2010-02-26 Doug Kwan <dougkwan@google.com>
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is invalid index.  This points to a global symbol.
602     // Otherwise, this points a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj.  This is done to avoid making the stub class a template
605     // as most of the stub machinery is endianity-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), cortex_a8_stubs_(),
872       arm_v4bx_stubs_(0xf), prev_data_size_(0), prev_addralign_(1)
873   { }
874
875   ~Stub_table()
876   { }
877
878   // Owner of this stub table.
879   Arm_input_section<big_endian>*
880   owner() const
881   { return this->owner_; }
882
883   // Whether this stub table is empty.
884   bool
885   empty() const
886   {
887     return (this->reloc_stubs_.empty()
888             && this->cortex_a8_stubs_.empty()
889             && this->arm_v4bx_stubs_.empty());
890   }
891
892   // Return the current data size.
893   off_t
894   current_data_size() const
895   { return this->current_data_size_for_child(); }
896
897   // Add a STUB with using KEY.  Caller is reponsible for avoid adding
898   // if already a STUB with the same key has been added. 
899   void
900   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
901   {
902     const Stub_template* stub_template = stub->stub_template();
903     gold_assert(stub_template->type() == key.stub_type());
904     this->reloc_stubs_[key] = stub;
905   }
906
907   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
908   // Caller is reponsible for avoid adding if already a STUB with the same
909   // address has been added. 
910   void
911   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
912   {
913     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
914     this->cortex_a8_stubs_.insert(value);
915   }
916
917   // Add an ARM V4BX relocation stub. A register index will be retrieved
918   // from the stub.
919   void
920   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
921   {
922     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
923     this->arm_v4bx_stubs_[stub->reg()] = stub;
924   }
925
926   // Remove all Cortex-A8 stubs.
927   void
928   remove_all_cortex_a8_stubs();
929
930   // Look up a relocation stub using KEY.  Return NULL if there is none.
931   Reloc_stub*
932   find_reloc_stub(const Reloc_stub::Key& key) const
933   {
934     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
935     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
936   }
937
938   // Look up an arm v4bx relocation stub using the register index.
939   // Return NULL if there is none.
940   Arm_v4bx_stub*
941   find_arm_v4bx_stub(const uint32_t reg) const
942   {
943     gold_assert(reg < 0xf);
944     return this->arm_v4bx_stubs_[reg];
945   }
946
947   // Relocate stubs in this stub table.
948   void
949   relocate_stubs(const Relocate_info<32, big_endian>*,
950                  Target_arm<big_endian>*, Output_section*,
951                  unsigned char*, Arm_address, section_size_type);
952
953   // Update data size and alignment at the end of a relaxation pass.  Return
954   // true if either data size or alignment is different from that of the
955   // previous relaxation pass.
956   bool
957   update_data_size_and_addralign();
958
959   // Finalize stubs.  Set the offsets of all stubs and mark input sections
960   // needing the Cortex-A8 workaround.
961   void
962   finalize_stubs();
963   
964   // Apply Cortex-A8 workaround to an address range.
965   void
966   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
967                                               unsigned char*, Arm_address,
968                                               section_size_type);
969
970  protected:
971   // Write out section contents.
972   void
973   do_write(Output_file*);
974  
975   // Return the required alignment.
976   uint64_t
977   do_addralign() const
978   { return this->prev_addralign_; }
979
980   // Reset address and file offset.
981   void
982   do_reset_address_and_file_offset()
983   { this->set_current_data_size_for_child(this->prev_data_size_); }
984
985   // Set final data size.
986   void
987   set_final_data_size()
988   { this->set_data_size(this->current_data_size()); }
989   
990  private:
991   // Relocate one stub.
992   void
993   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
994                 Target_arm<big_endian>*, Output_section*,
995                 unsigned char*, Arm_address, section_size_type);
996
997   // Unordered map of relocation stubs.
998   typedef
999     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1000                   Reloc_stub::Key::equal_to>
1001     Reloc_stub_map;
1002
1003   // List of Cortex-A8 stubs ordered by addresses of branches being
1004   // fixed up in output.
1005   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1006   // List of Arm V4BX relocation stubs ordered by associated registers.
1007   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1008
1009   // Owner of this stub table.
1010   Arm_input_section<big_endian>* owner_;
1011   // The relocation stubs.
1012   Reloc_stub_map reloc_stubs_;
1013   // The cortex_a8_stubs.
1014   Cortex_a8_stub_list cortex_a8_stubs_;
1015   // The Arm V4BX relocation stubs.
1016   Arm_v4bx_stub_list arm_v4bx_stubs_;
1017   // data size of this in the previous pass.
1018   off_t prev_data_size_;
1019   // address alignment of this in the previous pass.
1020   uint64_t prev_addralign_;
1021 };
1022
1023 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1024 // we add to the end of an EXIDX input section that goes into the output.
1025
1026 class Arm_exidx_cantunwind : public Output_section_data
1027 {
1028  public:
1029   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1030     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1031   { }
1032
1033   // Return the object containing the section pointed by this.
1034   Relobj*
1035   relobj() const
1036   { return this->relobj_; }
1037
1038   // Return the section index of the section pointed by this.
1039   unsigned int
1040   shndx() const
1041   { return this->shndx_; }
1042
1043  protected:
1044   void
1045   do_write(Output_file* of)
1046   {
1047     if (parameters->target().is_big_endian())
1048       this->do_fixed_endian_write<true>(of);
1049     else
1050       this->do_fixed_endian_write<false>(of);
1051   }
1052
1053  private:
1054   // Implement do_write for a given endianity.
1055   template<bool big_endian>
1056   void inline
1057   do_fixed_endian_write(Output_file*);
1058   
1059   // The object containing the section pointed by this.
1060   Relobj* relobj_;
1061   // The section index of the section pointed by this.
1062   unsigned int shndx_;
1063 };
1064
1065 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1066 // Offset map is used to map input section offset within the EXIDX section
1067 // to the output offset from the start of this EXIDX section. 
1068
1069 typedef std::map<section_offset_type, section_offset_type>
1070         Arm_exidx_section_offset_map;
1071
1072 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1073 // with some of its entries merged.
1074
1075 class Arm_exidx_merged_section : public Output_relaxed_input_section
1076 {
1077  public:
1078   // Constructor for Arm_exidx_merged_section.
1079   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1080   // SECTION_OFFSET_MAP points to a section offset map describing how
1081   // parts of the input section are mapped to output.  DELETED_BYTES is
1082   // the number of bytes deleted from the EXIDX input section.
1083   Arm_exidx_merged_section(
1084       const Arm_exidx_input_section& exidx_input_section,
1085       const Arm_exidx_section_offset_map& section_offset_map,
1086       uint32_t deleted_bytes);
1087
1088   // Return the original EXIDX input section.
1089   const Arm_exidx_input_section&
1090   exidx_input_section() const
1091   { return this->exidx_input_section_; }
1092
1093   // Return the section offset map.
1094   const Arm_exidx_section_offset_map&
1095   section_offset_map() const
1096   { return this->section_offset_map_; }
1097
1098  protected:
1099   // Write merged section into file OF.
1100   void
1101   do_write(Output_file* of);
1102
1103   bool
1104   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1105                   section_offset_type*) const;
1106
1107  private:
1108   // Original EXIDX input section.
1109   const Arm_exidx_input_section& exidx_input_section_;
1110   // Section offset map.
1111   const Arm_exidx_section_offset_map& section_offset_map_;
1112 };
1113
1114 // A class to wrap an ordinary input section containing executable code.
1115
1116 template<bool big_endian>
1117 class Arm_input_section : public Output_relaxed_input_section
1118 {
1119  public:
1120   Arm_input_section(Relobj* relobj, unsigned int shndx)
1121     : Output_relaxed_input_section(relobj, shndx, 1),
1122       original_addralign_(1), original_size_(0), stub_table_(NULL)
1123   { }
1124
1125   ~Arm_input_section()
1126   { }
1127
1128   // Initialize.
1129   void
1130   init();
1131   
1132   // Whether this is a stub table owner.
1133   bool
1134   is_stub_table_owner() const
1135   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1136
1137   // Return the stub table.
1138   Stub_table<big_endian>*
1139   stub_table() const
1140   { return this->stub_table_; }
1141
1142   // Set the stub_table.
1143   void
1144   set_stub_table(Stub_table<big_endian>* stub_table)
1145   { this->stub_table_ = stub_table; }
1146
1147   // Downcast a base pointer to an Arm_input_section pointer.  This is
1148   // not type-safe but we only use Arm_input_section not the base class.
1149   static Arm_input_section<big_endian>*
1150   as_arm_input_section(Output_relaxed_input_section* poris)
1151   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1152
1153  protected:
1154   // Write data to output file.
1155   void
1156   do_write(Output_file*);
1157
1158   // Return required alignment of this.
1159   uint64_t
1160   do_addralign() const
1161   {
1162     if (this->is_stub_table_owner())
1163       return std::max(this->stub_table_->addralign(),
1164                       this->original_addralign_);
1165     else
1166       return this->original_addralign_;
1167   }
1168
1169   // Finalize data size.
1170   void
1171   set_final_data_size();
1172
1173   // Reset address and file offset.
1174   void
1175   do_reset_address_and_file_offset();
1176
1177   // Output offset.
1178   bool
1179   do_output_offset(const Relobj* object, unsigned int shndx,
1180                    section_offset_type offset,
1181                    section_offset_type* poutput) const
1182   {
1183     if ((object == this->relobj())
1184         && (shndx == this->shndx())
1185         && (offset >= 0)
1186         && (convert_types<uint64_t, section_offset_type>(offset)
1187             <= this->original_size_))
1188       {
1189         *poutput = offset;
1190         return true;
1191       }
1192     else
1193       return false;
1194   }
1195
1196  private:
1197   // Copying is not allowed.
1198   Arm_input_section(const Arm_input_section&);
1199   Arm_input_section& operator=(const Arm_input_section&);
1200
1201   // Address alignment of the original input section.
1202   uint64_t original_addralign_;
1203   // Section size of the original input section.
1204   uint64_t original_size_;
1205   // Stub table.
1206   Stub_table<big_endian>* stub_table_;
1207 };
1208
1209 // Arm_exidx_fixup class.  This is used to define a number of methods
1210 // and keep states for fixing up EXIDX coverage.
1211
1212 class Arm_exidx_fixup
1213 {
1214  public:
1215   Arm_exidx_fixup(Output_section* exidx_output_section)
1216     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1217       last_inlined_entry_(0), last_input_section_(NULL),
1218       section_offset_map_(NULL), first_output_text_section_(NULL)
1219   { }
1220
1221   ~Arm_exidx_fixup()
1222   { delete this->section_offset_map_; }
1223
1224   // Process an EXIDX section for entry merging.  Return  number of bytes to
1225   // be deleted in output.  If parts of the input EXIDX section are merged
1226   // a heap allocated Arm_exidx_section_offset_map is store in the located
1227   // PSECTION_OFFSET_MAP.  The caller owns the map and is reponsible for
1228   // releasing it.
1229   template<bool big_endian>
1230   uint32_t
1231   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1232                         Arm_exidx_section_offset_map** psection_offset_map);
1233   
1234   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1235   // input section, if there is not one already.
1236   void
1237   add_exidx_cantunwind_as_needed();
1238
1239   // Return the output section for the text section which is linked to the
1240   // first exidx input in output.
1241   Output_section*
1242   first_output_text_section() const
1243   { return this->first_output_text_section_; }
1244
1245  private:
1246   // Copying is not allowed.
1247   Arm_exidx_fixup(const Arm_exidx_fixup&);
1248   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1249
1250   // Type of EXIDX unwind entry.
1251   enum Unwind_type
1252   {
1253     // No type.
1254     UT_NONE,
1255     // EXIDX_CANTUNWIND.
1256     UT_EXIDX_CANTUNWIND,
1257     // Inlined entry.
1258     UT_INLINED_ENTRY,
1259     // Normal entry.
1260     UT_NORMAL_ENTRY,
1261   };
1262
1263   // Process an EXIDX entry.  We only care about the second word of the
1264   // entry.  Return true if the entry can be deleted.
1265   bool
1266   process_exidx_entry(uint32_t second_word);
1267
1268   // Update the current section offset map during EXIDX section fix-up.
1269   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1270   // reference point, DELETED_BYTES is the number of deleted by in the
1271   // section so far.  If DELETE_ENTRY is true, the reference point and
1272   // all offsets after the previous reference point are discarded.
1273   void
1274   update_offset_map(section_offset_type input_offset,
1275                     section_size_type deleted_bytes, bool delete_entry);
1276
1277   // EXIDX output section.
1278   Output_section* exidx_output_section_;
1279   // Unwind type of the last EXIDX entry processed.
1280   Unwind_type last_unwind_type_;
1281   // Last seen inlined EXIDX entry.
1282   uint32_t last_inlined_entry_;
1283   // Last processed EXIDX input section.
1284   const Arm_exidx_input_section* last_input_section_;
1285   // Section offset map created in process_exidx_section.
1286   Arm_exidx_section_offset_map* section_offset_map_;
1287   // Output section for the text section which is linked to the first exidx
1288   // input in output.
1289   Output_section* first_output_text_section_;
1290 };
1291
1292 // Arm output section class.  This is defined mainly to add a number of
1293 // stub generation methods.
1294
1295 template<bool big_endian>
1296 class Arm_output_section : public Output_section
1297 {
1298  public:
1299   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1300
1301   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1302                      elfcpp::Elf_Xword flags)
1303     : Output_section(name, type, flags)
1304   { }
1305
1306   ~Arm_output_section()
1307   { }
1308   
1309   // Group input sections for stub generation.
1310   void
1311   group_sections(section_size_type, bool, Target_arm<big_endian>*);
1312
1313   // Downcast a base pointer to an Arm_output_section pointer.  This is
1314   // not type-safe but we only use Arm_output_section not the base class.
1315   static Arm_output_section<big_endian>*
1316   as_arm_output_section(Output_section* os)
1317   { return static_cast<Arm_output_section<big_endian>*>(os); }
1318
1319   // Append all input text sections in this into LIST.
1320   void
1321   append_text_sections_to_list(Text_section_list* list);
1322
1323   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1324   // is a list of text input sections sorted in ascending order of their
1325   // output addresses.
1326   void
1327   fix_exidx_coverage(Layout* layout,
1328                      const Text_section_list& sorted_text_section,
1329                      Symbol_table* symtab);
1330
1331  private:
1332   // For convenience.
1333   typedef Output_section::Input_section Input_section;
1334   typedef Output_section::Input_section_list Input_section_list;
1335
1336   // Create a stub group.
