     insn = (insn & 0xfb0f8f00)
3345            | (val & 0xff)
3346            | ((val & 0x700) << 4)
3347            | ((val & 0x800) << 15);
3348     // Set the opcode according to whether the value to go in the
3349     // place is negative.
3350     if (x < 0)
3351       insn |= 0x00a00000;
3352
3353     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3354     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3355     return ((val > 0xfff) ?
3356             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3357   }
3358
3359   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3360   static inline typename This::Status
3361   thm_pc8(unsigned char* view,
3362           const Sized_relobj<32, big_endian>* object,
3363           const Symbol_value<32>* psymval,
3364           Arm_address address)
3365   {
3366     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3367     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3368     Valtype* wv = reinterpret_cast<Valtype*>(view);
3369     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3370     Reltype addend = ((insn & 0x00ff) << 2);
3371     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3372     Reltype val = abs(x);
3373     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3374
3375     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3376     return ((val > 0x03fc)
3377             ? This::STATUS_OVERFLOW
3378             : This::STATUS_OKAY);
3379   }
3380
3381   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3382   static inline typename This::Status
3383   thm_pc12(unsigned char* view,
3384            const Sized_relobj<32, big_endian>* object,
3385            const Symbol_value<32>* psymval,
3386            Arm_address address)
3387   {
3388     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3389     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3390     Valtype* wv = reinterpret_cast<Valtype*>(view);
3391     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3392                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3393     // Determine a sign for the addend (positive if the U bit is 1).
3394     const int sign = (insn & 0x00800000) ? 1 : -1;
3395     int32_t addend = (insn & 0xfff);
3396     // Apply a sign to the added.
3397     addend *= sign;
3398
3399     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3400     Reltype val = abs(x);
3401     // Mask out and apply the value and the U bit.
3402     insn = (insn & 0xff7ff000) | (val & 0xfff);
3403     // Set the U bit according to whether the value to go in the
3404     // place is positive.
3405     if (x >= 0)
3406       insn |= 0x00800000;
3407
3408     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3409     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3410     return ((val > 0xfff) ?
3411             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3412   }
3413
3414   // R_ARM_V4BX
3415   static inline typename This::Status
3416   v4bx(const Relocate_info<32, big_endian>* relinfo,
3417        unsigned char *view,
3418        const Arm_relobj<big_endian>* object,
3419        const Arm_address address,
3420        const bool is_interworking)
3421   {
3422
3423     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3424     Valtype* wv = reinterpret_cast<Valtype*>(view);
3425     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3426
3427     // Ensure that we have a BX instruction.
3428     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3429     const uint32_t reg = (val & 0xf);
3430     if (is_interworking && reg != 0xf)
3431       {
3432         Stub_table<big_endian>* stub_table =
3433             object->stub_table(relinfo->data_shndx);
3434         gold_assert(stub_table != NULL);
3435
3436         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3437         gold_assert(stub != NULL);
3438
3439         int32_t veneer_address =
3440             stub_table->address() + stub->offset() - 8 - address;
3441         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3442                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3443         // Replace with a branch to veneer (B <addr>)
3444         val = (val & 0xf0000000) | 0x0a000000
3445               | ((veneer_address >> 2) & 0x00ffffff);
3446       }
3447     else
3448       {
3449         // Preserve Rm (lowest four bits) and the condition code
3450         // (highest four bits). Other bits encode MOV PC,Rm.
3451         val = (val & 0xf000000f) | 0x01a0f000;
3452       }
3453     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3454     return This::STATUS_OKAY;
3455   }
3456
3457   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3458   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3459   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3460   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3461   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3462   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3463   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3464   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3465   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3466   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3467   static inline typename This::Status
3468   arm_grp_alu(unsigned char* view,
3469         const Sized_relobj<32, big_endian>* object,
3470         const Symbol_value<32>* psymval,
3471         const int group,
3472         Arm_address address,
3473         Arm_address thumb_bit,
3474         bool check_overflow)
3475   {
3476     gold_assert(group >= 0 && group < 3);
3477     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3478     Valtype* wv = reinterpret_cast<Valtype*>(view);
3479     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3480
3481     // ALU group relocations are allowed only for the ADD/SUB instructions.
3482     // (0x00800000 - ADD, 0x00400000 - SUB)
3483     const Valtype opcode = insn & 0x01e00000;
3484     if (opcode != 0x00800000 && opcode != 0x00400000)
3485       return This::STATUS_BAD_RELOC;
3486
3487     // Determine a sign for the addend.
3488     const int sign = (opcode == 0x00800000) ? 1 : -1;
3489     // shifter = rotate_imm * 2
3490     const uint32_t shifter = (insn & 0xf00) >> 7;
3491     // Initial addend value.
3492     int32_t addend = insn & 0xff;
3493     // Rotate addend right by shifter.
3494     addend = (addend >> shifter) | (addend << (32 - shifter));
3495     // Apply a sign to the added.
3496     addend *= sign;
3497
3498     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3499     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3500     // Check for overflow if required
3501     if (check_overflow
3502         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3503       return This::STATUS_OVERFLOW;
3504
3505     // Mask out the value and the ADD/SUB part of the opcode; take care
3506     // not to destroy the S bit.
3507     insn &= 0xff1ff000;
3508     // Set the opcode according to whether the value to go in the
3509     // place is negative.
3510     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3511     // Encode the offset (encoded Gn).
3512     insn |= gn;
3513
3514     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3515     return This::STATUS_OKAY;
3516   }
3517
3518   // R_ARM_LDR_PC_G0: S + A - P
3519   // R_ARM_LDR_PC_G1: S + A - P
3520   // R_ARM_LDR_PC_G2: S + A - P
3521   // R_ARM_LDR_SB_G0: S + A - B(S)
3522   // R_ARM_LDR_SB_G1: S + A - B(S)
3523   // R_ARM_LDR_SB_G2: S + A - B(S)
3524   static inline typename This::Status
3525   arm_grp_ldr(unsigned char* view,
3526         const Sized_relobj<32, big_endian>* object,
3527         const Symbol_value<32>* psymval,
3528         const int group,
3529         Arm_address address)
3530   {
3531     gold_assert(group >= 0 && group < 3);
3532     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3533     Valtype* wv = reinterpret_cast<Valtype*>(view);
3534     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3535
3536     const int sign = (insn & 0x00800000) ? 1 : -1;
3537     int32_t addend = (insn & 0xfff) * sign;
3538     int32_t x = (psymval->value(object, addend) - address);
3539     // Calculate the relevant G(n-1) value to obtain this stage residual.
3540     Valtype residual =
3541         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3542     if (residual >= 0x1000)
3543       return This::STATUS_OVERFLOW;
3544
3545     // Mask out the value and U bit.
3546     insn &= 0xff7ff000;
3547     // Set the U bit for non-negative values.
3548     if (x >= 0)
3549       insn |= 0x00800000;
3550     insn |= residual;
3551
3552     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3553     return This::STATUS_OKAY;
3554   }
3555
3556   // R_ARM_LDRS_PC_G0: S + A - P
3557   // R_ARM_LDRS_PC_G1: S + A - P
3558   // R_ARM_LDRS_PC_G2: S + A - P
3559   // R_ARM_LDRS_SB_G0: S + A - B(S)
3560   // R_ARM_LDRS_SB_G1: S + A - B(S)
3561   // R_ARM_LDRS_SB_G2: S + A - B(S)
3562   static inline typename This::Status
3563   arm_grp_ldrs(unsigned char* view,
3564         const Sized_relobj<32, big_endian>* object,
3565         const Symbol_value<32>* psymval,
3566         const int group,
3567         Arm_address address)
3568   {
3569     gold_assert(group >= 0 && group < 3);
3570     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3571     Valtype* wv = reinterpret_cast<Valtype*>(view);
3572     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3573
3574     const int sign = (insn & 0x00800000) ? 1 : -1;
3575     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3576     int32_t x = (psymval->value(object, addend) - address);
3577     // Calculate the relevant G(n-1) value to obtain this stage residual.
3578     Valtype residual =
3579         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3580    if (residual >= 0x100)
3581       return This::STATUS_OVERFLOW;
3582
3583     // Mask out the value and U bit.
3584     insn &= 0xff7ff0f0;
3585     // Set the U bit for non-negative values.
3586     if (x >= 0)
3587       insn |= 0x00800000;
3588     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3589
3590     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3591     return This::STATUS_OKAY;
3592   }
3593
3594   // R_ARM_LDC_PC_G0: S + A - P
3595   // R_ARM_LDC_PC_G1: S + A - P
3596   // R_ARM_LDC_PC_G2: S + A - P
3597   // R_ARM_LDC_SB_G0: S + A - B(S)
3598   // R_ARM_LDC_SB_G1: S + A - B(S)
3599   // R_ARM_LDC_SB_G2: S + A - B(S)
3600   static inline typename This::Status
3601   arm_grp_ldc(unsigned char* view,
3602       const Sized_relobj<32, big_endian>* object,
3603       const Symbol_value<32>* psymval,
3604       const int group,
3605       Arm_address address)
3606   {
3607     gold_assert(group >= 0 && group < 3);
3608     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3609     Valtype* wv = reinterpret_cast<Valtype*>(view);
3610     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3611
3612     const int sign = (insn & 0x00800000) ? 1 : -1;
3613     int32_t addend = ((insn & 0xff) << 2) * sign;
3614     int32_t x = (psymval->value(object, addend) - address);
3615     // Calculate the relevant G(n-1) value to obtain this stage residual.
3616     Valtype residual =
3617       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3618     if ((residual & 0x3) != 0 || residual >= 0x400)
3619       return This::STATUS_OVERFLOW;
3620
3621     // Mask out the value and U bit.
3622     insn &= 0xff7fff00;
3623     // Set the U bit for non-negative values.
3624     if (x >= 0)
3625       insn |= 0x00800000;
3626     insn |= (residual >> 2);
3627
3628     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3629     return This::STATUS_OKAY;
3630   }
3631 };
3632
3633 // Relocate ARM long branches.  This handles relocation types
3634 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3635 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3636 // undefined and we do not use PLT in this relocation.  In such a case,
3637 // the branch is converted into an NOP.
3638
3639 template<bool big_endian>
3640 typename Arm_relocate_functions<big_endian>::Status
3641 Arm_relocate_functions<big_endian>::arm_branch_common(
3642     unsigned int r_type,
3643     const Relocate_info<32, big_endian>* relinfo,
3644     unsigned char *view,
3645     const Sized_symbol<32>* gsym,
3646     const Arm_relobj<big_endian>* object,
3647     unsigned int r_sym,
3648     const Symbol_value<32>* psymval,
3649     Arm_address address,
3650     Arm_address thumb_bit,
3651     bool is_weakly_undefined_without_plt)
3652 {
3653   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3654   Valtype* wv = reinterpret_cast<Valtype*>(view);
3655   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3656      
3657   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3658                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3659   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3660   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3661                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3662   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3663   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3664
3665   // Check that the instruction is valid.
3666   if (r_type == elfcpp::R_ARM_CALL)
3667     {
3668       if (!insn_is_uncond_bl && !insn_is_blx)
3669         return This::STATUS_BAD_RELOC;
3670     }
3671   else if (r_type == elfcpp::R_ARM_JUMP24)
3672     {
3673       if (!insn_is_b && !insn_is_cond_bl)
3674         return This::STATUS_BAD_RELOC;
3675     }
3676   else if (r_type == elfcpp::R_ARM_PLT32)
3677     {
3678       if (!insn_is_any_branch)
3679         return This::STATUS_BAD_RELOC;
3680     }
3681   else if (r_type == elfcpp::R_ARM_XPC25)
3682     {
3683       // FIXME: AAELF document IH0044C does not say much about it other
3684       // than it being obsolete.
3685       if (!insn_is_any_branch)
3686         return This::STATUS_BAD_RELOC;
3687     }
3688   else
3689     gold_unreachable();
3690
3691   // A branch to an undefined weak symbol is turned into a jump to
3692   // the next instruction unless a PLT entry will be created.
3693   // Do the same for local undefined symbols.
3694   // The jump to the next instruction is optimized as a NOP depending
3695   // on the architecture.
3696   const Target_arm<big_endian>* arm_target =
3697     Target_arm<big_endian>::default_target();
3698   if (is_weakly_undefined_without_plt)
3699     {
3700       Valtype cond = val & 0xf0000000U;
3701       if (arm_target->may_use_arm_nop())
3702         val = cond | 0x0320f000;
3703       else
3704         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3705       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3706       return This::STATUS_OKAY;
3707     }
3708  
3709   Valtype addend = utils::sign_extend<26>(val << 2);
3710   Valtype branch_target = psymval->value(object, addend);
3711   int32_t branch_offset = branch_target - address;
3712
3713   // We need a stub if the branch offset is too large or if we need
3714   // to switch mode.
3715   bool may_use_blx = arm_target->may_use_blx();
3716   Reloc_stub* stub = NULL;
3717   if (utils::has_overflow<26>(branch_offset)
3718       || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
3719     {
3720       Valtype unadjusted_branch_target = psymval->value(object, 0);
3721
3722       Stub_type stub_type =
3723         Reloc_stub::stub_type_for_reloc(r_type, address,
3724                                         unadjusted_branch_target,
3725                                         (thumb_bit != 0));
3726       if (stub_type != arm_stub_none)
3727         {
3728           Stub_table<big_endian>* stub_table =
3729             object->stub_table(relinfo->data_shndx);
3730           gold_assert(stub_table != NULL);
3731
3732           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3733           stub = stub_table->find_reloc_stub(stub_key);
3734           gold_assert(stub != NULL);
3735           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3736           branch_target = stub_table->address() + stub->offset() + addend;
3737           branch_offset = branch_target - address;
3738           gold_assert(!utils::has_overflow<26>(branch_offset));
3739         }
3740     }
3741
3742   // At this point, if we still need to switch mode, the instruction
3743   // must either be a BLX or a BL that can be converted to a BLX.
3744   if (thumb_bit != 0)
3745     {
3746       // Turn BL to BLX.
3747       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3748       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3749     }
3750
3751   val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3752   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3753   return (utils::has_overflow<26>(branch_offset)
3754           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3755 }
3756
3757 // Relocate THUMB long branches.  This handles relocation types
3758 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3759 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3760 // undefined and we do not use PLT in this relocation.  In such a case,
3761 // the branch is converted into an NOP.
3762
3763 template<bool big_endian>
3764 typename Arm_relocate_functions<big_endian>::Status
3765 Arm_relocate_functions<big_endian>::thumb_branch_common(
3766     unsigned int r_type,
3767     const Relocate_info<32, big_endian>* relinfo,
3768     unsigned char *view,
3769     const Sized_symbol<32>* gsym,
3770     const Arm_relobj<big_endian>* object,
3771     unsigned int r_sym,
3772     const Symbol_value<32>* psymval,
3773     Arm_address address,
3774     Arm_address thumb_bit,
3775     bool is_weakly_undefined_without_plt)
3776 {
3777   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3778   Valtype* wv = reinterpret_cast<Valtype*>(view);
3779   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3780   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3781
3782   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3783   // into account.
3784   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3785   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3786      
3787   // Check that the instruction is valid.
3788   if (r_type == elfcpp::R_ARM_THM_CALL)
3789     {
3790       if (!is_bl_insn && !is_blx_insn)
3791         return This::STATUS_BAD_RELOC;
3792     }
3793   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3794     {
3795       // This cannot be a BLX.
3796       if (!is_bl_insn)
3797         return This::STATUS_BAD_RELOC;
3798     }
3799   else if (r_type == elfcpp::R_ARM_THM_XPC22)
3800     {
3801       // Check for Thumb to Thumb call.
3802       if (!is_blx_insn)
3803         return This::STATUS_BAD_RELOC;
3804       if (thumb_bit != 0)
3805         {
3806           gold_warning(_("%s: Thumb BLX instruction targets "
3807                          "thumb function '%s'."),
3808                          object->name().c_str(),
3809                          (gsym ? gsym->name() : "(local)")); 
3810           // Convert BLX to BL.
3811           lower_insn |= 0x1000U;
3812         }
3813     }
3814   else
3815     gold_unreachable();
3816
3817   // A branch to an undefined weak symbol is turned into a jump to
3818   // the next instruction unless a PLT entry will be created.
3819   // The jump to the next instruction is optimized as a NOP.W for
3820   // Thumb-2 enabled architectures.
3821   const Target_arm<big_endian>* arm_target =
3822     Target_arm<big_endian>::default_target();
3823   if (is_weakly_undefined_without_plt)
3824     {
3825       if (arm_target->may_use_thumb2_nop())
3826         {
3827           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3828           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3829         }
3830       else
3831         {
3832           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3833           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3834         }
3835       return This::STATUS_OKAY;
3836     }
3837  
3838   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3839   Arm_address branch_target = psymval->value(object, addend);
3840
3841   // For BLX, bit 1 of target address comes from bit 1 of base address.
3842   bool may_use_blx = arm_target->may_use_blx();
3843   if (thumb_bit == 0 && may_use_blx)
3844     branch_target = utils::bit_select(branch_target, address, 0x2);
3845
3846   int32_t branch_offset = branch_target - address;
3847
3848   // We need a stub if the branch offset is too large or if we need
3849   // to switch mode.
3850   bool thumb2 = arm_target->using_thumb2();
3851   if ((!thumb2 && utils::has_overflow<23>(branch_offset))
3852       || (thumb2 && utils::has_overflow<25>(branch_offset))
3853       || ((thumb_bit == 0)
3854           && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3855               || r_type == elfcpp::R_ARM_THM_JUMP24)))
3856     {
3857       Arm_address unadjusted_branch_target = psymval->value(object, 0);
3858
3859       Stub_type stub_type =
3860         Reloc_stub::stub_type_for_reloc(r_type, address,
3861                                         unadjusted_branch_target,
3862                                         (thumb_bit != 0));
3863
3864       if (stub_type != arm_stub_none)
3865         {
3866           Stub_table<big_endian>* stub_table =
3867             object->stub_table(relinfo->data_shndx);
3868           gold_assert(stub_table != NULL);
3869
3870           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3871           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
3872           gold_assert(stub != NULL);
3873           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3874           branch_target = stub_table->address() + stub->offset() + addend;
3875           if (thumb_bit == 0 && may_use_blx) 
3876             branch_target = utils::bit_select(branch_target, address, 0x2);
3877           branch_offset = branch_target - address;
3878         }
3879     }
3880
3881   // At this point, if we still need to switch mode, the instruction
3882   // must either be a BLX or a BL that can be converted to a BLX.
3883   if (thumb_bit == 0)
3884     {
3885       gold_assert(may_use_blx
3886                   && (r_type == elfcpp::R_ARM_THM_CALL
3887                       || r_type == elfcpp::R_ARM_THM_XPC22));
3888       // Make sure this is a BLX.
3889       lower_insn &= ~0x1000U;
3890     }
3891   else
3892     {
3893       // Make sure this is a BL.
3894       lower_insn |= 0x1000U;
3895     }
3896
3897   // For a BLX instruction, make sure that the relocation is rounded up
3898   // to a word boundary.  This follows the semantics of the instruction
3899   // which specifies that bit 1 of the target address will come from bit
3900   // 1 of the base address.
3901   if ((lower_insn & 0x5000U) == 0x4000U)
3902     gold_assert((branch_offset & 3) == 0);
3903
3904   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
3905   // We use the Thumb-2 encoding, which is safe even if dealing with
3906   // a Thumb-1 instruction by virtue of our overflow check above.  */
3907   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
3908   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
3909
3910   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3911   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3912
3913   gold_assert(!utils::has_overflow<25>(branch_offset));
3914
3915   return ((thumb2
3916            ? utils::has_overflow<25>(branch_offset)
3917            : utils::has_overflow<23>(branch_offset))
3918           ? This::STATUS_OVERFLOW
3919           : This::STATUS_OKAY);
3920 }
3921
3922 // Relocate THUMB-2 long conditional branches.
3923 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3924 // undefined and we do not use PLT in this relocation.  In such a case,
3925 // the branch is converted into an NOP.
3926
3927 template<bool big_endian>
3928 typename Arm_relocate_functions<big_endian>::Status
3929 Arm_relocate_functions<big_endian>::thm_jump19(
3930     unsigned char *view,
3931     const Arm_relobj<big_endian>* object,
3932     const Symbol_value<32>* psymval,
3933     Arm_address address,
3934     Arm_address thumb_bit)
3935 {
3936   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3937   Valtype* wv = reinterpret_cast<Valtype*>(view);
3938   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3939   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3940   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
3941
3942   Arm_address branch_target = psymval->value(object, addend);
3943   int32_t branch_offset = branch_target - address;
3944
3945   // ??? Should handle interworking?  GCC might someday try to
3946   // use this for tail calls.
3947   // FIXME: We do support thumb entry to PLT yet.
3948   if (thumb_bit == 0)
3949     {
3950       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3951       return This::STATUS_BAD_RELOC;
3952     }
3953
3954   // Put RELOCATION back into the insn.
3955   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
3956   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
3957
3958   // Put the relocated value back in the object file:
3959   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3960   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3961
3962   return (utils::has_overflow<21>(branch_offset)
3963           ? This::STATUS_OVERFLOW
3964           : This::STATUS_OKAY);
3965 }
3966
3967 // Get the GOT section, creating it if necessary.
3968
3969 template<bool big_endian>
3970 Arm_output_data_got<big_endian>*
3971 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
3972 {
3973   if (this->got_ == NULL)
3974     {
3975       gold_assert(symtab != NULL && layout != NULL);
3976
3977       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
3978
3979       Output_section* os;
3980       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3981                                            (elfcpp::SHF_ALLOC
3982                                             | elfcpp::SHF_WRITE),
3983                                            this->got_, false, false, false,
3984                                            true);
3985       // The old GNU linker creates a .got.plt section.  We just
3986       // create another set of data in the .got section.  Note that we
3987       // always create a PLT if we create a GOT, although the PLT
3988       // might be empty.
3989       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
3990       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3991                                            (elfcpp::SHF_ALLOC
3992                                             | elfcpp::SHF_WRITE),
3993                                            this->got_plt_, false, false,
3994                                            false, false);
3995
3996       // The first three entries are reserved.
3997       this->got_plt_->set_current_data_size(3 * 4);
3998
3999       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4000       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4001                                     Symbol_table::PREDEFINED,
4002                                     this->got_plt_,
4003                                     0, 0, elfcpp::STT_OBJECT,
4004                                     elfcpp::STB_LOCAL,
4005                                     elfcpp::STV_HIDDEN, 0,
4006                                     false, false);
4007     }
4008   return this->got_;
4009 }
4010
4011 // Get the dynamic reloc section, creating it if necessary.
4012
4013 template<bool big_endian>
4014 typename Target_arm<big_endian>::Reloc_section*
4015 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4016 {
4017   if (this->rel_dyn_ == NULL)
4018     {
4019       gold_assert(layout != NULL);
4020       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4021       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4022                                       elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4023                                       false, false, false);
4024     }
4025   return this->rel_dyn_;
4026 }
4027
4028 // Insn_template methods.
4029
4030 // Return byte size of an instruction template.
4031
4032 size_t
4033 Insn_template::size() const
4034 {
4035   switch (this->type())
4036     {
4037     case THUMB16_TYPE:
4038     case THUMB16_SPECIAL_TYPE:
4039       return 2;
4040     case ARM_TYPE:
4041     case THUMB32_TYPE:
4042     case DATA_TYPE:
4043       return 4;
4044     default:
4045       gold_unreachable();
4046     }
4047 }
4048
4049 // Return alignment of an instruction template.
4050
4051 unsigned
4052 Insn_template::alignment() const
4053 {
4054   switch (this->type())
4055     {
4056     case THUMB16_TYPE:
4057     case THUMB16_SPECIAL_TYPE:
4058     case THUMB32_TYPE:
4059       return 2;
4060     case ARM_TYPE:
4061     case DATA_TYPE:
4062       return 4;
4063     default:
4064       gold_unreachable();
4065     }
4066 }
4067
4068 // Stub_template methods.
4069
4070 Stub_template::Stub_template(
4071     Stub_type type, const Insn_template* insns,
4072      size_t insn_count)
4073   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4074     entry_in_thumb_mode_(false), relocs_()
4075 {
4076   off_t offset = 0;
4077
4078   // Compute byte size and alignment of stub template.
4079   for (size_t i = 0; i < insn_count; i++)
4080     {
4081       unsigned insn_alignment = insns[i].alignment();
4082       size_t insn_size = insns[i].size();
4083       gold_assert((offset & (insn_alignment - 1)) == 0);
4084       this->alignment_ = std::max(this->alignment_, insn_alignment);
4085       switch (insns[i].type())
4086         {
4087         case Insn_template::THUMB16_TYPE:
4088         case Insn_template::THUMB16_SPECIAL_TYPE:
4089           if (i == 0)
4090             this->entry_in_thumb_mode_ = true;
4091           break;
4092
4093         case Insn_template::THUMB32_TYPE:
4094           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4095             this->relocs_.push_back(Reloc(i, offset));
4096           if (i == 0)
4097             this->entry_in_thumb_mode_ = true;
4098           break;
4099
4100         case Insn_template::ARM_TYPE:
4101           // Handle cases where the target is encoded within the
4102           // instruction.
4103           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4104             this->relocs_.push_back(Reloc(i, offset));
4105           break;
4106
4107         case Insn_template::DATA_TYPE:
4108           // Entry point cannot be data.
4109           gold_assert(i != 0);
4110           this->relocs_.push_back(Reloc(i, offset));
4111           break;
4112
4113         default:
4114           gold_unreachable();
4115         }
4116       offset += insn_size; 
4117     }
4118   this->size_ = offset;
4119 }
4120
4121 // Stub methods.
4122
4123 // Template to implement do_write for a specific target endianity.
4124
4125 template<bool big_endian>
4126 void inline
4127 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4128 {
4129   const Stub_template* stub_template = this->stub_template();
4130   const Insn_template* insns = stub_template->insns();
4131
4132   // FIXME:  We do not handle BE8 encoding yet.
4133   unsigned char* pov = view;
4134   for (size_t i = 0; i < stub_template->insn_count(); i++)
4135     {
4136       switch (insns[i].type())
4137         {
4138         case Insn_template::THUMB16_TYPE:
4139           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4140           break;
4141         case Insn_template::THUMB16_SPECIAL_TYPE:
4142           elfcpp::Swap<16, big_endian>::writeval(
4143               pov,
4144               this->thumb16_special(i));
4145           break;
4146         case Insn_template::THUMB32_TYPE:
4147           {
4148             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4149             uint32_t lo = insns[i].data() & 0xffff;
4150             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4151             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4152           }
4153           break;
4154         case Insn_template::ARM_TYPE:
4155         case Insn_template::DATA_TYPE:
4156           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4157           break;
4158         default:
4159           gold_unreachable();
4160         }
4161       pov += insns[i].size();
4162     }
4163   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4164
4165
4166 // Reloc_stub::Key methods.
4167
4168 // Dump a Key as a string for debugging.
4169
4170 std::string
4171 Reloc_stub::Key::name() const
4172 {
4173   if (this->r_sym_ == invalid_index)
4174     {
4175       // Global symbol key name
4176       // <stub-type>:<symbol name>:<addend>.
4177       const std::string sym_name = this->u_.symbol->name();
4178       // We need to print two hex number and two colons.  So just add 100 bytes
4179       // to the symbol name size.
4180       size_t len = sym_name.size() + 100;
4181       char* buffer = new char[len];
4182       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4183                        sym_name.c_str(), this->addend_);
4184       gold_assert(c > 0 && c < static_cast<int>(len));
4185       delete[] buffer;
4186       return std::string(buffer);
4187     }
4188   else
4189     {
4190       // local symbol key name
4191       // <stub-type>:<object>:<r_sym>:<addend>.
4192       const size_t len = 200;
4193       char buffer[len];
4194       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4195                        this->u_.relobj, this->r_sym_, this->addend_);
4196       gold_assert(c > 0 && c < static_cast<int>(len));
4197       return std::string(buffer);
4198     }
4199 }
4200
4201 // Reloc_stub methods.
4202
4203 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4204 // LOCATION to DESTINATION.
4205 // This code is based on the arm_type_of_stub function in
4206 // bfd/elf32-arm.c.  We have changed the interface a liitle to keep the Stub
4207 // class simple.
4208
4209 Stub_type
4210 Reloc_stub::stub_type_for_reloc(
4211    unsigned int r_type,
4212    Arm_address location,
4213    Arm_address destination,
4214    bool target_is_thumb)
4215 {
4216   Stub_type stub_type = arm_stub_none;
4217
4218   // This is a bit ugly but we want to avoid using a templated class for
4219   // big and little endianities.
4220   bool may_use_blx;
4221   bool should_force_pic_veneer;
4222   bool thumb2;
4223   bool thumb_only;
4224   if (parameters->target().is_big_endian())
4225     {
4226       const Target_arm<true>* big_endian_target =
4227         Target_arm<true>::default_target();
4228       may_use_blx = big_endian_target->may_use_blx();
4229       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4230       thumb2 = big_endian_target->using_thumb2();
4231       thumb_only = big_endian_target->using_thumb_only();
4232     }
4233   else
4234     {
4235       const Target_arm<false>* little_endian_target =
4236         Target_arm<false>::default_target();
4237       may_use_blx = little_endian_target->may_use_blx();
4238       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4239       thumb2 = little_endian_target->using_thumb2();
4240       thumb_only = little_endian_target->using_thumb_only();
4241     }
4242
4243   int64_t branch_offset;
4244   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4245     {
4246       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4247       // base address (instruction address + 4).
4248       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4249         destination = utils::bit_select(destination, location, 0x2);
4250       branch_offset = static_cast<int64_t>(destination) - location;
4251         
4252       // Handle cases where:
4253       // - this call goes too far (different Thumb/Thumb2 max
4254       //   distance)
4255       // - it's a Thumb->Arm call and blx is not available, or it's a
4256       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4257       if ((!thumb2
4258             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4259                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4260           || (thumb2
4261               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4262                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4263           || ((!target_is_thumb)
4264               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4265                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4266         {
4267           if (target_is_thumb)
4268             {
4269               // Thumb to thumb.
4270               if (!thumb_only)
4271                 {
4272                   stub_type = (parameters->options().shared()
4273                                || should_force_pic_veneer)
4274                     // PIC stubs.
4275                     ? ((may_use_blx
4276                         && (r_type == elfcpp::R_ARM_THM_CALL))
4277                        // V5T and above. Stub starts with ARM code, so
4278                        // we must be able to switch mode before
4279                        // reaching it, which is only possible for 'bl'
4280                        // (ie R_ARM_THM_CALL relocation).
