1 // arm.cc -- arm target support for gold.
3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
61 template<bool big_endian>
62 class Output_data_plt_arm;
64 template<bool big_endian>
65 class Output_data_plt_arm_short;
67 template<bool big_endian>
68 class Output_data_plt_arm_long;
70 template<bool big_endian>
73 template<bool big_endian>
74 class Arm_input_section;
76 class Arm_exidx_cantunwind;
78 class Arm_exidx_merged_section;
80 class Arm_exidx_fixup;
82 template<bool big_endian>
83 class Arm_output_section;
85 class Arm_exidx_input_section;
87 template<bool big_endian>
90 template<bool big_endian>
91 class Arm_relocate_functions;
93 template<bool big_endian>
94 class Arm_output_data_got;
96 template<bool big_endian>
100 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
102 // Maximum branch offsets for ARM, THUMB and THUMB2.
103 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
104 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
105 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
106 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
107 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
108 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
110 // Thread Control Block size.
111 const size_t ARM_TCB_SIZE = 8;
113 // The arm target class.
115 // This is a very simple port of gold for ARM-EABI. It is intended for
116 // supporting Android only for the time being.
119 // - Implement all static relocation types documented in arm-reloc.def.
120 // - Make PLTs more flexible for different architecture features like
122 // There are probably a lot more.
124 // Ideally we would like to avoid using global variables but this is used
125 // very in many places and sometimes in loops. If we use a function
126 // returning a static instance of Arm_reloc_property_table, it will be very
127 // slow in an threaded environment since the static instance needs to be
128 // locked. The pointer is below initialized in the
129 // Target::do_select_as_default_target() hook so that we do not spend time
130 // building the table if we are not linking ARM objects.
132 // An alternative is to to process the information in arm-reloc.def in
133 // compilation time and generate a representation of it in PODs only. That
134 // way we can avoid initialization when the linker starts.
136 Arm_reloc_property_table* arm_reloc_property_table = NULL;
138 // Instruction template class. This class is similar to the insn_sequence
139 // struct in bfd/elf32-arm.c.
144 // Types of instruction templates.
148 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
149 // templates with class-specific semantics. Currently this is used
150 // only by the Cortex_a8_stub class for handling condition codes in
151 // conditional branches.
152 THUMB16_SPECIAL_TYPE,
158 // Factory methods to create instruction templates in different formats.
160 static const Insn_template
161 thumb16_insn(uint32_t data)
162 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
164 // A Thumb conditional branch, in which the proper condition is inserted
165 // when we build the stub.
166 static const Insn_template
167 thumb16_bcond_insn(uint32_t data)
168 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
170 static const Insn_template
171 thumb32_insn(uint32_t data)
172 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
174 static const Insn_template
175 thumb32_b_insn(uint32_t data, int reloc_addend)
177 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
181 static const Insn_template
182 arm_insn(uint32_t data)
183 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
185 static const Insn_template
186 arm_rel_insn(unsigned data, int reloc_addend)
187 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
189 static const Insn_template
190 data_word(unsigned data, unsigned int r_type, int reloc_addend)
191 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
193 // Accessors. This class is used for read-only objects so no modifiers
198 { return this->data_; }
200 // Return the instruction sequence type of this.
203 { return this->type_; }
205 // Return the ARM relocation type of this.
208 { return this->r_type_; }
212 { return this->reloc_addend_; }
214 // Return size of instruction template in bytes.
218 // Return byte-alignment of instruction template.
223 // We make the constructor private to ensure that only the factory
226 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
227 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
230 // Instruction specific data. This is used to store information like
231 // some of the instruction bits.
233 // Instruction template type.
235 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
236 unsigned int r_type_;
237 // Relocation addend.
238 int32_t reloc_addend_;
241 // Macro for generating code to stub types. One entry per long/short
245 DEF_STUB(long_branch_any_any) \
246 DEF_STUB(long_branch_v4t_arm_thumb) \
247 DEF_STUB(long_branch_thumb_only) \
248 DEF_STUB(long_branch_v4t_thumb_thumb) \
249 DEF_STUB(long_branch_v4t_thumb_arm) \
250 DEF_STUB(short_branch_v4t_thumb_arm) \
251 DEF_STUB(long_branch_any_arm_pic) \
252 DEF_STUB(long_branch_any_thumb_pic) \
253 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
254 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
255 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
256 DEF_STUB(long_branch_thumb_only_pic) \
257 DEF_STUB(a8_veneer_b_cond) \
258 DEF_STUB(a8_veneer_b) \
259 DEF_STUB(a8_veneer_bl) \
260 DEF_STUB(a8_veneer_blx) \
261 DEF_STUB(v4_veneer_bx)
265 #define DEF_STUB(x) arm_stub_##x,
271 // First reloc stub type.
272 arm_stub_reloc_first = arm_stub_long_branch_any_any,
273 // Last reloc stub type.
274 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
276 // First Cortex-A8 stub type.
277 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
278 // Last Cortex-A8 stub type.
279 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
282 arm_stub_type_last = arm_stub_v4_veneer_bx
286 // Stub template class. Templates are meant to be read-only objects.
287 // A stub template for a stub type contains all read-only attributes
288 // common to all stubs of the same type.
293 Stub_template(Stub_type, const Insn_template*, size_t);
301 { return this->type_; }
303 // Return an array of instruction templates.
306 { return this->insns_; }
308 // Return size of template in number of instructions.
311 { return this->insn_count_; }
313 // Return size of template in bytes.
316 { return this->size_; }
318 // Return alignment of the stub template.
321 { return this->alignment_; }
323 // Return whether entry point is in thumb mode.
325 entry_in_thumb_mode() const
326 { return this->entry_in_thumb_mode_; }
328 // Return number of relocations in this template.
331 { return this->relocs_.size(); }
333 // Return index of the I-th instruction with relocation.
335 reloc_insn_index(size_t i) const
337 gold_assert(i < this->relocs_.size());
338 return this->relocs_[i].first;
341 // Return the offset of the I-th instruction with relocation from the
342 // beginning of the stub.
344 reloc_offset(size_t i) const
346 gold_assert(i < this->relocs_.size());
347 return this->relocs_[i].second;
351 // This contains information about an instruction template with a relocation
352 // and its offset from start of stub.
353 typedef std::pair<size_t, section_size_type> Reloc;
355 // A Stub_template may not be copied. We want to share templates as much
357 Stub_template(const Stub_template&);
358 Stub_template& operator=(const Stub_template&);
362 // Points to an array of Insn_templates.
363 const Insn_template* insns_;
364 // Number of Insn_templates in insns_[].
366 // Size of templated instructions in bytes.
368 // Alignment of templated instructions.
370 // Flag to indicate if entry is in thumb mode.
371 bool entry_in_thumb_mode_;
372 // A table of reloc instruction indices and offsets. We can find these by
373 // looking at the instruction templates but we pre-compute and then stash
374 // them here for speed.
375 std::vector<Reloc> relocs_;
379 // A class for code stubs. This is a base class for different type of
380 // stubs used in the ARM target.
386 static const section_offset_type invalid_offset =
387 static_cast<section_offset_type>(-1);
390 Stub(const Stub_template* stub_template)
391 : stub_template_(stub_template), offset_(invalid_offset)
398 // Return the stub template.
400 stub_template() const
401 { return this->stub_template_; }
403 // Return offset of code stub from beginning of its containing stub table.
407 gold_assert(this->offset_ != invalid_offset);
408 return this->offset_;
411 // Set offset of code stub from beginning of its containing stub table.
413 set_offset(section_offset_type offset)
414 { this->offset_ = offset; }
416 // Return the relocation target address of the i-th relocation in the
417 // stub. This must be defined in a child class.
419 reloc_target(size_t i)
420 { return this->do_reloc_target(i); }
422 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
424 write(unsigned char* view, section_size_type view_size, bool big_endian)
425 { this->do_write(view, view_size, big_endian); }
427 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
428 // for the i-th instruction.
430 thumb16_special(size_t i)
431 { return this->do_thumb16_special(i); }
434 // This must be defined in the child class.
436 do_reloc_target(size_t) = 0;
438 // This may be overridden in the child class.
440 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
443 this->do_fixed_endian_write<true>(view, view_size);
445 this->do_fixed_endian_write<false>(view, view_size);
448 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
449 // instruction template.
451 do_thumb16_special(size_t)
452 { gold_unreachable(); }
455 // A template to implement do_write.
456 template<bool big_endian>
458 do_fixed_endian_write(unsigned char*, section_size_type);
461 const Stub_template* stub_template_;
462 // Offset within the section of containing this stub.
463 section_offset_type offset_;
466 // Reloc stub class. These are stubs we use to fix up relocation because
467 // of limited branch ranges.
469 class Reloc_stub : public Stub
472 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
473 // We assume we never jump to this address.
474 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
476 // Return destination address.
478 destination_address() const
480 gold_assert(this->destination_address_ != this->invalid_address);
481 return this->destination_address_;
484 // Set destination address.
486 set_destination_address(Arm_address address)
488 gold_assert(address != this->invalid_address);
489 this->destination_address_ = address;
492 // Reset destination address.
494 reset_destination_address()
495 { this->destination_address_ = this->invalid_address; }
497 // Determine stub type for a branch of a relocation of R_TYPE going
498 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
499 // the branch target is a thumb instruction. TARGET is used for look
500 // up ARM-specific linker settings.
502 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
503 Arm_address branch_target, bool target_is_thumb);
505 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
506 // and an addend. Since we treat global and local symbol differently, we
507 // use a Symbol object for a global symbol and a object-index pair for
512 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
513 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
514 // and R_SYM must not be invalid_index.
515 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
516 unsigned int r_sym, int32_t addend)
517 : stub_type_(stub_type), addend_(addend)
521 this->r_sym_ = Reloc_stub::invalid_index;
522 this->u_.symbol = symbol;
526 gold_assert(relobj != NULL && r_sym != invalid_index);
527 this->r_sym_ = r_sym;
528 this->u_.relobj = relobj;
535 // Accessors: Keys are meant to be read-only object so no modifiers are
541 { return this->stub_type_; }
543 // Return the local symbol index or invalid_index.
546 { return this->r_sym_; }
548 // Return the symbol if there is one.
551 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
553 // Return the relobj if there is one.
556 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
558 // Whether this equals to another key k.
560 eq(const Key& k) const
562 return ((this->stub_type_ == k.stub_type_)
563 && (this->r_sym_ == k.r_sym_)
564 && ((this->r_sym_ != Reloc_stub::invalid_index)
565 ? (this->u_.relobj == k.u_.relobj)
566 : (this->u_.symbol == k.u_.symbol))
567 && (this->addend_ == k.addend_));
570 // Return a hash value.
574 return (this->stub_type_
576 ^ gold::string_hash<char>(
577 (this->r_sym_ != Reloc_stub::invalid_index)
578 ? this->u_.relobj->name().c_str()
579 : this->u_.symbol->name())
583 // Functors for STL associative containers.
587 operator()(const Key& k) const
588 { return k.hash_value(); }
594 operator()(const Key& k1, const Key& k2) const
595 { return k1.eq(k2); }
598 // Name of key. This is mainly for debugging.
600 name() const ATTRIBUTE_UNUSED;
604 Stub_type stub_type_;
605 // If this is a local symbol, this is the index in the defining object.
606 // Otherwise, it is invalid_index for a global symbol.
608 // If r_sym_ is an invalid index, this points to a global symbol.
609 // Otherwise, it points to a relobj. We used the unsized and target
610 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
611 // Arm_relobj, in order to avoid making the stub class a template
612 // as most of the stub machinery is endianness-neutral. However, it
613 // may require a bit of casting done by users of this class.
616 const Symbol* symbol;
617 const Relobj* relobj;
619 // Addend associated with a reloc.
624 // Reloc_stubs are created via a stub factory. So these are protected.
625 Reloc_stub(const Stub_template* stub_template)
626 : Stub(stub_template), destination_address_(invalid_address)
632 friend class Stub_factory;
634 // Return the relocation target address of the i-th relocation in the
637 do_reloc_target(size_t i)
639 // All reloc stub have only one relocation.
641 return this->destination_address_;
645 // Address of destination.
646 Arm_address destination_address_;
649 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
650 // THUMB branch that meets the following conditions:
652 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
653 // branch address is 0xffe.
654 // 2. The branch target address is in the same page as the first word of the
656 // 3. The branch follows a 32-bit instruction which is not a branch.
658 // To do the fix up, we need to store the address of the branch instruction
659 // and its target at least. We also need to store the original branch
660 // instruction bits for the condition code in a conditional branch. The
661 // condition code is used in a special instruction template. We also want
662 // to identify input sections needing Cortex-A8 workaround quickly. We store
663 // extra information about object and section index of the code section
664 // containing a branch being fixed up. The information is used to mark
665 // the code section when we finalize the Cortex-A8 stubs.
668 class Cortex_a8_stub : public Stub
674 // Return the object of the code section containing the branch being fixed
678 { return this->relobj_; }
680 // Return the section index of the code section containing the branch being
684 { return this->shndx_; }
686 // Return the source address of stub. This is the address of the original
687 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
690 source_address() const
691 { return this->source_address_; }
693 // Return the destination address of the stub. This is the branch taken
694 // address of the original branch instruction. LSB is 1 if it is a THUMB
695 // instruction address.
697 destination_address() const
698 { return this->destination_address_; }
700 // Return the instruction being fixed up.
702 original_insn() const
703 { return this->original_insn_; }
706 // Cortex_a8_stubs are created via a stub factory. So these are protected.
707 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
708 unsigned int shndx, Arm_address source_address,
709 Arm_address destination_address, uint32_t original_insn)
710 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
711 source_address_(source_address | 1U),
712 destination_address_(destination_address),
713 original_insn_(original_insn)
716 friend class Stub_factory;
718 // Return the relocation target address of the i-th relocation in the
721 do_reloc_target(size_t i)
723 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
725 // The conditional branch veneer has two relocations.
727 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
731 // All other Cortex-A8 stubs have only one relocation.
733 return this->destination_address_;
737 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
739 do_thumb16_special(size_t);
742 // Object of the code section containing the branch being fixed up.
744 // Section index of the code section containing the branch begin fixed up.
746 // Source address of original branch.
747 Arm_address source_address_;
748 // Destination address of the original branch.
749 Arm_address destination_address_;
750 // Original branch instruction. This is needed for copying the condition
751 // code from a condition branch to its stub.
752 uint32_t original_insn_;
755 // ARMv4 BX Rx branch relocation stub class.
756 class Arm_v4bx_stub : public Stub
762 // Return the associated register.
765 { return this->reg_; }
768 // Arm V4BX stubs are created via a stub factory. So these are protected.
769 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
770 : Stub(stub_template), reg_(reg)
773 friend class Stub_factory;
775 // Return the relocation target address of the i-th relocation in the
778 do_reloc_target(size_t)
779 { gold_unreachable(); }
781 // This may be overridden in the child class.
783 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
786 this->do_fixed_endian_v4bx_write<true>(view, view_size);
788 this->do_fixed_endian_v4bx_write<false>(view, view_size);
792 // A template to implement do_write.
793 template<bool big_endian>
795 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
797 const Insn_template* insns = this->stub_template()->insns();
798 elfcpp::Swap<32, big_endian>::writeval(view,
800 + (this->reg_ << 16)));
801 view += insns[0].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[1].data() + this->reg_));
804 view += insns[1].size();
805 elfcpp::Swap<32, big_endian>::writeval(view,
806 (insns[2].data() + this->reg_));
809 // A register index (r0-r14), which is associated with the stub.
813 // Stub factory class.
818 // Return the unique instance of this class.
819 static const Stub_factory&
822 static Stub_factory singleton;
826 // Make a relocation stub.
828 make_reloc_stub(Stub_type stub_type) const
830 gold_assert(stub_type >= arm_stub_reloc_first
831 && stub_type <= arm_stub_reloc_last);
832 return new Reloc_stub(this->stub_templates_[stub_type]);
835 // Make a Cortex-A8 stub.
837 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
838 Arm_address source, Arm_address destination,
839 uint32_t original_insn) const
841 gold_assert(stub_type >= arm_stub_cortex_a8_first
842 && stub_type <= arm_stub_cortex_a8_last);
843 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
844 source, destination, original_insn);
847 // Make an ARM V4BX relocation stub.
848 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
850 make_arm_v4bx_stub(uint32_t reg) const
852 gold_assert(reg < 0xf);
853 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
858 // Constructor and destructor are protected since we only return a single
859 // instance created in Stub_factory::get_instance().
863 // A Stub_factory may not be copied since it is a singleton.
864 Stub_factory(const Stub_factory&);
865 Stub_factory& operator=(Stub_factory&);
867 // Stub templates. These are initialized in the constructor.
868 const Stub_template* stub_templates_[arm_stub_type_last+1];
871 // A class to hold stubs for the ARM target.
873 template<bool big_endian>
874 class Stub_table : public Output_data
877 Stub_table(Arm_input_section<big_endian>* owner)
878 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
879 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
880 prev_data_size_(0), prev_addralign_(1)
886 // Owner of this stub table.
887 Arm_input_section<big_endian>*
889 { return this->owner_; }
891 // Whether this stub table is empty.
895 return (this->reloc_stubs_.empty()
896 && this->cortex_a8_stubs_.empty()
897 && this->arm_v4bx_stubs_.empty());
900 // Return the current data size.
902 current_data_size() const
903 { return this->current_data_size_for_child(); }
905 // Add a STUB using KEY. The caller is responsible for avoiding addition
906 // if a STUB with the same key has already been added.
908 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
910 const Stub_template* stub_template = stub->stub_template();
911 gold_assert(stub_template->type() == key.stub_type());
912 this->reloc_stubs_[key] = stub;
914 // Assign stub offset early. We can do this because we never remove
915 // reloc stubs and they are in the beginning of the stub table.
916 uint64_t align = stub_template->alignment();
917 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
918 stub->set_offset(this->reloc_stubs_size_);
919 this->reloc_stubs_size_ += stub_template->size();
920 this->reloc_stubs_addralign_ =
921 std::max(this->reloc_stubs_addralign_, align);
924 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
925 // The caller is responsible for avoiding addition if a STUB with the same
926 // address has already been added.
928 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
930 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
931 this->cortex_a8_stubs_.insert(value);
934 // Add an ARM V4BX relocation stub. A register index will be retrieved
937 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
939 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
940 this->arm_v4bx_stubs_[stub->reg()] = stub;
943 // Remove all Cortex-A8 stubs.
945 remove_all_cortex_a8_stubs();
947 // Look up a relocation stub using KEY. Return NULL if there is none.
949 find_reloc_stub(const Reloc_stub::Key& key) const
951 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
952 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
955 // Look up an arm v4bx relocation stub using the register index.
956 // Return NULL if there is none.
958 find_arm_v4bx_stub(const uint32_t reg) const
960 gold_assert(reg < 0xf);
961 return this->arm_v4bx_stubs_[reg];
964 // Relocate stubs in this stub table.
966 relocate_stubs(const Relocate_info<32, big_endian>*,
967 Target_arm<big_endian>*, Output_section*,
968 unsigned char*, Arm_address, section_size_type);
970 // Update data size and alignment at the end of a relaxation pass. Return
971 // true if either data size or alignment is different from that of the
972 // previous relaxation pass.
974 update_data_size_and_addralign();
976 // Finalize stubs. Set the offsets of all stubs and mark input sections
977 // needing the Cortex-A8 workaround.
981 // Apply Cortex-A8 workaround to an address range.
983 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
984 unsigned char*, Arm_address,
988 // Write out section contents.
990 do_write(Output_file*);
992 // Return the required alignment.
995 { return this->prev_addralign_; }
997 // Reset address and file offset.
999 do_reset_address_and_file_offset()
1000 { this->set_current_data_size_for_child(this->prev_data_size_); }
1002 // Set final data size.
1004 set_final_data_size()
1005 { this->set_data_size(this->current_data_size()); }
1008 // Relocate one stub.
1010 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1011 Target_arm<big_endian>*, Output_section*,
1012 unsigned char*, Arm_address, section_size_type);
1014 // Unordered map of relocation stubs.
1016 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1017 Reloc_stub::Key::equal_to>
1020 // List of Cortex-A8 stubs ordered by addresses of branches being
1021 // fixed up in output.
1022 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1023 // List of Arm V4BX relocation stubs ordered by associated registers.
1024 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1026 // Owner of this stub table.
1027 Arm_input_section<big_endian>* owner_;
1028 // The relocation stubs.
1029 Reloc_stub_map reloc_stubs_;
1030 // Size of reloc stubs.
1031 off_t reloc_stubs_size_;
1032 // Maximum address alignment of reloc stubs.
1033 uint64_t reloc_stubs_addralign_;
1034 // The cortex_a8_stubs.
1035 Cortex_a8_stub_list cortex_a8_stubs_;
1036 // The Arm V4BX relocation stubs.
1037 Arm_v4bx_stub_list arm_v4bx_stubs_;
1038 // data size of this in the previous pass.
1039 off_t prev_data_size_;
1040 // address alignment of this in the previous pass.
1041 uint64_t prev_addralign_;
1044 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1045 // we add to the end of an EXIDX input section that goes into the output.
1047 class Arm_exidx_cantunwind : public Output_section_data
1050 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1051 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1054 // Return the object containing the section pointed by this.
1057 { return this->relobj_; }
1059 // Return the section index of the section pointed by this.
1062 { return this->shndx_; }
1066 do_write(Output_file* of)
1068 if (parameters->target().is_big_endian())
1069 this->do_fixed_endian_write<true>(of);
1071 this->do_fixed_endian_write<false>(of);
1074 // Write to a map file.
1076 do_print_to_mapfile(Mapfile* mapfile) const
1077 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1080 // Implement do_write for a given endianness.
1081 template<bool big_endian>
1083 do_fixed_endian_write(Output_file*);
1085 // The object containing the section pointed by this.
1087 // The section index of the section pointed by this.
1088 unsigned int shndx_;
1091 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1092 // Offset map is used to map input section offset within the EXIDX section
1093 // to the output offset from the start of this EXIDX section.
1095 typedef std::map<section_offset_type, section_offset_type>
1096 Arm_exidx_section_offset_map;
1098 // Arm_exidx_merged_section class. This represents an EXIDX input section
1099 // with some of its entries merged.
1101 class Arm_exidx_merged_section : public Output_relaxed_input_section
1104 // Constructor for Arm_exidx_merged_section.
1105 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1106 // SECTION_OFFSET_MAP points to a section offset map describing how
1107 // parts of the input section are mapped to output. DELETED_BYTES is
1108 // the number of bytes deleted from the EXIDX input section.
1109 Arm_exidx_merged_section(
1110 const Arm_exidx_input_section& exidx_input_section,
1111 const Arm_exidx_section_offset_map& section_offset_map,
1112 uint32_t deleted_bytes);
1114 // Build output contents.
1116 build_contents(const unsigned char*, section_size_type);
1118 // Return the original EXIDX input section.
1119 const Arm_exidx_input_section&
1120 exidx_input_section() const
1121 { return this->exidx_input_section_; }
1123 // Return the section offset map.
1124 const Arm_exidx_section_offset_map&
1125 section_offset_map() const
1126 { return this->section_offset_map_; }
1129 // Write merged section into file OF.
1131 do_write(Output_file* of);
1134 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1135 section_offset_type*) const;
1138 // Original EXIDX input section.
1139 const Arm_exidx_input_section& exidx_input_section_;
1140 // Section offset map.
1141 const Arm_exidx_section_offset_map& section_offset_map_;
1142 // Merged section contents. We need to keep build the merged section
1143 // and save it here to avoid accessing the original EXIDX section when
1144 // we cannot lock the sections' object.
1145 unsigned char* section_contents_;
1148 // A class to wrap an ordinary input section containing executable code.
1150 template<bool big_endian>
1151 class Arm_input_section : public Output_relaxed_input_section
1154 Arm_input_section(Relobj* relobj, unsigned int shndx)
1155 : Output_relaxed_input_section(relobj, shndx, 1),
1156 original_addralign_(1), original_size_(0), stub_table_(NULL),
1157 original_contents_(NULL)
1160 ~Arm_input_section()
1161 { delete[] this->original_contents_; }
1167 // Whether this is a stub table owner.
1169 is_stub_table_owner() const
1170 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1172 // Return the stub table.
1173 Stub_table<big_endian>*
1175 { return this->stub_table_; }
1177 // Set the stub_table.
1179 set_stub_table(Stub_table<big_endian>* stub_table)
1180 { this->stub_table_ = stub_table; }
1182 // Downcast a base pointer to an Arm_input_section pointer. This is
1183 // not type-safe but we only use Arm_input_section not the base class.
1184 static Arm_input_section<big_endian>*
1185 as_arm_input_section(Output_relaxed_input_section* poris)
1186 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1188 // Return the original size of the section.
1190 original_size() const
1191 { return this->original_size_; }
1194 // Write data to output file.
1196 do_write(Output_file*);
1198 // Return required alignment of this.
1200 do_addralign() const
1202 if (this->is_stub_table_owner())
1203 return std::max(this->stub_table_->addralign(),
1204 static_cast<uint64_t>(this->original_addralign_));
1206 return this->original_addralign_;
1209 // Finalize data size.
1211 set_final_data_size();
1213 // Reset address and file offset.
1215 do_reset_address_and_file_offset();
1219 do_output_offset(const Relobj* object, unsigned int shndx,
1220 section_offset_type offset,
1221 section_offset_type* poutput) const
1223 if ((object == this->relobj())
1224 && (shndx == this->shndx())
1227 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1237 // Copying is not allowed.
1238 Arm_input_section(const Arm_input_section&);
1239 Arm_input_section& operator=(const Arm_input_section&);
1241 // Address alignment of the original input section.
1242 uint32_t original_addralign_;
1243 // Section size of the original input section.
1244 uint32_t original_size_;
1246 Stub_table<big_endian>* stub_table_;
1247 // Original section contents. We have to make a copy here since the file
1248 // containing the original section may not be locked when we need to access
1250 unsigned char* original_contents_;
1253 // Arm_exidx_fixup class. This is used to define a number of methods
1254 // and keep states for fixing up EXIDX coverage.
1256 class Arm_exidx_fixup
1259 Arm_exidx_fixup(Output_section* exidx_output_section,
1260 bool merge_exidx_entries = true)
1261 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1262 last_inlined_entry_(0), last_input_section_(NULL),
1263 section_offset_map_(NULL), first_output_text_section_(NULL),
1264 merge_exidx_entries_(merge_exidx_entries)
1268 { delete this->section_offset_map_; }
1270 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1271 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1272 // number of bytes to be deleted in output. If parts of the input EXIDX
1273 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1274 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1275 // responsible for releasing it.
1276 template<bool big_endian>
1278 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1279 const unsigned char* section_contents,
1280 section_size_type section_size,
1281 Arm_exidx_section_offset_map** psection_offset_map);
1283 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1284 // input section, if there is not one already.
1286 add_exidx_cantunwind_as_needed();
1288 // Return the output section for the text section which is linked to the
1289 // first exidx input in output.
1291 first_output_text_section() const
1292 { return this->first_output_text_section_; }
1295 // Copying is not allowed.
1296 Arm_exidx_fixup(const Arm_exidx_fixup&);
1297 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1299 // Type of EXIDX unwind entry.
1304 // EXIDX_CANTUNWIND.
1305 UT_EXIDX_CANTUNWIND,
1312 // Process an EXIDX entry. We only care about the second word of the
1313 // entry. Return true if the entry can be deleted.
1315 process_exidx_entry(uint32_t second_word);
1317 // Update the current section offset map during EXIDX section fix-up.
1318 // If there is no map, create one. INPUT_OFFSET is the offset of a
1319 // reference point, DELETED_BYTES is the number of deleted by in the
1320 // section so far. If DELETE_ENTRY is true, the reference point and
1321 // all offsets after the previous reference point are discarded.
1323 update_offset_map(section_offset_type input_offset,
1324 section_size_type deleted_bytes, bool delete_entry);
1326 // EXIDX output section.
1327 Output_section* exidx_output_section_;
1328 // Unwind type of the last EXIDX entry processed.
1329 Unwind_type last_unwind_type_;
1330 // Last seen inlined EXIDX entry.
1331 uint32_t last_inlined_entry_;
1332 // Last processed EXIDX input section.
1333 const Arm_exidx_input_section* last_input_section_;
1334 // Section offset map created in process_exidx_section.
1335 Arm_exidx_section_offset_map* section_offset_map_;
1336 // Output section for the text section which is linked to the first exidx
1338 Output_section* first_output_text_section_;
1340 bool merge_exidx_entries_;
1343 // Arm output section class. This is defined mainly to add a number of
1344 // stub generation methods.
1346 template<bool big_endian>
1347 class Arm_output_section : public Output_section
1350 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1352 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1353 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1354 elfcpp::Elf_Xword flags)
1355 : Output_section(name, type,
1356 (type == elfcpp::SHT_ARM_EXIDX
1357 ? flags | elfcpp::SHF_LINK_ORDER
1360 if (type == elfcpp::SHT_ARM_EXIDX)
1361 this->set_always_keeps_input_sections();
1364 ~Arm_output_section()
1367 // Group input sections for stub generation.
1369 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1371 // Downcast a base pointer to an Arm_output_section pointer. This is
1372 // not type-safe but we only use Arm_output_section not the base class.
1373 static Arm_output_section<big_endian>*
1374 as_arm_output_section(Output_section* os)
1375 { return static_cast<Arm_output_section<big_endian>*>(os); }
1377 // Append all input text sections in this into LIST.
1379 append_text_sections_to_list(Text_section_list* list);
1381 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1382 // is a list of text input sections sorted in ascending order of their
1383 // output addresses.
1385 fix_exidx_coverage(Layout* layout,
1386 const Text_section_list& sorted_text_section,
1387 Symbol_table* symtab,
1388 bool merge_exidx_entries,
1391 // Link an EXIDX section into its corresponding text section.
1393 set_exidx_section_link();
1397 typedef Output_section::Input_section Input_section;
1398 typedef Output_section::Input_section_list Input_section_list;
1400 // Create a stub group.
1401 void create_stub_group(Input_section_list::const_iterator,
1402 Input_section_list::const_iterator,
1403 Input_section_list::const_iterator,
1404 Target_arm<big_endian>*,
1405 std::vector<Output_relaxed_input_section*>*,
1409 // Arm_exidx_input_section class. This represents an EXIDX input section.
1411 class Arm_exidx_input_section
1414 static const section_offset_type invalid_offset =
1415 static_cast<section_offset_type>(-1);
1417 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1418 unsigned int link, uint32_t size,
1419 uint32_t addralign, uint32_t text_size)
1420 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1421 addralign_(addralign), text_size_(text_size), has_errors_(false)
1424 ~Arm_exidx_input_section()
1427 // Accessors: This is a read-only class.
1429 // Return the object containing this EXIDX input section.
1432 { return this->relobj_; }
1434 // Return the section index of this EXIDX input section.
1437 { return this->shndx_; }
1439 // Return the section index of linked text section in the same object.
1442 { return this->link_; }
1444 // Return size of the EXIDX input section.
1447 { return this->size_; }
1449 // Return address alignment of EXIDX input section.
1452 { return this->addralign_; }
1454 // Return size of the associated text input section.
1457 { return this->text_size_; }
1459 // Whether there are any errors in the EXIDX input section.
1462 { return this->has_errors_; }
1464 // Set has-errors flag.
1467 { this->has_errors_ = true; }
1470 // Object containing this.
1472 // Section index of this.
1473 unsigned int shndx_;
1474 // text section linked to this in the same object.
1476 // Size of this. For ARM 32-bit is sufficient.
1478 // Address alignment of this. For ARM 32-bit is sufficient.
1479 uint32_t addralign_;
1480 // Size of associated text section.
1481 uint32_t text_size_;
1482 // Whether this has any errors.
1486 // Arm_relobj class.
1488 template<bool big_endian>
1489 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1492 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1494 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1495 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1496 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1497 stub_tables_(), local_symbol_is_thumb_function_(),
1498 attributes_section_data_(NULL), mapping_symbols_info_(),
1499 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1500 output_local_symbol_count_needs_update_(false),
1501 merge_flags_and_attributes_(true)
1505 { delete this->attributes_section_data_; }
1507 // Return the stub table of the SHNDX-th section if there is one.
1508 Stub_table<big_endian>*
1509 stub_table(unsigned int shndx) const
1511 gold_assert(shndx < this->stub_tables_.size());
1512 return this->stub_tables_[shndx];
1515 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1517 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1519 gold_assert(shndx < this->stub_tables_.size());
1520 this->stub_tables_[shndx] = stub_table;
1523 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1524 // index. This is only valid after do_count_local_symbol is called.
1526 local_symbol_is_thumb_function(unsigned int r_sym) const
1528 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1529 return this->local_symbol_is_thumb_function_[r_sym];
1532 // Scan all relocation sections for stub generation.
1534 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1537 // Convert regular input section with index SHNDX to a relaxed section.
1539 convert_input_section_to_relaxed_section(unsigned shndx)
1541 // The stubs have relocations and we need to process them after writing
1542 // out the stubs. So relocation now must follow section write.
1543 this->set_section_offset(shndx, -1ULL);
1544 this->set_relocs_must_follow_section_writes();
1547 // Downcast a base pointer to an Arm_relobj pointer. This is
1548 // not type-safe but we only use Arm_relobj not the base class.
1549 static Arm_relobj<big_endian>*
1550 as_arm_relobj(Relobj* relobj)
1551 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1553 // Processor-specific flags in ELF file header. This is valid only after
1556 processor_specific_flags() const
1557 { return this->processor_specific_flags_; }
1559 // Attribute section data This is the contents of the .ARM.attribute section
1561 const Attributes_section_data*
1562 attributes_section_data() const
1563 { return this->attributes_section_data_; }
1565 // Mapping symbol location.
1566 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1568 // Functor for STL container.
1569 struct Mapping_symbol_position_less
1572 operator()(const Mapping_symbol_position& p1,
1573 const Mapping_symbol_position& p2) const
1575 return (p1.first < p2.first
1576 || (p1.first == p2.first && p1.second < p2.second));
1580 // We only care about the first character of a mapping symbol, so
1581 // we only store that instead of the whole symbol name.
1582 typedef std::map<Mapping_symbol_position, char,
1583 Mapping_symbol_position_less> Mapping_symbols_info;
1585 // Whether a section contains any Cortex-A8 workaround.
1587 section_has_cortex_a8_workaround(unsigned int shndx) const
1589 return (this->section_has_cortex_a8_workaround_ != NULL
1590 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1593 // Mark a section that has Cortex-A8 workaround.
1595 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1597 if (this->section_has_cortex_a8_workaround_ == NULL)
1598 this->section_has_cortex_a8_workaround_ =
1599 new std::vector<bool>(this->shnum(), false);
1600 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1603 // Return the EXIDX section of an text section with index SHNDX or NULL
1604 // if the text section has no associated EXIDX section.
1605 const Arm_exidx_input_section*
1606 exidx_input_section_by_link(unsigned int shndx) const
1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609 return ((p != this->exidx_section_map_.end()
1610 && p->second->link() == shndx)
1615 // Return the EXIDX section with index SHNDX or NULL if there is none.
1616 const Arm_exidx_input_section*
1617 exidx_input_section_by_shndx(unsigned shndx) const
1619 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1620 return ((p != this->exidx_section_map_.end()
1621 && p->second->shndx() == shndx)
1626 // Whether output local symbol count needs updating.
1628 output_local_symbol_count_needs_update() const
1629 { return this->output_local_symbol_count_needs_update_; }
1631 // Set output_local_symbol_count_needs_update flag to be true.
1633 set_output_local_symbol_count_needs_update()
1634 { this->output_local_symbol_count_needs_update_ = true; }
1636 // Update output local symbol count at the end of relaxation.
1638 update_output_local_symbol_count();
1640 // Whether we want to merge processor-specific flags and attributes.
1642 merge_flags_and_attributes() const
1643 { return this->merge_flags_and_attributes_; }
1645 // Export list of EXIDX section indices.
1647 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1650 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1651 p != this->exidx_section_map_.end();
1654 if (p->second->shndx() == p->first)
1655 list->push_back(p->first);
1657 // Sort list to make result independent of implementation of map.
1658 std::sort(list->begin(), list->end());
1662 // Post constructor setup.
1666 // Call parent's setup method.
1667 Sized_relobj_file<32, big_endian>::do_setup();
1669 // Initialize look-up tables.
1670 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1671 this->stub_tables_.swap(empty_stub_table_list);
1674 // Count the local symbols.
1676 do_count_local_symbols(Stringpool_template<char>*,
1677 Stringpool_template<char>*);
1680 do_relocate_sections(
1681 const Symbol_table* symtab, const Layout* layout,
1682 const unsigned char* pshdrs, Output_file* of,
1683 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1685 // Read the symbol information.
1687 do_read_symbols(Read_symbols_data* sd);
1689 // Process relocs for garbage collection.
1691 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1695 // Whether a section needs to be scanned for relocation stubs.
1697 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1698 const Relobj::Output_sections&,
1699 const Symbol_table*, const unsigned char*);
1701 // Whether a section is a scannable text section.
1703 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1704 const Output_section*, const Symbol_table*);
1706 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1708 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1709 unsigned int, Output_section*,
1710 const Symbol_table*);
1712 // Scan a section for the Cortex-A8 erratum.
1714 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1715 unsigned int, Output_section*,
1716 Target_arm<big_endian>*);
1718 // Find the linked text section of an EXIDX section by looking at the
1719 // first relocation of the EXIDX section. PSHDR points to the section
1720 // headers of a relocation section and PSYMS points to the local symbols.
1721 // PSHNDX points to a location storing the text section index if found.
1722 // Return whether we can find the linked section.
1724 find_linked_text_section(const unsigned char* pshdr,
1725 const unsigned char* psyms, unsigned int* pshndx);
1728 // Make a new Arm_exidx_input_section object for EXIDX section with
1729 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1730 // index of the linked text section.
1732 make_exidx_input_section(unsigned int shndx,
1733 const elfcpp::Shdr<32, big_endian>& shdr,
1734 unsigned int text_shndx,
1735 const elfcpp::Shdr<32, big_endian>& text_shdr);
1737 // Return the output address of either a plain input section or a
1738 // relaxed input section. SHNDX is the section index.
1740 simple_input_section_output_address(unsigned int, Output_section*);
1742 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1743 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1746 // List of stub tables.
1747 Stub_table_list stub_tables_;
1748 // Bit vector to tell if a local symbol is a thumb function or not.
1749 // This is only valid after do_count_local_symbol is called.
1750 std::vector<bool> local_symbol_is_thumb_function_;
1751 // processor-specific flags in ELF file header.
1752 elfcpp::Elf_Word processor_specific_flags_;
1753 // Object attributes if there is an .ARM.attributes section or NULL.
1754 Attributes_section_data* attributes_section_data_;
1755 // Mapping symbols information.
1756 Mapping_symbols_info mapping_symbols_info_;
1757 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1758 std::vector<bool>* section_has_cortex_a8_workaround_;
1759 // Map a text section to its associated .ARM.exidx section, if there is one.
1760 Exidx_section_map exidx_section_map_;
1761 // Whether output local symbol count needs updating.
1762 bool output_local_symbol_count_needs_update_;
1763 // Whether we merge processor flags and attributes of this object to
1765 bool merge_flags_and_attributes_;
1768 // Arm_dynobj class.
1770 template<bool big_endian>
1771 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1774 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1775 const elfcpp::Ehdr<32, big_endian>& ehdr)
1776 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1777 processor_specific_flags_(0), attributes_section_data_(NULL)
1781 { delete this->attributes_section_data_; }
1783 // Downcast a base pointer to an Arm_relobj pointer. This is
1784 // not type-safe but we only use Arm_relobj not the base class.
1785 static Arm_dynobj<big_endian>*
1786 as_arm_dynobj(Dynobj* dynobj)
1787 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1789 // Processor-specific flags in ELF file header. This is valid only after
1792 processor_specific_flags() const
1793 { return this->processor_specific_flags_; }
1795 // Attributes section data.
1796 const Attributes_section_data*
1797 attributes_section_data() const
1798 { return this->attributes_section_data_; }
1801 // Read the symbol information.
1803 do_read_symbols(Read_symbols_data* sd);
1806 // processor-specific flags in ELF file header.
1807 elfcpp::Elf_Word processor_specific_flags_;
1808 // Object attributes if there is an .ARM.attributes section or NULL.
1809 Attributes_section_data* attributes_section_data_;
1812 // Functor to read reloc addends during stub generation.
1814 template<int sh_type, bool big_endian>
1815 struct Stub_addend_reader
1817 // Return the addend for a relocation of a particular type. Depending
1818 // on whether this is a REL or RELA relocation, read the addend from a
1819 // view or from a Reloc object.
1820 elfcpp::Elf_types<32>::Elf_Swxword
1822 unsigned int /* r_type */,
1823 const unsigned char* /* view */,
1824 const typename Reloc_types<sh_type,
1825 32, big_endian>::Reloc& /* reloc */) const;
1828 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1830 template<bool big_endian>
1831 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1833 elfcpp::Elf_types<32>::Elf_Swxword
1836 const unsigned char*,
1837 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1840 // Specialized Stub_addend_reader for RELA type relocation sections.
1841 // We currently do not handle RELA type relocation sections but it is trivial
1842 // to implement the addend reader. This is provided for completeness and to
1843 // make it easier to add support for RELA relocation sections in the future.
1845 template<bool big_endian>
1846 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1848 elfcpp::Elf_types<32>::Elf_Swxword
1851 const unsigned char*,
1852 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1853 big_endian>::Reloc& reloc) const
1854 { return reloc.get_r_addend(); }
1857 // Cortex_a8_reloc class. We keep record of relocation that may need
1858 // the Cortex-A8 erratum workaround.
1860 class Cortex_a8_reloc
1863 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1864 Arm_address destination)
1865 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1871 // Accessors: This is a read-only class.
1873 // Return the relocation stub associated with this relocation if there is
1877 { return this->reloc_stub_; }
1879 // Return the relocation type.
1882 { return this->r_type_; }
1884 // Return the destination address of the relocation. LSB stores the THUMB
1888 { return this->destination_; }
1891 // Associated relocation stub if there is one, or NULL.
1892 const Reloc_stub* reloc_stub_;
1894 unsigned int r_type_;
1895 // Destination address of this relocation. LSB is used to distinguish
1897 Arm_address destination_;
1900 // Arm_output_data_got class. We derive this from Output_data_got to add
1901 // extra methods to handle TLS relocations in a static link.
1903 template<bool big_endian>
1904 class Arm_output_data_got : public Output_data_got<32, big_endian>
1907 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1908 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1911 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1912 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1913 // applied in a static link.
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1916 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1918 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1919 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1920 // relocation that needs to be applied in a static link.