1337   void create_stub_group(Input_section_list::const_iterator,
1338                          Input_section_list::const_iterator,
1339                          Input_section_list::const_iterator,
1340                          Target_arm<big_endian>*,
1341                          std::vector<Output_relaxed_input_section*>*);
1342 };
1343
1344 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1345
1346 class Arm_exidx_input_section
1347 {
1348  public:
1349   static const section_offset_type invalid_offset =
1350     static_cast<section_offset_type>(-1);
1351
1352   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1353                           unsigned int link, uint32_t size, uint32_t addralign)
1354     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1355       addralign_(addralign)
1356   { }
1357
1358   ~Arm_exidx_input_section()
1359   { }
1360         
1361   // Accessors:  This is a read-only class.
1362
1363   // Return the object containing this EXIDX input section.
1364   Relobj*
1365   relobj() const
1366   { return this->relobj_; }
1367
1368   // Return the section index of this EXIDX input section.
1369   unsigned int
1370   shndx() const
1371   { return this->shndx_; }
1372
1373   // Return the section index of linked text section in the same object.
1374   unsigned int
1375   link() const
1376   { return this->link_; }
1377
1378   // Return size of the EXIDX input section.
1379   uint32_t
1380   size() const
1381   { return this->size_; }
1382
1383   // Reutnr address alignment of EXIDX input section.
1384   uint32_t
1385   addralign() const
1386   { return this->addralign_; }
1387
1388  private:
1389   // Object containing this.
1390   Relobj* relobj_;
1391   // Section index of this.
1392   unsigned int shndx_;
1393   // text section linked to this in the same object.
1394   unsigned int link_;
1395   // Size of this.  For ARM 32-bit is sufficient.
1396   uint32_t size_;
1397   // Address alignment of this.  For ARM 32-bit is sufficient.
1398   uint32_t addralign_;
1399 };
1400
1401 // Arm_relobj class.
1402
1403 template<bool big_endian>
1404 class Arm_relobj : public Sized_relobj<32, big_endian>
1405 {
1406  public:
1407   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1408
1409   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1410              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1411     : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1412       stub_tables_(), local_symbol_is_thumb_function_(),
1413       attributes_section_data_(NULL), mapping_symbols_info_(),
1414       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1415       output_local_symbol_count_needs_update_(false)
1416   { }
1417
1418   ~Arm_relobj()
1419   { delete this->attributes_section_data_; }
1420  
1421   // Return the stub table of the SHNDX-th section if there is one.
1422   Stub_table<big_endian>*
1423   stub_table(unsigned int shndx) const
1424   {
1425     gold_assert(shndx < this->stub_tables_.size());
1426     return this->stub_tables_[shndx];
1427   }
1428
1429   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1430   void
1431   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1432   {
1433     gold_assert(shndx < this->stub_tables_.size());
1434     this->stub_tables_[shndx] = stub_table;
1435   }
1436
1437   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1438   // index.  This is only valid after do_count_local_symbol is called.
1439   bool
1440   local_symbol_is_thumb_function(unsigned int r_sym) const
1441   {
1442     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1443     return this->local_symbol_is_thumb_function_[r_sym];
1444   }
1445   
1446   // Scan all relocation sections for stub generation.
1447   void
1448   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1449                           const Layout*);
1450
1451   // Convert regular input section with index SHNDX to a relaxed section.
1452   void
1453   convert_input_section_to_relaxed_section(unsigned shndx)
1454   {
1455     // The stubs have relocations and we need to process them after writing
1456     // out the stubs.  So relocation now must follow section write.
1457     this->set_section_offset(shndx, -1ULL);
1458     this->set_relocs_must_follow_section_writes();
1459   }
1460
1461   // Downcast a base pointer to an Arm_relobj pointer.  This is
1462   // not type-safe but we only use Arm_relobj not the base class.
1463   static Arm_relobj<big_endian>*
1464   as_arm_relobj(Relobj* relobj)
1465   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1466
1467   // Processor-specific flags in ELF file header.  This is valid only after
1468   // reading symbols.
1469   elfcpp::Elf_Word
1470   processor_specific_flags() const
1471   { return this->processor_specific_flags_; }
1472
1473   // Attribute section data  This is the contents of the .ARM.attribute section
1474   // if there is one.
1475   const Attributes_section_data*
1476   attributes_section_data() const
1477   { return this->attributes_section_data_; }
1478
1479   // Mapping symbol location.
1480   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1481
1482   // Functor for STL container.
1483   struct Mapping_symbol_position_less
1484   {
1485     bool
1486     operator()(const Mapping_symbol_position& p1,
1487                const Mapping_symbol_position& p2) const
1488     {
1489       return (p1.first < p2.first
1490               || (p1.first == p2.first && p1.second < p2.second));
1491     }
1492   };
1493   
1494   // We only care about the first character of a mapping symbol, so
1495   // we only store that instead of the whole symbol name.
1496   typedef std::map<Mapping_symbol_position, char,
1497                    Mapping_symbol_position_less> Mapping_symbols_info;
1498
1499   // Whether a section contains any Cortex-A8 workaround.
1500   bool
1501   section_has_cortex_a8_workaround(unsigned int shndx) const
1502   { 
1503     return (this->section_has_cortex_a8_workaround_ != NULL
1504             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1505   }
1506   
1507   // Mark a section that has Cortex-A8 workaround.
1508   void
1509   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1510   {
1511     if (this->section_has_cortex_a8_workaround_ == NULL)
1512       this->section_has_cortex_a8_workaround_ =
1513         new std::vector<bool>(this->shnum(), false);
1514     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1515   }
1516
1517   // Return the EXIDX section of an text section with index SHNDX or NULL
1518   // if the text section has no associated EXIDX section.
1519   const Arm_exidx_input_section*
1520   exidx_input_section_by_link(unsigned int shndx) const
1521   {
1522     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1523     return ((p != this->exidx_section_map_.end()
1524              && p->second->link() == shndx)
1525             ? p->second
1526             : NULL);
1527   }
1528
1529   // Return the EXIDX section with index SHNDX or NULL if there is none.
1530   const Arm_exidx_input_section*
1531   exidx_input_section_by_shndx(unsigned shndx) const
1532   {
1533     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1534     return ((p != this->exidx_section_map_.end()
1535              && p->second->shndx() == shndx)
1536             ? p->second
1537             : NULL);
1538   }
1539
1540   // Whether output local symbol count needs updating.
1541   bool
1542   output_local_symbol_count_needs_update() const
1543   { return this->output_local_symbol_count_needs_update_; }
1544
1545   // Set output_local_symbol_count_needs_update flag to be true.
1546   void
1547   set_output_local_symbol_count_needs_update()
1548   { this->output_local_symbol_count_needs_update_ = true; }
1549   
1550   // Update output local symbol count at the end of relaxation.
1551   void
1552   update_output_local_symbol_count();
1553
1554  protected:
1555   // Post constructor setup.
1556   void
1557   do_setup()
1558   {
1559     // Call parent's setup method.
1560     Sized_relobj<32, big_endian>::do_setup();
1561
1562     // Initialize look-up tables.
1563     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1564     this->stub_tables_.swap(empty_stub_table_list);
1565   }
1566
1567   // Count the local symbols.
1568   void
1569   do_count_local_symbols(Stringpool_template<char>*,
1570                          Stringpool_template<char>*);
1571
1572   void
1573   do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1574                        const unsigned char* pshdrs,
1575                        typename Sized_relobj<32, big_endian>::Views* pivews);
1576
1577   // Read the symbol information.
1578   void
1579   do_read_symbols(Read_symbols_data* sd);
1580
1581   // Process relocs for garbage collection.
1582   void
1583   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1584
1585  private:
1586
1587   // Whether a section needs to be scanned for relocation stubs.
1588   bool
1589   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1590                                     const Relobj::Output_sections&,
1591                                     const Symbol_table *, const unsigned char*);
1592
1593   // Whether a section is a scannable text section.
1594   bool
1595   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1596                        const Output_section*, const Symbol_table *);
1597
1598   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1599   bool
1600   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1601                                         unsigned int, Output_section*,
1602                                         const Symbol_table *);
1603
1604   // Scan a section for the Cortex-A8 erratum.
1605   void
1606   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1607                                      unsigned int, Output_section*,
1608                                      Target_arm<big_endian>*);
1609
1610   // Find the linked text section of an EXIDX section by looking at the
1611   // first reloction of the EXIDX section.  PSHDR points to the section
1612   // headers of a relocation section and PSYMS points to the local symbols.
1613   // PSHNDX points to a location storing the text section index if found.
1614   // Return whether we can find the linked section.
1615   bool
1616   find_linked_text_section(const unsigned char* pshdr,
1617                            const unsigned char* psyms, unsigned int* pshndx);
1618
1619   //
1620   // Make a new Arm_exidx_input_section object for EXIDX section with
1621   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1622   // index of the linked text section.
1623   void
1624   make_exidx_input_section(unsigned int shndx,
1625                            const elfcpp::Shdr<32, big_endian>& shdr,
1626                            unsigned int text_shndx);
1627
1628   // Return the output address of either a plain input section or a
1629   // relaxed input section.  SHNDX is the section index.
1630   Arm_address
1631   simple_input_section_output_address(unsigned int, Output_section*);
1632
1633   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1634   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1635     Exidx_section_map;
1636
1637   // List of stub tables.
1638   Stub_table_list stub_tables_;
1639   // Bit vector to tell if a local symbol is a thumb function or not.
1640   // This is only valid after do_count_local_symbol is called.
1641   std::vector<bool> local_symbol_is_thumb_function_;
1642   // processor-specific flags in ELF file header.
1643   elfcpp::Elf_Word processor_specific_flags_;
1644   // Object attributes if there is an .ARM.attributes section or NULL.
1645   Attributes_section_data* attributes_section_data_;
1646   // Mapping symbols information.
1647   Mapping_symbols_info mapping_symbols_info_;
1648   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1649   std::vector<bool>* section_has_cortex_a8_workaround_;
1650   // Map a text section to its associated .ARM.exidx section, if there is one.
1651   Exidx_section_map exidx_section_map_;
1652   // Whether output local symbol count needs updating.
1653   bool output_local_symbol_count_needs_update_;
1654 };
1655
1656 // Arm_dynobj class.
1657
1658 template<bool big_endian>
1659 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1660 {
1661  public:
1662   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1663              const elfcpp::Ehdr<32, big_endian>& ehdr)
1664     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1665       processor_specific_flags_(0), attributes_section_data_(NULL)
1666   { }
1667  
1668   ~Arm_dynobj()
1669   { delete this->attributes_section_data_; }
1670
1671   // Downcast a base pointer to an Arm_relobj pointer.  This is
1672   // not type-safe but we only use Arm_relobj not the base class.
1673   static Arm_dynobj<big_endian>*
1674   as_arm_dynobj(Dynobj* dynobj)
1675   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1676
1677   // Processor-specific flags in ELF file header.  This is valid only after
1678   // reading symbols.
1679   elfcpp::Elf_Word
1680   processor_specific_flags() const
1681   { return this->processor_specific_flags_; }
1682
1683   // Attributes section data.
1684   const Attributes_section_data*
1685   attributes_section_data() const
1686   { return this->attributes_section_data_; }
1687
1688  protected:
1689   // Read the symbol information.
1690   void
1691   do_read_symbols(Read_symbols_data* sd);
1692
1693  private:
1694   // processor-specific flags in ELF file header.
1695   elfcpp::Elf_Word processor_specific_flags_;
1696   // Object attributes if there is an .ARM.attributes section or NULL.
1697   Attributes_section_data* attributes_section_data_;
1698 };
1699
1700 // Functor to read reloc addends during stub generation.
1701
1702 template<int sh_type, bool big_endian>
1703 struct Stub_addend_reader
1704 {
1705   // Return the addend for a relocation of a particular type.  Depending
1706   // on whether this is a REL or RELA relocation, read the addend from a
1707   // view or from a Reloc object.
1708   elfcpp::Elf_types<32>::Elf_Swxword
1709   operator()(
1710     unsigned int /* r_type */,
1711     const unsigned char* /* view */,
1712     const typename Reloc_types<sh_type,
1713                                32, big_endian>::Reloc& /* reloc */) const;
1714 };
1715
1716 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1717
1718 template<bool big_endian>
1719 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1720 {
1721   elfcpp::Elf_types<32>::Elf_Swxword
1722   operator()(
1723     unsigned int,
1724     const unsigned char*,
1725     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1726 };
1727
1728 // Specialized Stub_addend_reader for RELA type relocation sections.
1729 // We currently do not handle RELA type relocation sections but it is trivial
1730 // to implement the addend reader.  This is provided for completeness and to
1731 // make it easier to add support for RELA relocation sections in the future.
1732
1733 template<bool big_endian>
1734 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1735 {
1736   elfcpp::Elf_types<32>::Elf_Swxword
1737   operator()(
1738     unsigned int,
1739     const unsigned char*,
1740     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1741                                big_endian>::Reloc& reloc) const
1742   { return reloc.get_r_addend(); }
1743 };
1744
1745 // Cortex_a8_reloc class.  We keep record of relocation that may need
1746 // the Cortex-A8 erratum workaround.
1747
1748 class Cortex_a8_reloc
1749 {
1750  public:
1751   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1752                   Arm_address destination)
1753     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1754   { }
1755
1756   ~Cortex_a8_reloc()
1757   { }
1758
1759   // Accessors:  This is a read-only class.
1760   
1761   // Return the relocation stub associated with this relocation if there is
1762   // one.
1763   const Reloc_stub*
1764   reloc_stub() const
1765   { return this->reloc_stub_; } 
1766   
1767   // Return the relocation type.
1768   unsigned int
1769   r_type() const
1770   { return this->r_type_; }
1771
1772   // Return the destination address of the relocation.  LSB stores the THUMB
1773   // bit.
1774   Arm_address
1775   destination() const
1776   { return this->destination_; }
1777
1778  private:
1779   // Associated relocation stub if there is one, or NULL.
1780   const Reloc_stub* reloc_stub_;
1781   // Relocation type.
1782   unsigned int r_type_;
1783   // Destination address of this relocation.  LSB is used to distinguish
1784   // ARM/THUMB mode.
1785   Arm_address destination_;
1786 };
1787
1788 // Arm_output_data_got class.  We derive this from Output_data_got to add
1789 // extra methods to handle TLS relocations in a static link.
1790
1791 template<bool big_endian>
1792 class Arm_output_data_got : public Output_data_got<32, big_endian>
1793 {
1794  public:
1795   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1796     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1797   { }
1798
1799   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1800   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1801   // applied in a static link.