4281                        ? arm_stub_long_branch_any_thumb_pic
4282                        // On V4T, use Thumb code only.
4283                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4284
4285                     // non-PIC stubs.
4286                     : ((may_use_blx
4287                         && (r_type == elfcpp::R_ARM_THM_CALL))
4288                        ? arm_stub_long_branch_any_any // V5T and above.
4289                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4290                 }
4291               else
4292                 {
4293                   stub_type = (parameters->options().shared()
4294                                || should_force_pic_veneer)
4295                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4296                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4297                 }
4298             }
4299           else
4300             {
4301               // Thumb to arm.
4302              
4303               // FIXME: We should check that the input section is from an
4304               // object that has interwork enabled.
4305
4306               stub_type = (parameters->options().shared()
4307                            || should_force_pic_veneer)
4308                 // PIC stubs.
4309                 ? ((may_use_blx
4310                     && (r_type == elfcpp::R_ARM_THM_CALL))
4311                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4312                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4313
4314                 // non-PIC stubs.
4315                 : ((may_use_blx
4316                     && (r_type == elfcpp::R_ARM_THM_CALL))
4317                    ? arm_stub_long_branch_any_any       // V5T and above.
4318                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4319
4320               // Handle v4t short branches.
4321               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4322                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4323                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4324                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4325             }
4326         }
4327     }
4328   else if (r_type == elfcpp::R_ARM_CALL
4329            || r_type == elfcpp::R_ARM_JUMP24
4330            || r_type == elfcpp::R_ARM_PLT32)
4331     {
4332       branch_offset = static_cast<int64_t>(destination) - location;
4333       if (target_is_thumb)
4334         {
4335           // Arm to thumb.
4336
4337           // FIXME: We should check that the input section is from an
4338           // object that has interwork enabled.
4339
4340           // We have an extra 2-bytes reach because of
4341           // the mode change (bit 24 (H) of BLX encoding).
4342           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4343               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4344               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4345               || (r_type == elfcpp::R_ARM_JUMP24)
4346               || (r_type == elfcpp::R_ARM_PLT32))
4347             {
4348               stub_type = (parameters->options().shared()
4349                            || should_force_pic_veneer)
4350                 // PIC stubs.
4351                 ? (may_use_blx
4352                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4353                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4354
4355                 // non-PIC stubs.
4356                 : (may_use_blx
4357                    ? arm_stub_long_branch_any_any       // V5T and above.
4358                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4359             }
4360         }
4361       else
4362         {
4363           // Arm to arm.
4364           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4365               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4366             {
4367               stub_type = (parameters->options().shared()
4368                            || should_force_pic_veneer)
4369                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4370                 : arm_stub_long_branch_any_any;         /// non-PIC.
4371             }
4372         }
4373     }
4374
4375   return stub_type;
4376 }
4377
4378 // Cortex_a8_stub methods.
4379
4380 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4381 // I is the position of the instruction template in the stub template.
4382
4383 uint16_t
4384 Cortex_a8_stub::do_thumb16_special(size_t i)
4385 {
4386   // The only use of this is to copy condition code from a conditional
4387   // branch being worked around to the corresponding conditional branch in
4388   // to the stub.
4389   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4390               && i == 0);
4391   uint16_t data = this->stub_template()->insns()[i].data();
4392   gold_assert((data & 0xff00U) == 0xd000U);
4393   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4394   return data;
4395 }
4396
4397 // Stub_factory methods.
4398
4399 Stub_factory::Stub_factory()
4400 {
4401   // The instruction template sequences are declared as static
4402   // objects and initialized first time the constructor runs.
4403  
4404   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4405   // to reach the stub if necessary.
4406   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4407     {
4408       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4409       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4410                                                 // dcd   R_ARM_ABS32(X)
4411     };
4412   
4413   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4414   // available.
4415   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4416     {
4417       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4418       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4419       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4420                                                 // dcd   R_ARM_ABS32(X)
4421     };
4422   
4423   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4424   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4425     {
4426       Insn_template::thumb16_insn(0xb401),      // push {r0}
4427       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4428       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4429       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4430       Insn_template::thumb16_insn(0x4760),      // bx   ip
4431       Insn_template::thumb16_insn(0xbf00),      // nop
4432       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4433                                                 // dcd  R_ARM_ABS32(X)
4434     };
4435   
4436   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4437   // allowed.
4438   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4439     {
4440       Insn_template::thumb16_insn(0x4778),      // bx   pc
4441       Insn_template::thumb16_insn(0x46c0),      // nop
4442       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4443       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4444       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4445                                                 // dcd  R_ARM_ABS32(X)
4446     };
4447   
4448   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4449   // available.
4450   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4451     {
4452       Insn_template::thumb16_insn(0x4778),      // bx   pc
4453       Insn_template::thumb16_insn(0x46c0),      // nop
4454       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4455       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4456                                                 // dcd   R_ARM_ABS32(X)
4457     };
4458   
4459   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4460   // one, when the destination is close enough.
4461   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4462     {
4463       Insn_template::thumb16_insn(0x4778),              // bx   pc
4464       Insn_template::thumb16_insn(0x46c0),              // nop
4465       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4466     };
4467   
4468   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4469   // blx to reach the stub if necessary.
4470   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4471     {
4472       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4473       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4474       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4475                                                 // dcd   R_ARM_REL32(X-4)
4476     };
4477   
4478   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4479   // blx to reach the stub if necessary.  We can not add into pc;
4480   // it is not guaranteed to mode switch (different in ARMv6 and
4481   // ARMv7).
4482   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4483     {
4484       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4485       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4486       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4487       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4488                                                 // dcd   R_ARM_REL32(X)
4489     };
4490   
4491   // V4T ARM -> ARM long branch stub, PIC.
4492   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4493     {
4494       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4495       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4496       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4497       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4498                                                 // dcd   R_ARM_REL32(X)
4499     };
4500   
4501   // V4T Thumb -> ARM long branch stub, PIC.
4502   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4503     {
4504       Insn_template::thumb16_insn(0x4778),      // bx   pc
4505       Insn_template::thumb16_insn(0x46c0),      // nop
4506       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4507       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4508       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4509                                                 // dcd  R_ARM_REL32(X)
4510     };
4511   
4512   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4513   // architectures.
4514   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4515     {
4516       Insn_template::thumb16_insn(0xb401),      // push {r0}
4517       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4518       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4519       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4520       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4521       Insn_template::thumb16_insn(0x4760),      // bx   ip
4522       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4523                                                 // dcd  R_ARM_REL32(X)
4524     };
4525   
4526   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4527   // allowed.
4528   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4529     {
4530       Insn_template::thumb16_insn(0x4778),      // bx   pc
4531       Insn_template::thumb16_insn(0x46c0),      // nop
4532       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4533       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4534       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4535       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4536                                                 // dcd  R_ARM_REL32(X)
4537     };
4538   
4539   // Cortex-A8 erratum-workaround stubs.
4540   
4541   // Stub used for conditional branches (which may be beyond +/-1MB away,
4542   // so we can't use a conditional branch to reach this stub).
4543   
4544   // original code:
4545   //
4546   //    b<cond> X
4547   // after:
4548   //
4549   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4550     {
4551       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4552       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4553       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4554                                                         //      b.w X
4555     };
4556   
4557   // Stub used for b.w and bl.w instructions.
4558   
4559   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4560     {
4561       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4562     };
4563   
4564   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4565     {
4566       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4567     };
4568   
4569   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4570   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4571   // the real destination using an ARM-mode branch.
4572   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4573     {
4574       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4575     };
4576
4577   // Stub used to provide an interworking for R_ARM_V4BX relocation
4578   // (bx r[n] instruction).
4579   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4580     {
4581       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4582       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4583       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4584     };
4585
4586   // Fill in the stub template look-up table.  Stub templates are constructed
4587   // per instance of Stub_factory for fast look-up without locking
4588   // in a thread-enabled environment.
4589
4590   this->stub_templates_[arm_stub_none] =
4591     new Stub_template(arm_stub_none, NULL, 0);
4592
4593 #define DEF_STUB(x)     \
4594   do \
4595     { \
4596       size_t array_size \
4597         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4598       Stub_type type = arm_stub_##x; \
4599       this->stub_templates_[type] = \
4600         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4601     } \
4602   while (0);
4603
4604   DEF_STUBS
4605 #undef DEF_STUB
4606 }
4607
4608 // Stub_table methods.
4609
4610 // Removel all Cortex-A8 stub.
4611
4612 template<bool big_endian>
4613 void
4614 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4615 {
4616   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4617        p != this->cortex_a8_stubs_.end();
4618        ++p)
4619     delete p->second;
4620   this->cortex_a8_stubs_.clear();
4621 }
4622
4623 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4624
4625 template<bool big_endian>
4626 void
4627 Stub_table<big_endian>::relocate_stub(
4628     Stub* stub,
4629     const Relocate_info<32, big_endian>* relinfo,
4630     Target_arm<big_endian>* arm_target,
4631     Output_section* output_section,
4632     unsigned char* view,
4633     Arm_address address,
4634     section_size_type view_size)
4635 {
4636   const Stub_template* stub_template = stub->stub_template();
4637   if (stub_template->reloc_count() != 0)
4638     {
4639       // Adjust view to cover the stub only.
4640       section_size_type offset = stub->offset();
4641       section_size_type stub_size = stub_template->size();
4642       gold_assert(offset + stub_size <= view_size);
4643
4644       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4645                                 address + offset, stub_size);
4646     }
4647 }
4648
4649 // Relocate all stubs in this stub table.
4650
4651 template<bool big_endian>
4652 void
4653 Stub_table<big_endian>::relocate_stubs(
4654     const Relocate_info<32, big_endian>* relinfo,
4655     Target_arm<big_endian>* arm_target,
4656     Output_section* output_section,
4657     unsigned char* view,
4658     Arm_address address,
4659     section_size_type view_size)
4660 {
4661   // If we are passed a view bigger than the stub table's.  we need to
4662   // adjust the view.
4663   gold_assert(address == this->address()
4664               && (view_size
4665                   == static_cast<section_size_type>(this->data_size())));
4666
4667   // Relocate all relocation stubs.
4668   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4669       p != this->reloc_stubs_.end();
4670       ++p)
4671     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4672                         address, view_size);
4673
4674   // Relocate all Cortex-A8 stubs.
4675   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4676        p != this->cortex_a8_stubs_.end();
4677        ++p)
4678     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4679                         address, view_size);
4680
4681   // Relocate all ARM V4BX stubs.
4682   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4683        p != this->arm_v4bx_stubs_.end();
4684        ++p)
4685     {
4686       if (*p != NULL)
4687         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4688                             address, view_size);
4689     }
4690 }
4691
4692 // Write out the stubs to file.
4693
4694 template<bool big_endian>
4695 void
4696 Stub_table<big_endian>::do_write(Output_file* of)
4697 {
4698   off_t offset = this->offset();
4699   const section_size_type oview_size =
4700     convert_to_section_size_type(this->data_size());
4701   unsigned char* const oview = of->get_output_view(offset, oview_size);
4702
4703   // Write relocation stubs.
4704   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4705       p != this->reloc_stubs_.end();
4706       ++p)
4707     {
4708       Reloc_stub* stub = p->second;
4709       Arm_address address = this->address() + stub->offset();
4710       gold_assert(address
4711                   == align_address(address,
4712                                    stub->stub_template()->alignment()));
4713       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4714                   big_endian);
4715     }
4716
4717   // Write Cortex-A8 stubs.
4718   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4719        p != this->cortex_a8_stubs_.end();
4720        ++p)
4721     {
4722       Cortex_a8_stub* stub = p->second;
4723       Arm_address address = this->address() + stub->offset();
4724       gold_assert(address
4725                   == align_address(address,
4726                                    stub->stub_template()->alignment()));
4727       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4728                   big_endian);
4729     }
4730
4731   // Write ARM V4BX relocation stubs.
4732   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4733        p != this->arm_v4bx_stubs_.end();
4734        ++p)
4735     {
4736       if (*p == NULL)
4737         continue;
4738
4739       Arm_address address = this->address() + (*p)->offset();
4740       gold_assert(address
4741                   == align_address(address,
4742                                    (*p)->stub_template()->alignment()));
4743       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4744                   big_endian);
4745     }
4746
4747   of->write_output_view(this->offset(), oview_size, oview);
4748 }
4749
4750 // Update the data size and address alignment of the stub table at the end
4751 // of a relaxation pass.   Return true if either the data size or the
4752 // alignment changed in this relaxation pass.
4753
4754 template<bool big_endian>
4755 bool
4756 Stub_table<big_endian>::update_data_size_and_addralign()
4757 {
4758   // Go over all stubs in table to compute data size and address alignment.
4759   off_t size = this->reloc_stubs_size_;
4760   unsigned addralign = this->reloc_stubs_addralign_;
4761
4762   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4763        p != this->cortex_a8_stubs_.end();
4764        ++p)
4765     {
4766       const Stub_template* stub_template = p->second->stub_template();
4767       addralign = std::max(addralign, stub_template->alignment());
4768       size = (align_address(size, stub_template->alignment())
4769               + stub_template->size());
4770     }
4771
4772   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4773        p != this->arm_v4bx_stubs_.end();
4774        ++p)
4775     {
4776       if (*p == NULL)
4777         continue;
4778
4779       const Stub_template* stub_template = (*p)->stub_template();
4780       addralign = std::max(addralign, stub_template->alignment());
4781       size = (align_address(size, stub_template->alignment())
4782               + stub_template->size());
4783     }
4784
4785   // Check if either data size or alignment changed in this pass.
4786   // Update prev_data_size_ and prev_addralign_.  These will be used
4787   // as the current data size and address alignment for the next pass.
4788   bool changed = size != this->prev_data_size_;
4789   this->prev_data_size_ = size; 
4790
4791   if (addralign != this->prev_addralign_)
4792     changed = true;
4793   this->prev_addralign_ = addralign;
4794
4795   return changed;
4796 }
4797
4798 // Finalize the stubs.  This sets the offsets of the stubs within the stub
4799 // table.  It also marks all input sections needing Cortex-A8 workaround.
4800
4801 template<bool big_endian>
4802 void
4803 Stub_table<big_endian>::finalize_stubs()
4804 {
4805   off_t off = this->reloc_stubs_size_;
4806   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4807        p != this->cortex_a8_stubs_.end();
4808        ++p)
4809     {
4810       Cortex_a8_stub* stub = p->second;
4811       const Stub_template* stub_template = stub->stub_template();
4812       uint64_t stub_addralign = stub_template->alignment();
4813       off = align_address(off, stub_addralign);
4814       stub->set_offset(off);
4815       off += stub_template->size();
4816
4817       // Mark input section so that we can determine later if a code section
4818       // needs the Cortex-A8 workaround quickly.
4819       Arm_relobj<big_endian>* arm_relobj =
4820         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4821       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4822     }
4823
4824   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4825       p != this->arm_v4bx_stubs_.end();
4826       ++p)
4827     {
4828       if (*p == NULL)
4829         continue;
4830
4831       const Stub_template* stub_template = (*p)->stub_template();
4832       uint64_t stub_addralign = stub_template->alignment();
4833       off = align_address(off, stub_addralign);
4834       (*p)->set_offset(off);
4835       off += stub_template->size();
4836     }
4837
4838   gold_assert(off <= this->prev_data_size_);
4839 }
4840
4841 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4842 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
4843 // of the address range seen by the linker.
4844
4845 template<bool big_endian>
4846 void
4847 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4848     Target_arm<big_endian>* arm_target,
4849     unsigned char* view,
4850     Arm_address view_address,
4851     section_size_type view_size)
4852 {
4853   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4854   for (Cortex_a8_stub_list::const_iterator p =
4855          this->cortex_a8_stubs_.lower_bound(view_address);
4856        ((p != this->cortex_a8_stubs_.end())
4857         && (p->first < (view_address + view_size)));
4858        ++p)
4859     {
4860       // We do not store the THUMB bit in the LSB of either the branch address
4861       // or the stub offset.  There is no need to strip the LSB.
4862       Arm_address branch_address = p->first;
4863       const Cortex_a8_stub* stub = p->second;
4864       Arm_address stub_address = this->address() + stub->offset();
4865
4866       // Offset of the branch instruction relative to this view.
4867       section_size_type offset =
4868         convert_to_section_size_type(branch_address - view_address);
4869       gold_assert((offset + 4) <= view_size);
4870
4871       arm_target->apply_cortex_a8_workaround(stub, stub_address,
4872                                              view + offset, branch_address);
4873     }
4874 }
4875
4876 // Arm_input_section methods.
4877
4878 // Initialize an Arm_input_section.
4879
4880 template<bool big_endian>
4881 void
4882 Arm_input_section<big_endian>::init()
4883 {
4884   Relobj* relobj = this->relobj();
4885   unsigned int shndx = this->shndx();
4886
4887   // Cache these to speed up size and alignment queries.  It is too slow
4888   // to call section_addraglin and section_size every time.
4889   this->original_addralign_ = relobj->section_addralign(shndx);
4890   this->original_size_ = relobj->section_size(shndx);
4891
4892   // We want to make this look like the original input section after
4893   // output sections are finalized.
4894   Output_section* os = relobj->output_section(shndx);
4895   off_t offset = relobj->output_section_offset(shndx);
4896   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
4897   this->set_address(os->address() + offset);
4898   this->set_file_offset(os->offset() + offset);
4899
4900   this->set_current_data_size(this->original_size_);
4901   this->finalize_data_size();
4902 }
4903
4904 template<bool big_endian>
4905 void
4906 Arm_input_section<big_endian>::do_write(Output_file* of)
4907 {
4908   // We have to write out the original section content.
4909   section_size_type section_size;
4910   const unsigned char* section_contents =
4911     this->relobj()->section_contents(this->shndx(), &section_size, false); 
4912   of->write(this->offset(), section_contents, section_size); 
4913
4914   // If this owns a stub table and it is not empty, write it.
4915   if (this->is_stub_table_owner() && !this->stub_table_->empty())
4916     this->stub_table_->write(of);
4917 }
4918
4919 // Finalize data size.
4920
4921 template<bool big_endian>
4922 void
4923 Arm_input_section<big_endian>::set_final_data_size()
4924 {
4925   // If this owns a stub table, finalize its data size as well.
4926   if (this->is_stub_table_owner())
4927     {
4928       uint64_t address = this->address();
4929
4930       // The stub table comes after the original section contents.
4931       address += this->original_size_;
4932       address = align_address(address, this->stub_table_->addralign());
4933       off_t offset = this->offset() + (address - this->address());
4934       this->stub_table_->set_address_and_file_offset(address, offset);
4935       address += this->stub_table_->data_size();
4936       gold_assert(address == this->address() + this->current_data_size());
4937     }
4938
4939   this->set_data_size(this->current_data_size());
4940 }
4941
4942 // Reset address and file offset.
4943
4944 template<bool big_endian>
4945 void
4946 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
4947 {
4948   // Size of the original input section contents.
4949   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4950
4951   // If this is a stub table owner, account for the stub table size.
4952   if (this->is_stub_table_owner())
4953     {
4954       Stub_table<big_endian>* stub_table = this->stub_table_;
4955
4956       // Reset the stub table's address and file offset.  The
4957       // current data size for child will be updated after that.
4958       stub_table_->reset_address_and_file_offset();
4959       off = align_address(off, stub_table_->addralign());
4960       off += stub_table->current_data_size();
4961     }
4962
4963   this->set_current_data_size(off);
4964 }
4965
4966 // Arm_exidx_cantunwind methods.
4967
4968 // Write this to Output file OF for a fixed endianity.
4969
4970 template<bool big_endian>
4971 void
4972 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
4973 {
4974   off_t offset = this->offset();
4975   const section_size_type oview_size = 8;
4976   unsigned char* const oview = of->get_output_view(offset, oview_size);
4977   
4978   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4979   Valtype* wv = reinterpret_cast<Valtype*>(oview);
4980
4981   Output_section* os = this->relobj_->output_section(this->shndx_);
4982   gold_assert(os != NULL);
4983
4984   Arm_relobj<big_endian>* arm_relobj =
4985     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
4986   Arm_address output_offset =
4987     arm_relobj->get_output_section_offset(this->shndx_);
4988   Arm_address section_start;
4989   if(output_offset != Arm_relobj<big_endian>::invalid_address)
4990     section_start = os->address() + output_offset;
4991   else
4992     {
4993       // Currently this only happens for a relaxed section.
4994       const Output_relaxed_input_section* poris =
4995         os->find_relaxed_input_section(this->relobj_, this->shndx_);
4996       gold_assert(poris != NULL);
4997       section_start = poris->address();
4998     }
4999
5000   // We always append this to the end of an EXIDX section.
5001   Arm_address output_address =
5002     section_start + this->relobj_->section_size(this->shndx_);
5003
5004   // Write out the entry.  The first word either points to the beginning
5005   // or after the end of a text section.  The second word is the special
5006   // EXIDX_CANTUNWIND value.
5007   uint32_t prel31_offset = output_address - this->address();
5008   if (utils::has_overflow<31>(offset))
5009     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5010   elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5011   elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5012
5013   of->write_output_view(this->offset(), oview_size, oview);
5014 }
5015
5016 // Arm_exidx_merged_section methods.
5017
5018 // Constructor for Arm_exidx_merged_section.
5019 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5020 // SECTION_OFFSET_MAP points to a section offset map describing how
5021 // parts of the input section are mapped to output.  DELETED_BYTES is
5022 // the number of bytes deleted from the EXIDX input section.
5023
5024 Arm_exidx_merged_section::Arm_exidx_merged_section(
5025     const Arm_exidx_input_section& exidx_input_section,
5026     const Arm_exidx_section_offset_map& section_offset_map,
5027     uint32_t deleted_bytes)
5028   : Output_relaxed_input_section(exidx_input_section.relobj(),
5029                                  exidx_input_section.shndx(),
5030                                  exidx_input_section.addralign()),
5031     exidx_input_section_(exidx_input_section),
5032     section_offset_map_(section_offset_map)
5033 {
5034   // Fix size here so that we do not need to implement set_final_data_size.
5035   this->set_data_size(exidx_input_section.size() - deleted_bytes);
5036   this->fix_data_size();
5037 }
5038
5039 // Given an input OBJECT, an input section index SHNDX within that
5040 // object, and an OFFSET relative to the start of that input
5041 // section, return whether or not the corresponding offset within
5042 // the output section is known.  If this function returns true, it
5043 // sets *POUTPUT to the output offset.  The value -1 indicates that
5044 // this input offset is being discarded.
5045
5046 bool
5047 Arm_exidx_merged_section::do_output_offset(
5048     const Relobj* relobj,
5049     unsigned int shndx,
5050     section_offset_type offset,
5051     section_offset_type* poutput) const
5052 {
5053   // We only handle offsets for the original EXIDX input section.
5054   if (relobj != this->exidx_input_section_.relobj()
5055       || shndx != this->exidx_input_section_.shndx())
5056     return false;
5057
5058   section_offset_type section_size =
5059     convert_types<section_offset_type>(this->exidx_input_section_.size());
5060   if (offset < 0 || offset >= section_size)
5061     // Input offset is out of valid range.
5062     *poutput = -1;
5063   else
5064     {
5065       // We need to look up the section offset map to determine the output
5066       // offset.  Find the reference point in map that is first offset
5067       // bigger than or equal to this offset.
5068       Arm_exidx_section_offset_map::const_iterator p =
5069         this->section_offset_map_.lower_bound(offset);
5070
5071       // The section offset maps are build such that this should not happen if
5072       // input offset is in the valid range.
5073       gold_assert(p != this->section_offset_map_.end());
5074
5075       // We need to check if this is dropped.
5076      section_offset_type ref = p->first;
5077      section_offset_type mapped_ref = p->second;
5078
5079       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5080         // Offset is present in output.
5081         *poutput = mapped_ref + (offset - ref);
5082       else
5083         // Offset is discarded owing to EXIDX entry merging.
5084         *poutput = -1;
5085     }
5086   
5087   return true;
5088 }
5089
5090 // Write this to output file OF.
5091
5092 void
5093 Arm_exidx_merged_section::do_write(Output_file* of)
5094 {
5095   // If we retain or discard the whole EXIDX input section,  we would
5096   // not be here.
5097   gold_assert(this->data_size() != this->exidx_input_section_.size()
5098               && this->data_size() != 0);
5099
5100   off_t offset = this->offset();
5101   const section_size_type oview_size = this->data_size();
5102   unsigned char* const oview = of->get_output_view(offset, oview_size);
5103   
5104   Output_section* os = this->relobj()->output_section(this->shndx());
5105   gold_assert(os != NULL);
5106
5107   // Get contents of EXIDX input section.
5108   section_size_type section_size;
5109   const unsigned char* section_contents =
5110     this->relobj()->section_contents(this->shndx(), &section_size, false); 
5111   gold_assert(section_size == this->exidx_input_section_.size());
5112
5113   // Go over spans of input offsets and write only those that are not
5114   // discarded.
5115   section_offset_type in_start = 0;
5116   section_offset_type out_start = 0;
5117   for(Arm_exidx_section_offset_map::const_iterator p =
5118         this->section_offset_map_.begin();
5119       p != this->section_offset_map_.end();
5120       ++p)
5121     {
5122       section_offset_type in_end = p->first;
5123       gold_assert(in_end >= in_start);
5124       section_offset_type out_end = p->second;
5125       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5126       if (out_end != -1)
5127         {
5128           size_t out_chunk_size =
5129             convert_types<size_t>(out_end - out_start + 1);
5130           gold_assert(out_chunk_size == in_chunk_size);
5131           memcpy(oview + out_start, section_contents + in_start,
5132                  out_chunk_size);
5133           out_start += out_chunk_size;
5134         }
5135       in_start += in_chunk_size;
5136     }
5137
5138   gold_assert(convert_to_section_size_type(out_start) == oview_size);
5139   of->write_output_view(this->offset(), oview_size, oview);
5140 }
5141
5142 // Arm_exidx_fixup methods.
5143
5144 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5145 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5146 // points to the end of the last seen EXIDX section.
5147
5148 void
5149 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5150 {
5151   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5152       && this->last_input_section_ != NULL)
5153     {
5154       Relobj* relobj = this->last_input_section_->relobj();
5155       unsigned int text_shndx = this->last_input_section_->link();
5156       Arm_exidx_cantunwind* cantunwind =
5157         new Arm_exidx_cantunwind(relobj, text_shndx);
5158       this->exidx_output_section_->add_output_section_data(cantunwind);
5159       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5160     }
5161 }
5162
5163 // Process an EXIDX section entry in input.  Return whether this entry
5164 // can be deleted in the output.  SECOND_WORD in the second word of the
5165 // EXIDX entry.
5166
5167 bool
5168 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5169 {
5170   bool delete_entry;
5171   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5172     {
5173       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5174       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5175       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5176     }
5177   else if ((second_word & 0x80000000) != 0)
5178     {
5179       // Inlined unwinding data.  Merge if equal to previous.
5180       delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
5181                       && this->last_inlined_entry_ == second_word);
5182       this->last_unwind_type_ = UT_INLINED_ENTRY;
5183       this->last_inlined_entry_ = second_word;
5184     }
5185   else
5186     {
5187       // Normal table entry.  In theory we could merge these too,
5188       // but duplicate entries are likely to be much less common.
5189       delete_entry = false;
5190       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5191     }
5192   return delete_entry;
5193 }
5194
5195 // Update the current section offset map during EXIDX section fix-up.
5196 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5197 // reference point, DELETED_BYTES is the number of deleted by in the
5198 // section so far.  If DELETE_ENTRY is true, the reference point and
5199 // all offsets after the previous reference point are discarded.
5200
5201 void
5202 Arm_exidx_fixup::update_offset_map(
5203     section_offset_type input_offset,
5204     section_size_type deleted_bytes,
5205     bool delete_entry)
5206 {
5207   if (this->section_offset_map_ == NULL)
5208     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5209   section_offset_type output_offset;
5210   if (delete_entry)
5211     output_offset = Arm_exidx_input_section::invalid_offset;
5212   else
5213     output_offset = input_offset - deleted_bytes;
5214   (*this->section_offset_map_)[input_offset] = output_offset;
5215 }
5216
5217 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5218 // bytes deleted.  If some entries are merged, also store a pointer to a newly
5219 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The
5220 // caller owns the map and is responsible for releasing it after use.
5221
5222 template<bool big_endian>
5223 uint32_t
5224 Arm_exidx_fixup::process_exidx_section(
5225     const Arm_exidx_input_section* exidx_input_section,
5226     Arm_exidx_section_offset_map** psection_offset_map)
5227 {
5228   Relobj* relobj = exidx_input_section->relobj();
5229   unsigned shndx = exidx_input_section->shndx();
5230   section_size_type section_size;
5231   const unsigned char* section_contents =
5232     relobj->section_contents(shndx, &section_size, false);
5233
5234   if ((section_size % 8) != 0)
5235     {
5236       // Something is wrong with this section.  Better not touch it.
5237       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5238                  relobj->name().c_str(), shndx);
5239       this->last_input_section_ = exidx_input_section;
5240       this->last_unwind_type_ = UT_NONE;
5241       return 0;
5242     }
5243   
5244   uint32_t deleted_bytes = 0;
5245   bool prev_delete_entry = false;
5246   gold_assert(this->section_offset_map_ == NULL);
5247
5248   for (section_size_type i = 0; i < section_size; i += 8)
5249     {
5250       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5251       const Valtype* wv =
5252           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5253       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5254
5255       bool delete_entry = this->process_exidx_entry(second_word);
5256
5257       // Entry deletion causes changes in output offsets.  We use a std::map
5258       // to record these.  And entry (x, y) means input offset x
5259       // is mapped to output offset y.  If y is invalid_offset, then x is
5260       // dropped in the output.  Because of the way std::map::lower_bound
5261       // works, we record the last offset in a region w.r.t to keeping or
5262       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5263       // the output offset y0 of it is determined by the output offset y1 of
5264       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5265       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Othewise, y1
5266       // y0 is also -1.
5267       if (delete_entry != prev_delete_entry && i != 0)
5268         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5269
5270       // Update total deleted bytes for this entry.
5271       if (delete_entry)
5272         deleted_bytes += 8;
5273
5274       prev_delete_entry = delete_entry;
5275     }
5276   
5277   // If section offset map is not NULL, make an entry for the end of
5278   // section.