1922 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1923 Sized_relobj_file<32, big_endian>* relobj,
1926 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1930 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1931 // The first one is initialized to be 1, which is the module index for
1932 // the main executable and the second one 0. A reloc of the type
1933 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1934 // be applied by gold. GSYM is a global symbol.
1936 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1938 // Same as the above but for a local symbol in OBJECT with INDEX.
1940 add_tls_gd32_with_static_reloc(unsigned int got_type,
1941 Sized_relobj_file<32, big_endian>* object,
1942 unsigned int index);
1945 // Write out the GOT table.
1947 do_write(Output_file*);
1950 // This class represent dynamic relocations that need to be applied by
1951 // gold because we are using TLS relocations in a static link.
1955 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1956 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1957 { this->u_.global.symbol = gsym; }
1959 Static_reloc(unsigned int got_offset, unsigned int r_type,
1960 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1961 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1963 this->u_.local.relobj = relobj;
1964 this->u_.local.index = index;
1967 // Return the GOT offset.
1970 { return this->got_offset_; }
1975 { return this->r_type_; }
1977 // Whether the symbol is global or not.
1979 symbol_is_global() const
1980 { return this->symbol_is_global_; }
1982 // For a relocation against a global symbol, the global symbol.
1986 gold_assert(this->symbol_is_global_);
1987 return this->u_.global.symbol;
1990 // For a relocation against a local symbol, the defining object.
1991 Sized_relobj_file<32, big_endian>*
1994 gold_assert(!this->symbol_is_global_);
1995 return this->u_.local.relobj;
1998 // For a relocation against a local symbol, the local symbol index.
2002 gold_assert(!this->symbol_is_global_);
2003 return this->u_.local.index;
2007 // GOT offset of the entry to which this relocation is applied.
2008 unsigned int got_offset_;
2009 // Type of relocation.
2010 unsigned int r_type_;
2011 // Whether this relocation is against a global symbol.
2012 bool symbol_is_global_;
2013 // A global or local symbol.
2018 // For a global symbol, the symbol itself.
2023 // For a local symbol, the object defining object.
2024 Sized_relobj_file<32, big_endian>* relobj;
2025 // For a local symbol, the symbol index.
2031 // Symbol table of the output object.
2032 Symbol_table* symbol_table_;
2033 // Layout of the output object.
2035 // Static relocs to be applied to the GOT.
2036 std::vector<Static_reloc> static_relocs_;
2039 // The ARM target has many relocation types with odd-sizes or noncontiguous
2040 // bits. The default handling of relocatable relocation cannot process these
2041 // relocations. So we have to extend the default code.
2043 template<bool big_endian, typename Classify_reloc>
2044 class Arm_scan_relocatable_relocs :
2045 public Default_scan_relocatable_relocs<Classify_reloc>
2048 // Return the strategy to use for a local symbol which is a section
2049 // symbol, given the relocation type.
2050 inline Relocatable_relocs::Reloc_strategy
2051 local_section_strategy(unsigned int r_type, Relobj*)
2053 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2054 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2057 if (r_type == elfcpp::R_ARM_TARGET1
2058 || r_type == elfcpp::R_ARM_TARGET2)
2060 const Target_arm<big_endian>* arm_target =
2061 Target_arm<big_endian>::default_target();
2062 r_type = arm_target->get_real_reloc_type(r_type);
2067 // Relocations that write nothing. These exclude R_ARM_TARGET1
2068 // and R_ARM_TARGET2.
2069 case elfcpp::R_ARM_NONE:
2070 case elfcpp::R_ARM_V4BX:
2071 case elfcpp::R_ARM_TLS_GOTDESC:
2072 case elfcpp::R_ARM_TLS_CALL:
2073 case elfcpp::R_ARM_TLS_DESCSEQ:
2074 case elfcpp::R_ARM_THM_TLS_CALL:
2075 case elfcpp::R_ARM_GOTRELAX:
2076 case elfcpp::R_ARM_GNU_VTENTRY:
2077 case elfcpp::R_ARM_GNU_VTINHERIT:
2078 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2079 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2080 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2081 // These should have been converted to something else above.
2082 case elfcpp::R_ARM_TARGET1:
2083 case elfcpp::R_ARM_TARGET2:
2085 // Relocations that write full 32 bits and
2086 // have alignment of 1.
2087 case elfcpp::R_ARM_ABS32:
2088 case elfcpp::R_ARM_REL32:
2089 case elfcpp::R_ARM_SBREL32:
2090 case elfcpp::R_ARM_GOTOFF32:
2091 case elfcpp::R_ARM_BASE_PREL:
2092 case elfcpp::R_ARM_GOT_BREL:
2093 case elfcpp::R_ARM_BASE_ABS:
2094 case elfcpp::R_ARM_ABS32_NOI:
2095 case elfcpp::R_ARM_REL32_NOI:
2096 case elfcpp::R_ARM_PLT32_ABS:
2097 case elfcpp::R_ARM_GOT_ABS:
2098 case elfcpp::R_ARM_GOT_PREL:
2099 case elfcpp::R_ARM_TLS_GD32:
2100 case elfcpp::R_ARM_TLS_LDM32:
2101 case elfcpp::R_ARM_TLS_LDO32:
2102 case elfcpp::R_ARM_TLS_IE32:
2103 case elfcpp::R_ARM_TLS_LE32:
2104 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2106 // For all other static relocations, return RELOC_SPECIAL.
2107 return Relocatable_relocs::RELOC_SPECIAL;
2113 template<bool big_endian>
2114 class Target_arm : public Sized_target<32, big_endian>
2117 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2120 // When were are relocating a stub, we pass this as the relocation number.
2121 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2123 Target_arm(const Target::Target_info* info = &arm_info)
2124 : Sized_target<32, big_endian>(info),
2125 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2126 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2127 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2128 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2129 should_force_pic_veneer_(false),
2130 arm_input_section_map_(), attributes_section_data_(NULL),
2131 fix_cortex_a8_(false), cortex_a8_relocs_info_(),
2132 target1_reloc_(elfcpp::R_ARM_ABS32),
2133 // This can be any reloc type but usually is R_ARM_GOT_PREL.
2134 target2_reloc_(elfcpp::R_ARM_GOT_PREL)
2137 // Whether we force PCI branch veneers.
2139 should_force_pic_veneer() const
2140 { return this->should_force_pic_veneer_; }
2142 // Set PIC veneer flag.
2144 set_should_force_pic_veneer(bool value)
2145 { this->should_force_pic_veneer_ = value; }
2147 // Whether we use THUMB-2 instructions.
2149 using_thumb2() const
2151 Object_attribute* attr =
2152 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2153 int arch = attr->int_value();
2154 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2157 // Whether we use THUMB/THUMB-2 instructions only.
2159 using_thumb_only() const
2161 Object_attribute* attr =
2162 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2164 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2165 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2167 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2168 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2170 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2171 return attr->int_value() == 'M';
2174 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2176 may_use_arm_nop() const
2178 Object_attribute* attr =
2179 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2180 int arch = attr->int_value();
2181 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2182 || arch == elfcpp::TAG_CPU_ARCH_V6K
2183 || arch == elfcpp::TAG_CPU_ARCH_V7
2184 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2187 // Whether we have THUMB-2 NOP.W instruction.
2189 may_use_thumb2_nop() const
2191 Object_attribute* attr =
2192 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2193 int arch = attr->int_value();
2194 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2195 || arch == elfcpp::TAG_CPU_ARCH_V7
2196 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2199 // Whether we have v4T interworking instructions available.
2201 may_use_v4t_interworking() const
2203 Object_attribute* attr =
2204 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2205 int arch = attr->int_value();
2206 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2207 && arch != elfcpp::TAG_CPU_ARCH_V4);
2210 // Whether we have v5T interworking instructions available.
2212 may_use_v5t_interworking() const
2214 Object_attribute* attr =
2215 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2216 int arch = attr->int_value();
2217 if (parameters->options().fix_arm1176())
2218 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2219 || arch == elfcpp::TAG_CPU_ARCH_V7
2220 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2221 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2222 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2224 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2225 && arch != elfcpp::TAG_CPU_ARCH_V4
2226 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2229 // Process the relocations to determine unreferenced sections for
2230 // garbage collection.
2232 gc_process_relocs(Symbol_table* symtab,
2234 Sized_relobj_file<32, big_endian>* object,
2235 unsigned int data_shndx,
2236 unsigned int sh_type,
2237 const unsigned char* prelocs,
2239 Output_section* output_section,
2240 bool needs_special_offset_handling,
2241 size_t local_symbol_count,
2242 const unsigned char* plocal_symbols);
2244 // Scan the relocations to look for symbol adjustments.
2246 scan_relocs(Symbol_table* symtab,
2248 Sized_relobj_file<32, big_endian>* object,
2249 unsigned int data_shndx,
2250 unsigned int sh_type,
2251 const unsigned char* prelocs,
2253 Output_section* output_section,
2254 bool needs_special_offset_handling,
2255 size_t local_symbol_count,
2256 const unsigned char* plocal_symbols);
2258 // Finalize the sections.
2260 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2262 // Return the value to use for a dynamic symbol which requires special
2265 do_dynsym_value(const Symbol*) const;
2267 // Return the plt address for globals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2270 do_plt_address_for_global(const Symbol* gsym) const
2271 { return this->plt_section()->address_for_global(gsym); }
2273 // Return the plt address for locals. Since we have irelative plt entries,
2274 // address calculation is not as straightforward as plt_address + plt_offset.
2276 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2277 { return this->plt_section()->address_for_local(relobj, symndx); }
2279 // Relocate a section.
2281 relocate_section(const Relocate_info<32, big_endian>*,
2282 unsigned int sh_type,
2283 const unsigned char* prelocs,
2285 Output_section* output_section,
2286 bool needs_special_offset_handling,
2287 unsigned char* view,
2288 Arm_address view_address,
2289 section_size_type view_size,
2290 const Reloc_symbol_changes*);
2292 // Scan the relocs during a relocatable link.
2294 scan_relocatable_relocs(Symbol_table* symtab,
2296 Sized_relobj_file<32, big_endian>* object,
2297 unsigned int data_shndx,
2298 unsigned int sh_type,
2299 const unsigned char* prelocs,
2301 Output_section* output_section,
2302 bool needs_special_offset_handling,
2303 size_t local_symbol_count,
2304 const unsigned char* plocal_symbols,
2305 Relocatable_relocs*);
2307 // Scan the relocs for --emit-relocs.
2309 emit_relocs_scan(Symbol_table* symtab,
2311 Sized_relobj_file<32, big_endian>* object,
2312 unsigned int data_shndx,
2313 unsigned int sh_type,
2314 const unsigned char* prelocs,
2316 Output_section* output_section,
2317 bool needs_special_offset_handling,
2318 size_t local_symbol_count,
2319 const unsigned char* plocal_syms,
2320 Relocatable_relocs* rr);
2322 // Emit relocations for a section.
2324 relocate_relocs(const Relocate_info<32, big_endian>*,
2325 unsigned int sh_type,
2326 const unsigned char* prelocs,
2328 Output_section* output_section,
2329 typename elfcpp::Elf_types<32>::Elf_Off
2330 offset_in_output_section,
2331 unsigned char* view,
2332 Arm_address view_address,
2333 section_size_type view_size,
2334 unsigned char* reloc_view,
2335 section_size_type reloc_view_size);
2337 // Perform target-specific processing in a relocatable link. This is
2338 // only used if we use the relocation strategy RELOC_SPECIAL.
2340 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2341 unsigned int sh_type,
2342 const unsigned char* preloc_in,
2344 Output_section* output_section,
2345 typename elfcpp::Elf_types<32>::Elf_Off
2346 offset_in_output_section,
2347 unsigned char* view,
2348 typename elfcpp::Elf_types<32>::Elf_Addr
2350 section_size_type view_size,
2351 unsigned char* preloc_out);
2353 // Return whether SYM is defined by the ABI.
2355 do_is_defined_by_abi(const Symbol* sym) const
2356 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2358 // Return whether there is a GOT section.
2360 has_got_section() const
2361 { return this->got_ != NULL; }
2363 // Return the size of the GOT section.
2367 gold_assert(this->got_ != NULL);
2368 return this->got_->data_size();
2371 // Return the number of entries in the GOT.
2373 got_entry_count() const
2375 if (!this->has_got_section())
2377 return this->got_size() / 4;
2380 // Return the number of entries in the PLT.
2382 plt_entry_count() const;
2384 // Return the offset of the first non-reserved PLT entry.
2386 first_plt_entry_offset() const;
2388 // Return the size of each PLT entry.
2390 plt_entry_size() const;
2392 // Get the section to use for IRELATIVE relocations, create it if necessary.
2394 rel_irelative_section(Layout*);
2396 // Map platform-specific reloc types
2398 get_real_reloc_type(unsigned int r_type) const;
2401 // Methods to support stub-generations.
2404 // Return the stub factory
2406 stub_factory() const
2407 { return this->stub_factory_; }
2409 // Make a new Arm_input_section object.
2410 Arm_input_section<big_endian>*
2411 new_arm_input_section(Relobj*, unsigned int);
2413 // Find the Arm_input_section object corresponding to the SHNDX-th input
2414 // section of RELOBJ.
2415 Arm_input_section<big_endian>*
2416 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2418 // Make a new Stub_table
2419 Stub_table<big_endian>*
2420 new_stub_table(Arm_input_section<big_endian>*);
2422 // Scan a section for stub generation.
2424 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2425 const unsigned char*, size_t, Output_section*,
2426 bool, const unsigned char*, Arm_address,
2431 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2432 Output_section*, unsigned char*, Arm_address,
2435 // Get the default ARM target.
2436 static Target_arm<big_endian>*
2439 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2440 && parameters->target().is_big_endian() == big_endian);
2441 return static_cast<Target_arm<big_endian>*>(
2442 parameters->sized_target<32, big_endian>());
2445 // Whether NAME belongs to a mapping symbol.
2447 is_mapping_symbol_name(const char* name)
2451 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2452 && (name[2] == '\0' || name[2] == '.'));
2455 // Whether we work around the Cortex-A8 erratum.
2457 fix_cortex_a8() const
2458 { return this->fix_cortex_a8_; }
2460 // Whether we merge exidx entries in debuginfo.
2462 merge_exidx_entries() const
2463 { return parameters->options().merge_exidx_entries(); }
2465 // Whether we fix R_ARM_V4BX relocation.
2467 // 1 - replace with MOV instruction (armv4 target)
2468 // 2 - make interworking veneer (>= armv4t targets only)
2469 General_options::Fix_v4bx
2471 { return parameters->options().fix_v4bx(); }
2473 // Scan a span of THUMB code section for Cortex-A8 erratum.
2475 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2476 section_size_type, section_size_type,
2477 const unsigned char*, Arm_address);
2479 // Apply Cortex-A8 workaround to a branch.
2481 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2482 unsigned char*, Arm_address);
2485 // Make the PLT-generator object.
2486 Output_data_plt_arm<big_endian>*
2487 make_data_plt(Layout* layout,
2488 Arm_output_data_got<big_endian>* got,
2489 Output_data_space* got_plt,
2490 Output_data_space* got_irelative)
2491 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2493 // Make an ELF object.
2495 do_make_elf_object(const std::string&, Input_file*, off_t,
2496 const elfcpp::Ehdr<32, big_endian>& ehdr);
2499 do_make_elf_object(const std::string&, Input_file*, off_t,
2500 const elfcpp::Ehdr<32, !big_endian>&)
2501 { gold_unreachable(); }
2504 do_make_elf_object(const std::string&, Input_file*, off_t,
2505 const elfcpp::Ehdr<64, false>&)
2506 { gold_unreachable(); }
2509 do_make_elf_object(const std::string&, Input_file*, off_t,
2510 const elfcpp::Ehdr<64, true>&)
2511 { gold_unreachable(); }
2513 // Make an output section.
2515 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2516 elfcpp::Elf_Xword flags)
2517 { return new Arm_output_section<big_endian>(name, type, flags); }
2520 do_adjust_elf_header(unsigned char* view, int len);
2522 // We only need to generate stubs, and hence perform relaxation if we are
2523 // not doing relocatable linking.
2525 do_may_relax() const
2526 { return !parameters->options().relocatable(); }
2529 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2531 // Determine whether an object attribute tag takes an integer, a
2534 do_attribute_arg_type(int tag) const;
2536 // Reorder tags during output.
2538 do_attributes_order(int num) const;
2540 // This is called when the target is selected as the default.
2542 do_select_as_default_target()
2544 // No locking is required since there should only be one default target.
2545 // We cannot have both the big-endian and little-endian ARM targets
2547 gold_assert(arm_reloc_property_table == NULL);
2548 arm_reloc_property_table = new Arm_reloc_property_table();
2549 if (parameters->options().user_set_target1_rel())
2551 // FIXME: This is not strictly compatible with ld, which allows both
2552 // --target1-abs and --target-rel to be given.
2553 if (parameters->options().user_set_target1_abs())
2554 gold_error(_("Cannot use both --target1-abs and --target1-rel."));
2556 this->target1_reloc_ = elfcpp::R_ARM_REL32;
2558 // We don't need to handle --target1-abs because target1_reloc_ is set
2559 // to elfcpp::R_ARM_ABS32 in the member initializer list.
2561 if (parameters->options().user_set_target2())
2563 const char* target2 = parameters->options().target2();
2564 if (strcmp(target2, "rel") == 0)
2565 this->target2_reloc_ = elfcpp::R_ARM_REL32;
2566 else if (strcmp(target2, "abs") == 0)
2567 this->target2_reloc_ = elfcpp::R_ARM_ABS32;
2568 else if (strcmp(target2, "got-rel") == 0)
2569 this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL;
2575 // Virtual function which is set to return true by a target if
2576 // it can use relocation types to determine if a function's
2577 // pointer is taken.
2579 do_can_check_for_function_pointers() const
2582 // Whether a section called SECTION_NAME may have function pointers to
2583 // sections not eligible for safe ICF folding.
2585 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2587 return (!is_prefix_of(".ARM.exidx", section_name)
2588 && !is_prefix_of(".ARM.extab", section_name)
2589 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2593 do_define_standard_symbols(Symbol_table*, Layout*);
2595 virtual Output_data_plt_arm<big_endian>*
2596 do_make_data_plt(Layout* layout,
2597 Arm_output_data_got<big_endian>* got,
2598 Output_data_space* got_plt,
2599 Output_data_space* got_irelative)
2601 gold_assert(got_plt != NULL && got_irelative != NULL);
2602 if (parameters->options().long_plt())
2603 return new Output_data_plt_arm_long<big_endian>(
2604 layout, got, got_plt, got_irelative);
2606 return new Output_data_plt_arm_short<big_endian>(
2607 layout, got, got_plt, got_irelative);
2611 // The class which scans relocations.
2616 : issued_non_pic_error_(false)
2620 get_reference_flags(unsigned int r_type);
2623 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2624 Sized_relobj_file<32, big_endian>* object,
2625 unsigned int data_shndx,
2626 Output_section* output_section,
2627 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2628 const elfcpp::Sym<32, big_endian>& lsym,
2632 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2633 Sized_relobj_file<32, big_endian>* object,
2634 unsigned int data_shndx,
2635 Output_section* output_section,
2636 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2640 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2641 Sized_relobj_file<32, big_endian>* ,
2644 const elfcpp::Rel<32, big_endian>& ,
2646 const elfcpp::Sym<32, big_endian>&);
2649 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2650 Sized_relobj_file<32, big_endian>* ,
2653 const elfcpp::Rel<32, big_endian>& ,
2654 unsigned int , Symbol*);
2658 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2659 unsigned int r_type);
2662 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2663 unsigned int r_type, Symbol*);
2666 check_non_pic(Relobj*, unsigned int r_type);
2668 // Almost identical to Symbol::needs_plt_entry except that it also
2669 // handles STT_ARM_TFUNC.
2671 symbol_needs_plt_entry(const Symbol* sym)
2673 // An undefined symbol from an executable does not need a PLT entry.
2674 if (sym->is_undefined() && !parameters->options().shared())
2677 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2680 return (!parameters->doing_static_link()
2681 && (sym->type() == elfcpp::STT_FUNC
2682 || sym->type() == elfcpp::STT_ARM_TFUNC)
2683 && (sym->is_from_dynobj()
2684 || sym->is_undefined()
2685 || sym->is_preemptible()));
2689 possible_function_pointer_reloc(unsigned int r_type);
2691 // Whether a plt entry is needed for ifunc.
2693 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2694 unsigned int r_type);
2696 // Whether we have issued an error about a non-PIC compilation.
2697 bool issued_non_pic_error_;
2700 // The class which implements relocation.
2710 // Return whether the static relocation needs to be applied.
2712 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2713 unsigned int r_type,
2715 Output_section* output_section);
2717 // Do a relocation. Return false if the caller should not issue
2718 // any warnings about this relocation.
2720 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2721 Target_arm*, Output_section*, size_t, const unsigned char*,
2722 const Sized_symbol<32>*, const Symbol_value<32>*,
2723 unsigned char*, Arm_address, section_size_type);
2725 // Return whether we want to pass flag NON_PIC_REF for this
2726 // reloc. This means the relocation type accesses a symbol not via
2729 reloc_is_non_pic(unsigned int r_type)
2733 // These relocation types reference GOT or PLT entries explicitly.
2734 case elfcpp::R_ARM_GOT_BREL:
2735 case elfcpp::R_ARM_GOT_ABS:
2736 case elfcpp::R_ARM_GOT_PREL:
2737 case elfcpp::R_ARM_GOT_BREL12:
2738 case elfcpp::R_ARM_PLT32_ABS:
2739 case elfcpp::R_ARM_TLS_GD32:
2740 case elfcpp::R_ARM_TLS_LDM32:
2741 case elfcpp::R_ARM_TLS_IE32:
2742 case elfcpp::R_ARM_TLS_IE12GP:
2744 // These relocate types may use PLT entries.
2745 case elfcpp::R_ARM_CALL:
2746 case elfcpp::R_ARM_THM_CALL:
2747 case elfcpp::R_ARM_JUMP24:
2748 case elfcpp::R_ARM_THM_JUMP24:
2749 case elfcpp::R_ARM_THM_JUMP19:
2750 case elfcpp::R_ARM_PLT32:
2751 case elfcpp::R_ARM_THM_XPC22:
2752 case elfcpp::R_ARM_PREL31:
2753 case elfcpp::R_ARM_SBREL31:
2762 // Do a TLS relocation.
2763 inline typename Arm_relocate_functions<big_endian>::Status
2764 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2765 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2766 const Sized_symbol<32>*, const Symbol_value<32>*,
2767 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2772 // A class for inquiring about properties of a relocation,
2773 // used while scanning relocs during a relocatable link and
2774 // garbage collection.
2775 class Classify_reloc :
2776 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
2779 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
2782 // Return the explicit addend of the relocation (return 0 for SHT_REL).
2783 static typename elfcpp::Elf_types<32>::Elf_Swxword
2784 get_r_addend(const Reltype*)
2787 // Return the size of the addend of the relocation (only used for SHT_REL).
2789 get_size_for_reloc(unsigned int, Relobj*);
2792 // Adjust TLS relocation type based on the options and whether this
2793 // is a local symbol.
2794 static tls::Tls_optimization
2795 optimize_tls_reloc(bool is_final, int r_type);
2797 // Get the GOT section, creating it if necessary.
2798 Arm_output_data_got<big_endian>*
2799 got_section(Symbol_table*, Layout*);
2801 // Get the GOT PLT section.
2803 got_plt_section() const
2805 gold_assert(this->got_plt_ != NULL);
2806 return this->got_plt_;
2809 // Create the PLT section.
2811 make_plt_section(Symbol_table* symtab, Layout* layout);
2813 // Create a PLT entry for a global symbol.
2815 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2817 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2819 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2820 Sized_relobj_file<32, big_endian>* relobj,
2821 unsigned int local_sym_index);
2823 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2825 define_tls_base_symbol(Symbol_table*, Layout*);
2827 // Create a GOT entry for the TLS module index.
2829 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2830 Sized_relobj_file<32, big_endian>* object);
2832 // Get the PLT section.
2833 const Output_data_plt_arm<big_endian>*
2836 gold_assert(this->plt_ != NULL);
2840 // Get the dynamic reloc section, creating it if necessary.
2842 rel_dyn_section(Layout*);
2844 // Get the section to use for TLS_DESC relocations.
2846 rel_tls_desc_section(Layout*) const;
2848 // Return true if the symbol may need a COPY relocation.
2849 // References from an executable object to non-function symbols
2850 // defined in a dynamic object may need a COPY relocation.
2852 may_need_copy_reloc(Symbol* gsym)
2854 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2855 && gsym->may_need_copy_reloc());
2858 // Add a potential copy relocation.
2860 copy_reloc(Symbol_table* symtab, Layout* layout,
2861 Sized_relobj_file<32, big_endian>* object,
2862 unsigned int shndx, Output_section* output_section,
2863 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2865 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
2866 this->copy_relocs_.copy_reloc(symtab, layout,
2867 symtab->get_sized_symbol<32>(sym),
2868 object, shndx, output_section,
2869 r_type, reloc.get_r_offset(), 0,
2870 this->rel_dyn_section(layout));
2873 // Whether two EABI versions are compatible.
2875 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2877 // Merge processor-specific flags from input object and those in the ELF
2878 // header of the output.
2880 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2882 // Get the secondary compatible architecture.
2884 get_secondary_compatible_arch(const Attributes_section_data*);
2886 // Set the secondary compatible architecture.
2888 set_secondary_compatible_arch(Attributes_section_data*, int);
2891 tag_cpu_arch_combine(const char*, int, int*, int, int);
2893 // Helper to print AEABI enum tag value.
2895 aeabi_enum_name(unsigned int);
2897 // Return string value for TAG_CPU_name.
2899 tag_cpu_name_value(unsigned int);
2901 // Query attributes object to see if integer divide instructions may be
2902 // present in an object.
2904 attributes_accept_div(int arch, int profile,
2905 const Object_attribute* div_attr);
2907 // Query attributes object to see if integer divide instructions are
2908 // forbidden to be in the object. This is not the inverse of
2909 // attributes_accept_div.
2911 attributes_forbid_div(const Object_attribute* div_attr);
2913 // Merge object attributes from input object and those in the output.
2915 merge_object_attributes(const char*, const Attributes_section_data*);
2917 // Helper to get an AEABI object attribute
2919 get_aeabi_object_attribute(int tag) const
2921 Attributes_section_data* pasd = this->attributes_section_data_;
2922 gold_assert(pasd != NULL);
2923 Object_attribute* attr =
2924 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2925 gold_assert(attr != NULL);
2930 // Methods to support stub-generations.
2933 // Group input sections for stub generation.
2935 group_sections(Layout*, section_size_type, bool, const Task*);
2937 // Scan a relocation for stub generation.
2939 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2940 const Sized_symbol<32>*, unsigned int,
2941 const Symbol_value<32>*,
2942 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2944 // Scan a relocation section for stub.
2945 template<int sh_type>
2947 scan_reloc_section_for_stubs(
2948 const Relocate_info<32, big_endian>* relinfo,
2949 const unsigned char* prelocs,
2951 Output_section* output_section,
2952 bool needs_special_offset_handling,
2953 const unsigned char* view,
2954 elfcpp::Elf_types<32>::Elf_Addr view_address,
2957 // Fix .ARM.exidx section coverage.
2959 fix_exidx_coverage(Layout*, const Input_objects*,
2960 Arm_output_section<big_endian>*, Symbol_table*,
2963 // Functors for STL set.
2964 struct output_section_address_less_than
2967 operator()(const Output_section* s1, const Output_section* s2) const
2968 { return s1->address() < s2->address(); }
2971 // Information about this specific target which we pass to the
2972 // general Target structure.
2973 static const Target::Target_info arm_info;
2975 // The types of GOT entries needed for this platform.
2976 // These values are exposed to the ABI in an incremental link.
2977 // Do not renumber existing values without changing the version
2978 // number of the .gnu_incremental_inputs section.
2981 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2982 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2983 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2984 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2985 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2988 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2990 // Map input section to Arm_input_section.
2991 typedef Unordered_map<Section_id,
2992 Arm_input_section<big_endian>*,
2994 Arm_input_section_map;
2996 // Map output addresses to relocs for Cortex-A8 erratum.
2997 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2998 Cortex_a8_relocs_info;
3001 Arm_output_data_got<big_endian>* got_;
3003 Output_data_plt_arm<big_endian>* plt_;
3004 // The GOT PLT section.
3005 Output_data_space* got_plt_;
3006 // The GOT section for IRELATIVE relocations.
3007 Output_data_space* got_irelative_;
3008 // The dynamic reloc section.
3009 Reloc_section* rel_dyn_;
3010 // The section to use for IRELATIVE relocs.
3011 Reloc_section* rel_irelative_;
3012 // Relocs saved to avoid a COPY reloc.
3013 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
3014 // Offset of the GOT entry for the TLS module index.
3015 unsigned int got_mod_index_offset_;
3016 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3017 bool tls_base_symbol_defined_;
3018 // Vector of Stub_tables created.
3019 Stub_table_list stub_tables_;
3021 const Stub_factory &stub_factory_;
3022 // Whether we force PIC branch veneers.
3023 bool should_force_pic_veneer_;
3024 // Map for locating Arm_input_sections.
3025 Arm_input_section_map arm_input_section_map_;
3026 // Attributes section data in output.
3027 Attributes_section_data* attributes_section_data_;
3028 // Whether we want to fix code for Cortex-A8 erratum.
3029 bool fix_cortex_a8_;
3030 // Map addresses to relocs for Cortex-A8 erratum.
3031 Cortex_a8_relocs_info cortex_a8_relocs_info_;
3032 // What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32.
3033 unsigned int target1_reloc_;
3034 // What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32
3035 // and R_ARM_GOT_PREL.
3036 unsigned int target2_reloc_;
3039 template<bool big_endian>
3040 const Target::Target_info Target_arm<big_endian>::arm_info =
3043 big_endian, // is_big_endian
3044 elfcpp::EM_ARM, // machine_code
3045 false, // has_make_symbol
3046 false, // has_resolve
3047 false, // has_code_fill
3048 true, // is_default_stack_executable
3049 false, // can_icf_inline_merge_sections
3051 "/usr/lib/libc.so.1", // dynamic_linker
3052 0x8000, // default_text_segment_address
3053 0x1000, // abi_pagesize (overridable by -z max-page-size)
3054 0x1000, // common_pagesize (overridable by -z common-page-size)
3055 false, // isolate_execinstr
3057 elfcpp::SHN_UNDEF, // small_common_shndx
3058 elfcpp::SHN_UNDEF, // large_common_shndx
3059 0, // small_common_section_flags
3060 0, // large_common_section_flags
3061 ".ARM.attributes", // attributes_section
3062 "aeabi", // attributes_vendor
3063 "_start", // entry_symbol_name
3064 32, // hash_entry_size
3067 // Arm relocate functions class
3070 template<bool big_endian>
3071 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3076 STATUS_OKAY, // No error during relocation.
3077 STATUS_OVERFLOW, // Relocation overflow.
3078 STATUS_BAD_RELOC // Relocation cannot be applied.
3082 typedef Relocate_functions<32, big_endian> Base;
3083 typedef Arm_relocate_functions<big_endian> This;
3085 // Encoding of imm16 argument for movt and movw ARM instructions
3088 // imm16 := imm4 | imm12
3090 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3091 // +-------+---------------+-------+-------+-----------------------+
3092 // | | |imm4 | |imm12 |
3093 // +-------+---------------+-------+-------+-----------------------+
3095 // Extract the relocation addend from VAL based on the ARM
3096 // instruction encoding described above.
3097 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3098 extract_arm_movw_movt_addend(
3099 typename elfcpp::Swap<32, big_endian>::Valtype val)
3101 // According to the Elf ABI for ARM Architecture the immediate
3102 // field is sign-extended to form the addend.
3103 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3106 // Insert X into VAL based on the ARM instruction encoding described
3108 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3109 insert_val_arm_movw_movt(
3110 typename elfcpp::Swap<32, big_endian>::Valtype val,
3111 typename elfcpp::Swap<32, big_endian>::Valtype x)
3115 val |= (x & 0xf000) << 4;
3119 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3122 // imm16 := imm4 | i | imm3 | imm8
3124 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3125 // +---------+-+-----------+-------++-+-----+-------+---------------+
3126 // | |i| |imm4 || |imm3 | |imm8 |
3127 // +---------+-+-----------+-------++-+-----+-------+---------------+
3129 // Extract the relocation addend from VAL based on the Thumb2
3130 // instruction encoding described above.
3131 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3132 extract_thumb_movw_movt_addend(
3133 typename elfcpp::Swap<32, big_endian>::Valtype val)
3135 // According to the Elf ABI for ARM Architecture the immediate
3136 // field is sign-extended to form the addend.
3137 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3138 | ((val >> 15) & 0x0800)
3139 | ((val >> 4) & 0x0700)
3143 // Insert X into VAL based on the Thumb2 instruction encoding
3145 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3146 insert_val_thumb_movw_movt(
3147 typename elfcpp::Swap<32, big_endian>::Valtype val,
3148 typename elfcpp::Swap<32, big_endian>::Valtype x)
3151 val |= (x & 0xf000) << 4;
3152 val |= (x & 0x0800) << 15;
3153 val |= (x & 0x0700) << 4;
3154 val |= (x & 0x00ff);
3158 // Calculate the smallest constant Kn for the specified residual.
3159 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3161 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3167 // Determine the most significant bit in the residual and
3168 // align the resulting value to a 2-bit boundary.
3169 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3171 // The desired shift is now (msb - 6), or zero, whichever
3173 return (((msb - 6) < 0) ? 0 : (msb - 6));
3176 // Calculate the final residual for the specified group index.
3177 // If the passed group index is less than zero, the method will return
3178 // the value of the specified residual without any change.
3179 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3180 static typename elfcpp::Swap<32, big_endian>::Valtype
3181 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3184 for (int n = 0; n <= group; n++)
3186 // Calculate which part of the value to mask.
3187 uint32_t shift = calc_grp_kn(residual);
3188 // Calculate the residual for the next time around.
3189 residual &= ~(residual & (0xff << shift));
3195 // Calculate the value of Gn for the specified group index.
3196 // We return it in the form of an encoded constant-and-rotation.
3197 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3198 static typename elfcpp::Swap<32, big_endian>::Valtype
3199 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3202 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3205 for (int n = 0; n <= group; n++)
3207 // Calculate which part of the value to mask.
3208 shift = calc_grp_kn(residual);
3209 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3210 gn = residual & (0xff << shift);
3211 // Calculate the residual for the next time around.
3214 // Return Gn in the form of an encoded constant-and-rotation.
3215 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3219 // Handle ARM long branches.
3220 static typename This::Status
3221 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3222 unsigned char*, const Sized_symbol<32>*,
3223 const Arm_relobj<big_endian>*, unsigned int,
3224 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3226 // Handle THUMB long branches.
3227 static typename This::Status
3228 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3229 unsigned char*, const Sized_symbol<32>*,
3230 const Arm_relobj<big_endian>*, unsigned int,
3231 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3234 // Return the branch offset of a 32-bit THUMB branch.
3235 static inline int32_t
3236 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3238 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3239 // involving the J1 and J2 bits.
3240 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3241 uint32_t upper = upper_insn & 0x3ffU;
3242 uint32_t lower = lower_insn & 0x7ffU;
3243 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3244 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3245 uint32_t i1 = j1 ^ s ? 0 : 1;
3246 uint32_t i2 = j2 ^ s ? 0 : 1;
3248 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3249 | (upper << 12) | (lower << 1));
3252 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3253 // UPPER_INSN is the original upper instruction of the branch. Caller is
3254 // responsible for overflow checking and BLX offset adjustment.
3255 static inline uint16_t
3256 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3258 uint32_t s = offset < 0 ? 1 : 0;
3259 uint32_t bits = static_cast<uint32_t>(offset);
3260 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3263 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3264 // LOWER_INSN is the original lower instruction of the branch. Caller is
3265 // responsible for overflow checking and BLX offset adjustment.
3266 static inline uint16_t
3267 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3269 uint32_t s = offset < 0 ? 1 : 0;
3270 uint32_t bits = static_cast<uint32_t>(offset);
3271 return ((lower_insn & ~0x2fffU)
3272 | ((((bits >> 23) & 1) ^ !s) << 13)
3273 | ((((bits >> 22) & 1) ^ !s) << 11)
3274 | ((bits >> 1) & 0x7ffU));
3277 // Return the branch offset of a 32-bit THUMB conditional branch.
3278 static inline int32_t
3279 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3281 uint32_t s = (upper_insn & 0x0400U) >> 10;
3282 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3283 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3284 uint32_t lower = (lower_insn & 0x07ffU);
3285 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3287 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3290 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3291 // instruction. UPPER_INSN is the original upper instruction of the branch.
3292 // Caller is responsible for overflow checking.
3293 static inline uint16_t
3294 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3296 uint32_t s = offset < 0 ? 1 : 0;
3297 uint32_t bits = static_cast<uint32_t>(offset);
3298 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3301 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3302 // instruction. LOWER_INSN is the original lower instruction of the branch.
3303 // The caller is responsible for overflow checking.
3304 static inline uint16_t
3305 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3307 uint32_t bits = static_cast<uint32_t>(offset);
3308 uint32_t j2 = (bits & 0x00080000U) >> 19;
3309 uint32_t j1 = (bits & 0x00040000U) >> 18;
3310 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3312 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3315 // R_ARM_ABS8: S + A
3316 static inline typename This::Status
3317 abs8(unsigned char* view,
3318 const Sized_relobj_file<32, big_endian>* object,
3319 const Symbol_value<32>* psymval)
3321 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3322 Valtype* wv = reinterpret_cast<Valtype*>(view);
3323 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3324 int32_t addend = Bits<8>::sign_extend32(val);
3325 Arm_address x = psymval->value(object, addend);
3326 val = Bits<32>::bit_select32(val, x, 0xffU);
3327 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3329 // R_ARM_ABS8 permits signed or unsigned results.
3330 return (Bits<8>::has_signed_unsigned_overflow32(x)
3331 ? This::STATUS_OVERFLOW
3332 : This::STATUS_OKAY);
3335 // R_ARM_THM_ABS5: S + A
3336 static inline typename This::Status
3337 thm_abs5(unsigned char* view,
3338 const Sized_relobj_file<32, big_endian>* object,
3339 const Symbol_value<32>* psymval)
3341 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3342 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3343 Valtype* wv = reinterpret_cast<Valtype*>(view);
3344 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3345 Reltype addend = (val & 0x7e0U) >> 6;
3346 Reltype x = psymval->value(object, addend);
3347 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3348 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3349 return (Bits<5>::has_overflow32(x)
3350 ? This::STATUS_OVERFLOW
3351 : This::STATUS_OKAY);
3354 // R_ARM_ABS12: S + A
3355 static inline typename This::Status
3356 abs12(unsigned char* view,
3357 const Sized_relobj_file<32, big_endian>* object,
3358 const Symbol_value<32>* psymval)
3360 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3361 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3362 Valtype* wv = reinterpret_cast<Valtype*>(view);
3363 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3364 Reltype addend = val & 0x0fffU;
3365 Reltype x = psymval->value(object, addend);
3366 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3367 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3368 return (Bits<12>::has_overflow32(x)
3369 ? This::STATUS_OVERFLOW
3370 : This::STATUS_OKAY);
3373 // R_ARM_ABS16: S + A
3374 static inline typename This::Status
3375 abs16(unsigned char* view,
3376 const Sized_relobj_file<32, big_endian>* object,
3377 const Symbol_value<32>* psymval)
3379 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3380 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3381 int32_t addend = Bits<16>::sign_extend32(val);
3382 Arm_address x = psymval->value(object, addend);
3383 val = Bits<32>::bit_select32(val, x, 0xffffU);
3384 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3386 // R_ARM_ABS16 permits signed or unsigned results.
3387 return (Bits<16>::has_signed_unsigned_overflow32(x)
3388 ? This::STATUS_OVERFLOW
3389 : This::STATUS_OKAY);
3392 // R_ARM_ABS32: (S + A) | T
3393 static inline typename This::Status
3394 abs32(unsigned char* view,
3395 const Sized_relobj_file<32, big_endian>* object,
3396 const Symbol_value<32>* psymval,
3397 Arm_address thumb_bit)
3399 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3400 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3401 Valtype x = psymval->value(object, addend) | thumb_bit;
3402 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3403 return This::STATUS_OKAY;
3406 // R_ARM_REL32: (S + A) | T - P
3407 static inline typename This::Status
3408 rel32(unsigned char* view,
3409 const Sized_relobj_file<32, big_endian>* object,
3410 const Symbol_value<32>* psymval,
3411 Arm_address address,
3412 Arm_address thumb_bit)
3414 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3415 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3416 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3417 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3418 return This::STATUS_OKAY;
3421 // R_ARM_THM_JUMP24: (S + A) | T - P
3422 static typename This::Status
3423 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3424 const Symbol_value<32>* psymval, Arm_address address,
3425 Arm_address thumb_bit);
3427 // R_ARM_THM_JUMP6: S + A - P
3428 static inline typename This::Status
3429 thm_jump6(unsigned char* view,
3430 const Sized_relobj_file<32, big_endian>* object,
3431 const Symbol_value<32>* psymval,
3432 Arm_address address)
3434 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3435 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3436 Valtype* wv = reinterpret_cast<Valtype*>(view);
3437 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3438 // bit[9]:bit[7:3]:'0' (mask: 0x02f8)
3439 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3440 Reltype x = (psymval->value(object, addend) - address);
3441 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3442 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3443 // CZB does only forward jumps.