1802   void
1803   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1804   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1805
1806   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1807   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1808   // relocation that needs to be applied in a static link.
1809   void
1810   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1811                    Sized_relobj<32, big_endian>* relobj, unsigned int index)
1812   {
1813     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1814                                                 index));
1815   }
1816
1817   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1818   // The first one is initialized to be 1, which is the module index for
1819   // the main executable and the second one 0.  A reloc of the type
1820   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1821   // be applied by gold.  GSYM is a global symbol.
1822   void
1823   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1824
1825   // Same as the above but for a local symbol in OBJECT with INDEX.
1826   void
1827   add_tls_gd32_with_static_reloc(unsigned int got_type,
1828                                  Sized_relobj<32, big_endian>* object,
1829                                  unsigned int index);
1830
1831  protected:
1832   // Write out the GOT table.
1833   void
1834   do_write(Output_file*);
1835
1836  private:
1837   // This class represent dynamic relocations that need to be applied by
1838   // gold because we are using TLS relocations in a static link.
1839   class Static_reloc
1840   {
1841    public:
1842     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1843       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1844     { this->u_.global.symbol = gsym; }
1845
1846     Static_reloc(unsigned int got_offset, unsigned int r_type,
1847           Sized_relobj<32, big_endian>* relobj, unsigned int index)
1848       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1849     {
1850       this->u_.local.relobj = relobj;
1851       this->u_.local.index = index;
1852     }
1853
1854     // Return the GOT offset.
1855     unsigned int
1856     got_offset() const
1857     { return this->got_offset_; }
1858
1859     // Relocation type.
1860     unsigned int
1861     r_type() const
1862     { return this->r_type_; }
1863
1864     // Whether the symbol is global or not.
1865     bool
1866     symbol_is_global() const
1867     { return this->symbol_is_global_; }
1868
1869     // For a relocation against a global symbol, the global symbol.
1870     Symbol*
1871     symbol() const
1872     {
1873       gold_assert(this->symbol_is_global_);
1874       return this->u_.global.symbol;
1875     }
1876
1877     // For a relocation against a local symbol, the defining object.
1878     Sized_relobj<32, big_endian>*
1879     relobj() const
1880     {
1881       gold_assert(!this->symbol_is_global_);
1882       return this->u_.local.relobj;
1883     }
1884
1885     // For a relocation against a local symbol, the local symbol index.
1886     unsigned int
1887     index() const
1888     {
1889       gold_assert(!this->symbol_is_global_);
1890       return this->u_.local.index;
1891     }
1892
1893    private:
1894     // GOT offset of the entry to which this relocation is applied.
1895     unsigned int got_offset_;
1896     // Type of relocation.
1897     unsigned int r_type_;
1898     // Whether this relocation is against a global symbol.
1899     bool symbol_is_global_;
1900     // A global or local symbol.
1901     union
1902     {
1903       struct
1904       {
1905         // For a global symbol, the symbol itself.
1906         Symbol* symbol;
1907       } global;
1908       struct
1909       {
1910         // For a local symbol, the object defining object.
1911         Sized_relobj<32, big_endian>* relobj;
1912         // For a local symbol, the symbol index.
1913         unsigned int index;
1914       } local;
1915     } u_;
1916   };
1917
1918   // Symbol table of the output object.
1919   Symbol_table* symbol_table_;
1920   // Layout of the output object.
1921   Layout* layout_;
1922   // Static relocs to be applied to the GOT.
1923   std::vector<Static_reloc> static_relocs_;
1924 };
1925
1926 // Utilities for manipulating integers of up to 32-bits
1927
1928 namespace utils
1929 {
1930   // Sign extend an n-bit unsigned integer stored in an uint32_t into
1931   // an int32_t.  NO_BITS must be between 1 to 32.
1932   template<int no_bits>
1933   static inline int32_t
1934   sign_extend(uint32_t bits)
1935   {
1936     gold_assert(no_bits >= 0 && no_bits <= 32);
1937     if (no_bits == 32)
1938       return static_cast<int32_t>(bits);
1939     uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1940     bits &= mask;
1941     uint32_t top_bit = 1U << (no_bits - 1);
1942     int32_t as_signed = static_cast<int32_t>(bits);
1943     return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1944   }
1945
1946   // Detects overflow of an NO_BITS integer stored in a uint32_t.
1947   template<int no_bits>
1948   static inline bool
1949   has_overflow(uint32_t bits)
1950   {
1951     gold_assert(no_bits >= 0 && no_bits <= 32);
1952     if (no_bits == 32)
1953       return false;
1954     int32_t max = (1 << (no_bits - 1)) - 1;
1955     int32_t min = -(1 << (no_bits - 1));
1956     int32_t as_signed = static_cast<int32_t>(bits);
1957     return as_signed > max || as_signed < min;
1958   }
1959
1960   // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1961   // fits in the given number of bits as either a signed or unsigned value.
1962   // For example, has_signed_unsigned_overflow<8> would check
1963   // -128 <= bits <= 255
1964   template<int no_bits>
1965   static inline bool
1966   has_signed_unsigned_overflow(uint32_t bits)
1967   {
1968     gold_assert(no_bits >= 2 && no_bits <= 32);
1969     if (no_bits == 32)
1970       return false;
1971     int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1972     int32_t min = -(1 << (no_bits - 1));
1973     int32_t as_signed = static_cast<int32_t>(bits);
1974     return as_signed > max || as_signed < min;
1975   }
1976
1977   // Select bits from A and B using bits in MASK.  For each n in [0..31],
1978   // the n-th bit in the result is chosen from the n-th bits of A and B.
1979   // A zero selects A and a one selects B.
1980   static inline uint32_t
1981   bit_select(uint32_t a, uint32_t b, uint32_t mask)
1982   { return (a & ~mask) | (b & mask); }
1983 };
1984
1985 template<bool big_endian>
1986 class Target_arm : public Sized_target<32, big_endian>
1987 {
1988  public:
1989   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
1990     Reloc_section;
1991
1992   // When were are relocating a stub, we pass this as the relocation number.
1993   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
1994
1995   Target_arm()
1996     : Sized_target<32, big_endian>(&arm_info),
1997       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
1998       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
1999       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2000       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2001       may_use_blx_(false), should_force_pic_veneer_(false),
2002       arm_input_section_map_(), attributes_section_data_(NULL),
2003       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2004   { }
2005
2006   // Whether we can use BLX.
2007   bool
2008   may_use_blx() const
2009   { return this->may_use_blx_; }
2010
2011   // Set use-BLX flag.
2012   void
2013   set_may_use_blx(bool value)
2014   { this->may_use_blx_ = value; }
2015   
2016   // Whether we force PCI branch veneers.
2017   bool
2018   should_force_pic_veneer() const
2019   { return this->should_force_pic_veneer_; }
2020
2021   // Set PIC veneer flag.
2022   void
2023   set_should_force_pic_veneer(bool value)
2024   { this->should_force_pic_veneer_ = value; }
2025   
2026   // Whether we use THUMB-2 instructions.
2027   bool
2028   using_thumb2() const
2029   {
2030     Object_attribute* attr =
2031       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2032     int arch = attr->int_value();
2033     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2034   }
2035
2036   // Whether we use THUMB/THUMB-2 instructions only.
2037   bool
2038   using_thumb_only() const
2039   {
2040     Object_attribute* attr =
2041       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2042     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2043         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2044       return false;
2045     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2046     return attr->int_value() == 'M';
2047   }
2048
2049   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2050   bool
2051   may_use_arm_nop() const
2052   {
2053     Object_attribute* attr =
2054       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2055     int arch = attr->int_value();
2056     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2057             || arch == elfcpp::TAG_CPU_ARCH_V6K
2058             || arch == elfcpp::TAG_CPU_ARCH_V7
2059             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2060   }
2061
2062   // Whether we have THUMB-2 NOP.W instruction.
2063   bool
2064   may_use_thumb2_nop() const
2065   {
2066     Object_attribute* attr =
2067       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2068     int arch = attr->int_value();
2069     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2070             || arch == elfcpp::TAG_CPU_ARCH_V7
2071             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2072   }
2073   
2074   // Process the relocations to determine unreferenced sections for 
2075   // garbage collection.
2076   void
2077   gc_process_relocs(Symbol_table* symtab,
2078                     Layout* layout,
2079                     Sized_relobj<32, big_endian>* object,
2080                     unsigned int data_shndx,
2081                     unsigned int sh_type,
2082                     const unsigned char* prelocs,
2083                     size_t reloc_count,
2084                     Output_section* output_section,
2085                     bool needs_special_offset_handling,
2086                     size_t local_symbol_count,
2087                     const unsigned char* plocal_symbols);
2088
2089   // Scan the relocations to look for symbol adjustments.
2090   void
2091   scan_relocs(Symbol_table* symtab,
2092               Layout* layout,
2093               Sized_relobj<32, big_endian>* object,
2094               unsigned int data_shndx,
2095               unsigned int sh_type,
2096               const unsigned char* prelocs,
2097               size_t reloc_count,
2098               Output_section* output_section,
2099               bool needs_special_offset_handling,
2100               size_t local_symbol_count,
2101               const unsigned char* plocal_symbols);
2102
2103   // Finalize the sections.
2104   void
2105   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2106
2107   // Return the value to use for a dynamic symbol which requires special
2108   // treatment.
2109   uint64_t
2110   do_dynsym_value(const Symbol*) const;
2111
2112   // Relocate a section.
2113   void
2114   relocate_section(const Relocate_info<32, big_endian>*,
2115                    unsigned int sh_type,
2116                    const unsigned char* prelocs,
2117                    size_t reloc_count,
2118                    Output_section* output_section,
2119                    bool needs_special_offset_handling,
2120                    unsigned char* view,
2121                    Arm_address view_address,
2122                    section_size_type view_size,
2123                    const Reloc_symbol_changes*);
2124
2125   // Scan the relocs during a relocatable link.
2126   void
2127   scan_relocatable_relocs(Symbol_table* symtab,
2128                           Layout* layout,
2129                           Sized_relobj<32, big_endian>* object,
2130                           unsigned int data_shndx,
2131                           unsigned int sh_type,
2132                           const unsigned char* prelocs,
2133                           size_t reloc_count,
2134                           Output_section* output_section,
2135                           bool needs_special_offset_handling,
2136                           size_t local_symbol_count,
2137                           const unsigned char* plocal_symbols,
2138                           Relocatable_relocs*);
2139
2140   // Relocate a section during a relocatable link.
2141   void
2142   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2143                            unsigned int sh_type,
2144                            const unsigned char* prelocs,
2145                            size_t reloc_count,
2146                            Output_section* output_section,
2147                            off_t offset_in_output_section,
2148                            const Relocatable_relocs*,
2149                            unsigned char* view,
2150                            Arm_address view_address,
2151                            section_size_type view_size,
2152                            unsigned char* reloc_view,
2153                            section_size_type reloc_view_size);
2154
2155   // Return whether SYM is defined by the ABI.
2156   bool
2157   do_is_defined_by_abi(Symbol* sym) const
2158   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2159
2160   // Return whether there is a GOT section.
2161   bool
2162   has_got_section() const
2163   { return this->got_ != NULL; }
2164
2165   // Return the size of the GOT section.
2166   section_size_type
2167   got_size()
2168   {
2169     gold_assert(this->got_ != NULL);
2170     return this->got_->data_size();
2171   }
2172
2173   // Map platform-specific reloc types
2174   static unsigned int
2175   get_real_reloc_type (unsigned int r_type);
2176
2177   //
2178   // Methods to support stub-generations.
2179   //
2180   
2181   // Return the stub factory
2182   const Stub_factory&
2183   stub_factory() const
2184   { return this->stub_factory_; }
2185
2186   // Make a new Arm_input_section object.
2187   Arm_input_section<big_endian>*
2188   new_arm_input_section(Relobj*, unsigned int);
2189
2190   // Find the Arm_input_section object corresponding to the SHNDX-th input
2191   // section of RELOBJ.
2192   Arm_input_section<big_endian>*
2193   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2194
2195   // Make a new Stub_table
2196   Stub_table<big_endian>*
2197   new_stub_table(Arm_input_section<big_endian>*);
2198
2199   // Scan a section for stub generation.
2200   void
2201   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2202                          const unsigned char*, size_t, Output_section*,
2203                          bool, const unsigned char*, Arm_address,
2204                          section_size_type);
2205
2206   // Relocate a stub. 
2207   void
2208   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2209                 Output_section*, unsigned char*, Arm_address,
2210                 section_size_type);
2211  
2212   // Get the default ARM target.
2213   static Target_arm<big_endian>*
2214   default_target()
2215   {
2216     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2217                 && parameters->target().is_big_endian() == big_endian);
2218     return static_cast<Target_arm<big_endian>*>(
2219              parameters->sized_target<32, big_endian>());
2220   }
2221
2222   // Whether NAME belongs to a mapping symbol.
2223   static bool
2224   is_mapping_symbol_name(const char* name)
2225   {
2226     return (name
2227             && name[0] == '$'
2228             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2229             && (name[2] == '\0' || name[2] == '.'));
2230   }
2231
2232   // Whether we work around the Cortex-A8 erratum.
2233   bool
2234   fix_cortex_a8() const
2235   { return this->fix_cortex_a8_; }
2236
2237   // Whether we fix R_ARM_V4BX relocation.
2238   // 0 - do not fix
2239   // 1 - replace with MOV instruction (armv4 target)
2240   // 2 - make interworking veneer (>= armv4t targets only)
2241   General_options::Fix_v4bx
2242   fix_v4bx() const
2243   { return parameters->options().fix_v4bx(); }
2244
2245   // Scan a span of THUMB code section for Cortex-A8 erratum.
2246   void
2247   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2248                                   section_size_type, section_size_type,
2249                                   const unsigned char*, Arm_address);
2250
2251   // Apply Cortex-A8 workaround to a branch.
2252   void
2253   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2254                              unsigned char*, Arm_address);
2255
2256  protected:
2257   // Make an ELF object.
2258   Object*
2259   do_make_elf_object(const std::string&, Input_file*, off_t,
2260                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2261
2262   Object*
2263   do_make_elf_object(const std::string&, Input_file*, off_t,
2264                      const elfcpp::Ehdr<32, !big_endian>&)
2265   { gold_unreachable(); }
2266
2267   Object*
2268   do_make_elf_object(const std::string&, Input_file*, off_t,
2269                       const elfcpp::Ehdr<64, false>&)
2270   { gold_unreachable(); }
2271
2272   Object*
2273   do_make_elf_object(const std::string&, Input_file*, off_t,
2274                      const elfcpp::Ehdr<64, true>&)
2275   { gold_unreachable(); }
2276
2277   // Make an output section.