5279   if (this->section_offset_map_ != NULL)
5280     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5281
5282   *psection_offset_map = this->section_offset_map_;
5283   this->section_offset_map_ = NULL;
5284   this->last_input_section_ = exidx_input_section;
5285   
5286   // Set the first output text section so that we can link the EXIDX output
5287   // section to it.  Ignore any EXIDX input section that is completely merged.
5288   if (this->first_output_text_section_ == NULL
5289       && deleted_bytes != section_size)
5290     {
5291       unsigned int link = exidx_input_section->link();
5292       Output_section* os = relobj->output_section(link);
5293       gold_assert(os != NULL);
5294       this->first_output_text_section_ = os;
5295     }
5296
5297   return deleted_bytes;
5298 }
5299
5300 // Arm_output_section methods.
5301
5302 // Create a stub group for input sections from BEGIN to END.  OWNER
5303 // points to the input section to be the owner a new stub table.
5304
5305 template<bool big_endian>
5306 void
5307 Arm_output_section<big_endian>::create_stub_group(
5308   Input_section_list::const_iterator begin,
5309   Input_section_list::const_iterator end,
5310   Input_section_list::const_iterator owner,
5311   Target_arm<big_endian>* target,
5312   std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5313 {
5314   // We use a different kind of relaxed section in an EXIDX section.
5315   // The static casting from Output_relaxed_input_section to
5316   // Arm_input_section is invalid in an EXIDX section.  We are okay
5317   // because we should not be calling this for an EXIDX section. 
5318   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5319
5320   // Currently we convert ordinary input sections into relaxed sections only
5321   // at this point but we may want to support creating relaxed input section
5322   // very early.  So we check here to see if owner is already a relaxed
5323   // section.
5324   
5325   Arm_input_section<big_endian>* arm_input_section;
5326   if (owner->is_relaxed_input_section())
5327     {
5328       arm_input_section =
5329         Arm_input_section<big_endian>::as_arm_input_section(
5330           owner->relaxed_input_section());
5331     }
5332   else
5333     {
5334       gold_assert(owner->is_input_section());
5335       // Create a new relaxed input section.
5336       arm_input_section =
5337         target->new_arm_input_section(owner->relobj(), owner->shndx());
5338       new_relaxed_sections->push_back(arm_input_section);
5339     }
5340
5341   // Create a stub table.
5342   Stub_table<big_endian>* stub_table =
5343     target->new_stub_table(arm_input_section);
5344
5345   arm_input_section->set_stub_table(stub_table);
5346   
5347   Input_section_list::const_iterator p = begin;
5348   Input_section_list::const_iterator prev_p;
5349
5350   // Look for input sections or relaxed input sections in [begin ... end].
5351   do
5352     {
5353       if (p->is_input_section() || p->is_relaxed_input_section())
5354         {
5355           // The stub table information for input sections live
5356           // in their objects.
5357           Arm_relobj<big_endian>* arm_relobj =
5358             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5359           arm_relobj->set_stub_table(p->shndx(), stub_table);
5360         }
5361       prev_p = p++;
5362     }
5363   while (prev_p != end);
5364 }
5365
5366 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5367 // of stub groups.  We grow a stub group by adding input section until the
5368 // size is just below GROUP_SIZE.  The last input section will be converted
5369 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5370 // input section after the stub table, effectively double the group size.
5371 // 
5372 // This is similar to the group_sections() function in elf32-arm.c but is
5373 // implemented differently.
5374
5375 template<bool big_endian>
5376 void
5377 Arm_output_section<big_endian>::group_sections(
5378     section_size_type group_size,
5379     bool stubs_always_after_branch,
5380     Target_arm<big_endian>* target)
5381 {
5382   // We only care about sections containing code.
5383   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5384     return;
5385
5386   // States for grouping.
5387   typedef enum
5388   {
5389     // No group is being built.
5390     NO_GROUP,
5391     // A group is being built but the stub table is not found yet.
5392     // We keep group a stub group until the size is just under GROUP_SIZE.
5393     // The last input section in the group will be used as the stub table.
5394     FINDING_STUB_SECTION,
5395     // A group is being built and we have already found a stub table.
5396     // We enter this state to grow a stub group by adding input section
5397     // after the stub table.  This effectively doubles the group size.
5398     HAS_STUB_SECTION
5399   } State;
5400
5401   // Any newly created relaxed sections are stored here.
5402   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5403
5404   State state = NO_GROUP;
5405   section_size_type off = 0;
5406   section_size_type group_begin_offset = 0;
5407   section_size_type group_end_offset = 0;
5408   section_size_type stub_table_end_offset = 0;
5409   Input_section_list::const_iterator group_begin =
5410     this->input_sections().end();
5411   Input_section_list::const_iterator stub_table =
5412     this->input_sections().end();
5413   Input_section_list::const_iterator group_end = this->input_sections().end();
5414   for (Input_section_list::const_iterator p = this->input_sections().begin();
5415        p != this->input_sections().end();
5416        ++p)
5417     {
5418       section_size_type section_begin_offset =
5419         align_address(off, p->addralign());
5420       section_size_type section_end_offset =
5421         section_begin_offset + p->data_size(); 
5422       
5423       // Check to see if we should group the previously seens sections.
5424       switch (state)
5425         {
5426         case NO_GROUP:
5427           break;
5428
5429         case FINDING_STUB_SECTION:
5430           // Adding this section makes the group larger than GROUP_SIZE.
5431           if (section_end_offset - group_begin_offset >= group_size)
5432             {
5433               if (stubs_always_after_branch)
5434                 {       
5435                   gold_assert(group_end != this->input_sections().end());
5436                   this->create_stub_group(group_begin, group_end, group_end,
5437                                           target, &new_relaxed_sections);
5438                   state = NO_GROUP;
5439                 }
5440               else
5441                 {
5442                   // But wait, there's more!  Input sections up to
5443                   // stub_group_size bytes after the stub table can be
5444                   // handled by it too.
5445                   state = HAS_STUB_SECTION;
5446                   stub_table = group_end;
5447                   stub_table_end_offset = group_end_offset;
5448                 }
5449             }
5450             break;
5451
5452         case HAS_STUB_SECTION:
5453           // Adding this section makes the post stub-section group larger
5454           // than GROUP_SIZE.
5455           if (section_end_offset - stub_table_end_offset >= group_size)
5456            {
5457              gold_assert(group_end != this->input_sections().end());
5458              this->create_stub_group(group_begin, group_end, stub_table,
5459                                      target, &new_relaxed_sections);
5460              state = NO_GROUP;
5461            }
5462            break;
5463
5464           default:
5465             gold_unreachable();
5466         }       
5467
5468       // If we see an input section and currently there is no group, start
5469       // a new one.  Skip any empty sections.
5470       if ((p->is_input_section() || p->is_relaxed_input_section())
5471           && (p->relobj()->section_size(p->shndx()) != 0))
5472         {
5473           if (state == NO_GROUP)
5474             {
5475               state = FINDING_STUB_SECTION;
5476               group_begin = p;
5477               group_begin_offset = section_begin_offset;
5478             }
5479
5480           // Keep track of the last input section seen.
5481           group_end = p;
5482           group_end_offset = section_end_offset;
5483         }
5484
5485       off = section_end_offset;
5486     }
5487
5488   // Create a stub group for any ungrouped sections.
5489   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5490     {
5491       gold_assert(group_end != this->input_sections().end());
5492       this->create_stub_group(group_begin, group_end,
5493                               (state == FINDING_STUB_SECTION
5494                                ? group_end
5495                                : stub_table),
5496                                target, &new_relaxed_sections);
5497     }
5498
5499   // Convert input section into relaxed input section in a batch.
5500   if (!new_relaxed_sections.empty())
5501     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5502
5503   // Update the section offsets
5504   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5505     {
5506       Arm_relobj<big_endian>* arm_relobj =
5507         Arm_relobj<big_endian>::as_arm_relobj(
5508           new_relaxed_sections[i]->relobj());
5509       unsigned int shndx = new_relaxed_sections[i]->shndx();
5510       // Tell Arm_relobj that this input section is converted.
5511       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5512     }
5513 }
5514
5515 // Append non empty text sections in this to LIST in ascending
5516 // order of their position in this.
5517
5518 template<bool big_endian>
5519 void
5520 Arm_output_section<big_endian>::append_text_sections_to_list(
5521     Text_section_list* list)
5522 {
5523   // We only care about text sections.
5524   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5525     return;
5526
5527   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5528
5529   for (Input_section_list::const_iterator p = this->input_sections().begin();
5530        p != this->input_sections().end();
5531        ++p)
5532     {
5533       // We only care about plain or relaxed input sections.  We also
5534       // ignore any merged sections.
5535       if ((p->is_input_section() || p->is_relaxed_input_section())
5536           && p->data_size() != 0)
5537         list->push_back(Text_section_list::value_type(p->relobj(),
5538                                                       p->shndx()));
5539     }
5540 }
5541
5542 template<bool big_endian>
5543 void
5544 Arm_output_section<big_endian>::fix_exidx_coverage(
5545     Layout* layout,
5546     const Text_section_list& sorted_text_sections,
5547     Symbol_table* symtab)
5548 {
5549   // We should only do this for the EXIDX output section.
5550   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5551
5552   // We don't want the relaxation loop to undo these changes, so we discard
5553   // the current saved states and take another one after the fix-up.
5554   this->discard_states();
5555
5556   // Remove all input sections.
5557   uint64_t address = this->address();
5558   typedef std::list<Simple_input_section> Simple_input_section_list;
5559   Simple_input_section_list input_sections;
5560   this->reset_address_and_file_offset();
5561   this->get_input_sections(address, std::string(""), &input_sections);
5562
5563   if (!this->input_sections().empty())
5564     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5565   
5566   // Go through all the known input sections and record them.
5567   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5568   Section_id_set known_input_sections;
5569   for (Simple_input_section_list::const_iterator p = input_sections.begin();
5570        p != input_sections.end();
5571        ++p)
5572     {
5573       // This should never happen.  At this point, we should only see
5574       // plain EXIDX input sections.
5575       gold_assert(!p->is_relaxed_input_section());
5576       known_input_sections.insert(Section_id(p->relobj(), p->shndx()));
5577     }
5578
5579   Arm_exidx_fixup exidx_fixup(this);
5580
5581   // Go over the sorted text sections.
5582   Section_id_set processed_input_sections;
5583   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5584        p != sorted_text_sections.end();
5585        ++p)
5586     {
5587       Relobj* relobj = p->first;
5588       unsigned int shndx = p->second;
5589
5590       Arm_relobj<big_endian>* arm_relobj =
5591          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5592       const Arm_exidx_input_section* exidx_input_section =
5593          arm_relobj->exidx_input_section_by_link(shndx);
5594
5595       // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5596       // entry pointing to the end of the last seen EXIDX section.
5597       if (exidx_input_section == NULL)
5598         {
5599           exidx_fixup.add_exidx_cantunwind_as_needed();
5600           continue;
5601         }
5602
5603       Relobj* exidx_relobj = exidx_input_section->relobj();
5604       unsigned int exidx_shndx = exidx_input_section->shndx();
5605       Section_id sid(exidx_relobj, exidx_shndx);
5606       if (known_input_sections.find(sid) == known_input_sections.end())
5607         {
5608           // This is odd.  We have not seen this EXIDX input section before.
5609           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5610           // issue a warning instead.  We assume the user knows what he
5611           // or she is doing.  Otherwise, this is an error.
5612           if (layout->script_options()->saw_sections_clause())
5613             gold_warning(_("unwinding may not work because EXIDX input section"
5614                            " %u of %s is not in EXIDX output section"),
5615                          exidx_shndx, exidx_relobj->name().c_str());
5616           else
5617             gold_error(_("unwinding may not work because EXIDX input section"
5618                          " %u of %s is not in EXIDX output section"),
5619                        exidx_shndx, exidx_relobj->name().c_str());
5620
5621           exidx_fixup.add_exidx_cantunwind_as_needed();
5622           continue;
5623         }
5624
5625       // Fix up coverage and append input section to output data list.
5626       Arm_exidx_section_offset_map* section_offset_map = NULL;
5627       uint32_t deleted_bytes =
5628         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5629                                                       &section_offset_map);
5630
5631       if (deleted_bytes == exidx_input_section->size())
5632         {
5633           // The whole EXIDX section got merged.  Remove it from output.
5634           gold_assert(section_offset_map == NULL);
5635           exidx_relobj->set_output_section(exidx_shndx, NULL);
5636
5637           // All local symbols defined in this input section will be dropped.
5638           // We need to adjust output local symbol count.
5639           arm_relobj->set_output_local_symbol_count_needs_update();
5640         }
5641       else if (deleted_bytes > 0)
5642         {
5643           // Some entries are merged.  We need to convert this EXIDX input
5644           // section into a relaxed section.
5645           gold_assert(section_offset_map != NULL);
5646           Arm_exidx_merged_section* merged_section =
5647             new Arm_exidx_merged_section(*exidx_input_section,
5648                                          *section_offset_map, deleted_bytes);
5649           this->add_relaxed_input_section(merged_section);
5650           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5651
5652           // All local symbols defined in discarded portions of this input
5653           // section will be dropped.  We need to adjust output local symbol
5654           // count.
5655           arm_relobj->set_output_local_symbol_count_needs_update();
5656         }
5657       else
5658         {
5659           // Just add back the EXIDX input section.
5660           gold_assert(section_offset_map == NULL);
5661           Output_section::Simple_input_section sis(exidx_relobj, exidx_shndx);
5662           this->add_simple_input_section(sis, exidx_input_section->size(),
5663                                          exidx_input_section->addralign());
5664         }
5665
5666       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5667     }
5668
5669   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5670   exidx_fixup.add_exidx_cantunwind_as_needed();
5671
5672   // Remove any known EXIDX input sections that are not processed.
5673   for (Simple_input_section_list::const_iterator p = input_sections.begin();
5674        p != input_sections.end();
5675        ++p)
5676     {
5677       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5678           == processed_input_sections.end())
5679         {
5680           // We only discard a known EXIDX section because its linked
5681           // text section has been folded by ICF.
5682           Arm_relobj<big_endian>* arm_relobj =
5683             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5684           const Arm_exidx_input_section* exidx_input_section =
5685             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5686           gold_assert(exidx_input_section != NULL);
5687           unsigned int text_shndx = exidx_input_section->link();
5688           gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5689
5690           // Remove this from link.
5691           p->relobj()->set_output_section(p->shndx(), NULL);
5692         }
5693     }
5694     
5695   // Link exidx output section to the first seen output section and
5696   // set correct entry size.
5697   this->set_link_section(exidx_fixup.first_output_text_section());
5698   this->set_entsize(8);
5699
5700   // Make changes permanent.
5701   this->save_states();
5702   this->set_section_offsets_need_adjustment();
5703 }
5704
5705 // Arm_relobj methods.
5706
5707 // Determine if an input section is scannable for stub processing.  SHDR is
5708 // the header of the section and SHNDX is the section index.  OS is the output
5709 // section for the input section and SYMTAB is the global symbol table used to
5710 // look up ICF information.
5711
5712 template<bool big_endian>
5713 bool
5714 Arm_relobj<big_endian>::section_is_scannable(
5715     const elfcpp::Shdr<32, big_endian>& shdr,
5716     unsigned int shndx,
5717     const Output_section* os,
5718     const Symbol_table *symtab)
5719 {
5720   // Skip any empty sections, unallocated sections or sections whose
5721   // type are not SHT_PROGBITS.
5722   if (shdr.get_sh_size() == 0
5723       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5724       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5725     return false;
5726
5727   // Skip any discarded or ICF'ed sections.
5728   if (os == NULL || symtab->is_section_folded(this, shndx))
5729     return false;
5730
5731   // If this requires special offset handling, check to see if it is
5732   // a relaxed section.  If this is not, then it is a merged section that
5733   // we cannot handle.
5734   if (this->is_output_section_offset_invalid(shndx))
5735     {
5736       const Output_relaxed_input_section* poris =
5737         os->find_relaxed_input_section(this, shndx);
5738       if (poris == NULL)
5739         return false;
5740     }
5741
5742   return true;
5743 }
5744
5745 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5746 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5747
5748 template<bool big_endian>
5749 bool
5750 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5751     const elfcpp::Shdr<32, big_endian>& shdr,
5752     const Relobj::Output_sections& out_sections,
5753     const Symbol_table *symtab,
5754     const unsigned char* pshdrs)
5755 {
5756   unsigned int sh_type = shdr.get_sh_type();
5757   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5758     return false;
5759
5760   // Ignore empty section.
5761   off_t sh_size = shdr.get_sh_size();
5762   if (sh_size == 0)
5763     return false;
5764
5765   // Ignore reloc section with unexpected symbol table.  The
5766   // error will be reported in the final link.
5767   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5768     return false;
5769
5770   unsigned int reloc_size;
5771   if (sh_type == elfcpp::SHT_REL)
5772     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5773   else
5774     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5775
5776   // Ignore reloc section with unexpected entsize or uneven size.
5777   // The error will be reported in the final link.
5778   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5779     return false;
5780
5781   // Ignore reloc section with bad info.  This error will be
5782   // reported in the final link.
5783   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5784   if (index >= this->shnum())
5785     return false;
5786
5787   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5788   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5789   return this->section_is_scannable(text_shdr, index,
5790                                    out_sections[index], symtab);
5791 }
5792
5793 // Return the output address of either a plain input section or a relaxed
5794 // input section.  SHNDX is the section index.  We define and use this
5795 // instead of calling Output_section::output_address because that is slow
5796 // for large output.
5797
5798 template<bool big_endian>
5799 Arm_address
5800 Arm_relobj<big_endian>::simple_input_section_output_address(
5801     unsigned int shndx,
5802     Output_section* os)
5803 {
5804   if (this->is_output_section_offset_invalid(shndx))
5805     {
5806       const Output_relaxed_input_section* poris =
5807         os->find_relaxed_input_section(this, shndx);
5808       // We do not handle merged sections here.
5809       gold_assert(poris != NULL);
5810       return poris->address();
5811     }
5812   else
5813     return os->address() + this->get_output_section_offset(shndx);
5814 }
5815
5816 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5817 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5818
5819 template<bool big_endian>
5820 bool
5821 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5822     const elfcpp::Shdr<32, big_endian>& shdr,
5823     unsigned int shndx,
5824     Output_section* os,
5825     const Symbol_table* symtab)
5826 {
5827   if (!this->section_is_scannable(shdr, shndx, os, symtab))
5828     return false;
5829
5830   // If the section does not cross any 4K-boundaries, it does not need to
5831   // be scanned.
5832   Arm_address address = this->simple_input_section_output_address(shndx, os);
5833   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5834     return false;
5835
5836   return true;
5837 }
5838
5839 // Scan a section for Cortex-A8 workaround.
5840
5841 template<bool big_endian>
5842 void
5843 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5844     const elfcpp::Shdr<32, big_endian>& shdr,
5845     unsigned int shndx,
5846     Output_section* os,
5847     Target_arm<big_endian>* arm_target)
5848 {
5849   // Look for the first mapping symbol in this section.  It should be
5850   // at (shndx, 0).
5851   Mapping_symbol_position section_start(shndx, 0);
5852   typename Mapping_symbols_info::const_iterator p =
5853     this->mapping_symbols_info_.lower_bound(section_start);
5854
5855   // There are no mapping symbols for this section.  Treat it as a data-only
5856   // section.
5857   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
5858     return;
5859
5860   Arm_address output_address =
5861     this->simple_input_section_output_address(shndx, os);
5862
5863   // Get the section contents.
5864   section_size_type input_view_size = 0;
5865   const unsigned char* input_view =
5866     this->section_contents(shndx, &input_view_size, false);
5867
5868   // We need to go through the mapping symbols to determine what to
5869   // scan.  There are two reasons.  First, we should look at THUMB code and
5870   // THUMB code only.  Second, we only want to look at the 4K-page boundary
5871   // to speed up the scanning.
5872   
5873   while (p != this->mapping_symbols_info_.end()
5874         && p->first.first == shndx)
5875     {
5876       typename Mapping_symbols_info::const_iterator next =
5877         this->mapping_symbols_info_.upper_bound(p->first);
5878
5879       // Only scan part of a section with THUMB code.
5880       if (p->second == 't')
5881         {
5882           // Determine the end of this range.
5883           section_size_type span_start =
5884             convert_to_section_size_type(p->first.second);
5885           section_size_type span_end;
5886           if (next != this->mapping_symbols_info_.end()
5887               && next->first.first == shndx)
5888             span_end = convert_to_section_size_type(next->first.second);
5889           else
5890             span_end = convert_to_section_size_type(shdr.get_sh_size());
5891           
5892           if (((span_start + output_address) & ~0xfffUL)
5893               != ((span_end + output_address - 1) & ~0xfffUL))
5894             {
5895               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
5896                                                           span_start, span_end,
5897                                                           input_view,
5898                                                           output_address);
5899             }
5900         }
5901
5902       p = next; 
5903     }
5904 }
5905
5906 // Scan relocations for stub generation.
5907
5908 template<bool big_endian>
5909 void
5910 Arm_relobj<big_endian>::scan_sections_for_stubs(
5911     Target_arm<big_endian>* arm_target,
5912     const Symbol_table* symtab,
5913     const Layout* layout)
5914 {
5915   unsigned int shnum = this->shnum();
5916   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5917
5918   // Read the section headers.
5919   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
5920                                                shnum * shdr_size,
5921                                                true, true);
5922
5923   // To speed up processing, we set up hash tables for fast lookup of
5924   // input offsets to output addresses.
5925   this->initialize_input_to_output_maps();
5926
5927   const Relobj::Output_sections& out_sections(this->output_sections());
5928
5929   Relocate_info<32, big_endian> relinfo;
5930   relinfo.symtab = symtab;
5931   relinfo.layout = layout;
5932   relinfo.object = this;
5933
5934   // Do relocation stubs scanning.
5935   const unsigned char* p = pshdrs + shdr_size;
5936   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5937     {
5938       const elfcpp::Shdr<32, big_endian> shdr(p);
5939       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
5940                                                   pshdrs))
5941         {
5942           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5943           Arm_address output_offset = this->get_output_section_offset(index);
5944           Arm_address output_address;
5945           if(output_offset != invalid_address)
5946             output_address = out_sections[index]->address() + output_offset;
5947           else
5948             {
5949               // Currently this only happens for a relaxed section.
5950               const Output_relaxed_input_section* poris =
5951               out_sections[index]->find_relaxed_input_section(this, index);
5952               gold_assert(poris != NULL);
5953               output_address = poris->address();
5954             }
5955
5956           // Get the relocations.
5957           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
5958                                                         shdr.get_sh_size(),
5959                                                         true, false);
5960
5961           // Get the section contents.  This does work for the case in which
5962           // we modify the contents of an input section.  We need to pass the
5963           // output view under such circumstances.
5964           section_size_type input_view_size = 0;
5965           const unsigned char* input_view =
5966             this->section_contents(index, &input_view_size, false);
5967
5968           relinfo.reloc_shndx = i;
5969           relinfo.data_shndx = index;
5970           unsigned int sh_type = shdr.get_sh_type();
5971           unsigned int reloc_size;
5972           if (sh_type == elfcpp::SHT_REL)
5973             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5974           else
5975             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5976
5977           Output_section* os = out_sections[index];
5978           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
5979                                              shdr.get_sh_size() / reloc_size,
5980                                              os,
5981                                              output_offset == invalid_address,
5982                                              input_view, output_address,
5983                                              input_view_size);
5984         }
5985     }
5986
5987   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
5988   // after its relocation section, if there is one, is processed for
5989   // relocation stubs.  Merging this loop with the one above would have been
5990   // complicated since we would have had to make sure that relocation stub
5991   // scanning is done first.
5992   if (arm_target->fix_cortex_a8())
5993     {
5994       const unsigned char* p = pshdrs + shdr_size;
5995       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5996         {
5997           const elfcpp::Shdr<32, big_endian> shdr(p);
5998           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
5999                                                           out_sections[i],
6000                                                           symtab))
6001             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6002                                                      arm_target);
6003         }
6004     }
6005
6006   // After we've done the relocations, we release the hash tables,
6007   // since we no longer need them.
6008   this->free_input_to_output_maps();
6009 }
6010
6011 // Count the local symbols.  The ARM backend needs to know if a symbol
6012 // is a THUMB function or not.  For global symbols, it is easy because
6013 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6014 // harder because we cannot access this information.   So we override the
6015 // do_count_local_symbol in parent and scan local symbols to mark
6016 // THUMB functions.  This is not the most efficient way but I do not want to
6017 // slow down other ports by calling a per symbol targer hook inside
6018 // Sized_relobj<size, big_endian>::do_count_local_symbols. 
6019
6020 template<bool big_endian>
6021 void
6022 Arm_relobj<big_endian>::do_count_local_symbols(
6023     Stringpool_template<char>* pool,
6024     Stringpool_template<char>* dynpool)
6025 {
6026   // We need to fix-up the values of any local symbols whose type are
6027   // STT_ARM_TFUNC.
6028   
6029   // Ask parent to count the local symbols.
6030   Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6031   const unsigned int loccount = this->local_symbol_count();
6032   if (loccount == 0)
6033     return;
6034
6035   // Intialize the thumb function bit-vector.
6036   std::vector<bool> empty_vector(loccount, false);
6037   this->local_symbol_is_thumb_function_.swap(empty_vector);
6038
6039   // Read the symbol table section header.
6040   const unsigned int symtab_shndx = this->symtab_shndx();
6041   elfcpp::Shdr<32, big_endian>
6042       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6043   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6044
6045   // Read the local symbols.
6046   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6047   gold_assert(loccount == symtabshdr.get_sh_info());
6048   off_t locsize = loccount * sym_size;
6049   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6050                                               locsize, true, true);
6051
6052   // For mapping symbol processing, we need to read the symbol names.
6053   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6054   if (strtab_shndx >= this->shnum())
6055     {
6056       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6057       return;
6058     }
6059
6060   elfcpp::Shdr<32, big_endian>
6061     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6062   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6063     {
6064       this->error(_("symbol table name section has wrong type: %u"),
6065                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6066       return;
6067     }
6068   const char* pnames =
6069     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6070                                                  strtabshdr.get_sh_size(),
6071                                                  false, false));
6072
6073   // Loop over the local symbols and mark any local symbols pointing
6074   // to THUMB functions.
6075
6076   // Skip the first dummy symbol.
6077   psyms += sym_size;
6078   typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6079     this->local_values();
6080   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6081     {
6082       elfcpp::Sym<32, big_endian> sym(psyms);
6083       elfcpp::STT st_type = sym.get_st_type();
6084       Symbol_value<32>& lv((*plocal_values)[i]);
6085       Arm_address input_value = lv.input_value();
6086
6087       // Check to see if this is a mapping symbol.
6088       const char* sym_name = pnames + sym.get_st_name();
6089       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6090         {
6091           unsigned int input_shndx = sym.get_st_shndx();  
6092
6093           // Strip of LSB in case this is a THUMB symbol.
6094           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6095           this->mapping_symbols_info_[msp] = sym_name[1];
6096         }
6097
6098       if (st_type == elfcpp::STT_ARM_TFUNC
6099           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6100         {
6101           // This is a THUMB function.  Mark this and canonicalize the
6102           // symbol value by setting LSB.
6103           this->local_symbol_is_thumb_function_[i] = true;
6104           if ((input_value & 1) == 0)
6105             lv.set_input_value(input_value | 1);
6106         }
6107     }
6108 }
6109
6110 // Relocate sections.
6111 template<bool big_endian>
6112 void
6113 Arm_relobj<big_endian>::do_relocate_sections(
6114     const Symbol_table* symtab,
6115     const Layout* layout,
6116     const unsigned char* pshdrs,
6117     typename Sized_relobj<32, big_endian>::Views* pviews)
6118 {
6119   // Call parent to relocate sections.
6120   Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6121                                                      pviews); 
6122
6123   // We do not generate stubs if doing a relocatable link.
6124   if (parameters->options().relocatable())
6125     return;
6126
6127   // Relocate stub tables.
6128   unsigned int shnum = this->shnum();
6129
6130   Target_arm<big_endian>* arm_target =
6131     Target_arm<big_endian>::default_target();
6132
6133   Relocate_info<32, big_endian> relinfo;
6134   relinfo.symtab = symtab;
6135   relinfo.layout = layout;
6136   relinfo.object = this;
6137
6138   for (unsigned int i = 1; i < shnum; ++i)
6139     {
6140       Arm_input_section<big_endian>* arm_input_section =
6141         arm_target->find_arm_input_section(this, i);
6142
6143       if (arm_input_section != NULL
6144           && arm_input_section->is_stub_table_owner()
6145           && !arm_input_section->stub_table()->empty())
6146         {
6147           // We cannot discard a section if it owns a stub table.
6148           Output_section* os = this->output_section(i);
6149           gold_assert(os != NULL);
6150
6151           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6152           relinfo.reloc_shdr = NULL;
6153           relinfo.data_shndx = i;
6154           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6155
6156           gold_assert((*pviews)[i].view != NULL);
6157
6158           // We are passed the output section view.  Adjust it to cover the
6159           // stub table only.
6160           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6161           gold_assert((stub_table->address() >= (*pviews)[i].address)
6162                       && ((stub_table->address() + stub_table->data_size())
6163                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6164
6165           off_t offset = stub_table->address() - (*pviews)[i].address;
6166           unsigned char* view = (*pviews)[i].view + offset;
6167           Arm_address address = stub_table->address();
6168           section_size_type view_size = stub_table->data_size();
6169  
6170           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6171                                      view_size);
6172         }
6173
6174       // Apply Cortex A8 workaround if applicable.
6175       if (this->section_has_cortex_a8_workaround(i))
6176         {
6177           unsigned char* view = (*pviews)[i].view;
6178           Arm_address view_address = (*pviews)[i].address;
6179           section_size_type view_size = (*pviews)[i].view_size;
6180           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6181
6182           // Adjust view to cover section.
6183           Output_section* os = this->output_section(i);
6184           gold_assert(os != NULL);
6185           Arm_address section_address =
6186             this->simple_input_section_output_address(i, os);
6187           uint64_t section_size = this->section_size(i);
6188
6189           gold_assert(section_address >= view_address
6190                       && ((section_address + section_size)
6191                           <= (view_address + view_size)));
6192
6193           unsigned char* section_view = view + (section_address - view_address);
6194
6195           // Apply the Cortex-A8 workaround to the output address range
6196           // corresponding to this input section.