3444 return ((x > 0x007e)
3445 ? This::STATUS_OVERFLOW
3446 : This::STATUS_OKAY);
3449 // R_ARM_THM_JUMP8: S + A - P
3450 static inline typename This::Status
3451 thm_jump8(unsigned char* view,
3452 const Sized_relobj_file<32, big_endian>* object,
3453 const Symbol_value<32>* psymval,
3454 Arm_address address)
3456 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3457 Valtype* wv = reinterpret_cast<Valtype*>(view);
3458 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3459 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3460 int32_t x = (psymval->value(object, addend) - address);
3461 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3462 | ((x & 0x01fe) >> 1)));
3463 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3464 return (Bits<9>::has_overflow32(x)
3465 ? This::STATUS_OVERFLOW
3466 : This::STATUS_OKAY);
3469 // R_ARM_THM_JUMP11: S + A - P
3470 static inline typename This::Status
3471 thm_jump11(unsigned char* view,
3472 const Sized_relobj_file<32, big_endian>* object,
3473 const Symbol_value<32>* psymval,
3474 Arm_address address)
3476 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3477 Valtype* wv = reinterpret_cast<Valtype*>(view);
3478 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3479 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3480 int32_t x = (psymval->value(object, addend) - address);
3481 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3482 | ((x & 0x0ffe) >> 1)));
3483 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3484 return (Bits<12>::has_overflow32(x)
3485 ? This::STATUS_OVERFLOW
3486 : This::STATUS_OKAY);
3489 // R_ARM_BASE_PREL: B(S) + A - P
3490 static inline typename This::Status
3491 base_prel(unsigned char* view,
3493 Arm_address address)
3495 Base::rel32(view, origin - address);
3499 // R_ARM_BASE_ABS: B(S) + A
3500 static inline typename This::Status
3501 base_abs(unsigned char* view,
3504 Base::rel32(view, origin);
3508 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3509 static inline typename This::Status
3510 got_brel(unsigned char* view,
3511 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3513 Base::rel32(view, got_offset);
3514 return This::STATUS_OKAY;
3517 // R_ARM_GOT_PREL: GOT(S) + A - P
3518 static inline typename This::Status
3519 got_prel(unsigned char* view,
3520 Arm_address got_entry,
3521 Arm_address address)
3523 Base::rel32(view, got_entry - address);
3524 return This::STATUS_OKAY;
3527 // R_ARM_PREL: (S + A) | T - P
3528 static inline typename This::Status
3529 prel31(unsigned char* view,
3530 const Sized_relobj_file<32, big_endian>* object,
3531 const Symbol_value<32>* psymval,
3532 Arm_address address,
3533 Arm_address thumb_bit)
3535 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3536 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3537 Valtype addend = Bits<31>::sign_extend32(val);
3538 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3539 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3540 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3541 return (Bits<31>::has_overflow32(x)
3542 ? This::STATUS_OVERFLOW
3543 : This::STATUS_OKAY);
3546 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3547 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3548 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3549 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3550 static inline typename This::Status
3551 movw(unsigned char* view,
3552 const Sized_relobj_file<32, big_endian>* object,
3553 const Symbol_value<32>* psymval,
3554 Arm_address relative_address_base,
3555 Arm_address thumb_bit,
3556 bool check_overflow)
3558 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3559 Valtype* wv = reinterpret_cast<Valtype*>(view);
3560 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3561 Valtype addend = This::extract_arm_movw_movt_addend(val);
3562 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3563 - relative_address_base);
3564 val = This::insert_val_arm_movw_movt(val, x);
3565 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3566 return ((check_overflow && Bits<16>::has_overflow32(x))
3567 ? This::STATUS_OVERFLOW
3568 : This::STATUS_OKAY);
3571 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3572 // R_ARM_MOVT_PREL: S + A - P
3573 // R_ARM_MOVT_BREL: S + A - B(S)
3574 static inline typename This::Status
3575 movt(unsigned char* view,
3576 const Sized_relobj_file<32, big_endian>* object,
3577 const Symbol_value<32>* psymval,
3578 Arm_address relative_address_base)
3580 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3581 Valtype* wv = reinterpret_cast<Valtype*>(view);
3582 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3583 Valtype addend = This::extract_arm_movw_movt_addend(val);
3584 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3585 val = This::insert_val_arm_movw_movt(val, x);
3586 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3587 // FIXME: IHI0044D says that we should check for overflow.
3588 return This::STATUS_OKAY;
3591 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3592 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3593 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3594 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3595 static inline typename This::Status
3596 thm_movw(unsigned char* view,
3597 const Sized_relobj_file<32, big_endian>* object,
3598 const Symbol_value<32>* psymval,
3599 Arm_address relative_address_base,
3600 Arm_address thumb_bit,
3601 bool check_overflow)
3603 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3604 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3605 Valtype* wv = reinterpret_cast<Valtype*>(view);
3606 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3607 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3608 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3610 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3611 val = This::insert_val_thumb_movw_movt(val, x);
3612 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3613 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3614 return ((check_overflow && Bits<16>::has_overflow32(x))
3615 ? This::STATUS_OVERFLOW
3616 : This::STATUS_OKAY);
3619 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3620 // R_ARM_THM_MOVT_PREL: S + A - P
3621 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3622 static inline typename This::Status
3623 thm_movt(unsigned char* view,
3624 const Sized_relobj_file<32, big_endian>* object,
3625 const Symbol_value<32>* psymval,
3626 Arm_address relative_address_base)
3628 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3629 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3630 Valtype* wv = reinterpret_cast<Valtype*>(view);
3631 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3632 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3633 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3634 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3635 val = This::insert_val_thumb_movw_movt(val, x);
3636 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3637 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3638 return This::STATUS_OKAY;
3641 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3642 static inline typename This::Status
3643 thm_alu11(unsigned char* view,
3644 const Sized_relobj_file<32, big_endian>* object,
3645 const Symbol_value<32>* psymval,
3646 Arm_address address,
3647 Arm_address thumb_bit)
3649 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3650 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3651 Valtype* wv = reinterpret_cast<Valtype*>(view);
3652 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3653 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3655 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3656 // -----------------------------------------------------------------------
3657 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3658 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3659 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3660 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3661 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3662 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3664 // Determine a sign for the addend.
3665 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3666 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3667 // Thumb2 addend encoding:
3668 // imm12 := i | imm3 | imm8
3669 int32_t addend = (insn & 0xff)
3670 | ((insn & 0x00007000) >> 4)
3671 | ((insn & 0x04000000) >> 15);
3672 // Apply a sign to the added.
3675 int32_t x = (psymval->value(object, addend) | thumb_bit)
3676 - (address & 0xfffffffc);
3677 Reltype val = abs(x);
3678 // Mask out the value and a distinct part of the ADD/SUB opcode
3679 // (bits 7:5 of opword).
3680 insn = (insn & 0xfb0f8f00)
3682 | ((val & 0x700) << 4)
3683 | ((val & 0x800) << 15);
3684 // Set the opcode according to whether the value to go in the
3685 // place is negative.
3689 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3690 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3691 return ((val > 0xfff) ?
3692 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3695 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3696 static inline typename This::Status
3697 thm_pc8(unsigned char* view,
3698 const Sized_relobj_file<32, big_endian>* object,
3699 const Symbol_value<32>* psymval,
3700 Arm_address address)
3702 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3703 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3704 Valtype* wv = reinterpret_cast<Valtype*>(view);
3705 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3706 Reltype addend = ((insn & 0x00ff) << 2);
3707 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3708 Reltype val = abs(x);
3709 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3711 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3712 return ((val > 0x03fc)
3713 ? This::STATUS_OVERFLOW
3714 : This::STATUS_OKAY);
3717 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3718 static inline typename This::Status
3719 thm_pc12(unsigned char* view,
3720 const Sized_relobj_file<32, big_endian>* object,
3721 const Symbol_value<32>* psymval,
3722 Arm_address address)
3724 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3726 Valtype* wv = reinterpret_cast<Valtype*>(view);
3727 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3728 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3729 // Determine a sign for the addend (positive if the U bit is 1).
3730 const int sign = (insn & 0x00800000) ? 1 : -1;
3731 int32_t addend = (insn & 0xfff);
3732 // Apply a sign to the added.
3735 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3736 Reltype val = abs(x);
3737 // Mask out and apply the value and the U bit.
3738 insn = (insn & 0xff7ff000) | (val & 0xfff);
3739 // Set the U bit according to whether the value to go in the
3740 // place is positive.
3744 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3745 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3746 return ((val > 0xfff) ?
3747 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3751 static inline typename This::Status
3752 v4bx(const Relocate_info<32, big_endian>* relinfo,
3753 unsigned char* view,
3754 const Arm_relobj<big_endian>* object,
3755 const Arm_address address,
3756 const bool is_interworking)
3759 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3760 Valtype* wv = reinterpret_cast<Valtype*>(view);
3761 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3763 // Ensure that we have a BX instruction.
3764 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3765 const uint32_t reg = (val & 0xf);
3766 if (is_interworking && reg != 0xf)
3768 Stub_table<big_endian>* stub_table =
3769 object->stub_table(relinfo->data_shndx);
3770 gold_assert(stub_table != NULL);
3772 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3773 gold_assert(stub != NULL);
3775 int32_t veneer_address =
3776 stub_table->address() + stub->offset() - 8 - address;
3777 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3778 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3779 // Replace with a branch to veneer (B <addr>)
3780 val = (val & 0xf0000000) | 0x0a000000
3781 | ((veneer_address >> 2) & 0x00ffffff);
3785 // Preserve Rm (lowest four bits) and the condition code
3786 // (highest four bits). Other bits encode MOV PC,Rm.
3787 val = (val & 0xf000000f) | 0x01a0f000;
3789 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3790 return This::STATUS_OKAY;
3793 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3794 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3795 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3796 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3797 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3798 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3799 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3800 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3801 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3802 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3803 static inline typename This::Status
3804 arm_grp_alu(unsigned char* view,
3805 const Sized_relobj_file<32, big_endian>* object,
3806 const Symbol_value<32>* psymval,
3808 Arm_address address,
3809 Arm_address thumb_bit,
3810 bool check_overflow)
3812 gold_assert(group >= 0 && group < 3);
3813 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3814 Valtype* wv = reinterpret_cast<Valtype*>(view);
3815 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3817 // ALU group relocations are allowed only for the ADD/SUB instructions.
3818 // (0x00800000 - ADD, 0x00400000 - SUB)
3819 const Valtype opcode = insn & 0x01e00000;
3820 if (opcode != 0x00800000 && opcode != 0x00400000)
3821 return This::STATUS_BAD_RELOC;
3823 // Determine a sign for the addend.
3824 const int sign = (opcode == 0x00800000) ? 1 : -1;
3825 // shifter = rotate_imm * 2
3826 const uint32_t shifter = (insn & 0xf00) >> 7;
3827 // Initial addend value.
3828 int32_t addend = insn & 0xff;
3829 // Rotate addend right by shifter.
3830 addend = (addend >> shifter) | (addend << (32 - shifter));
3831 // Apply a sign to the added.
3834 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3835 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3836 // Check for overflow if required
3838 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3839 return This::STATUS_OVERFLOW;
3841 // Mask out the value and the ADD/SUB part of the opcode; take care
3842 // not to destroy the S bit.
3844 // Set the opcode according to whether the value to go in the
3845 // place is negative.
3846 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3847 // Encode the offset (encoded Gn).
3850 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3851 return This::STATUS_OKAY;
3854 // R_ARM_LDR_PC_G0: S + A - P
3855 // R_ARM_LDR_PC_G1: S + A - P
3856 // R_ARM_LDR_PC_G2: S + A - P
3857 // R_ARM_LDR_SB_G0: S + A - B(S)
3858 // R_ARM_LDR_SB_G1: S + A - B(S)
3859 // R_ARM_LDR_SB_G2: S + A - B(S)
3860 static inline typename This::Status
3861 arm_grp_ldr(unsigned char* view,
3862 const Sized_relobj_file<32, big_endian>* object,
3863 const Symbol_value<32>* psymval,
3865 Arm_address address)
3867 gold_assert(group >= 0 && group < 3);
3868 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3869 Valtype* wv = reinterpret_cast<Valtype*>(view);
3870 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3872 const int sign = (insn & 0x00800000) ? 1 : -1;
3873 int32_t addend = (insn & 0xfff) * sign;
3874 int32_t x = (psymval->value(object, addend) - address);
3875 // Calculate the relevant G(n-1) value to obtain this stage residual.
3877 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3878 if (residual >= 0x1000)
3879 return This::STATUS_OVERFLOW;
3881 // Mask out the value and U bit.
3883 // Set the U bit for non-negative values.
3888 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3889 return This::STATUS_OKAY;
3892 // R_ARM_LDRS_PC_G0: S + A - P
3893 // R_ARM_LDRS_PC_G1: S + A - P
3894 // R_ARM_LDRS_PC_G2: S + A - P
3895 // R_ARM_LDRS_SB_G0: S + A - B(S)
3896 // R_ARM_LDRS_SB_G1: S + A - B(S)
3897 // R_ARM_LDRS_SB_G2: S + A - B(S)
3898 static inline typename This::Status
3899 arm_grp_ldrs(unsigned char* view,
3900 const Sized_relobj_file<32, big_endian>* object,
3901 const Symbol_value<32>* psymval,
3903 Arm_address address)
3905 gold_assert(group >= 0 && group < 3);
3906 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3907 Valtype* wv = reinterpret_cast<Valtype*>(view);
3908 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3910 const int sign = (insn & 0x00800000) ? 1 : -1;
3911 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3912 int32_t x = (psymval->value(object, addend) - address);
3913 // Calculate the relevant G(n-1) value to obtain this stage residual.
3915 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3916 if (residual >= 0x100)
3917 return This::STATUS_OVERFLOW;
3919 // Mask out the value and U bit.
3921 // Set the U bit for non-negative values.
3924 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3926 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3927 return This::STATUS_OKAY;
3930 // R_ARM_LDC_PC_G0: S + A - P
3931 // R_ARM_LDC_PC_G1: S + A - P
3932 // R_ARM_LDC_PC_G2: S + A - P
3933 // R_ARM_LDC_SB_G0: S + A - B(S)
3934 // R_ARM_LDC_SB_G1: S + A - B(S)
3935 // R_ARM_LDC_SB_G2: S + A - B(S)
3936 static inline typename This::Status
3937 arm_grp_ldc(unsigned char* view,
3938 const Sized_relobj_file<32, big_endian>* object,
3939 const Symbol_value<32>* psymval,
3941 Arm_address address)
3943 gold_assert(group >= 0 && group < 3);
3944 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3945 Valtype* wv = reinterpret_cast<Valtype*>(view);
3946 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3948 const int sign = (insn & 0x00800000) ? 1 : -1;
3949 int32_t addend = ((insn & 0xff) << 2) * sign;
3950 int32_t x = (psymval->value(object, addend) - address);
3951 // Calculate the relevant G(n-1) value to obtain this stage residual.
3953 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3954 if ((residual & 0x3) != 0 || residual >= 0x400)
3955 return This::STATUS_OVERFLOW;
3957 // Mask out the value and U bit.
3959 // Set the U bit for non-negative values.
3962 insn |= (residual >> 2);
3964 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3965 return This::STATUS_OKAY;
3969 // Relocate ARM long branches. This handles relocation types
3970 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3971 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3972 // undefined and we do not use PLT in this relocation. In such a case,
3973 // the branch is converted into an NOP.
3975 template<bool big_endian>
3976 typename Arm_relocate_functions<big_endian>::Status
3977 Arm_relocate_functions<big_endian>::arm_branch_common(
3978 unsigned int r_type,
3979 const Relocate_info<32, big_endian>* relinfo,
3980 unsigned char* view,
3981 const Sized_symbol<32>* gsym,
3982 const Arm_relobj<big_endian>* object,
3984 const Symbol_value<32>* psymval,
3985 Arm_address address,
3986 Arm_address thumb_bit,
3987 bool is_weakly_undefined_without_plt)
3989 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3990 Valtype* wv = reinterpret_cast<Valtype*>(view);
3991 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3993 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3994 && ((val & 0x0f000000UL) == 0x0a000000UL);
3995 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3996 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3997 && ((val & 0x0f000000UL) == 0x0b000000UL);
3998 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3999 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
4001 // Check that the instruction is valid.
4002 if (r_type == elfcpp::R_ARM_CALL)
4004 if (!insn_is_uncond_bl && !insn_is_blx)
4005 return This::STATUS_BAD_RELOC;
4007 else if (r_type == elfcpp::R_ARM_JUMP24)
4009 if (!insn_is_b && !insn_is_cond_bl)
4010 return This::STATUS_BAD_RELOC;
4012 else if (r_type == elfcpp::R_ARM_PLT32)
4014 if (!insn_is_any_branch)
4015 return This::STATUS_BAD_RELOC;
4017 else if (r_type == elfcpp::R_ARM_XPC25)
4019 // FIXME: AAELF document IH0044C does not say much about it other
4020 // than it being obsolete.
4021 if (!insn_is_any_branch)
4022 return This::STATUS_BAD_RELOC;
4027 // A branch to an undefined weak symbol is turned into a jump to
4028 // the next instruction unless a PLT entry will be created.
4029 // Do the same for local undefined symbols.
4030 // The jump to the next instruction is optimized as a NOP depending
4031 // on the architecture.
4032 const Target_arm<big_endian>* arm_target =
4033 Target_arm<big_endian>::default_target();
4034 if (is_weakly_undefined_without_plt)
4036 gold_assert(!parameters->options().relocatable());
4037 Valtype cond = val & 0xf0000000U;
4038 if (arm_target->may_use_arm_nop())
4039 val = cond | 0x0320f000;
4041 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
4042 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4043 return This::STATUS_OKAY;
4046 Valtype addend = Bits<26>::sign_extend32(val << 2);
4047 Valtype branch_target = psymval->value(object, addend);
4048 int32_t branch_offset = branch_target - address;
4050 // We need a stub if the branch offset is too large or if we need
4052 bool may_use_blx = arm_target->may_use_v5t_interworking();
4053 Reloc_stub* stub = NULL;
4055 if (!parameters->options().relocatable()
4056 && (Bits<26>::has_overflow32(branch_offset)
4057 || ((thumb_bit != 0)
4058 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
4060 Valtype unadjusted_branch_target = psymval->value(object, 0);
4062 Stub_type stub_type =
4063 Reloc_stub::stub_type_for_reloc(r_type, address,
4064 unadjusted_branch_target,
4066 if (stub_type != arm_stub_none)
4068 Stub_table<big_endian>* stub_table =
4069 object->stub_table(relinfo->data_shndx);
4070 gold_assert(stub_table != NULL);
4072 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4073 stub = stub_table->find_reloc_stub(stub_key);
4074 gold_assert(stub != NULL);
4075 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4076 branch_target = stub_table->address() + stub->offset() + addend;
4077 branch_offset = branch_target - address;
4078 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4082 // At this point, if we still need to switch mode, the instruction
4083 // must either be a BLX or a BL that can be converted to a BLX.
4087 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4088 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4091 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4092 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4093 return (Bits<26>::has_overflow32(branch_offset)
4094 ? This::STATUS_OVERFLOW
4095 : This::STATUS_OKAY);
4098 // Relocate THUMB long branches. This handles relocation types
4099 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4100 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4101 // undefined and we do not use PLT in this relocation. In such a case,
4102 // the branch is converted into an NOP.
4104 template<bool big_endian>
4105 typename Arm_relocate_functions<big_endian>::Status
4106 Arm_relocate_functions<big_endian>::thumb_branch_common(
4107 unsigned int r_type,
4108 const Relocate_info<32, big_endian>* relinfo,
4109 unsigned char* view,
4110 const Sized_symbol<32>* gsym,
4111 const Arm_relobj<big_endian>* object,
4113 const Symbol_value<32>* psymval,
4114 Arm_address address,
4115 Arm_address thumb_bit,
4116 bool is_weakly_undefined_without_plt)
4118 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4119 Valtype* wv = reinterpret_cast<Valtype*>(view);
4120 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4121 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4123 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4125 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4126 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4128 // Check that the instruction is valid.
4129 if (r_type == elfcpp::R_ARM_THM_CALL)
4131 if (!is_bl_insn && !is_blx_insn)
4132 return This::STATUS_BAD_RELOC;
4134 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4136 // This cannot be a BLX.
4138 return This::STATUS_BAD_RELOC;
4140 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4142 // Check for Thumb to Thumb call.
4144 return This::STATUS_BAD_RELOC;
4147 gold_warning(_("%s: Thumb BLX instruction targets "
4148 "thumb function '%s'."),
4149 object->name().c_str(),
4150 (gsym ? gsym->name() : "(local)"));
4151 // Convert BLX to BL.
4152 lower_insn |= 0x1000U;
4158 // A branch to an undefined weak symbol is turned into a jump to
4159 // the next instruction unless a PLT entry will be created.
4160 // The jump to the next instruction is optimized as a NOP.W for
4161 // Thumb-2 enabled architectures.
4162 const Target_arm<big_endian>* arm_target =
4163 Target_arm<big_endian>::default_target();
4164 if (is_weakly_undefined_without_plt)
4166 gold_assert(!parameters->options().relocatable());
4167 if (arm_target->may_use_thumb2_nop())
4169 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4170 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4174 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4175 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4177 return This::STATUS_OKAY;
4180 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4181 Arm_address branch_target = psymval->value(object, addend);
4183 // For BLX, bit 1 of target address comes from bit 1 of base address.
4184 bool may_use_blx = arm_target->may_use_v5t_interworking();
4185 if (thumb_bit == 0 && may_use_blx)
4186 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4188 int32_t branch_offset = branch_target - address;
4190 // We need a stub if the branch offset is too large or if we need
4192 bool thumb2 = arm_target->using_thumb2();
4193 if (!parameters->options().relocatable()
4194 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4195 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4196 || ((thumb_bit == 0)
4197 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4198 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4200 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4202 Stub_type stub_type =
4203 Reloc_stub::stub_type_for_reloc(r_type, address,
4204 unadjusted_branch_target,
4207 if (stub_type != arm_stub_none)
4209 Stub_table<big_endian>* stub_table =
4210 object->stub_table(relinfo->data_shndx);
4211 gold_assert(stub_table != NULL);
4213 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4214 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4215 gold_assert(stub != NULL);
4216 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4217 branch_target = stub_table->address() + stub->offset() + addend;
4218 if (thumb_bit == 0 && may_use_blx)
4219 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4220 branch_offset = branch_target - address;
4224 // At this point, if we still need to switch mode, the instruction
4225 // must either be a BLX or a BL that can be converted to a BLX.
4228 gold_assert(may_use_blx
4229 && (r_type == elfcpp::R_ARM_THM_CALL
4230 || r_type == elfcpp::R_ARM_THM_XPC22));
4231 // Make sure this is a BLX.
4232 lower_insn &= ~0x1000U;
4236 // Make sure this is a BL.
4237 lower_insn |= 0x1000U;
4240 // For a BLX instruction, make sure that the relocation is rounded up
4241 // to a word boundary. This follows the semantics of the instruction
4242 // which specifies that bit 1 of the target address will come from bit
4243 // 1 of the base address.
4244 if ((lower_insn & 0x5000U) == 0x4000U)
4245 gold_assert((branch_offset & 3) == 0);
4247 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4248 // We use the Thumb-2 encoding, which is safe even if dealing with
4249 // a Thumb-1 instruction by virtue of our overflow check above. */
4250 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4251 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4253 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4254 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4256 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4259 ? Bits<25>::has_overflow32(branch_offset)
4260 : Bits<23>::has_overflow32(branch_offset))
4261 ? This::STATUS_OVERFLOW
4262 : This::STATUS_OKAY);
4265 // Relocate THUMB-2 long conditional branches.
4266 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4267 // undefined and we do not use PLT in this relocation. In such a case,
4268 // the branch is converted into an NOP.
4270 template<bool big_endian>
4271 typename Arm_relocate_functions<big_endian>::Status
4272 Arm_relocate_functions<big_endian>::thm_jump19(
4273 unsigned char* view,
4274 const Arm_relobj<big_endian>* object,
4275 const Symbol_value<32>* psymval,
4276 Arm_address address,
4277 Arm_address thumb_bit)
4279 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4280 Valtype* wv = reinterpret_cast<Valtype*>(view);
4281 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4282 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4283 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4285 Arm_address branch_target = psymval->value(object, addend);
4286 int32_t branch_offset = branch_target - address;
4288 // ??? Should handle interworking? GCC might someday try to
4289 // use this for tail calls.
4290 // FIXME: We do support thumb entry to PLT yet.
4293 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4294 return This::STATUS_BAD_RELOC;
4297 // Put RELOCATION back into the insn.
4298 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4299 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4301 // Put the relocated value back in the object file:
4302 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4303 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4305 return (Bits<21>::has_overflow32(branch_offset)
4306 ? This::STATUS_OVERFLOW
4307 : This::STATUS_OKAY);
4310 // Get the GOT section, creating it if necessary.
4312 template<bool big_endian>
4313 Arm_output_data_got<big_endian>*
4314 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4316 if (this->got_ == NULL)
4318 gold_assert(symtab != NULL && layout != NULL);
4320 // When using -z now, we can treat .got as a relro section.
4321 // Without -z now, it is modified after program startup by lazy
4323 bool is_got_relro = parameters->options().now();
4324 Output_section_order got_order = (is_got_relro
4328 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4329 // .got.plt sections in output. The output .got section contains both
4330 // PLT and non-PLT GOT entries.
4331 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4333 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4334 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4335 this->got_, got_order, is_got_relro);
4337 // The old GNU linker creates a .got.plt section. We just
4338 // create another set of data in the .got section. Note that we
4339 // always create a PLT if we create a GOT, although the PLT
4341 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4342 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4343 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4344 this->got_plt_, got_order, is_got_relro);
4346 // The first three entries are reserved.
4347 this->got_plt_->set_current_data_size(3 * 4);
4349 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4350 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4351 Symbol_table::PREDEFINED,
4353 0, 0, elfcpp::STT_OBJECT,
4355 elfcpp::STV_HIDDEN, 0,
4358 // If there are any IRELATIVE relocations, they get GOT entries
4359 // in .got.plt after the jump slot entries.
4360 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4361 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4362 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4363 this->got_irelative_,
4364 got_order, is_got_relro);
4370 // Get the dynamic reloc section, creating it if necessary.
4372 template<bool big_endian>
4373 typename Target_arm<big_endian>::Reloc_section*
4374 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4376 if (this->rel_dyn_ == NULL)
4378 gold_assert(layout != NULL);
4379 // Create both relocation sections in the same place, so as to ensure
4380 // their relative order in the output section.
4381 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4382 this->rel_irelative_ = new Reloc_section(false);
4383 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4384 elfcpp::SHF_ALLOC, this->rel_dyn_,
4385 ORDER_DYNAMIC_RELOCS, false);
4386 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4387 elfcpp::SHF_ALLOC, this->rel_irelative_,
4388 ORDER_DYNAMIC_RELOCS, false);
4390 return this->rel_dyn_;
4394 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4395 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4396 // follow the other dynamic relocations so that they can refer to global
4397 // variables initialized by those relocs.
4399 template<bool big_endian>
4400 typename Target_arm<big_endian>::Reloc_section*
4401 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4403 if (this->rel_irelative_ == NULL)
4405 // Delegate the creation to rel_dyn_section so as to ensure their order in
4406 // the output section.
4407 this->rel_dyn_section(layout);
4408 gold_assert(this->rel_irelative_ != NULL
4409 && (this->rel_dyn_->output_section()
4410 == this->rel_irelative_->output_section()));
4412 return this->rel_irelative_;
4416 // Insn_template methods.
4418 // Return byte size of an instruction template.
4421 Insn_template::size() const
4423 switch (this->type())
4426 case THUMB16_SPECIAL_TYPE:
4437 // Return alignment of an instruction template.
4440 Insn_template::alignment() const
4442 switch (this->type())
4445 case THUMB16_SPECIAL_TYPE:
4456 // Stub_template methods.
4458 Stub_template::Stub_template(
4459 Stub_type type, const Insn_template* insns,
4461 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4462 entry_in_thumb_mode_(false), relocs_()
4466 // Compute byte size and alignment of stub template.
4467 for (size_t i = 0; i < insn_count; i++)
4469 unsigned insn_alignment = insns[i].alignment();
4470 size_t insn_size = insns[i].size();
4471 gold_assert((offset & (insn_alignment - 1)) == 0);
4472 this->alignment_ = std::max(this->alignment_, insn_alignment);
4473 switch (insns[i].type())
4475 case Insn_template::THUMB16_TYPE:
4476 case Insn_template::THUMB16_SPECIAL_TYPE:
4478 this->entry_in_thumb_mode_ = true;
4481 case Insn_template::THUMB32_TYPE:
4482 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4483 this->relocs_.push_back(Reloc(i, offset));
4485 this->entry_in_thumb_mode_ = true;
4488 case Insn_template::ARM_TYPE:
4489 // Handle cases where the target is encoded within the
4491 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4492 this->relocs_.push_back(Reloc(i, offset));
4495 case Insn_template::DATA_TYPE:
4496 // Entry point cannot be data.
4497 gold_assert(i != 0);
4498 this->relocs_.push_back(Reloc(i, offset));
4504 offset += insn_size;
4506 this->size_ = offset;
4511 // Template to implement do_write for a specific target endianness.
4513 template<bool big_endian>
4515 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4517 const Stub_template* stub_template = this->stub_template();
4518 const Insn_template* insns = stub_template->insns();
4520 // FIXME: We do not handle BE8 encoding yet.
4521 unsigned char* pov = view;
4522 for (size_t i = 0; i < stub_template->insn_count(); i++)
4524 switch (insns[i].type())
4526 case Insn_template::THUMB16_TYPE:
4527 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4529 case Insn_template::THUMB16_SPECIAL_TYPE:
4530 elfcpp::Swap<16, big_endian>::writeval(
4532 this->thumb16_special(i));
4534 case Insn_template::THUMB32_TYPE:
4536 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4537 uint32_t lo = insns[i].data() & 0xffff;
4538 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4539 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4542 case Insn_template::ARM_TYPE:
4543 case Insn_template::DATA_TYPE:
4544 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4549 pov += insns[i].size();
4551 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4554 // Reloc_stub::Key methods.
4556 // Dump a Key as a string for debugging.
4559 Reloc_stub::Key::name() const
4561 if (this->r_sym_ == invalid_index)
4563 // Global symbol key name
4564 // <stub-type>:<symbol name>:<addend>.
4565 const std::string sym_name = this->u_.symbol->name();
4566 // We need to print two hex number and two colons. So just add 100 bytes
4567 // to the symbol name size.
4568 size_t len = sym_name.size() + 100;
4569 char* buffer = new char[len];
4570 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4571 sym_name.c_str(), this->addend_);
4572 gold_assert(c > 0 && c < static_cast<int>(len));
4574 return std::string(buffer);
4578 // local symbol key name
4579 // <stub-type>:<object>:<r_sym>:<addend>.
4580 const size_t len = 200;
4582 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4583 this->u_.relobj, this->r_sym_, this->addend_);
4584 gold_assert(c > 0 && c < static_cast<int>(len));
4585 return std::string(buffer);
4589 // Reloc_stub methods.
4591 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4592 // LOCATION to DESTINATION.
4593 // This code is based on the arm_type_of_stub function in
4594 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4598 Reloc_stub::stub_type_for_reloc(
4599 unsigned int r_type,
4600 Arm_address location,
4601 Arm_address destination,
4602 bool target_is_thumb)
4604 Stub_type stub_type = arm_stub_none;
4606 // This is a bit ugly but we want to avoid using a templated class for
4607 // big and little endianities.
4609 bool should_force_pic_veneer = parameters->options().pic_veneer();
4612 if (parameters->target().is_big_endian())
4614 const Target_arm<true>* big_endian_target =
4615 Target_arm<true>::default_target();
4616 may_use_blx = big_endian_target->may_use_v5t_interworking();
4617 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4618 thumb2 = big_endian_target->using_thumb2();
4619 thumb_only = big_endian_target->using_thumb_only();
4623 const Target_arm<false>* little_endian_target =
4624 Target_arm<false>::default_target();
4625 may_use_blx = little_endian_target->may_use_v5t_interworking();
4626 should_force_pic_veneer |=
4627 little_endian_target->should_force_pic_veneer();
4628 thumb2 = little_endian_target->using_thumb2();
4629 thumb_only = little_endian_target->using_thumb_only();
4632 int64_t branch_offset;
4633 bool output_is_position_independent =
4634 parameters->options().output_is_position_independent();
4635 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4637 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4638 // base address (instruction address + 4).
4639 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4640 destination = Bits<32>::bit_select32(destination, location, 0x2);
4641 branch_offset = static_cast<int64_t>(destination) - location;
4643 // Handle cases where:
4644 // - this call goes too far (different Thumb/Thumb2 max
4646 // - it's a Thumb->Arm call and blx is not available, or it's a
4647 // Thumb->Arm branch (not bl). A stub is needed in this case.
4649 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4650 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4652 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4653 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4654 || ((!target_is_thumb)
4655 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4656 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4658 if (target_is_thumb)
4663 stub_type = (output_is_position_independent
4664 || should_force_pic_veneer)
4667 && (r_type == elfcpp::R_ARM_THM_CALL))
4668 // V5T and above. Stub starts with ARM code, so
4669 // we must be able to switch mode before
4670 // reaching it, which is only possible for 'bl'
4671 // (ie R_ARM_THM_CALL relocation).
4672 ? arm_stub_long_branch_any_thumb_pic
4673 // On V4T, use Thumb code only.
4674 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4678 && (r_type == elfcpp::R_ARM_THM_CALL))
4679 ? arm_stub_long_branch_any_any // V5T and above.
4680 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4684 stub_type = (output_is_position_independent
4685 || should_force_pic_veneer)
4686 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4687 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4694 // FIXME: We should check that the input section is from an
4695 // object that has interwork enabled.
4697 stub_type = (output_is_position_independent
4698 || should_force_pic_veneer)
4701 && (r_type == elfcpp::R_ARM_THM_CALL))
4702 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4703 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4707 && (r_type == elfcpp::R_ARM_THM_CALL))
4708 ? arm_stub_long_branch_any_any // V5T and above.
4709 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4711 // Handle v4t short branches.
4712 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4713 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4714 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4715 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4719 else if (r_type == elfcpp::R_ARM_CALL
4720 || r_type == elfcpp::R_ARM_JUMP24
4721 || r_type == elfcpp::R_ARM_PLT32)
4723 branch_offset = static_cast<int64_t>(destination) - location;
4724 if (target_is_thumb)
4728 // FIXME: We should check that the input section is from an
4729 // object that has interwork enabled.
4731 // We have an extra 2-bytes reach because of
4732 // the mode change (bit 24 (H) of BLX encoding).
4733 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4734 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4735 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4736 || (r_type == elfcpp::R_ARM_JUMP24)
4737 || (r_type == elfcpp::R_ARM_PLT32))
4739 stub_type = (output_is_position_independent
4740 || should_force_pic_veneer)
4743 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4744 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4748 ? arm_stub_long_branch_any_any // V5T and above.
4749 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4755 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4756 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4758 stub_type = (output_is_position_independent
4759 || should_force_pic_veneer)
4760 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4761 : arm_stub_long_branch_any_any; /// non-PIC.
4769 // Cortex_a8_stub methods.
4771 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4772 // I is the position of the instruction template in the stub template.
4775 Cortex_a8_stub::do_thumb16_special(size_t i)
4777 // The only use of this is to copy condition code from a conditional
4778 // branch being worked around to the corresponding conditional branch in
4780 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4782 uint16_t data = this->stub_template()->insns()[i].data();
4783 gold_assert((data & 0xff00U) == 0xd000U);
4784 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4788 // Stub_factory methods.
4790 Stub_factory::Stub_factory()
4792 // The instruction template sequences are declared as static
4793 // objects and initialized first time the constructor runs.
4795 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4796 // to reach the stub if necessary.
4797 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4799 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4800 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4801 // dcd R_ARM_ABS32(X)
4804 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4806 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4808 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4809 Insn_template::arm_insn(0xe12fff1c), // bx ip
4810 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4811 // dcd R_ARM_ABS32(X)
4814 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4815 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4817 Insn_template::thumb16_insn(0xb401), // push {r0}
4818 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4819 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4820 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4821 Insn_template::thumb16_insn(0x4760), // bx ip
4822 Insn_template::thumb16_insn(0xbf00), // nop
4823 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4824 // dcd R_ARM_ABS32(X)
4827 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4829 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4831 Insn_template::thumb16_insn(0x4778), // bx pc
4832 Insn_template::thumb16_insn(0x46c0), // nop
4833 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4834 Insn_template::arm_insn(0xe12fff1c), // bx ip
4835 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4836 // dcd R_ARM_ABS32(X)
4839 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4841 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4843 Insn_template::thumb16_insn(0x4778), // bx pc
4844 Insn_template::thumb16_insn(0x46c0), // nop
4845 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4846 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4847 // dcd R_ARM_ABS32(X)
4850 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4851 // one, when the destination is close enough.
4852 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4854 Insn_template::thumb16_insn(0x4778), // bx pc
4855 Insn_template::thumb16_insn(0x46c0), // nop
4856 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4859 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4860 // blx to reach the stub if necessary.
4861 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4863 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4864 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4865 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4866 // dcd R_ARM_REL32(X-4)
4869 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4870 // blx to reach the stub if necessary. We can not add into pc;
4871 // it is not guaranteed to mode switch (different in ARMv6 and
4873 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4875 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4876 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4877 Insn_template::arm_insn(0xe12fff1c), // bx ip
4878 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4879 // dcd R_ARM_REL32(X)
4882 // V4T ARM -> ARM long branch stub, PIC.
4883 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4885 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4886 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4887 Insn_template::arm_insn(0xe12fff1c), // bx ip
4888 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4889 // dcd R_ARM_REL32(X)
4892 // V4T Thumb -> ARM long branch stub, PIC.
4893 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4895 Insn_template::thumb16_insn(0x4778), // bx pc
4896 Insn_template::thumb16_insn(0x46c0), // nop
4897 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4898 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4899 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4900 // dcd R_ARM_REL32(X)
4903 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4905 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4907 Insn_template::thumb16_insn(0xb401), // push {r0}
4908 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4909 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4910 Insn_template::thumb16_insn(0x4484), // add ip, r0
4911 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4912 Insn_template::thumb16_insn(0x4760), // bx ip
4913 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4914 // dcd R_ARM_REL32(X)
4917 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4919 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4921 Insn_template::thumb16_insn(0x4778), // bx pc
4922 Insn_template::thumb16_insn(0x46c0), // nop
4923 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4924 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4925 Insn_template::arm_insn(0xe12fff1c), // bx ip
4926 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4927 // dcd R_ARM_REL32(X)
4930 // Cortex-A8 erratum-workaround stubs.
4932 // Stub used for conditional branches (which may be beyond +/-1MB away,
4933 // so we can't use a conditional branch to reach this stub).
4940 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4942 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4943 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4944 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4948 // Stub used for b.w and bl.w instructions.
4950 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4952 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4955 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4957 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4960 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4961 // instruction (which switches to ARM mode) to point to this stub. Jump to
4962 // the real destination using an ARM-mode branch.
4963 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4965 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4968 // Stub used to provide an interworking for R_ARM_V4BX relocation
4969 // (bx r[n] instruction).
4970 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4972 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4973 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4974 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4977 // Fill in the stub template look-up table. Stub templates are constructed
4978 // per instance of Stub_factory for fast look-up without locking
4979 // in a thread-enabled environment.
4981 this->stub_templates_[arm_stub_none] =
4982 new Stub_template(arm_stub_none, NULL, 0);
4984 #define DEF_STUB(x) \
4988 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4989 Stub_type type = arm_stub_##x; \
4990 this->stub_templates_[type] = \
4991 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4999 // Stub_table methods.
5001 // Remove all Cortex-A8 stub.
5003 template<bool big_endian>
5005 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
5007 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5008 p != this->cortex_a8_stubs_.end();
5011 this->cortex_a8_stubs_.clear();
5014 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
5016 template<bool big_endian>
5018 Stub_table<big_endian>::relocate_stub(
5020 const Relocate_info<32, big_endian>* relinfo,
5021 Target_arm<big_endian>* arm_target,
5022 Output_section* output_section,
5023 unsigned char* view,
5024 Arm_address address,
5025 section_size_type view_size)
5027 const Stub_template* stub_template = stub->stub_template();
5028 if (stub_template->reloc_count() != 0)
5030 // Adjust view to cover the stub only.
5031 section_size_type offset = stub->offset();
5032 section_size_type stub_size = stub_template->size();
5033 gold_assert(offset + stub_size <= view_size);
5035 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
5036 address + offset, stub_size);
5040 // Relocate all stubs in this stub table.
5042 template<bool big_endian>
5044 Stub_table<big_endian>::relocate_stubs(
5045 const Relocate_info<32, big_endian>* relinfo,
5046 Target_arm<big_endian>* arm_target,
5047 Output_section* output_section,
5048 unsigned char* view,
5049 Arm_address address,
5050 section_size_type view_size)
5052 // If we are passed a view bigger than the stub table's. we need to
5054 gold_assert(address == this->address()
5056 == static_cast<section_size_type>(this->data_size())));
5058 // Relocate all relocation stubs.
5059 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5060 p != this->reloc_stubs_.end();
5062 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5063 address, view_size);
5065 // Relocate all Cortex-A8 stubs.
5066 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5067 p != this->cortex_a8_stubs_.end();
5069 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5070 address, view_size);
5072 // Relocate all ARM V4BX stubs.
5073 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5074 p != this->arm_v4bx_stubs_.end();
5078 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5079 address, view_size);
5083 // Write out the stubs to file.
5085 template<bool big_endian>
5087 Stub_table<big_endian>::do_write(Output_file* of)
5089 off_t offset = this->offset();
5090 const section_size_type oview_size =
5091 convert_to_section_size_type(this->data_size());
5092 unsigned char* const oview = of->get_output_view(offset, oview_size);
5094 // Write relocation stubs.
5095 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5096 p != this->reloc_stubs_.end();
5099 Reloc_stub* stub = p->second;
5100 Arm_address address = this->address() + stub->offset();
5102 == align_address(address,
5103 stub->stub_template()->alignment()));
5104 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5108 // Write Cortex-A8 stubs.
5109 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5110 p != this->cortex_a8_stubs_.end();
5113 Cortex_a8_stub* stub = p->second;
5114 Arm_address address = this->address() + stub->offset();
5116 == align_address(address,
5117 stub->stub_template()->alignment()));
5118 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5122 // Write ARM V4BX relocation stubs.
5123 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5124 p != this->arm_v4bx_stubs_.end();
5130 Arm_address address = this->address() + (*p)->offset();
5132 == align_address(address,
5133 (*p)->stub_template()->alignment()));
5134 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5138 of->write_output_view(this->offset(), oview_size, oview);
5141 // Update the data size and address alignment of the stub table at the end
5142 // of a relaxation pass. Return true if either the data size or the
5143 // alignment changed in this relaxation pass.
5145 template<bool big_endian>
5147 Stub_table<big_endian>::update_data_size_and_addralign()
5149 // Go over all stubs in table to compute data size and address alignment.
5150 off_t size = this->reloc_stubs_size_;
5151 unsigned addralign = this->reloc_stubs_addralign_;
5153 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5154 p != this->cortex_a8_stubs_.end();
5157 const Stub_template* stub_template = p->second->stub_template();
5158 addralign = std::max(addralign, stub_template->alignment());
5159 size = (align_address(size, stub_template->alignment())
5160 + stub_template->size());
5163 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5164 p != this->arm_v4bx_stubs_.end();
5170 const Stub_template* stub_template = (*p)->stub_template();
5171 addralign = std::max(addralign, stub_template->alignment());
5172 size = (align_address(size, stub_template->alignment())
5173 + stub_template->size());
5176 // Check if either data size or alignment changed in this pass.
5177 // Update prev_data_size_ and prev_addralign_. These will be used
5178 // as the current data size and address alignment for the next pass.