2278   Output_section*
2279   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2280                          elfcpp::Elf_Xword flags)
2281   { return new Arm_output_section<big_endian>(name, type, flags); }
2282
2283   void
2284   do_adjust_elf_header(unsigned char* view, int len) const;
2285
2286   // We only need to generate stubs, and hence perform relaxation if we are
2287   // not doing relocatable linking.
2288   bool
2289   do_may_relax() const
2290   { return !parameters->options().relocatable(); }
2291
2292   bool
2293   do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2294
2295   // Determine whether an object attribute tag takes an integer, a
2296   // string or both.
2297   int
2298   do_attribute_arg_type(int tag) const;
2299
2300   // Reorder tags during output.
2301   int
2302   do_attributes_order(int num) const;
2303
2304   // This is called when the target is selected as the default.
2305   void
2306   do_select_as_default_target()
2307   {
2308     // No locking is required since there should only be one default target.
2309     // We cannot have both the big-endian and little-endian ARM targets
2310     // as the default.
2311     gold_assert(arm_reloc_property_table == NULL);
2312     arm_reloc_property_table = new Arm_reloc_property_table();
2313   }
2314
2315  private:
2316   // The class which scans relocations.
2317   class Scan
2318   {
2319    public:
2320     Scan()
2321       : issued_non_pic_error_(false)
2322     { }
2323
2324     inline void
2325     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2326           Sized_relobj<32, big_endian>* object,
2327           unsigned int data_shndx,
2328           Output_section* output_section,
2329           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2330           const elfcpp::Sym<32, big_endian>& lsym);
2331
2332     inline void
2333     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2334            Sized_relobj<32, big_endian>* object,
2335            unsigned int data_shndx,
2336            Output_section* output_section,
2337            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2338            Symbol* gsym);
2339
2340     inline bool
2341     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2342                                         Sized_relobj<32, big_endian>* ,
2343                                         unsigned int ,
2344                                         Output_section* ,
2345                                         const elfcpp::Rel<32, big_endian>& ,
2346                                         unsigned int ,
2347                                         const elfcpp::Sym<32, big_endian>&)
2348     { return false; }
2349
2350     inline bool
2351     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2352                                          Sized_relobj<32, big_endian>* ,
2353                                          unsigned int ,
2354                                          Output_section* ,
2355                                          const elfcpp::Rel<32, big_endian>& ,
2356                                          unsigned int , Symbol*)
2357     { return false; }
2358
2359    private:
2360     static void
2361     unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2362                             unsigned int r_type);
2363
2364     static void
2365     unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2366                              unsigned int r_type, Symbol*);
2367
2368     void
2369     check_non_pic(Relobj*, unsigned int r_type);
2370
2371     // Almost identical to Symbol::needs_plt_entry except that it also
2372     // handles STT_ARM_TFUNC.
2373     static bool
2374     symbol_needs_plt_entry(const Symbol* sym)
2375     {
2376       // An undefined symbol from an executable does not need a PLT entry.
2377       if (sym->is_undefined() && !parameters->options().shared())
2378         return false;
2379
2380       return (!parameters->doing_static_link()
2381               && (sym->type() == elfcpp::STT_FUNC
2382                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2383               && (sym->is_from_dynobj()
2384                   || sym->is_undefined()
2385                   || sym->is_preemptible()));
2386     }
2387
2388     // Whether we have issued an error about a non-PIC compilation.
2389     bool issued_non_pic_error_;
2390   };
2391
2392   // The class which implements relocation.
2393   class Relocate
2394   {
2395    public:
2396     Relocate()
2397     { }
2398
2399     ~Relocate()
2400     { }
2401
2402     // Return whether the static relocation needs to be applied.
2403     inline bool
2404     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2405                               int ref_flags,
2406                               bool is_32bit,
2407                               Output_section* output_section);
2408
2409     // Do a relocation.  Return false if the caller should not issue
2410     // any warnings about this relocation.
2411     inline bool
2412     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2413              Output_section*,  size_t relnum,
2414              const elfcpp::Rel<32, big_endian>&,
2415              unsigned int r_type, const Sized_symbol<32>*,
2416              const Symbol_value<32>*,
2417              unsigned char*, Arm_address,
2418              section_size_type);
2419
2420     // Return whether we want to pass flag NON_PIC_REF for this
2421     // reloc.  This means the relocation type accesses a symbol not via
2422     // GOT or PLT.
2423     static inline bool
2424     reloc_is_non_pic (unsigned int r_type)
2425     {
2426       switch (r_type)
2427         {
2428         // These relocation types reference GOT or PLT entries explicitly.
2429         case elfcpp::R_ARM_GOT_BREL:
2430         case elfcpp::R_ARM_GOT_ABS:
2431         case elfcpp::R_ARM_GOT_PREL:
2432         case elfcpp::R_ARM_GOT_BREL12:
2433         case elfcpp::R_ARM_PLT32_ABS:
2434         case elfcpp::R_ARM_TLS_GD32:
2435         case elfcpp::R_ARM_TLS_LDM32:
2436         case elfcpp::R_ARM_TLS_IE32:
2437         case elfcpp::R_ARM_TLS_IE12GP:
2438
2439         // These relocate types may use PLT entries.
2440         case elfcpp::R_ARM_CALL:
2441         case elfcpp::R_ARM_THM_CALL:
2442         case elfcpp::R_ARM_JUMP24:
2443         case elfcpp::R_ARM_THM_JUMP24:
2444         case elfcpp::R_ARM_THM_JUMP19:
2445         case elfcpp::R_ARM_PLT32:
2446         case elfcpp::R_ARM_THM_XPC22:
2447           return false;
2448
2449         default:
2450           return true;
2451         }
2452     }
2453
2454    private:
2455     // Do a TLS relocation.
2456     inline typename Arm_relocate_functions<big_endian>::Status
2457     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2458                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2459                  const Sized_symbol<32>*, const Symbol_value<32>*,
2460                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2461                  section_size_type);
2462
2463   };
2464
2465   // A class which returns the size required for a relocation type,
2466   // used while scanning relocs during a relocatable link.
2467   class Relocatable_size_for_reloc
2468   {
2469    public:
2470     unsigned int
2471     get_size_for_reloc(unsigned int, Relobj*);
2472   };
2473
2474   // Adjust TLS relocation type based on the options and whether this
2475   // is a local symbol.
2476   static tls::Tls_optimization
2477   optimize_tls_reloc(bool is_final, int r_type);
2478
2479   // Get the GOT section, creating it if necessary.
2480   Arm_output_data_got<big_endian>*
2481   got_section(Symbol_table*, Layout*);
2482
2483   // Get the GOT PLT section.
2484   Output_data_space*
2485   got_plt_section() const
2486   {
2487     gold_assert(this->got_plt_ != NULL);
2488     return this->got_plt_;
2489   }
2490
2491   // Create a PLT entry for a global symbol.
2492   void
2493   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2494
2495   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2496   void
2497   define_tls_base_symbol(Symbol_table*, Layout*);
2498
2499   // Create a GOT entry for the TLS module index.
2500   unsigned int
2501   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2502                       Sized_relobj<32, big_endian>* object);
2503
2504   // Get the PLT section.
2505   const Output_data_plt_arm<big_endian>*
2506   plt_section() const
2507   {
2508     gold_assert(this->plt_ != NULL);
2509     return this->plt_;
2510   }
2511
2512   // Get the dynamic reloc section, creating it if necessary.
2513   Reloc_section*
2514   rel_dyn_section(Layout*);
2515
2516   // Get the section to use for TLS_DESC relocations.
2517   Reloc_section*
2518   rel_tls_desc_section(Layout*) const;
2519
2520   // Return true if the symbol may need a COPY relocation.
2521   // References from an executable object to non-function symbols
2522   // defined in a dynamic object may need a COPY relocation.
2523   bool
2524   may_need_copy_reloc(Symbol* gsym)
2525   {
2526     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2527             && gsym->may_need_copy_reloc());
2528   }
2529
2530   // Add a potential copy relocation.
2531   void
2532   copy_reloc(Symbol_table* symtab, Layout* layout,
2533              Sized_relobj<32, big_endian>* object,
2534              unsigned int shndx, Output_section* output_section,
2535              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2536   {
2537     this->copy_relocs_.copy_reloc(symtab, layout,
2538                                   symtab->get_sized_symbol<32>(sym),
2539                                   object, shndx, output_section, reloc,
2540                                   this->rel_dyn_section(layout));
2541   }
2542
2543   // Whether two EABI versions are compatible.
2544   static bool
2545   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2546
2547   // Merge processor-specific flags from input object and those in the ELF
2548   // header of the output.
2549   void
2550   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2551
2552   // Get the secondary compatible architecture.
2553   static int
2554   get_secondary_compatible_arch(const Attributes_section_data*);
2555
2556   // Set the secondary compatible architecture.
2557   static void
2558   set_secondary_compatible_arch(Attributes_section_data*, int);
2559
2560   static int
2561   tag_cpu_arch_combine(const char*, int, int*, int, int);
2562
2563   // Helper to print AEABI enum tag value.
2564   static std::string
2565   aeabi_enum_name(unsigned int);
2566
2567   // Return string value for TAG_CPU_name.
2568   static std::string
2569   tag_cpu_name_value(unsigned int);
2570
2571   // Merge object attributes from input object and those in the output.
2572   void
2573   merge_object_attributes(const char*, const Attributes_section_data*);
2574
2575   // Helper to get an AEABI object attribute
2576   Object_attribute*
2577   get_aeabi_object_attribute(int tag) const
2578   {
2579     Attributes_section_data* pasd = this->attributes_section_data_;
2580     gold_assert(pasd != NULL);
2581     Object_attribute* attr =
2582       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2583     gold_assert(attr != NULL);
2584     return attr;
2585   }
2586
2587   //
2588   // Methods to support stub-generations.
2589   //
2590
2591   // Group input sections for stub generation.
2592   void
2593   group_sections(Layout*, section_size_type, bool);
2594
2595   // Scan a relocation for stub generation.
2596   void
2597   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2598                       const Sized_symbol<32>*, unsigned int,
2599                       const Symbol_value<32>*,
2600                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2601
2602   // Scan a relocation section for stub.
2603   template<int sh_type>
2604   void
2605   scan_reloc_section_for_stubs(
2606       const Relocate_info<32, big_endian>* relinfo,
2607       const unsigned char* prelocs,
2608       size_t reloc_count,
2609       Output_section* output_section,
2610       bool needs_special_offset_handling,
2611       const unsigned char* view,
2612       elfcpp::Elf_types<32>::Elf_Addr view_address,
2613       section_size_type);
2614
2615   // Fix .ARM.exidx section coverage.
2616   void
2617   fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2618
2619   // Functors for STL set.
2620   struct output_section_address_less_than
2621   {
2622     bool
2623     operator()(const Output_section* s1, const Output_section* s2) const
2624     { return s1->address() < s2->address(); }
2625   };
2626
2627   // Information about this specific target which we pass to the
2628   // general Target structure.
2629   static const Target::Target_info arm_info;
2630
2631   // The types of GOT entries needed for this platform.
2632   enum Got_type
2633   {
2634     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2635     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2636     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2637     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2638     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2639   };
2640
2641   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2642
2643   // Map input section to Arm_input_section.
2644   typedef Unordered_map<Section_id,
2645                         Arm_input_section<big_endian>*,
2646                         Section_id_hash>
2647           Arm_input_section_map;
2648     
2649   // Map output addresses to relocs for Cortex-A8 erratum.
2650   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2651           Cortex_a8_relocs_info;
2652
2653   // The GOT section.
2654   Arm_output_data_got<big_endian>* got_;
2655   // The PLT section.
2656   Output_data_plt_arm<big_endian>* plt_;
2657   // The GOT PLT section.
2658   Output_data_space* got_plt_;
2659   // The dynamic reloc section.
2660   Reloc_section* rel_dyn_;
2661   // Relocs saved to avoid a COPY reloc.
2662   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2663   // Space for variables copied with a COPY reloc.
2664   Output_data_space* dynbss_;
2665   // Offset of the GOT entry for the TLS module index.
2666   unsigned int got_mod_index_offset_;
2667   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2668   bool tls_base_symbol_defined_;
2669   // Vector of Stub_tables created.
2670   Stub_table_list stub_tables_;
2671   // Stub factory.
2672   const Stub_factory &stub_factory_;
2673   // Whether we can use BLX.
2674   bool may_use_blx_;
2675   // Whether we force PIC branch veneers.
2676   bool should_force_pic_veneer_;
2677   // Map for locating Arm_input_sections.
2678   Arm_input_section_map arm_input_section_map_;
2679   // Attributes section data in output.
2680   Attributes_section_data* attributes_section_data_;
2681   // Whether we want to fix code for Cortex-A8 erratum.
2682   bool fix_cortex_a8_;
2683   // Map addresses to relocs for Cortex-A8 erratum.
2684   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2685 };
2686
2687 template<bool big_endian>
2688 const Target::Target_info Target_arm<big_endian>::arm_info =
2689 {
2690   32,                   // size
2691   big_endian,           // is_big_endian
2692   elfcpp::EM_ARM,       // machine_code
2693   false,                // has_make_symbol
2694   false,                // has_resolve
2695   false,                // has_code_fill
2696   true,                 // is_default_stack_executable
2697   '\0',                 // wrap_char
2698   "/usr/lib/libc.so.1", // dynamic_linker
2699   0x8000,               // default_text_segment_address
2700   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2701   0x1000,               // common_pagesize (overridable by -z common-page-size)
2702   elfcpp::SHN_UNDEF,    // small_common_shndx
2703   elfcpp::SHN_UNDEF,    // large_common_shndx
2704   0,                    // small_common_section_flags
2705   0,                    // large_common_section_flags
2706   ".ARM.attributes",    // attributes_section
2707   "aeabi"               // attributes_vendor
2708 };
2709
2710 // Arm relocate functions class
2711 //
2712
2713 template<bool big_endian>
2714 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2715 {
2716  public:
2717   typedef enum
2718   {
2719     STATUS_OKAY,        // No error during relocation.
2720     STATUS_OVERFLOW,    // Relocation oveflow.
2721     STATUS_BAD_RELOC    // Relocation cannot be applied.
2722   } Status;
2723
2724  private:
2725   typedef Relocate_functions<32, big_endian> Base;
2726   typedef Arm_relocate_functions<big_endian> This;
2727
2728   // Encoding of imm16 argument for movt and movw ARM instructions
2729   // from ARM ARM:
2730   //     
2731   //     imm16 := imm4 | imm12
2732   //
2733   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2734   // +-------+---------------+-------+-------+-----------------------+
2735   // |       |               |imm4   |       |imm12                  |
2736   // +-------+---------------+-------+-------+-----------------------+
2737
2738   // Extract the relocation addend from VAL based on the ARM
2739   // instruction encoding described above.