6197           stub_table->apply_cortex_a8_workaround_to_address_range(
6198               arm_target,
6199               section_view,
6200               section_address,
6201               section_size);
6202         }
6203     }
6204 }
6205
6206 // Find the linked text section of an EXIDX section by looking the the first
6207 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6208 // must be linked to to its associated code section via the sh_link field of
6209 // its section header.  However, some tools are broken and the link is not
6210 // always set.  LD just drops such an EXIDX section silently, causing the
6211 // associated code not unwindabled.   Here we try a little bit harder to
6212 // discover the linked code section.
6213 //
6214 // PSHDR points to the section header of a relocation section of an EXIDX
6215 // section.  If we can find a linked text section, return true and
6216 // store the text section index in the location PSHNDX.  Otherwise
6217 // return false.
6218
6219 template<bool big_endian>
6220 bool
6221 Arm_relobj<big_endian>::find_linked_text_section(
6222     const unsigned char* pshdr,
6223     const unsigned char* psyms,
6224     unsigned int* pshndx)
6225 {
6226   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6227   
6228   // If there is no relocation, we cannot find the linked text section.
6229   size_t reloc_size;
6230   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6231       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6232   else
6233       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6234   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6235  
6236   // Get the relocations.
6237   const unsigned char* prelocs =
6238       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6239
6240   // Find the REL31 relocation for the first word of the first EXIDX entry.
6241   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6242     {
6243       Arm_address r_offset;
6244       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6245       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6246         {
6247           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6248           r_info = reloc.get_r_info();
6249           r_offset = reloc.get_r_offset();
6250         }
6251       else
6252         {
6253           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6254           r_info = reloc.get_r_info();
6255           r_offset = reloc.get_r_offset();
6256         }
6257
6258       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6259       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6260         continue;
6261
6262       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6263       if (r_sym == 0
6264           || r_sym >= this->local_symbol_count()
6265           || r_offset != 0)
6266         continue;
6267
6268       // This is the relocation for the first word of the first EXIDX entry.
6269       // We expect to see a local section symbol.
6270       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6271       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6272       if (sym.get_st_type() == elfcpp::STT_SECTION)
6273         {
6274           *pshndx = this->adjust_shndx(sym.get_st_shndx());
6275           return true;
6276         }
6277       else
6278         return false;
6279     }
6280
6281   return false;
6282 }
6283
6284 // Make an EXIDX input section object for an EXIDX section whose index is
6285 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6286 // is the section index of the linked text section.
6287
6288 template<bool big_endian>
6289 void
6290 Arm_relobj<big_endian>::make_exidx_input_section(
6291     unsigned int shndx,
6292     const elfcpp::Shdr<32, big_endian>& shdr,
6293     unsigned int text_shndx)
6294 {
6295   // Issue an error and ignore this EXIDX section if it points to a text
6296   // section already has an EXIDX section.
6297   if (this->exidx_section_map_[text_shndx] != NULL)
6298     {
6299       gold_error(_("EXIDX sections %u and %u both link to text section %u "
6300                    "in %s"),
6301                  shndx, this->exidx_section_map_[text_shndx]->shndx(),
6302                  text_shndx, this->name().c_str());
6303       return;
6304     }
6305
6306   // Create an Arm_exidx_input_section object for this EXIDX section.
6307   Arm_exidx_input_section* exidx_input_section =
6308     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6309                                 shdr.get_sh_addralign());
6310   this->exidx_section_map_[text_shndx] = exidx_input_section;
6311
6312   // Also map the EXIDX section index to this.
6313   gold_assert(this->exidx_section_map_[shndx] == NULL);
6314   this->exidx_section_map_[shndx] = exidx_input_section;
6315 }
6316
6317 // Read the symbol information.
6318
6319 template<bool big_endian>
6320 void
6321 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6322 {
6323   // Call parent class to read symbol information.
6324   Sized_relobj<32, big_endian>::do_read_symbols(sd);
6325
6326   // Read processor-specific flags in ELF file header.
6327   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6328                                               elfcpp::Elf_sizes<32>::ehdr_size,
6329                                               true, false);
6330   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6331   this->processor_specific_flags_ = ehdr.get_e_flags();
6332
6333   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6334   // sections.
6335   std::vector<unsigned int> deferred_exidx_sections;
6336   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6337   const unsigned char* pshdrs = sd->section_headers->data();
6338   const unsigned char *ps = pshdrs + shdr_size;
6339   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6340     {
6341       elfcpp::Shdr<32, big_endian> shdr(ps);
6342       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6343         {
6344           gold_assert(this->attributes_section_data_ == NULL);
6345           section_offset_type section_offset = shdr.get_sh_offset();
6346           section_size_type section_size =
6347             convert_to_section_size_type(shdr.get_sh_size());
6348           File_view* view = this->get_lasting_view(section_offset,
6349                                                    section_size, true, false);
6350           this->attributes_section_data_ =
6351             new Attributes_section_data(view->data(), section_size);
6352         }
6353       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6354         {
6355           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6356           if (text_shndx >= this->shnum())
6357             gold_error(_("EXIDX section %u linked to invalid section %u"),
6358                        i, text_shndx);
6359           else if (text_shndx == elfcpp::SHN_UNDEF)
6360             deferred_exidx_sections.push_back(i);
6361           else
6362             this->make_exidx_input_section(i, shdr, text_shndx);
6363         }
6364     }
6365
6366   // Some tools are broken and they do not set the link of EXIDX sections. 
6367   // We look at the first relocation to figure out the linked sections.
6368   if (!deferred_exidx_sections.empty())
6369     {
6370       // We need to go over the section headers again to find the mapping
6371       // from sections being relocated to their relocation sections.  This is
6372       // a bit inefficient as we could do that in the loop above.  However,
6373       // we do not expect any deferred EXIDX sections normally.  So we do not
6374       // want to slow down the most common path.
6375       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6376       Reloc_map reloc_map;
6377       ps = pshdrs + shdr_size;
6378       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6379         {
6380           elfcpp::Shdr<32, big_endian> shdr(ps);
6381           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6382           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6383             {
6384               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6385               if (info_shndx >= this->shnum())
6386                 gold_error(_("relocation section %u has invalid info %u"),
6387                            i, info_shndx);
6388               Reloc_map::value_type value(info_shndx, i);
6389               std::pair<Reloc_map::iterator, bool> result =
6390                 reloc_map.insert(value);
6391               if (!result.second)
6392                 gold_error(_("section %u has multiple relocation sections "
6393                              "%u and %u"),
6394                            info_shndx, i, reloc_map[info_shndx]);
6395             }
6396         }
6397
6398       // Read the symbol table section header.
6399       const unsigned int symtab_shndx = this->symtab_shndx();
6400       elfcpp::Shdr<32, big_endian>
6401           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6402       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6403
6404       // Read the local symbols.
6405       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6406       const unsigned int loccount = this->local_symbol_count();
6407       gold_assert(loccount == symtabshdr.get_sh_info());
6408       off_t locsize = loccount * sym_size;
6409       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6410                                                   locsize, true, true);
6411
6412       // Process the deferred EXIDX sections. 
6413       for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6414         {
6415           unsigned int shndx = deferred_exidx_sections[i];
6416           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6417           unsigned int text_shndx;
6418           Reloc_map::const_iterator it = reloc_map.find(shndx);
6419           if (it != reloc_map.end()
6420               && find_linked_text_section(pshdrs + it->second * shdr_size,
6421                                           psyms, &text_shndx))
6422             this->make_exidx_input_section(shndx, shdr, text_shndx);
6423           else
6424             gold_error(_("EXIDX section %u has no linked text section."),
6425                        shndx);
6426         }
6427     }
6428 }
6429
6430 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6431 // sections for unwinding.  These sections are referenced implicitly by 
6432 // text sections linked in the section headers.  If we ignore these implict
6433 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6434 // will be garbage-collected incorrectly.  Hence we override the same function
6435 // in the base class to handle these implicit references.
6436
6437 template<bool big_endian>
6438 void
6439 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6440                                              Layout* layout,
6441                                              Read_relocs_data* rd)
6442 {
6443   // First, call base class method to process relocations in this object.
6444   Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6445
6446   // If --gc-sections is not specified, there is nothing more to do.
6447   // This happens when --icf is used but --gc-sections is not.
6448   if (!parameters->options().gc_sections())
6449     return;
6450   
6451   unsigned int shnum = this->shnum();
6452   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6453   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6454                                                shnum * shdr_size,
6455                                                true, true);
6456
6457   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6458   // to these from the linked text sections.
6459   const unsigned char* ps = pshdrs + shdr_size;
6460   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6461     {
6462       elfcpp::Shdr<32, big_endian> shdr(ps);
6463       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6464         {
6465           // Found an .ARM.exidx section, add it to the set of reachable
6466           // sections from its linked text section.
6467           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6468           symtab->gc()->add_reference(this, text_shndx, this, i);
6469         }
6470     }
6471 }
6472
6473 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6474 // symbols  will be removed in output.  Adjust output local symbol count
6475 // accordingly.  We can only changed the static output local symbol count.  It
6476 // is too late to change the dynamic symbols.
6477
6478 template<bool big_endian>
6479 void
6480 Arm_relobj<big_endian>::update_output_local_symbol_count()
6481 {
6482   // Caller should check that this needs updating.  We want caller checking
6483   // because output_local_symbol_count_needs_update() is most likely inlined.
6484   gold_assert(this->output_local_symbol_count_needs_update_);
6485
6486   gold_assert(this->symtab_shndx() != -1U);
6487   if (this->symtab_shndx() == 0)
6488     {
6489       // This object has no symbols.  Weird but legal.
6490       return;
6491     }
6492
6493   // Read the symbol table section header.
6494   const unsigned int symtab_shndx = this->symtab_shndx();
6495   elfcpp::Shdr<32, big_endian>
6496     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6497   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6498
6499   // Read the local symbols.
6500   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6501   const unsigned int loccount = this->local_symbol_count();
6502   gold_assert(loccount == symtabshdr.get_sh_info());
6503   off_t locsize = loccount * sym_size;
6504   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6505                                               locsize, true, true);
6506
6507   // Loop over the local symbols.
6508
6509   typedef typename Sized_relobj<32, big_endian>::Output_sections
6510      Output_sections;
6511   const Output_sections& out_sections(this->output_sections());
6512   unsigned int shnum = this->shnum();
6513   unsigned int count = 0;
6514   // Skip the first, dummy, symbol.
6515   psyms += sym_size;
6516   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6517     {
6518       elfcpp::Sym<32, big_endian> sym(psyms);
6519
6520       Symbol_value<32>& lv((*this->local_values())[i]);
6521
6522       // This local symbol was already discarded by do_count_local_symbols.
6523       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6524         continue;
6525
6526       bool is_ordinary;
6527       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6528                                                   &is_ordinary);
6529
6530       if (shndx < shnum)
6531         {
6532           Output_section* os = out_sections[shndx];
6533
6534           // This local symbol no longer has an output section.  Discard it.
6535           if (os == NULL)
6536             {
6537               lv.set_no_output_symtab_entry();
6538               continue;
6539             }
6540
6541           // Currently we only discard parts of EXIDX input sections.
6542           // We explicitly check for a merged EXIDX input section to avoid
6543           // calling Output_section_data::output_offset unless necessary.
6544           if ((this->get_output_section_offset(shndx) == invalid_address)
6545               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6546             {
6547               section_offset_type output_offset =
6548                 os->output_offset(this, shndx, lv.input_value());
6549               if (output_offset == -1)
6550                 {
6551                   // This symbol is defined in a part of an EXIDX input section
6552                   // that is discarded due to entry merging.
6553                   lv.set_no_output_symtab_entry();
6554                   continue;
6555                 }       
6556             }
6557         }
6558
6559       ++count;
6560     }
6561
6562   this->set_output_local_symbol_count(count);
6563   this->output_local_symbol_count_needs_update_ = false;
6564 }
6565
6566 // Arm_dynobj methods.
6567
6568 // Read the symbol information.
6569
6570 template<bool big_endian>
6571 void
6572 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6573 {
6574   // Call parent class to read symbol information.
6575   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6576
6577   // Read processor-specific flags in ELF file header.
6578   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6579                                               elfcpp::Elf_sizes<32>::ehdr_size,
6580                                               true, false);
6581   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6582   this->processor_specific_flags_ = ehdr.get_e_flags();
6583
6584   // Read the attributes section if there is one.
6585   // We read from the end because gas seems to put it near the end of
6586   // the section headers.
6587   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6588   const unsigned char *ps =
6589     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6590   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6591     {
6592       elfcpp::Shdr<32, big_endian> shdr(ps);
6593       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6594         {
6595           section_offset_type section_offset = shdr.get_sh_offset();
6596           section_size_type section_size =
6597             convert_to_section_size_type(shdr.get_sh_size());
6598           File_view* view = this->get_lasting_view(section_offset,
6599                                                    section_size, true, false);
6600           this->attributes_section_data_ =
6601             new Attributes_section_data(view->data(), section_size);
6602           break;
6603         }
6604     }
6605 }
6606
6607 // Stub_addend_reader methods.
6608
6609 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6610
6611 template<bool big_endian>
6612 elfcpp::Elf_types<32>::Elf_Swxword
6613 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6614     unsigned int r_type,
6615     const unsigned char* view,
6616     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6617 {
6618   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6619   
6620   switch (r_type)
6621     {
6622     case elfcpp::R_ARM_CALL:
6623     case elfcpp::R_ARM_JUMP24:
6624     case elfcpp::R_ARM_PLT32:
6625       {
6626         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6627         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6628         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6629         return utils::sign_extend<26>(val << 2);
6630       }
6631
6632     case elfcpp::R_ARM_THM_CALL:
6633     case elfcpp::R_ARM_THM_JUMP24:
6634     case elfcpp::R_ARM_THM_XPC22:
6635       {
6636         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6637         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6638         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6639         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6640         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6641       }
6642
6643     case elfcpp::R_ARM_THM_JUMP19:
6644       {
6645         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6646         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6647         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6648         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6649         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6650       }
6651
6652     default:
6653       gold_unreachable();
6654     }
6655 }
6656
6657 // Arm_output_data_got methods.
6658
6659 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
6660 // The first one is initialized to be 1, which is the module index for
6661 // the main executable and the second one 0.  A reloc of the type
6662 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6663 // be applied by gold.  GSYM is a global symbol.
6664 //
6665 template<bool big_endian>
6666 void
6667 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6668     unsigned int got_type,
6669     Symbol* gsym)
6670 {
6671   if (gsym->has_got_offset(got_type))
6672     return;
6673
6674   // We are doing a static link.  Just mark it as belong to module 1,
6675   // the executable.
6676   unsigned int got_offset = this->add_constant(1);
6677   gsym->set_got_offset(got_type, got_offset); 
6678   got_offset = this->add_constant(0);
6679   this->static_relocs_.push_back(Static_reloc(got_offset,
6680                                               elfcpp::R_ARM_TLS_DTPOFF32,
6681                                               gsym));
6682 }
6683
6684 // Same as the above but for a local symbol.
6685
6686 template<bool big_endian>
6687 void
6688 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6689   unsigned int got_type,
6690   Sized_relobj<32, big_endian>* object,
6691   unsigned int index)
6692 {
6693   if (object->local_has_got_offset(index, got_type))
6694     return;
6695
6696   // We are doing a static link.  Just mark it as belong to module 1,
6697   // the executable.
6698   unsigned int got_offset = this->add_constant(1);
6699   object->set_local_got_offset(index, got_type, got_offset);
6700   got_offset = this->add_constant(0);
6701   this->static_relocs_.push_back(Static_reloc(got_offset, 
6702                                               elfcpp::R_ARM_TLS_DTPOFF32, 
6703                                               object, index));
6704 }
6705
6706 template<bool big_endian>
6707 void
6708 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6709 {
6710   // Call parent to write out GOT.
6711   Output_data_got<32, big_endian>::do_write(of);
6712
6713   // We are done if there is no fix up.
6714   if (this->static_relocs_.empty())
6715     return;
6716
6717   gold_assert(parameters->doing_static_link());
6718
6719   const off_t offset = this->offset();
6720   const section_size_type oview_size =
6721     convert_to_section_size_type(this->data_size());
6722   unsigned char* const oview = of->get_output_view(offset, oview_size);
6723
6724   Output_segment* tls_segment = this->layout_->tls_segment();
6725   gold_assert(tls_segment != NULL);
6726   
6727   // The thread pointer $tp points to the TCB, which is followed by the
6728   // TLS.  So we need to adjust $tp relative addressing by this amount.
6729   Arm_address aligned_tcb_size =
6730     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6731
6732   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6733     {
6734       Static_reloc& reloc(this->static_relocs_[i]);
6735       
6736       Arm_address value;
6737       if (!reloc.symbol_is_global())
6738         {
6739           Sized_relobj<32, big_endian>* object = reloc.relobj();
6740           const Symbol_value<32>* psymval =
6741             reloc.relobj()->local_symbol(reloc.index());
6742
6743           // We are doing static linking.  Issue an error and skip this
6744           // relocation if the symbol is undefined or in a discarded_section.
6745           bool is_ordinary;
6746           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6747           if ((shndx == elfcpp::SHN_UNDEF)
6748               || (is_ordinary
6749                   && shndx != elfcpp::SHN_UNDEF
6750                   && !object->is_section_included(shndx)
6751                   && !this->symbol_table_->is_section_folded(object, shndx)))
6752             {
6753               gold_error(_("undefined or discarded local symbol %u from "
6754                            " object %s in GOT"),
6755                          reloc.index(), reloc.relobj()->name().c_str());
6756               continue;
6757             }
6758           
6759           value = psymval->value(object, 0);
6760         }
6761       else
6762         {
6763           const Symbol* gsym = reloc.symbol();
6764           gold_assert(gsym != NULL);
6765           if (gsym->is_forwarder())
6766             gsym = this->symbol_table_->resolve_forwards(gsym);
6767
6768           // We are doing static linking.  Issue an error and skip this
6769           // relocation if the symbol is undefined or in a discarded_section
6770           // unless it is a weakly_undefined symbol.
6771           if ((gsym->is_defined_in_discarded_section()
6772                || gsym->is_undefined())
6773               && !gsym->is_weak_undefined())
6774             {
6775               gold_error(_("undefined or discarded symbol %s in GOT"),
6776                          gsym->name());
6777               continue;
6778             }
6779
6780           if (!gsym->is_weak_undefined())
6781             {
6782               const Sized_symbol<32>* sym =
6783                 static_cast<const Sized_symbol<32>*>(gsym);
6784               value = sym->value();
6785             }
6786           else
6787               value = 0;
6788         }
6789
6790       unsigned got_offset = reloc.got_offset();
6791       gold_assert(got_offset < oview_size);
6792
6793       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6794       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6795       Valtype x;
6796       switch (reloc.r_type())
6797         {
6798         case elfcpp::R_ARM_TLS_DTPOFF32:
6799           x = value;
6800           break;
6801         case elfcpp::R_ARM_TLS_TPOFF32:
6802           x = value + aligned_tcb_size;
6803           break;
6804         default:
6805           gold_unreachable();
6806         }
6807       elfcpp::Swap<32, big_endian>::writeval(wv, x);
6808     }
6809
6810   of->write_output_view(offset, oview_size, oview);
6811 }
6812
6813 // A class to handle the PLT data.
6814
6815 template<bool big_endian>
6816 class Output_data_plt_arm : public Output_section_data
6817 {
6818  public:
6819   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6820     Reloc_section;
6821
6822   Output_data_plt_arm(Layout*, Output_data_space*);
6823
6824   // Add an entry to the PLT.
6825   void
6826   add_entry(Symbol* gsym);
6827
6828   // Return the .rel.plt section data.
6829   const Reloc_section*
6830   rel_plt() const
6831   { return this->rel_; }
6832
6833  protected:
6834   void
6835   do_adjust_output_section(Output_section* os);
6836
6837   // Write to a map file.
6838   void
6839   do_print_to_mapfile(Mapfile* mapfile) const
6840   { mapfile->print_output_data(this, _("** PLT")); }
6841
6842  private:
6843   // Template for the first PLT entry.
6844   static const uint32_t first_plt_entry[5];
6845
6846   // Template for subsequent PLT entries. 
6847   static const uint32_t plt_entry[3];
6848
6849   // Set the final size.
6850   void
6851   set_final_data_size()
6852   {
6853     this->set_data_size(sizeof(first_plt_entry)
6854                         + this->count_ * sizeof(plt_entry));
6855   }
6856
6857   // Write out the PLT data.
6858   void
6859   do_write(Output_file*);
6860
6861   // The reloc section.
6862   Reloc_section* rel_;
6863   // The .got.plt section.
6864   Output_data_space* got_plt_;
6865   // The number of PLT entries.
6866   unsigned int count_;
6867 };
6868
6869 // Create the PLT section.  The ordinary .got section is an argument,
6870 // since we need to refer to the start.  We also create our own .got
6871 // section just for PLT entries.
6872
6873 template<bool big_endian>
6874 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
6875                                                      Output_data_space* got_plt)
6876   : Output_section_data(4), got_plt_(got_plt), count_(0)
6877 {
6878   this->rel_ = new Reloc_section(false);
6879   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
6880                                   elfcpp::SHF_ALLOC, this->rel_, true, false,
6881                                   false, false);
6882 }
6883
6884 template<bool big_endian>
6885 void
6886 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
6887 {
6888   os->set_entsize(0);
6889 }
6890
6891 // Add an entry to the PLT.
6892
6893 template<bool big_endian>
6894 void
6895 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
6896 {
6897   gold_assert(!gsym->has_plt_offset());
6898
6899   // Note that when setting the PLT offset we skip the initial
6900   // reserved PLT entry.
6901   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
6902                        + sizeof(first_plt_entry));
6903
6904   ++this->count_;
6905
6906   section_offset_type got_offset = this->got_plt_->current_data_size();
6907
6908   // Every PLT entry needs a GOT entry which points back to the PLT
6909   // entry (this will be changed by the dynamic linker, normally
6910   // lazily when the function is called).
6911   this->got_plt_->set_current_data_size(got_offset + 4);
6912
6913   // Every PLT entry needs a reloc.
6914   gsym->set_needs_dynsym_entry();
6915   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
6916                          got_offset);
6917
6918   // Note that we don't need to save the symbol.  The contents of the
6919   // PLT are independent of which symbols are used.  The symbols only
6920   // appear in the relocations.
6921 }
6922
6923 // ARM PLTs.
6924 // FIXME:  This is not very flexible.  Right now this has only been tested
6925 // on armv5te.  If we are to support additional architecture features like
6926 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6927
6928 // The first entry in the PLT.
6929 template<bool big_endian>
6930 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
6931 {
6932   0xe52de004,   // str   lr, [sp, #-4]!
6933   0xe59fe004,   // ldr   lr, [pc, #4]
6934   0xe08fe00e,   // add   lr, pc, lr 
6935   0xe5bef008,   // ldr   pc, [lr, #8]!
6936   0x00000000,   // &GOT[0] - .
6937 };
6938
6939 // Subsequent entries in the PLT.
6940
6941 template<bool big_endian>
6942 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
6943 {
6944   0xe28fc600,   // add   ip, pc, #0xNN00000
6945   0xe28cca00,   // add   ip, ip, #0xNN000
6946   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
6947 };
6948
6949 // Write out the PLT.  This uses the hand-coded instructions above,
6950 // and adjusts them as needed.  This is all specified by the arm ELF
6951 // Processor Supplement.
6952
6953 template<bool big_endian>
6954 void
6955 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
6956 {
6957   const off_t offset = this->offset();
6958   const section_size_type oview_size =
6959     convert_to_section_size_type(this->data_size());
6960   unsigned char* const oview = of->get_output_view(offset, oview_size);
6961
6962   const off_t got_file_offset = this->got_plt_->offset();
6963   const section_size_type got_size =
6964     convert_to_section_size_type(this->got_plt_->data_size());
6965   unsigned char* const got_view = of->get_output_view(got_file_offset,
6966                                                       got_size);
6967   unsigned char* pov = oview;
6968
6969   Arm_address plt_address = this->address();
6970   Arm_address got_address = this->got_plt_->address();
6971
6972   // Write first PLT entry.  All but the last word are constants.
6973   const size_t num_first_plt_words = (sizeof(first_plt_entry)
6974                                       / sizeof(plt_entry[0]));
6975   for (size_t i = 0; i < num_first_plt_words - 1; i++)
6976     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
6977   // Last word in first PLT entry is &GOT[0] - .
6978   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
6979                                          got_address - (plt_address + 16));
6980   pov += sizeof(first_plt_entry);
6981
6982   unsigned char* got_pov = got_view;
6983
6984   memset(got_pov, 0, 12);
6985   got_pov += 12;
6986
6987   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
6988   unsigned int plt_offset = sizeof(first_plt_entry);
6989   unsigned int plt_rel_offset = 0;
6990   unsigned int got_offset = 12;
6991   const unsigned int count = this->count_;
6992   for (unsigned int i = 0;
6993        i < count;
6994        ++i,
6995          pov += sizeof(plt_entry),
6996          got_pov += 4,
6997          plt_offset += sizeof(plt_entry),
6998          plt_rel_offset += rel_size,
6999          got_offset += 4)
7000     {
7001       // Set and adjust the PLT entry itself.
7002       int32_t offset = ((got_address + got_offset)
7003                          - (plt_address + plt_offset + 8));
7004
7005       gold_assert(offset >= 0 && offset < 0x0fffffff);
7006       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7007       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7008       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7009       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7010       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7011       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7012
7013       // Set the entry in the GOT.
7014       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7015     }
7016
7017   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7018   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7019
7020   of->write_output_view(offset, oview_size, oview);
7021   of->write_output_view(got_file_offset, got_size, got_view);
7022 }
7023
7024 // Create a PLT entry for a global symbol.
7025
7026 template<bool big_endian>
7027 void
7028 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7029                                        Symbol* gsym)
7030 {
7031   if (gsym->has_plt_offset())
7032     return;
7033
7034   if (this->plt_ == NULL)
7035     {
7036       // Create the GOT sections first.
7037       this->got_section(symtab, layout);
7038
7039       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7040       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7041                                       (elfcpp::SHF_ALLOC
7042                                        | elfcpp::SHF_EXECINSTR),
7043                                       this->plt_, false, false, false, false);
7044     }
7045   this->plt_->add_entry(gsym);
7046 }
7047
7048 // Get the section to use for TLS_DESC relocations.
7049
7050 template<bool big_endian>
7051 typename Target_arm<big_endian>::Reloc_section*
7052 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7053 {
7054   return this->plt_section()->rel_tls_desc(layout);
7055 }
7056
7057 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7058
7059 template<bool big_endian>
7060 void
7061 Target_arm<big_endian>::define_tls_base_symbol(
7062     Symbol_table* symtab,
7063     Layout* layout)
7064 {
7065   if (this->tls_base_symbol_defined_)
7066     return;
7067
7068   Output_segment* tls_segment = layout->tls_segment();
7069   if (tls_segment != NULL)
7070     {
7071       bool is_exec = parameters->options().output_is_executable();
7072       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7073                                        Symbol_table::PREDEFINED,
7074                                        tls_segment, 0, 0,
7075                                        elfcpp::STT_TLS,
7076                                        elfcpp::STB_LOCAL,
7077                                        elfcpp::STV_HIDDEN, 0,
7078                                        (is_exec
7079                                         ? Symbol::SEGMENT_END
7080                                         : Symbol::SEGMENT_START),
7081                                        true);
7082     }
7083   this->tls_base_symbol_defined_ = true;
7084 }
7085
7086 // Create a GOT entry for the TLS module index.
7087
7088 template<bool big_endian>
7089 unsigned int
7090 Target_arm<big_endian>::got_mod_index_entry(
7091     Symbol_table* symtab,
7092     Layout* layout,
7093     Sized_relobj<32, big_endian>* object)
7094 {
7095   if (this->got_mod_index_offset_ == -1U)
7096     {
7097       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7098       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7099       unsigned int got_offset;
7100       if (!parameters->doing_static_link())
7101         {
7102           got_offset = got->add_constant(0);
7103           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7104           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7105                              got_offset);
7106         }
7107       else
7108         {
7109           // We are doing a static link.  Just mark it as belong to module 1,
7110           // the executable.
7111           got_offset = got->add_constant(1);
7112         }
7113
7114       got->add_constant(0);
7115       this->got_mod_index_offset_ = got_offset;
7116     }
7117   return this->got_mod_index_offset_;
7118 }
7119
7120 // Optimize the TLS relocation type based on what we know about the
7121 // symbol.  IS_FINAL is true if the final address of this symbol is
7122 // known at link time.
7123
7124 template<bool big_endian>
7125 tls::Tls_optimization
7126 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7127 {
7128   // FIXME: Currently we do not do any TLS optimization.
7129   return tls::TLSOPT_NONE;
7130 }
7131
7132 // Report an unsupported relocation against a local symbol.
7133
7134 template<bool big_endian>
7135 void
7136 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7137     Sized_relobj<32, big_endian>* object,
7138     unsigned int r_type)
7139 {
7140   gold_error(_("%s: unsupported reloc %u against local symbol"),
7141              object->name().c_str(), r_type);
7142 }
7143
7144 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7145 // dynamic linker does not support it, issue an error.  The GNU linker
7146 // only issues a non-PIC error for an allocated read-only section.
7147 // Here we know the section is allocated, but we don't know that it is
7148 // read-only.  But we check for all the relocation types which the
7149 // glibc dynamic linker supports, so it seems appropriate to issue an
7150 // error even if the section is not read-only.
7151
7152 template<bool big_endian>
7153 void
7154 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7155                                             unsigned int r_type)
7156 {
7157   switch (r_type)
7158     {
7159     // These are the relocation types supported by glibc for ARM.
7160     case elfcpp::R_ARM_RELATIVE:
7161     case elfcpp::R_ARM_COPY:
7162     case elfcpp::R_ARM_GLOB_DAT:
7163     case elfcpp::R_ARM_JUMP_SLOT:
7164     case elfcpp::R_ARM_ABS32:
7165     case elfcpp::R_ARM_ABS32_NOI:
7166     case elfcpp::R_ARM_PC24:
7167     // FIXME: The following 3 types are not supported by Android's dynamic
7168     // linker.
7169     case elfcpp::R_ARM_TLS_DTPMOD32:
7170     case elfcpp::R_ARM_TLS_DTPOFF32:
7171     case elfcpp::R_ARM_TLS_TPOFF32:
7172       return;
7173
7174     default:
7175       {
7176         // This prevents us from issuing more than one error per reloc
7177         // section.  But we can still wind up issuing more than one
7178         // error per object file.