5179 bool changed = size != this->prev_data_size_;
5180 this->prev_data_size_ = size;
5182 if (addralign != this->prev_addralign_)
5184 this->prev_addralign_ = addralign;
5189 // Finalize the stubs. This sets the offsets of the stubs within the stub
5190 // table. It also marks all input sections needing Cortex-A8 workaround.
5192 template<bool big_endian>
5194 Stub_table<big_endian>::finalize_stubs()
5196 off_t off = this->reloc_stubs_size_;
5197 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5198 p != this->cortex_a8_stubs_.end();
5201 Cortex_a8_stub* stub = p->second;
5202 const Stub_template* stub_template = stub->stub_template();
5203 uint64_t stub_addralign = stub_template->alignment();
5204 off = align_address(off, stub_addralign);
5205 stub->set_offset(off);
5206 off += stub_template->size();
5208 // Mark input section so that we can determine later if a code section
5209 // needs the Cortex-A8 workaround quickly.
5210 Arm_relobj<big_endian>* arm_relobj =
5211 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5212 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5215 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5216 p != this->arm_v4bx_stubs_.end();
5222 const Stub_template* stub_template = (*p)->stub_template();
5223 uint64_t stub_addralign = stub_template->alignment();
5224 off = align_address(off, stub_addralign);
5225 (*p)->set_offset(off);
5226 off += stub_template->size();
5229 gold_assert(off <= this->prev_data_size_);
5232 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5233 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5234 // of the address range seen by the linker.
5236 template<bool big_endian>
5238 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5239 Target_arm<big_endian>* arm_target,
5240 unsigned char* view,
5241 Arm_address view_address,
5242 section_size_type view_size)
5244 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5245 for (Cortex_a8_stub_list::const_iterator p =
5246 this->cortex_a8_stubs_.lower_bound(view_address);
5247 ((p != this->cortex_a8_stubs_.end())
5248 && (p->first < (view_address + view_size)));
5251 // We do not store the THUMB bit in the LSB of either the branch address
5252 // or the stub offset. There is no need to strip the LSB.
5253 Arm_address branch_address = p->first;
5254 const Cortex_a8_stub* stub = p->second;
5255 Arm_address stub_address = this->address() + stub->offset();
5257 // Offset of the branch instruction relative to this view.
5258 section_size_type offset =
5259 convert_to_section_size_type(branch_address - view_address);
5260 gold_assert((offset + 4) <= view_size);
5262 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5263 view + offset, branch_address);
5267 // Arm_input_section methods.
5269 // Initialize an Arm_input_section.
5271 template<bool big_endian>
5273 Arm_input_section<big_endian>::init()
5275 Relobj* relobj = this->relobj();
5276 unsigned int shndx = this->shndx();
5278 // We have to cache original size, alignment and contents to avoid locking
5279 // the original file.
5280 this->original_addralign_ =
5281 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5283 // This is not efficient but we expect only a small number of relaxed
5284 // input sections for stubs.
5285 section_size_type section_size;
5286 const unsigned char* section_contents =
5287 relobj->section_contents(shndx, §ion_size, false);
5288 this->original_size_ =
5289 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5291 gold_assert(this->original_contents_ == NULL);
5292 this->original_contents_ = new unsigned char[section_size];
5293 memcpy(this->original_contents_, section_contents, section_size);
5295 // We want to make this look like the original input section after
5296 // output sections are finalized.
5297 Output_section* os = relobj->output_section(shndx);
5298 off_t offset = relobj->output_section_offset(shndx);
5299 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5300 this->set_address(os->address() + offset);
5301 this->set_file_offset(os->offset() + offset);
5303 this->set_current_data_size(this->original_size_);
5304 this->finalize_data_size();
5307 template<bool big_endian>
5309 Arm_input_section<big_endian>::do_write(Output_file* of)
5311 // We have to write out the original section content.
5312 gold_assert(this->original_contents_ != NULL);
5313 of->write(this->offset(), this->original_contents_,
5314 this->original_size_);
5316 // If this owns a stub table and it is not empty, write it.
5317 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5318 this->stub_table_->write(of);
5321 // Finalize data size.
5323 template<bool big_endian>
5325 Arm_input_section<big_endian>::set_final_data_size()
5327 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5329 if (this->is_stub_table_owner())
5331 this->stub_table_->finalize_data_size();
5332 off = align_address(off, this->stub_table_->addralign());
5333 off += this->stub_table_->data_size();
5335 this->set_data_size(off);
5338 // Reset address and file offset.
5340 template<bool big_endian>
5342 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5344 // Size of the original input section contents.
5345 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5347 // If this is a stub table owner, account for the stub table size.
5348 if (this->is_stub_table_owner())
5350 Stub_table<big_endian>* stub_table = this->stub_table_;
5352 // Reset the stub table's address and file offset. The
5353 // current data size for child will be updated after that.
5354 stub_table_->reset_address_and_file_offset();
5355 off = align_address(off, stub_table_->addralign());
5356 off += stub_table->current_data_size();
5359 this->set_current_data_size(off);
5362 // Arm_exidx_cantunwind methods.
5364 // Write this to Output file OF for a fixed endianness.
5366 template<bool big_endian>
5368 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5370 off_t offset = this->offset();
5371 const section_size_type oview_size = 8;
5372 unsigned char* const oview = of->get_output_view(offset, oview_size);
5374 Output_section* os = this->relobj_->output_section(this->shndx_);
5375 gold_assert(os != NULL);
5377 Arm_relobj<big_endian>* arm_relobj =
5378 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5379 Arm_address output_offset =
5380 arm_relobj->get_output_section_offset(this->shndx_);
5381 Arm_address section_start;
5382 section_size_type section_size;
5384 // Find out the end of the text section referred by this.
5385 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5387 section_start = os->address() + output_offset;
5388 const Arm_exidx_input_section* exidx_input_section =
5389 arm_relobj->exidx_input_section_by_link(this->shndx_);
5390 gold_assert(exidx_input_section != NULL);
5392 convert_to_section_size_type(exidx_input_section->text_size());
5396 // Currently this only happens for a relaxed section.
5397 const Output_relaxed_input_section* poris =
5398 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5399 gold_assert(poris != NULL);
5400 section_start = poris->address();
5401 section_size = convert_to_section_size_type(poris->data_size());
5404 // We always append this to the end of an EXIDX section.
5405 Arm_address output_address = section_start + section_size;
5407 // Write out the entry. The first word either points to the beginning
5408 // or after the end of a text section. The second word is the special
5409 // EXIDX_CANTUNWIND value.
5410 uint32_t prel31_offset = output_address - this->address();
5411 if (Bits<31>::has_overflow32(offset))
5412 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5413 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5414 prel31_offset & 0x7fffffffU);
5415 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5416 elfcpp::EXIDX_CANTUNWIND);
5418 of->write_output_view(this->offset(), oview_size, oview);
5421 // Arm_exidx_merged_section methods.
5423 // Constructor for Arm_exidx_merged_section.
5424 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5425 // SECTION_OFFSET_MAP points to a section offset map describing how
5426 // parts of the input section are mapped to output. DELETED_BYTES is
5427 // the number of bytes deleted from the EXIDX input section.
5429 Arm_exidx_merged_section::Arm_exidx_merged_section(
5430 const Arm_exidx_input_section& exidx_input_section,
5431 const Arm_exidx_section_offset_map& section_offset_map,
5432 uint32_t deleted_bytes)
5433 : Output_relaxed_input_section(exidx_input_section.relobj(),
5434 exidx_input_section.shndx(),
5435 exidx_input_section.addralign()),
5436 exidx_input_section_(exidx_input_section),
5437 section_offset_map_(section_offset_map)
5439 // If we retain or discard the whole EXIDX input section, we would
5441 gold_assert(deleted_bytes != 0
5442 && deleted_bytes != this->exidx_input_section_.size());
5444 // Fix size here so that we do not need to implement set_final_data_size.
5445 uint32_t size = exidx_input_section.size() - deleted_bytes;
5446 this->set_data_size(size);
5447 this->fix_data_size();
5449 // Allocate buffer for section contents and build contents.
5450 this->section_contents_ = new unsigned char[size];
5453 // Build the contents of a merged EXIDX output section.
5456 Arm_exidx_merged_section::build_contents(
5457 const unsigned char* original_contents,
5458 section_size_type original_size)
5460 // Go over spans of input offsets and write only those that are not
5462 section_offset_type in_start = 0;
5463 section_offset_type out_start = 0;
5464 section_offset_type in_max =
5465 convert_types<section_offset_type>(original_size);
5466 section_offset_type out_max =
5467 convert_types<section_offset_type>(this->data_size());
5468 for (Arm_exidx_section_offset_map::const_iterator p =
5469 this->section_offset_map_.begin();
5470 p != this->section_offset_map_.end();
5473 section_offset_type in_end = p->first;
5474 gold_assert(in_end >= in_start);
5475 section_offset_type out_end = p->second;
5476 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5479 size_t out_chunk_size =
5480 convert_types<size_t>(out_end - out_start + 1);
5482 gold_assert(out_chunk_size == in_chunk_size
5483 && in_end < in_max && out_end < out_max);
5485 memcpy(this->section_contents_ + out_start,
5486 original_contents + in_start,
5488 out_start += out_chunk_size;
5490 in_start += in_chunk_size;
5494 // Given an input OBJECT, an input section index SHNDX within that
5495 // object, and an OFFSET relative to the start of that input
5496 // section, return whether or not the corresponding offset within
5497 // the output section is known. If this function returns true, it
5498 // sets *POUTPUT to the output offset. The value -1 indicates that
5499 // this input offset is being discarded.
5502 Arm_exidx_merged_section::do_output_offset(
5503 const Relobj* relobj,
5505 section_offset_type offset,
5506 section_offset_type* poutput) const
5508 // We only handle offsets for the original EXIDX input section.
5509 if (relobj != this->exidx_input_section_.relobj()
5510 || shndx != this->exidx_input_section_.shndx())
5513 section_offset_type section_size =
5514 convert_types<section_offset_type>(this->exidx_input_section_.size());
5515 if (offset < 0 || offset >= section_size)
5516 // Input offset is out of valid range.
5520 // We need to look up the section offset map to determine the output
5521 // offset. Find the reference point in map that is first offset
5522 // bigger than or equal to this offset.
5523 Arm_exidx_section_offset_map::const_iterator p =
5524 this->section_offset_map_.lower_bound(offset);
5526 // The section offset maps are build such that this should not happen if
5527 // input offset is in the valid range.
5528 gold_assert(p != this->section_offset_map_.end());
5530 // We need to check if this is dropped.
5531 section_offset_type ref = p->first;
5532 section_offset_type mapped_ref = p->second;
5534 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5535 // Offset is present in output.
5536 *poutput = mapped_ref + (offset - ref);
5538 // Offset is discarded owing to EXIDX entry merging.
5545 // Write this to output file OF.
5548 Arm_exidx_merged_section::do_write(Output_file* of)
5550 off_t offset = this->offset();
5551 const section_size_type oview_size = this->data_size();
5552 unsigned char* const oview = of->get_output_view(offset, oview_size);
5554 Output_section* os = this->relobj()->output_section(this->shndx());
5555 gold_assert(os != NULL);
5557 memcpy(oview, this->section_contents_, oview_size);
5558 of->write_output_view(this->offset(), oview_size, oview);
5561 // Arm_exidx_fixup methods.
5563 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5564 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5565 // points to the end of the last seen EXIDX section.
5568 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5570 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5571 && this->last_input_section_ != NULL)
5573 Relobj* relobj = this->last_input_section_->relobj();
5574 unsigned int text_shndx = this->last_input_section_->link();
5575 Arm_exidx_cantunwind* cantunwind =
5576 new Arm_exidx_cantunwind(relobj, text_shndx);
5577 this->exidx_output_section_->add_output_section_data(cantunwind);
5578 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5582 // Process an EXIDX section entry in input. Return whether this entry
5583 // can be deleted in the output. SECOND_WORD in the second word of the
5587 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5590 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5592 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5593 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5594 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5596 else if ((second_word & 0x80000000) != 0)
5598 // Inlined unwinding data. Merge if equal to previous.
5599 delete_entry = (merge_exidx_entries_
5600 && this->last_unwind_type_ == UT_INLINED_ENTRY
5601 && this->last_inlined_entry_ == second_word);
5602 this->last_unwind_type_ = UT_INLINED_ENTRY;
5603 this->last_inlined_entry_ = second_word;
5607 // Normal table entry. In theory we could merge these too,
5608 // but duplicate entries are likely to be much less common.
5609 delete_entry = false;
5610 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5612 return delete_entry;
5615 // Update the current section offset map during EXIDX section fix-up.
5616 // If there is no map, create one. INPUT_OFFSET is the offset of a
5617 // reference point, DELETED_BYTES is the number of deleted by in the
5618 // section so far. If DELETE_ENTRY is true, the reference point and
5619 // all offsets after the previous reference point are discarded.
5622 Arm_exidx_fixup::update_offset_map(
5623 section_offset_type input_offset,
5624 section_size_type deleted_bytes,
5627 if (this->section_offset_map_ == NULL)
5628 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5629 section_offset_type output_offset;
5631 output_offset = Arm_exidx_input_section::invalid_offset;
5633 output_offset = input_offset - deleted_bytes;
5634 (*this->section_offset_map_)[input_offset] = output_offset;
5637 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5638 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5639 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5640 // If some entries are merged, also store a pointer to a newly created
5641 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5642 // owns the map and is responsible for releasing it after use.
5644 template<bool big_endian>
5646 Arm_exidx_fixup::process_exidx_section(
5647 const Arm_exidx_input_section* exidx_input_section,
5648 const unsigned char* section_contents,
5649 section_size_type section_size,
5650 Arm_exidx_section_offset_map** psection_offset_map)
5652 Relobj* relobj = exidx_input_section->relobj();
5653 unsigned shndx = exidx_input_section->shndx();
5655 if ((section_size % 8) != 0)
5657 // Something is wrong with this section. Better not touch it.
5658 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5659 relobj->name().c_str(), shndx);
5660 this->last_input_section_ = exidx_input_section;
5661 this->last_unwind_type_ = UT_NONE;
5665 uint32_t deleted_bytes = 0;
5666 bool prev_delete_entry = false;
5667 gold_assert(this->section_offset_map_ == NULL);
5669 for (section_size_type i = 0; i < section_size; i += 8)
5671 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5673 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5674 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5676 bool delete_entry = this->process_exidx_entry(second_word);
5678 // Entry deletion causes changes in output offsets. We use a std::map
5679 // to record these. And entry (x, y) means input offset x
5680 // is mapped to output offset y. If y is invalid_offset, then x is
5681 // dropped in the output. Because of the way std::map::lower_bound
5682 // works, we record the last offset in a region w.r.t to keeping or
5683 // dropping. If there is no entry (x0, y0) for an input offset x0,
5684 // the output offset y0 of it is determined by the output offset y1 of
5685 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5686 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5688 if (delete_entry != prev_delete_entry && i != 0)
5689 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5691 // Update total deleted bytes for this entry.
5695 prev_delete_entry = delete_entry;
5698 // If section offset map is not NULL, make an entry for the end of
5700 if (this->section_offset_map_ != NULL)
5701 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5703 *psection_offset_map = this->section_offset_map_;
5704 this->section_offset_map_ = NULL;
5705 this->last_input_section_ = exidx_input_section;
5707 // Set the first output text section so that we can link the EXIDX output
5708 // section to it. Ignore any EXIDX input section that is completely merged.
5709 if (this->first_output_text_section_ == NULL
5710 && deleted_bytes != section_size)
5712 unsigned int link = exidx_input_section->link();
5713 Output_section* os = relobj->output_section(link);
5714 gold_assert(os != NULL);
5715 this->first_output_text_section_ = os;
5718 return deleted_bytes;
5721 // Arm_output_section methods.
5723 // Create a stub group for input sections from BEGIN to END. OWNER
5724 // points to the input section to be the owner a new stub table.
5726 template<bool big_endian>
5728 Arm_output_section<big_endian>::create_stub_group(
5729 Input_section_list::const_iterator begin,
5730 Input_section_list::const_iterator end,
5731 Input_section_list::const_iterator owner,
5732 Target_arm<big_endian>* target,
5733 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5736 // We use a different kind of relaxed section in an EXIDX section.
5737 // The static casting from Output_relaxed_input_section to
5738 // Arm_input_section is invalid in an EXIDX section. We are okay
5739 // because we should not be calling this for an EXIDX section.
5740 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5742 // Currently we convert ordinary input sections into relaxed sections only
5743 // at this point but we may want to support creating relaxed input section
5744 // very early. So we check here to see if owner is already a relaxed
5747 Arm_input_section<big_endian>* arm_input_section;
5748 if (owner->is_relaxed_input_section())
5751 Arm_input_section<big_endian>::as_arm_input_section(
5752 owner->relaxed_input_section());
5756 gold_assert(owner->is_input_section());
5757 // Create a new relaxed input section. We need to lock the original
5759 Task_lock_obj<Object> tl(task, owner->relobj());
5761 target->new_arm_input_section(owner->relobj(), owner->shndx());
5762 new_relaxed_sections->push_back(arm_input_section);
5765 // Create a stub table.
5766 Stub_table<big_endian>* stub_table =
5767 target->new_stub_table(arm_input_section);
5769 arm_input_section->set_stub_table(stub_table);
5771 Input_section_list::const_iterator p = begin;
5772 Input_section_list::const_iterator prev_p;
5774 // Look for input sections or relaxed input sections in [begin ... end].
5777 if (p->is_input_section() || p->is_relaxed_input_section())
5779 // The stub table information for input sections live
5780 // in their objects.
5781 Arm_relobj<big_endian>* arm_relobj =
5782 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5783 arm_relobj->set_stub_table(p->shndx(), stub_table);
5787 while (prev_p != end);
5790 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5791 // of stub groups. We grow a stub group by adding input section until the
5792 // size is just below GROUP_SIZE. The last input section will be converted
5793 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5794 // input section after the stub table, effectively double the group size.
5796 // This is similar to the group_sections() function in elf32-arm.c but is
5797 // implemented differently.
5799 template<bool big_endian>
5801 Arm_output_section<big_endian>::group_sections(
5802 section_size_type group_size,
5803 bool stubs_always_after_branch,
5804 Target_arm<big_endian>* target,
5807 // States for grouping.
5810 // No group is being built.
5812 // A group is being built but the stub table is not found yet.
5813 // We keep group a stub group until the size is just under GROUP_SIZE.
5814 // The last input section in the group will be used as the stub table.
5815 FINDING_STUB_SECTION,
5816 // A group is being built and we have already found a stub table.
5817 // We enter this state to grow a stub group by adding input section
5818 // after the stub table. This effectively doubles the group size.
5822 // Any newly created relaxed sections are stored here.
5823 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5825 State state = NO_GROUP;
5826 section_size_type off = 0;
5827 section_size_type group_begin_offset = 0;
5828 section_size_type group_end_offset = 0;
5829 section_size_type stub_table_end_offset = 0;
5830 Input_section_list::const_iterator group_begin =
5831 this->input_sections().end();
5832 Input_section_list::const_iterator stub_table =
5833 this->input_sections().end();
5834 Input_section_list::const_iterator group_end = this->input_sections().end();
5835 for (Input_section_list::const_iterator p = this->input_sections().begin();
5836 p != this->input_sections().end();
5839 section_size_type section_begin_offset =
5840 align_address(off, p->addralign());
5841 section_size_type section_end_offset =
5842 section_begin_offset + p->data_size();
5844 // Check to see if we should group the previously seen sections.
5850 case FINDING_STUB_SECTION:
5851 // Adding this section makes the group larger than GROUP_SIZE.
5852 if (section_end_offset - group_begin_offset >= group_size)
5854 if (stubs_always_after_branch)
5856 gold_assert(group_end != this->input_sections().end());
5857 this->create_stub_group(group_begin, group_end, group_end,
5858 target, &new_relaxed_sections,
5864 // But wait, there's more! Input sections up to
5865 // stub_group_size bytes after the stub table can be
5866 // handled by it too.
5867 state = HAS_STUB_SECTION;
5868 stub_table = group_end;
5869 stub_table_end_offset = group_end_offset;
5874 case HAS_STUB_SECTION:
5875 // Adding this section makes the post stub-section group larger
5877 if (section_end_offset - stub_table_end_offset >= group_size)
5879 gold_assert(group_end != this->input_sections().end());
5880 this->create_stub_group(group_begin, group_end, stub_table,
5881 target, &new_relaxed_sections, task);
5890 // If we see an input section and currently there is no group, start
5891 // a new one. Skip any empty sections. We look at the data size
5892 // instead of calling p->relobj()->section_size() to avoid locking.
5893 if ((p->is_input_section() || p->is_relaxed_input_section())
5894 && (p->data_size() != 0))
5896 if (state == NO_GROUP)
5898 state = FINDING_STUB_SECTION;
5900 group_begin_offset = section_begin_offset;
5903 // Keep track of the last input section seen.
5905 group_end_offset = section_end_offset;
5908 off = section_end_offset;
5911 // Create a stub group for any ungrouped sections.
5912 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5914 gold_assert(group_end != this->input_sections().end());
5915 this->create_stub_group(group_begin, group_end,
5916 (state == FINDING_STUB_SECTION
5919 target, &new_relaxed_sections, task);
5922 // Convert input section into relaxed input section in a batch.
5923 if (!new_relaxed_sections.empty())
5924 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5926 // Update the section offsets
5927 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5929 Arm_relobj<big_endian>* arm_relobj =
5930 Arm_relobj<big_endian>::as_arm_relobj(
5931 new_relaxed_sections[i]->relobj());
5932 unsigned int shndx = new_relaxed_sections[i]->shndx();
5933 // Tell Arm_relobj that this input section is converted.
5934 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5938 // Append non empty text sections in this to LIST in ascending
5939 // order of their position in this.
5941 template<bool big_endian>
5943 Arm_output_section<big_endian>::append_text_sections_to_list(
5944 Text_section_list* list)
5946 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5948 for (Input_section_list::const_iterator p = this->input_sections().begin();
5949 p != this->input_sections().end();
5952 // We only care about plain or relaxed input sections. We also
5953 // ignore any merged sections.
5954 if (p->is_input_section() || p->is_relaxed_input_section())
5955 list->push_back(Text_section_list::value_type(p->relobj(),
5960 template<bool big_endian>
5962 Arm_output_section<big_endian>::fix_exidx_coverage(
5964 const Text_section_list& sorted_text_sections,
5965 Symbol_table* symtab,
5966 bool merge_exidx_entries,
5969 // We should only do this for the EXIDX output section.
5970 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5972 // We don't want the relaxation loop to undo these changes, so we discard
5973 // the current saved states and take another one after the fix-up.
5974 this->discard_states();
5976 // Remove all input sections.
5977 uint64_t address = this->address();
5978 typedef std::list<Output_section::Input_section> Input_section_list;
5979 Input_section_list input_sections;
5980 this->reset_address_and_file_offset();
5981 this->get_input_sections(address, std::string(""), &input_sections);
5983 if (!this->input_sections().empty())
5984 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5986 // Go through all the known input sections and record them.
5987 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5988 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5989 Section_id_hash> Text_to_exidx_map;
5990 Text_to_exidx_map text_to_exidx_map;
5991 for (Input_section_list::const_iterator p = input_sections.begin();
5992 p != input_sections.end();
5995 // This should never happen. At this point, we should only see
5996 // plain EXIDX input sections.
5997 gold_assert(!p->is_relaxed_input_section());
5998 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
6001 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
6003 // Go over the sorted text sections.
6004 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6005 Section_id_set processed_input_sections;
6006 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
6007 p != sorted_text_sections.end();
6010 Relobj* relobj = p->first;
6011 unsigned int shndx = p->second;
6013 Arm_relobj<big_endian>* arm_relobj =
6014 Arm_relobj<big_endian>::as_arm_relobj(relobj);
6015 const Arm_exidx_input_section* exidx_input_section =
6016 arm_relobj->exidx_input_section_by_link(shndx);
6018 // If this text section has no EXIDX section or if the EXIDX section
6019 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
6020 // of the last seen EXIDX section.
6021 if (exidx_input_section == NULL || exidx_input_section->has_errors())
6023 exidx_fixup.add_exidx_cantunwind_as_needed();
6027 Relobj* exidx_relobj = exidx_input_section->relobj();
6028 unsigned int exidx_shndx = exidx_input_section->shndx();
6029 Section_id sid(exidx_relobj, exidx_shndx);
6030 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
6031 if (iter == text_to_exidx_map.end())
6033 // This is odd. We have not seen this EXIDX input section before.
6034 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
6035 // issue a warning instead. We assume the user knows what he
6036 // or she is doing. Otherwise, this is an error.
6037 if (layout->script_options()->saw_sections_clause())
6038 gold_warning(_("unwinding may not work because EXIDX input section"
6039 " %u of %s is not in EXIDX output section"),
6040 exidx_shndx, exidx_relobj->name().c_str());
6042 gold_error(_("unwinding may not work because EXIDX input section"
6043 " %u of %s is not in EXIDX output section"),
6044 exidx_shndx, exidx_relobj->name().c_str());
6046 exidx_fixup.add_exidx_cantunwind_as_needed();
6050 // We need to access the contents of the EXIDX section, lock the
6052 Task_lock_obj<Object> tl(task, exidx_relobj);
6053 section_size_type exidx_size;
6054 const unsigned char* exidx_contents =
6055 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
6057 // Fix up coverage and append input section to output data list.
6058 Arm_exidx_section_offset_map* section_offset_map = NULL;
6059 uint32_t deleted_bytes =
6060 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
6063 §ion_offset_map);
6065 if (deleted_bytes == exidx_input_section->size())
6067 // The whole EXIDX section got merged. Remove it from output.
6068 gold_assert(section_offset_map == NULL);
6069 exidx_relobj->set_output_section(exidx_shndx, NULL);
6071 // All local symbols defined in this input section will be dropped.
6072 // We need to adjust output local symbol count.
6073 arm_relobj->set_output_local_symbol_count_needs_update();
6075 else if (deleted_bytes > 0)
6077 // Some entries are merged. We need to convert this EXIDX input
6078 // section into a relaxed section.
6079 gold_assert(section_offset_map != NULL);
6081 Arm_exidx_merged_section* merged_section =
6082 new Arm_exidx_merged_section(*exidx_input_section,
6083 *section_offset_map, deleted_bytes);
6084 merged_section->build_contents(exidx_contents, exidx_size);
6086 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6087 this->add_relaxed_input_section(layout, merged_section, secname);
6088 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6090 // All local symbols defined in discarded portions of this input
6091 // section will be dropped. We need to adjust output local symbol
6093 arm_relobj->set_output_local_symbol_count_needs_update();
6097 // Just add back the EXIDX input section.
6098 gold_assert(section_offset_map == NULL);
6099 const Output_section::Input_section* pis = iter->second;
6100 gold_assert(pis->is_input_section());
6101 this->add_script_input_section(*pis);
6104 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6107 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6108 exidx_fixup.add_exidx_cantunwind_as_needed();
6110 // Remove any known EXIDX input sections that are not processed.
6111 for (Input_section_list::const_iterator p = input_sections.begin();
6112 p != input_sections.end();
6115 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6116 == processed_input_sections.end())
6118 // We discard a known EXIDX section because its linked
6119 // text section has been folded by ICF. We also discard an
6120 // EXIDX section with error, the output does not matter in this
6121 // case. We do this to avoid triggering asserts.
6122 Arm_relobj<big_endian>* arm_relobj =
6123 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6124 const Arm_exidx_input_section* exidx_input_section =
6125 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6126 gold_assert(exidx_input_section != NULL);
6127 if (!exidx_input_section->has_errors())
6129 unsigned int text_shndx = exidx_input_section->link();
6130 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6133 // Remove this from link. We also need to recount the
6135 p->relobj()->set_output_section(p->shndx(), NULL);
6136 arm_relobj->set_output_local_symbol_count_needs_update();
6140 // Link exidx output section to the first seen output section and
6141 // set correct entry size.
6142 this->set_link_section(exidx_fixup.first_output_text_section());
6143 this->set_entsize(8);
6145 // Make changes permanent.
6146 this->save_states();
6147 this->set_section_offsets_need_adjustment();
6150 // Link EXIDX output sections to text output sections.
6152 template<bool big_endian>
6154 Arm_output_section<big_endian>::set_exidx_section_link()
6156 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6157 if (!this->input_sections().empty())
6159 Input_section_list::const_iterator p = this->input_sections().begin();
6160 Arm_relobj<big_endian>* arm_relobj =
6161 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6162 unsigned exidx_shndx = p->shndx();
6163 const Arm_exidx_input_section* exidx_input_section =
6164 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6165 gold_assert(exidx_input_section != NULL);
6166 unsigned int text_shndx = exidx_input_section->link();
6167 Output_section* os = arm_relobj->output_section(text_shndx);
6168 this->set_link_section(os);
6172 // Arm_relobj methods.
6174 // Determine if an input section is scannable for stub processing. SHDR is
6175 // the header of the section and SHNDX is the section index. OS is the output
6176 // section for the input section and SYMTAB is the global symbol table used to
6177 // look up ICF information.
6179 template<bool big_endian>
6181 Arm_relobj<big_endian>::section_is_scannable(
6182 const elfcpp::Shdr<32, big_endian>& shdr,
6184 const Output_section* os,
6185 const Symbol_table* symtab)
6187 // Skip any empty sections, unallocated sections or sections whose
6188 // type are not SHT_PROGBITS.
6189 if (shdr.get_sh_size() == 0
6190 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6191 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6194 // Skip any discarded or ICF'ed sections.
6195 if (os == NULL || symtab->is_section_folded(this, shndx))
6198 // If this requires special offset handling, check to see if it is
6199 // a relaxed section. If this is not, then it is a merged section that
6200 // we cannot handle.
6201 if (this->is_output_section_offset_invalid(shndx))
6203 const Output_relaxed_input_section* poris =
6204 os->find_relaxed_input_section(this, shndx);
6212 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6213 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6215 template<bool big_endian>
6217 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6218 const elfcpp::Shdr<32, big_endian>& shdr,
6219 const Relobj::Output_sections& out_sections,
6220 const Symbol_table* symtab,
6221 const unsigned char* pshdrs)
6223 unsigned int sh_type = shdr.get_sh_type();
6224 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6227 // Ignore empty section.
6228 off_t sh_size = shdr.get_sh_size();
6232 // Ignore reloc section with unexpected symbol table. The
6233 // error will be reported in the final link.
6234 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6237 unsigned int reloc_size;
6238 if (sh_type == elfcpp::SHT_REL)
6239 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6241 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6243 // Ignore reloc section with unexpected entsize or uneven size.
6244 // The error will be reported in the final link.
6245 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6248 // Ignore reloc section with bad info. This error will be
6249 // reported in the final link.
6250 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6251 if (index >= this->shnum())
6254 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6255 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6256 return this->section_is_scannable(text_shdr, index,
6257 out_sections[index], symtab);
6260 // Return the output address of either a plain input section or a relaxed
6261 // input section. SHNDX is the section index. We define and use this
6262 // instead of calling Output_section::output_address because that is slow
6263 // for large output.
6265 template<bool big_endian>
6267 Arm_relobj<big_endian>::simple_input_section_output_address(
6271 if (this->is_output_section_offset_invalid(shndx))
6273 const Output_relaxed_input_section* poris =
6274 os->find_relaxed_input_section(this, shndx);
6275 // We do not handle merged sections here.
6276 gold_assert(poris != NULL);
6277 return poris->address();
6280 return os->address() + this->get_output_section_offset(shndx);
6283 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6284 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6286 template<bool big_endian>
6288 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6289 const elfcpp::Shdr<32, big_endian>& shdr,
6292 const Symbol_table* symtab)
6294 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6297 // If the section does not cross any 4K-boundaries, it does not need to
6299 Arm_address address = this->simple_input_section_output_address(shndx, os);
6300 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6306 // Scan a section for Cortex-A8 workaround.
6308 template<bool big_endian>
6310 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6311 const elfcpp::Shdr<32, big_endian>& shdr,
6314 Target_arm<big_endian>* arm_target)
6316 // Look for the first mapping symbol in this section. It should be
6318 Mapping_symbol_position section_start(shndx, 0);
6319 typename Mapping_symbols_info::const_iterator p =
6320 this->mapping_symbols_info_.lower_bound(section_start);
6322 // There are no mapping symbols for this section. Treat it as a data-only
6324 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6327 Arm_address output_address =
6328 this->simple_input_section_output_address(shndx, os);
6330 // Get the section contents.
6331 section_size_type input_view_size = 0;
6332 const unsigned char* input_view =
6333 this->section_contents(shndx, &input_view_size, false);
6335 // We need to go through the mapping symbols to determine what to
6336 // scan. There are two reasons. First, we should look at THUMB code and
6337 // THUMB code only. Second, we only want to look at the 4K-page boundary
6338 // to speed up the scanning.
6340 while (p != this->mapping_symbols_info_.end()
6341 && p->first.first == shndx)
6343 typename Mapping_symbols_info::const_iterator next =
6344 this->mapping_symbols_info_.upper_bound(p->first);
6346 // Only scan part of a section with THUMB code.
6347 if (p->second == 't')
6349 // Determine the end of this range.
6350 section_size_type span_start =
6351 convert_to_section_size_type(p->first.second);
6352 section_size_type span_end;
6353 if (next != this->mapping_symbols_info_.end()
6354 && next->first.first == shndx)
6355 span_end = convert_to_section_size_type(next->first.second);
6357 span_end = convert_to_section_size_type(shdr.get_sh_size());
6359 if (((span_start + output_address) & ~0xfffUL)
6360 != ((span_end + output_address - 1) & ~0xfffUL))
6362 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6363 span_start, span_end,
6373 // Scan relocations for stub generation.
6375 template<bool big_endian>
6377 Arm_relobj<big_endian>::scan_sections_for_stubs(
6378 Target_arm<big_endian>* arm_target,
6379 const Symbol_table* symtab,
6380 const Layout* layout)
6382 unsigned int shnum = this->shnum();
6383 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6385 // Read the section headers.
6386 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6390 // To speed up processing, we set up hash tables for fast lookup of
6391 // input offsets to output addresses.
6392 this->initialize_input_to_output_maps();
6394 const Relobj::Output_sections& out_sections(this->output_sections());
6396 Relocate_info<32, big_endian> relinfo;
6397 relinfo.symtab = symtab;
6398 relinfo.layout = layout;
6399 relinfo.object = this;
6401 // Do relocation stubs scanning.
6402 const unsigned char* p = pshdrs + shdr_size;
6403 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6405 const elfcpp::Shdr<32, big_endian> shdr(p);
6406 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6409 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6410 Arm_address output_offset = this->get_output_section_offset(index);
6411 Arm_address output_address;
6412 if (output_offset != invalid_address)
6413 output_address = out_sections[index]->address() + output_offset;
6416 // Currently this only happens for a relaxed section.
6417 const Output_relaxed_input_section* poris =
6418 out_sections[index]->find_relaxed_input_section(this, index);
6419 gold_assert(poris != NULL);
6420 output_address = poris->address();
6423 // Get the relocations.
6424 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6428 // Get the section contents. This does work for the case in which
6429 // we modify the contents of an input section. We need to pass the
6430 // output view under such circumstances.
6431 section_size_type input_view_size = 0;
6432 const unsigned char* input_view =
6433 this->section_contents(index, &input_view_size, false);
6435 relinfo.reloc_shndx = i;
6436 relinfo.data_shndx = index;
6437 unsigned int sh_type = shdr.get_sh_type();
6438 unsigned int reloc_size;
6439 if (sh_type == elfcpp::SHT_REL)
6440 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6442 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6444 Output_section* os = out_sections[index];
6445 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6446 shdr.get_sh_size() / reloc_size,
6448 output_offset == invalid_address,
6449 input_view, output_address,
6454 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6455 // after its relocation section, if there is one, is processed for
6456 // relocation stubs. Merging this loop with the one above would have been
6457 // complicated since we would have had to make sure that relocation stub
6458 // scanning is done first.
6459 if (arm_target->fix_cortex_a8())
6461 const unsigned char* p = pshdrs + shdr_size;
6462 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6464 const elfcpp::Shdr<32, big_endian> shdr(p);
6465 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6468 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6473 // After we've done the relocations, we release the hash tables,
6474 // since we no longer need them.
6475 this->free_input_to_output_maps();
6478 // Count the local symbols. The ARM backend needs to know if a symbol
6479 // is a THUMB function or not. For global symbols, it is easy because
6480 // the Symbol object keeps the ELF symbol type. For local symbol it is
6481 // harder because we cannot access this information. So we override the
6482 // do_count_local_symbol in parent and scan local symbols to mark
6483 // THUMB functions. This is not the most efficient way but I do not want to
6484 // slow down other ports by calling a per symbol target hook inside
6485 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6487 template<bool big_endian>
6489 Arm_relobj<big_endian>::do_count_local_symbols(
6490 Stringpool_template<char>* pool,
6491 Stringpool_template<char>* dynpool)
6493 // We need to fix-up the values of any local symbols whose type are
6496 // Ask parent to count the local symbols.
6497 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6498 const unsigned int loccount = this->local_symbol_count();
6502 // Initialize the thumb function bit-vector.
6503 std::vector<bool> empty_vector(loccount, false);
6504 this->local_symbol_is_thumb_function_.swap(empty_vector);
6506 // Read the symbol table section header.
6507 const unsigned int symtab_shndx = this->symtab_shndx();
6508 elfcpp::Shdr<32, big_endian>
6509 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6510 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6512 // Read the local symbols.
6513 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6514 gold_assert(loccount == symtabshdr.get_sh_info());
6515 off_t locsize = loccount * sym_size;
6516 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6517 locsize, true, true);
6519 // For mapping symbol processing, we need to read the symbol names.
6520 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6521 if (strtab_shndx >= this->shnum())
6523 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6527 elfcpp::Shdr<32, big_endian>
6528 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6529 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6531 this->error(_("symbol table name section has wrong type: %u"),
6532 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6535 const char* pnames =
6536 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6537 strtabshdr.get_sh_size(),
6540 // Loop over the local symbols and mark any local symbols pointing
6541 // to THUMB functions.
6543 // Skip the first dummy symbol.
6545 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6546 this->local_values();
6547 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6549 elfcpp::Sym<32, big_endian> sym(psyms);
6550 elfcpp::STT st_type = sym.get_st_type();
6551 Symbol_value<32>& lv((*plocal_values)[i]);
6552 Arm_address input_value = lv.input_value();
6554 // Check to see if this is a mapping symbol.
6555 const char* sym_name = pnames + sym.get_st_name();
6556 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6559 unsigned int input_shndx =
6560 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6561 gold_assert(is_ordinary);
6563 // Strip of LSB in case this is a THUMB symbol.
6564 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6565 this->mapping_symbols_info_[msp] = sym_name[1];
6568 if (st_type == elfcpp::STT_ARM_TFUNC
6569 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6571 // This is a THUMB function. Mark this and canonicalize the
6572 // symbol value by setting LSB.
6573 this->local_symbol_is_thumb_function_[i] = true;
6574 if ((input_value & 1) == 0)
6575 lv.set_input_value(input_value | 1);
6580 // Relocate sections.
6581 template<bool big_endian>
6583 Arm_relobj<big_endian>::do_relocate_sections(
6584 const Symbol_table* symtab,
6585 const Layout* layout,
6586 const unsigned char* pshdrs,
6588 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6590 // Call parent to relocate sections.
6591 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6592 pshdrs, of, pviews);
6594 // We do not generate stubs if doing a relocatable link.
6595 if (parameters->options().relocatable())
6598 // Relocate stub tables.
6599 unsigned int shnum = this->shnum();
6601 Target_arm<big_endian>* arm_target =
6602 Target_arm<big_endian>::default_target();
6604 Relocate_info<32, big_endian> relinfo;
6605 relinfo.symtab = symtab;
6606 relinfo.layout = layout;
6607 relinfo.object = this;
6609 for (unsigned int i = 1; i < shnum; ++i)
6611 Arm_input_section<big_endian>* arm_input_section =
6612 arm_target->find_arm_input_section(this, i);
6614 if (arm_input_section != NULL
6615 && arm_input_section->is_stub_table_owner()
6616 && !arm_input_section->stub_table()->empty())
6618 // We cannot discard a section if it owns a stub table.
6619 Output_section* os = this->output_section(i);
6620 gold_assert(os != NULL);
6622 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6623 relinfo.reloc_shdr = NULL;
6624 relinfo.data_shndx = i;
6625 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6627 gold_assert((*pviews)[i].view != NULL);
6629 // We are passed the output section view. Adjust it to cover the
6631 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6632 gold_assert((stub_table->address() >= (*pviews)[i].address)
6633 && ((stub_table->address() + stub_table->data_size())
6634 <= (*pviews)[i].address + (*pviews)[i].view_size));
6636 off_t offset = stub_table->address() - (*pviews)[i].address;
6637 unsigned char* view = (*pviews)[i].view + offset;
6638 Arm_address address = stub_table->address();
6639 section_size_type view_size = stub_table->data_size();
6641 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6645 // Apply Cortex A8 workaround if applicable.
6646 if (this->section_has_cortex_a8_workaround(i))
6648 unsigned char* view = (*pviews)[i].view;
6649 Arm_address view_address = (*pviews)[i].address;
6650 section_size_type view_size = (*pviews)[i].view_size;
6651 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6653 // Adjust view to cover section.
6654 Output_section* os = this->output_section(i);
6655 gold_assert(os != NULL);
6656 Arm_address section_address =
6657 this->simple_input_section_output_address(i, os);
6658 uint64_t section_size = this->section_size(i);
6660 gold_assert(section_address >= view_address
6661 && ((section_address + section_size)
6662 <= (view_address + view_size)));
6664 unsigned char* section_view = view + (section_address - view_address);
6666 // Apply the Cortex-A8 workaround to the output address range
6667 // corresponding to this input section.
6668 stub_table->apply_cortex_a8_workaround_to_address_range(
6675 if (parameters->options().be8())
6677 section_size_type span_start, span_end;
6678 elfcpp::Shdr<32, big_endian>
6679 shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size);
6680 Mapping_symbol_position section_start(i, 0);
6681 typename Mapping_symbols_info::const_iterator p =
6682 this->mapping_symbols_info_.lower_bound(section_start);
6683 unsigned char* view = (*pviews)[i].view;
6684 Arm_address view_address = (*pviews)[i].address;
6685 section_size_type view_size = (*pviews)[i].view_size;
6686 while (p != this->mapping_symbols_info_.end()
6687 && p->first.first == i)
6689 typename Mapping_symbols_info::const_iterator next =
6690 this->mapping_symbols_info_.upper_bound(p->first);
6692 // Only swap arm or thumb code.