2740   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2741   extract_arm_movw_movt_addend(
2742       typename elfcpp::Swap<32, big_endian>::Valtype val)
2743   {
2744     // According to the Elf ABI for ARM Architecture the immediate
2745     // field is sign-extended to form the addend.
2746     return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2747   }
2748
2749   // Insert X into VAL based on the ARM instruction encoding described
2750   // above.
2751   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2752   insert_val_arm_movw_movt(
2753       typename elfcpp::Swap<32, big_endian>::Valtype val,
2754       typename elfcpp::Swap<32, big_endian>::Valtype x)
2755   {
2756     val &= 0xfff0f000;
2757     val |= x & 0x0fff;
2758     val |= (x & 0xf000) << 4;
2759     return val;
2760   }
2761
2762   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2763   // from ARM ARM:
2764   //     
2765   //     imm16 := imm4 | i | imm3 | imm8
2766   //
2767   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
2768   // +---------+-+-----------+-------++-+-----+-------+---------------+
2769   // |         |i|           |imm4   || |imm3 |       |imm8           |
2770   // +---------+-+-----------+-------++-+-----+-------+---------------+
2771
2772   // Extract the relocation addend from VAL based on the Thumb2
2773   // instruction encoding described above.
2774   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2775   extract_thumb_movw_movt_addend(
2776       typename elfcpp::Swap<32, big_endian>::Valtype val)
2777   {
2778     // According to the Elf ABI for ARM Architecture the immediate
2779     // field is sign-extended to form the addend.
2780     return utils::sign_extend<16>(((val >> 4) & 0xf000)
2781                                   | ((val >> 15) & 0x0800)
2782                                   | ((val >> 4) & 0x0700)
2783                                   | (val & 0x00ff));
2784   }
2785
2786   // Insert X into VAL based on the Thumb2 instruction encoding
2787   // described above.
2788   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2789   insert_val_thumb_movw_movt(
2790       typename elfcpp::Swap<32, big_endian>::Valtype val,
2791       typename elfcpp::Swap<32, big_endian>::Valtype x)
2792   {
2793     val &= 0xfbf08f00;
2794     val |= (x & 0xf000) << 4;
2795     val |= (x & 0x0800) << 15;
2796     val |= (x & 0x0700) << 4;
2797     val |= (x & 0x00ff);
2798     return val;
2799   }
2800
2801   // Calculate the smallest constant Kn for the specified residual.
2802   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2803   static uint32_t
2804   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2805   {
2806     int32_t msb;
2807
2808     if (residual == 0)
2809       return 0;
2810     // Determine the most significant bit in the residual and
2811     // align the resulting value to a 2-bit boundary.
2812     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2813       ;
2814     // The desired shift is now (msb - 6), or zero, whichever
2815     // is the greater.
2816     return (((msb - 6) < 0) ? 0 : (msb - 6));
2817   }
2818
2819   // Calculate the final residual for the specified group index.
2820   // If the passed group index is less than zero, the method will return
2821   // the value of the specified residual without any change.
2822   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2823   static typename elfcpp::Swap<32, big_endian>::Valtype
2824   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2825                     const int group)
2826   {
2827     for (int n = 0; n <= group; n++)
2828       {
2829         // Calculate which part of the value to mask.
2830         uint32_t shift = calc_grp_kn(residual);
2831         // Calculate the residual for the next time around.
2832         residual &= ~(residual & (0xff << shift));
2833       }
2834
2835     return residual;
2836   }
2837
2838   // Calculate the value of Gn for the specified group index.
2839   // We return it in the form of an encoded constant-and-rotation.
2840   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2841   static typename elfcpp::Swap<32, big_endian>::Valtype
2842   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2843               const int group)
2844   {
2845     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2846     uint32_t shift = 0;
2847
2848     for (int n = 0; n <= group; n++)
2849       {
2850         // Calculate which part of the value to mask.
2851         shift = calc_grp_kn(residual);
2852         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2853         gn = residual & (0xff << shift);
2854         // Calculate the residual for the next time around.
2855         residual &= ~gn;
2856       }
2857     // Return Gn in the form of an encoded constant-and-rotation.
2858     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2859   }
2860
2861  public:
2862   // Handle ARM long branches.
2863   static typename This::Status
2864   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2865                     unsigned char *, const Sized_symbol<32>*,
2866                     const Arm_relobj<big_endian>*, unsigned int,
2867                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
2868
2869   // Handle THUMB long branches.
2870   static typename This::Status
2871   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2872                       unsigned char *, const Sized_symbol<32>*,
2873                       const Arm_relobj<big_endian>*, unsigned int,
2874                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
2875
2876
2877   // Return the branch offset of a 32-bit THUMB branch.
2878   static inline int32_t
2879   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2880   {
2881     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2882     // involving the J1 and J2 bits.
2883     uint32_t s = (upper_insn & (1U << 10)) >> 10;
2884     uint32_t upper = upper_insn & 0x3ffU;
2885     uint32_t lower = lower_insn & 0x7ffU;
2886     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
2887     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
2888     uint32_t i1 = j1 ^ s ? 0 : 1;
2889     uint32_t i2 = j2 ^ s ? 0 : 1;
2890
2891     return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
2892                                   | (upper << 12) | (lower << 1));
2893   }
2894
2895   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2896   // UPPER_INSN is the original upper instruction of the branch.  Caller is
2897   // responsible for overflow checking and BLX offset adjustment.
2898   static inline uint16_t
2899   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
2900   {
2901     uint32_t s = offset < 0 ? 1 : 0;
2902     uint32_t bits = static_cast<uint32_t>(offset);
2903     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
2904   }
2905
2906   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2907   // LOWER_INSN is the original lower instruction of the branch.  Caller is
2908   // responsible for overflow checking and BLX offset adjustment.
2909   static inline uint16_t
2910   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
2911   {
2912     uint32_t s = offset < 0 ? 1 : 0;
2913     uint32_t bits = static_cast<uint32_t>(offset);
2914     return ((lower_insn & ~0x2fffU)
2915             | ((((bits >> 23) & 1) ^ !s) << 13)
2916             | ((((bits >> 22) & 1) ^ !s) << 11)
2917             | ((bits >> 1) & 0x7ffU));
2918   }
2919
2920   // Return the branch offset of a 32-bit THUMB conditional branch.
2921   static inline int32_t
2922   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2923   {
2924     uint32_t s = (upper_insn & 0x0400U) >> 10;
2925     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
2926     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
2927     uint32_t lower = (lower_insn & 0x07ffU);
2928     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
2929
2930     return utils::sign_extend<21>((upper << 12) | (lower << 1));
2931   }
2932
2933   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2934   // instruction.  UPPER_INSN is the original upper instruction of the branch.
2935   // Caller is responsible for overflow checking.
2936   static inline uint16_t
2937   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
2938   {
2939     uint32_t s = offset < 0 ? 1 : 0;
2940     uint32_t bits = static_cast<uint32_t>(offset);
2941     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
2942   }
2943
2944   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2945   // instruction.  LOWER_INSN is the original lower instruction of the branch.
2946   // Caller is reponsible for overflow checking.
2947   static inline uint16_t
2948   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
2949   {
2950     uint32_t bits = static_cast<uint32_t>(offset);
2951     uint32_t j2 = (bits & 0x00080000U) >> 19;
2952     uint32_t j1 = (bits & 0x00040000U) >> 18;
2953     uint32_t lo = (bits & 0x00000ffeU) >> 1;
2954
2955     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
2956   }
2957
2958   // R_ARM_ABS8: S + A
2959   static inline typename This::Status
2960   abs8(unsigned char *view,
2961        const Sized_relobj<32, big_endian>* object,
2962        const Symbol_value<32>* psymval)
2963   {
2964     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
2965     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2966     Valtype* wv = reinterpret_cast<Valtype*>(view);
2967     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
2968     Reltype addend = utils::sign_extend<8>(val);
2969     Reltype x = psymval->value(object, addend);
2970     val = utils::bit_select(val, x, 0xffU);
2971     elfcpp::Swap<8, big_endian>::writeval(wv, val);
2972     return (utils::has_signed_unsigned_overflow<8>(x)
2973             ? This::STATUS_OVERFLOW
2974             : This::STATUS_OKAY);
2975   }
2976
2977   // R_ARM_THM_ABS5: S + A
2978   static inline typename This::Status
2979   thm_abs5(unsigned char *view,
2980        const Sized_relobj<32, big_endian>* object,
2981        const Symbol_value<32>* psymval)
2982   {
2983     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2984     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2985     Valtype* wv = reinterpret_cast<Valtype*>(view);
2986     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
2987     Reltype addend = (val & 0x7e0U) >> 6;
2988     Reltype x = psymval->value(object, addend);
2989     val = utils::bit_select(val, x << 6, 0x7e0U);
2990     elfcpp::Swap<16, big_endian>::writeval(wv, val);
2991     return (utils::has_overflow<5>(x)
2992             ? This::STATUS_OVERFLOW
2993             : This::STATUS_OKAY);
2994   }
2995
2996   // R_ARM_ABS12: S + A
2997   static inline typename This::Status
2998   abs12(unsigned char *view,
2999         const Sized_relobj<32, big_endian>* object,
3000         const Symbol_value<32>* psymval)
3001   {
3002     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3003     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3004     Valtype* wv = reinterpret_cast<Valtype*>(view);
3005     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3006     Reltype addend = val & 0x0fffU;
3007     Reltype x = psymval->value(object, addend);
3008     val = utils::bit_select(val, x, 0x0fffU);
3009     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3010     return (utils::has_overflow<12>(x)
3011             ? This::STATUS_OVERFLOW
3012             : This::STATUS_OKAY);
3013   }
3014
3015   // R_ARM_ABS16: S + A
3016   static inline typename This::Status
3017   abs16(unsigned char *view,
3018         const Sized_relobj<32, big_endian>* object,
3019         const Symbol_value<32>* psymval)
3020   {
3021     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3022     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3023     Valtype* wv = reinterpret_cast<Valtype*>(view);
3024     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3025     Reltype addend = utils::sign_extend<16>(val);
3026     Reltype x = psymval->value(object, addend);
3027     val = utils::bit_select(val, x, 0xffffU);
3028     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3029     return (utils::has_signed_unsigned_overflow<16>(x)
3030             ? This::STATUS_OVERFLOW
3031             : This::STATUS_OKAY);
3032   }
3033
3034   // R_ARM_ABS32: (S + A) | T
3035   static inline typename This::Status
3036   abs32(unsigned char *view,
3037         const Sized_relobj<32, big_endian>* object,
3038         const Symbol_value<32>* psymval,
3039         Arm_address thumb_bit)
3040   {
3041     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3042     Valtype* wv = reinterpret_cast<Valtype*>(view);
3043     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3044     Valtype x = psymval->value(object, addend) | thumb_bit;
3045     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3046     return This::STATUS_OKAY;
3047   }
3048
3049   // R_ARM_REL32: (S + A) | T - P
3050   static inline typename This::Status
3051   rel32(unsigned char *view,
3052         const Sized_relobj<32, big_endian>* object,
3053         const Symbol_value<32>* psymval,
3054         Arm_address address,
3055         Arm_address thumb_bit)
3056   {
3057     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3058     Valtype* wv = reinterpret_cast<Valtype*>(view);
3059     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3060     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3061     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3062     return This::STATUS_OKAY;
3063   }
3064
3065   // R_ARM_THM_JUMP24: (S + A) | T - P
3066   static typename This::Status
3067   thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3068              const Symbol_value<32>* psymval, Arm_address address,
3069              Arm_address thumb_bit);
3070
3071   // R_ARM_THM_JUMP6: S + A â€“ P
3072   static inline typename This::Status
3073   thm_jump6(unsigned char *view,
3074             const Sized_relobj<32, big_endian>* object,
3075             const Symbol_value<32>* psymval,
3076             Arm_address address)
3077   {
3078     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3079     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3080     Valtype* wv = reinterpret_cast<Valtype*>(view);
3081     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3082     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3083     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3084     Reltype x = (psymval->value(object, addend) - address);
3085     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3086     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3087     // CZB does only forward jumps.
3088     return ((x > 0x007e)
3089             ? This::STATUS_OVERFLOW
3090             : This::STATUS_OKAY);
3091   }
3092
3093   // R_ARM_THM_JUMP8: S + A â€“ P
3094   static inline typename This::Status
3095   thm_jump8(unsigned char *view,
3096             const Sized_relobj<32, big_endian>* object,
3097             const Symbol_value<32>* psymval,
3098             Arm_address address)
3099   {
3100     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3101     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3102     Valtype* wv = reinterpret_cast<Valtype*>(view);
3103     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3104     Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3105     Reltype x = (psymval->value(object, addend) - address);
3106     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3107     return (utils::has_overflow<8>(x)
3108             ? This::STATUS_OVERFLOW
3109             : This::STATUS_OKAY);
3110   }
3111
3112   // R_ARM_THM_JUMP11: S + A â€“ P
3113   static inline typename This::Status
3114   thm_jump11(unsigned char *view,
3115             const Sized_relobj<32, big_endian>* object,
3116             const Symbol_value<32>* psymval,
3117             Arm_address address)
3118   {
3119     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3120     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3121     Valtype* wv = reinterpret_cast<Valtype*>(view);
3122     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3123     Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3124     Reltype x = (psymval->value(object, addend) - address);
3125     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3126     return (utils::has_overflow<11>(x)
3127             ? This::STATUS_OVERFLOW
3128             : This::STATUS_OKAY);
3129   }
3130
3131   // R_ARM_BASE_PREL: B(S) + A - P
3132   static inline typename This::Status
3133   base_prel(unsigned char* view,
3134             Arm_address origin,
3135             Arm_address address)
3136   {
3137     Base::rel32(view, origin - address);
3138     return STATUS_OKAY;
3139   }
3140
3141   // R_ARM_BASE_ABS: B(S) + A
3142   static inline typename This::Status
3143   base_abs(unsigned char* view,
3144            Arm_address origin)
3145   {
3146     Base::rel32(view, origin);
3147     return STATUS_OKAY;
3148   }
3149
3150   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3151   static inline typename This::Status
3152   got_brel(unsigned char* view,
3153            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3154   {
3155     Base::rel32(view, got_offset);
3156     return This::STATUS_OKAY;
3157   }
3158
3159   // R_ARM_GOT_PREL: GOT(S) + A - P
3160   static inline typename This::Status
3161   got_prel(unsigned char *view,
3162            Arm_address got_entry,
3163            Arm_address address)
3164   {
3165     Base::rel32(view, got_entry - address);
3166     return This::STATUS_OKAY;
3167   }
3168
3169   // R_ARM_PREL: (S + A) | T - P
3170   static inline typename This::Status
3171   prel31(unsigned char *view,
3172          const Sized_relobj<32, big_endian>* object,
3173          const Symbol_value<32>* psymval,
3174          Arm_address address,
3175          Arm_address thumb_bit)
3176   {
3177     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3178     Valtype* wv = reinterpret_cast<Valtype*>(view);
3179     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3180     Valtype addend = utils::sign_extend<31>(val);
3181     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3182     val = utils::bit_select(val, x, 0x7fffffffU);
3183     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3184     return (utils::has_overflow<31>(x) ?