7179         if (this->issued_non_pic_error_)
7180           return;
7181         const Arm_reloc_property* reloc_property =
7182           arm_reloc_property_table->get_reloc_property(r_type);
7183         gold_assert(reloc_property != NULL);
7184         object->error(_("requires unsupported dynamic reloc %s; "
7185                       "recompile with -fPIC"),
7186                       reloc_property->name().c_str());
7187         this->issued_non_pic_error_ = true;
7188         return;
7189       }
7190
7191     case elfcpp::R_ARM_NONE:
7192       gold_unreachable();
7193     }
7194 }
7195
7196 // Scan a relocation for a local symbol.
7197 // FIXME: This only handles a subset of relocation types used by Android
7198 // on ARM v5te devices.
7199
7200 template<bool big_endian>
7201 inline void
7202 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7203                                     Layout* layout,
7204                                     Target_arm* target,
7205                                     Sized_relobj<32, big_endian>* object,
7206                                     unsigned int data_shndx,
7207                                     Output_section* output_section,
7208                                     const elfcpp::Rel<32, big_endian>& reloc,
7209                                     unsigned int r_type,
7210                                     const elfcpp::Sym<32, big_endian>& lsym)
7211 {
7212   r_type = get_real_reloc_type(r_type);
7213   switch (r_type)
7214     {
7215     case elfcpp::R_ARM_NONE:
7216     case elfcpp::R_ARM_V4BX:
7217     case elfcpp::R_ARM_GNU_VTENTRY:
7218     case elfcpp::R_ARM_GNU_VTINHERIT:
7219       break;
7220
7221     case elfcpp::R_ARM_ABS32:
7222     case elfcpp::R_ARM_ABS32_NOI:
7223       // If building a shared library (or a position-independent
7224       // executable), we need to create a dynamic relocation for
7225       // this location. The relocation applied at link time will
7226       // apply the link-time value, so we flag the location with
7227       // an R_ARM_RELATIVE relocation so the dynamic loader can
7228       // relocate it easily.
7229       if (parameters->options().output_is_position_independent())
7230         {
7231           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7232           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7233           // If we are to add more other reloc types than R_ARM_ABS32,
7234           // we need to add check_non_pic(object, r_type) here.
7235           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7236                                       output_section, data_shndx,
7237                                       reloc.get_r_offset());
7238         }
7239       break;
7240
7241     case elfcpp::R_ARM_ABS16:
7242     case elfcpp::R_ARM_ABS12:
7243     case elfcpp::R_ARM_THM_ABS5:
7244     case elfcpp::R_ARM_ABS8:
7245     case elfcpp::R_ARM_BASE_ABS:
7246     case elfcpp::R_ARM_MOVW_ABS_NC:
7247     case elfcpp::R_ARM_MOVT_ABS:
7248     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7249     case elfcpp::R_ARM_THM_MOVT_ABS:
7250       // If building a shared library (or a position-independent
7251       // executable), we need to create a dynamic relocation for
7252       // this location. Because the addend needs to remain in the
7253       // data section, we need to be careful not to apply this
7254       // relocation statically.
7255       if (parameters->options().output_is_position_independent())
7256         {
7257           check_non_pic(object, r_type);
7258           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7259           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7260           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7261             rel_dyn->add_local(object, r_sym, r_type, output_section,
7262                                data_shndx, reloc.get_r_offset());
7263           else
7264             {
7265               gold_assert(lsym.get_st_value() == 0);
7266               unsigned int shndx = lsym.get_st_shndx();
7267               bool is_ordinary;
7268               shndx = object->adjust_sym_shndx(r_sym, shndx,
7269                                                &is_ordinary);
7270               if (!is_ordinary)
7271                 object->error(_("section symbol %u has bad shndx %u"),
7272                               r_sym, shndx);
7273               else
7274                 rel_dyn->add_local_section(object, shndx,
7275                                            r_type, output_section,
7276                                            data_shndx, reloc.get_r_offset());
7277             }
7278         }
7279       break;
7280
7281     case elfcpp::R_ARM_PC24:
7282     case elfcpp::R_ARM_REL32:
7283     case elfcpp::R_ARM_LDR_PC_G0:
7284     case elfcpp::R_ARM_SBREL32:
7285     case elfcpp::R_ARM_THM_CALL:
7286     case elfcpp::R_ARM_THM_PC8:
7287     case elfcpp::R_ARM_BASE_PREL:
7288     case elfcpp::R_ARM_PLT32:
7289     case elfcpp::R_ARM_CALL:
7290     case elfcpp::R_ARM_JUMP24:
7291     case elfcpp::R_ARM_THM_JUMP24:
7292     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7293     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7294     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7295     case elfcpp::R_ARM_SBREL31:
7296     case elfcpp::R_ARM_PREL31:
7297     case elfcpp::R_ARM_MOVW_PREL_NC:
7298     case elfcpp::R_ARM_MOVT_PREL:
7299     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7300     case elfcpp::R_ARM_THM_MOVT_PREL:
7301     case elfcpp::R_ARM_THM_JUMP19:
7302     case elfcpp::R_ARM_THM_JUMP6:
7303     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7304     case elfcpp::R_ARM_THM_PC12:
7305     case elfcpp::R_ARM_REL32_NOI:
7306     case elfcpp::R_ARM_ALU_PC_G0_NC:
7307     case elfcpp::R_ARM_ALU_PC_G0:
7308     case elfcpp::R_ARM_ALU_PC_G1_NC:
7309     case elfcpp::R_ARM_ALU_PC_G1:
7310     case elfcpp::R_ARM_ALU_PC_G2:
7311     case elfcpp::R_ARM_LDR_PC_G1:
7312     case elfcpp::R_ARM_LDR_PC_G2:
7313     case elfcpp::R_ARM_LDRS_PC_G0:
7314     case elfcpp::R_ARM_LDRS_PC_G1:
7315     case elfcpp::R_ARM_LDRS_PC_G2:
7316     case elfcpp::R_ARM_LDC_PC_G0:
7317     case elfcpp::R_ARM_LDC_PC_G1:
7318     case elfcpp::R_ARM_LDC_PC_G2:
7319     case elfcpp::R_ARM_ALU_SB_G0_NC:
7320     case elfcpp::R_ARM_ALU_SB_G0:
7321     case elfcpp::R_ARM_ALU_SB_G1_NC:
7322     case elfcpp::R_ARM_ALU_SB_G1:
7323     case elfcpp::R_ARM_ALU_SB_G2:
7324     case elfcpp::R_ARM_LDR_SB_G0:
7325     case elfcpp::R_ARM_LDR_SB_G1:
7326     case elfcpp::R_ARM_LDR_SB_G2:
7327     case elfcpp::R_ARM_LDRS_SB_G0:
7328     case elfcpp::R_ARM_LDRS_SB_G1:
7329     case elfcpp::R_ARM_LDRS_SB_G2:
7330     case elfcpp::R_ARM_LDC_SB_G0:
7331     case elfcpp::R_ARM_LDC_SB_G1:
7332     case elfcpp::R_ARM_LDC_SB_G2:
7333     case elfcpp::R_ARM_MOVW_BREL_NC:
7334     case elfcpp::R_ARM_MOVT_BREL:
7335     case elfcpp::R_ARM_MOVW_BREL:
7336     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7337     case elfcpp::R_ARM_THM_MOVT_BREL:
7338     case elfcpp::R_ARM_THM_MOVW_BREL:
7339     case elfcpp::R_ARM_THM_JUMP11:
7340     case elfcpp::R_ARM_THM_JUMP8:
7341       // We don't need to do anything for a relative addressing relocation
7342       // against a local symbol if it does not reference the GOT.
7343       break;
7344
7345     case elfcpp::R_ARM_GOTOFF32:
7346     case elfcpp::R_ARM_GOTOFF12:
7347       // We need a GOT section:
7348       target->got_section(symtab, layout);
7349       break;
7350
7351     case elfcpp::R_ARM_GOT_BREL:
7352     case elfcpp::R_ARM_GOT_PREL:
7353       {
7354         // The symbol requires a GOT entry.
7355         Arm_output_data_got<big_endian>* got =
7356           target->got_section(symtab, layout);
7357         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7358         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7359           {
7360             // If we are generating a shared object, we need to add a
7361             // dynamic RELATIVE relocation for this symbol's GOT entry.
7362             if (parameters->options().output_is_position_independent())
7363               {
7364                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7365                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7366                 rel_dyn->add_local_relative(
7367                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7368                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7369               }
7370           }
7371       }
7372       break;
7373
7374     case elfcpp::R_ARM_TARGET1:
7375     case elfcpp::R_ARM_TARGET2:
7376       // This should have been mapped to another type already.
7377       // Fall through.
7378     case elfcpp::R_ARM_COPY:
7379     case elfcpp::R_ARM_GLOB_DAT:
7380     case elfcpp::R_ARM_JUMP_SLOT:
7381     case elfcpp::R_ARM_RELATIVE:
7382       // These are relocations which should only be seen by the
7383       // dynamic linker, and should never be seen here.
7384       gold_error(_("%s: unexpected reloc %u in object file"),
7385                  object->name().c_str(), r_type);
7386       break;
7387
7388
7389       // These are initial TLS relocs, which are expected when
7390       // linking.
7391     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7392     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7393     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7394     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7395     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7396       {
7397         bool output_is_shared = parameters->options().shared();
7398         const tls::Tls_optimization optimized_type
7399             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7400                                                          r_type);
7401         switch (r_type)
7402           {
7403           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7404             if (optimized_type == tls::TLSOPT_NONE)
7405               {
7406                 // Create a pair of GOT entries for the module index and
7407                 // dtv-relative offset.
7408                 Arm_output_data_got<big_endian>* got
7409                     = target->got_section(symtab, layout);
7410                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7411                 unsigned int shndx = lsym.get_st_shndx();
7412                 bool is_ordinary;
7413                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7414                 if (!is_ordinary)
7415                   {
7416                     object->error(_("local symbol %u has bad shndx %u"),
7417                                   r_sym, shndx);
7418                     break;
7419                   }
7420
7421                 if (!parameters->doing_static_link())
7422                   got->add_local_pair_with_rel(object, r_sym, shndx,
7423                                                GOT_TYPE_TLS_PAIR,
7424                                                target->rel_dyn_section(layout),
7425                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7426                 else
7427                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7428                                                       object, r_sym);
7429               }
7430             else
7431               // FIXME: TLS optimization not supported yet.
7432               gold_unreachable();
7433             break;
7434
7435           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7436             if (optimized_type == tls::TLSOPT_NONE)
7437               {
7438                 // Create a GOT entry for the module index.
7439                 target->got_mod_index_entry(symtab, layout, object);
7440               }
7441             else
7442               // FIXME: TLS optimization not supported yet.
7443               gold_unreachable();
7444             break;
7445
7446           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7447             break;
7448
7449           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7450             layout->set_has_static_tls();
7451             if (optimized_type == tls::TLSOPT_NONE)
7452               {
7453                 // Create a GOT entry for the tp-relative offset.
7454                 Arm_output_data_got<big_endian>* got
7455                   = target->got_section(symtab, layout);
7456                 unsigned int r_sym =
7457                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
7458                 if (!parameters->doing_static_link())
7459                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7460                                             target->rel_dyn_section(layout),
7461                                             elfcpp::R_ARM_TLS_TPOFF32);
7462                 else if (!object->local_has_got_offset(r_sym,
7463                                                        GOT_TYPE_TLS_OFFSET))
7464                   {
7465                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7466                     unsigned int got_offset =
7467                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7468                     got->add_static_reloc(got_offset,
7469                                           elfcpp::R_ARM_TLS_TPOFF32, object,
7470                                           r_sym);
7471                   }
7472               }
7473             else
7474               // FIXME: TLS optimization not supported yet.
7475               gold_unreachable();
7476             break;
7477
7478           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
7479             layout->set_has_static_tls();
7480             if (output_is_shared)
7481               {
7482                 // We need to create a dynamic relocation.
7483                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7484                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7485                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7486                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7487                                    output_section, data_shndx,
7488                                    reloc.get_r_offset());
7489               }
7490             break;
7491
7492           default:
7493             gold_unreachable();
7494           }
7495       }
7496       break;
7497
7498     default:
7499       unsupported_reloc_local(object, r_type);
7500       break;
7501     }
7502 }
7503
7504 // Report an unsupported relocation against a global symbol.
7505
7506 template<bool big_endian>
7507 void
7508 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7509     Sized_relobj<32, big_endian>* object,
7510     unsigned int r_type,
7511     Symbol* gsym)
7512 {
7513   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7514              object->name().c_str(), r_type, gsym->demangled_name().c_str());
7515 }
7516
7517 // Scan a relocation for a global symbol.
7518
7519 template<bool big_endian>
7520 inline void
7521 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7522                                      Layout* layout,
7523                                      Target_arm* target,
7524                                      Sized_relobj<32, big_endian>* object,
7525                                      unsigned int data_shndx,
7526                                      Output_section* output_section,
7527                                      const elfcpp::Rel<32, big_endian>& reloc,
7528                                      unsigned int r_type,
7529                                      Symbol* gsym)
7530 {
7531   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7532   // section.  We check here to avoid creating a dynamic reloc against
7533   // _GLOBAL_OFFSET_TABLE_.
7534   if (!target->has_got_section()
7535       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7536     target->got_section(symtab, layout);
7537
7538   r_type = get_real_reloc_type(r_type);
7539   switch (r_type)
7540     {
7541     case elfcpp::R_ARM_NONE:
7542     case elfcpp::R_ARM_V4BX:
7543     case elfcpp::R_ARM_GNU_VTENTRY:
7544     case elfcpp::R_ARM_GNU_VTINHERIT:
7545       break;
7546
7547     case elfcpp::R_ARM_ABS32:
7548     case elfcpp::R_ARM_ABS16:
7549     case elfcpp::R_ARM_ABS12:
7550     case elfcpp::R_ARM_THM_ABS5:
7551     case elfcpp::R_ARM_ABS8:
7552     case elfcpp::R_ARM_BASE_ABS:
7553     case elfcpp::R_ARM_MOVW_ABS_NC:
7554     case elfcpp::R_ARM_MOVT_ABS:
7555     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7556     case elfcpp::R_ARM_THM_MOVT_ABS:
7557     case elfcpp::R_ARM_ABS32_NOI:
7558       // Absolute addressing relocations.
7559       {
7560         // Make a PLT entry if necessary.
7561         if (this->symbol_needs_plt_entry(gsym))
7562           {
7563             target->make_plt_entry(symtab, layout, gsym);
7564             // Since this is not a PC-relative relocation, we may be
7565             // taking the address of a function. In that case we need to
7566             // set the entry in the dynamic symbol table to the address of
7567             // the PLT entry.
7568             if (gsym->is_from_dynobj() && !parameters->options().shared())
7569               gsym->set_needs_dynsym_value();
7570           }
7571         // Make a dynamic relocation if necessary.
7572         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7573           {
7574             if (gsym->may_need_copy_reloc())
7575               {
7576                 target->copy_reloc(symtab, layout, object,
7577                                    data_shndx, output_section, gsym, reloc);
7578               }
7579             else if ((r_type == elfcpp::R_ARM_ABS32
7580                       || r_type == elfcpp::R_ARM_ABS32_NOI)
7581                      && gsym->can_use_relative_reloc(false))
7582               {
7583                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7584                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7585                                              output_section, object,
7586                                              data_shndx, reloc.get_r_offset());
7587               }
7588             else
7589               {
7590                 check_non_pic(object, r_type);
7591                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7592                 rel_dyn->add_global(gsym, r_type, output_section, object,
7593                                     data_shndx, reloc.get_r_offset());
7594               }
7595           }
7596       }
7597       break;
7598
7599     case elfcpp::R_ARM_GOTOFF32:
7600     case elfcpp::R_ARM_GOTOFF12:
7601       // We need a GOT section.
7602       target->got_section(symtab, layout);
7603       break;
7604       
7605     case elfcpp::R_ARM_REL32:
7606     case elfcpp::R_ARM_LDR_PC_G0:
7607     case elfcpp::R_ARM_SBREL32:
7608     case elfcpp::R_ARM_THM_PC8:
7609     case elfcpp::R_ARM_BASE_PREL:
7610     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7611     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7612     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7613     case elfcpp::R_ARM_MOVW_PREL_NC:
7614     case elfcpp::R_ARM_MOVT_PREL:
7615     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7616     case elfcpp::R_ARM_THM_MOVT_PREL:
7617     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7618     case elfcpp::R_ARM_THM_PC12:
7619     case elfcpp::R_ARM_REL32_NOI:
7620     case elfcpp::R_ARM_ALU_PC_G0_NC:
7621     case elfcpp::R_ARM_ALU_PC_G0:
7622     case elfcpp::R_ARM_ALU_PC_G1_NC:
7623     case elfcpp::R_ARM_ALU_PC_G1:
7624     case elfcpp::R_ARM_ALU_PC_G2:
7625     case elfcpp::R_ARM_LDR_PC_G1:
7626     case elfcpp::R_ARM_LDR_PC_G2:
7627     case elfcpp::R_ARM_LDRS_PC_G0:
7628     case elfcpp::R_ARM_LDRS_PC_G1:
7629     case elfcpp::R_ARM_LDRS_PC_G2:
7630     case elfcpp::R_ARM_LDC_PC_G0:
7631     case elfcpp::R_ARM_LDC_PC_G1:
7632     case elfcpp::R_ARM_LDC_PC_G2:
7633     case elfcpp::R_ARM_ALU_SB_G0_NC:
7634     case elfcpp::R_ARM_ALU_SB_G0:
7635     case elfcpp::R_ARM_ALU_SB_G1_NC:
7636     case elfcpp::R_ARM_ALU_SB_G1:
7637     case elfcpp::R_ARM_ALU_SB_G2:
7638     case elfcpp::R_ARM_LDR_SB_G0:
7639     case elfcpp::R_ARM_LDR_SB_G1:
7640     case elfcpp::R_ARM_LDR_SB_G2:
7641     case elfcpp::R_ARM_LDRS_SB_G0:
7642     case elfcpp::R_ARM_LDRS_SB_G1:
7643     case elfcpp::R_ARM_LDRS_SB_G2:
7644     case elfcpp::R_ARM_LDC_SB_G0:
7645     case elfcpp::R_ARM_LDC_SB_G1:
7646     case elfcpp::R_ARM_LDC_SB_G2:
7647     case elfcpp::R_ARM_MOVW_BREL_NC:
7648     case elfcpp::R_ARM_MOVT_BREL:
7649     case elfcpp::R_ARM_MOVW_BREL:
7650     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7651     case elfcpp::R_ARM_THM_MOVT_BREL:
7652     case elfcpp::R_ARM_THM_MOVW_BREL:
7653       // Relative addressing relocations.
7654       {
7655         // Make a dynamic relocation if necessary.
7656         int flags = Symbol::NON_PIC_REF;
7657         if (gsym->needs_dynamic_reloc(flags))
7658           {
7659             if (target->may_need_copy_reloc(gsym))
7660               {
7661                 target->copy_reloc(symtab, layout, object,
7662                                    data_shndx, output_section, gsym, reloc);
7663               }
7664             else
7665               {
7666                 check_non_pic(object, r_type);
7667                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7668                 rel_dyn->add_global(gsym, r_type, output_section, object,
7669                                     data_shndx, reloc.get_r_offset());
7670               }
7671           }
7672       }
7673       break;
7674
7675     case elfcpp::R_ARM_PC24:
7676     case elfcpp::R_ARM_THM_CALL:
7677     case elfcpp::R_ARM_PLT32:
7678     case elfcpp::R_ARM_CALL:
7679     case elfcpp::R_ARM_JUMP24:
7680     case elfcpp::R_ARM_THM_JUMP24:
7681     case elfcpp::R_ARM_SBREL31:
7682     case elfcpp::R_ARM_PREL31:
7683     case elfcpp::R_ARM_THM_JUMP19:
7684     case elfcpp::R_ARM_THM_JUMP6:
7685     case elfcpp::R_ARM_THM_JUMP11:
7686     case elfcpp::R_ARM_THM_JUMP8:
7687       // All the relocation above are branches except for the PREL31 ones.
7688       // A PREL31 relocation can point to a personality function in a shared
7689       // library.  In that case we want to use a PLT because we want to
7690       // call the personality routine and the dyanmic linkers we care about
7691       // do not support dynamic PREL31 relocations. An REL31 relocation may
7692       // point to a function whose unwinding behaviour is being described but
7693       // we will not mistakenly generate a PLT for that because we should use
7694       // a local section symbol.
7695
7696       // If the symbol is fully resolved, this is just a relative
7697       // local reloc.  Otherwise we need a PLT entry.
7698       if (gsym->final_value_is_known())
7699         break;
7700       // If building a shared library, we can also skip the PLT entry
7701       // if the symbol is defined in the output file and is protected
7702       // or hidden.
7703       if (gsym->is_defined()
7704           && !gsym->is_from_dynobj()
7705           && !gsym->is_preemptible())
7706         break;
7707       target->make_plt_entry(symtab, layout, gsym);
7708       break;
7709
7710     case elfcpp::R_ARM_GOT_BREL:
7711     case elfcpp::R_ARM_GOT_ABS:
7712     case elfcpp::R_ARM_GOT_PREL:
7713       {
7714         // The symbol requires a GOT entry.
7715         Arm_output_data_got<big_endian>* got =
7716           target->got_section(symtab, layout);
7717         if (gsym->final_value_is_known())
7718           got->add_global(gsym, GOT_TYPE_STANDARD);
7719         else
7720           {
7721             // If this symbol is not fully resolved, we need to add a
7722             // GOT entry with a dynamic relocation.
7723             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7724             if (gsym->is_from_dynobj()
7725                 || gsym->is_undefined()
7726                 || gsym->is_preemptible())
7727               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7728                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7729             else
7730               {
7731                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7732                   rel_dyn->add_global_relative(
7733                       gsym, elfcpp::R_ARM_RELATIVE, got,
7734                       gsym->got_offset(GOT_TYPE_STANDARD));
7735               }
7736           }
7737       }
7738       break;
7739
7740     case elfcpp::R_ARM_TARGET1:
7741     case elfcpp::R_ARM_TARGET2:
7742       // These should have been mapped to other types already.
7743       // Fall through.
7744     case elfcpp::R_ARM_COPY:
7745     case elfcpp::R_ARM_GLOB_DAT:
7746     case elfcpp::R_ARM_JUMP_SLOT:
7747     case elfcpp::R_ARM_RELATIVE:
7748       // These are relocations which should only be seen by the
7749       // dynamic linker, and should never be seen here.
7750       gold_error(_("%s: unexpected reloc %u in object file"),
7751                  object->name().c_str(), r_type);
7752       break;
7753
7754       // These are initial tls relocs, which are expected when
7755       // linking.
7756     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7757     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7758     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7759     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7760     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7761       {
7762         const bool is_final = gsym->final_value_is_known();
7763         const tls::Tls_optimization optimized_type
7764             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7765         switch (r_type)
7766           {
7767           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7768             if (optimized_type == tls::TLSOPT_NONE)
7769               {
7770                 // Create a pair of GOT entries for the module index and
7771                 // dtv-relative offset.
7772                 Arm_output_data_got<big_endian>* got
7773                     = target->got_section(symtab, layout);
7774                 if (!parameters->doing_static_link())
7775                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7776                                                 target->rel_dyn_section(layout),
7777                                                 elfcpp::R_ARM_TLS_DTPMOD32,
7778                                                 elfcpp::R_ARM_TLS_DTPOFF32);
7779                 else
7780                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
7781               }
7782             else
7783               // FIXME: TLS optimization not supported yet.
7784               gold_unreachable();
7785             break;
7786
7787           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7788             if (optimized_type == tls::TLSOPT_NONE)
7789               {
7790                 // Create a GOT entry for the module index.
7791                 target->got_mod_index_entry(symtab, layout, object);
7792               }
7793             else
7794               // FIXME: TLS optimization not supported yet.
7795               gold_unreachable();
7796             break;
7797
7798           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7799             break;
7800
7801           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7802             layout->set_has_static_tls();
7803             if (optimized_type == tls::TLSOPT_NONE)
7804               {
7805                 // Create a GOT entry for the tp-relative offset.
7806                 Arm_output_data_got<big_endian>* got
7807                   = target->got_section(symtab, layout);
7808                 if (!parameters->doing_static_link())
7809                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7810                                            target->rel_dyn_section(layout),
7811                                            elfcpp::R_ARM_TLS_TPOFF32);
7812                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7813                   {
7814                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7815                     unsigned int got_offset =
7816                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7817                     got->add_static_reloc(got_offset,
7818                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
7819                   }
7820               }
7821             else
7822               // FIXME: TLS optimization not supported yet.
7823               gold_unreachable();
7824             break;
7825
7826           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
7827             layout->set_has_static_tls();
7828             if (parameters->options().shared())
7829               {
7830                 // We need to create a dynamic relocation.
7831                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7832                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
7833                                     output_section, object,
7834                                     data_shndx, reloc.get_r_offset());
7835               }
7836             break;
7837
7838           default:
7839             gold_unreachable();
7840           }
7841       }
7842       break;
7843
7844     default:
7845       unsupported_reloc_global(object, r_type, gsym);
7846       break;
7847     }
7848 }
7849
7850 // Process relocations for gc.
7851
7852 template<bool big_endian>
7853 void
7854 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
7855                                           Layout* layout,
7856                                           Sized_relobj<32, big_endian>* object,
7857                                           unsigned int data_shndx,
7858                                           unsigned int,
7859                                           const unsigned char* prelocs,
7860                                           size_t reloc_count,
7861                                           Output_section* output_section,
7862                                           bool needs_special_offset_handling,
7863                                           size_t local_symbol_count,
7864                                           const unsigned char* plocal_symbols)
7865 {
7866   typedef Target_arm<big_endian> Arm;
7867   typedef typename Target_arm<big_endian>::Scan Scan;
7868
7869   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
7870     symtab,
7871     layout,
7872     this,
7873     object,
7874     data_shndx,
7875     prelocs,
7876     reloc_count,
7877     output_section,
7878     needs_special_offset_handling,
7879     local_symbol_count,
7880     plocal_symbols);
7881 }
7882
7883 // Scan relocations for a section.
7884
7885 template<bool big_endian>
7886 void
7887 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
7888                                     Layout* layout,
7889                                     Sized_relobj<32, big_endian>* object,
7890                                     unsigned int data_shndx,
7891                                     unsigned int sh_type,
7892                                     const unsigned char* prelocs,
7893                                     size_t reloc_count,
7894                                     Output_section* output_section,
7895                                     bool needs_special_offset_handling,
7896                                     size_t local_symbol_count,
7897                                     const unsigned char* plocal_symbols)
7898 {
7899   typedef typename Target_arm<big_endian>::Scan Scan;
7900   if (sh_type == elfcpp::SHT_RELA)
7901     {
7902       gold_error(_("%s: unsupported RELA reloc section"),
7903                  object->name().c_str());
7904       return;
7905     }
7906
7907   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
7908     symtab,
7909     layout,
7910     this,
7911     object,
7912     data_shndx,
7913     prelocs,
7914     reloc_count,
7915     output_section,
7916     needs_special_offset_handling,
7917     local_symbol_count,
7918     plocal_symbols);
7919 }
7920
7921 // Finalize the sections.
7922
7923 template<bool big_endian>
7924 void
7925 Target_arm<big_endian>::do_finalize_sections(
7926     Layout* layout,
7927     const Input_objects* input_objects,
7928     Symbol_table* symtab)
7929 {
7930   // Create an empty uninitialized attribute section if we still don't have it
7931   // at this moment.
7932   if (this->attributes_section_data_ == NULL)
7933     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
7934
7935   // Merge processor-specific flags.
7936   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7937        p != input_objects->relobj_end();
7938        ++p)
7939     {
7940       // If this input file is a binary file, it has no processor
7941       // specific flags and attributes section.
7942       Input_file::Format format = (*p)->input_file()->format();
7943       if (format != Input_file::FORMAT_ELF)
7944         {
7945           gold_assert(format == Input_file::FORMAT_BINARY);
7946           continue;
7947         }
7948
7949       Arm_relobj<big_endian>* arm_relobj =
7950         Arm_relobj<big_endian>::as_arm_relobj(*p);
7951       this->merge_processor_specific_flags(
7952           arm_relobj->name(),
7953           arm_relobj->processor_specific_flags());
7954       this->merge_object_attributes(arm_relobj->name().c_str(),
7955                                     arm_relobj->attributes_section_data());
7956
7957     } 
7958
7959   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
7960        p != input_objects->dynobj_end();
7961        ++p)
7962     {
7963       Arm_dynobj<big_endian>* arm_dynobj =
7964         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
7965       this->merge_processor_specific_flags(
7966           arm_dynobj->name(),
7967           arm_dynobj->processor_specific_flags());
7968       this->merge_object_attributes(arm_dynobj->name().c_str(),
7969                                     arm_dynobj->attributes_section_data());
7970     }
7971
7972   // Check BLX use.
7973   const Object_attribute* cpu_arch_attr =
7974     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
7975   if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
7976     this->set_may_use_blx(true);
7977  
7978   // Check if we need to use Cortex-A8 workaround.
7979   if (parameters->options().user_set_fix_cortex_a8())
7980     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
7981   else
7982     {
7983       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
7984       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
7985       // profile.  
7986       const Object_attribute* cpu_arch_profile_attr =
7987         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
7988       this->fix_cortex_a8_ =
7989         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
7990          && (cpu_arch_profile_attr->int_value() == 'A'
7991              || cpu_arch_profile_attr->int_value() == 0));
7992     }
7993   
7994   // Check if we can use V4BX interworking.
7995   // The V4BX interworking stub contains BX instruction,
7996   // which is not specified for some profiles.
7997   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
7998       && !this->may_use_blx())
7999     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8000                  "the target profile does not support BX instruction"));
8001
8002   // Fill in some more dynamic tags.
8003   const Reloc_section* rel_plt = (this->plt_ == NULL
8004                                   ? NULL
8005                                   : this->plt_->rel_plt());
8006   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8007                                   this->rel_dyn_, true, false);
8008
8009   // Emit any relocs we saved in an attempt to avoid generating COPY
8010   // relocs.
8011   if (this->copy_relocs_.any_saved_relocs())
8012     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8013
8014   // Handle the .ARM.exidx section.
8015   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8016   if (exidx_section != NULL
8017       && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8018       && !parameters->options().relocatable())
8019     {
8020       // Create __exidx_start and __exdix_end symbols.