6693 if ((p->second == 'a') || (p->second == 't'))
6695 Output_section* os = this->output_section(i);
6696 gold_assert(os != NULL);
6697 Arm_address section_address =
6698 this->simple_input_section_output_address(i, os);
6699 span_start = convert_to_section_size_type(p->first.second);
6700 if (next != this->mapping_symbols_info_.end()
6701 && next->first.first == i)
6703 convert_to_section_size_type(next->first.second);
6706 convert_to_section_size_type(shdr.get_sh_size());
6707 unsigned char* section_view =
6708 view + (section_address - view_address);
6709 uint64_t section_size = this->section_size(i);
6711 gold_assert(section_address >= view_address
6712 && ((section_address + section_size)
6713 <= (view_address + view_size)));
6715 // Set Output view for swapping
6716 unsigned char *oview = section_view + span_start;
6717 unsigned int index = 0;
6718 if (p->second == 'a')
6720 while (index + 3 < (span_end - span_start))
6722 typedef typename elfcpp::Swap<32, big_endian>
6725 reinterpret_cast<Valtype*>(oview+index);
6726 uint32_t val = elfcpp::Swap<32, false>::readval(wv);
6727 elfcpp::Swap<32, true>::writeval(wv, val);
6731 else if (p->second == 't')
6733 while (index + 1 < (span_end - span_start))
6735 typedef typename elfcpp::Swap<16, big_endian>
6738 reinterpret_cast<Valtype*>(oview+index);
6739 uint16_t val = elfcpp::Swap<16, false>::readval(wv);
6740 elfcpp::Swap<16, true>::writeval(wv, val);
6751 // Find the linked text section of an EXIDX section by looking at the first
6752 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6753 // must be linked to its associated code section via the sh_link field of
6754 // its section header. However, some tools are broken and the link is not
6755 // always set. LD just drops such an EXIDX section silently, causing the
6756 // associated code not unwindabled. Here we try a little bit harder to
6757 // discover the linked code section.
6759 // PSHDR points to the section header of a relocation section of an EXIDX
6760 // section. If we can find a linked text section, return true and
6761 // store the text section index in the location PSHNDX. Otherwise
6764 template<bool big_endian>
6766 Arm_relobj<big_endian>::find_linked_text_section(
6767 const unsigned char* pshdr,
6768 const unsigned char* psyms,
6769 unsigned int* pshndx)
6771 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6773 // If there is no relocation, we cannot find the linked text section.
6775 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6776 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6778 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6779 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6781 // Get the relocations.
6782 const unsigned char* prelocs =
6783 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6785 // Find the REL31 relocation for the first word of the first EXIDX entry.
6786 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6788 Arm_address r_offset;
6789 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6790 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6792 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6793 r_info = reloc.get_r_info();
6794 r_offset = reloc.get_r_offset();
6798 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6799 r_info = reloc.get_r_info();
6800 r_offset = reloc.get_r_offset();
6803 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6804 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6807 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6809 || r_sym >= this->local_symbol_count()
6813 // This is the relocation for the first word of the first EXIDX entry.
6814 // We expect to see a local section symbol.
6815 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6816 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6817 if (sym.get_st_type() == elfcpp::STT_SECTION)
6821 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6822 gold_assert(is_ordinary);
6832 // Make an EXIDX input section object for an EXIDX section whose index is
6833 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6834 // is the section index of the linked text section.
6836 template<bool big_endian>
6838 Arm_relobj<big_endian>::make_exidx_input_section(
6840 const elfcpp::Shdr<32, big_endian>& shdr,
6841 unsigned int text_shndx,
6842 const elfcpp::Shdr<32, big_endian>& text_shdr)
6844 // Create an Arm_exidx_input_section object for this EXIDX section.
6845 Arm_exidx_input_section* exidx_input_section =
6846 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6847 shdr.get_sh_addralign(),
6848 text_shdr.get_sh_size());
6850 gold_assert(this->exidx_section_map_[shndx] == NULL);
6851 this->exidx_section_map_[shndx] = exidx_input_section;
6853 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6855 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6856 this->section_name(shndx).c_str(), shndx, text_shndx,
6857 this->name().c_str());
6858 exidx_input_section->set_has_errors();
6860 else if (this->exidx_section_map_[text_shndx] != NULL)
6862 unsigned other_exidx_shndx =
6863 this->exidx_section_map_[text_shndx]->shndx();
6864 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6866 this->section_name(shndx).c_str(), shndx,
6867 this->section_name(other_exidx_shndx).c_str(),
6868 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6869 text_shndx, this->name().c_str());
6870 exidx_input_section->set_has_errors();
6873 this->exidx_section_map_[text_shndx] = exidx_input_section;
6875 // Check section flags of text section.
6876 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6878 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6880 this->section_name(shndx).c_str(), shndx,
6881 this->section_name(text_shndx).c_str(), text_shndx,
6882 this->name().c_str());
6883 exidx_input_section->set_has_errors();
6885 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6886 // I would like to make this an error but currently ld just ignores
6888 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6890 this->section_name(shndx).c_str(), shndx,
6891 this->section_name(text_shndx).c_str(), text_shndx,
6892 this->name().c_str());
6895 // Read the symbol information.
6897 template<bool big_endian>
6899 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6901 // Call parent class to read symbol information.
6902 this->base_read_symbols(sd);
6904 // If this input file is a binary file, it has no processor
6905 // specific flags and attributes section.
6906 Input_file::Format format = this->input_file()->format();
6907 if (format != Input_file::FORMAT_ELF)
6909 gold_assert(format == Input_file::FORMAT_BINARY);
6910 this->merge_flags_and_attributes_ = false;
6914 // Read processor-specific flags in ELF file header.
6915 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6916 elfcpp::Elf_sizes<32>::ehdr_size,
6918 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6919 this->processor_specific_flags_ = ehdr.get_e_flags();
6921 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6923 std::vector<unsigned int> deferred_exidx_sections;
6924 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6925 const unsigned char* pshdrs = sd->section_headers->data();
6926 const unsigned char* ps = pshdrs + shdr_size;
6927 bool must_merge_flags_and_attributes = false;
6928 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6930 elfcpp::Shdr<32, big_endian> shdr(ps);
6932 // Sometimes an object has no contents except the section name string
6933 // table and an empty symbol table with the undefined symbol. We
6934 // don't want to merge processor-specific flags from such an object.
6935 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6937 // Symbol table is not empty.
6938 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6939 elfcpp::Elf_sizes<32>::sym_size;
6940 if (shdr.get_sh_size() > sym_size)
6941 must_merge_flags_and_attributes = true;
6943 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6944 // If this is neither an empty symbol table nor a string table,
6946 must_merge_flags_and_attributes = true;
6948 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6950 gold_assert(this->attributes_section_data_ == NULL);
6951 section_offset_type section_offset = shdr.get_sh_offset();
6952 section_size_type section_size =
6953 convert_to_section_size_type(shdr.get_sh_size());
6954 const unsigned char* view =
6955 this->get_view(section_offset, section_size, true, false);
6956 this->attributes_section_data_ =
6957 new Attributes_section_data(view, section_size);
6959 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6961 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6962 if (text_shndx == elfcpp::SHN_UNDEF)
6963 deferred_exidx_sections.push_back(i);
6966 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6967 + text_shndx * shdr_size);
6968 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6970 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6971 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6972 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6973 this->section_name(i).c_str(), this->name().c_str());
6978 if (!must_merge_flags_and_attributes)
6980 gold_assert(deferred_exidx_sections.empty());
6981 this->merge_flags_and_attributes_ = false;
6985 // Some tools are broken and they do not set the link of EXIDX sections.
6986 // We look at the first relocation to figure out the linked sections.
6987 if (!deferred_exidx_sections.empty())
6989 // We need to go over the section headers again to find the mapping
6990 // from sections being relocated to their relocation sections. This is
6991 // a bit inefficient as we could do that in the loop above. However,
6992 // we do not expect any deferred EXIDX sections normally. So we do not
6993 // want to slow down the most common path.
6994 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6995 Reloc_map reloc_map;
6996 ps = pshdrs + shdr_size;
6997 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6999 elfcpp::Shdr<32, big_endian> shdr(ps);
7000 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
7001 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
7003 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
7004 if (info_shndx >= this->shnum())
7005 gold_error(_("relocation section %u has invalid info %u"),
7007 Reloc_map::value_type value(info_shndx, i);
7008 std::pair<Reloc_map::iterator, bool> result =
7009 reloc_map.insert(value);
7011 gold_error(_("section %u has multiple relocation sections "
7013 info_shndx, i, reloc_map[info_shndx]);
7017 // Read the symbol table section header.
7018 const unsigned int symtab_shndx = this->symtab_shndx();
7019 elfcpp::Shdr<32, big_endian>
7020 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7021 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7023 // Read the local symbols.
7024 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
7025 const unsigned int loccount = this->local_symbol_count();
7026 gold_assert(loccount == symtabshdr.get_sh_info());
7027 off_t locsize = loccount * sym_size;
7028 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7029 locsize, true, true);
7031 // Process the deferred EXIDX sections.
7032 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
7034 unsigned int shndx = deferred_exidx_sections[i];
7035 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
7036 unsigned int text_shndx = elfcpp::SHN_UNDEF;
7037 Reloc_map::const_iterator it = reloc_map.find(shndx);
7038 if (it != reloc_map.end())
7039 find_linked_text_section(pshdrs + it->second * shdr_size,
7040 psyms, &text_shndx);
7041 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
7042 + text_shndx * shdr_size);
7043 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
7048 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
7049 // sections for unwinding. These sections are referenced implicitly by
7050 // text sections linked in the section headers. If we ignore these implicit
7051 // references, the .ARM.exidx sections and any .ARM.extab sections they use
7052 // will be garbage-collected incorrectly. Hence we override the same function
7053 // in the base class to handle these implicit references.
7055 template<bool big_endian>
7057 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
7059 Read_relocs_data* rd)
7061 // First, call base class method to process relocations in this object.
7062 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
7064 // If --gc-sections is not specified, there is nothing more to do.
7065 // This happens when --icf is used but --gc-sections is not.
7066 if (!parameters->options().gc_sections())
7069 unsigned int shnum = this->shnum();
7070 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7071 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
7075 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
7076 // to these from the linked text sections.
7077 const unsigned char* ps = pshdrs + shdr_size;
7078 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
7080 elfcpp::Shdr<32, big_endian> shdr(ps);
7081 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
7083 // Found an .ARM.exidx section, add it to the set of reachable
7084 // sections from its linked text section.
7085 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
7086 symtab->gc()->add_reference(this, text_shndx, this, i);
7091 // Update output local symbol count. Owing to EXIDX entry merging, some local
7092 // symbols will be removed in output. Adjust output local symbol count
7093 // accordingly. We can only changed the static output local symbol count. It
7094 // is too late to change the dynamic symbols.
7096 template<bool big_endian>
7098 Arm_relobj<big_endian>::update_output_local_symbol_count()
7100 // Caller should check that this needs updating. We want caller checking
7101 // because output_local_symbol_count_needs_update() is most likely inlined.
7102 gold_assert(this->output_local_symbol_count_needs_update_);
7104 gold_assert(this->symtab_shndx() != -1U);
7105 if (this->symtab_shndx() == 0)
7107 // This object has no symbols. Weird but legal.
7111 // Read the symbol table section header.
7112 const unsigned int symtab_shndx = this->symtab_shndx();
7113 elfcpp::Shdr<32, big_endian>
7114 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7115 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7117 // Read the local symbols.
7118 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
7119 const unsigned int loccount = this->local_symbol_count();
7120 gold_assert(loccount == symtabshdr.get_sh_info());
7121 off_t locsize = loccount * sym_size;
7122 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7123 locsize, true, true);
7125 // Loop over the local symbols.
7127 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
7129 const Output_sections& out_sections(this->output_sections());
7130 unsigned int shnum = this->shnum();
7131 unsigned int count = 0;
7132 // Skip the first, dummy, symbol.
7134 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7136 elfcpp::Sym<32, big_endian> sym(psyms);
7138 Symbol_value<32>& lv((*this->local_values())[i]);
7140 // This local symbol was already discarded by do_count_local_symbols.
7141 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7145 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7150 Output_section* os = out_sections[shndx];
7152 // This local symbol no longer has an output section. Discard it.
7155 lv.set_no_output_symtab_entry();
7159 // Currently we only discard parts of EXIDX input sections.
7160 // We explicitly check for a merged EXIDX input section to avoid
7161 // calling Output_section_data::output_offset unless necessary.
7162 if ((this->get_output_section_offset(shndx) == invalid_address)
7163 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7165 section_offset_type output_offset =
7166 os->output_offset(this, shndx, lv.input_value());
7167 if (output_offset == -1)
7169 // This symbol is defined in a part of an EXIDX input section
7170 // that is discarded due to entry merging.
7171 lv.set_no_output_symtab_entry();
7180 this->set_output_local_symbol_count(count);
7181 this->output_local_symbol_count_needs_update_ = false;
7184 // Arm_dynobj methods.
7186 // Read the symbol information.
7188 template<bool big_endian>
7190 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7192 // Call parent class to read symbol information.
7193 this->base_read_symbols(sd);
7195 // Read processor-specific flags in ELF file header.
7196 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7197 elfcpp::Elf_sizes<32>::ehdr_size,
7199 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7200 this->processor_specific_flags_ = ehdr.get_e_flags();
7202 // Read the attributes section if there is one.
7203 // We read from the end because gas seems to put it near the end of
7204 // the section headers.
7205 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7206 const unsigned char* ps =
7207 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7208 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7210 elfcpp::Shdr<32, big_endian> shdr(ps);
7211 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7213 section_offset_type section_offset = shdr.get_sh_offset();
7214 section_size_type section_size =
7215 convert_to_section_size_type(shdr.get_sh_size());
7216 const unsigned char* view =
7217 this->get_view(section_offset, section_size, true, false);
7218 this->attributes_section_data_ =
7219 new Attributes_section_data(view, section_size);
7225 // Stub_addend_reader methods.
7227 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7229 template<bool big_endian>
7230 elfcpp::Elf_types<32>::Elf_Swxword
7231 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7232 unsigned int r_type,
7233 const unsigned char* view,
7234 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7236 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7240 case elfcpp::R_ARM_CALL:
7241 case elfcpp::R_ARM_JUMP24:
7242 case elfcpp::R_ARM_PLT32:
7244 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7245 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7246 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7247 return Bits<26>::sign_extend32(val << 2);
7250 case elfcpp::R_ARM_THM_CALL:
7251 case elfcpp::R_ARM_THM_JUMP24:
7252 case elfcpp::R_ARM_THM_XPC22:
7254 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7255 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7256 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7257 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7258 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7261 case elfcpp::R_ARM_THM_JUMP19:
7263 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7264 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7265 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7266 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7267 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7275 // Arm_output_data_got methods.
7277 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7278 // The first one is initialized to be 1, which is the module index for
7279 // the main executable and the second one 0. A reloc of the type
7280 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7281 // be applied by gold. GSYM is a global symbol.
7283 template<bool big_endian>
7285 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7286 unsigned int got_type,
7289 if (gsym->has_got_offset(got_type))
7292 // We are doing a static link. Just mark it as belong to module 1,
7294 unsigned int got_offset = this->add_constant(1);
7295 gsym->set_got_offset(got_type, got_offset);
7296 got_offset = this->add_constant(0);
7297 this->static_relocs_.push_back(Static_reloc(got_offset,
7298 elfcpp::R_ARM_TLS_DTPOFF32,
7302 // Same as the above but for a local symbol.
7304 template<bool big_endian>
7306 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7307 unsigned int got_type,
7308 Sized_relobj_file<32, big_endian>* object,
7311 if (object->local_has_got_offset(index, got_type))
7314 // We are doing a static link. Just mark it as belong to module 1,
7316 unsigned int got_offset = this->add_constant(1);
7317 object->set_local_got_offset(index, got_type, got_offset);
7318 got_offset = this->add_constant(0);
7319 this->static_relocs_.push_back(Static_reloc(got_offset,
7320 elfcpp::R_ARM_TLS_DTPOFF32,
7324 template<bool big_endian>
7326 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7328 // Call parent to write out GOT.
7329 Output_data_got<32, big_endian>::do_write(of);
7331 // We are done if there is no fix up.
7332 if (this->static_relocs_.empty())
7335 gold_assert(parameters->doing_static_link());
7337 const off_t offset = this->offset();
7338 const section_size_type oview_size =
7339 convert_to_section_size_type(this->data_size());
7340 unsigned char* const oview = of->get_output_view(offset, oview_size);
7342 Output_segment* tls_segment = this->layout_->tls_segment();
7343 gold_assert(tls_segment != NULL);
7345 // The thread pointer $tp points to the TCB, which is followed by the
7346 // TLS. So we need to adjust $tp relative addressing by this amount.
7347 Arm_address aligned_tcb_size =
7348 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7350 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7352 Static_reloc& reloc(this->static_relocs_[i]);
7355 if (!reloc.symbol_is_global())
7357 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7358 const Symbol_value<32>* psymval =
7359 reloc.relobj()->local_symbol(reloc.index());
7361 // We are doing static linking. Issue an error and skip this
7362 // relocation if the symbol is undefined or in a discarded_section.
7364 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7365 if ((shndx == elfcpp::SHN_UNDEF)
7367 && shndx != elfcpp::SHN_UNDEF
7368 && !object->is_section_included(shndx)
7369 && !this->symbol_table_->is_section_folded(object, shndx)))
7371 gold_error(_("undefined or discarded local symbol %u from "
7372 " object %s in GOT"),
7373 reloc.index(), reloc.relobj()->name().c_str());
7377 value = psymval->value(object, 0);
7381 const Symbol* gsym = reloc.symbol();
7382 gold_assert(gsym != NULL);
7383 if (gsym->is_forwarder())
7384 gsym = this->symbol_table_->resolve_forwards(gsym);
7386 // We are doing static linking. Issue an error and skip this
7387 // relocation if the symbol is undefined or in a discarded_section
7388 // unless it is a weakly_undefined symbol.
7389 if ((gsym->is_defined_in_discarded_section()
7390 || gsym->is_undefined())
7391 && !gsym->is_weak_undefined())
7393 gold_error(_("undefined or discarded symbol %s in GOT"),
7398 if (!gsym->is_weak_undefined())
7400 const Sized_symbol<32>* sym =
7401 static_cast<const Sized_symbol<32>*>(gsym);
7402 value = sym->value();
7408 unsigned got_offset = reloc.got_offset();
7409 gold_assert(got_offset < oview_size);
7411 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7412 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7414 switch (reloc.r_type())
7416 case elfcpp::R_ARM_TLS_DTPOFF32:
7419 case elfcpp::R_ARM_TLS_TPOFF32:
7420 x = value + aligned_tcb_size;
7425 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7428 of->write_output_view(offset, oview_size, oview);
7431 // A class to handle the PLT data.
7432 // This is an abstract base class that handles most of the linker details
7433 // but does not know the actual contents of PLT entries. The derived
7434 // classes below fill in those details.
7436 template<bool big_endian>
7437 class Output_data_plt_arm : public Output_section_data
7440 // Unlike aarch64, which records symbol value in "addend" field of relocations
7441 // and could be done at the same time an IRelative reloc is created for the
7442 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7443 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7444 // to keep necessary symbol information for later use in do_write. We usually
7445 // have only a very limited number of ifuncs, so the extra data required here
7448 struct IRelative_data
7450 IRelative_data(Sized_symbol<32>* sized_symbol)
7451 : symbol_is_global_(true)
7453 u_.global = sized_symbol;
7456 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7458 : symbol_is_global_(false)
7460 u_.local.relobj = relobj;
7461 u_.local.index = index;
7466 Sized_symbol<32>* global;
7470 Sized_relobj_file<32, big_endian>* relobj;
7475 bool symbol_is_global_;
7478 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7481 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7482 Arm_output_data_got<big_endian>* got,
7483 Output_data_space* got_plt,
7484 Output_data_space* got_irelative);
7486 // Add an entry to the PLT.
7488 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7490 // Add the relocation for a plt entry.
7492 add_relocation(Symbol_table* symtab, Layout* layout,
7493 Symbol* gsym, unsigned int got_offset);
7495 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7497 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7498 Sized_relobj_file<32, big_endian>* relobj,
7499 unsigned int local_sym_index);
7501 // Return the .rel.plt section data.
7502 const Reloc_section*
7504 { return this->rel_; }
7506 // Return the PLT relocation container for IRELATIVE.
7508 rel_irelative(Symbol_table*, Layout*);
7510 // Return the number of PLT entries.
7513 { return this->count_ + this->irelative_count_; }
7515 // Return the offset of the first non-reserved PLT entry.
7517 first_plt_entry_offset() const
7518 { return this->do_first_plt_entry_offset(); }
7520 // Return the size of a PLT entry.
7522 get_plt_entry_size() const
7523 { return this->do_get_plt_entry_size(); }
7525 // Return the PLT address for globals.
7527 address_for_global(const Symbol*) const;
7529 // Return the PLT address for locals.
7531 address_for_local(const Relobj*, unsigned int symndx) const;
7534 // Fill in the first PLT entry.
7536 fill_first_plt_entry(unsigned char* pov,
7537 Arm_address got_address,
7538 Arm_address plt_address)
7539 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7542 fill_plt_entry(unsigned char* pov,
7543 Arm_address got_address,
7544 Arm_address plt_address,
7545 unsigned int got_offset,
7546 unsigned int plt_offset)
7547 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7549 virtual unsigned int
7550 do_first_plt_entry_offset() const = 0;
7552 virtual unsigned int
7553 do_get_plt_entry_size() const = 0;
7556 do_fill_first_plt_entry(unsigned char* pov,
7557 Arm_address got_address,
7558 Arm_address plt_address) = 0;
7561 do_fill_plt_entry(unsigned char* pov,
7562 Arm_address got_address,
7563 Arm_address plt_address,
7564 unsigned int got_offset,
7565 unsigned int plt_offset) = 0;
7568 do_adjust_output_section(Output_section* os);
7570 // Write to a map file.
7572 do_print_to_mapfile(Mapfile* mapfile) const
7573 { mapfile->print_output_data(this, _("** PLT")); }
7576 // Set the final size.
7578 set_final_data_size()
7580 this->set_data_size(this->first_plt_entry_offset()
7581 + ((this->count_ + this->irelative_count_)
7582 * this->get_plt_entry_size()));
7585 // Write out the PLT data.
7587 do_write(Output_file*);
7589 // Record irelative symbol data.
7590 void insert_irelative_data(const IRelative_data& idata)
7591 { irelative_data_vec_.push_back(idata); }
7593 // The reloc section.
7594 Reloc_section* rel_;
7595 // The IRELATIVE relocs, if necessary. These must follow the
7596 // regular PLT relocations.
7597 Reloc_section* irelative_rel_;
7598 // The .got section.
7599 Arm_output_data_got<big_endian>* got_;
7600 // The .got.plt section.
7601 Output_data_space* got_plt_;
7602 // The part of the .got.plt section used for IRELATIVE relocs.
7603 Output_data_space* got_irelative_;
7604 // The number of PLT entries.
7605 unsigned int count_;
7606 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7607 // follow the regular PLT entries.
7608 unsigned int irelative_count_;
7609 // Vector for irelative data.
7610 typedef std::vector<IRelative_data> IRelative_data_vec;
7611 IRelative_data_vec irelative_data_vec_;
7614 // Create the PLT section. The ordinary .got section is an argument,
7615 // since we need to refer to the start. We also create our own .got
7616 // section just for PLT entries.
7618 template<bool big_endian>
7619 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7620 Layout* layout, uint64_t addralign,
7621 Arm_output_data_got<big_endian>* got,
7622 Output_data_space* got_plt,
7623 Output_data_space* got_irelative)
7624 : Output_section_data(addralign), irelative_rel_(NULL),
7625 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7626 count_(0), irelative_count_(0)
7628 this->rel_ = new Reloc_section(false);
7629 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7630 elfcpp::SHF_ALLOC, this->rel_,
7631 ORDER_DYNAMIC_PLT_RELOCS, false);
7634 template<bool big_endian>
7636 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7641 // Add an entry to the PLT.
7643 template<bool big_endian>
7645 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7649 gold_assert(!gsym->has_plt_offset());
7651 unsigned int* entry_count;
7652 Output_section_data_build* got;
7654 // We have 2 different types of plt entry here, normal and ifunc.
7656 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7657 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7659 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7660 // second 12, third 24 ... etc.
7662 // IFunc plt entries *always* come after *normal* plt entries.
7664 // Notice, when computing the plt address of a certain symbol, "plt_address +
7665 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7666 // target->plt_address_for_local() instead.
7668 int begin_offset = 0;
7669 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7670 && gsym->can_use_relative_reloc(false))
7672 entry_count = &this->irelative_count_;
7673 got = this->got_irelative_;
7674 // For irelative plt entries, offset is relative to the end of normal plt
7675 // entries, so it starts from 0.
7677 // Record symbol information.
7678 this->insert_irelative_data(
7679 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7683 entry_count = &this->count_;
7684 got = this->got_plt_;
7685 // Note that for normal plt entries, when setting the PLT offset we skip
7686 // the initial reserved PLT entry.
7687 begin_offset = this->first_plt_entry_offset();
7690 gsym->set_plt_offset(begin_offset
7691 + (*entry_count) * this->get_plt_entry_size());
7695 section_offset_type got_offset = got->current_data_size();
7697 // Every PLT entry needs a GOT entry which points back to the PLT
7698 // entry (this will be changed by the dynamic linker, normally
7699 // lazily when the function is called).
7700 got->set_current_data_size(got_offset + 4);
7702 // Every PLT entry needs a reloc.
7703 this->add_relocation(symtab, layout, gsym, got_offset);
7705 // Note that we don't need to save the symbol. The contents of the
7706 // PLT are independent of which symbols are used. The symbols only
7707 // appear in the relocations.
7710 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7713 template<bool big_endian>
7715 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7716 Symbol_table* symtab,
7718 Sized_relobj_file<32, big_endian>* relobj,
7719 unsigned int local_sym_index)
7721 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7723 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7724 // no longer correct. Use target->plt_address_for_local() instead.
7725 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7726 ++this->irelative_count_;
7728 section_offset_type got_offset = this->got_irelative_->current_data_size();
7730 // Every PLT entry needs a GOT entry which points back to the PLT
7732 this->got_irelative_->set_current_data_size(got_offset + 4);
7735 // Every PLT entry needs a reloc.
7736 Reloc_section* rel = this->rel_irelative(symtab, layout);
7737 rel->add_symbolless_local_addend(relobj, local_sym_index,
7738 elfcpp::R_ARM_IRELATIVE,
7739 this->got_irelative_, got_offset);
7744 // Add the relocation for a PLT entry.
7746 template<bool big_endian>
7748 Output_data_plt_arm<big_endian>::add_relocation(
7749 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7751 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7752 && gsym->can_use_relative_reloc(false))
7754 Reloc_section* rel = this->rel_irelative(symtab, layout);
7755 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7756 this->got_irelative_, got_offset);
7760 gsym->set_needs_dynsym_entry();
7761 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7767 // Create the irelative relocation data.
7769 template<bool big_endian>
7770 typename Output_data_plt_arm<big_endian>::Reloc_section*
7771 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7774 if (this->irelative_rel_ == NULL)
7776 // Since irelative relocations goes into 'rel.dyn', we delegate the
7777 // creation of irelative_rel_ to where rel_dyn section gets created.
7778 Target_arm<big_endian>* arm_target =
7779 Target_arm<big_endian>::default_target();
7780 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7782 // Make sure we have a place for the TLSDESC relocations, in
7783 // case we see any later on.
7784 // this->rel_tlsdesc(layout);
7785 if (parameters->doing_static_link())
7787 // A statically linked executable will only have a .rel.plt section to
7788 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7789 // will use these symbols to locate the IRELATIVE relocs at program
7791 symtab->define_in_output_data("__rel_iplt_start", NULL,
7792 Symbol_table::PREDEFINED,
7793 this->irelative_rel_, 0, 0,
7794 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7795 elfcpp::STV_HIDDEN, 0, false, true);
7796 symtab->define_in_output_data("__rel_iplt_end", NULL,
7797 Symbol_table::PREDEFINED,
7798 this->irelative_rel_, 0, 0,
7799 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7800 elfcpp::STV_HIDDEN, 0, true, true);
7803 return this->irelative_rel_;
7807 // Return the PLT address for a global symbol.
7809 template<bool big_endian>
7811 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7813 uint64_t begin_offset = 0;
7814 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7815 && gsym->can_use_relative_reloc(false))
7817 begin_offset = (this->first_plt_entry_offset() +
7818 this->count_ * this->get_plt_entry_size());
7820 return this->address() + begin_offset + gsym->plt_offset();
7824 // Return the PLT address for a local symbol. These are always
7825 // IRELATIVE relocs.
7827 template<bool big_endian>
7829 Output_data_plt_arm<big_endian>::address_for_local(
7830 const Relobj* object,
7831 unsigned int r_sym) const
7833 return (this->address()
7834 + this->first_plt_entry_offset()
7835 + this->count_ * this->get_plt_entry_size()
7836 + object->local_plt_offset(r_sym));
7840 template<bool big_endian>
7841 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7844 Output_data_plt_arm_standard(Layout* layout,
7845 Arm_output_data_got<big_endian>* got,
7846 Output_data_space* got_plt,
7847 Output_data_space* got_irelative)
7848 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7852 // Return the offset of the first non-reserved PLT entry.
7853 virtual unsigned int
7854 do_first_plt_entry_offset() const
7855 { return sizeof(first_plt_entry); }
7858 do_fill_first_plt_entry(unsigned char* pov,
7859 Arm_address got_address,
7860 Arm_address plt_address);
7863 // Template for the first PLT entry.
7864 static const uint32_t first_plt_entry[5];
7868 // FIXME: This is not very flexible. Right now this has only been tested
7869 // on armv5te. If we are to support additional architecture features like
7870 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7872 // The first entry in the PLT.
7873 template<bool big_endian>
7874 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7876 0xe52de004, // str lr, [sp, #-4]!
7877 0xe59fe004, // ldr lr, [pc, #4]
7878 0xe08fe00e, // add lr, pc, lr
7879 0xe5bef008, // ldr pc, [lr, #8]!
7880 0x00000000, // &GOT[0] - .
7883 template<bool big_endian>
7885 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7887 Arm_address got_address,
7888 Arm_address plt_address)
7890 // Write first PLT entry. All but the last word are constants.
7891 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7892 / sizeof(first_plt_entry[0]));
7893 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7895 if (parameters->options().be8())
7897 elfcpp::Swap<32, false>::writeval(pov + i * 4,
7898 first_plt_entry[i]);
7902 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4,
7903 first_plt_entry[i]);
7906 // Last word in first PLT entry is &GOT[0] - .
7907 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7908 got_address - (plt_address + 16));
7911 // Subsequent entries in the PLT.
7912 // This class generates short (12-byte) entries, for displacements up to 2^28.
7914 template<bool big_endian>
7915 class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
7918 Output_data_plt_arm_short(Layout* layout,
7919 Arm_output_data_got<big_endian>* got,
7920 Output_data_space* got_plt,
7921 Output_data_space* got_irelative)
7922 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7926 // Return the size of a PLT entry.
7927 virtual unsigned int
7928 do_get_plt_entry_size() const
7929 { return sizeof(plt_entry); }
7932 do_fill_plt_entry(unsigned char* pov,
7933 Arm_address got_address,
7934 Arm_address plt_address,
7935 unsigned int got_offset,
7936 unsigned int plt_offset);
7939 // Template for subsequent PLT entries.
7940 static const uint32_t plt_entry[3];
7943 template<bool big_endian>
7944 const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
7946 0xe28fc600, // add ip, pc, #0xNN00000
7947 0xe28cca00, // add ip, ip, #0xNN000
7948 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7951 template<bool big_endian>
7953 Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
7955 Arm_address got_address,
7956 Arm_address plt_address,
7957 unsigned int got_offset,
7958 unsigned int plt_offset)
7960 int32_t offset = ((got_address + got_offset)
7961 - (plt_address + plt_offset + 8));
7962 if (offset < 0 || offset > 0x0fffffff)
7963 gold_error(_("PLT offset too large, try linking with --long-plt"));
7965 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7966 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7967 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7969 if (parameters->options().be8())
7971 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
7972 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
7973 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
7977 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7978 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7979 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7983 // This class generates long (16-byte) entries, for arbitrary displacements.
7985 template<bool big_endian>
7986 class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
7989 Output_data_plt_arm_long(Layout* layout,
7990 Arm_output_data_got<big_endian>* got,
7991 Output_data_space* got_plt,
7992 Output_data_space* got_irelative)
7993 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7997 // Return the size of a PLT entry.
7998 virtual unsigned int
7999 do_get_plt_entry_size() const
8000 { return sizeof(plt_entry); }
8003 do_fill_plt_entry(unsigned char* pov,
8004 Arm_address got_address,
8005 Arm_address plt_address,
8006 unsigned int got_offset,
8007 unsigned int plt_offset);
8010 // Template for subsequent PLT entries.
8011 static const uint32_t plt_entry[4];
8014 template<bool big_endian>
8015 const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
8017 0xe28fc200, // add ip, pc, #0xN0000000
8018 0xe28cc600, // add ip, ip, #0xNN00000
8019 0xe28cca00, // add ip, ip, #0xNN000
8020 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
8023 template<bool big_endian>
8025 Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
8027 Arm_address got_address,
8028 Arm_address plt_address,
8029 unsigned int got_offset,
8030 unsigned int plt_offset)
8032 int32_t offset = ((got_address + got_offset)
8033 - (plt_address + plt_offset + 8));
8035 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
8036 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
8037 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
8038 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
8040 if (parameters->options().be8())
8042 elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
8043 elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
8044 elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
8045 elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3);
8049 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
8050 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
8051 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
8052 elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
8056 // Write out the PLT. This uses the hand-coded instructions above,
8057 // and adjusts them as needed. This is all specified by the arm ELF
8058 // Processor Supplement.
8060 template<bool big_endian>
8062 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
8064 const off_t offset = this->offset();
8065 const section_size_type oview_size =
8066 convert_to_section_size_type(this->data_size());
8067 unsigned char* const oview = of->get_output_view(offset, oview_size);
8069 const off_t got_file_offset = this->got_plt_->offset();
8070 gold_assert(got_file_offset + this->got_plt_->data_size()
8071 == this->got_irelative_->offset());
8072 const section_size_type got_size =
8073 convert_to_section_size_type(this->got_plt_->data_size()
8074 + this->got_irelative_->data_size());
8075 unsigned char* const got_view = of->get_output_view(got_file_offset,
8077 unsigned char* pov = oview;
8079 Arm_address plt_address = this->address();
8080 Arm_address got_address = this->got_plt_->address();
8082 // Write first PLT entry.
8083 this->fill_first_plt_entry(pov, got_address, plt_address);
8084 pov += this->first_plt_entry_offset();
8086 unsigned char* got_pov = got_view;
8088 memset(got_pov, 0, 12);
8091 unsigned int plt_offset = this->first_plt_entry_offset();
8092 unsigned int got_offset = 12;
8093 const unsigned int count = this->count_ + this->irelative_count_;
8094 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
8095 for (unsigned int i = 0;
8098 pov += this->get_plt_entry_size(),
8100 plt_offset += this->get_plt_entry_size(),
8103 // Set and adjust the PLT entry itself.
8104 this->fill_plt_entry(pov, got_address, plt_address,
8105 got_offset, plt_offset);
8108 if (i < this->count_)
8110 // For non-irelative got entries, the value is the beginning of plt.
8111 value = plt_address;
8115 // For irelative got entries, the value is the (global/local) symbol
8117 const IRelative_data& idata =
8118 this->irelative_data_vec_[i - this->count_];
8119 if (idata.symbol_is_global_)
8121 // Set the entry in the GOT for irelative symbols. The content is
8122 // the address of the ifunc, not the address of plt start.
8123 const Sized_symbol<32>* sized_symbol = idata.u_.global;
8124 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
8125 value = sized_symbol->value();
8129 value = idata.u_.local.relobj->local_symbol_value(
8130 idata.u_.local.index, 0);
8133 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
8136 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
8137 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
8139 of->write_output_view(offset, oview_size, oview);
8140 of->write_output_view(got_file_offset, got_size, got_view);
8144 // Create a PLT entry for a global symbol.
8146 template<bool big_endian>
8148 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
8151 if (gsym->has_plt_offset())
8154 if (this->plt_ == NULL)
8155 this->make_plt_section(symtab, layout);
8157 this->plt_->add_entry(symtab, layout, gsym);
8161 // Create the PLT section.
8162 template<bool big_endian>
8164 Target_arm<big_endian>::make_plt_section(
8165 Symbol_table* symtab, Layout* layout)
8167 if (this->plt_ == NULL)
8169 // Create the GOT section first.
8170 this->got_section(symtab, layout);
8172 // GOT for irelatives is create along with got.plt.
8173 gold_assert(this->got_ != NULL
8174 && this->got_plt_ != NULL
8175 && this->got_irelative_ != NULL);
8176 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
8177 this->got_irelative_);
8179 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8181 | elfcpp::SHF_EXECINSTR),
8182 this->plt_, ORDER_PLT, false);
8183 symtab->define_in_output_data("$a", NULL,
8184 Symbol_table::PREDEFINED,
8186 0, 0, elfcpp::STT_NOTYPE,
8188 elfcpp::STV_DEFAULT, 0,
8194 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
8196 template<bool big_endian>
8198 Target_arm<big_endian>::make_local_ifunc_plt_entry(
8199 Symbol_table* symtab, Layout* layout,
8200 Sized_relobj_file<32, big_endian>* relobj,
8201 unsigned int local_sym_index)
8203 if (relobj->local_has_plt_offset(local_sym_index))
8205 if (this->plt_ == NULL)
8206 this->make_plt_section(symtab, layout);
8207 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
8210 relobj->set_local_plt_offset(local_sym_index, plt_offset);
8214 // Return the number of entries in the PLT.
8216 template<bool big_endian>
8218 Target_arm<big_endian>::plt_entry_count() const
8220 if (this->plt_ == NULL)
8222 return this->plt_->entry_count();
8225 // Return the offset of the first non-reserved PLT entry.
8227 template<bool big_endian>
8229 Target_arm<big_endian>::first_plt_entry_offset() const
8231 return this->plt_->first_plt_entry_offset();
8234 // Return the size of each PLT entry.
8236 template<bool big_endian>
8238 Target_arm<big_endian>::plt_entry_size() const
8240 return this->plt_->get_plt_entry_size();
8243 // Get the section to use for TLS_DESC relocations.
8245 template<bool big_endian>
8246 typename Target_arm<big_endian>::Reloc_section*
8247 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8249 return this->plt_section()->rel_tls_desc(layout);
8252 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8254 template<bool big_endian>
8256 Target_arm<big_endian>::define_tls_base_symbol(
8257 Symbol_table* symtab,
8260 if (this->tls_base_symbol_defined_)
8263 Output_segment* tls_segment = layout->tls_segment();
8264 if (tls_segment != NULL)
8266 bool is_exec = parameters->options().output_is_executable();
8267 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8268 Symbol_table::PREDEFINED,
8272 elfcpp::STV_HIDDEN, 0,
8274 ? Symbol::SEGMENT_END
8275 : Symbol::SEGMENT_START),
8278 this->tls_base_symbol_defined_ = true;
8281 // Create a GOT entry for the TLS module index.
8283 template<bool big_endian>
8285 Target_arm<big_endian>::got_mod_index_entry(
8286 Symbol_table* symtab,
8288 Sized_relobj_file<32, big_endian>* object)
8290 if (this->got_mod_index_offset_ == -1U)
8292 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8293 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8294 unsigned int got_offset;
8295 if (!parameters->doing_static_link())
8297 got_offset = got->add_constant(0);
8298 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8299 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8304 // We are doing a static link. Just mark it as belong to module 1,
8306 got_offset = got->add_constant(1);
8309 got->add_constant(0);
8310 this->got_mod_index_offset_ = got_offset;
8312 return this->got_mod_index_offset_;
8315 // Optimize the TLS relocation type based on what we know about the
8316 // symbol. IS_FINAL is true if the final address of this symbol is
8317 // known at link time.
8319 template<bool big_endian>
8320 tls::Tls_optimization
8321 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8323 // FIXME: Currently we do not do any TLS optimization.
8324 return tls::TLSOPT_NONE;
8327 // Get the Reference_flags for a particular relocation.
8329 template<bool big_endian>
8331 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8335 case elfcpp::R_ARM_NONE:
8336 case elfcpp::R_ARM_V4BX:
8337 case elfcpp::R_ARM_GNU_VTENTRY:
8338 case elfcpp::R_ARM_GNU_VTINHERIT:
8339 // No symbol reference.
8342 case elfcpp::R_ARM_ABS32:
8343 case elfcpp::R_ARM_ABS16:
8344 case elfcpp::R_ARM_ABS12:
8345 case elfcpp::R_ARM_THM_ABS5:
8346 case elfcpp::R_ARM_ABS8:
8347 case elfcpp::R_ARM_BASE_ABS:
8348 case elfcpp::R_ARM_MOVW_ABS_NC:
8349 case elfcpp::R_ARM_MOVT_ABS:
8350 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8351 case elfcpp::R_ARM_THM_MOVT_ABS:
8352 case elfcpp::R_ARM_ABS32_NOI:
8353 return Symbol::ABSOLUTE_REF;
8355 case elfcpp::R_ARM_REL32:
8356 case elfcpp::R_ARM_LDR_PC_G0:
8357 case elfcpp::R_ARM_SBREL32:
8358 case elfcpp::R_ARM_THM_PC8:
8359 case elfcpp::R_ARM_BASE_PREL:
8360 case elfcpp::R_ARM_MOVW_PREL_NC:
8361 case elfcpp::R_ARM_MOVT_PREL:
8362 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8363 case elfcpp::R_ARM_THM_MOVT_PREL:
8364 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8365 case elfcpp::R_ARM_THM_PC12:
8366 case elfcpp::R_ARM_REL32_NOI:
8367 case elfcpp::R_ARM_ALU_PC_G0_NC:
8368 case elfcpp::R_ARM_ALU_PC_G0:
8369 case elfcpp::R_ARM_ALU_PC_G1_NC:
8370 case elfcpp::R_ARM_ALU_PC_G1:
8371 case elfcpp::R_ARM_ALU_PC_G2:
8372 case elfcpp::R_ARM_LDR_PC_G1:
8373 case elfcpp::R_ARM_LDR_PC_G2:
8374 case elfcpp::R_ARM_LDRS_PC_G0:
8375 case elfcpp::R_ARM_LDRS_PC_G1:
8376 case elfcpp::R_ARM_LDRS_PC_G2:
8377 case elfcpp::R_ARM_LDC_PC_G0:
8378 case elfcpp::R_ARM_LDC_PC_G1:
8379 case elfcpp::R_ARM_LDC_PC_G2:
8380 case elfcpp::R_ARM_ALU_SB_G0_NC:
8381 case elfcpp::R_ARM_ALU_SB_G0:
8382 case elfcpp::R_ARM_ALU_SB_G1_NC:
8383 case elfcpp::R_ARM_ALU_SB_G1:
8384 case elfcpp::R_ARM_ALU_SB_G2:
8385 case elfcpp::R_ARM_LDR_SB_G0:
8386 case elfcpp::R_ARM_LDR_SB_G1:
8387 case elfcpp::R_ARM_LDR_SB_G2:
8388 case elfcpp::R_ARM_LDRS_SB_G0:
8389 case elfcpp::R_ARM_LDRS_SB_G1:
8390 case elfcpp::R_ARM_LDRS_SB_G2:
8391 case elfcpp::R_ARM_LDC_SB_G0:
8392 case elfcpp::R_ARM_LDC_SB_G1:
8393 case elfcpp::R_ARM_LDC_SB_G2:
8394 case elfcpp::R_ARM_MOVW_BREL_NC:
8395 case elfcpp::R_ARM_MOVT_BREL:
8396 case elfcpp::R_ARM_MOVW_BREL:
8397 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8398 case elfcpp::R_ARM_THM_MOVT_BREL:
8399 case elfcpp::R_ARM_THM_MOVW_BREL:
8400 case elfcpp::R_ARM_GOTOFF32:
8401 case elfcpp::R_ARM_GOTOFF12:
8402 case elfcpp::R_ARM_SBREL31:
8403 return Symbol::RELATIVE_REF;
8405 case elfcpp::R_ARM_PLT32:
8406 case elfcpp::R_ARM_CALL:
8407 case elfcpp::R_ARM_JUMP24:
8408 case elfcpp::R_ARM_THM_CALL:
8409 case elfcpp::R_ARM_THM_JUMP24:
8410 case elfcpp::R_ARM_THM_JUMP19:
8411 case elfcpp::R_ARM_THM_JUMP6:
8412 case elfcpp::R_ARM_THM_JUMP11:
8413 case elfcpp::R_ARM_THM_JUMP8:
8414 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8415 // in unwind tables. It may point to functions via PLTs.