3185             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3186   }
3187
3188   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3189   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3190   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3191   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3192   static inline typename This::Status
3193   movw(unsigned char* view,
3194        const Sized_relobj<32, big_endian>* object,
3195        const Symbol_value<32>* psymval,
3196        Arm_address relative_address_base,
3197        Arm_address thumb_bit,
3198        bool check_overflow)
3199   {
3200     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3201     Valtype* wv = reinterpret_cast<Valtype*>(view);
3202     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3203     Valtype addend = This::extract_arm_movw_movt_addend(val);
3204     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3205                  - relative_address_base);
3206     val = This::insert_val_arm_movw_movt(val, x);
3207     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3208     return ((check_overflow && utils::has_overflow<16>(x))
3209             ? This::STATUS_OVERFLOW
3210             : This::STATUS_OKAY);
3211   }
3212
3213   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3214   // R_ARM_MOVT_PREL: S + A - P
3215   // R_ARM_MOVT_BREL: S + A - B(S)
3216   static inline typename This::Status
3217   movt(unsigned char* view,
3218        const Sized_relobj<32, big_endian>* object,
3219        const Symbol_value<32>* psymval,
3220        Arm_address relative_address_base)
3221   {
3222     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3223     Valtype* wv = reinterpret_cast<Valtype*>(view);
3224     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3225     Valtype addend = This::extract_arm_movw_movt_addend(val);
3226     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3227     val = This::insert_val_arm_movw_movt(val, x);
3228     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3229     // FIXME: IHI0044D says that we should check for overflow.
3230     return This::STATUS_OKAY;
3231   }
3232
3233   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3234   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3235   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3236   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3237   static inline typename This::Status
3238   thm_movw(unsigned char *view,
3239            const Sized_relobj<32, big_endian>* object,
3240            const Symbol_value<32>* psymval,
3241            Arm_address relative_address_base,
3242            Arm_address thumb_bit,
3243            bool check_overflow)
3244   {
3245     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3246     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3247     Valtype* wv = reinterpret_cast<Valtype*>(view);
3248     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3249                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3250     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3251     Reltype x =
3252       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3253     val = This::insert_val_thumb_movw_movt(val, x);
3254     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3255     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3256     return ((check_overflow && utils::has_overflow<16>(x))
3257             ? This::STATUS_OVERFLOW
3258             : This::STATUS_OKAY);
3259   }
3260
3261   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3262   // R_ARM_THM_MOVT_PREL: S + A - P
3263   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3264   static inline typename This::Status
3265   thm_movt(unsigned char* view,
3266            const Sized_relobj<32, big_endian>* object,
3267            const Symbol_value<32>* psymval,
3268            Arm_address relative_address_base)
3269   {
3270     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3271     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3272     Valtype* wv = reinterpret_cast<Valtype*>(view);
3273     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3274                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3275     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3276     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3277     val = This::insert_val_thumb_movw_movt(val, x);
3278     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3279     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3280     return This::STATUS_OKAY;
3281   }
3282
3283   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3284   static inline typename This::Status
3285   thm_alu11(unsigned char* view,
3286             const Sized_relobj<32, big_endian>* object,
3287             const Symbol_value<32>* psymval,
3288             Arm_address address,
3289             Arm_address thumb_bit)
3290   {
3291     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3292     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3293     Valtype* wv = reinterpret_cast<Valtype*>(view);
3294     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3295                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3296
3297     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3298     // -----------------------------------------------------------------------
3299     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3300     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3301     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3302     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3303     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3304     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3305
3306     // Determine a sign for the addend.
3307     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3308                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3309     // Thumb2 addend encoding:
3310     // imm12 := i | imm3 | imm8
3311     int32_t addend = (insn & 0xff)
3312                      | ((insn & 0x00007000) >> 4)
3313                      | ((insn & 0x04000000) >> 15);
3314     // Apply a sign to the added.
3315     addend *= sign;
3316
3317     int32_t x = (psymval->value(object, addend) | thumb_bit)
3318                 - (address & 0xfffffffc);
3319     Reltype val = abs(x);
3320     // Mask out the value and a distinct part of the ADD/SUB opcode
3321     // (bits 7:5 of opword).
3322     insn = (insn & 0xfb0f8f00)
3323            | (val & 0xff)
3324            | ((val & 0x700) << 4)
3325            | ((val & 0x800) << 15);
3326     // Set the opcode according to whether the value to go in the
3327     // place is negative.
3328     if (x < 0)
3329       insn |= 0x00a00000;
3330
3331     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3332     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3333     return ((val > 0xfff) ?
3334             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3335   }
3336
3337   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3338   static inline typename This::Status
3339   thm_pc8(unsigned char* view,
3340           const Sized_relobj<32, big_endian>* object,
3341           const Symbol_value<32>* psymval,
3342           Arm_address address)
3343   {
3344     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3345     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3346     Valtype* wv = reinterpret_cast<Valtype*>(view);
3347     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3348     Reltype addend = ((insn & 0x00ff) << 2);
3349     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3350     Reltype val = abs(x);
3351     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3352
3353     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3354     return ((val > 0x03fc)
3355             ? This::STATUS_OVERFLOW
3356             : This::STATUS_OKAY);
3357   }
3358
3359   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3360   static inline typename This::Status
3361   thm_pc12(unsigned char* view,
3362            const Sized_relobj<32, big_endian>* object,
3363            const Symbol_value<32>* psymval,
3364            Arm_address address)
3365   {
3366     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3367     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3368     Valtype* wv = reinterpret_cast<Valtype*>(view);
3369     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3370                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3371     // Determine a sign for the addend (positive if the U bit is 1).
3372     const int sign = (insn & 0x00800000) ? 1 : -1;
3373     int32_t addend = (insn & 0xfff);
3374     // Apply a sign to the added.
3375     addend *= sign;
3376
3377     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3378     Reltype val = abs(x);
3379     // Mask out and apply the value and the U bit.
3380     insn = (insn & 0xff7ff000) | (val & 0xfff);
3381     // Set the U bit according to whether the value to go in the
3382     // place is positive.
3383     if (x >= 0)
3384       insn |= 0x00800000;
3385
3386     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3387     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3388     return ((val > 0xfff) ?
3389             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3390   }
3391
3392   // R_ARM_V4BX
3393   static inline typename This::Status
3394   v4bx(const Relocate_info<32, big_endian>* relinfo,
3395        unsigned char *view,
3396        const Arm_relobj<big_endian>* object,
3397        const Arm_address address,
3398        const bool is_interworking)
3399   {
3400
3401     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3402     Valtype* wv = reinterpret_cast<Valtype*>(view);
3403     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3404
3405     // Ensure that we have a BX instruction.
3406     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3407     const uint32_t reg = (val & 0xf);
3408     if (is_interworking && reg != 0xf)
3409       {
3410         Stub_table<big_endian>* stub_table =
3411             object->stub_table(relinfo->data_shndx);
3412         gold_assert(stub_table != NULL);
3413
3414         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3415         gold_assert(stub != NULL);
3416
3417         int32_t veneer_address =
3418             stub_table->address() + stub->offset() - 8 - address;
3419         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3420                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3421         // Replace with a branch to veneer (B <addr>)
3422         val = (val & 0xf0000000) | 0x0a000000
3423               | ((veneer_address >> 2) & 0x00ffffff);
3424       }
3425     else
3426       {
3427         // Preserve Rm (lowest four bits) and the condition code
3428         // (highest four bits). Other bits encode MOV PC,Rm.
3429         val = (val & 0xf000000f) | 0x01a0f000;
3430       }
3431     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3432     return This::STATUS_OKAY;
3433   }
3434
3435   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3436   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3437   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3438   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3439   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3440   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3441   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3442   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3443   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3444   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3445   static inline typename This::Status
3446   arm_grp_alu(unsigned char* view,
3447         const Sized_relobj<32, big_endian>* object,
3448         const Symbol_value<32>* psymval,
3449         const int group,
3450         Arm_address address,
3451         Arm_address thumb_bit,
3452         bool check_overflow)
3453   {
3454     gold_assert(group >= 0 && group < 3);
3455     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3456     Valtype* wv = reinterpret_cast<Valtype*>(view);
3457     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3458
3459     // ALU group relocations are allowed only for the ADD/SUB instructions.
3460     // (0x00800000 - ADD, 0x00400000 - SUB)
3461     const Valtype opcode = insn & 0x01e00000;
3462     if (opcode != 0x00800000 && opcode != 0x00400000)
3463       return This::STATUS_BAD_RELOC;
3464
3465     // Determine a sign for the addend.
3466     const int sign = (opcode == 0x00800000) ? 1 : -1;
3467     // shifter = rotate_imm * 2
3468     const uint32_t shifter = (insn & 0xf00) >> 7;
3469     // Initial addend value.
3470     int32_t addend = insn & 0xff;
3471     // Rotate addend right by shifter.
3472     addend = (addend >> shifter) | (addend << (32 - shifter));
3473     // Apply a sign to the added.
3474     addend *= sign;
3475
3476     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3477     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3478     // Check for overflow if required
3479     if (check_overflow
3480         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3481       return This::STATUS_OVERFLOW;
3482
3483     // Mask out the value and the ADD/SUB part of the opcode; take care
3484     // not to destroy the S bit.
3485     insn &= 0xff1ff000;
3486     // Set the opcode according to whether the value to go in the
3487     // place is negative.
3488     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3489     // Encode the offset (encoded Gn).
3490     insn |= gn;
3491
3492     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3493     return This::STATUS_OKAY;
3494   }
3495
3496   // R_ARM_LDR_PC_G0: S + A - P
3497   // R_ARM_LDR_PC_G1: S + A - P
3498   // R_ARM_LDR_PC_G2: S + A - P
3499   // R_ARM_LDR_SB_G0: S + A - B(S)
3500   // R_ARM_LDR_SB_G1: S + A - B(S)
3501   // R_ARM_LDR_SB_G2: S + A - B(S)
3502   static inline typename This::Status
3503   arm_grp_ldr(unsigned char* view,
3504         const Sized_relobj<32, big_endian>* object,
3505         const Symbol_value<32>* psymval,
3506         const int group,
3507         Arm_address address)
3508   {
3509     gold_assert(group >= 0 && group < 3);
3510     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3511     Valtype* wv = reinterpret_cast<Valtype*>(view);
3512     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3513
3514     const int sign = (insn & 0x00800000) ? 1 : -1;
3515     int32_t addend = (insn & 0xfff) * sign;
3516     int32_t x = (psymval->value(object, addend) - address);
3517     // Calculate the relevant G(n-1) value to obtain this stage residual.
3518     Valtype residual =
3519         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3520     if (residual >= 0x1000)
3521       return This::STATUS_OVERFLOW;
3522
3523     // Mask out the value and U bit.
3524     insn &= 0xff7ff000;
3525     // Set the U bit for non-negative values.
3526     if (x >= 0)
3527       insn |= 0x00800000;
3528     insn |= residual;
3529
3530     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3531     return This::STATUS_OKAY;
3532   }
3533
3534   // R_ARM_LDRS_PC_G0: S + A - P
3535   // R_ARM_LDRS_PC_G1: S + A - P
3536   // R_ARM_LDRS_PC_G2: S + A - P
3537   // R_ARM_LDRS_SB_G0: S + A - B(S)
3538   // R_ARM_LDRS_SB_G1: S + A - B(S)
3539   // R_ARM_LDRS_SB_G2: S + A - B(S)
3540   static inline typename This::Status
3541   arm_grp_ldrs(unsigned char* view,
3542         const Sized_relobj<32, big_endian>* object,
3543         const Symbol_value<32>* psymval,
3544         const int group,
3545         Arm_address address)
3546   {
3547     gold_assert(group >= 0 && group < 3);
3548     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3549     Valtype* wv = reinterpret_cast<Valtype*>(view);
3550     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3551
3552     const int sign = (insn & 0x00800000) ? 1 : -1;
3553     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3554     int32_t x = (psymval->value(object, addend) - address);
3555     // Calculate the relevant G(n-1) value to obtain this stage residual.
3556     Valtype residual =
3557         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3558    if (residual >= 0x100)
3559       return This::STATUS_OVERFLOW;
3560
3561     // Mask out the value and U bit.
3562     insn &= 0xff7ff0f0;
3563     // Set the U bit for non-negative values.
3564     if (x >= 0)
3565       insn |= 0x00800000;
3566     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3567
3568     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3569     return This::STATUS_OKAY;
3570   }
3571
3572   // R_ARM_LDC_PC_G0: S + A - P
3573   // R_ARM_LDC_PC_G1: S + A - P
3574   // R_ARM_LDC_PC_G2: S + A - P
3575   // R_ARM_LDC_SB_G0: S + A - B(S)
3576   // R_ARM_LDC_SB_G1: S + A - B(S)
3577   // R_ARM_LDC_SB_G2: S + A - B(S)
3578   static inline typename This::Status
3579   arm_grp_ldc(unsigned char* view,
3580       const Sized_relobj<32, big_endian>* object,
3581       const Symbol_value<32>* psymval,
3582       const int group,
3583       Arm_address address)
3584   {
3585     gold_assert(group >= 0 && group < 3);
3586     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3587     Valtype* wv = reinterpret_cast<Valtype*>(view);
3588     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3589
3590     const int sign = (insn & 0x00800000) ? 1 : -1;
3591     int32_t addend = ((insn & 0xff) << 2) * sign;
3592     int32_t x = (psymval->value(object, addend) - address);
3593     // Calculate the relevant G(n-1) value to obtain this stage residual.
3594     Valtype residual =
3595       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3596     if ((residual & 0x3) != 0 || residual >= 0x400)
3597       return This::STATUS_OVERFLOW;
3598
3599     // Mask out the value and U bit.
3600     insn &= 0xff7fff00;
3601     // Set the U bit for non-negative values.