8021       symtab->define_in_output_data("__exidx_start", NULL,
8022                                     Symbol_table::PREDEFINED,
8023                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8024                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8025                                     false, true);
8026       symtab->define_in_output_data("__exidx_end", NULL,
8027                                     Symbol_table::PREDEFINED,
8028                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8029                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8030                                     true, true);
8031
8032       // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8033       // the .ARM.exidx section.
8034       if (!layout->script_options()->saw_phdrs_clause())
8035         {
8036           gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8037                       == NULL);
8038           Output_segment*  exidx_segment =
8039             layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8040           exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8041                                             false);
8042         }
8043     }
8044
8045   // Create an .ARM.attributes section if there is not one already.
8046   Output_attributes_section_data* attributes_section =
8047     new Output_attributes_section_data(*this->attributes_section_data_);
8048   layout->add_output_section_data(".ARM.attributes",
8049                                   elfcpp::SHT_ARM_ATTRIBUTES, 0,
8050                                   attributes_section, false, false, false,
8051                                   false);
8052 }
8053
8054 // Return whether a direct absolute static relocation needs to be applied.
8055 // In cases where Scan::local() or Scan::global() has created
8056 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8057 // of the relocation is carried in the data, and we must not
8058 // apply the static relocation.
8059
8060 template<bool big_endian>
8061 inline bool
8062 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8063     const Sized_symbol<32>* gsym,
8064     int ref_flags,
8065     bool is_32bit,
8066     Output_section* output_section)
8067 {
8068   // If the output section is not allocated, then we didn't call
8069   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8070   // the reloc here.
8071   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8072       return true;
8073
8074   // For local symbols, we will have created a non-RELATIVE dynamic
8075   // relocation only if (a) the output is position independent,
8076   // (b) the relocation is absolute (not pc- or segment-relative), and
8077   // (c) the relocation is not 32 bits wide.
8078   if (gsym == NULL)
8079     return !(parameters->options().output_is_position_independent()
8080              && (ref_flags & Symbol::ABSOLUTE_REF)
8081              && !is_32bit);
8082
8083   // For global symbols, we use the same helper routines used in the
8084   // scan pass.  If we did not create a dynamic relocation, or if we
8085   // created a RELATIVE dynamic relocation, we should apply the static
8086   // relocation.
8087   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8088   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8089                  && gsym->can_use_relative_reloc(ref_flags
8090                                                  & Symbol::FUNCTION_CALL);
8091   return !has_dyn || is_rel;
8092 }
8093
8094 // Perform a relocation.
8095
8096 template<bool big_endian>
8097 inline bool
8098 Target_arm<big_endian>::Relocate::relocate(
8099     const Relocate_info<32, big_endian>* relinfo,
8100     Target_arm* target,
8101     Output_section *output_section,
8102     size_t relnum,
8103     const elfcpp::Rel<32, big_endian>& rel,
8104     unsigned int r_type,
8105     const Sized_symbol<32>* gsym,
8106     const Symbol_value<32>* psymval,
8107     unsigned char* view,
8108     Arm_address address,
8109     section_size_type view_size)
8110 {
8111   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8112
8113   r_type = get_real_reloc_type(r_type);
8114   const Arm_reloc_property* reloc_property =
8115     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8116   if (reloc_property == NULL)
8117     {
8118       std::string reloc_name =
8119         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8120       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8121                              _("cannot relocate %s in object file"),
8122                              reloc_name.c_str());
8123       return true;
8124     }
8125
8126   const Arm_relobj<big_endian>* object =
8127     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8128
8129   // If the final branch target of a relocation is THUMB instruction, this
8130   // is 1.  Otherwise it is 0.
8131   Arm_address thumb_bit = 0;
8132   Symbol_value<32> symval;
8133   bool is_weakly_undefined_without_plt = false;
8134   if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8135     {
8136       if (gsym != NULL)
8137         {
8138           // This is a global symbol.  Determine if we use PLT and if the
8139           // final target is THUMB.
8140           if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8141             {
8142               // This uses a PLT, change the symbol value.
8143               symval.set_output_value(target->plt_section()->address()
8144                                       + gsym->plt_offset());
8145               psymval = &symval;
8146             }
8147           else if (gsym->is_weak_undefined())
8148             {
8149               // This is a weakly undefined symbol and we do not use PLT
8150               // for this relocation.  A branch targeting this symbol will
8151               // be converted into an NOP.
8152               is_weakly_undefined_without_plt = true;
8153             }
8154           else
8155             {
8156               // Set thumb bit if symbol:
8157               // -Has type STT_ARM_TFUNC or
8158               // -Has type STT_FUNC, is defined and with LSB in value set.
8159               thumb_bit =
8160                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8161                  || (gsym->type() == elfcpp::STT_FUNC
8162                      && !gsym->is_undefined()
8163                      && ((psymval->value(object, 0) & 1) != 0)))
8164                 ? 1
8165                 : 0);
8166             }
8167         }
8168       else
8169         {
8170           // This is a local symbol.  Determine if the final target is THUMB.
8171           // We saved this information when all the local symbols were read.
8172           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8173           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8174           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8175         }
8176     }
8177   else
8178     {
8179       // This is a fake relocation synthesized for a stub.  It does not have
8180       // a real symbol.  We just look at the LSB of the symbol value to
8181       // determine if the target is THUMB or not.
8182       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8183     }
8184
8185   // Strip LSB if this points to a THUMB target.
8186   if (thumb_bit != 0
8187       && reloc_property->uses_thumb_bit() 
8188       && ((psymval->value(object, 0) & 1) != 0))
8189     {
8190       Arm_address stripped_value =
8191         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8192       symval.set_output_value(stripped_value);
8193       psymval = &symval;
8194     } 
8195
8196   // Get the GOT offset if needed.
8197   // The GOT pointer points to the end of the GOT section.
8198   // We need to subtract the size of the GOT section to get
8199   // the actual offset to use in the relocation.
8200   bool have_got_offset = false;
8201   unsigned int got_offset = 0;
8202   switch (r_type)
8203     {
8204     case elfcpp::R_ARM_GOT_BREL:
8205     case elfcpp::R_ARM_GOT_PREL:
8206       if (gsym != NULL)
8207         {
8208           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8209           got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8210                         - target->got_size());
8211         }
8212       else
8213         {
8214           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8215           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8216           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8217                         - target->got_size());
8218         }
8219       have_got_offset = true;
8220       break;
8221
8222     default:
8223       break;
8224     }
8225
8226   // To look up relocation stubs, we need to pass the symbol table index of
8227   // a local symbol.
8228   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8229
8230   // Get the addressing origin of the output segment defining the
8231   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8232   Arm_address sym_origin = 0;
8233   if (reloc_property->uses_symbol_base())
8234     {
8235       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8236         // R_ARM_BASE_ABS with the NULL symbol will give the
8237         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8238         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8239         sym_origin = target->got_plt_section()->address();
8240       else if (gsym == NULL)
8241         sym_origin = 0;
8242       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8243         sym_origin = gsym->output_segment()->vaddr();
8244       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8245         sym_origin = gsym->output_data()->address();
8246
8247       // TODO: Assumes the segment base to be zero for the global symbols
8248       // till the proper support for the segment-base-relative addressing
8249       // will be implemented.  This is consistent with GNU ld.
8250     }
8251
8252   // For relative addressing relocation, find out the relative address base.
8253   Arm_address relative_address_base = 0;
8254   switch(reloc_property->relative_address_base())
8255     {
8256     case Arm_reloc_property::RAB_NONE:
8257     // Relocations with relative address bases RAB_TLS and RAB_tp are
8258     // handled by relocate_tls.  So we do not need to do anything here.
8259     case Arm_reloc_property::RAB_TLS:
8260     case Arm_reloc_property::RAB_tp:
8261       break;
8262     case Arm_reloc_property::RAB_B_S:
8263       relative_address_base = sym_origin;
8264       break;
8265     case Arm_reloc_property::RAB_GOT_ORG:
8266       relative_address_base = target->got_plt_section()->address();
8267       break;
8268     case Arm_reloc_property::RAB_P:
8269       relative_address_base = address;
8270       break;
8271     case Arm_reloc_property::RAB_Pa:
8272       relative_address_base = address & 0xfffffffcU;
8273       break;
8274     default:
8275       gold_unreachable(); 
8276     }
8277     
8278   typename Arm_relocate_functions::Status reloc_status =
8279         Arm_relocate_functions::STATUS_OKAY;
8280   bool check_overflow = reloc_property->checks_overflow();
8281   switch (r_type)
8282     {
8283     case elfcpp::R_ARM_NONE:
8284       break;
8285
8286     case elfcpp::R_ARM_ABS8:
8287       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8288                                     output_section))
8289         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8290       break;
8291
8292     case elfcpp::R_ARM_ABS12:
8293       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8294                                     output_section))
8295         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8296       break;
8297
8298     case elfcpp::R_ARM_ABS16:
8299       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8300                                     output_section))
8301         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8302       break;
8303
8304     case elfcpp::R_ARM_ABS32:
8305       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8306                                     output_section))
8307         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8308                                                      thumb_bit);
8309       break;
8310
8311     case elfcpp::R_ARM_ABS32_NOI:
8312       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8313                                     output_section))
8314         // No thumb bit for this relocation: (S + A)
8315         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8316                                                      0);
8317       break;
8318
8319     case elfcpp::R_ARM_MOVW_ABS_NC:
8320       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8321                                     output_section))
8322         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8323                                                     0, thumb_bit,
8324                                                     check_overflow);
8325       break;
8326
8327     case elfcpp::R_ARM_MOVT_ABS:
8328       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8329                                     output_section))
8330         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8331       break;
8332
8333     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8334       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8335                                     output_section))
8336         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8337                                                         0, thumb_bit, false);
8338       break;
8339
8340     case elfcpp::R_ARM_THM_MOVT_ABS:
8341       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8342                                     output_section))
8343         reloc_status = Arm_relocate_functions::thm_movt(view, object,
8344                                                         psymval, 0);
8345       break;
8346
8347     case elfcpp::R_ARM_MOVW_PREL_NC:
8348     case elfcpp::R_ARM_MOVW_BREL_NC:
8349     case elfcpp::R_ARM_MOVW_BREL:
8350       reloc_status =
8351         Arm_relocate_functions::movw(view, object, psymval,
8352                                      relative_address_base, thumb_bit,
8353                                      check_overflow);
8354       break;
8355
8356     case elfcpp::R_ARM_MOVT_PREL:
8357     case elfcpp::R_ARM_MOVT_BREL:
8358       reloc_status =
8359         Arm_relocate_functions::movt(view, object, psymval,
8360                                      relative_address_base);
8361       break;
8362
8363     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8364     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8365     case elfcpp::R_ARM_THM_MOVW_BREL:
8366       reloc_status =
8367         Arm_relocate_functions::thm_movw(view, object, psymval,
8368                                          relative_address_base,
8369                                          thumb_bit, check_overflow);
8370       break;
8371
8372     case elfcpp::R_ARM_THM_MOVT_PREL:
8373     case elfcpp::R_ARM_THM_MOVT_BREL:
8374       reloc_status =
8375         Arm_relocate_functions::thm_movt(view, object, psymval,
8376                                          relative_address_base);
8377       break;
8378         
8379     case elfcpp::R_ARM_REL32:
8380       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8381                                                    address, thumb_bit);
8382       break;
8383
8384     case elfcpp::R_ARM_THM_ABS5:
8385       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8386                                     output_section))
8387         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8388       break;
8389
8390     // Thumb long branches.
8391     case elfcpp::R_ARM_THM_CALL:
8392     case elfcpp::R_ARM_THM_XPC22:
8393     case elfcpp::R_ARM_THM_JUMP24:
8394       reloc_status =
8395         Arm_relocate_functions::thumb_branch_common(
8396             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8397             thumb_bit, is_weakly_undefined_without_plt);
8398       break;
8399
8400     case elfcpp::R_ARM_GOTOFF32:
8401       {
8402         Arm_address got_origin;
8403         got_origin = target->got_plt_section()->address();
8404         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8405                                                      got_origin, thumb_bit);
8406       }
8407       break;
8408
8409     case elfcpp::R_ARM_BASE_PREL:
8410       gold_assert(gsym != NULL);
8411       reloc_status =
8412           Arm_relocate_functions::base_prel(view, sym_origin, address);
8413       break;
8414
8415     case elfcpp::R_ARM_BASE_ABS:
8416       {
8417         if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8418                                       output_section))
8419           break;
8420
8421         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8422       }
8423       break;
8424
8425     case elfcpp::R_ARM_GOT_BREL:
8426       gold_assert(have_got_offset);
8427       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8428       break;
8429
8430     case elfcpp::R_ARM_GOT_PREL:
8431       gold_assert(have_got_offset);
8432       // Get the address origin for GOT PLT, which is allocated right
8433       // after the GOT section, to calculate an absolute address of
8434       // the symbol GOT entry (got_origin + got_offset).
8435       Arm_address got_origin;
8436       got_origin = target->got_plt_section()->address();
8437       reloc_status = Arm_relocate_functions::got_prel(view,
8438                                                       got_origin + got_offset,
8439                                                       address);
8440       break;
8441
8442     case elfcpp::R_ARM_PLT32:
8443     case elfcpp::R_ARM_CALL:
8444     case elfcpp::R_ARM_JUMP24:
8445     case elfcpp::R_ARM_XPC25:
8446       gold_assert(gsym == NULL
8447                   || gsym->has_plt_offset()
8448                   || gsym->final_value_is_known()
8449                   || (gsym->is_defined()
8450                       && !gsym->is_from_dynobj()
8451                       && !gsym->is_preemptible()));
8452       reloc_status =
8453         Arm_relocate_functions::arm_branch_common(
8454             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8455             thumb_bit, is_weakly_undefined_without_plt);
8456       break;
8457
8458     case elfcpp::R_ARM_THM_JUMP19:
8459       reloc_status =
8460         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8461                                            thumb_bit);
8462       break;
8463
8464     case elfcpp::R_ARM_THM_JUMP6:
8465       reloc_status =
8466         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8467       break;
8468
8469     case elfcpp::R_ARM_THM_JUMP8:
8470       reloc_status =
8471         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8472       break;
8473
8474     case elfcpp::R_ARM_THM_JUMP11:
8475       reloc_status =
8476         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8477       break;
8478
8479     case elfcpp::R_ARM_PREL31:
8480       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8481                                                     address, thumb_bit);
8482       break;
8483
8484     case elfcpp::R_ARM_V4BX:
8485       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8486         {
8487           const bool is_v4bx_interworking =
8488               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8489           reloc_status =
8490             Arm_relocate_functions::v4bx(relinfo, view, object, address,
8491                                          is_v4bx_interworking);
8492         }
8493       break;
8494
8495     case elfcpp::R_ARM_THM_PC8:
8496       reloc_status =
8497         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8498       break;
8499
8500     case elfcpp::R_ARM_THM_PC12:
8501       reloc_status =
8502         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8503       break;
8504
8505     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8506       reloc_status =
8507         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8508                                           thumb_bit);
8509       break;
8510
8511     case elfcpp::R_ARM_ALU_PC_G0_NC:
8512     case elfcpp::R_ARM_ALU_PC_G0:
8513     case elfcpp::R_ARM_ALU_PC_G1_NC:
8514     case elfcpp::R_ARM_ALU_PC_G1:
8515     case elfcpp::R_ARM_ALU_PC_G2:
8516     case elfcpp::R_ARM_ALU_SB_G0_NC:
8517     case elfcpp::R_ARM_ALU_SB_G0:
8518     case elfcpp::R_ARM_ALU_SB_G1_NC:
8519     case elfcpp::R_ARM_ALU_SB_G1:
8520     case elfcpp::R_ARM_ALU_SB_G2:
8521       reloc_status =
8522         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8523                                             reloc_property->group_index(),
8524                                             relative_address_base,
8525                                             thumb_bit, check_overflow);
8526       break;
8527
8528     case elfcpp::R_ARM_LDR_PC_G0:
8529     case elfcpp::R_ARM_LDR_PC_G1:
8530     case elfcpp::R_ARM_LDR_PC_G2:
8531     case elfcpp::R_ARM_LDR_SB_G0:
8532     case elfcpp::R_ARM_LDR_SB_G1:
8533     case elfcpp::R_ARM_LDR_SB_G2:
8534       reloc_status =
8535           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8536                                               reloc_property->group_index(),
8537                                               relative_address_base);
8538       break;
8539
8540     case elfcpp::R_ARM_LDRS_PC_G0:
8541     case elfcpp::R_ARM_LDRS_PC_G1:
8542     case elfcpp::R_ARM_LDRS_PC_G2:
8543     case elfcpp::R_ARM_LDRS_SB_G0:
8544     case elfcpp::R_ARM_LDRS_SB_G1:
8545     case elfcpp::R_ARM_LDRS_SB_G2:
8546       reloc_status =
8547           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8548                                                reloc_property->group_index(),
8549                                                relative_address_base);
8550       break;
8551
8552     case elfcpp::R_ARM_LDC_PC_G0:
8553     case elfcpp::R_ARM_LDC_PC_G1:
8554     case elfcpp::R_ARM_LDC_PC_G2:
8555     case elfcpp::R_ARM_LDC_SB_G0:
8556     case elfcpp::R_ARM_LDC_SB_G1:
8557     case elfcpp::R_ARM_LDC_SB_G2:
8558       reloc_status =
8559           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8560                                               reloc_property->group_index(),
8561                                               relative_address_base);
8562       break;
8563
8564       // These are initial tls relocs, which are expected when
8565       // linking.
8566     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8567     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8568     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8569     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8570     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8571       reloc_status =
8572         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8573                            view, address, view_size);
8574       break;
8575
8576     default:
8577       gold_unreachable();
8578     }
8579
8580   // Report any errors.
8581   switch (reloc_status)
8582     {
8583     case Arm_relocate_functions::STATUS_OKAY:
8584       break;
8585     case Arm_relocate_functions::STATUS_OVERFLOW:
8586       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8587                              _("relocation overflow in %s"),
8588                              reloc_property->name().c_str());
8589       break;
8590     case Arm_relocate_functions::STATUS_BAD_RELOC:
8591       gold_error_at_location(
8592         relinfo,
8593         relnum,
8594         rel.get_r_offset(),
8595         _("unexpected opcode while processing relocation %s"),
8596         reloc_property->name().c_str());
8597       break;
8598     default:
8599       gold_unreachable();
8600     }
8601
8602   return true;
8603 }
8604
8605 // Perform a TLS relocation.
8606
8607 template<bool big_endian>
8608 inline typename Arm_relocate_functions<big_endian>::Status
8609 Target_arm<big_endian>::Relocate::relocate_tls(
8610     const Relocate_info<32, big_endian>* relinfo,
8611     Target_arm<big_endian>* target,
8612     size_t relnum,
8613     const elfcpp::Rel<32, big_endian>& rel,
8614     unsigned int r_type,
8615     const Sized_symbol<32>* gsym,
8616     const Symbol_value<32>* psymval,
8617     unsigned char* view,
8618     elfcpp::Elf_types<32>::Elf_Addr address,
8619     section_size_type /*view_size*/ )
8620 {
8621   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8622   typedef Relocate_functions<32, big_endian> RelocFuncs;
8623   Output_segment* tls_segment = relinfo->layout->tls_segment();
8624
8625   const Sized_relobj<32, big_endian>* object = relinfo->object;
8626
8627   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8628
8629   const bool is_final = (gsym == NULL
8630                          ? !parameters->options().shared()
8631                          : gsym->final_value_is_known());
8632   const tls::Tls_optimization optimized_type
8633       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8634   switch (r_type)
8635     {
8636     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8637         {
8638           unsigned int got_type = GOT_TYPE_TLS_PAIR;
8639           unsigned int got_offset;
8640           if (gsym != NULL)
8641             {
8642               gold_assert(gsym->has_got_offset(got_type));
8643               got_offset = gsym->got_offset(got_type) - target->got_size();
8644             }
8645           else
8646             {
8647               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8648               gold_assert(object->local_has_got_offset(r_sym, got_type));
8649               got_offset = (object->local_got_offset(r_sym, got_type)
8650                             - target->got_size());
8651             }
8652           if (optimized_type == tls::TLSOPT_NONE)
8653             {
8654               Arm_address got_entry =
8655                 target->got_plt_section()->address() + got_offset;
8656               
8657               // Relocate the field with the PC relative offset of the pair of
8658               // GOT entries.
8659               RelocFuncs::pcrel32(view, got_entry, address);
8660               return ArmRelocFuncs::STATUS_OKAY;
8661             }
8662         }
8663       break;
8664
8665     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8666       if (optimized_type == tls::TLSOPT_NONE)
8667         {
8668           // Relocate the field with the offset of the GOT entry for
8669           // the module index.
8670           unsigned int got_offset;
8671           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8672                         - target->got_size());
8673           Arm_address got_entry =
8674             target->got_plt_section()->address() + got_offset;
8675
8676           // Relocate the field with the PC relative offset of the pair of
8677           // GOT entries.
8678           RelocFuncs::pcrel32(view, got_entry, address);
8679           return ArmRelocFuncs::STATUS_OKAY;
8680         }
8681       break;
8682
8683     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8684       RelocFuncs::rel32(view, value);
8685       return ArmRelocFuncs::STATUS_OKAY;
8686
8687     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8688       if (optimized_type == tls::TLSOPT_NONE)
8689         {
8690           // Relocate the field with the offset of the GOT entry for
8691           // the tp-relative offset of the symbol.
8692           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8693           unsigned int got_offset;
8694           if (gsym != NULL)
8695             {
8696               gold_assert(gsym->has_got_offset(got_type));
8697               got_offset = gsym->got_offset(got_type);
8698             }
8699           else
8700             {
8701               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8702               gold_assert(object->local_has_got_offset(r_sym, got_type));
8703               got_offset = object->local_got_offset(r_sym, got_type);
8704             }
8705
8706           // All GOT offsets are relative to the end of the GOT.
8707           got_offset -= target->got_size();
8708
8709           Arm_address got_entry =
8710             target->got_plt_section()->address() + got_offset;
8711
8712           // Relocate the field with the PC relative offset of the GOT entry.
8713           RelocFuncs::pcrel32(view, got_entry, address);
8714           return ArmRelocFuncs::STATUS_OKAY;
8715         }
8716       break;
8717
8718     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8719       // If we're creating a shared library, a dynamic relocation will
8720       // have been created for this location, so do not apply it now.
8721       if (!parameters->options().shared())
8722         {
8723           gold_assert(tls_segment != NULL);
8724
8725           // $tp points to the TCB, which is followed by the TLS, so we
8726           // need to add TCB size to the offset.
8727           Arm_address aligned_tcb_size =
8728             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8729           RelocFuncs::rel32(view, value + aligned_tcb_size);
8730
8731         }
8732       return ArmRelocFuncs::STATUS_OKAY;
8733     
8734     default:
8735       gold_unreachable();
8736     }
8737
8738   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8739                          _("unsupported reloc %u"),
8740                          r_type);
8741   return ArmRelocFuncs::STATUS_BAD_RELOC;
8742 }
8743
8744 // Relocate section data.
8745
8746 template<bool big_endian>
8747 void
8748 Target_arm<big_endian>::relocate_section(
8749     const Relocate_info<32, big_endian>* relinfo,
8750     unsigned int sh_type,
8751     const unsigned char* prelocs,
8752     size_t reloc_count,
8753     Output_section* output_section,
8754     bool needs_special_offset_handling,
8755     unsigned char* view,
8756     Arm_address address,
8757     section_size_type view_size,
8758     const Reloc_symbol_changes* reloc_symbol_changes)
8759 {
8760   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8761   gold_assert(sh_type == elfcpp::SHT_REL);
8762
8763   // See if we are relocating a relaxed input section.  If so, the view
8764   // covers the whole output section and we need to adjust accordingly.
8765   if (needs_special_offset_handling)
8766     {
8767       const Output_relaxed_input_section* poris =
8768         output_section->find_relaxed_input_section(relinfo->object,
8769                                                    relinfo->data_shndx);
8770       if (poris != NULL)
8771         {
8772           Arm_address section_address = poris->address();
8773           section_size_type section_size = poris->data_size();
8774
8775           gold_assert((section_address >= address)
8776                       && ((section_address + section_size)
8777                           <= (address + view_size)));
8778
8779           off_t offset = section_address - address;
8780           view += offset;
8781           address += offset;
8782           view_size = section_size;
8783         }
8784     }
8785
8786   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8787                          Arm_relocate>(
8788     relinfo,
8789     this,
8790     prelocs,
8791     reloc_count,
8792     output_section,
8793     needs_special_offset_handling,
8794     view,
8795     address,
8796     view_size,
8797     reloc_symbol_changes);
8798 }
8799
8800 // Return the size of a relocation while scanning during a relocatable
8801 // link.
8802
8803 template<bool big_endian>
8804 unsigned int
8805 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8806     unsigned int r_type,
8807     Relobj* object)
8808 {
8809   r_type = get_real_reloc_type(r_type);
8810   const Arm_reloc_property* arp =
8811       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8812   if (arp != NULL)
8813     return arp->size();
8814   else
8815     {
8816       std::string reloc_name =
8817         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8818       gold_error(_("%s: unexpected %s in object file"),
8819                  object->name().c_str(), reloc_name.c_str());
8820       return 0;
8821     }
8822 }
8823
8824 // Scan the relocs during a relocatable link.
8825
8826 template<bool big_endian>
8827 void
8828 Target_arm<big_endian>::scan_relocatable_relocs(
8829     Symbol_table* symtab,
8830     Layout* layout,
8831     Sized_relobj<32, big_endian>* object,
8832     unsigned int data_shndx,
8833     unsigned int sh_type,
8834     const unsigned char* prelocs,
8835     size_t reloc_count,
8836     Output_section* output_section,
8837     bool needs_special_offset_handling,
8838     size_t local_symbol_count,
8839     const unsigned char* plocal_symbols,
8840     Relocatable_relocs* rr)
8841 {
8842   gold_assert(sh_type == elfcpp::SHT_REL);
8843
8844   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
8845     Relocatable_size_for_reloc> Scan_relocatable_relocs;
8846
8847   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
8848       Scan_relocatable_relocs>(
8849     symtab,
8850     layout,
8851     object,
8852     data_shndx,
8853     prelocs,
8854     reloc_count,
8855     output_section,
8856     needs_special_offset_handling,
8857     local_symbol_count,
8858     plocal_symbols,
8859     rr);
8860 }
8861
8862 // Relocate a section during a relocatable link.
8863
8864 template<bool big_endian>
8865 void
8866 Target_arm<big_endian>::relocate_for_relocatable(
8867     const Relocate_info<32, big_endian>* relinfo,
8868     unsigned int sh_type,
8869     const unsigned char* prelocs,
8870     size_t reloc_count,
8871     Output_section* output_section,
8872     off_t offset_in_output_section,
8873     const Relocatable_relocs* rr,
8874     unsigned char* view,
8875     Arm_address view_address,
8876     section_size_type view_size,
8877     unsigned char* reloc_view,
8878     section_size_type reloc_view_size)
8879 {
8880   gold_assert(sh_type == elfcpp::SHT_REL);
8881
8882   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
8883     relinfo,
8884     prelocs,
8885     reloc_count,
8886     output_section,
8887     offset_in_output_section,
8888     rr,
8889     view,
8890     view_address,
8891     view_size,
8892     reloc_view,
8893     reloc_view_size);
8894 }
8895
8896 // Return the value to use for a dynamic symbol which requires special
8897 // treatment.  This is how we support equality comparisons of function
8898 // pointers across shared library boundaries, as described in the
8899 // processor specific ABI supplement.
8900
8901 template<bool big_endian>
8902 uint64_t
8903 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
8904 {
8905   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8906   return this->plt_section()->address() + gsym->plt_offset();
8907 }
8908
8909 // Map platform-specific relocs to real relocs
8910 //
8911 template<bool big_endian>
8912 unsigned int
8913 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
8914 {
8915   switch (r_type)
8916     {
8917     case elfcpp::R_ARM_TARGET1:
8918       // This is either R_ARM_ABS32 or R_ARM_REL32;
8919       return elfcpp::R_ARM_ABS32;
8920
8921     case elfcpp::R_ARM_TARGET2:
8922       // This can be any reloc type but ususally is R_ARM_GOT_PREL
8923       return elfcpp::R_ARM_GOT_PREL;
8924
8925     default:
8926       return r_type;
8927     }
8928 }
8929
8930 // Whether if two EABI versions V1 and V2 are compatible.
8931
8932 template<bool big_endian>
8933 bool
8934 Target_arm<big_endian>::are_eabi_versions_compatible(
8935     elfcpp::Elf_Word v1,
8936     elfcpp::Elf_Word v2)
8937 {
8938   // v4 and v5 are the same spec before and after it was released,
8939   // so allow mixing them.
8940   if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
8941       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
8942     return true;
8943
8944   return v1 == v2;
8945 }
8946
8947 // Combine FLAGS from an input object called NAME and the processor-specific
8948 // flags in the ELF header of the output.  Much of this is adapted from the
8949 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
8950 // in bfd/elf32-arm.c.
8951
8952 template<bool big_endian>
8953 void
8954 Target_arm<big_endian>::merge_processor_specific_flags(
8955     const std::string& name,
8956     elfcpp::Elf_Word flags)
8957 {
8958   if (this->are_processor_specific_flags_set())
8959     {
8960       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
8961
8962       // Nothing to merge if flags equal to those in output.
8963       if (flags == out_flags)
8964         return;
8965
8966       // Complain about various flag mismatches.
8967       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
8968       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
8969       if (!this->are_eabi_versions_compatible(version1, version2))
8970         gold_error(_("Source object %s has EABI version %d but output has "
8971                      "EABI version %d."),
8972                    name.c_str(),
8973                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
8974                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
8975     }
8976   else
8977     {
8978       // If the input is the default architecture and had the default
8979       // flags then do not bother setting the flags for the output
8980       // architecture, instead allow future merges to do this.  If no
8981       // future merges ever set these flags then they will retain their
8982       // uninitialised values, which surprise surprise, correspond
8983       // to the default values.
8984       if (flags == 0)
8985         return;
8986
8987       // This is the first time, just copy the flags.
8988       // We only copy the EABI version for now.
8989       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
8990     }
8991 }
8992
8993 // Adjust ELF file header.