8416 // So we treat it like call/jump relocations above.
8417 case elfcpp::R_ARM_PREL31:
8418 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8420 case elfcpp::R_ARM_GOT_BREL:
8421 case elfcpp::R_ARM_GOT_ABS:
8422 case elfcpp::R_ARM_GOT_PREL:
8424 return Symbol::ABSOLUTE_REF;
8426 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8427 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8428 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8429 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8430 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8431 return Symbol::TLS_REF;
8433 case elfcpp::R_ARM_TARGET1:
8434 case elfcpp::R_ARM_TARGET2:
8435 case elfcpp::R_ARM_COPY:
8436 case elfcpp::R_ARM_GLOB_DAT:
8437 case elfcpp::R_ARM_JUMP_SLOT:
8438 case elfcpp::R_ARM_RELATIVE:
8439 case elfcpp::R_ARM_PC24:
8440 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8441 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8442 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8444 // Not expected. We will give an error later.
8449 // Report an unsupported relocation against a local symbol.
8451 template<bool big_endian>
8453 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8454 Sized_relobj_file<32, big_endian>* object,
8455 unsigned int r_type)
8457 gold_error(_("%s: unsupported reloc %u against local symbol"),
8458 object->name().c_str(), r_type);
8461 // We are about to emit a dynamic relocation of type R_TYPE. If the
8462 // dynamic linker does not support it, issue an error. The GNU linker
8463 // only issues a non-PIC error for an allocated read-only section.
8464 // Here we know the section is allocated, but we don't know that it is
8465 // read-only. But we check for all the relocation types which the
8466 // glibc dynamic linker supports, so it seems appropriate to issue an
8467 // error even if the section is not read-only.
8469 template<bool big_endian>
8471 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8472 unsigned int r_type)
8476 // These are the relocation types supported by glibc for ARM.
8477 case elfcpp::R_ARM_RELATIVE:
8478 case elfcpp::R_ARM_COPY:
8479 case elfcpp::R_ARM_GLOB_DAT:
8480 case elfcpp::R_ARM_JUMP_SLOT:
8481 case elfcpp::R_ARM_ABS32:
8482 case elfcpp::R_ARM_ABS32_NOI:
8483 case elfcpp::R_ARM_IRELATIVE:
8484 case elfcpp::R_ARM_PC24:
8485 // FIXME: The following 3 types are not supported by Android's dynamic
8487 case elfcpp::R_ARM_TLS_DTPMOD32:
8488 case elfcpp::R_ARM_TLS_DTPOFF32:
8489 case elfcpp::R_ARM_TLS_TPOFF32:
8494 // This prevents us from issuing more than one error per reloc
8495 // section. But we can still wind up issuing more than one
8496 // error per object file.
8497 if (this->issued_non_pic_error_)
8499 const Arm_reloc_property* reloc_property =
8500 arm_reloc_property_table->get_reloc_property(r_type);
8501 gold_assert(reloc_property != NULL);
8502 object->error(_("requires unsupported dynamic reloc %s; "
8503 "recompile with -fPIC"),
8504 reloc_property->name().c_str());
8505 this->issued_non_pic_error_ = true;
8509 case elfcpp::R_ARM_NONE:
8515 // Return whether we need to make a PLT entry for a relocation of the
8516 // given type against a STT_GNU_IFUNC symbol.
8518 template<bool big_endian>
8520 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8521 Sized_relobj_file<32, big_endian>* object,
8522 unsigned int r_type)
8524 int flags = Scan::get_reference_flags(r_type);
8525 if (flags & Symbol::TLS_REF)
8527 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8528 object->name().c_str(), r_type);
8535 // Scan a relocation for a local symbol.
8536 // FIXME: This only handles a subset of relocation types used by Android
8537 // on ARM v5te devices.
8539 template<bool big_endian>
8541 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8544 Sized_relobj_file<32, big_endian>* object,
8545 unsigned int data_shndx,
8546 Output_section* output_section,
8547 const elfcpp::Rel<32, big_endian>& reloc,
8548 unsigned int r_type,
8549 const elfcpp::Sym<32, big_endian>& lsym,
8555 r_type = target->get_real_reloc_type(r_type);
8557 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8558 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8559 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8561 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8562 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8567 case elfcpp::R_ARM_NONE:
8568 case elfcpp::R_ARM_V4BX:
8569 case elfcpp::R_ARM_GNU_VTENTRY:
8570 case elfcpp::R_ARM_GNU_VTINHERIT:
8573 case elfcpp::R_ARM_ABS32:
8574 case elfcpp::R_ARM_ABS32_NOI:
8575 // If building a shared library (or a position-independent
8576 // executable), we need to create a dynamic relocation for
8577 // this location. The relocation applied at link time will
8578 // apply the link-time value, so we flag the location with
8579 // an R_ARM_RELATIVE relocation so the dynamic loader can
8580 // relocate it easily.
8581 if (parameters->options().output_is_position_independent())
8583 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8584 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8585 // If we are to add more other reloc types than R_ARM_ABS32,
8586 // we need to add check_non_pic(object, r_type) here.
8587 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8588 output_section, data_shndx,
8589 reloc.get_r_offset(), is_ifunc);
8593 case elfcpp::R_ARM_ABS16:
8594 case elfcpp::R_ARM_ABS12:
8595 case elfcpp::R_ARM_THM_ABS5:
8596 case elfcpp::R_ARM_ABS8:
8597 case elfcpp::R_ARM_BASE_ABS:
8598 case elfcpp::R_ARM_MOVW_ABS_NC:
8599 case elfcpp::R_ARM_MOVT_ABS:
8600 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8601 case elfcpp::R_ARM_THM_MOVT_ABS:
8602 // If building a shared library (or a position-independent
8603 // executable), we need to create a dynamic relocation for
8604 // this location. Because the addend needs to remain in the
8605 // data section, we need to be careful not to apply this
8606 // relocation statically.
8607 if (parameters->options().output_is_position_independent())
8609 check_non_pic(object, r_type);
8610 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8611 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8612 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8613 rel_dyn->add_local(object, r_sym, r_type, output_section,
8614 data_shndx, reloc.get_r_offset());
8617 gold_assert(lsym.get_st_value() == 0);
8618 unsigned int shndx = lsym.get_st_shndx();
8620 shndx = object->adjust_sym_shndx(r_sym, shndx,
8623 object->error(_("section symbol %u has bad shndx %u"),
8626 rel_dyn->add_local_section(object, shndx,
8627 r_type, output_section,
8628 data_shndx, reloc.get_r_offset());
8633 case elfcpp::R_ARM_REL32:
8634 case elfcpp::R_ARM_LDR_PC_G0:
8635 case elfcpp::R_ARM_SBREL32:
8636 case elfcpp::R_ARM_THM_CALL:
8637 case elfcpp::R_ARM_THM_PC8:
8638 case elfcpp::R_ARM_BASE_PREL:
8639 case elfcpp::R_ARM_PLT32:
8640 case elfcpp::R_ARM_CALL:
8641 case elfcpp::R_ARM_JUMP24:
8642 case elfcpp::R_ARM_THM_JUMP24:
8643 case elfcpp::R_ARM_SBREL31:
8644 case elfcpp::R_ARM_PREL31:
8645 case elfcpp::R_ARM_MOVW_PREL_NC:
8646 case elfcpp::R_ARM_MOVT_PREL:
8647 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8648 case elfcpp::R_ARM_THM_MOVT_PREL:
8649 case elfcpp::R_ARM_THM_JUMP19:
8650 case elfcpp::R_ARM_THM_JUMP6:
8651 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8652 case elfcpp::R_ARM_THM_PC12:
8653 case elfcpp::R_ARM_REL32_NOI:
8654 case elfcpp::R_ARM_ALU_PC_G0_NC:
8655 case elfcpp::R_ARM_ALU_PC_G0:
8656 case elfcpp::R_ARM_ALU_PC_G1_NC:
8657 case elfcpp::R_ARM_ALU_PC_G1:
8658 case elfcpp::R_ARM_ALU_PC_G2:
8659 case elfcpp::R_ARM_LDR_PC_G1:
8660 case elfcpp::R_ARM_LDR_PC_G2:
8661 case elfcpp::R_ARM_LDRS_PC_G0:
8662 case elfcpp::R_ARM_LDRS_PC_G1:
8663 case elfcpp::R_ARM_LDRS_PC_G2:
8664 case elfcpp::R_ARM_LDC_PC_G0:
8665 case elfcpp::R_ARM_LDC_PC_G1:
8666 case elfcpp::R_ARM_LDC_PC_G2:
8667 case elfcpp::R_ARM_ALU_SB_G0_NC:
8668 case elfcpp::R_ARM_ALU_SB_G0:
8669 case elfcpp::R_ARM_ALU_SB_G1_NC:
8670 case elfcpp::R_ARM_ALU_SB_G1:
8671 case elfcpp::R_ARM_ALU_SB_G2:
8672 case elfcpp::R_ARM_LDR_SB_G0:
8673 case elfcpp::R_ARM_LDR_SB_G1:
8674 case elfcpp::R_ARM_LDR_SB_G2:
8675 case elfcpp::R_ARM_LDRS_SB_G0:
8676 case elfcpp::R_ARM_LDRS_SB_G1:
8677 case elfcpp::R_ARM_LDRS_SB_G2:
8678 case elfcpp::R_ARM_LDC_SB_G0:
8679 case elfcpp::R_ARM_LDC_SB_G1:
8680 case elfcpp::R_ARM_LDC_SB_G2:
8681 case elfcpp::R_ARM_MOVW_BREL_NC:
8682 case elfcpp::R_ARM_MOVT_BREL:
8683 case elfcpp::R_ARM_MOVW_BREL:
8684 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8685 case elfcpp::R_ARM_THM_MOVT_BREL:
8686 case elfcpp::R_ARM_THM_MOVW_BREL:
8687 case elfcpp::R_ARM_THM_JUMP11:
8688 case elfcpp::R_ARM_THM_JUMP8:
8689 // We don't need to do anything for a relative addressing relocation
8690 // against a local symbol if it does not reference the GOT.
8693 case elfcpp::R_ARM_GOTOFF32:
8694 case elfcpp::R_ARM_GOTOFF12:
8695 // We need a GOT section:
8696 target->got_section(symtab, layout);
8699 case elfcpp::R_ARM_GOT_BREL:
8700 case elfcpp::R_ARM_GOT_PREL:
8702 // The symbol requires a GOT entry.
8703 Arm_output_data_got<big_endian>* got =
8704 target->got_section(symtab, layout);
8705 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8706 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8708 // If we are generating a shared object, we need to add a
8709 // dynamic RELATIVE relocation for this symbol's GOT entry.
8710 if (parameters->options().output_is_position_independent())
8712 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8713 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8714 rel_dyn->add_local_relative(
8715 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8716 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8722 case elfcpp::R_ARM_TARGET1:
8723 case elfcpp::R_ARM_TARGET2:
8724 // This should have been mapped to another type already.
8726 case elfcpp::R_ARM_COPY:
8727 case elfcpp::R_ARM_GLOB_DAT:
8728 case elfcpp::R_ARM_JUMP_SLOT:
8729 case elfcpp::R_ARM_RELATIVE:
8730 // These are relocations which should only be seen by the
8731 // dynamic linker, and should never be seen here.
8732 gold_error(_("%s: unexpected reloc %u in object file"),
8733 object->name().c_str(), r_type);
8737 // These are initial TLS relocs, which are expected when
8739 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8740 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8741 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8742 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8743 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8745 bool output_is_shared = parameters->options().shared();
8746 const tls::Tls_optimization optimized_type
8747 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8751 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8752 if (optimized_type == tls::TLSOPT_NONE)
8754 // Create a pair of GOT entries for the module index and
8755 // dtv-relative offset.
8756 Arm_output_data_got<big_endian>* got
8757 = target->got_section(symtab, layout);
8758 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8759 unsigned int shndx = lsym.get_st_shndx();
8761 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8764 object->error(_("local symbol %u has bad shndx %u"),
8769 if (!parameters->doing_static_link())
8770 got->add_local_pair_with_rel(object, r_sym, shndx,
8772 target->rel_dyn_section(layout),
8773 elfcpp::R_ARM_TLS_DTPMOD32);
8775 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8779 // FIXME: TLS optimization not supported yet.
8783 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8784 if (optimized_type == tls::TLSOPT_NONE)
8786 // Create a GOT entry for the module index.
8787 target->got_mod_index_entry(symtab, layout, object);
8790 // FIXME: TLS optimization not supported yet.
8794 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8797 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8798 layout->set_has_static_tls();
8799 if (optimized_type == tls::TLSOPT_NONE)
8801 // Create a GOT entry for the tp-relative offset.
8802 Arm_output_data_got<big_endian>* got
8803 = target->got_section(symtab, layout);
8804 unsigned int r_sym =
8805 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8806 if (!parameters->doing_static_link())
8807 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8808 target->rel_dyn_section(layout),
8809 elfcpp::R_ARM_TLS_TPOFF32);
8810 else if (!object->local_has_got_offset(r_sym,
8811 GOT_TYPE_TLS_OFFSET))
8813 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8814 unsigned int got_offset =
8815 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8816 got->add_static_reloc(got_offset,
8817 elfcpp::R_ARM_TLS_TPOFF32, object,
8822 // FIXME: TLS optimization not supported yet.
8826 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8827 layout->set_has_static_tls();
8828 if (output_is_shared)
8830 // We need to create a dynamic relocation.
8831 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8832 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8833 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8834 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8835 output_section, data_shndx,
8836 reloc.get_r_offset());
8846 case elfcpp::R_ARM_PC24:
8847 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8848 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8849 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8851 unsupported_reloc_local(object, r_type);
8856 // Report an unsupported relocation against a global symbol.
8858 template<bool big_endian>
8860 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8861 Sized_relobj_file<32, big_endian>* object,
8862 unsigned int r_type,
8865 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8866 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8869 template<bool big_endian>
8871 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8872 unsigned int r_type)
8876 case elfcpp::R_ARM_PC24:
8877 case elfcpp::R_ARM_THM_CALL:
8878 case elfcpp::R_ARM_PLT32:
8879 case elfcpp::R_ARM_CALL:
8880 case elfcpp::R_ARM_JUMP24:
8881 case elfcpp::R_ARM_THM_JUMP24:
8882 case elfcpp::R_ARM_SBREL31:
8883 case elfcpp::R_ARM_PREL31:
8884 case elfcpp::R_ARM_THM_JUMP19:
8885 case elfcpp::R_ARM_THM_JUMP6:
8886 case elfcpp::R_ARM_THM_JUMP11:
8887 case elfcpp::R_ARM_THM_JUMP8:
8888 // All the relocations above are branches except SBREL31 and PREL31.
8892 // Be conservative and assume this is a function pointer.
8897 template<bool big_endian>
8899 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8902 Target_arm<big_endian>* target,
8903 Sized_relobj_file<32, big_endian>*,
8906 const elfcpp::Rel<32, big_endian>&,
8907 unsigned int r_type,
8908 const elfcpp::Sym<32, big_endian>&)
8910 r_type = target->get_real_reloc_type(r_type);
8911 return possible_function_pointer_reloc(r_type);
8914 template<bool big_endian>
8916 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8919 Target_arm<big_endian>* target,
8920 Sized_relobj_file<32, big_endian>*,
8923 const elfcpp::Rel<32, big_endian>&,
8924 unsigned int r_type,
8927 // GOT is not a function.
8928 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8931 r_type = target->get_real_reloc_type(r_type);
8932 return possible_function_pointer_reloc(r_type);
8935 // Scan a relocation for a global symbol.
8937 template<bool big_endian>
8939 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8942 Sized_relobj_file<32, big_endian>* object,
8943 unsigned int data_shndx,
8944 Output_section* output_section,
8945 const elfcpp::Rel<32, big_endian>& reloc,
8946 unsigned int r_type,
8949 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8950 // section. We check here to avoid creating a dynamic reloc against
8951 // _GLOBAL_OFFSET_TABLE_.
8952 if (!target->has_got_section()
8953 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8954 target->got_section(symtab, layout);
8956 // A STT_GNU_IFUNC symbol may require a PLT entry.
8957 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8958 && this->reloc_needs_plt_for_ifunc(object, r_type))
8959 target->make_plt_entry(symtab, layout, gsym);
8961 r_type = target->get_real_reloc_type(r_type);
8964 case elfcpp::R_ARM_NONE:
8965 case elfcpp::R_ARM_V4BX:
8966 case elfcpp::R_ARM_GNU_VTENTRY:
8967 case elfcpp::R_ARM_GNU_VTINHERIT:
8970 case elfcpp::R_ARM_ABS32:
8971 case elfcpp::R_ARM_ABS16:
8972 case elfcpp::R_ARM_ABS12:
8973 case elfcpp::R_ARM_THM_ABS5:
8974 case elfcpp::R_ARM_ABS8:
8975 case elfcpp::R_ARM_BASE_ABS:
8976 case elfcpp::R_ARM_MOVW_ABS_NC:
8977 case elfcpp::R_ARM_MOVT_ABS:
8978 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8979 case elfcpp::R_ARM_THM_MOVT_ABS:
8980 case elfcpp::R_ARM_ABS32_NOI:
8981 // Absolute addressing relocations.
8983 // Make a PLT entry if necessary.
8984 if (this->symbol_needs_plt_entry(gsym))
8986 target->make_plt_entry(symtab, layout, gsym);
8987 // Since this is not a PC-relative relocation, we may be
8988 // taking the address of a function. In that case we need to
8989 // set the entry in the dynamic symbol table to the address of
8991 if (gsym->is_from_dynobj() && !parameters->options().shared())
8992 gsym->set_needs_dynsym_value();
8994 // Make a dynamic relocation if necessary.
8995 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8997 if (!parameters->options().output_is_position_independent()
8998 && gsym->may_need_copy_reloc())
9000 target->copy_reloc(symtab, layout, object,
9001 data_shndx, output_section, gsym, reloc);
9003 else if ((r_type == elfcpp::R_ARM_ABS32
9004 || r_type == elfcpp::R_ARM_ABS32_NOI)
9005 && gsym->type() == elfcpp::STT_GNU_IFUNC
9006 && gsym->can_use_relative_reloc(false)
9007 && !gsym->is_from_dynobj()
9008 && !gsym->is_undefined()
9009 && !gsym->is_preemptible())
9011 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
9012 // symbol. This makes a function address in a PIE executable
9013 // match the address in a shared library that it links against.
9014 Reloc_section* rel_irelative =
9015 target->rel_irelative_section(layout);
9016 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
9017 rel_irelative->add_symbolless_global_addend(
9018 gsym, r_type, output_section, object,
9019 data_shndx, reloc.get_r_offset());
9021 else if ((r_type == elfcpp::R_ARM_ABS32
9022 || r_type == elfcpp::R_ARM_ABS32_NOI)
9023 && gsym->can_use_relative_reloc(false))
9025 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9026 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
9027 output_section, object,
9028 data_shndx, reloc.get_r_offset());
9032 check_non_pic(object, r_type);
9033 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9034 rel_dyn->add_global(gsym, r_type, output_section, object,
9035 data_shndx, reloc.get_r_offset());
9041 case elfcpp::R_ARM_GOTOFF32:
9042 case elfcpp::R_ARM_GOTOFF12:
9043 // We need a GOT section.
9044 target->got_section(symtab, layout);
9047 case elfcpp::R_ARM_REL32:
9048 case elfcpp::R_ARM_LDR_PC_G0:
9049 case elfcpp::R_ARM_SBREL32:
9050 case elfcpp::R_ARM_THM_PC8:
9051 case elfcpp::R_ARM_BASE_PREL:
9052 case elfcpp::R_ARM_MOVW_PREL_NC:
9053 case elfcpp::R_ARM_MOVT_PREL:
9054 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9055 case elfcpp::R_ARM_THM_MOVT_PREL:
9056 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9057 case elfcpp::R_ARM_THM_PC12:
9058 case elfcpp::R_ARM_REL32_NOI:
9059 case elfcpp::R_ARM_ALU_PC_G0_NC:
9060 case elfcpp::R_ARM_ALU_PC_G0:
9061 case elfcpp::R_ARM_ALU_PC_G1_NC:
9062 case elfcpp::R_ARM_ALU_PC_G1:
9063 case elfcpp::R_ARM_ALU_PC_G2:
9064 case elfcpp::R_ARM_LDR_PC_G1:
9065 case elfcpp::R_ARM_LDR_PC_G2:
9066 case elfcpp::R_ARM_LDRS_PC_G0:
9067 case elfcpp::R_ARM_LDRS_PC_G1:
9068 case elfcpp::R_ARM_LDRS_PC_G2:
9069 case elfcpp::R_ARM_LDC_PC_G0:
9070 case elfcpp::R_ARM_LDC_PC_G1:
9071 case elfcpp::R_ARM_LDC_PC_G2:
9072 case elfcpp::R_ARM_ALU_SB_G0_NC:
9073 case elfcpp::R_ARM_ALU_SB_G0:
9074 case elfcpp::R_ARM_ALU_SB_G1_NC:
9075 case elfcpp::R_ARM_ALU_SB_G1:
9076 case elfcpp::R_ARM_ALU_SB_G2:
9077 case elfcpp::R_ARM_LDR_SB_G0:
9078 case elfcpp::R_ARM_LDR_SB_G1:
9079 case elfcpp::R_ARM_LDR_SB_G2:
9080 case elfcpp::R_ARM_LDRS_SB_G0:
9081 case elfcpp::R_ARM_LDRS_SB_G1:
9082 case elfcpp::R_ARM_LDRS_SB_G2:
9083 case elfcpp::R_ARM_LDC_SB_G0:
9084 case elfcpp::R_ARM_LDC_SB_G1:
9085 case elfcpp::R_ARM_LDC_SB_G2:
9086 case elfcpp::R_ARM_MOVW_BREL_NC:
9087 case elfcpp::R_ARM_MOVT_BREL:
9088 case elfcpp::R_ARM_MOVW_BREL:
9089 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9090 case elfcpp::R_ARM_THM_MOVT_BREL:
9091 case elfcpp::R_ARM_THM_MOVW_BREL:
9092 // Relative addressing relocations.
9094 // Make a dynamic relocation if necessary.
9095 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9097 if (parameters->options().output_is_executable()
9098 && target->may_need_copy_reloc(gsym))
9100 target->copy_reloc(symtab, layout, object,
9101 data_shndx, output_section, gsym, reloc);
9105 check_non_pic(object, r_type);
9106 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9107 rel_dyn->add_global(gsym, r_type, output_section, object,
9108 data_shndx, reloc.get_r_offset());
9114 case elfcpp::R_ARM_THM_CALL:
9115 case elfcpp::R_ARM_PLT32:
9116 case elfcpp::R_ARM_CALL:
9117 case elfcpp::R_ARM_JUMP24:
9118 case elfcpp::R_ARM_THM_JUMP24:
9119 case elfcpp::R_ARM_SBREL31:
9120 case elfcpp::R_ARM_PREL31:
9121 case elfcpp::R_ARM_THM_JUMP19:
9122 case elfcpp::R_ARM_THM_JUMP6:
9123 case elfcpp::R_ARM_THM_JUMP11:
9124 case elfcpp::R_ARM_THM_JUMP8:
9125 // All the relocation above are branches except for the PREL31 ones.
9126 // A PREL31 relocation can point to a personality function in a shared
9127 // library. In that case we want to use a PLT because we want to
9128 // call the personality routine and the dynamic linkers we care about
9129 // do not support dynamic PREL31 relocations. An REL31 relocation may
9130 // point to a function whose unwinding behaviour is being described but
9131 // we will not mistakenly generate a PLT for that because we should use
9132 // a local section symbol.
9134 // If the symbol is fully resolved, this is just a relative
9135 // local reloc. Otherwise we need a PLT entry.
9136 if (gsym->final_value_is_known())
9138 // If building a shared library, we can also skip the PLT entry
9139 // if the symbol is defined in the output file and is protected
9141 if (gsym->is_defined()
9142 && !gsym->is_from_dynobj()
9143 && !gsym->is_preemptible())
9145 target->make_plt_entry(symtab, layout, gsym);
9148 case elfcpp::R_ARM_GOT_BREL:
9149 case elfcpp::R_ARM_GOT_ABS:
9150 case elfcpp::R_ARM_GOT_PREL:
9152 // The symbol requires a GOT entry.
9153 Arm_output_data_got<big_endian>* got =
9154 target->got_section(symtab, layout);
9155 if (gsym->final_value_is_known())
9157 // For a STT_GNU_IFUNC symbol we want the PLT address.
9158 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
9159 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9161 got->add_global(gsym, GOT_TYPE_STANDARD);
9165 // If this symbol is not fully resolved, we need to add a
9166 // GOT entry with a dynamic relocation.
9167 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9168 if (gsym->is_from_dynobj()
9169 || gsym->is_undefined()
9170 || gsym->is_preemptible()
9171 || (gsym->visibility() == elfcpp::STV_PROTECTED
9172 && parameters->options().shared())
9173 || (gsym->type() == elfcpp::STT_GNU_IFUNC
9174 && parameters->options().output_is_position_independent()))
9175 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
9176 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
9179 // For a STT_GNU_IFUNC symbol we want to write the PLT
9180 // offset into the GOT, so that function pointer
9181 // comparisons work correctly.
9183 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
9184 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
9187 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9188 // Tell the dynamic linker to use the PLT address
9189 // when resolving relocations.
9190 if (gsym->is_from_dynobj()
9191 && !parameters->options().shared())
9192 gsym->set_needs_dynsym_value();
9195 rel_dyn->add_global_relative(
9196 gsym, elfcpp::R_ARM_RELATIVE, got,
9197 gsym->got_offset(GOT_TYPE_STANDARD));
9203 case elfcpp::R_ARM_TARGET1:
9204 case elfcpp::R_ARM_TARGET2:
9205 // These should have been mapped to other types already.
9207 case elfcpp::R_ARM_COPY:
9208 case elfcpp::R_ARM_GLOB_DAT:
9209 case elfcpp::R_ARM_JUMP_SLOT:
9210 case elfcpp::R_ARM_RELATIVE:
9211 // These are relocations which should only be seen by the
9212 // dynamic linker, and should never be seen here.
9213 gold_error(_("%s: unexpected reloc %u in object file"),
9214 object->name().c_str(), r_type);
9217 // These are initial tls relocs, which are expected when
9219 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9220 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9221 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9222 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9223 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9225 const bool is_final = gsym->final_value_is_known();
9226 const tls::Tls_optimization optimized_type
9227 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9230 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9231 if (optimized_type == tls::TLSOPT_NONE)
9233 // Create a pair of GOT entries for the module index and
9234 // dtv-relative offset.
9235 Arm_output_data_got<big_endian>* got
9236 = target->got_section(symtab, layout);
9237 if (!parameters->doing_static_link())
9238 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
9239 target->rel_dyn_section(layout),
9240 elfcpp::R_ARM_TLS_DTPMOD32,
9241 elfcpp::R_ARM_TLS_DTPOFF32);
9243 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
9246 // FIXME: TLS optimization not supported yet.
9250 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9251 if (optimized_type == tls::TLSOPT_NONE)
9253 // Create a GOT entry for the module index.
9254 target->got_mod_index_entry(symtab, layout, object);
9257 // FIXME: TLS optimization not supported yet.
9261 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9264 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9265 layout->set_has_static_tls();
9266 if (optimized_type == tls::TLSOPT_NONE)
9268 // Create a GOT entry for the tp-relative offset.
9269 Arm_output_data_got<big_endian>* got
9270 = target->got_section(symtab, layout);
9271 if (!parameters->doing_static_link())
9272 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9273 target->rel_dyn_section(layout),
9274 elfcpp::R_ARM_TLS_TPOFF32);
9275 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9277 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9278 unsigned int got_offset =
9279 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9280 got->add_static_reloc(got_offset,
9281 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9285 // FIXME: TLS optimization not supported yet.
9289 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9290 layout->set_has_static_tls();
9291 if (parameters->options().shared())
9293 // We need to create a dynamic relocation.
9294 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9295 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9296 output_section, object,
9297 data_shndx, reloc.get_r_offset());
9307 case elfcpp::R_ARM_PC24:
9308 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9309 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9310 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9312 unsupported_reloc_global(object, r_type, gsym);
9317 // Process relocations for gc.
9319 template<bool big_endian>
9321 Target_arm<big_endian>::gc_process_relocs(
9322 Symbol_table* symtab,
9324 Sized_relobj_file<32, big_endian>* object,
9325 unsigned int data_shndx,
9327 const unsigned char* prelocs,
9329 Output_section* output_section,
9330 bool needs_special_offset_handling,
9331 size_t local_symbol_count,
9332 const unsigned char* plocal_symbols)
9334 typedef Target_arm<big_endian> Arm;
9335 typedef typename Target_arm<big_endian>::Scan Scan;
9337 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
9346 needs_special_offset_handling,
9351 // Scan relocations for a section.
9353 template<bool big_endian>
9355 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9357 Sized_relobj_file<32, big_endian>* object,
9358 unsigned int data_shndx,
9359 unsigned int sh_type,
9360 const unsigned char* prelocs,
9362 Output_section* output_section,
9363 bool needs_special_offset_handling,
9364 size_t local_symbol_count,
9365 const unsigned char* plocal_symbols)
9367 if (sh_type == elfcpp::SHT_RELA)
9369 gold_error(_("%s: unsupported RELA reloc section"),
9370 object->name().c_str());
9374 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
9383 needs_special_offset_handling,
9388 // Finalize the sections.
9390 template<bool big_endian>
9392 Target_arm<big_endian>::do_finalize_sections(
9394 const Input_objects* input_objects,
9397 bool merged_any_attributes = false;
9398 // Merge processor-specific flags.
9399 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9400 p != input_objects->relobj_end();
9403 Arm_relobj<big_endian>* arm_relobj =
9404 Arm_relobj<big_endian>::as_arm_relobj(*p);
9405 if (arm_relobj->merge_flags_and_attributes())
9407 this->merge_processor_specific_flags(
9409 arm_relobj->processor_specific_flags());
9410 this->merge_object_attributes(arm_relobj->name().c_str(),
9411 arm_relobj->attributes_section_data());
9412 merged_any_attributes = true;
9416 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9417 p != input_objects->dynobj_end();
9420 Arm_dynobj<big_endian>* arm_dynobj =
9421 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9422 this->merge_processor_specific_flags(
9424 arm_dynobj->processor_specific_flags());
9425 this->merge_object_attributes(arm_dynobj->name().c_str(),
9426 arm_dynobj->attributes_section_data());
9427 merged_any_attributes = true;
9430 // Create an empty uninitialized attribute section if we still don't have it
9431 // at this moment. This happens if there is no attributes sections in all
9433 if (this->attributes_section_data_ == NULL)
9434 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9436 const Object_attribute* cpu_arch_attr =
9437 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9438 // Check if we need to use Cortex-A8 workaround.
9439 if (parameters->options().user_set_fix_cortex_a8())
9440 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9443 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9444 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9446 const Object_attribute* cpu_arch_profile_attr =
9447 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9448 this->fix_cortex_a8_ =
9449 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9450 && (cpu_arch_profile_attr->int_value() == 'A'
9451 || cpu_arch_profile_attr->int_value() == 0));
9454 // Check if we can use V4BX interworking.
9455 // The V4BX interworking stub contains BX instruction,
9456 // which is not specified for some profiles.
9457 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9458 && !this->may_use_v4t_interworking())
9459 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9460 "the target profile does not support BX instruction"));
9462 // Fill in some more dynamic tags.
9463 const Reloc_section* rel_plt = (this->plt_ == NULL
9465 : this->plt_->rel_plt());
9466 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9467 this->rel_dyn_, true, false);
9469 // Emit any relocs we saved in an attempt to avoid generating COPY
9471 if (this->copy_relocs_.any_saved_relocs())
9472 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9474 // Handle the .ARM.exidx section.
9475 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9477 if (!parameters->options().relocatable())
9479 if (exidx_section != NULL
9480 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9482 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9483 // the .ARM.exidx section.
9484 if (!layout->script_options()->saw_phdrs_clause())
9486 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9489 Output_segment* exidx_segment =
9490 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9491 exidx_segment->add_output_section_to_nonload(exidx_section,
9497 // Create an .ARM.attributes section if we have merged any attributes
9499 if (merged_any_attributes)
9501 Output_attributes_section_data* attributes_section =
9502 new Output_attributes_section_data(*this->attributes_section_data_);
9503 layout->add_output_section_data(".ARM.attributes",
9504 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9505 attributes_section, ORDER_INVALID,
9509 // Fix up links in section EXIDX headers.
9510 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9511 p != layout->section_list().end();
9513 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9515 Arm_output_section<big_endian>* os =
9516 Arm_output_section<big_endian>::as_arm_output_section(*p);
9517 os->set_exidx_section_link();
9521 // Return whether a direct absolute static relocation needs to be applied.
9522 // In cases where Scan::local() or Scan::global() has created
9523 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9524 // of the relocation is carried in the data, and we must not
9525 // apply the static relocation.
9527 template<bool big_endian>
9529 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9530 const Sized_symbol<32>* gsym,
9531 unsigned int r_type,
9533 Output_section* output_section)
9535 // If the output section is not allocated, then we didn't call
9536 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9538 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9541 int ref_flags = Scan::get_reference_flags(r_type);
9543 // For local symbols, we will have created a non-RELATIVE dynamic
9544 // relocation only if (a) the output is position independent,
9545 // (b) the relocation is absolute (not pc- or segment-relative), and
9546 // (c) the relocation is not 32 bits wide.
9548 return !(parameters->options().output_is_position_independent()
9549 && (ref_flags & Symbol::ABSOLUTE_REF)
9552 // For global symbols, we use the same helper routines used in the
9553 // scan pass. If we did not create a dynamic relocation, or if we
9554 // created a RELATIVE dynamic relocation, we should apply the static
9556 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9557 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9558 && gsym->can_use_relative_reloc(ref_flags
9559 & Symbol::FUNCTION_CALL);
9560 return !has_dyn || is_rel;
9563 // Perform a relocation.
9565 template<bool big_endian>
9567 Target_arm<big_endian>::Relocate::relocate(
9568 const Relocate_info<32, big_endian>* relinfo,
9571 Output_section* output_section,
9573 const unsigned char* preloc,
9574 const Sized_symbol<32>* gsym,
9575 const Symbol_value<32>* psymval,
9576 unsigned char* view,
9577 Arm_address address,
9578 section_size_type view_size)
9583 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9585 const elfcpp::Rel<32, big_endian> rel(preloc);
9586 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
9587 r_type = target->get_real_reloc_type(r_type);
9588 const Arm_reloc_property* reloc_property =
9589 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9590 if (reloc_property == NULL)
9592 std::string reloc_name =
9593 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9594 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9595 _("cannot relocate %s in object file"),
9596 reloc_name.c_str());
9600 const Arm_relobj<big_endian>* object =
9601 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9603 // If the final branch target of a relocation is THUMB instruction, this
9604 // is 1. Otherwise it is 0.
9605 Arm_address thumb_bit = 0;
9606 Symbol_value<32> symval;
9607 bool is_weakly_undefined_without_plt = false;
9608 bool have_got_offset = false;
9609 unsigned int got_offset = 0;
9611 // If the relocation uses the GOT entry of a symbol instead of the symbol
9612 // itself, we don't care about whether the symbol is defined or what kind
9614 if (reloc_property->uses_got_entry())
9616 // Get the GOT offset.
9617 // The GOT pointer points to the end of the GOT section.
9618 // We need to subtract the size of the GOT section to get
9619 // the actual offset to use in the relocation.
9620 // TODO: We should move GOT offset computing code in TLS relocations
9624 case elfcpp::R_ARM_GOT_BREL:
9625 case elfcpp::R_ARM_GOT_PREL:
9628 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9629 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9630 - target->got_size());
9634 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9635 gold_assert(object->local_has_got_offset(r_sym,
9636 GOT_TYPE_STANDARD));
9637 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9638 - target->got_size());
9640 have_got_offset = true;
9647 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9651 // This is a global symbol. Determine if we use PLT and if the
9652 // final target is THUMB.
9653 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9655 // This uses a PLT, change the symbol value.
9656 symval.set_output_value(target->plt_address_for_global(gsym));
9659 else if (gsym->is_weak_undefined())
9661 // This is a weakly undefined symbol and we do not use PLT
9662 // for this relocation. A branch targeting this symbol will
9663 // be converted into an NOP.
9664 is_weakly_undefined_without_plt = true;
9666 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9668 // This relocation uses the symbol value but the symbol is
9669 // undefined. Exit early and have the caller reporting an
9675 // Set thumb bit if symbol:
9676 // -Has type STT_ARM_TFUNC or
9677 // -Has type STT_FUNC, is defined and with LSB in value set.
9679 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9680 || (gsym->type() == elfcpp::STT_FUNC
9681 && !gsym->is_undefined()
9682 && ((psymval->value(object, 0) & 1) != 0)))
9689 // This is a local symbol. Determine if the final target is THUMB.
9690 // We saved this information when all the local symbols were read.
9691 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9692 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9693 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9695 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9697 symval.set_output_value(
9698 target->plt_address_for_local(object, r_sym));
9705 // This is a fake relocation synthesized for a stub. It does not have
9706 // a real symbol. We just look at the LSB of the symbol value to
9707 // determine if the target is THUMB or not.
9708 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9711 // Strip LSB if this points to a THUMB target.
9713 && reloc_property->uses_thumb_bit()
9714 && ((psymval->value(object, 0) & 1) != 0))
9716 Arm_address stripped_value =
9717 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9718 symval.set_output_value(stripped_value);
9722 // To look up relocation stubs, we need to pass the symbol table index of
9724 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9726 // Get the addressing origin of the output segment defining the
9727 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9728 Arm_address sym_origin = 0;
9729 if (reloc_property->uses_symbol_base())
9731 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9732 // R_ARM_BASE_ABS with the NULL symbol will give the
9733 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9734 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9735 sym_origin = target->got_plt_section()->address();
9736 else if (gsym == NULL)
9738 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9739 sym_origin = gsym->output_segment()->vaddr();
9740 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9741 sym_origin = gsym->output_data()->address();
9743 // TODO: Assumes the segment base to be zero for the global symbols
9744 // till the proper support for the segment-base-relative addressing
9745 // will be implemented. This is consistent with GNU ld.
9748 // For relative addressing relocation, find out the relative address base.
9749 Arm_address relative_address_base = 0;
9750 switch(reloc_property->relative_address_base())
9752 case Arm_reloc_property::RAB_NONE:
9753 // Relocations with relative address bases RAB_TLS and RAB_tp are
9754 // handled by relocate_tls. So we do not need to do anything here.
9755 case Arm_reloc_property::RAB_TLS:
9756 case Arm_reloc_property::RAB_tp:
9758 case Arm_reloc_property::RAB_B_S:
9759 relative_address_base = sym_origin;
9761 case Arm_reloc_property::RAB_GOT_ORG:
9762 relative_address_base = target->got_plt_section()->address();
9764 case Arm_reloc_property::RAB_P:
9765 relative_address_base = address;
9767 case Arm_reloc_property::RAB_Pa:
9768 relative_address_base = address & 0xfffffffcU;
9774 typename Arm_relocate_functions::Status reloc_status =
9775 Arm_relocate_functions::STATUS_OKAY;
9776 bool check_overflow = reloc_property->checks_overflow();
9779 case elfcpp::R_ARM_NONE:
9782 case elfcpp::R_ARM_ABS8:
9783 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9784 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9787 case elfcpp::R_ARM_ABS12:
9788 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9789 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9792 case elfcpp::R_ARM_ABS16:
9793 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9794 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9797 case elfcpp::R_ARM_ABS32:
9798 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9799 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9803 case elfcpp::R_ARM_ABS32_NOI:
9804 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9805 // No thumb bit for this relocation: (S + A)
9806 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9810 case elfcpp::R_ARM_MOVW_ABS_NC:
9811 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9812 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9817 case elfcpp::R_ARM_MOVT_ABS:
9818 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9819 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9822 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9823 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9824 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9825 0, thumb_bit, false);
9828 case elfcpp::R_ARM_THM_MOVT_ABS:
9829 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9830 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9834 case elfcpp::R_ARM_MOVW_PREL_NC:
9835 case elfcpp::R_ARM_MOVW_BREL_NC:
9836 case elfcpp::R_ARM_MOVW_BREL:
9838 Arm_relocate_functions::movw(view, object, psymval,
9839 relative_address_base, thumb_bit,
9843 case elfcpp::R_ARM_MOVT_PREL:
9844 case elfcpp::R_ARM_MOVT_BREL:
9846 Arm_relocate_functions::movt(view, object, psymval,
9847 relative_address_base);
9850 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9851 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9852 case elfcpp::R_ARM_THM_MOVW_BREL:
9854 Arm_relocate_functions::thm_movw(view, object, psymval,
9855 relative_address_base,
9856 thumb_bit, check_overflow);
9859 case elfcpp::R_ARM_THM_MOVT_PREL:
9860 case elfcpp::R_ARM_THM_MOVT_BREL:
9862 Arm_relocate_functions::thm_movt(view, object, psymval,
9863 relative_address_base);
9866 case elfcpp::R_ARM_REL32:
9867 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9868 address, thumb_bit);
9871 case elfcpp::R_ARM_THM_ABS5:
9872 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9873 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9876 // Thumb long branches.