3602     if (x >= 0)
3603       insn |= 0x00800000;
3604     insn |= (residual >> 2);
3605
3606     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3607     return This::STATUS_OKAY;
3608   }
3609 };
3610
3611 // Relocate ARM long branches.  This handles relocation types
3612 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3613 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3614 // undefined and we do not use PLT in this relocation.  In such a case,
3615 // the branch is converted into an NOP.
3616
3617 template<bool big_endian>
3618 typename Arm_relocate_functions<big_endian>::Status
3619 Arm_relocate_functions<big_endian>::arm_branch_common(
3620     unsigned int r_type,
3621     const Relocate_info<32, big_endian>* relinfo,
3622     unsigned char *view,
3623     const Sized_symbol<32>* gsym,
3624     const Arm_relobj<big_endian>* object,
3625     unsigned int r_sym,
3626     const Symbol_value<32>* psymval,
3627     Arm_address address,
3628     Arm_address thumb_bit,
3629     bool is_weakly_undefined_without_plt)
3630 {
3631   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3632   Valtype* wv = reinterpret_cast<Valtype*>(view);
3633   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3634      
3635   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3636                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3637   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3638   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3639                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3640   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3641   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3642
3643   // Check that the instruction is valid.
3644   if (r_type == elfcpp::R_ARM_CALL)
3645     {
3646       if (!insn_is_uncond_bl && !insn_is_blx)
3647         return This::STATUS_BAD_RELOC;
3648     }
3649   else if (r_type == elfcpp::R_ARM_JUMP24)
3650     {
3651       if (!insn_is_b && !insn_is_cond_bl)
3652         return This::STATUS_BAD_RELOC;
3653     }
3654   else if (r_type == elfcpp::R_ARM_PLT32)
3655     {
3656       if (!insn_is_any_branch)
3657         return This::STATUS_BAD_RELOC;
3658     }
3659   else if (r_type == elfcpp::R_ARM_XPC25)
3660     {
3661       // FIXME: AAELF document IH0044C does not say much about it other
3662       // than it being obsolete.
3663       if (!insn_is_any_branch)
3664         return This::STATUS_BAD_RELOC;
3665     }
3666   else
3667     gold_unreachable();
3668
3669   // A branch to an undefined weak symbol is turned into a jump to
3670   // the next instruction unless a PLT entry will be created.
3671   // Do the same for local undefined symbols.
3672   // The jump to the next instruction is optimized as a NOP depending
3673   // on the architecture.
3674   const Target_arm<big_endian>* arm_target =
3675     Target_arm<big_endian>::default_target();
3676   if (is_weakly_undefined_without_plt)
3677     {
3678       Valtype cond = val & 0xf0000000U;
3679       if (arm_target->may_use_arm_nop())
3680         val = cond | 0x0320f000;
3681       else
3682         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3683       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3684       return This::STATUS_OKAY;
3685     }
3686  
3687   Valtype addend = utils::sign_extend<26>(val << 2);
3688   Valtype branch_target = psymval->value(object, addend);
3689   int32_t branch_offset = branch_target - address;
3690
3691   // We need a stub if the branch offset is too large or if we need
3692   // to switch mode.
3693   bool may_use_blx = arm_target->may_use_blx();
3694   Reloc_stub* stub = NULL;
3695   if (utils::has_overflow<26>(branch_offset)
3696       || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
3697     {
3698       Valtype unadjusted_branch_target = psymval->value(object, 0);
3699
3700       Stub_type stub_type =
3701         Reloc_stub::stub_type_for_reloc(r_type, address,
3702                                         unadjusted_branch_target,
3703                                         (thumb_bit != 0));
3704       if (stub_type != arm_stub_none)
3705         {
3706           Stub_table<big_endian>* stub_table =
3707             object->stub_table(relinfo->data_shndx);
3708           gold_assert(stub_table != NULL);
3709
3710           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3711           stub = stub_table->find_reloc_stub(stub_key);
3712           gold_assert(stub != NULL);
3713           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3714           branch_target = stub_table->address() + stub->offset() + addend;
3715           branch_offset = branch_target - address;
3716           gold_assert(!utils::has_overflow<26>(branch_offset));
3717         }
3718     }
3719
3720   // At this point, if we still need to switch mode, the instruction
3721   // must either be a BLX or a BL that can be converted to a BLX.
3722   if (thumb_bit != 0)
3723     {
3724       // Turn BL to BLX.
3725       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3726       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3727     }
3728
3729   val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3730   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3731   return (utils::has_overflow<26>(branch_offset)
3732           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3733 }
3734
3735 // Relocate THUMB long branches.  This handles relocation types
3736 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3737 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3738 // undefined and we do not use PLT in this relocation.  In such a case,
3739 // the branch is converted into an NOP.
3740
3741 template<bool big_endian>
3742 typename Arm_relocate_functions<big_endian>::Status
3743 Arm_relocate_functions<big_endian>::thumb_branch_common(
3744     unsigned int r_type,
3745     const Relocate_info<32, big_endian>* relinfo,
3746     unsigned char *view,
3747     const Sized_symbol<32>* gsym,
3748     const Arm_relobj<big_endian>* object,
3749     unsigned int r_sym,
3750     const Symbol_value<32>* psymval,
3751     Arm_address address,
3752     Arm_address thumb_bit,
3753     bool is_weakly_undefined_without_plt)
3754 {
3755   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3756   Valtype* wv = reinterpret_cast<Valtype*>(view);
3757   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3758   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3759
3760   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3761   // into account.
3762   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3763   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3764      
3765   // Check that the instruction is valid.
3766   if (r_type == elfcpp::R_ARM_THM_CALL)
3767     {
3768       if (!is_bl_insn && !is_blx_insn)
3769         return This::STATUS_BAD_RELOC;
3770     }
3771   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3772     {
3773       // This cannot be a BLX.
3774       if (!is_bl_insn)
3775         return This::STATUS_BAD_RELOC;
3776     }
3777   else if (r_type == elfcpp::R_ARM_THM_XPC22)
3778     {
3779       // Check for Thumb to Thumb call.
3780       if (!is_blx_insn)
3781         return This::STATUS_BAD_RELOC;
3782       if (thumb_bit != 0)
3783         {
3784           gold_warning(_("%s: Thumb BLX instruction targets "
3785                          "thumb function '%s'."),
3786                          object->name().c_str(),
3787                          (gsym ? gsym->name() : "(local)")); 
3788           // Convert BLX to BL.
3789           lower_insn |= 0x1000U;
3790         }
3791     }
3792   else
3793     gold_unreachable();
3794
3795   // A branch to an undefined weak symbol is turned into a jump to
3796   // the next instruction unless a PLT entry will be created.
3797   // The jump to the next instruction is optimized as a NOP.W for
3798   // Thumb-2 enabled architectures.
3799   const Target_arm<big_endian>* arm_target =
3800     Target_arm<big_endian>::default_target();
3801   if (is_weakly_undefined_without_plt)
3802     {
3803       if (arm_target->may_use_thumb2_nop())
3804         {
3805           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3806           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3807         }
3808       else
3809         {
3810           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3811           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3812         }
3813       return This::STATUS_OKAY;
3814     }
3815  
3816   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3817   Arm_address branch_target = psymval->value(object, addend);
3818   int32_t branch_offset = branch_target - address;
3819
3820   // We need a stub if the branch offset is too large or if we need
3821   // to switch mode.
3822   bool may_use_blx = arm_target->may_use_blx();
3823   bool thumb2 = arm_target->using_thumb2();
3824   if ((!thumb2 && utils::has_overflow<23>(branch_offset))
3825       || (thumb2 && utils::has_overflow<25>(branch_offset))
3826       || ((thumb_bit == 0)
3827           && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3828               || r_type == elfcpp::R_ARM_THM_JUMP24)))
3829     {
3830       Arm_address unadjusted_branch_target = psymval->value(object, 0);
3831
3832       Stub_type stub_type =
3833         Reloc_stub::stub_type_for_reloc(r_type, address,
3834                                         unadjusted_branch_target,
3835                                         (thumb_bit != 0));
3836
3837       if (stub_type != arm_stub_none)
3838         {
3839           Stub_table<big_endian>* stub_table =
3840             object->stub_table(relinfo->data_shndx);
3841           gold_assert(stub_table != NULL);
3842
3843           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3844           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
3845           gold_assert(stub != NULL);
3846           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3847           branch_target = stub_table->address() + stub->offset() + addend;
3848           branch_offset = branch_target - address;
3849         }
3850     }
3851
3852   // At this point, if we still need to switch mode, the instruction
3853   // must either be a BLX or a BL that can be converted to a BLX.
3854   if (thumb_bit == 0)
3855     {
3856       gold_assert(may_use_blx
3857                   && (r_type == elfcpp::R_ARM_THM_CALL
3858                       || r_type == elfcpp::R_ARM_THM_XPC22));
3859       // Make sure this is a BLX.
3860       lower_insn &= ~0x1000U;
3861     }
3862   else
3863     {
3864       // Make sure this is a BL.
3865       lower_insn |= 0x1000U;
3866     }
3867
3868   if ((lower_insn & 0x5000U) == 0x4000U)
3869     // For a BLX instruction, make sure that the relocation is rounded up
3870     // to a word boundary.  This follows the semantics of the instruction
3871     // which specifies that bit 1 of the target address will come from bit
3872     // 1 of the base address.
3873     branch_offset = (branch_offset + 2) & ~3;
3874
3875   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
3876   // We use the Thumb-2 encoding, which is safe even if dealing with
3877   // a Thumb-1 instruction by virtue of our overflow check above.  */
3878   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
3879   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
3880
3881   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3882   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3883
3884   return ((thumb2
3885            ? utils::has_overflow<25>(branch_offset)
3886            : utils::has_overflow<23>(branch_offset))
3887           ? This::STATUS_OVERFLOW
3888           : This::STATUS_OKAY);
3889 }
3890
3891 // Relocate THUMB-2 long conditional branches.
3892 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3893 // undefined and we do not use PLT in this relocation.  In such a case,
3894 // the branch is converted into an NOP.
3895
3896 template<bool big_endian>
3897 typename Arm_relocate_functions<big_endian>::Status
3898 Arm_relocate_functions<big_endian>::thm_jump19(
3899     unsigned char *view,
3900     const Arm_relobj<big_endian>* object,
3901     const Symbol_value<32>* psymval,
3902     Arm_address address,
3903     Arm_address thumb_bit)
3904 {
3905   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3906   Valtype* wv = reinterpret_cast<Valtype*>(view);
3907   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3908   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3909   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
3910
3911   Arm_address branch_target = psymval->value(object, addend);
3912   int32_t branch_offset = branch_target - address;
3913
3914   // ??? Should handle interworking?  GCC might someday try to
3915   // use this for tail calls.
3916   // FIXME: We do support thumb entry to PLT yet.
3917   if (thumb_bit == 0)
3918     {
3919       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3920       return This::STATUS_BAD_RELOC;
3921     }
3922
3923   // Put RELOCATION back into the insn.
3924   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
3925   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
3926
3927   // Put the relocated value back in the object file:
3928   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3929   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3930
3931   return (utils::has_overflow<21>(branch_offset)
3932           ? This::STATUS_OVERFLOW
3933           : This::STATUS_OKAY);
3934 }
3935
3936 // Get the GOT section, creating it if necessary.
3937
3938 template<bool big_endian>
3939 Arm_output_data_got<big_endian>*
3940 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
3941 {
3942   if (this->got_ == NULL)
3943     {
3944       gold_assert(symtab != NULL && layout != NULL);
3945
3946       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
3947
3948       Output_section* os;
3949       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3950                                            (elfcpp::SHF_ALLOC
3951                                             | elfcpp::SHF_WRITE),
3952                                            this->got_, false, false, false,
3953                                            true);
3954       // The old GNU linker creates a .got.plt section.  We just
3955       // create another set of data in the .got section.  Note that we
3956       // always create a PLT if we create a GOT, although the PLT
3957       // might be empty.
3958       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
3959       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3960                                            (elfcpp::SHF_ALLOC
3961                                             | elfcpp::SHF_WRITE),
3962                                            this->got_plt_, false, false,
3963                                            false, false);
3964
3965       // The first three entries are reserved.
3966       this->got_plt_->set_current_data_size(3 * 4);
3967
3968       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3969       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3970                                     Symbol_table::PREDEFINED,
3971                                     this->got_plt_,
3972                                     0, 0, elfcpp::STT_OBJECT,
3973                                     elfcpp::STB_LOCAL,
3974                                     elfcpp::STV_HIDDEN, 0,
3975                                     false, false);
3976     }
3977   return this->got_;
3978 }
3979
3980 // Get the dynamic reloc section, creating it if necessary.
3981
3982 template<bool big_endian>
3983 typename Target_arm<big_endian>::Reloc_section*
3984 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
3985 {
3986   if (this->rel_dyn_ == NULL)
3987     {
3988       gold_assert(layout != NULL);
3989       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
3990       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
3991                                       elfcpp::SHF_ALLOC, this->rel_dyn_, true,
3992                                       false, false, false);
3993     }
3994   return this->rel_dyn_;
3995 }
3996
3997 // Insn_template methods.
3998
3999 // Return byte size of an instruction template.
4000
4001 size_t
4002 Insn_template::size() const
4003 {
4004   switch (this->type())
4005     {
4006     case THUMB16_TYPE:
4007     case THUMB16_SPECIAL_TYPE:
4008       return 2;
4009     case ARM_TYPE:
4010     case THUMB32_TYPE:
4011     case DATA_TYPE:
4012       return 4;
4013     default:
4014       gold_unreachable();
4015     }
4016 }
4017
4018 // Return alignment of an instruction template.
4019
4020 unsigned
4021 Insn_template::alignment() const
4022 {
4023   switch (this->type())
4024     {
4025     case THUMB16_TYPE:
4026     case THUMB16_SPECIAL_TYPE:
4027     case THUMB32_TYPE:
4028       return 2;
4029     case ARM_TYPE:
4030     case DATA_TYPE:
4031       return 4;
4032     default:
4033       gold_unreachable();
4034     }
4035 }
4036
4037 // Stub_template methods.
4038
4039 Stub_template::Stub_template(
4040     Stub_type type, const Insn_template* insns,
4041      size_t insn_count)
4042   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4043     entry_in_thumb_mode_(false), relocs_()
4044 {
4045   off_t offset = 0;
4046
4047   // Compute byte size and alignment of stub template.