8994 template<bool big_endian>
8995 void
8996 Target_arm<big_endian>::do_adjust_elf_header(
8997     unsigned char* view,
8998     int len) const
8999 {
9000   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9001
9002   elfcpp::Ehdr<32, big_endian> ehdr(view);
9003   unsigned char e_ident[elfcpp::EI_NIDENT];
9004   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9005
9006   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9007       == elfcpp::EF_ARM_EABI_UNKNOWN)
9008     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9009   else
9010     e_ident[elfcpp::EI_OSABI] = 0;
9011   e_ident[elfcpp::EI_ABIVERSION] = 0;
9012
9013   // FIXME: Do EF_ARM_BE8 adjustment.
9014
9015   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9016   oehdr.put_e_ident(e_ident);
9017 }
9018
9019 // do_make_elf_object to override the same function in the base class.
9020 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9021 // to store ARM specific information.  Hence we need to have our own
9022 // ELF object creation.
9023
9024 template<bool big_endian>
9025 Object*
9026 Target_arm<big_endian>::do_make_elf_object(
9027     const std::string& name,
9028     Input_file* input_file,
9029     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9030 {
9031   int et = ehdr.get_e_type();
9032   if (et == elfcpp::ET_REL)
9033     {
9034       Arm_relobj<big_endian>* obj =
9035         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9036       obj->setup();
9037       return obj;
9038     }
9039   else if (et == elfcpp::ET_DYN)
9040     {
9041       Sized_dynobj<32, big_endian>* obj =
9042         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9043       obj->setup();
9044       return obj;
9045     }
9046   else
9047     {
9048       gold_error(_("%s: unsupported ELF file type %d"),
9049                  name.c_str(), et);
9050       return NULL;
9051     }
9052 }
9053
9054 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9055 // Returns -1 if no architecture could be read.
9056 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9057
9058 template<bool big_endian>
9059 int
9060 Target_arm<big_endian>::get_secondary_compatible_arch(
9061     const Attributes_section_data* pasd)
9062 {
9063   const Object_attribute *known_attributes =
9064     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9065
9066   // Note: the tag and its argument below are uleb128 values, though
9067   // currently-defined values fit in one byte for each.
9068   const std::string& sv =
9069     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9070   if (sv.size() == 2
9071       && sv.data()[0] == elfcpp::Tag_CPU_arch
9072       && (sv.data()[1] & 128) != 128)
9073    return sv.data()[1];
9074
9075   // This tag is "safely ignorable", so don't complain if it looks funny.
9076   return -1;
9077 }
9078
9079 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9080 // The tag is removed if ARCH is -1.
9081 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9082
9083 template<bool big_endian>
9084 void
9085 Target_arm<big_endian>::set_secondary_compatible_arch(
9086     Attributes_section_data* pasd,
9087     int arch)
9088 {
9089   Object_attribute *known_attributes =
9090     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9091
9092   if (arch == -1)
9093     {
9094       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9095       return;
9096     }
9097
9098   // Note: the tag and its argument below are uleb128 values, though
9099   // currently-defined values fit in one byte for each.
9100   char sv[3];
9101   sv[0] = elfcpp::Tag_CPU_arch;
9102   gold_assert(arch != 0);
9103   sv[1] = arch;
9104   sv[2] = '\0';
9105
9106   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9107 }
9108
9109 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9110 // into account.
9111 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9112
9113 template<bool big_endian>
9114 int
9115 Target_arm<big_endian>::tag_cpu_arch_combine(
9116     const char* name,
9117     int oldtag,
9118     int* secondary_compat_out,
9119     int newtag,
9120     int secondary_compat)
9121 {
9122 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9123   static const int v6t2[] =
9124     {
9125       T(V6T2),   // PRE_V4.
9126       T(V6T2),   // V4.
9127       T(V6T2),   // V4T.
9128       T(V6T2),   // V5T.
9129       T(V6T2),   // V5TE.
9130       T(V6T2),   // V5TEJ.
9131       T(V6T2),   // V6.
9132       T(V7),     // V6KZ.
9133       T(V6T2)    // V6T2.
9134     };
9135   static const int v6k[] =
9136     {
9137       T(V6K),    // PRE_V4.
9138       T(V6K),    // V4.
9139       T(V6K),    // V4T.
9140       T(V6K),    // V5T.
9141       T(V6K),    // V5TE.
9142       T(V6K),    // V5TEJ.
9143       T(V6K),    // V6.
9144       T(V6KZ),   // V6KZ.
9145       T(V7),     // V6T2.
9146       T(V6K)     // V6K.
9147     };
9148   static const int v7[] =
9149     {
9150       T(V7),     // PRE_V4.
9151       T(V7),     // V4.
9152       T(V7),     // V4T.
9153       T(V7),     // V5T.
9154       T(V7),     // V5TE.
9155       T(V7),     // V5TEJ.
9156       T(V7),     // V6.
9157       T(V7),     // V6KZ.
9158       T(V7),     // V6T2.
9159       T(V7),     // V6K.
9160       T(V7)      // V7.
9161     };
9162   static const int v6_m[] =
9163     {
9164       -1,        // PRE_V4.
9165       -1,        // V4.
9166       T(V6K),    // V4T.
9167       T(V6K),    // V5T.
9168       T(V6K),    // V5TE.
9169       T(V6K),    // V5TEJ.
9170       T(V6K),    // V6.
9171       T(V6KZ),   // V6KZ.
9172       T(V7),     // V6T2.
9173       T(V6K),    // V6K.
9174       T(V7),     // V7.
9175       T(V6_M)    // V6_M.
9176     };
9177   static const int v6s_m[] =
9178     {
9179       -1,        // PRE_V4.
9180       -1,        // V4.
9181       T(V6K),    // V4T.
9182       T(V6K),    // V5T.
9183       T(V6K),    // V5TE.
9184       T(V6K),    // V5TEJ.
9185       T(V6K),    // V6.
9186       T(V6KZ),   // V6KZ.
9187       T(V7),     // V6T2.
9188       T(V6K),    // V6K.
9189       T(V7),     // V7.
9190       T(V6S_M),  // V6_M.
9191       T(V6S_M)   // V6S_M.
9192     };
9193   static const int v7e_m[] =
9194     {
9195       -1,       // PRE_V4.
9196       -1,       // V4.
9197       T(V7E_M), // V4T.
9198       T(V7E_M), // V5T.
9199       T(V7E_M), // V5TE.
9200       T(V7E_M), // V5TEJ.
9201       T(V7E_M), // V6.
9202       T(V7E_M), // V6KZ.
9203       T(V7E_M), // V6T2.
9204       T(V7E_M), // V6K.
9205       T(V7E_M), // V7.
9206       T(V7E_M), // V6_M.
9207       T(V7E_M), // V6S_M.
9208       T(V7E_M)  // V7E_M.
9209     };
9210   static const int v4t_plus_v6_m[] =
9211     {
9212       -1,               // PRE_V4.
9213       -1,               // V4.
9214       T(V4T),           // V4T.
9215       T(V5T),           // V5T.
9216       T(V5TE),          // V5TE.
9217       T(V5TEJ),         // V5TEJ.
9218       T(V6),            // V6.
9219       T(V6KZ),          // V6KZ.
9220       T(V6T2),          // V6T2.
9221       T(V6K),           // V6K.
9222       T(V7),            // V7.
9223       T(V6_M),          // V6_M.
9224       T(V6S_M),         // V6S_M.
9225       T(V7E_M),         // V7E_M.
9226       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
9227     };
9228   static const int *comb[] =
9229     {
9230       v6t2,
9231       v6k,
9232       v7,
9233       v6_m,
9234       v6s_m,
9235       v7e_m,
9236       // Pseudo-architecture.
9237       v4t_plus_v6_m
9238     };
9239
9240   // Check we've not got a higher architecture than we know about.
9241
9242   if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9243     {
9244       gold_error(_("%s: unknown CPU architecture"), name);
9245       return -1;
9246     }
9247
9248   // Override old tag if we have a Tag_also_compatible_with on the output.
9249
9250   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9251       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9252     oldtag = T(V4T_PLUS_V6_M);
9253
9254   // And override the new tag if we have a Tag_also_compatible_with on the
9255   // input.
9256
9257   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9258       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9259     newtag = T(V4T_PLUS_V6_M);
9260
9261   // Architectures before V6KZ add features monotonically.
9262   int tagh = std::max(oldtag, newtag);
9263   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9264     return tagh;
9265
9266   int tagl = std::min(oldtag, newtag);
9267   int result = comb[tagh - T(V6T2)][tagl];
9268
9269   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9270   // as the canonical version.
9271   if (result == T(V4T_PLUS_V6_M))
9272     {
9273       result = T(V4T);
9274       *secondary_compat_out = T(V6_M);
9275     }
9276   else
9277     *secondary_compat_out = -1;
9278
9279   if (result == -1)
9280     {
9281       gold_error(_("%s: conflicting CPU architectures %d/%d"),
9282                  name, oldtag, newtag);
9283       return -1;
9284     }
9285
9286   return result;
9287 #undef T
9288 }
9289
9290 // Helper to print AEABI enum tag value.
9291
9292 template<bool big_endian>
9293 std::string
9294 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9295 {
9296   static const char *aeabi_enum_names[] =
9297     { "", "variable-size", "32-bit", "" };
9298   const size_t aeabi_enum_names_size =
9299     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9300
9301   if (value < aeabi_enum_names_size)
9302     return std::string(aeabi_enum_names[value]);
9303   else
9304     {
9305       char buffer[100];
9306       sprintf(buffer, "<unknown value %u>", value);
9307       return std::string(buffer);
9308     }
9309 }
9310
9311 // Return the string value to store in TAG_CPU_name.
9312
9313 template<bool big_endian>
9314 std::string
9315 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9316 {
9317   static const char *name_table[] = {
9318     // These aren't real CPU names, but we can't guess
9319     // that from the architecture version alone.
9320    "Pre v4",
9321    "ARM v4",
9322    "ARM v4T",
9323    "ARM v5T",
9324    "ARM v5TE",
9325    "ARM v5TEJ",
9326    "ARM v6",
9327    "ARM v6KZ",
9328    "ARM v6T2",
9329    "ARM v6K",
9330    "ARM v7",
9331    "ARM v6-M",
9332    "ARM v6S-M",
9333    "ARM v7E-M"
9334  };
9335  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9336
9337   if (value < name_table_size)
9338     return std::string(name_table[value]);
9339   else
9340     {
9341       char buffer[100];
9342       sprintf(buffer, "<unknown CPU value %u>", value);
9343       return std::string(buffer);
9344     } 
9345 }
9346
9347 // Merge object attributes from input file called NAME with those of the
9348 // output.  The input object attributes are in the object pointed by PASD.
9349
9350 template<bool big_endian>
9351 void
9352 Target_arm<big_endian>::merge_object_attributes(
9353     const char* name,
9354     const Attributes_section_data* pasd)
9355 {
9356   // Return if there is no attributes section data.
9357   if (pasd == NULL)
9358     return;
9359
9360   // If output has no object attributes, just copy.
9361   if (this->attributes_section_data_ == NULL)
9362     {
9363       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9364       return;
9365     }
9366
9367   const int vendor = Object_attribute::OBJ_ATTR_PROC;
9368   const Object_attribute* in_attr = pasd->known_attributes(vendor);
9369   Object_attribute* out_attr =
9370     this->attributes_section_data_->known_attributes(vendor);
9371
9372   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
9373   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9374       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9375     {
9376       // Ignore mismatches if the object doesn't use floating point.  */
9377       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9378         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9379             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9380       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
9381         gold_error(_("%s uses VFP register arguments, output does not"),
9382                    name);
9383     }
9384
9385   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9386     {
9387       // Merge this attribute with existing attributes.
9388       switch (i)
9389         {
9390         case elfcpp::Tag_CPU_raw_name:
9391         case elfcpp::Tag_CPU_name:
9392           // These are merged after Tag_CPU_arch.
9393           break;
9394
9395         case elfcpp::Tag_ABI_optimization_goals:
9396         case elfcpp::Tag_ABI_FP_optimization_goals:
9397           // Use the first value seen.
9398           break;
9399
9400         case elfcpp::Tag_CPU_arch:
9401           {
9402             unsigned int saved_out_attr = out_attr->int_value();
9403             // Merge Tag_CPU_arch and Tag_also_compatible_with.
9404             int secondary_compat =
9405               this->get_secondary_compatible_arch(pasd);
9406             int secondary_compat_out =
9407               this->get_secondary_compatible_arch(
9408                   this->attributes_section_data_);
9409             out_attr[i].set_int_value(
9410                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9411                                      &secondary_compat_out,
9412                                      in_attr[i].int_value(),
9413                                      secondary_compat));
9414             this->set_secondary_compatible_arch(this->attributes_section_data_,
9415                                                 secondary_compat_out);
9416
9417             // Merge Tag_CPU_name and Tag_CPU_raw_name.
9418             if (out_attr[i].int_value() == saved_out_attr)
9419               ; // Leave the names alone.
9420             else if (out_attr[i].int_value() == in_attr[i].int_value())
9421               {
9422                 // The output architecture has been changed to match the
9423                 // input architecture.  Use the input names.
9424                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9425                     in_attr[elfcpp::Tag_CPU_name].string_value());
9426                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9427                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9428               }
9429             else
9430               {
9431                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9432                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9433               }
9434
9435             // If we still don't have a value for Tag_CPU_name,
9436             // make one up now.  Tag_CPU_raw_name remains blank.
9437             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9438               {
9439                 const std::string cpu_name =
9440                   this->tag_cpu_name_value(out_attr[i].int_value());
9441                 // FIXME:  If we see an unknown CPU, this will be set
9442                 // to "<unknown CPU n>", where n is the attribute value.
9443                 // This is different from BFD, which leaves the name alone.
9444                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9445               }
9446           }
9447           break;
9448
9449         case elfcpp::Tag_ARM_ISA_use:
9450         case elfcpp::Tag_THUMB_ISA_use:
9451         case elfcpp::Tag_WMMX_arch:
9452         case elfcpp::Tag_Advanced_SIMD_arch:
9453           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9454         case elfcpp::Tag_ABI_FP_rounding:
9455         case elfcpp::Tag_ABI_FP_exceptions:
9456         case elfcpp::Tag_ABI_FP_user_exceptions:
9457         case elfcpp::Tag_ABI_FP_number_model:
9458         case elfcpp::Tag_VFP_HP_extension:
9459         case elfcpp::Tag_CPU_unaligned_access:
9460         case elfcpp::Tag_T2EE_use:
9461         case elfcpp::Tag_Virtualization_use:
9462         case elfcpp::Tag_MPextension_use:
9463           // Use the largest value specified.
9464           if (in_attr[i].int_value() > out_attr[i].int_value())
9465             out_attr[i].set_int_value(in_attr[i].int_value());
9466           break;
9467
9468         case elfcpp::Tag_ABI_align8_preserved:
9469         case elfcpp::Tag_ABI_PCS_RO_data:
9470           // Use the smallest value specified.
9471           if (in_attr[i].int_value() < out_attr[i].int_value())
9472             out_attr[i].set_int_value(in_attr[i].int_value());
9473           break;
9474
9475         case elfcpp::Tag_ABI_align8_needed:
9476           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9477               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9478                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9479                       == 0)))
9480             {
9481               // This error message should be enabled once all non-conformant
9482               // binaries in the toolchain have had the attributes set
9483               // properly.
9484               // gold_error(_("output 8-byte data alignment conflicts with %s"),
9485               //            name);
9486             }
9487           // Fall through.
9488         case elfcpp::Tag_ABI_FP_denormal:
9489         case elfcpp::Tag_ABI_PCS_GOT_use:
9490           {
9491             // These tags have 0 = don't care, 1 = strong requirement,
9492             // 2 = weak requirement.
9493             static const int order_021[3] = {0, 2, 1};
9494
9495             // Use the "greatest" from the sequence 0, 2, 1, or the largest
9496             // value if greater than 2 (for future-proofing).
9497             if ((in_attr[i].int_value() > 2
9498                  && in_attr[i].int_value() > out_attr[i].int_value())
9499                 || (in_attr[i].int_value() <= 2
9500                     && out_attr[i].int_value() <= 2
9501                     && (order_021[in_attr[i].int_value()]
9502                         > order_021[out_attr[i].int_value()])))
9503               out_attr[i].set_int_value(in_attr[i].int_value());
9504           }
9505           break;
9506
9507         case elfcpp::Tag_CPU_arch_profile:
9508           if (out_attr[i].int_value() != in_attr[i].int_value())
9509             {
9510               // 0 will merge with anything.
9511               // 'A' and 'S' merge to 'A'.
9512               // 'R' and 'S' merge to 'R'.
9513               // 'M' and 'A|R|S' is an error.
9514               if (out_attr[i].int_value() == 0
9515                   || (out_attr[i].int_value() == 'S'
9516                       && (in_attr[i].int_value() == 'A'
9517                           || in_attr[i].int_value() == 'R')))
9518                 out_attr[i].set_int_value(in_attr[i].int_value());
9519               else if (in_attr[i].int_value() == 0
9520                        || (in_attr[i].int_value() == 'S'
9521                            && (out_attr[i].int_value() == 'A'
9522                                || out_attr[i].int_value() == 'R')))
9523                 ; // Do nothing.
9524               else
9525                 {
9526                   gold_error
9527                     (_("conflicting architecture profiles %c/%c"),
9528                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
9529                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
9530                 }
9531             }
9532           break;
9533         case elfcpp::Tag_VFP_arch:
9534             {
9535               static const struct
9536               {
9537                   int ver;
9538                   int regs;
9539               } vfp_versions[7] =
9540                 {
9541                   {0, 0},
9542                   {1, 16},
9543                   {2, 16},
9544                   {3, 32},
9545                   {3, 16},
9546                   {4, 32},
9547                   {4, 16}
9548                 };
9549
9550               // Values greater than 6 aren't defined, so just pick the
9551               // biggest.
9552               if (in_attr[i].int_value() > 6
9553                   && in_attr[i].int_value() > out_attr[i].int_value())
9554                 {
9555                   *out_attr = *in_attr;
9556                   break;
9557                 }
9558               // The output uses the superset of input features
9559               // (ISA version) and registers.
9560               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
9561                                  vfp_versions[out_attr[i].int_value()].ver);
9562               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
9563                                   vfp_versions[out_attr[i].int_value()].regs);
9564               // This assumes all possible supersets are also a valid
9565               // options.
9566               int newval;
9567               for (newval = 6; newval > 0; newval--)
9568                 {
9569                   if (regs == vfp_versions[newval].regs
9570                       && ver == vfp_versions[newval].ver)
9571                     break;
9572                 }
9573               out_attr[i].set_int_value(newval);
9574             }
9575           break;
9576         case elfcpp::Tag_PCS_config:
9577           if (out_attr[i].int_value() == 0)
9578             out_attr[i].set_int_value(in_attr[i].int_value());
9579           else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9580             {
9581               // It's sometimes ok to mix different configs, so this is only
9582               // a warning.
9583               gold_warning(_("%s: conflicting platform configuration"), name);
9584             }
9585           break;
9586         case elfcpp::Tag_ABI_PCS_R9_use:
9587           if (in_attr[i].int_value() != out_attr[i].int_value()
9588               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
9589               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
9590             {
9591               gold_error(_("%s: conflicting use of R9"), name);
9592             }
9593           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
9594             out_attr[i].set_int_value(in_attr[i].int_value());
9595           break;
9596         case elfcpp::Tag_ABI_PCS_RW_data:
9597           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9598               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9599                   != elfcpp::AEABI_R9_SB)
9600               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9601                   != elfcpp::AEABI_R9_unused))
9602             {
9603               gold_error(_("%s: SB relative addressing conflicts with use "
9604                            "of R9"),
9605                          name);
9606             }
9607           // Use the smallest value specified.
9608           if (in_attr[i].int_value() < out_attr[i].int_value())
9609             out_attr[i].set_int_value(in_attr[i].int_value());
9610           break;
9611         case elfcpp::Tag_ABI_PCS_wchar_t:
9612           // FIXME: Make it possible to turn off this warning.
9613           if (out_attr[i].int_value()
9614               && in_attr[i].int_value()
9615               && out_attr[i].int_value() != in_attr[i].int_value())
9616             {
9617               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9618                              "use %u-byte wchar_t; use of wchar_t values "
9619                              "across objects may fail"),
9620                            name, in_attr[i].int_value(),
9621                            out_attr[i].int_value());
9622             }
9623           else if (in_attr[i].int_value() && !out_attr[i].int_value())
9624             out_attr[i].set_int_value(in_attr[i].int_value());
9625           break;
9626         case elfcpp::Tag_ABI_enum_size:
9627           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
9628             {
9629               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
9630                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
9631                 {
9632                   // The existing object is compatible with anything.
9633                   // Use whatever requirements the new object has.
9634                   out_attr[i].set_int_value(in_attr[i].int_value());
9635                 }
9636               // FIXME: Make it possible to turn off this warning.
9637               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
9638                        && out_attr[i].int_value() != in_attr[i].int_value())
9639                 {
9640                   unsigned int in_value = in_attr[i].int_value();
9641                   unsigned int out_value = out_attr[i].int_value();
9642                   gold_warning(_("%s uses %s enums yet the output is to use "
9643                                  "%s enums; use of enum values across objects "
9644                                  "may fail"),
9645                                name,
9646                                this->aeabi_enum_name(in_value).c_str(),
9647                                this->aeabi_enum_name(out_value).c_str());
9648                 }
9649             }
9650           break;
9651         case elfcpp::Tag_ABI_VFP_args:
9652           // Aready done.
9653           break;
9654         case elfcpp::Tag_ABI_WMMX_args:
9655           if (in_attr[i].int_value() != out_attr[i].int_value())
9656             {
9657               gold_error(_("%s uses iWMMXt register arguments, output does "
9658                            "not"),
9659                          name);
9660             }
9661           break;
9662         case Object_attribute::Tag_compatibility:
9663           // Merged in target-independent code.
9664           break;
9665         case elfcpp::Tag_ABI_HardFP_use:
9666           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9667           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
9668               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
9669             out_attr[i].set_int_value(3);
9670           else if (in_attr[i].int_value() > out_attr[i].int_value())
9671             out_attr[i].set_int_value(in_attr[i].int_value());
9672           break;
9673         case elfcpp::Tag_ABI_FP_16bit_format:
9674           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9675             {
9676               if (in_attr[i].int_value() != out_attr[i].int_value())
9677                 gold_error(_("fp16 format mismatch between %s and output"),
9678                            name);
9679             }
9680           if (in_attr[i].int_value() != 0)
9681             out_attr[i].set_int_value(in_attr[i].int_value());
9682           break;
9683
9684         case elfcpp::Tag_nodefaults:
9685           // This tag is set if it exists, but the value is unused (and is
9686           // typically zero).  We don't actually need to do anything here -
9687           // the merge happens automatically when the type flags are merged
9688           // below.
9689           break;
9690         case elfcpp::Tag_also_compatible_with:
9691           // Already done in Tag_CPU_arch.
9692           break;
9693         case elfcpp::Tag_conformance:
9694           // Keep the attribute if it matches.  Throw it away otherwise.
9695           // No attribute means no claim to conform.
9696           if (in_attr[i].string_value() != out_attr[i].string_value())
9697             out_attr[i].set_string_value("");
9698           break;
9699
9700         default:
9701           {
9702             const char* err_object = NULL;
9703
9704             // The "known_obj_attributes" table does contain some undefined
9705             // attributes.  Ensure that there are unused.
9706             if (out_attr[i].int_value() != 0
9707                 || out_attr[i].string_value() != "")
9708               err_object = "output";
9709             else if (in_attr[i].int_value() != 0
9710                      || in_attr[i].string_value() != "")
9711               err_object = name;
9712
9713             if (err_object != NULL)
9714               {
9715                 // Attribute numbers >=64 (mod 128) can be safely ignored.
9716                 if ((i & 127) < 64)
9717                   gold_error(_("%s: unknown mandatory EABI object attribute "
9718                                "%d"),
9719                              err_object, i);
9720                 else
9721                   gold_warning(_("%s: unknown EABI object attribute %d"),
9722                                err_object, i);
9723               }
9724
9725             // Only pass on attributes that match in both inputs.
9726             if (!in_attr[i].matches(out_attr[i]))
9727               {
9728                 out_attr[i].set_int_value(0);
9729                 out_attr[i].set_string_value("");
9730               }
9731           }
9732         }
9733
9734       // If out_attr was copied from in_attr then it won't have a type yet.
9735       if (in_attr[i].type() && !out_attr[i].type())
9736         out_attr[i].set_type(in_attr[i].type());
9737     }
9738
9739   // Merge Tag_compatibility attributes and any common GNU ones.
9740   this->attributes_section_data_->merge(name, pasd);
9741
9742   // Check for any attributes not known on ARM.
9743   typedef Vendor_object_attributes::Other_attributes Other_attributes;
9744   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
9745   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
9746   Other_attributes* out_other_attributes =
9747     this->attributes_section_data_->other_attributes(vendor);
9748   Other_attributes::iterator out_iter = out_other_attributes->begin();
9749
9750   while (in_iter != in_other_attributes->end()
9751          || out_iter != out_other_attributes->end())
9752     {
9753       const char* err_object = NULL;
9754       int err_tag = 0;
9755
9756       // The tags for each list are in numerical order.
9757       // If the tags are equal, then merge.
9758       if (out_iter != out_other_attributes->end()
9759           && (in_iter == in_other_attributes->end()
9760               || in_iter->first > out_iter->first))
9761         {
9762           // This attribute only exists in output.  We can't merge, and we
9763           // don't know what the tag means, so delete it.
9764           err_object = "output";
9765           err_tag = out_iter->first;
9766           int saved_tag = out_iter->first;
9767           delete out_iter->second;
9768           out_other_attributes->erase(out_iter); 
9769           out_iter = out_other_attributes->upper_bound(saved_tag);
9770         }
9771       else if (in_iter != in_other_attributes->end()
9772                && (out_iter != out_other_attributes->end()
9773                    || in_iter->first < out_iter->first))
9774         {
9775           // This attribute only exists in input. We can't merge, and we
9776           // don't know what the tag means, so ignore it.
9777           err_object = name;
9778           err_tag = in_iter->first;
9779           ++in_iter;
9780         }
9781       else // The tags are equal.
9782         {
9783           // As present, all attributes in the list are unknown, and
9784           // therefore can't be merged meaningfully.
9785           err_object = "output";
9786           err_tag = out_iter->first;
9787
9788           //  Only pass on attributes that match in both inputs.
9789           if (!in_iter->second->matches(*(out_iter->second)))
9790             {
9791               // No match.  Delete the attribute.
9792               int saved_tag = out_iter->first;
9793               delete out_iter->second;
9794               out_other_attributes->erase(out_iter);
9795               out_iter = out_other_attributes->upper_bound(saved_tag);
9796             }
9797           else
9798             {
9799               // Matched.  Keep the attribute and move to the next.
9800               ++out_iter;
9801               ++in_iter;
9802             }
9803         }
9804
9805       if (err_object)
9806         {
9807           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
9808           if ((err_tag & 127) < 64)
9809             {
9810               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9811                          err_object, err_tag);
9812             }
9813           else
9814             {
9815               gold_warning(_("%s: unknown EABI object attribute %d"),
9816                            err_object, err_tag);
9817             }
9818         }
9819     }
9820 }
9821
9822 // Stub-generation methods for Target_arm.
9823
9824 // Make a new Arm_input_section object.
9825
9826 template<bool big_endian>
9827 Arm_input_section<big_endian>*
9828 Target_arm<big_endian>::new_arm_input_section(
9829     Relobj* relobj,
9830     unsigned int shndx)
9831 {
9832   Section_id sid(relobj, shndx);
9833
9834   Arm_input_section<big_endian>* arm_input_section =
9835     new Arm_input_section<big_endian>(relobj, shndx);
9836   arm_input_section->init();
9837
9838   // Register new Arm_input_section in map for look-up.
9839   std::pair<typename Arm_input_section_map::iterator, bool> ins =
9840     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
9841
9842   // Make sure that it we have not created another Arm_input_section
9843   // for this input section already.
9844   gold_assert(ins.second);
9845
9846   return arm_input_section; 
9847 }
9848
9849 // Find the Arm_input_section object corresponding to the SHNDX-th input
9850 // section of RELOBJ.
9851
9852 template<bool big_endian>
9853 Arm_input_section<big_endian>*
9854 Target_arm<big_endian>::find_arm_input_section(
9855     Relobj* relobj,
9856     unsigned int shndx) const
9857 {
9858   Section_id sid(relobj, shndx);
9859   typename Arm_input_section_map::const_iterator p =
9860     this->arm_input_section_map_.find(sid);
9861   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
9862 }
9863
9864 // Make a new stub table.
9865
9866 template<bool big_endian>
9867 Stub_table<big_endian>*
9868 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
9869 {
9870   Stub_table<big_endian>* stub_table =
9871     new Stub_table<big_endian>(owner);
9872   this->stub_tables_.push_back(stub_table);
9873
9874   stub_table->set_address(owner->address() + owner->data_size());
9875   stub_table->set_file_offset(owner->offset() + owner->data_size());
9876   stub_table->finalize_data_size();
9877
9878   return stub_table;
9879 }
9880
9881 // Scan a relocation for stub generation.
9882
9883 template<bool big_endian>
9884 void
9885 Target_arm<big_endian>::scan_reloc_for_stub(
9886     const Relocate_info<32, big_endian>* relinfo,
9887     unsigned int r_type,
9888     const Sized_symbol<32>* gsym,
9889     unsigned int r_sym,
9890     const Symbol_value<32>* psymval,
9891     elfcpp::Elf_types<32>::Elf_Swxword addend,
9892     Arm_address address)
9893 {
9894   typedef typename Target_arm<big_endian>::Relocate Relocate;
9895
9896   const Arm_relobj<big_endian>* arm_relobj =
9897     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9898
9899   bool target_is_thumb;
9900   Symbol_value<32> symval;
9901   if (gsym != NULL)
9902     {
9903       // This is a global symbol.  Determine if we use PLT and if the
9904       // final target is THUMB.
9905       if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
9906         {
9907           // This uses a PLT, change the symbol value.
9908           symval.set_output_value(this->plt_section()->address()
9909                                   + gsym->plt_offset());
9910           psymval = &symval;
9911           target_is_thumb = false;
9912         }
9913       else if (gsym->is_undefined())
9914         // There is no need to generate a stub symbol is undefined.