9877 case elfcpp::R_ARM_THM_CALL:
9878 case elfcpp::R_ARM_THM_XPC22:
9879 case elfcpp::R_ARM_THM_JUMP24:
9881 Arm_relocate_functions::thumb_branch_common(
9882 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9883 thumb_bit, is_weakly_undefined_without_plt);
9886 case elfcpp::R_ARM_GOTOFF32:
9888 Arm_address got_origin;
9889 got_origin = target->got_plt_section()->address();
9890 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9891 got_origin, thumb_bit);
9895 case elfcpp::R_ARM_BASE_PREL:
9896 gold_assert(gsym != NULL);
9898 Arm_relocate_functions::base_prel(view, sym_origin, address);
9901 case elfcpp::R_ARM_BASE_ABS:
9902 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9903 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9906 case elfcpp::R_ARM_GOT_BREL:
9907 gold_assert(have_got_offset);
9908 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9911 case elfcpp::R_ARM_GOT_PREL:
9912 gold_assert(have_got_offset);
9913 // Get the address origin for GOT PLT, which is allocated right
9914 // after the GOT section, to calculate an absolute address of
9915 // the symbol GOT entry (got_origin + got_offset).
9916 Arm_address got_origin;
9917 got_origin = target->got_plt_section()->address();
9918 reloc_status = Arm_relocate_functions::got_prel(view,
9919 got_origin + got_offset,
9923 case elfcpp::R_ARM_PLT32:
9924 case elfcpp::R_ARM_CALL:
9925 case elfcpp::R_ARM_JUMP24:
9926 case elfcpp::R_ARM_XPC25:
9927 gold_assert(gsym == NULL
9928 || gsym->has_plt_offset()
9929 || gsym->final_value_is_known()
9930 || (gsym->is_defined()
9931 && !gsym->is_from_dynobj()
9932 && !gsym->is_preemptible()));
9934 Arm_relocate_functions::arm_branch_common(
9935 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9936 thumb_bit, is_weakly_undefined_without_plt);
9939 case elfcpp::R_ARM_THM_JUMP19:
9941 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9945 case elfcpp::R_ARM_THM_JUMP6:
9947 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9950 case elfcpp::R_ARM_THM_JUMP8:
9952 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9955 case elfcpp::R_ARM_THM_JUMP11:
9957 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9960 case elfcpp::R_ARM_PREL31:
9961 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9962 address, thumb_bit);
9965 case elfcpp::R_ARM_V4BX:
9966 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9968 const bool is_v4bx_interworking =
9969 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9971 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9972 is_v4bx_interworking);
9976 case elfcpp::R_ARM_THM_PC8:
9978 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9981 case elfcpp::R_ARM_THM_PC12:
9983 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9986 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9988 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9992 case elfcpp::R_ARM_ALU_PC_G0_NC:
9993 case elfcpp::R_ARM_ALU_PC_G0:
9994 case elfcpp::R_ARM_ALU_PC_G1_NC:
9995 case elfcpp::R_ARM_ALU_PC_G1:
9996 case elfcpp::R_ARM_ALU_PC_G2:
9997 case elfcpp::R_ARM_ALU_SB_G0_NC:
9998 case elfcpp::R_ARM_ALU_SB_G0:
9999 case elfcpp::R_ARM_ALU_SB_G1_NC:
10000 case elfcpp::R_ARM_ALU_SB_G1:
10001 case elfcpp::R_ARM_ALU_SB_G2:
10003 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
10004 reloc_property->group_index(),
10005 relative_address_base,
10006 thumb_bit, check_overflow);
10009 case elfcpp::R_ARM_LDR_PC_G0:
10010 case elfcpp::R_ARM_LDR_PC_G1:
10011 case elfcpp::R_ARM_LDR_PC_G2:
10012 case elfcpp::R_ARM_LDR_SB_G0:
10013 case elfcpp::R_ARM_LDR_SB_G1:
10014 case elfcpp::R_ARM_LDR_SB_G2:
10016 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
10017 reloc_property->group_index(),
10018 relative_address_base);
10021 case elfcpp::R_ARM_LDRS_PC_G0:
10022 case elfcpp::R_ARM_LDRS_PC_G1:
10023 case elfcpp::R_ARM_LDRS_PC_G2:
10024 case elfcpp::R_ARM_LDRS_SB_G0:
10025 case elfcpp::R_ARM_LDRS_SB_G1:
10026 case elfcpp::R_ARM_LDRS_SB_G2:
10028 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
10029 reloc_property->group_index(),
10030 relative_address_base);
10033 case elfcpp::R_ARM_LDC_PC_G0:
10034 case elfcpp::R_ARM_LDC_PC_G1:
10035 case elfcpp::R_ARM_LDC_PC_G2:
10036 case elfcpp::R_ARM_LDC_SB_G0:
10037 case elfcpp::R_ARM_LDC_SB_G1:
10038 case elfcpp::R_ARM_LDC_SB_G2:
10040 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
10041 reloc_property->group_index(),
10042 relative_address_base);
10045 // These are initial tls relocs, which are expected when
10047 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
10048 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10049 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10050 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10051 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10053 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
10054 view, address, view_size);
10057 // The known and unknown unsupported and/or deprecated relocations.
10058 case elfcpp::R_ARM_PC24:
10059 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
10060 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
10061 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
10063 // Just silently leave the method. We should get an appropriate error
10064 // message in the scan methods.
10068 // Report any errors.
10069 switch (reloc_status)
10071 case Arm_relocate_functions::STATUS_OKAY:
10073 case Arm_relocate_functions::STATUS_OVERFLOW:
10074 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10075 _("relocation overflow in %s"),
10076 reloc_property->name().c_str());
10078 case Arm_relocate_functions::STATUS_BAD_RELOC:
10079 gold_error_at_location(
10082 rel.get_r_offset(),
10083 _("unexpected opcode while processing relocation %s"),
10084 reloc_property->name().c_str());
10087 gold_unreachable();
10093 // Perform a TLS relocation.
10095 template<bool big_endian>
10096 inline typename Arm_relocate_functions<big_endian>::Status
10097 Target_arm<big_endian>::Relocate::relocate_tls(
10098 const Relocate_info<32, big_endian>* relinfo,
10099 Target_arm<big_endian>* target,
10101 const elfcpp::Rel<32, big_endian>& rel,
10102 unsigned int r_type,
10103 const Sized_symbol<32>* gsym,
10104 const Symbol_value<32>* psymval,
10105 unsigned char* view,
10106 elfcpp::Elf_types<32>::Elf_Addr address,
10107 section_size_type /*view_size*/ )
10109 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
10110 typedef Relocate_functions<32, big_endian> RelocFuncs;
10111 Output_segment* tls_segment = relinfo->layout->tls_segment();
10113 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
10115 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
10117 const bool is_final = (gsym == NULL
10118 ? !parameters->options().shared()
10119 : gsym->final_value_is_known());
10120 const tls::Tls_optimization optimized_type
10121 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
10124 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
10126 unsigned int got_type = GOT_TYPE_TLS_PAIR;
10127 unsigned int got_offset;
10130 gold_assert(gsym->has_got_offset(got_type));
10131 got_offset = gsym->got_offset(got_type) - target->got_size();
10135 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10136 gold_assert(object->local_has_got_offset(r_sym, got_type));
10137 got_offset = (object->local_got_offset(r_sym, got_type)
10138 - target->got_size());
10140 if (optimized_type == tls::TLSOPT_NONE)
10142 Arm_address got_entry =
10143 target->got_plt_section()->address() + got_offset;
10145 // Relocate the field with the PC relative offset of the pair of
10147 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10148 return ArmRelocFuncs::STATUS_OKAY;
10153 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10154 if (optimized_type == tls::TLSOPT_NONE)
10156 // Relocate the field with the offset of the GOT entry for
10157 // the module index.
10158 unsigned int got_offset;
10159 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
10160 - target->got_size());
10161 Arm_address got_entry =
10162 target->got_plt_section()->address() + got_offset;
10164 // Relocate the field with the PC relative offset of the pair of
10166 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10167 return ArmRelocFuncs::STATUS_OKAY;
10171 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10172 RelocFuncs::rel32_unaligned(view, value);
10173 return ArmRelocFuncs::STATUS_OKAY;
10175 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10176 if (optimized_type == tls::TLSOPT_NONE)
10178 // Relocate the field with the offset of the GOT entry for
10179 // the tp-relative offset of the symbol.
10180 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
10181 unsigned int got_offset;
10184 gold_assert(gsym->has_got_offset(got_type));
10185 got_offset = gsym->got_offset(got_type);
10189 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10190 gold_assert(object->local_has_got_offset(r_sym, got_type));
10191 got_offset = object->local_got_offset(r_sym, got_type);
10194 // All GOT offsets are relative to the end of the GOT.
10195 got_offset -= target->got_size();
10197 Arm_address got_entry =
10198 target->got_plt_section()->address() + got_offset;
10200 // Relocate the field with the PC relative offset of the GOT entry.
10201 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10202 return ArmRelocFuncs::STATUS_OKAY;
10206 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10207 // If we're creating a shared library, a dynamic relocation will
10208 // have been created for this location, so do not apply it now.
10209 if (!parameters->options().shared())
10211 gold_assert(tls_segment != NULL);
10213 // $tp points to the TCB, which is followed by the TLS, so we
10214 // need to add TCB size to the offset.
10215 Arm_address aligned_tcb_size =
10216 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
10217 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
10220 return ArmRelocFuncs::STATUS_OKAY;
10223 gold_unreachable();
10226 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10227 _("unsupported reloc %u"),
10229 return ArmRelocFuncs::STATUS_BAD_RELOC;
10232 // Relocate section data.
10234 template<bool big_endian>
10236 Target_arm<big_endian>::relocate_section(
10237 const Relocate_info<32, big_endian>* relinfo,
10238 unsigned int sh_type,
10239 const unsigned char* prelocs,
10240 size_t reloc_count,
10241 Output_section* output_section,
10242 bool needs_special_offset_handling,
10243 unsigned char* view,
10244 Arm_address address,
10245 section_size_type view_size,
10246 const Reloc_symbol_changes* reloc_symbol_changes)
10248 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10249 gold_assert(sh_type == elfcpp::SHT_REL);
10251 // See if we are relocating a relaxed input section. If so, the view
10252 // covers the whole output section and we need to adjust accordingly.
10253 if (needs_special_offset_handling)
10255 const Output_relaxed_input_section* poris =
10256 output_section->find_relaxed_input_section(relinfo->object,
10257 relinfo->data_shndx);
10260 Arm_address section_address = poris->address();
10261 section_size_type section_size = poris->data_size();
10263 gold_assert((section_address >= address)
10264 && ((section_address + section_size)
10265 <= (address + view_size)));
10267 off_t offset = section_address - address;
10270 view_size = section_size;
10274 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
10275 gold::Default_comdat_behavior, Classify_reloc>(
10281 needs_special_offset_handling,
10285 reloc_symbol_changes);
10288 // Return the size of a relocation while scanning during a relocatable
10291 template<bool big_endian>
10293 Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
10294 unsigned int r_type,
10297 Target_arm<big_endian>* arm_target =
10298 Target_arm<big_endian>::default_target();
10299 r_type = arm_target->get_real_reloc_type(r_type);
10300 const Arm_reloc_property* arp =
10301 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10303 return arp->size();
10306 std::string reloc_name =
10307 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10308 gold_error(_("%s: unexpected %s in object file"),
10309 object->name().c_str(), reloc_name.c_str());
10314 // Scan the relocs during a relocatable link.
10316 template<bool big_endian>
10318 Target_arm<big_endian>::scan_relocatable_relocs(
10319 Symbol_table* symtab,
10321 Sized_relobj_file<32, big_endian>* object,
10322 unsigned int data_shndx,
10323 unsigned int sh_type,
10324 const unsigned char* prelocs,
10325 size_t reloc_count,
10326 Output_section* output_section,
10327 bool needs_special_offset_handling,
10328 size_t local_symbol_count,
10329 const unsigned char* plocal_symbols,
10330 Relocatable_relocs* rr)
10332 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
10333 Scan_relocatable_relocs;
10335 gold_assert(sh_type == elfcpp::SHT_REL);
10337 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
10345 needs_special_offset_handling,
10346 local_symbol_count,
10351 // Scan the relocs for --emit-relocs.
10353 template<bool big_endian>
10355 Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
10357 Sized_relobj_file<32, big_endian>* object,
10358 unsigned int data_shndx,
10359 unsigned int sh_type,
10360 const unsigned char* prelocs,
10361 size_t reloc_count,
10362 Output_section* output_section,
10363 bool needs_special_offset_handling,
10364 size_t local_symbol_count,
10365 const unsigned char* plocal_syms,
10366 Relocatable_relocs* rr)
10368 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
10370 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10371 Emit_relocs_strategy;
10373 gold_assert(sh_type == elfcpp::SHT_REL);
10375 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
10383 needs_special_offset_handling,
10384 local_symbol_count,
10389 // Emit relocations for a section.
10391 template<bool big_endian>
10393 Target_arm<big_endian>::relocate_relocs(
10394 const Relocate_info<32, big_endian>* relinfo,
10395 unsigned int sh_type,
10396 const unsigned char* prelocs,
10397 size_t reloc_count,
10398 Output_section* output_section,
10399 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10400 unsigned char* view,
10401 Arm_address view_address,
10402 section_size_type view_size,
10403 unsigned char* reloc_view,
10404 section_size_type reloc_view_size)
10406 gold_assert(sh_type == elfcpp::SHT_REL);
10408 gold::relocate_relocs<32, big_endian, Classify_reloc>(
10413 offset_in_output_section,
10421 // Perform target-specific processing in a relocatable link. This is
10422 // only used if we use the relocation strategy RELOC_SPECIAL.
10424 template<bool big_endian>
10426 Target_arm<big_endian>::relocate_special_relocatable(
10427 const Relocate_info<32, big_endian>* relinfo,
10428 unsigned int sh_type,
10429 const unsigned char* preloc_in,
10431 Output_section* output_section,
10432 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10433 unsigned char* view,
10434 elfcpp::Elf_types<32>::Elf_Addr view_address,
10436 unsigned char* preloc_out)
10438 // We can only handle REL type relocation sections.
10439 gold_assert(sh_type == elfcpp::SHT_REL);
10441 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10442 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10444 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10446 const Arm_relobj<big_endian>* object =
10447 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10448 const unsigned int local_count = object->local_symbol_count();
10450 Reltype reloc(preloc_in);
10451 Reltype_write reloc_write(preloc_out);
10453 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10454 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10455 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10457 const Arm_reloc_property* arp =
10458 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10459 gold_assert(arp != NULL);
10461 // Get the new symbol index.
10462 // We only use RELOC_SPECIAL strategy in local relocations.
10463 gold_assert(r_sym < local_count);
10465 // We are adjusting a section symbol. We need to find
10466 // the symbol table index of the section symbol for
10467 // the output section corresponding to input section
10468 // in which this symbol is defined.
10470 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10471 gold_assert(is_ordinary);
10472 Output_section* os = object->output_section(shndx);
10473 gold_assert(os != NULL);
10474 gold_assert(os->needs_symtab_index());
10475 unsigned int new_symndx = os->symtab_index();
10477 // Get the new offset--the location in the output section where
10478 // this relocation should be applied.
10480 Arm_address offset = reloc.get_r_offset();
10481 Arm_address new_offset;
10482 if (offset_in_output_section != invalid_address)
10483 new_offset = offset + offset_in_output_section;
10486 section_offset_type sot_offset =
10487 convert_types<section_offset_type, Arm_address>(offset);
10488 section_offset_type new_sot_offset =
10489 output_section->output_offset(object, relinfo->data_shndx,
10491 gold_assert(new_sot_offset != -1);
10492 new_offset = new_sot_offset;
10495 // In an object file, r_offset is an offset within the section.
10496 // In an executable or dynamic object, generated by
10497 // --emit-relocs, r_offset is an absolute address.
10498 if (!parameters->options().relocatable())
10500 new_offset += view_address;
10501 if (offset_in_output_section != invalid_address)
10502 new_offset -= offset_in_output_section;
10505 reloc_write.put_r_offset(new_offset);
10506 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10508 // Handle the reloc addend.
10509 // The relocation uses a section symbol in the input file.
10510 // We are adjusting it to use a section symbol in the output
10511 // file. The input section symbol refers to some address in
10512 // the input section. We need the relocation in the output
10513 // file to refer to that same address. This adjustment to
10514 // the addend is the same calculation we use for a simple
10515 // absolute relocation for the input section symbol.
10517 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10519 // Handle THUMB bit.
10520 Symbol_value<32> symval;
10521 Arm_address thumb_bit =
10522 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10524 && arp->uses_thumb_bit()
10525 && ((psymval->value(object, 0) & 1) != 0))
10527 Arm_address stripped_value =
10528 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10529 symval.set_output_value(stripped_value);
10533 unsigned char* paddend = view + offset;
10534 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10535 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10538 case elfcpp::R_ARM_ABS8:
10539 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10543 case elfcpp::R_ARM_ABS12:
10544 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10548 case elfcpp::R_ARM_ABS16:
10549 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10553 case elfcpp::R_ARM_THM_ABS5:
10554 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10559 case elfcpp::R_ARM_MOVW_ABS_NC:
10560 case elfcpp::R_ARM_MOVW_PREL_NC:
10561 case elfcpp::R_ARM_MOVW_BREL_NC:
10562 case elfcpp::R_ARM_MOVW_BREL:
10563 reloc_status = Arm_relocate_functions<big_endian>::movw(
10564 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10567 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10568 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10569 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10570 case elfcpp::R_ARM_THM_MOVW_BREL:
10571 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10572 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10575 case elfcpp::R_ARM_THM_CALL:
10576 case elfcpp::R_ARM_THM_XPC22:
10577 case elfcpp::R_ARM_THM_JUMP24:
10579 Arm_relocate_functions<big_endian>::thumb_branch_common(
10580 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10584 case elfcpp::R_ARM_PLT32:
10585 case elfcpp::R_ARM_CALL:
10586 case elfcpp::R_ARM_JUMP24:
10587 case elfcpp::R_ARM_XPC25:
10589 Arm_relocate_functions<big_endian>::arm_branch_common(
10590 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10594 case elfcpp::R_ARM_THM_JUMP19:
10596 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10597 psymval, 0, thumb_bit);
10600 case elfcpp::R_ARM_THM_JUMP6:
10602 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10606 case elfcpp::R_ARM_THM_JUMP8:
10608 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10612 case elfcpp::R_ARM_THM_JUMP11:
10614 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10618 case elfcpp::R_ARM_PREL31:
10620 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10624 case elfcpp::R_ARM_THM_PC8:
10626 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10630 case elfcpp::R_ARM_THM_PC12:
10632 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10636 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10638 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10642 // These relocation truncate relocation results so we cannot handle them
10643 // in a relocatable link.
10644 case elfcpp::R_ARM_MOVT_ABS:
10645 case elfcpp::R_ARM_THM_MOVT_ABS:
10646 case elfcpp::R_ARM_MOVT_PREL:
10647 case elfcpp::R_ARM_MOVT_BREL:
10648 case elfcpp::R_ARM_THM_MOVT_PREL:
10649 case elfcpp::R_ARM_THM_MOVT_BREL:
10650 case elfcpp::R_ARM_ALU_PC_G0_NC:
10651 case elfcpp::R_ARM_ALU_PC_G0:
10652 case elfcpp::R_ARM_ALU_PC_G1_NC:
10653 case elfcpp::R_ARM_ALU_PC_G1:
10654 case elfcpp::R_ARM_ALU_PC_G2:
10655 case elfcpp::R_ARM_ALU_SB_G0_NC:
10656 case elfcpp::R_ARM_ALU_SB_G0:
10657 case elfcpp::R_ARM_ALU_SB_G1_NC:
10658 case elfcpp::R_ARM_ALU_SB_G1:
10659 case elfcpp::R_ARM_ALU_SB_G2:
10660 case elfcpp::R_ARM_LDR_PC_G0:
10661 case elfcpp::R_ARM_LDR_PC_G1:
10662 case elfcpp::R_ARM_LDR_PC_G2:
10663 case elfcpp::R_ARM_LDR_SB_G0:
10664 case elfcpp::R_ARM_LDR_SB_G1:
10665 case elfcpp::R_ARM_LDR_SB_G2:
10666 case elfcpp::R_ARM_LDRS_PC_G0:
10667 case elfcpp::R_ARM_LDRS_PC_G1:
10668 case elfcpp::R_ARM_LDRS_PC_G2:
10669 case elfcpp::R_ARM_LDRS_SB_G0:
10670 case elfcpp::R_ARM_LDRS_SB_G1:
10671 case elfcpp::R_ARM_LDRS_SB_G2:
10672 case elfcpp::R_ARM_LDC_PC_G0:
10673 case elfcpp::R_ARM_LDC_PC_G1:
10674 case elfcpp::R_ARM_LDC_PC_G2:
10675 case elfcpp::R_ARM_LDC_SB_G0:
10676 case elfcpp::R_ARM_LDC_SB_G1:
10677 case elfcpp::R_ARM_LDC_SB_G2:
10678 gold_error(_("cannot handle %s in a relocatable link"),
10679 arp->name().c_str());
10683 gold_unreachable();
10686 // Report any errors.
10687 switch (reloc_status)
10689 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10691 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10692 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10693 _("relocation overflow in %s"),
10694 arp->name().c_str());
10696 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10697 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10698 _("unexpected opcode while processing relocation %s"),
10699 arp->name().c_str());
10702 gold_unreachable();
10706 // Return the value to use for a dynamic symbol which requires special
10707 // treatment. This is how we support equality comparisons of function
10708 // pointers across shared library boundaries, as described in the
10709 // processor specific ABI supplement.
10711 template<bool big_endian>
10713 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10715 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10716 return this->plt_address_for_global(gsym);
10719 // Map platform-specific relocs to real relocs
10721 template<bool big_endian>
10723 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const
10727 case elfcpp::R_ARM_TARGET1:
10728 return this->target1_reloc_;
10730 case elfcpp::R_ARM_TARGET2:
10731 return this->target2_reloc_;
10738 // Whether if two EABI versions V1 and V2 are compatible.
10740 template<bool big_endian>
10742 Target_arm<big_endian>::are_eabi_versions_compatible(
10743 elfcpp::Elf_Word v1,
10744 elfcpp::Elf_Word v2)
10746 // v4 and v5 are the same spec before and after it was released,
10747 // so allow mixing them.
10748 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10749 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10750 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10756 // Combine FLAGS from an input object called NAME and the processor-specific
10757 // flags in the ELF header of the output. Much of this is adapted from the
10758 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10759 // in bfd/elf32-arm.c.
10761 template<bool big_endian>
10763 Target_arm<big_endian>::merge_processor_specific_flags(
10764 const std::string& name,
10765 elfcpp::Elf_Word flags)
10767 if (this->are_processor_specific_flags_set())
10769 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10771 // Nothing to merge if flags equal to those in output.
10772 if (flags == out_flags)
10775 // Complain about various flag mismatches.
10776 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10777 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10778 if (!this->are_eabi_versions_compatible(version1, version2)
10779 && parameters->options().warn_mismatch())
10780 gold_error(_("Source object %s has EABI version %d but output has "
10781 "EABI version %d."),
10783 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10784 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10788 // If the input is the default architecture and had the default
10789 // flags then do not bother setting the flags for the output
10790 // architecture, instead allow future merges to do this. If no
10791 // future merges ever set these flags then they will retain their
10792 // uninitialised values, which surprise surprise, correspond
10793 // to the default values.
10797 // This is the first time, just copy the flags.
10798 // We only copy the EABI version for now.
10799 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10803 // Adjust ELF file header.
10804 template<bool big_endian>
10806 Target_arm<big_endian>::do_adjust_elf_header(
10807 unsigned char* view,
10810 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10812 elfcpp::Ehdr<32, big_endian> ehdr(view);
10813 elfcpp::Elf_Word flags = this->processor_specific_flags();
10814 unsigned char e_ident[elfcpp::EI_NIDENT];
10815 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10817 if (elfcpp::arm_eabi_version(flags)
10818 == elfcpp::EF_ARM_EABI_UNKNOWN)
10819 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10821 e_ident[elfcpp::EI_OSABI] = 0;
10822 e_ident[elfcpp::EI_ABIVERSION] = 0;
10824 // Do EF_ARM_BE8 adjustment.
10825 if (parameters->options().be8() && !big_endian)
10826 gold_error("BE8 images only valid in big-endian mode.");
10827 if (parameters->options().be8())
10829 flags |= elfcpp::EF_ARM_BE8;
10830 this->set_processor_specific_flags(flags);
10833 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10835 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10837 elfcpp::Elf_Half type = ehdr.get_e_type();
10838 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10840 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10841 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10842 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10844 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10845 this->set_processor_specific_flags(flags);
10848 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10849 oehdr.put_e_ident(e_ident);
10850 oehdr.put_e_flags(this->processor_specific_flags());
10853 // do_make_elf_object to override the same function in the base class.
10854 // We need to use a target-specific sub-class of
10855 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10856 // Hence we need to have our own ELF object creation.
10858 template<bool big_endian>
10860 Target_arm<big_endian>::do_make_elf_object(
10861 const std::string& name,
10862 Input_file* input_file,
10863 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10865 int et = ehdr.get_e_type();
10866 // ET_EXEC files are valid input for --just-symbols/-R,
10867 // and we treat them as relocatable objects.
10868 if (et == elfcpp::ET_REL
10869 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10871 Arm_relobj<big_endian>* obj =
10872 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10876 else if (et == elfcpp::ET_DYN)
10878 Sized_dynobj<32, big_endian>* obj =
10879 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10885 gold_error(_("%s: unsupported ELF file type %d"),
10891 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10892 // Returns -1 if no architecture could be read.
10893 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10895 template<bool big_endian>
10897 Target_arm<big_endian>::get_secondary_compatible_arch(
10898 const Attributes_section_data* pasd)
10900 const Object_attribute* known_attributes =
10901 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10903 // Note: the tag and its argument below are uleb128 values, though
10904 // currently-defined values fit in one byte for each.
10905 const std::string& sv =
10906 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10908 && sv.data()[0] == elfcpp::Tag_CPU_arch
10909 && (sv.data()[1] & 128) != 128)
10910 return sv.data()[1];
10912 // This tag is "safely ignorable", so don't complain if it looks funny.
10916 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10917 // The tag is removed if ARCH is -1.
10918 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10920 template<bool big_endian>
10922 Target_arm<big_endian>::set_secondary_compatible_arch(
10923 Attributes_section_data* pasd,
10926 Object_attribute* known_attributes =
10927 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10931 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10935 // Note: the tag and its argument below are uleb128 values, though
10936 // currently-defined values fit in one byte for each.
10938 sv[0] = elfcpp::Tag_CPU_arch;
10939 gold_assert(arch != 0);
10943 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10946 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10948 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10950 template<bool big_endian>
10952 Target_arm<big_endian>::tag_cpu_arch_combine(
10955 int* secondary_compat_out,
10957 int secondary_compat)
10959 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10960 static const int v6t2[] =
10962 T(V6T2), // PRE_V4.
10972 static const int v6k[] =
10985 static const int v7[] =
10999 static const int v6_m[] =
11014 static const int v6s_m[] =
11030 static const int v7e_m[] =
11037 T(V7E_M), // V5TEJ.
11044 T(V7E_M), // V6S_M.
11047 static const int v8[] =
11065 static const int v4t_plus_v6_m[] =
11072 T(V5TEJ), // V5TEJ.
11079 T(V6S_M), // V6S_M.
11080 T(V7E_M), // V7E_M.
11082 T(V4T_PLUS_V6_M) // V4T plus V6_M.
11084 static const int* comb[] =
11093 // Pseudo-architecture.
11097 // Check we've not got a higher architecture than we know about.
11099 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
11101 gold_error(_("%s: unknown CPU architecture"), name);
11105 // Override old tag if we have a Tag_also_compatible_with on the output.
11107 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11108 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11109 oldtag = T(V4T_PLUS_V6_M);
11111 // And override the new tag if we have a Tag_also_compatible_with on the
11114 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11115 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11116 newtag = T(V4T_PLUS_V6_M);
11118 // Architectures before V6KZ add features monotonically.
11119 int tagh = std::max(oldtag, newtag);
11120 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
11123 int tagl = std::min(oldtag, newtag);
11124 int result = comb[tagh - T(V6T2)][tagl];
11126 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11127 // as the canonical version.
11128 if (result == T(V4T_PLUS_V6_M))
11131 *secondary_compat_out = T(V6_M);
11134 *secondary_compat_out = -1;
11138 gold_error(_("%s: conflicting CPU architectures %d/%d"),
11139 name, oldtag, newtag);
11147 // Helper to print AEABI enum tag value.
11149 template<bool big_endian>
11151 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
11153 static const char* aeabi_enum_names[] =
11154 { "", "variable-size", "32-bit", "" };
11155 const size_t aeabi_enum_names_size =
11156 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
11158 if (value < aeabi_enum_names_size)
11159 return std::string(aeabi_enum_names[value]);
11163 sprintf(buffer, "<unknown value %u>", value);
11164 return std::string(buffer);
11168 // Return the string value to store in TAG_CPU_name.
11170 template<bool big_endian>
11172 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
11174 static const char* name_table[] = {
11175 // These aren't real CPU names, but we can't guess
11176 // that from the architecture version alone.
11193 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
11195 if (value < name_table_size)
11196 return std::string(name_table[value]);
11200 sprintf(buffer, "<unknown CPU value %u>", value);
11201 return std::string(buffer);
11205 // Query attributes object to see if integer divide instructions may be
11206 // present in an object.
11208 template<bool big_endian>
11210 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
11211 const Object_attribute* div_attr)
11213 switch (div_attr->int_value())
11216 // Integer divide allowed if instruction contained in
11218 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11220 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
11226 // Integer divide explicitly prohibited.
11230 // Unrecognised case - treat as allowing divide everywhere.
11232 // Integer divide allowed in ARM state.
11237 // Query attributes object to see if integer divide instructions are
11238 // forbidden to be in the object. This is not the inverse of
11239 // attributes_accept_div.
11241 template<bool big_endian>
11243 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
11245 return div_attr->int_value() == 1;
11248 // Merge object attributes from input file called NAME with those of the
11249 // output. The input object attributes are in the object pointed by PASD.
11251 template<bool big_endian>
11253 Target_arm<big_endian>::merge_object_attributes(
11255 const Attributes_section_data* pasd)
11257 // Return if there is no attributes section data.
11261 // If output has no object attributes, just copy.
11262 const int vendor = Object_attribute::OBJ_ATTR_PROC;
11263 if (this->attributes_section_data_ == NULL)
11265 this->attributes_section_data_ = new Attributes_section_data(*pasd);
11266 Object_attribute* out_attr =
11267 this->attributes_section_data_->known_attributes(vendor);
11269 // We do not output objects with Tag_MPextension_use_legacy - we move
11270 // the attribute's value to Tag_MPextension_use. */
11271 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
11273 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
11274 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
11275 != out_attr[elfcpp::Tag_MPextension_use].int_value())
11277 gold_error(_("%s has both the current and legacy "
11278 "Tag_MPextension_use attributes"),
11282 out_attr[elfcpp::Tag_MPextension_use] =
11283 out_attr[elfcpp::Tag_MPextension_use_legacy];
11284 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11285 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11291 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11292 Object_attribute* out_attr =
11293 this->attributes_section_data_->known_attributes(vendor);
11295 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11296 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11297 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11299 // Ignore mismatches if the object doesn't use floating point. */
11300 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11301 == elfcpp::AEABI_FP_number_model_none
11302 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11303 != elfcpp::AEABI_FP_number_model_none
11304 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11305 == elfcpp::AEABI_VFP_args_compatible))
11306 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11307 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11308 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11309 != elfcpp::AEABI_FP_number_model_none
11310 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11311 != elfcpp::AEABI_VFP_args_compatible
11312 && parameters->options().warn_mismatch())
11313 gold_error(_("%s uses VFP register arguments, output does not"),
11317 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11319 // Merge this attribute with existing attributes.
11322 case elfcpp::Tag_CPU_raw_name:
11323 case elfcpp::Tag_CPU_name:
11324 // These are merged after Tag_CPU_arch.
11327 case elfcpp::Tag_ABI_optimization_goals:
11328 case elfcpp::Tag_ABI_FP_optimization_goals:
11329 // Use the first value seen.
11332 case elfcpp::Tag_CPU_arch:
11334 unsigned int saved_out_attr = out_attr->int_value();
11335 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11336 int secondary_compat =
11337 this->get_secondary_compatible_arch(pasd);
11338 int secondary_compat_out =
11339 this->get_secondary_compatible_arch(
11340 this->attributes_section_data_);
11341 out_attr[i].set_int_value(
11342 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11343 &secondary_compat_out,
11344 in_attr[i].int_value(),
11345 secondary_compat));
11346 this->set_secondary_compatible_arch(this->attributes_section_data_,
11347 secondary_compat_out);
11349 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11350 if (out_attr[i].int_value() == saved_out_attr)
11351 ; // Leave the names alone.
11352 else if (out_attr[i].int_value() == in_attr[i].int_value())
11354 // The output architecture has been changed to match the
11355 // input architecture. Use the input names.
11356 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11357 in_attr[elfcpp::Tag_CPU_name].string_value());
11358 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11359 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11363 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11364 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11367 // If we still don't have a value for Tag_CPU_name,
11368 // make one up now. Tag_CPU_raw_name remains blank.
11369 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11371 const std::string cpu_name =
11372 this->tag_cpu_name_value(out_attr[i].int_value());
11373 // FIXME: If we see an unknown CPU, this will be set
11374 // to "<unknown CPU n>", where n is the attribute value.
11375 // This is different from BFD, which leaves the name alone.
11376 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11381 case elfcpp::Tag_ARM_ISA_use:
11382 case elfcpp::Tag_THUMB_ISA_use:
11383 case elfcpp::Tag_WMMX_arch:
11384 case elfcpp::Tag_Advanced_SIMD_arch:
11385 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11386 case elfcpp::Tag_ABI_FP_rounding:
11387 case elfcpp::Tag_ABI_FP_exceptions:
11388 case elfcpp::Tag_ABI_FP_user_exceptions:
11389 case elfcpp::Tag_ABI_FP_number_model:
11390 case elfcpp::Tag_VFP_HP_extension:
11391 case elfcpp::Tag_CPU_unaligned_access:
11392 case elfcpp::Tag_T2EE_use:
11393 case elfcpp::Tag_Virtualization_use:
11394 case elfcpp::Tag_MPextension_use:
11395 // Use the largest value specified.
11396 if (in_attr[i].int_value() > out_attr[i].int_value())
11397 out_attr[i].set_int_value(in_attr[i].int_value());
11400 case elfcpp::Tag_ABI_align8_preserved:
11401 case elfcpp::Tag_ABI_PCS_RO_data:
11402 // Use the smallest value specified.
11403 if (in_attr[i].int_value() < out_attr[i].int_value())
11404 out_attr[i].set_int_value(in_attr[i].int_value());
11407 case elfcpp::Tag_ABI_align8_needed:
11408 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11409 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11410 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11413 // This error message should be enabled once all non-conforming
11414 // binaries in the toolchain have had the attributes set
11416 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11420 case elfcpp::Tag_ABI_FP_denormal:
11421 case elfcpp::Tag_ABI_PCS_GOT_use:
11423 // These tags have 0 = don't care, 1 = strong requirement,
11424 // 2 = weak requirement.
11425 static const int order_021[3] = {0, 2, 1};
11427 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11428 // value if greater than 2 (for future-proofing).
11429 if ((in_attr[i].int_value() > 2
11430 && in_attr[i].int_value() > out_attr[i].int_value())
11431 || (in_attr[i].int_value() <= 2
11432 && out_attr[i].int_value() <= 2
11433 && (order_021[in_attr[i].int_value()]
11434 > order_021[out_attr[i].int_value()])))
11435 out_attr[i].set_int_value(in_attr[i].int_value());
11439 case elfcpp::Tag_CPU_arch_profile:
11440 if (out_attr[i].int_value() != in_attr[i].int_value())
11442 // 0 will merge with anything.
11443 // 'A' and 'S' merge to 'A'.
11444 // 'R' and 'S' merge to 'R'.
11445 // 'M' and 'A|R|S' is an error.
11446 if (out_attr[i].int_value() == 0
11447 || (out_attr[i].int_value() == 'S'
11448 && (in_attr[i].int_value() == 'A'
11449 || in_attr[i].int_value() == 'R')))
11450 out_attr[i].set_int_value(in_attr[i].int_value());
11451 else if (in_attr[i].int_value() == 0
11452 || (in_attr[i].int_value() == 'S'
11453 && (out_attr[i].int_value() == 'A'
11454 || out_attr[i].int_value() == 'R')))
11456 else if (parameters->options().warn_mismatch())
11459 (_("conflicting architecture profiles %c/%c"),
11460 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11461 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11465 case elfcpp::Tag_VFP_arch:
11467 static const struct
11471 } vfp_versions[7] =
11482 // Values greater than 6 aren't defined, so just pick the
11484 if (in_attr[i].int_value() > 6
11485 && in_attr[i].int_value() > out_attr[i].int_value())
11487 *out_attr = *in_attr;
11490 // The output uses the superset of input features
11491 // (ISA version) and registers.
11492 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11493 vfp_versions[out_attr[i].int_value()].ver);
11494 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11495 vfp_versions[out_attr[i].int_value()].regs);
11496 // This assumes all possible supersets are also a valid
11499 for (newval = 6; newval > 0; newval--)
11501 if (regs == vfp_versions[newval].regs
11502 && ver == vfp_versions[newval].ver)
11505 out_attr[i].set_int_value(newval);
11508 case elfcpp::Tag_PCS_config:
11509 if (out_attr[i].int_value() == 0)
11510 out_attr[i].set_int_value(in_attr[i].int_value());
11511 else if (in_attr[i].int_value() != 0
11512 && out_attr[i].int_value() != 0
11513 && parameters->options().warn_mismatch())
11515 // It's sometimes ok to mix different configs, so this is only
11517 gold_warning(_("%s: conflicting platform configuration"), name);
11520 case elfcpp::Tag_ABI_PCS_R9_use:
11521 if (in_attr[i].int_value() != out_attr[i].int_value()
11522 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11523 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11524 && parameters->options().warn_mismatch())
11526 gold_error(_("%s: conflicting use of R9"), name);
11528 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11529 out_attr[i].set_int_value(in_attr[i].int_value());
11531 case elfcpp::Tag_ABI_PCS_RW_data:
11532 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11533 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11534 != elfcpp::AEABI_R9_SB)
11535 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11536 != elfcpp::AEABI_R9_unused)
11537 && parameters->options().warn_mismatch())
11539 gold_error(_("%s: SB relative addressing conflicts with use "
11543 // Use the smallest value specified.
11544 if (in_attr[i].int_value() < out_attr[i].int_value())
11545 out_attr[i].set_int_value(in_attr[i].int_value());
11547 case elfcpp::Tag_ABI_PCS_wchar_t:
11548 if (out_attr[i].int_value()
11549 && in_attr[i].int_value()
11550 && out_attr[i].int_value() != in_attr[i].int_value()
11551 && parameters->options().warn_mismatch()
11552 && parameters->options().wchar_size_warning())
11554 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11555 "use %u-byte wchar_t; use of wchar_t values "
11556 "across objects may fail"),
11557 name, in_attr[i].int_value(),
11558 out_attr[i].int_value());
11560 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11561 out_attr[i].set_int_value(in_attr[i].int_value());
11563 case elfcpp::Tag_ABI_enum_size:
11564 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11566 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11567 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11569 // The existing object is compatible with anything.
11570 // Use whatever requirements the new object has.
11571 out_attr[i].set_int_value(in_attr[i].int_value());
11573 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11574 && out_attr[i].int_value() != in_attr[i].int_value()
11575 && parameters->options().warn_mismatch()
11576 && parameters->options().enum_size_warning())
11578 unsigned int in_value = in_attr[i].int_value();
11579 unsigned int out_value = out_attr[i].int_value();
11580 gold_warning(_("%s uses %s enums yet the output is to use "
11581 "%s enums; use of enum values across objects "
11584 this->aeabi_enum_name(in_value).c_str(),
11585 this->aeabi_enum_name(out_value).c_str());
11589 case elfcpp::Tag_ABI_VFP_args:
11592 case elfcpp::Tag_ABI_WMMX_args:
11593 if (in_attr[i].int_value() != out_attr[i].int_value()
11594 && parameters->options().warn_mismatch())
11596 gold_error(_("%s uses iWMMXt register arguments, output does "
11601 case Object_attribute::Tag_compatibility:
11602 // Merged in target-independent code.
11604 case elfcpp::Tag_ABI_HardFP_use:
11605 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11606 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11607 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11608 out_attr[i].set_int_value(3);
11609 else if (in_attr[i].int_value() > out_attr[i].int_value())
11610 out_attr[i].set_int_value(in_attr[i].int_value());
11612 case elfcpp::Tag_ABI_FP_16bit_format:
11613 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11615 if (in_attr[i].int_value() != out_attr[i].int_value()
11616 && parameters->options().warn_mismatch())
11617 gold_error(_("fp16 format mismatch between %s and output"),
11620 if (in_attr[i].int_value() != 0)
11621 out_attr[i].set_int_value(in_attr[i].int_value());
11624 case elfcpp::Tag_DIV_use:
11626 // A value of zero on input means that the divide
11627 // instruction may be used if available in the base
11628 // architecture as specified via Tag_CPU_arch and
11629 // Tag_CPU_arch_profile. A value of 1 means that the user
11630 // did not want divide instructions. A value of 2
11631 // explicitly means that divide instructions were allowed
11632 // in ARM and Thumb state.
11634 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11636 int profile = this->
11637 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11639 if (in_attr[i].int_value() == out_attr[i].int_value())
11643 else if (attributes_forbid_div(&in_attr[i])
11644 && !attributes_accept_div(arch, profile, &out_attr[i]))
11645 out_attr[i].set_int_value(1);
11646 else if (attributes_forbid_div(&out_attr[i])
11647 && attributes_accept_div(arch, profile, &in_attr[i]))
11648 out_attr[i].set_int_value(in_attr[i].int_value());
11649 else if (in_attr[i].int_value() == 2)
11650 out_attr[i].set_int_value(in_attr[i].int_value());
11654 case elfcpp::Tag_MPextension_use_legacy:
11655 // We don't output objects with Tag_MPextension_use_legacy - we
11656 // move the value to Tag_MPextension_use.