9915         return;
9916       else
9917         {
9918           target_is_thumb =
9919             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
9920              || (gsym->type() == elfcpp::STT_FUNC
9921                  && !gsym->is_undefined()
9922                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
9923         }
9924     }
9925   else
9926     {
9927       // This is a local symbol.  Determine if the final target is THUMB.
9928       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
9929     }
9930
9931   // Strip LSB if this points to a THUMB target.
9932   const Arm_reloc_property* reloc_property =
9933     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9934   gold_assert(reloc_property != NULL);
9935   if (target_is_thumb
9936       && reloc_property->uses_thumb_bit()
9937       && ((psymval->value(arm_relobj, 0) & 1) != 0))
9938     {
9939       Arm_address stripped_value =
9940         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
9941       symval.set_output_value(stripped_value);
9942       psymval = &symval;
9943     } 
9944
9945   // Get the symbol value.
9946   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
9947
9948   // Owing to pipelining, the PC relative branches below actually skip
9949   // two instructions when the branch offset is 0.
9950   Arm_address destination;
9951   switch (r_type)
9952     {
9953     case elfcpp::R_ARM_CALL:
9954     case elfcpp::R_ARM_JUMP24:
9955     case elfcpp::R_ARM_PLT32:
9956       // ARM branches.
9957       destination = value + addend + 8;
9958       break;
9959     case elfcpp::R_ARM_THM_CALL:
9960     case elfcpp::R_ARM_THM_XPC22:
9961     case elfcpp::R_ARM_THM_JUMP24:
9962     case elfcpp::R_ARM_THM_JUMP19:
9963       // THUMB branches.
9964       destination = value + addend + 4;
9965       break;
9966     default:
9967       gold_unreachable();
9968     }
9969
9970   Reloc_stub* stub = NULL;
9971   Stub_type stub_type =
9972     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
9973                                     target_is_thumb);
9974   if (stub_type != arm_stub_none)
9975     {
9976       // Try looking up an existing stub from a stub table.
9977       Stub_table<big_endian>* stub_table = 
9978         arm_relobj->stub_table(relinfo->data_shndx);
9979       gold_assert(stub_table != NULL);
9980    
9981       // Locate stub by destination.
9982       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
9983
9984       // Create a stub if there is not one already
9985       stub = stub_table->find_reloc_stub(stub_key);
9986       if (stub == NULL)
9987         {
9988           // create a new stub and add it to stub table.
9989           stub = this->stub_factory().make_reloc_stub(stub_type);
9990           stub_table->add_reloc_stub(stub, stub_key);
9991         }
9992
9993       // Record the destination address.
9994       stub->set_destination_address(destination
9995                                     | (target_is_thumb ? 1 : 0));
9996     }
9997
9998   // For Cortex-A8, we need to record a relocation at 4K page boundary.
9999   if (this->fix_cortex_a8_
10000       && (r_type == elfcpp::R_ARM_THM_JUMP24
10001           || r_type == elfcpp::R_ARM_THM_JUMP19
10002           || r_type == elfcpp::R_ARM_THM_CALL
10003           || r_type == elfcpp::R_ARM_THM_XPC22)
10004       && (address & 0xfffU) == 0xffeU)
10005     {
10006       // Found a candidate.  Note we haven't checked the destination is
10007       // within 4K here: if we do so (and don't create a record) we can't
10008       // tell that a branch should have been relocated when scanning later.
10009       this->cortex_a8_relocs_info_[address] =
10010         new Cortex_a8_reloc(stub, r_type,
10011                             destination | (target_is_thumb ? 1 : 0));
10012     }
10013 }
10014
10015 // This function scans a relocation sections for stub generation.
10016 // The template parameter Relocate must be a class type which provides
10017 // a single function, relocate(), which implements the machine
10018 // specific part of a relocation.
10019
10020 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
10021 // SHT_REL or SHT_RELA.
10022
10023 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
10024 // of relocs.  OUTPUT_SECTION is the output section.
10025 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10026 // mapped to output offsets.
10027
10028 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10029 // VIEW_SIZE is the size.  These refer to the input section, unless
10030 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10031 // the output section.
10032
10033 template<bool big_endian>
10034 template<int sh_type>
10035 void inline
10036 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10037     const Relocate_info<32, big_endian>* relinfo,
10038     const unsigned char* prelocs,
10039     size_t reloc_count,
10040     Output_section* output_section,
10041     bool needs_special_offset_handling,
10042     const unsigned char* view,
10043     elfcpp::Elf_types<32>::Elf_Addr view_address,
10044     section_size_type)
10045 {
10046   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10047   const int reloc_size =
10048     Reloc_types<sh_type, 32, big_endian>::reloc_size;
10049
10050   Arm_relobj<big_endian>* arm_object =
10051     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10052   unsigned int local_count = arm_object->local_symbol_count();
10053
10054   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10055
10056   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10057     {
10058       Reltype reloc(prelocs);
10059
10060       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10061       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10062       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10063
10064       r_type = this->get_real_reloc_type(r_type);
10065
10066       // Only a few relocation types need stubs.
10067       if ((r_type != elfcpp::R_ARM_CALL)
10068          && (r_type != elfcpp::R_ARM_JUMP24)
10069          && (r_type != elfcpp::R_ARM_PLT32)
10070          && (r_type != elfcpp::R_ARM_THM_CALL)
10071          && (r_type != elfcpp::R_ARM_THM_XPC22)
10072          && (r_type != elfcpp::R_ARM_THM_JUMP24)
10073          && (r_type != elfcpp::R_ARM_THM_JUMP19)
10074          && (r_type != elfcpp::R_ARM_V4BX))
10075         continue;
10076
10077       section_offset_type offset =
10078         convert_to_section_size_type(reloc.get_r_offset());
10079
10080       if (needs_special_offset_handling)
10081         {
10082           offset = output_section->output_offset(relinfo->object,
10083                                                  relinfo->data_shndx,
10084                                                  offset);
10085           if (offset == -1)
10086             continue;
10087         }
10088
10089       // Create a v4bx stub if --fix-v4bx-interworking is used.
10090       if (r_type == elfcpp::R_ARM_V4BX)
10091         {
10092           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10093             {
10094               // Get the BX instruction.
10095               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10096               const Valtype* wv =
10097                 reinterpret_cast<const Valtype*>(view + offset);
10098               elfcpp::Elf_types<32>::Elf_Swxword insn =
10099                 elfcpp::Swap<32, big_endian>::readval(wv);
10100               const uint32_t reg = (insn & 0xf);
10101
10102               if (reg < 0xf)
10103                 {
10104                   // Try looking up an existing stub from a stub table.
10105                   Stub_table<big_endian>* stub_table =
10106                     arm_object->stub_table(relinfo->data_shndx);
10107                   gold_assert(stub_table != NULL);
10108
10109                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10110                     {
10111                       // create a new stub and add it to stub table.
10112                       Arm_v4bx_stub* stub =
10113                         this->stub_factory().make_arm_v4bx_stub(reg);
10114                       gold_assert(stub != NULL);
10115                       stub_table->add_arm_v4bx_stub(stub);
10116                     }
10117                 }
10118             }
10119           continue;
10120         }
10121
10122       // Get the addend.
10123       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10124       elfcpp::Elf_types<32>::Elf_Swxword addend =
10125         stub_addend_reader(r_type, view + offset, reloc);
10126
10127       const Sized_symbol<32>* sym;
10128
10129       Symbol_value<32> symval;
10130       const Symbol_value<32> *psymval;
10131       if (r_sym < local_count)
10132         {
10133           sym = NULL;
10134           psymval = arm_object->local_symbol(r_sym);
10135
10136           // If the local symbol belongs to a section we are discarding,
10137           // and that section is a debug section, try to find the
10138           // corresponding kept section and map this symbol to its
10139           // counterpart in the kept section.  The symbol must not 
10140           // correspond to a section we are folding.
10141           bool is_ordinary;
10142           unsigned int shndx = psymval->input_shndx(&is_ordinary);
10143           if (is_ordinary
10144               && shndx != elfcpp::SHN_UNDEF
10145               && !arm_object->is_section_included(shndx) 
10146               && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10147             {
10148               if (comdat_behavior == CB_UNDETERMINED)
10149                 {
10150                   std::string name =
10151                     arm_object->section_name(relinfo->data_shndx);
10152                   comdat_behavior = get_comdat_behavior(name.c_str());
10153                 }
10154               if (comdat_behavior == CB_PRETEND)
10155                 {
10156                   bool found;
10157                   typename elfcpp::Elf_types<32>::Elf_Addr value =
10158                     arm_object->map_to_kept_section(shndx, &found);
10159                   if (found)
10160                     symval.set_output_value(value + psymval->input_value());
10161                   else
10162                     symval.set_output_value(0);
10163                 }
10164               else
10165                 {
10166                   symval.set_output_value(0);
10167                 }
10168               symval.set_no_output_symtab_entry();
10169               psymval = &symval;
10170             }
10171         }
10172       else
10173         {
10174           const Symbol* gsym = arm_object->global_symbol(r_sym);
10175           gold_assert(gsym != NULL);
10176           if (gsym->is_forwarder())
10177             gsym = relinfo->symtab->resolve_forwards(gsym);
10178
10179           sym = static_cast<const Sized_symbol<32>*>(gsym);
10180           if (sym->has_symtab_index())
10181             symval.set_output_symtab_index(sym->symtab_index());
10182           else
10183             symval.set_no_output_symtab_entry();
10184
10185           // We need to compute the would-be final value of this global
10186           // symbol.
10187           const Symbol_table* symtab = relinfo->symtab;
10188           const Sized_symbol<32>* sized_symbol =
10189             symtab->get_sized_symbol<32>(gsym);
10190           Symbol_table::Compute_final_value_status status;
10191           Arm_address value =
10192             symtab->compute_final_value<32>(sized_symbol, &status);
10193
10194           // Skip this if the symbol has not output section.
10195           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10196             continue;
10197
10198           symval.set_output_value(value);
10199           psymval = &symval;
10200         }
10201
10202       // If symbol is a section symbol, we don't know the actual type of
10203       // destination.  Give up.
10204       if (psymval->is_section_symbol())
10205         continue;
10206
10207       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10208                                 addend, view_address + offset);
10209     }
10210 }
10211
10212 // Scan an input section for stub generation.
10213
10214 template<bool big_endian>
10215 void
10216 Target_arm<big_endian>::scan_section_for_stubs(
10217     const Relocate_info<32, big_endian>* relinfo,
10218     unsigned int sh_type,
10219     const unsigned char* prelocs,
10220     size_t reloc_count,
10221     Output_section* output_section,
10222     bool needs_special_offset_handling,
10223     const unsigned char* view,
10224     Arm_address view_address,
10225     section_size_type view_size)
10226 {
10227   if (sh_type == elfcpp::SHT_REL)
10228     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10229         relinfo,
10230         prelocs,
10231         reloc_count,
10232         output_section,
10233         needs_special_offset_handling,
10234         view,
10235         view_address,
10236         view_size);
10237   else if (sh_type == elfcpp::SHT_RELA)
10238     // We do not support RELA type relocations yet.  This is provided for
10239     // completeness.
10240     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10241         relinfo,
10242         prelocs,
10243         reloc_count,
10244         output_section,
10245         needs_special_offset_handling,
10246         view,
10247         view_address,
10248         view_size);
10249   else
10250     gold_unreachable();
10251 }
10252
10253 // Group input sections for stub generation.
10254 //
10255 // We goup input sections in an output sections so that the total size,
10256 // including any padding space due to alignment is smaller than GROUP_SIZE
10257 // unless the only input section in group is bigger than GROUP_SIZE already.
10258 // Then an ARM stub table is created to follow the last input section
10259 // in group.  For each group an ARM stub table is created an is placed
10260 // after the last group.  If STUB_ALWATS_AFTER_BRANCH is false, we further
10261 // extend the group after the stub table.
10262
10263 template<bool big_endian>
10264 void
10265 Target_arm<big_endian>::group_sections(
10266     Layout* layout,
10267     section_size_type group_size,
10268     bool stubs_always_after_branch)
10269 {
10270   // Group input sections and insert stub table
10271   Layout::Section_list section_list;
10272   layout->get_allocated_sections(&section_list);
10273   for (Layout::Section_list::const_iterator p = section_list.begin();
10274        p != section_list.end();
10275        ++p)
10276     {
10277       Arm_output_section<big_endian>* output_section =
10278         Arm_output_section<big_endian>::as_arm_output_section(*p);
10279       output_section->group_sections(group_size, stubs_always_after_branch,
10280                                      this);
10281     }
10282 }
10283
10284 // Relaxation hook.  This is where we do stub generation.
10285
10286 template<bool big_endian>
10287 bool
10288 Target_arm<big_endian>::do_relax(
10289     int pass,
10290     const Input_objects* input_objects,
10291     Symbol_table* symtab,
10292     Layout* layout)
10293 {
10294   // No need to generate stubs if this is a relocatable link.
10295   gold_assert(!parameters->options().relocatable());
10296
10297   // If this is the first pass, we need to group input sections into
10298   // stub groups.
10299   bool done_exidx_fixup = false;
10300   if (pass == 1)
10301     {
10302       // Determine the stub group size.  The group size is the absolute
10303       // value of the parameter --stub-group-size.  If --stub-group-size
10304       // is passed a negative value, we restict stubs to be always after
10305       // the stubbed branches.
10306       int32_t stub_group_size_param =
10307         parameters->options().stub_group_size();
10308       bool stubs_always_after_branch = stub_group_size_param < 0;
10309       section_size_type stub_group_size = abs(stub_group_size_param);
10310
10311       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10312       // page as the first half of a 32-bit branch straddling two 4K pages.
10313       // This is a crude way of enforcing that.
10314       if (this->fix_cortex_a8_)
10315         stubs_always_after_branch = true;
10316
10317       if (stub_group_size == 1)
10318         {
10319           // Default value.
10320           // Thumb branch range is +-4MB has to be used as the default
10321           // maximum size (a given section can contain both ARM and Thumb
10322           // code, so the worst case has to be taken into account).  If we are
10323           // fixing cortex-a8 errata, the branch range has to be even smaller,
10324           // since wide conditional branch has a range of +-1MB only.
10325           //
10326           // This value is 24K less than that, which allows for 2025
10327           // 12-byte stubs.  If we exceed that, then we will fail to link.
10328           // The user will have to relink with an explicit group size
10329           // option.
10330           if (this->fix_cortex_a8_)
10331             stub_group_size = 1024276;
10332           else
10333             stub_group_size = 4170000;
10334         }
10335
10336       group_sections(layout, stub_group_size, stubs_always_after_branch);
10337      
10338       // Also fix .ARM.exidx section coverage.
10339       Output_section* os = layout->find_output_section(".ARM.exidx");
10340       if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10341         {
10342           Arm_output_section<big_endian>* exidx_output_section =
10343             Arm_output_section<big_endian>::as_arm_output_section(os);
10344           this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10345           done_exidx_fixup = true;
10346         }
10347     }
10348
10349   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
10350   // beginning of each relaxation pass, just blow away all the stubs.
10351   // Alternatively, we could selectively remove only the stubs and reloc
10352   // information for code sections that have moved since the last pass.
10353   // That would require more book-keeping.
10354   typedef typename Stub_table_list::iterator Stub_table_iterator;
10355   if (this->fix_cortex_a8_)
10356     {
10357       // Clear all Cortex-A8 reloc information.
10358       for (typename Cortex_a8_relocs_info::const_iterator p =
10359              this->cortex_a8_relocs_info_.begin();
10360            p != this->cortex_a8_relocs_info_.end();
10361            ++p)
10362         delete p->second;
10363       this->cortex_a8_relocs_info_.clear();
10364
10365       // Remove all Cortex-A8 stubs.
10366       for (Stub_table_iterator sp = this->stub_tables_.begin();
10367            sp != this->stub_tables_.end();
10368            ++sp)
10369         (*sp)->remove_all_cortex_a8_stubs();
10370     }
10371   
10372   // Scan relocs for relocation stubs
10373   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10374        op != input_objects->relobj_end();
10375        ++op)
10376     {
10377       Arm_relobj<big_endian>* arm_relobj =
10378         Arm_relobj<big_endian>::as_arm_relobj(*op);
10379       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
10380     }
10381
10382   // Check all stub tables to see if any of them have their data sizes
10383   // or addresses alignments changed.  These are the only things that
10384   // matter.
10385   bool any_stub_table_changed = false;
10386   Unordered_set<const Output_section*> sections_needing_adjustment;
10387   for (Stub_table_iterator sp = this->stub_tables_.begin();
10388        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10389        ++sp)
10390     {
10391       if ((*sp)->update_data_size_and_addralign())
10392         {
10393           // Update data size of stub table owner.
10394           Arm_input_section<big_endian>* owner = (*sp)->owner();
10395           uint64_t address = owner->address();
10396           off_t offset = owner->offset();
10397           owner->reset_address_and_file_offset();
10398           owner->set_address_and_file_offset(address, offset);
10399
10400           sections_needing_adjustment.insert(owner->output_section());
10401           any_stub_table_changed = true;
10402         }
10403     }
10404
10405   // Output_section_data::output_section() returns a const pointer but we
10406   // need to update output sections, so we record all output sections needing
10407   // update above and scan the sections here to find out what sections need
10408   // to be updated.
10409   for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10410       p != layout->section_list().end();
10411       ++p)
10412     {
10413       if (sections_needing_adjustment.find(*p)
10414           != sections_needing_adjustment.end())
10415         (*p)->set_section_offsets_need_adjustment();
10416     }
10417
10418   // Stop relaxation if no EXIDX fix-up and no stub table change.
10419   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10420
10421   // Finalize the stubs in the last relaxation pass.
10422   if (!continue_relaxation)
10423     {
10424       for (Stub_table_iterator sp = this->stub_tables_.begin();
10425            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10426             ++sp)
10427         (*sp)->finalize_stubs();
10428
10429       // Update output local symbol counts of objects if necessary.
10430       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10431            op != input_objects->relobj_end();
10432            ++op)
10433         {
10434           Arm_relobj<big_endian>* arm_relobj =
10435             Arm_relobj<big_endian>::as_arm_relobj(*op);
10436
10437           // Update output local symbol counts.  We need to discard local
10438           // symbols defined in parts of input sections that are discarded by
10439           // relaxation.
10440           if (arm_relobj->output_local_symbol_count_needs_update())
10441             arm_relobj->update_output_local_symbol_count();
10442         }
10443     }
10444
10445   return continue_relaxation;
10446 }
10447
10448 // Relocate a stub.
10449
10450 template<bool big_endian>
10451 void
10452 Target_arm<big_endian>::relocate_stub(
10453     Stub* stub,
10454     const Relocate_info<32, big_endian>* relinfo,
10455     Output_section* output_section,
10456     unsigned char* view,
10457     Arm_address address,
10458     section_size_type view_size)
10459 {
10460   Relocate relocate;
10461   const Stub_template* stub_template = stub->stub_template();
10462   for (size_t i = 0; i < stub_template->reloc_count(); i++)
10463     {
10464       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
10465       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
10466
10467       unsigned int r_type = insn->r_type();
10468       section_size_type reloc_offset = stub_template->reloc_offset(i);
10469       section_size_type reloc_size = insn->size();
10470       gold_assert(reloc_offset + reloc_size <= view_size);
10471
10472       // This is the address of the stub destination.
10473       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
10474       Symbol_value<32> symval;
10475       symval.set_output_value(target);
10476
10477       // Synthesize a fake reloc just in case.  We don't have a symbol so
10478       // we use 0.
10479       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
10480       memset(reloc_buffer, 0, sizeof(reloc_buffer));
10481       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
10482       reloc_write.put_r_offset(reloc_offset);
10483       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
10484       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
10485
10486       relocate.relocate(relinfo, this, output_section,
10487                         this->fake_relnum_for_stubs, rel, r_type,
10488                         NULL, &symval, view + reloc_offset,
10489                         address + reloc_offset, reloc_size);
10490     }
10491 }
10492
10493 // Determine whether an object attribute tag takes an integer, a
10494 // string or both.
10495
10496 template<bool big_endian>
10497 int
10498 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
10499 {
10500   if (tag == Object_attribute::Tag_compatibility)
10501     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10502             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
10503   else if (tag == elfcpp::Tag_nodefaults)
10504     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10505             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
10506   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
10507     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
10508   else if (tag < 32)
10509     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
10510   else
10511     return ((tag & 1) != 0
10512             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10513             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10514 }
10515
10516 // Reorder attributes.
10517 //
10518 // The ABI defines that Tag_conformance should be emitted first, and that
10519 // Tag_nodefaults should be second (if either is defined).  This sets those
10520 // two positions, and bumps up the position of all the remaining tags to
10521 // compensate.
10522
10523 template<bool big_endian>
10524 int
10525 Target_arm<big_endian>::do_attributes_order(int num) const
10526 {
10527   // Reorder the known object attributes in output.  We want to move
10528   // Tag_conformance to position 4 and Tag_conformance to position 5
10529   // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10530   if (num == 4)
10531     return elfcpp::Tag_conformance;
10532   if (num == 5)
10533     return elfcpp::Tag_nodefaults;
10534   if ((num - 2) < elfcpp::Tag_nodefaults)
10535     return num - 2;
10536   if ((num - 1) < elfcpp::Tag_conformance)
10537     return num - 1;
10538   return num;
10539 }
10540
10541 // Scan a span of THUMB code for Cortex-A8 erratum.
10542
10543 template<bool big_endian>
10544 void
10545 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
10546     Arm_relobj<big_endian>* arm_relobj,
10547     unsigned int shndx,
10548     section_size_type span_start,
10549     section_size_type span_end,
10550     const unsigned char* view,
10551     Arm_address address)
10552 {
10553   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10554   //
10555   // The opcode is BLX.W, BL.W, B.W, Bcc.W
10556   // The branch target is in the same 4KB region as the
10557   // first half of the branch.
10558   // The instruction before the branch is a 32-bit
10559   // length non-branch instruction.
10560   section_size_type i = span_start;
10561   bool last_was_32bit = false;
10562   bool last_was_branch = false;
10563   while (i < span_end)
10564     {
10565       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10566       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
10567       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
10568       bool is_blx = false, is_b = false;
10569       bool is_bl = false, is_bcc = false;
10570
10571       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
10572       if (insn_32bit)
10573         {
10574           // Load the rest of the insn (in manual-friendly order).
10575           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
10576
10577           // Encoding T4: B<c>.W.
10578           is_b = (insn & 0xf800d000U) == 0xf0009000U;
10579           // Encoding T1: BL<c>.W.
10580           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
10581           // Encoding T2: BLX<c>.W.
10582           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
10583           // Encoding T3: B<c>.W (not permitted in IT block).
10584           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
10585                     && (insn & 0x07f00000U) != 0x03800000U);
10586         }
10587
10588       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
10589                            
10590       // If this instruction is a 32-bit THUMB branch that crosses a 4K
10591       // page boundary and it follows 32-bit non-branch instruction,
10592       // we need to work around.
10593       if (is_32bit_branch
10594           && ((address + i) & 0xfffU) == 0xffeU
10595           && last_was_32bit
10596           && !last_was_branch)
10597         {
10598           // Check to see if there is a relocation stub for this branch.
10599           bool force_target_arm = false;
10600           bool force_target_thumb = false;
10601           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
10602           Cortex_a8_relocs_info::const_iterator p =
10603             this->cortex_a8_relocs_info_.find(address + i);
10604
10605           if (p != this->cortex_a8_relocs_info_.end())
10606             {
10607               cortex_a8_reloc = p->second;
10608               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
10609
10610               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10611                   && !target_is_thumb)
10612                 force_target_arm = true;
10613               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10614                        && target_is_thumb)
10615                 force_target_thumb = true;
10616             }
10617
10618           off_t offset;
10619           Stub_type stub_type = arm_stub_none;
10620
10621           // Check if we have an offending branch instruction.
10622           uint16_t upper_insn = (insn >> 16) & 0xffffU;
10623           uint16_t lower_insn = insn & 0xffffU;
10624           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10625
10626           if (cortex_a8_reloc != NULL
10627               && cortex_a8_reloc->reloc_stub() != NULL)
10628             // We've already made a stub for this instruction, e.g.
10629             // it's a long branch or a Thumb->ARM stub.  Assume that
10630             // stub will suffice to work around the A8 erratum (see
10631             // setting of always_after_branch above).
10632             ;
10633           else if (is_bcc)
10634             {
10635               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
10636                                                               lower_insn);
10637               stub_type = arm_stub_a8_veneer_b_cond;
10638             }
10639           else if (is_b || is_bl || is_blx)
10640             {
10641               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
10642                                                          lower_insn);
10643               if (is_blx)
10644                 offset &= ~3;
10645
10646               stub_type = (is_blx
10647                            ? arm_stub_a8_veneer_blx
10648                            : (is_bl
10649                               ? arm_stub_a8_veneer_bl
10650                               : arm_stub_a8_veneer_b));
10651             }
10652
10653           if (stub_type != arm_stub_none)
10654             {
10655               Arm_address pc_for_insn = address + i + 4;
10656
10657               // The original instruction is a BL, but the target is
10658               // an ARM instruction.  If we were not making a stub,
10659               // the BL would have been converted to a BLX.  Use the
10660               // BLX stub instead in that case.
10661               if (this->may_use_blx() && force_target_arm
10662                   && stub_type == arm_stub_a8_veneer_bl)
10663                 {
10664                   stub_type = arm_stub_a8_veneer_blx;
10665                   is_blx = true;
10666                   is_bl = false;
10667                 }
10668               // Conversely, if the original instruction was
10669               // BLX but the target is Thumb mode, use the BL stub.
10670               else if (force_target_thumb
10671                        && stub_type == arm_stub_a8_veneer_blx)
10672                 {
10673                   stub_type = arm_stub_a8_veneer_bl;
10674                   is_blx = false;
10675                   is_bl = true;
10676                 }
10677
10678               if (is_blx)
10679                 pc_for_insn &= ~3;
10680
10681               // If we found a relocation, use the proper destination,
10682               // not the offset in the (unrelocated) instruction.
10683               // Note this is always done if we switched the stub type above.
10684               if (cortex_a8_reloc != NULL)
10685                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
10686
10687               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
10688
10689               // Add a new stub if destination address in in the same page.
10690               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
10691                 {
10692                   Cortex_a8_stub* stub =
10693                     this->stub_factory_.make_cortex_a8_stub(stub_type,
10694                                                             arm_relobj, shndx,
10695                                                             address + i,
10696                                                             target, insn);
10697                   Stub_table<big_endian>* stub_table =
10698                     arm_relobj->stub_table(shndx);
10699                   gold_assert(stub_table != NULL);
10700                   stub_table->add_cortex_a8_stub(address + i, stub);
10701                 }
10702             }
10703         }
10704
10705       i += insn_32bit ? 4 : 2;
10706       last_was_32bit = insn_32bit;
10707       last_was_branch = is_32bit_branch;
10708     }
10709 }
10710
10711 // Apply the Cortex-A8 workaround.
10712
10713 template<bool big_endian>
10714 void
10715 Target_arm<big_endian>::apply_cortex_a8_workaround(
10716     const Cortex_a8_stub* stub,
10717     Arm_address stub_address,
10718     unsigned char* insn_view,
10719     Arm_address insn_address)
10720 {
10721   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10722   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
10723   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
10724   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
10725   off_t branch_offset = stub_address - (insn_address + 4);
10726
10727   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10728   switch (stub->stub_template()->type())
10729     {
10730     case arm_stub_a8_veneer_b_cond:
10731       gold_assert(!utils::has_overflow<21>(branch_offset));
10732       upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
10733                                                          branch_offset);
10734       lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
10735                                                          branch_offset);
10736       break;
10737
10738     case arm_stub_a8_veneer_b:
10739     case arm_stub_a8_veneer_bl:
10740     case arm_stub_a8_veneer_blx:
10741       if ((lower_insn & 0x5000U) == 0x4000U)
10742         // For a BLX instruction, make sure that the relocation is
10743         // rounded up to a word boundary.  This follows the semantics of
10744         // the instruction which specifies that bit 1 of the target
10745         // address will come from bit 1 of the base address.
10746         branch_offset = (branch_offset + 2) & ~3;
10747
10748       // Put BRANCH_OFFSET back into the insn.
10749       gold_assert(!utils::has_overflow<25>(branch_offset));
10750       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
10751       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
10752       break;
10753
10754     default:
10755       gold_unreachable();
10756     }
10757
10758   // Put the relocated value back in the object file:
10759   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
10760   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
10761 }
10762
10763 template<bool big_endian>
10764 class Target_selector_arm : public Target_selector
10765 {
10766  public:
10767   Target_selector_arm()
10768     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
10769                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
10770   { }
10771
10772   Target*
10773   do_instantiate_target()
10774   { return new Target_arm<big_endian>(); }
10775 };
10776
10777 // Fix .ARM.exidx section coverage.
10778
10779 template<bool big_endian>
10780 void
10781 Target_arm<big_endian>::fix_exidx_coverage(
10782     Layout* layout,
10783     Arm_output_section<big_endian>* exidx_section,
10784     Symbol_table* symtab)
10785 {
10786   // We need to look at all the input sections in output in ascending
10787   // order of of output address.  We do that by building a sorted list
10788   // of output sections by addresses.  Then we looks at the output sections
10789   // in order.  The input sections in an output section are already sorted
10790   // by addresses within the output section.
10791
10792   typedef std::set<Output_section*, output_section_address_less_than>
10793       Sorted_output_section_list;
10794   Sorted_output_section_list sorted_output_sections;
10795   Layout::Section_list section_list;
10796   layout->get_allocated_sections(&section_list);
10797   for (Layout::Section_list::const_iterator p = section_list.begin();
10798        p != section_list.end();
10799        ++p)
10800     {
10801       // We only care about output sections that contain executable code.
10802       if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
10803         sorted_output_sections.insert(*p);
10804     }
10805
10806   // Go over the output sections in ascending order of output addresses.
10807   typedef typename Arm_output_section<big_endian>::Text_section_list
10808       Text_section_list;
10809   Text_section_list sorted_text_sections;
10810   for(typename Sorted_output_section_list::iterator p =
10811         sorted_output_sections.begin();
10812       p != sorted_output_sections.end();
10813       ++p)
10814     {
10815       Arm_output_section<big_endian>* arm_output_section =
10816         Arm_output_section<big_endian>::as_arm_output_section(*p);
10817       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
10818     } 
10819
10820   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab);
10821 }
10822
10823 Target_selector_arm<false> target_selector_arm;
10824 Target_selector_arm<true> target_selector_armbe;
10825
10826 } // End anonymous namespace.