11657 if (in_attr[i].int_value() != 0
11658 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11660 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11661 != in_attr[i].int_value())
11663 gold_error(_("%s has has both the current and legacy "
11664 "Tag_MPextension_use attributes"),
11669 if (in_attr[i].int_value()
11670 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11671 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11675 case elfcpp::Tag_nodefaults:
11676 // This tag is set if it exists, but the value is unused (and is
11677 // typically zero). We don't actually need to do anything here -
11678 // the merge happens automatically when the type flags are merged
11681 case elfcpp::Tag_also_compatible_with:
11682 // Already done in Tag_CPU_arch.
11684 case elfcpp::Tag_conformance:
11685 // Keep the attribute if it matches. Throw it away otherwise.
11686 // No attribute means no claim to conform.
11687 if (in_attr[i].string_value() != out_attr[i].string_value())
11688 out_attr[i].set_string_value("");
11693 const char* err_object = NULL;
11695 // The "known_obj_attributes" table does contain some undefined
11696 // attributes. Ensure that there are unused.
11697 if (out_attr[i].int_value() != 0
11698 || out_attr[i].string_value() != "")
11699 err_object = "output";
11700 else if (in_attr[i].int_value() != 0
11701 || in_attr[i].string_value() != "")
11704 if (err_object != NULL
11705 && parameters->options().warn_mismatch())
11707 // Attribute numbers >=64 (mod 128) can be safely ignored.
11708 if ((i & 127) < 64)
11709 gold_error(_("%s: unknown mandatory EABI object attribute "
11713 gold_warning(_("%s: unknown EABI object attribute %d"),
11717 // Only pass on attributes that match in both inputs.
11718 if (!in_attr[i].matches(out_attr[i]))
11720 out_attr[i].set_int_value(0);
11721 out_attr[i].set_string_value("");
11726 // If out_attr was copied from in_attr then it won't have a type yet.
11727 if (in_attr[i].type() && !out_attr[i].type())
11728 out_attr[i].set_type(in_attr[i].type());
11731 // Merge Tag_compatibility attributes and any common GNU ones.
11732 this->attributes_section_data_->merge(name, pasd);
11734 // Check for any attributes not known on ARM.
11735 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11736 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11737 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11738 Other_attributes* out_other_attributes =
11739 this->attributes_section_data_->other_attributes(vendor);
11740 Other_attributes::iterator out_iter = out_other_attributes->begin();
11742 while (in_iter != in_other_attributes->end()
11743 || out_iter != out_other_attributes->end())
11745 const char* err_object = NULL;
11748 // The tags for each list are in numerical order.
11749 // If the tags are equal, then merge.
11750 if (out_iter != out_other_attributes->end()
11751 && (in_iter == in_other_attributes->end()
11752 || in_iter->first > out_iter->first))
11754 // This attribute only exists in output. We can't merge, and we
11755 // don't know what the tag means, so delete it.
11756 err_object = "output";
11757 err_tag = out_iter->first;
11758 int saved_tag = out_iter->first;
11759 delete out_iter->second;
11760 out_other_attributes->erase(out_iter);
11761 out_iter = out_other_attributes->upper_bound(saved_tag);
11763 else if (in_iter != in_other_attributes->end()
11764 && (out_iter != out_other_attributes->end()
11765 || in_iter->first < out_iter->first))
11767 // This attribute only exists in input. We can't merge, and we
11768 // don't know what the tag means, so ignore it.
11770 err_tag = in_iter->first;
11773 else // The tags are equal.
11775 // As present, all attributes in the list are unknown, and
11776 // therefore can't be merged meaningfully.
11777 err_object = "output";
11778 err_tag = out_iter->first;
11780 // Only pass on attributes that match in both inputs.
11781 if (!in_iter->second->matches(*(out_iter->second)))
11783 // No match. Delete the attribute.
11784 int saved_tag = out_iter->first;
11785 delete out_iter->second;
11786 out_other_attributes->erase(out_iter);
11787 out_iter = out_other_attributes->upper_bound(saved_tag);
11791 // Matched. Keep the attribute and move to the next.
11797 if (err_object && parameters->options().warn_mismatch())
11799 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11800 if ((err_tag & 127) < 64)
11802 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11803 err_object, err_tag);
11807 gold_warning(_("%s: unknown EABI object attribute %d"),
11808 err_object, err_tag);
11814 // Stub-generation methods for Target_arm.
11816 // Make a new Arm_input_section object.
11818 template<bool big_endian>
11819 Arm_input_section<big_endian>*
11820 Target_arm<big_endian>::new_arm_input_section(
11822 unsigned int shndx)
11824 Section_id sid(relobj, shndx);
11826 Arm_input_section<big_endian>* arm_input_section =
11827 new Arm_input_section<big_endian>(relobj, shndx);
11828 arm_input_section->init();
11830 // Register new Arm_input_section in map for look-up.
11831 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11832 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11834 // Make sure that it we have not created another Arm_input_section
11835 // for this input section already.
11836 gold_assert(ins.second);
11838 return arm_input_section;
11841 // Find the Arm_input_section object corresponding to the SHNDX-th input
11842 // section of RELOBJ.
11844 template<bool big_endian>
11845 Arm_input_section<big_endian>*
11846 Target_arm<big_endian>::find_arm_input_section(
11848 unsigned int shndx) const
11850 Section_id sid(relobj, shndx);
11851 typename Arm_input_section_map::const_iterator p =
11852 this->arm_input_section_map_.find(sid);
11853 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11856 // Make a new stub table.
11858 template<bool big_endian>
11859 Stub_table<big_endian>*
11860 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11862 Stub_table<big_endian>* stub_table =
11863 new Stub_table<big_endian>(owner);
11864 this->stub_tables_.push_back(stub_table);
11866 stub_table->set_address(owner->address() + owner->data_size());
11867 stub_table->set_file_offset(owner->offset() + owner->data_size());
11868 stub_table->finalize_data_size();
11873 // Scan a relocation for stub generation.
11875 template<bool big_endian>
11877 Target_arm<big_endian>::scan_reloc_for_stub(
11878 const Relocate_info<32, big_endian>* relinfo,
11879 unsigned int r_type,
11880 const Sized_symbol<32>* gsym,
11881 unsigned int r_sym,
11882 const Symbol_value<32>* psymval,
11883 elfcpp::Elf_types<32>::Elf_Swxword addend,
11884 Arm_address address)
11886 const Arm_relobj<big_endian>* arm_relobj =
11887 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11889 bool target_is_thumb;
11890 Symbol_value<32> symval;
11893 // This is a global symbol. Determine if we use PLT and if the
11894 // final target is THUMB.
11895 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11897 // This uses a PLT, change the symbol value.
11898 symval.set_output_value(this->plt_address_for_global(gsym));
11900 target_is_thumb = false;
11902 else if (gsym->is_undefined())
11903 // There is no need to generate a stub symbol is undefined.
11908 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11909 || (gsym->type() == elfcpp::STT_FUNC
11910 && !gsym->is_undefined()
11911 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11916 // This is a local symbol. Determine if the final target is THUMB.
11917 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11920 // Strip LSB if this points to a THUMB target.
11921 const Arm_reloc_property* reloc_property =
11922 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11923 gold_assert(reloc_property != NULL);
11924 if (target_is_thumb
11925 && reloc_property->uses_thumb_bit()
11926 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11928 Arm_address stripped_value =
11929 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11930 symval.set_output_value(stripped_value);
11934 // Get the symbol value.
11935 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11937 // Owing to pipelining, the PC relative branches below actually skip
11938 // two instructions when the branch offset is 0.
11939 Arm_address destination;
11942 case elfcpp::R_ARM_CALL:
11943 case elfcpp::R_ARM_JUMP24:
11944 case elfcpp::R_ARM_PLT32:
11946 destination = value + addend + 8;
11948 case elfcpp::R_ARM_THM_CALL:
11949 case elfcpp::R_ARM_THM_XPC22:
11950 case elfcpp::R_ARM_THM_JUMP24:
11951 case elfcpp::R_ARM_THM_JUMP19:
11953 destination = value + addend + 4;
11956 gold_unreachable();
11959 Reloc_stub* stub = NULL;
11960 Stub_type stub_type =
11961 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11963 if (stub_type != arm_stub_none)
11965 // Try looking up an existing stub from a stub table.
11966 Stub_table<big_endian>* stub_table =
11967 arm_relobj->stub_table(relinfo->data_shndx);
11968 gold_assert(stub_table != NULL);
11970 // Locate stub by destination.
11971 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11973 // Create a stub if there is not one already
11974 stub = stub_table->find_reloc_stub(stub_key);
11977 // create a new stub and add it to stub table.
11978 stub = this->stub_factory().make_reloc_stub(stub_type);
11979 stub_table->add_reloc_stub(stub, stub_key);
11982 // Record the destination address.
11983 stub->set_destination_address(destination
11984 | (target_is_thumb ? 1 : 0));
11987 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11988 if (this->fix_cortex_a8_
11989 && (r_type == elfcpp::R_ARM_THM_JUMP24
11990 || r_type == elfcpp::R_ARM_THM_JUMP19
11991 || r_type == elfcpp::R_ARM_THM_CALL
11992 || r_type == elfcpp::R_ARM_THM_XPC22)
11993 && (address & 0xfffU) == 0xffeU)
11995 // Found a candidate. Note we haven't checked the destination is
11996 // within 4K here: if we do so (and don't create a record) we can't
11997 // tell that a branch should have been relocated when scanning later.
11998 this->cortex_a8_relocs_info_[address] =
11999 new Cortex_a8_reloc(stub, r_type,
12000 destination | (target_is_thumb ? 1 : 0));
12004 // This function scans a relocation sections for stub generation.
12005 // The template parameter Relocate must be a class type which provides
12006 // a single function, relocate(), which implements the machine
12007 // specific part of a relocation.
12009 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
12010 // SHT_REL or SHT_RELA.
12012 // PRELOCS points to the relocation data. RELOC_COUNT is the number
12013 // of relocs. OUTPUT_SECTION is the output section.
12014 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
12015 // mapped to output offsets.
12017 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
12018 // VIEW_SIZE is the size. These refer to the input section, unless
12019 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
12020 // the output section.
12022 template<bool big_endian>
12023 template<int sh_type>
12025 Target_arm<big_endian>::scan_reloc_section_for_stubs(
12026 const Relocate_info<32, big_endian>* relinfo,
12027 const unsigned char* prelocs,
12028 size_t reloc_count,
12029 Output_section* output_section,
12030 bool needs_special_offset_handling,
12031 const unsigned char* view,
12032 elfcpp::Elf_types<32>::Elf_Addr view_address,
12035 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
12036 const int reloc_size =
12037 Reloc_types<sh_type, 32, big_endian>::reloc_size;
12039 Arm_relobj<big_endian>* arm_object =
12040 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
12041 unsigned int local_count = arm_object->local_symbol_count();
12043 gold::Default_comdat_behavior default_comdat_behavior;
12044 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
12046 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
12048 Reltype reloc(prelocs);
12050 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
12051 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
12052 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
12054 r_type = this->get_real_reloc_type(r_type);
12056 // Only a few relocation types need stubs.
12057 if ((r_type != elfcpp::R_ARM_CALL)
12058 && (r_type != elfcpp::R_ARM_JUMP24)
12059 && (r_type != elfcpp::R_ARM_PLT32)
12060 && (r_type != elfcpp::R_ARM_THM_CALL)
12061 && (r_type != elfcpp::R_ARM_THM_XPC22)
12062 && (r_type != elfcpp::R_ARM_THM_JUMP24)
12063 && (r_type != elfcpp::R_ARM_THM_JUMP19)
12064 && (r_type != elfcpp::R_ARM_V4BX))
12067 section_offset_type offset =
12068 convert_to_section_size_type(reloc.get_r_offset());
12070 if (needs_special_offset_handling)
12072 offset = output_section->output_offset(relinfo->object,
12073 relinfo->data_shndx,
12079 // Create a v4bx stub if --fix-v4bx-interworking is used.
12080 if (r_type == elfcpp::R_ARM_V4BX)
12082 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
12084 // Get the BX instruction.
12085 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
12086 const Valtype* wv =
12087 reinterpret_cast<const Valtype*>(view + offset);
12088 elfcpp::Elf_types<32>::Elf_Swxword insn =
12089 elfcpp::Swap<32, big_endian>::readval(wv);
12090 const uint32_t reg = (insn & 0xf);
12094 // Try looking up an existing stub from a stub table.
12095 Stub_table<big_endian>* stub_table =
12096 arm_object->stub_table(relinfo->data_shndx);
12097 gold_assert(stub_table != NULL);
12099 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
12101 // create a new stub and add it to stub table.
12102 Arm_v4bx_stub* stub =
12103 this->stub_factory().make_arm_v4bx_stub(reg);
12104 gold_assert(stub != NULL);
12105 stub_table->add_arm_v4bx_stub(stub);
12113 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
12114 elfcpp::Elf_types<32>::Elf_Swxword addend =
12115 stub_addend_reader(r_type, view + offset, reloc);
12117 const Sized_symbol<32>* sym;
12119 Symbol_value<32> symval;
12120 const Symbol_value<32> *psymval;
12121 bool is_defined_in_discarded_section;
12122 unsigned int shndx;
12123 if (r_sym < local_count)
12126 psymval = arm_object->local_symbol(r_sym);
12128 // If the local symbol belongs to a section we are discarding,
12129 // and that section is a debug section, try to find the
12130 // corresponding kept section and map this symbol to its
12131 // counterpart in the kept section. The symbol must not
12132 // correspond to a section we are folding.
12134 shndx = psymval->input_shndx(&is_ordinary);
12135 is_defined_in_discarded_section =
12137 && shndx != elfcpp::SHN_UNDEF
12138 && !arm_object->is_section_included(shndx)
12139 && !relinfo->symtab->is_section_folded(arm_object, shndx));
12141 // We need to compute the would-be final value of this local
12143 if (!is_defined_in_discarded_section)
12145 typedef Sized_relobj_file<32, big_endian> ObjType;
12146 if (psymval->is_section_symbol())
12147 symval.set_is_section_symbol();
12148 typename ObjType::Compute_final_local_value_status status =
12149 arm_object->compute_final_local_value(r_sym, psymval, &symval,
12151 if (status == ObjType::CFLV_OK)
12153 // Currently we cannot handle a branch to a target in
12154 // a merged section. If this is the case, issue an error
12155 // and also free the merge symbol value.
12156 if (!symval.has_output_value())
12158 const std::string& section_name =
12159 arm_object->section_name(shndx);
12160 arm_object->error(_("cannot handle branch to local %u "
12161 "in a merged section %s"),
12162 r_sym, section_name.c_str());
12168 // We cannot determine the final value.
12175 const Symbol* gsym;
12176 gsym = arm_object->global_symbol(r_sym);
12177 gold_assert(gsym != NULL);
12178 if (gsym->is_forwarder())
12179 gsym = relinfo->symtab->resolve_forwards(gsym);
12181 sym = static_cast<const Sized_symbol<32>*>(gsym);
12182 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
12183 symval.set_output_symtab_index(sym->symtab_index());
12185 symval.set_no_output_symtab_entry();
12187 // We need to compute the would-be final value of this global
12189 const Symbol_table* symtab = relinfo->symtab;
12190 const Sized_symbol<32>* sized_symbol =
12191 symtab->get_sized_symbol<32>(gsym);
12192 Symbol_table::Compute_final_value_status status;
12193 Arm_address value =
12194 symtab->compute_final_value<32>(sized_symbol, &status);
12196 // Skip this if the symbol has not output section.
12197 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
12199 symval.set_output_value(value);
12201 if (gsym->type() == elfcpp::STT_TLS)
12202 symval.set_is_tls_symbol();
12203 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
12204 symval.set_is_ifunc_symbol();
12207 is_defined_in_discarded_section =
12208 (gsym->is_defined_in_discarded_section()
12209 && gsym->is_undefined());
12213 Symbol_value<32> symval2;
12214 if (is_defined_in_discarded_section)
12216 if (comdat_behavior == CB_UNDETERMINED)
12218 std::string name = arm_object->section_name(relinfo->data_shndx);
12219 comdat_behavior = default_comdat_behavior.get(name.c_str());
12221 if (comdat_behavior == CB_PRETEND)
12223 // FIXME: This case does not work for global symbols.
12224 // We have no place to store the original section index.
12225 // Fortunately this does not matter for comdat sections,
12226 // only for sections explicitly discarded by a linker
12229 typename elfcpp::Elf_types<32>::Elf_Addr value =
12230 arm_object->map_to_kept_section(shndx, &found);
12232 symval2.set_output_value(value + psymval->input_value());
12234 symval2.set_output_value(0);
12238 if (comdat_behavior == CB_WARNING)
12239 gold_warning_at_location(relinfo, i, offset,
12240 _("relocation refers to discarded "
12242 symval2.set_output_value(0);
12244 symval2.set_no_output_symtab_entry();
12245 psymval = &symval2;
12248 // If symbol is a section symbol, we don't know the actual type of
12249 // destination. Give up.
12250 if (psymval->is_section_symbol())
12253 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
12254 addend, view_address + offset);
12258 // Scan an input section for stub generation.
12260 template<bool big_endian>
12262 Target_arm<big_endian>::scan_section_for_stubs(
12263 const Relocate_info<32, big_endian>* relinfo,
12264 unsigned int sh_type,
12265 const unsigned char* prelocs,
12266 size_t reloc_count,
12267 Output_section* output_section,
12268 bool needs_special_offset_handling,
12269 const unsigned char* view,
12270 Arm_address view_address,
12271 section_size_type view_size)
12273 if (sh_type == elfcpp::SHT_REL)
12274 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
12279 needs_special_offset_handling,
12283 else if (sh_type == elfcpp::SHT_RELA)
12284 // We do not support RELA type relocations yet. This is provided for
12286 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12291 needs_special_offset_handling,
12296 gold_unreachable();
12299 // Group input sections for stub generation.
12301 // We group input sections in an output section so that the total size,
12302 // including any padding space due to alignment is smaller than GROUP_SIZE
12303 // unless the only input section in group is bigger than GROUP_SIZE already.
12304 // Then an ARM stub table is created to follow the last input section
12305 // in group. For each group an ARM stub table is created an is placed
12306 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12307 // extend the group after the stub table.
12309 template<bool big_endian>
12311 Target_arm<big_endian>::group_sections(
12313 section_size_type group_size,
12314 bool stubs_always_after_branch,
12317 // Group input sections and insert stub table
12318 Layout::Section_list section_list;
12319 layout->get_executable_sections(§ion_list);
12320 for (Layout::Section_list::const_iterator p = section_list.begin();
12321 p != section_list.end();
12324 Arm_output_section<big_endian>* output_section =
12325 Arm_output_section<big_endian>::as_arm_output_section(*p);
12326 output_section->group_sections(group_size, stubs_always_after_branch,
12331 // Relaxation hook. This is where we do stub generation.
12333 template<bool big_endian>
12335 Target_arm<big_endian>::do_relax(
12337 const Input_objects* input_objects,
12338 Symbol_table* symtab,
12342 // No need to generate stubs if this is a relocatable link.
12343 gold_assert(!parameters->options().relocatable());
12345 // If this is the first pass, we need to group input sections into
12347 bool done_exidx_fixup = false;
12348 typedef typename Stub_table_list::iterator Stub_table_iterator;
12351 // Determine the stub group size. The group size is the absolute
12352 // value of the parameter --stub-group-size. If --stub-group-size
12353 // is passed a negative value, we restrict stubs to be always after
12354 // the stubbed branches.
12355 int32_t stub_group_size_param =
12356 parameters->options().stub_group_size();
12357 bool stubs_always_after_branch = stub_group_size_param < 0;
12358 section_size_type stub_group_size = abs(stub_group_size_param);
12360 if (stub_group_size == 1)
12363 // Thumb branch range is +-4MB has to be used as the default
12364 // maximum size (a given section can contain both ARM and Thumb
12365 // code, so the worst case has to be taken into account). If we are
12366 // fixing cortex-a8 errata, the branch range has to be even smaller,
12367 // since wide conditional branch has a range of +-1MB only.
12369 // This value is 48K less than that, which allows for 4096
12370 // 12-byte stubs. If we exceed that, then we will fail to link.
12371 // The user will have to relink with an explicit group size
12373 stub_group_size = 4145152;
12376 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12377 // page as the first half of a 32-bit branch straddling two 4K pages.
12378 // This is a crude way of enforcing that. In addition, long conditional
12379 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12380 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12381 // cortex-A8 stubs from long conditional branches.
12382 if (this->fix_cortex_a8_)
12384 stubs_always_after_branch = true;
12385 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12386 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12389 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12391 // Also fix .ARM.exidx section coverage.
12392 Arm_output_section<big_endian>* exidx_output_section = NULL;
12393 for (Layout::Section_list::const_iterator p =
12394 layout->section_list().begin();
12395 p != layout->section_list().end();
12397 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12399 if (exidx_output_section == NULL)
12400 exidx_output_section =
12401 Arm_output_section<big_endian>::as_arm_output_section(*p);
12403 // We cannot handle this now.
12404 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12405 "non-relocatable link"),
12406 exidx_output_section->name(),
12410 if (exidx_output_section != NULL)
12412 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12414 done_exidx_fixup = true;
12419 // If this is not the first pass, addresses and file offsets have
12420 // been reset at this point, set them here.
12421 for (Stub_table_iterator sp = this->stub_tables_.begin();
12422 sp != this->stub_tables_.end();
12425 Arm_input_section<big_endian>* owner = (*sp)->owner();
12426 off_t off = align_address(owner->original_size(),
12427 (*sp)->addralign());
12428 (*sp)->set_address_and_file_offset(owner->address() + off,
12429 owner->offset() + off);
12433 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12434 // beginning of each relaxation pass, just blow away all the stubs.
12435 // Alternatively, we could selectively remove only the stubs and reloc
12436 // information for code sections that have moved since the last pass.
12437 // That would require more book-keeping.
12438 if (this->fix_cortex_a8_)
12440 // Clear all Cortex-A8 reloc information.
12441 for (typename Cortex_a8_relocs_info::const_iterator p =
12442 this->cortex_a8_relocs_info_.begin();
12443 p != this->cortex_a8_relocs_info_.end();
12446 this->cortex_a8_relocs_info_.clear();
12448 // Remove all Cortex-A8 stubs.
12449 for (Stub_table_iterator sp = this->stub_tables_.begin();
12450 sp != this->stub_tables_.end();
12452 (*sp)->remove_all_cortex_a8_stubs();
12455 // Scan relocs for relocation stubs
12456 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12457 op != input_objects->relobj_end();
12460 Arm_relobj<big_endian>* arm_relobj =
12461 Arm_relobj<big_endian>::as_arm_relobj(*op);
12462 // Lock the object so we can read from it. This is only called
12463 // single-threaded from Layout::finalize, so it is OK to lock.
12464 Task_lock_obj<Object> tl(task, arm_relobj);
12465 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12468 // Check all stub tables to see if any of them have their data sizes
12469 // or addresses alignments changed. These are the only things that
12471 bool any_stub_table_changed = false;
12472 Unordered_set<const Output_section*> sections_needing_adjustment;
12473 for (Stub_table_iterator sp = this->stub_tables_.begin();
12474 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12477 if ((*sp)->update_data_size_and_addralign())
12479 // Update data size of stub table owner.
12480 Arm_input_section<big_endian>* owner = (*sp)->owner();
12481 uint64_t address = owner->address();
12482 off_t offset = owner->offset();
12483 owner->reset_address_and_file_offset();
12484 owner->set_address_and_file_offset(address, offset);
12486 sections_needing_adjustment.insert(owner->output_section());
12487 any_stub_table_changed = true;
12491 // Output_section_data::output_section() returns a const pointer but we
12492 // need to update output sections, so we record all output sections needing
12493 // update above and scan the sections here to find out what sections need
12495 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12496 p != layout->section_list().end();
12499 if (sections_needing_adjustment.find(*p)
12500 != sections_needing_adjustment.end())
12501 (*p)->set_section_offsets_need_adjustment();
12504 // Stop relaxation if no EXIDX fix-up and no stub table change.
12505 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12507 // Finalize the stubs in the last relaxation pass.
12508 if (!continue_relaxation)
12510 for (Stub_table_iterator sp = this->stub_tables_.begin();
12511 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12513 (*sp)->finalize_stubs();
12515 // Update output local symbol counts of objects if necessary.
12516 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12517 op != input_objects->relobj_end();
12520 Arm_relobj<big_endian>* arm_relobj =
12521 Arm_relobj<big_endian>::as_arm_relobj(*op);
12523 // Update output local symbol counts. We need to discard local
12524 // symbols defined in parts of input sections that are discarded by
12526 if (arm_relobj->output_local_symbol_count_needs_update())
12528 // We need to lock the object's file to update it.
12529 Task_lock_obj<Object> tl(task, arm_relobj);
12530 arm_relobj->update_output_local_symbol_count();
12535 return continue_relaxation;
12538 // Relocate a stub.
12540 template<bool big_endian>
12542 Target_arm<big_endian>::relocate_stub(
12544 const Relocate_info<32, big_endian>* relinfo,
12545 Output_section* output_section,
12546 unsigned char* view,
12547 Arm_address address,
12548 section_size_type view_size)
12551 const Stub_template* stub_template = stub->stub_template();
12552 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12554 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12555 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12557 unsigned int r_type = insn->r_type();
12558 section_size_type reloc_offset = stub_template->reloc_offset(i);
12559 section_size_type reloc_size = insn->size();
12560 gold_assert(reloc_offset + reloc_size <= view_size);
12562 // This is the address of the stub destination.
12563 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12564 Symbol_value<32> symval;
12565 symval.set_output_value(target);
12567 // Synthesize a fake reloc just in case. We don't have a symbol so
12569 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12570 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12571 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12572 reloc_write.put_r_offset(reloc_offset);
12573 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12575 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12576 this->fake_relnum_for_stubs, reloc_buffer,
12577 NULL, &symval, view + reloc_offset,
12578 address + reloc_offset, reloc_size);
12582 // Determine whether an object attribute tag takes an integer, a
12585 template<bool big_endian>
12587 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12589 if (tag == Object_attribute::Tag_compatibility)
12590 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12591 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12592 else if (tag == elfcpp::Tag_nodefaults)
12593 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12594 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12595 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12596 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12598 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12600 return ((tag & 1) != 0
12601 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12602 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12605 // Reorder attributes.
12607 // The ABI defines that Tag_conformance should be emitted first, and that
12608 // Tag_nodefaults should be second (if either is defined). This sets those
12609 // two positions, and bumps up the position of all the remaining tags to
12612 template<bool big_endian>
12614 Target_arm<big_endian>::do_attributes_order(int num) const
12616 // Reorder the known object attributes in output. We want to move
12617 // Tag_conformance to position 4 and Tag_conformance to position 5
12618 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12620 return elfcpp::Tag_conformance;
12622 return elfcpp::Tag_nodefaults;
12623 if ((num - 2) < elfcpp::Tag_nodefaults)
12625 if ((num - 1) < elfcpp::Tag_conformance)
12630 // Scan a span of THUMB code for Cortex-A8 erratum.
12632 template<bool big_endian>
12634 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12635 Arm_relobj<big_endian>* arm_relobj,
12636 unsigned int shndx,
12637 section_size_type span_start,
12638 section_size_type span_end,
12639 const unsigned char* view,
12640 Arm_address address)
12642 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12644 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12645 // The branch target is in the same 4KB region as the
12646 // first half of the branch.
12647 // The instruction before the branch is a 32-bit
12648 // length non-branch instruction.
12649 section_size_type i = span_start;
12650 bool last_was_32bit = false;
12651 bool last_was_branch = false;
12652 while (i < span_end)
12654 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12655 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12656 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12657 bool is_blx = false, is_b = false;
12658 bool is_bl = false, is_bcc = false;
12660 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12663 // Load the rest of the insn (in manual-friendly order).
12664 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12666 // Encoding T4: B<c>.W.
12667 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12668 // Encoding T1: BL<c>.W.
12669 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12670 // Encoding T2: BLX<c>.W.
12671 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12672 // Encoding T3: B<c>.W (not permitted in IT block).
12673 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12674 && (insn & 0x07f00000U) != 0x03800000U);
12677 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12679 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12680 // page boundary and it follows 32-bit non-branch instruction,
12681 // we need to work around.
12682 if (is_32bit_branch
12683 && ((address + i) & 0xfffU) == 0xffeU
12685 && !last_was_branch)
12687 // Check to see if there is a relocation stub for this branch.
12688 bool force_target_arm = false;
12689 bool force_target_thumb = false;
12690 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12691 Cortex_a8_relocs_info::const_iterator p =
12692 this->cortex_a8_relocs_info_.find(address + i);
12694 if (p != this->cortex_a8_relocs_info_.end())
12696 cortex_a8_reloc = p->second;
12697 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12699 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12700 && !target_is_thumb)
12701 force_target_arm = true;
12702 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12703 && target_is_thumb)
12704 force_target_thumb = true;
12708 Stub_type stub_type = arm_stub_none;
12710 // Check if we have an offending branch instruction.
12711 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12712 uint16_t lower_insn = insn & 0xffffU;
12713 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12715 if (cortex_a8_reloc != NULL
12716 && cortex_a8_reloc->reloc_stub() != NULL)
12717 // We've already made a stub for this instruction, e.g.
12718 // it's a long branch or a Thumb->ARM stub. Assume that
12719 // stub will suffice to work around the A8 erratum (see
12720 // setting of always_after_branch above).
12724 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12726 stub_type = arm_stub_a8_veneer_b_cond;
12728 else if (is_b || is_bl || is_blx)
12730 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12735 stub_type = (is_blx
12736 ? arm_stub_a8_veneer_blx
12738 ? arm_stub_a8_veneer_bl
12739 : arm_stub_a8_veneer_b));
12742 if (stub_type != arm_stub_none)
12744 Arm_address pc_for_insn = address + i + 4;
12746 // The original instruction is a BL, but the target is
12747 // an ARM instruction. If we were not making a stub,
12748 // the BL would have been converted to a BLX. Use the
12749 // BLX stub instead in that case.
12750 if (this->may_use_v5t_interworking() && force_target_arm
12751 && stub_type == arm_stub_a8_veneer_bl)
12753 stub_type = arm_stub_a8_veneer_blx;
12757 // Conversely, if the original instruction was
12758 // BLX but the target is Thumb mode, use the BL stub.
12759 else if (force_target_thumb
12760 && stub_type == arm_stub_a8_veneer_blx)
12762 stub_type = arm_stub_a8_veneer_bl;
12770 // If we found a relocation, use the proper destination,
12771 // not the offset in the (unrelocated) instruction.
12772 // Note this is always done if we switched the stub type above.
12773 if (cortex_a8_reloc != NULL)
12774 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12776 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12778 // Add a new stub if destination address in in the same page.
12779 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12781 Cortex_a8_stub* stub =
12782 this->stub_factory_.make_cortex_a8_stub(stub_type,
12786 Stub_table<big_endian>* stub_table =
12787 arm_relobj->stub_table(shndx);
12788 gold_assert(stub_table != NULL);
12789 stub_table->add_cortex_a8_stub(address + i, stub);
12794 i += insn_32bit ? 4 : 2;
12795 last_was_32bit = insn_32bit;
12796 last_was_branch = is_32bit_branch;
12800 // Apply the Cortex-A8 workaround.
12802 template<bool big_endian>
12804 Target_arm<big_endian>::apply_cortex_a8_workaround(
12805 const Cortex_a8_stub* stub,
12806 Arm_address stub_address,
12807 unsigned char* insn_view,
12808 Arm_address insn_address)
12810 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12811 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12812 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12813 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12814 off_t branch_offset = stub_address - (insn_address + 4);
12816 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12817 switch (stub->stub_template()->type())
12819 case arm_stub_a8_veneer_b_cond:
12820 // For a conditional branch, we re-write it to be an unconditional
12821 // branch to the stub. We use the THUMB-2 encoding here.
12822 upper_insn = 0xf000U;
12823 lower_insn = 0xb800U;
12825 case arm_stub_a8_veneer_b:
12826 case arm_stub_a8_veneer_bl:
12827 case arm_stub_a8_veneer_blx:
12828 if ((lower_insn & 0x5000U) == 0x4000U)
12829 // For a BLX instruction, make sure that the relocation is
12830 // rounded up to a word boundary. This follows the semantics of
12831 // the instruction which specifies that bit 1 of the target
12832 // address will come from bit 1 of the base address.
12833 branch_offset = (branch_offset + 2) & ~3;
12835 // Put BRANCH_OFFSET back into the insn.
12836 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12837 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12838 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12842 gold_unreachable();
12845 // Put the relocated value back in the object file:
12846 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12847 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12850 // Target selector for ARM. Note this is never instantiated directly.
12851 // It's only used in Target_selector_arm_nacl, below.
12853 template<bool big_endian>
12854 class Target_selector_arm : public Target_selector
12857 Target_selector_arm()
12858 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12859 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12860 (big_endian ? "armelfb" : "armelf"))
12864 do_instantiate_target()
12865 { return new Target_arm<big_endian>(); }
12868 // Fix .ARM.exidx section coverage.
12870 template<bool big_endian>
12872 Target_arm<big_endian>::fix_exidx_coverage(
12874 const Input_objects* input_objects,
12875 Arm_output_section<big_endian>* exidx_section,
12876 Symbol_table* symtab,
12879 // We need to look at all the input sections in output in ascending
12880 // order of of output address. We do that by building a sorted list
12881 // of output sections by addresses. Then we looks at the output sections
12882 // in order. The input sections in an output section are already sorted
12883 // by addresses within the output section.
12885 typedef std::set<Output_section*, output_section_address_less_than>
12886 Sorted_output_section_list;
12887 Sorted_output_section_list sorted_output_sections;
12889 // Find out all the output sections of input sections pointed by
12890 // EXIDX input sections.
12891 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12892 p != input_objects->relobj_end();
12895 Arm_relobj<big_endian>* arm_relobj =
12896 Arm_relobj<big_endian>::as_arm_relobj(*p);
12897 std::vector<unsigned int> shndx_list;
12898 arm_relobj->get_exidx_shndx_list(&shndx_list);
12899 for (size_t i = 0; i < shndx_list.size(); ++i)
12901 const Arm_exidx_input_section* exidx_input_section =
12902 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12903 gold_assert(exidx_input_section != NULL);
12904 if (!exidx_input_section->has_errors())
12906 unsigned int text_shndx = exidx_input_section->link();
12907 Output_section* os = arm_relobj->output_section(text_shndx);
12908 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12909 sorted_output_sections.insert(os);
12914 // Go over the output sections in ascending order of output addresses.
12915 typedef typename Arm_output_section<big_endian>::Text_section_list
12917 Text_section_list sorted_text_sections;
12918 for (typename Sorted_output_section_list::iterator p =
12919 sorted_output_sections.begin();
12920 p != sorted_output_sections.end();
12923 Arm_output_section<big_endian>* arm_output_section =
12924 Arm_output_section<big_endian>::as_arm_output_section(*p);
12925 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12928 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12929 merge_exidx_entries(), task);
12932 template<bool big_endian>
12934 Target_arm<big_endian>::do_define_standard_symbols(
12935 Symbol_table* symtab,
12938 // Handle the .ARM.exidx section.
12939 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12941 if (exidx_section != NULL)
12943 // Create __exidx_start and __exidx_end symbols.
12944 symtab->define_in_output_data("__exidx_start",
12946 Symbol_table::PREDEFINED,
12950 elfcpp::STT_NOTYPE,
12951 elfcpp::STB_GLOBAL,
12952 elfcpp::STV_HIDDEN,
12954 false, // offset_is_from_end
12955 true); // only_if_ref
12957 symtab->define_in_output_data("__exidx_end",
12959 Symbol_table::PREDEFINED,
12963 elfcpp::STT_NOTYPE,
12964 elfcpp::STB_GLOBAL,
12965 elfcpp::STV_HIDDEN,
12967 true, // offset_is_from_end
12968 true); // only_if_ref
12972 // Define __exidx_start and __exidx_end even when .ARM.exidx
12973 // section is missing to match ld's behaviour.
12974 symtab->define_as_constant("__exidx_start", NULL,
12975 Symbol_table::PREDEFINED,
12976 0, 0, elfcpp::STT_OBJECT,
12977 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12979 symtab->define_as_constant("__exidx_end", NULL,
12980 Symbol_table::PREDEFINED,
12981 0, 0, elfcpp::STT_OBJECT,
12982 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12987 // NaCl variant. It uses different PLT contents.
12989 template<bool big_endian>
12990 class Output_data_plt_arm_nacl;
12992 template<bool big_endian>
12993 class Target_arm_nacl : public Target_arm<big_endian>
12997 : Target_arm<big_endian>(&arm_nacl_info)
13001 virtual Output_data_plt_arm<big_endian>*
13004 Arm_output_data_got<big_endian>* got,
13005 Output_data_space* got_plt,
13006 Output_data_space* got_irelative)
13007 { return new Output_data_plt_arm_nacl<big_endian>(
13008 layout, got, got_plt, got_irelative); }
13011 static const Target::Target_info arm_nacl_info;
13014 template<bool big_endian>
13015 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
13018 big_endian, // is_big_endian
13019 elfcpp::EM_ARM, // machine_code
13020 false, // has_make_symbol
13021 false, // has_resolve
13022 false, // has_code_fill
13023 true, // is_default_stack_executable
13024 false, // can_icf_inline_merge_sections
13026 "/lib/ld-nacl-arm.so.1", // dynamic_linker
13027 0x20000, // default_text_segment_address
13028 0x10000, // abi_pagesize (overridable by -z max-page-size)
13029 0x10000, // common_pagesize (overridable by -z common-page-size)
13030 true, // isolate_execinstr
13031 0x10000000, // rosegment_gap
13032 elfcpp::SHN_UNDEF, // small_common_shndx
13033 elfcpp::SHN_UNDEF, // large_common_shndx
13034 0, // small_common_section_flags
13035 0, // large_common_section_flags
13036 ".ARM.attributes", // attributes_section
13037 "aeabi", // attributes_vendor
13038 "_start", // entry_symbol_name
13039 32, // hash_entry_size
13042 template<bool big_endian>
13043 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
13046 Output_data_plt_arm_nacl(
13048 Arm_output_data_got<big_endian>* got,
13049 Output_data_space* got_plt,
13050 Output_data_space* got_irelative)
13051 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
13055 // Return the offset of the first non-reserved PLT entry.
13056 virtual unsigned int
13057 do_first_plt_entry_offset() const
13058 { return sizeof(first_plt_entry); }
13060 // Return the size of a PLT entry.
13061 virtual unsigned int
13062 do_get_plt_entry_size() const
13063 { return sizeof(plt_entry); }
13066 do_fill_first_plt_entry(unsigned char* pov,
13067 Arm_address got_address,
13068 Arm_address plt_address);
13071 do_fill_plt_entry(unsigned char* pov,
13072 Arm_address got_address,
13073 Arm_address plt_address,
13074 unsigned int got_offset,
13075 unsigned int plt_offset);
13078 inline uint32_t arm_movw_immediate(uint32_t value)
13080 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
13083 inline uint32_t arm_movt_immediate(uint32_t value)
13085 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
13088 // Template for the first PLT entry.
13089 static const uint32_t first_plt_entry[16];
13091 // Template for subsequent PLT entries.
13092 static const uint32_t plt_entry[4];
13095 // The first entry in the PLT.
13096 template<bool big_endian>
13097 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
13100 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
13101 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
13102 0xe08cc00f, // add ip, ip, pc
13103 0xe52dc008, // str ip, [sp, #-8]!
13105 0xe3ccc103, // bic ip, ip, #0xc0000000
13106 0xe59cc000, // ldr ip, [ip]
13107 0xe3ccc13f, // bic ip, ip, #0xc000000f
13108 0xe12fff1c, // bx ip
13114 0xe50dc004, // str ip, [sp, #-4]
13116 0xe3ccc103, // bic ip, ip, #0xc0000000
13117 0xe59cc000, // ldr ip, [ip]
13118 0xe3ccc13f, // bic ip, ip, #0xc000000f
13119 0xe12fff1c, // bx ip
13122 template<bool big_endian>
13124 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
13125 unsigned char* pov,
13126 Arm_address got_address,
13127 Arm_address plt_address)
13129 // Write first PLT entry. All but first two words are constants.
13130 const size_t num_first_plt_words = (sizeof(first_plt_entry)
13131 / sizeof(first_plt_entry[0]));
13133 int32_t got_displacement = got_address + 8 - (plt_address + 16);
13135 elfcpp::Swap<32, big_endian>::writeval
13136 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
13137 elfcpp::Swap<32, big_endian>::writeval
13138 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
13140 for (size_t i = 2; i < num_first_plt_words; ++i)
13141 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
13144 // Subsequent entries in the PLT.
13146 template<bool big_endian>
13147 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
13149 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
13150 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
13151 0xe08cc00f, // add ip, ip, pc
13152 0xea000000, // b .Lplt_tail
13155 template<bool big_endian>
13157 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
13158 unsigned char* pov,
13159 Arm_address got_address,
13160 Arm_address plt_address,
13161 unsigned int got_offset,
13162 unsigned int plt_offset)
13164 // Calculate the displacement between the PLT slot and the
13165 // common tail that's part of the special initial PLT slot.
13166 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
13167 - (plt_address + plt_offset
13168 + sizeof(plt_entry) + sizeof(uint32_t)));
13169 gold_assert((tail_displacement & 3) == 0);
13170 tail_displacement >>= 2;
13172 gold_assert ((tail_displacement & 0xff000000) == 0
13173 || (-tail_displacement & 0xff000000) == 0);
13175 // Calculate the displacement between the PLT slot and the entry
13176 // in the GOT. The offset accounts for the value produced by
13177 // adding to pc in the penultimate instruction of the PLT stub.
13178 const int32_t got_displacement = (got_address + got_offset
13179 - (plt_address + sizeof(plt_entry)));
13181 elfcpp::Swap<32, big_endian>::writeval
13182 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
13183 elfcpp::Swap<32, big_endian>::writeval
13184 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
13185 elfcpp::Swap<32, big_endian>::writeval
13186 (pov + 8, plt_entry[2]);
13187 elfcpp::Swap<32, big_endian>::writeval
13188 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
13191 // Target selectors.
13193 template<bool big_endian>
13194 class Target_selector_arm_nacl
13195 : public Target_selector_nacl<Target_selector_arm<big_endian>,
13196 Target_arm_nacl<big_endian> >
13199 Target_selector_arm_nacl()
13200 : Target_selector_nacl<Target_selector_arm<big_endian>,
13201 Target_arm_nacl<big_endian> >(
13203 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
13204 big_endian ? "armelfb_nacl" : "armelf_nacl")
13208 Target_selector_arm_nacl<false> target_selector_arm;
13209 Target_selector_arm_nacl<true> target_selector_armbe;
13211 } // End anonymous namespace.