4048   for (size_t i = 0; i < insn_count; i++)
4049     {
4050       unsigned insn_alignment = insns[i].alignment();
4051       size_t insn_size = insns[i].size();
4052       gold_assert((offset & (insn_alignment - 1)) == 0);
4053       this->alignment_ = std::max(this->alignment_, insn_alignment);
4054       switch (insns[i].type())
4055         {
4056         case Insn_template::THUMB16_TYPE:
4057         case Insn_template::THUMB16_SPECIAL_TYPE:
4058           if (i == 0)
4059             this->entry_in_thumb_mode_ = true;
4060           break;
4061
4062         case Insn_template::THUMB32_TYPE:
4063           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4064             this->relocs_.push_back(Reloc(i, offset));
4065           if (i == 0)
4066             this->entry_in_thumb_mode_ = true;
4067           break;
4068
4069         case Insn_template::ARM_TYPE:
4070           // Handle cases where the target is encoded within the
4071           // instruction.
4072           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4073             this->relocs_.push_back(Reloc(i, offset));
4074           break;
4075
4076         case Insn_template::DATA_TYPE:
4077           // Entry point cannot be data.
4078           gold_assert(i != 0);
4079           this->relocs_.push_back(Reloc(i, offset));
4080           break;
4081
4082         default:
4083           gold_unreachable();
4084         }
4085       offset += insn_size; 
4086     }
4087   this->size_ = offset;
4088 }
4089
4090 // Stub methods.
4091
4092 // Template to implement do_write for a specific target endianity.
4093
4094 template<bool big_endian>
4095 void inline
4096 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4097 {
4098   const Stub_template* stub_template = this->stub_template();
4099   const Insn_template* insns = stub_template->insns();
4100
4101   // FIXME:  We do not handle BE8 encoding yet.
4102   unsigned char* pov = view;
4103   for (size_t i = 0; i < stub_template->insn_count(); i++)
4104     {
4105       switch (insns[i].type())
4106         {
4107         case Insn_template::THUMB16_TYPE:
4108           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4109           break;
4110         case Insn_template::THUMB16_SPECIAL_TYPE:
4111           elfcpp::Swap<16, big_endian>::writeval(
4112               pov,
4113               this->thumb16_special(i));
4114           break;
4115         case Insn_template::THUMB32_TYPE:
4116           {
4117             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4118             uint32_t lo = insns[i].data() & 0xffff;
4119             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4120             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4121           }
4122           break;
4123         case Insn_template::ARM_TYPE:
4124         case Insn_template::DATA_TYPE:
4125           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4126           break;
4127         default:
4128           gold_unreachable();
4129         }
4130       pov += insns[i].size();
4131     }
4132   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4133
4134
4135 // Reloc_stub::Key methods.
4136
4137 // Dump a Key as a string for debugging.
4138
4139 std::string
4140 Reloc_stub::Key::name() const
4141 {
4142   if (this->r_sym_ == invalid_index)
4143     {
4144       // Global symbol key name
4145       // <stub-type>:<symbol name>:<addend>.
4146       const std::string sym_name = this->u_.symbol->name();
4147       // We need to print two hex number and two colons.  So just add 100 bytes
4148       // to the symbol name size.
4149       size_t len = sym_name.size() + 100;
4150       char* buffer = new char[len];
4151       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4152                        sym_name.c_str(), this->addend_);
4153       gold_assert(c > 0 && c < static_cast<int>(len));
4154       delete[] buffer;
4155       return std::string(buffer);
4156     }
4157   else
4158     {
4159       // local symbol key name
4160       // <stub-type>:<object>:<r_sym>:<addend>.
4161       const size_t len = 200;
4162       char buffer[len];
4163       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4164                        this->u_.relobj, this->r_sym_, this->addend_);
4165       gold_assert(c > 0 && c < static_cast<int>(len));
4166       return std::string(buffer);
4167     }
4168 }
4169
4170 // Reloc_stub methods.
4171
4172 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4173 // LOCATION to DESTINATION.
4174 // This code is based on the arm_type_of_stub function in
4175 // bfd/elf32-arm.c.  We have changed the interface a liitle to keep the Stub
4176 // class simple.
4177
4178 Stub_type
4179 Reloc_stub::stub_type_for_reloc(
4180    unsigned int r_type,
4181    Arm_address location,
4182    Arm_address destination,
4183    bool target_is_thumb)
4184 {
4185   Stub_type stub_type = arm_stub_none;
4186
4187   // This is a bit ugly but we want to avoid using a templated class for
4188   // big and little endianities.
4189   bool may_use_blx;
4190   bool should_force_pic_veneer;
4191   bool thumb2;
4192   bool thumb_only;
4193   if (parameters->target().is_big_endian())
4194     {
4195       const Target_arm<true>* big_endian_target =
4196         Target_arm<true>::default_target();
4197       may_use_blx = big_endian_target->may_use_blx();
4198       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4199       thumb2 = big_endian_target->using_thumb2();
4200       thumb_only = big_endian_target->using_thumb_only();
4201     }
4202   else
4203     {
4204       const Target_arm<false>* little_endian_target =
4205         Target_arm<false>::default_target();
4206       may_use_blx = little_endian_target->may_use_blx();
4207       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4208       thumb2 = little_endian_target->using_thumb2();
4209       thumb_only = little_endian_target->using_thumb_only();
4210     }
4211
4212   int64_t branch_offset = (int64_t)destination - location;
4213
4214   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4215     {
4216       // Handle cases where:
4217       // - this call goes too far (different Thumb/Thumb2 max
4218       //   distance)
4219       // - it's a Thumb->Arm call and blx is not available, or it's a
4220       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4221       if ((!thumb2
4222             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4223                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4224           || (thumb2
4225               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4226                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4227           || ((!target_is_thumb)
4228               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4229                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4230         {
4231           if (target_is_thumb)
4232             {
4233               // Thumb to thumb.
4234               if (!thumb_only)
4235                 {
4236                   stub_type = (parameters->options().shared()
4237                                || should_force_pic_veneer)
4238                     // PIC stubs.
4239                     ? ((may_use_blx
4240                         && (r_type == elfcpp::R_ARM_THM_CALL))
4241                        // V5T and above. Stub starts with ARM code, so
4242                        // we must be able to switch mode before
4243                        // reaching it, which is only possible for 'bl'
4244                        // (ie R_ARM_THM_CALL relocation).
4245                        ? arm_stub_long_branch_any_thumb_pic
4246                        // On V4T, use Thumb code only.
4247                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4248
4249                     // non-PIC stubs.
4250                     : ((may_use_blx
4251                         && (r_type == elfcpp::R_ARM_THM_CALL))
4252                        ? arm_stub_long_branch_any_any // V5T and above.
4253                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4254                 }
4255               else
4256                 {
4257                   stub_type = (parameters->options().shared()
4258                                || should_force_pic_veneer)
4259                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4260                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4261                 }
4262             }
4263           else
4264             {
4265               // Thumb to arm.
4266              
4267               // FIXME: We should check that the input section is from an
4268               // object that has interwork enabled.
4269
4270               stub_type = (parameters->options().shared()
4271                            || should_force_pic_veneer)
4272                 // PIC stubs.
4273                 ? ((may_use_blx
4274                     && (r_type == elfcpp::R_ARM_THM_CALL))
4275                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4276                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4277
4278                 // non-PIC stubs.
4279                 : ((may_use_blx
4280                     && (r_type == elfcpp::R_ARM_THM_CALL))
4281                    ? arm_stub_long_branch_any_any       // V5T and above.
4282                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4283
4284               // Handle v4t short branches.
4285               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4286                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4287                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4288                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4289             }
4290         }
4291     }
4292   else if (r_type == elfcpp::R_ARM_CALL
4293            || r_type == elfcpp::R_ARM_JUMP24
4294            || r_type == elfcpp::R_ARM_PLT32)
4295     {
4296       if (target_is_thumb)
4297         {
4298           // Arm to thumb.
4299
4300           // FIXME: We should check that the input section is from an
4301           // object that has interwork enabled.
4302
4303           // We have an extra 2-bytes reach because of
4304           // the mode change (bit 24 (H) of BLX encoding).
4305           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4306               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4307               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4308               || (r_type == elfcpp::R_ARM_JUMP24)
4309               || (r_type == elfcpp::R_ARM_PLT32))
4310             {
4311               stub_type = (parameters->options().shared()
4312                            || should_force_pic_veneer)
4313                 // PIC stubs.
4314                 ? (may_use_blx
4315                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4316                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4317
4318                 // non-PIC stubs.
4319                 : (may_use_blx
4320                    ? arm_stub_long_branch_any_any       // V5T and above.
4321                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4322             }
4323         }
4324       else
4325         {
4326           // Arm to arm.
4327           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4328               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4329             {
4330               stub_type = (parameters->options().shared()
4331                            || should_force_pic_veneer)
4332                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4333                 : arm_stub_long_branch_any_any;         /// non-PIC.
4334             }
4335         }
4336     }
4337
4338   return stub_type;
4339 }
4340
4341 // Cortex_a8_stub methods.
4342
4343 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4344 // I is the position of the instruction template in the stub template.
4345
4346 uint16_t
4347 Cortex_a8_stub::do_thumb16_special(size_t i)
4348 {
4349   // The only use of this is to copy condition code from a conditional
4350   // branch being worked around to the corresponding conditional branch in
4351   // to the stub.
4352   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4353               && i == 0);
4354   uint16_t data = this->stub_template()->insns()[i].data();
4355   gold_assert((data & 0xff00U) == 0xd000U);
4356   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4357   return data;
4358 }
4359
4360 // Stub_factory methods.
4361
4362 Stub_factory::Stub_factory()
4363 {
4364   // The instruction template sequences are declared as static
4365   // objects and initialized first time the constructor runs.
4366  
4367   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4368   // to reach the stub if necessary.
4369   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4370     {
4371       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4372       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4373                                                 // dcd   R_ARM_ABS32(X)
4374     };
4375   
4376   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4377   // available.
4378   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4379     {
4380       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4381       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4382       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4383                                                 // dcd   R_ARM_ABS32(X)
4384     };
4385   
4386   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4387   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4388     {
4389       Insn_template::thumb16_insn(0xb401),      // push {r0}
4390       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4391       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4392       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4393       Insn_template::thumb16_insn(0x4760),      // bx   ip
4394       Insn_template::thumb16_insn(0xbf00),      // nop
4395       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4396                                                 // dcd  R_ARM_ABS32(X)
4397     };
4398   
4399   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4400   // allowed.
4401   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4402     {
4403       Insn_template::thumb16_insn(0x4778),      // bx   pc
4404       Insn_template::thumb16_insn(0x46c0),      // nop
4405       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4406       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4407       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4408                                                 // dcd  R_ARM_ABS32(X)
4409     };
4410   
4411   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4412   // available.
4413   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4414     {
4415       Insn_template::thumb16_insn(0x4778),      // bx   pc
4416       Insn_template::thumb16_insn(0x46c0),      // nop
4417       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4418       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4419                                                 // dcd   R_ARM_ABS32(X)
4420     };
4421   
4422   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4423   // one, when the destination is close enough.
4424   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4425     {
4426       Insn_template::thumb16_insn(0x4778),              // bx   pc
4427       Insn_template::thumb16_insn(0x46c0),              // nop
4428       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4429     };
4430   
4431   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4432   // blx to reach the stub if necessary.
4433   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4434     {
4435       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4436       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4437       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4438                                                 // dcd   R_ARM_REL32(X-4)
4439     };
4440   
4441   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4442   // blx to reach the stub if necessary.  We can not add into pc;
4443   // it is not guaranteed to mode switch (different in ARMv6 and
4444   // ARMv7).
4445   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4446     {
4447       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4448       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4449       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4450       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4451                                                 // dcd   R_ARM_REL32(X)
4452     };
4453   
4454   // V4T ARM -> ARM long branch stub, PIC.
4455   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4456     {
4457       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4458       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4459       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4460       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4461                                                 // dcd   R_ARM_REL32(X)
4462     };
4463   
4464   // V4T Thumb -> ARM long branch stub, PIC.
4465   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4466     {
4467       Insn_template::thumb16_insn(0x4778),      // bx   pc
4468       Insn_template::thumb16_insn(0x46c0),      // nop
4469       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4470       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4471       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4472                                                 // dcd  R_ARM_REL32(X)
4473     };
4474   
4475   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4476   // architectures.
4477   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4478     {
4479       Insn_template::thumb16_insn(0xb401),      // push {r0}
4480       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4481       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4482       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4483       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4484       Insn_template::thumb16_insn(0x4760),      // bx   ip
4485       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4486                                                 // dcd  R_ARM_REL32(X)
4487     };
4488   
4489   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4490   // allowed.
4491   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4492     {
4493       Insn_template::thumb16_insn(0x4778),      // bx   pc
4494       Insn_template::thumb16_insn(0x46c0),      // nop
4495       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4496       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4497       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4498       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4499                                                 // dcd  R_ARM_REL32(X)
4500     };
4501   
4502   // Cortex-A8 erratum-workaround stubs.
4503   
4504   // Stub used for conditional branches (which may be beyond +/-1MB away,
4505   // so we can't use a conditional branch to reach this stub).
4506   
4507   // original code:
4508   //
4509   //    b<cond> X
4510   // after:
4511   //
4512   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4513     {
4514       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4515       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4516       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4517                                                         //      b.w X
4518     };
4519   
4520   // Stub used for b.w and bl.w instructions.
4521   
4522   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4523     {
4524       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4525     };
4526   
4527   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4528     {
4529       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4530     };
4531   
4532   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4533   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4534   // the real destination using an ARM-mode branch.
4535   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4536     {
4537       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4538     };
4539
4540   // Stub used to provide an interworking for R_ARM_V4BX relocation
4541   // (bx r[n] instruction).
4542   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4543     {
4544       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4545       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4546       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4547     };
4548
4549   // Fill in the stub template look-up table.  Stub templates are constructed
4550   // per instance of Stub_factory for fast look-up without locking
4551   // in a thread-enabled environment.
4552
4553   this->stub_templates_[arm_stub_none] =
4554     new Stub_template(arm_stub_none, NULL, 0);
4555
4556 #define DEF_STUB(x)     \
4557   do \
4558     { \
4559       size_t array_size \
4560         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4561       Stub_type type = arm_stub_##x; \
4562       this->stub_templates_[type] = \
4563         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4564     } \
4565   while (0);
4566
4567   DEF_STUBS
4568 #undef DEF_STUB
4569 }
4570
4571 // Stub_table methods.
4572
4573 // Removel all Cortex-A8 stub.
4574
4575 template<bool big_endian>
4576 void
4577 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4578 {
4579   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4580        p != this->cortex_a8_stubs_.end();
4581        ++p)
4582     delete p->second;
4583   this->cortex_a8_stubs_.clear();
4584 }
4585
4586 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4587
4588 template<bool big_endian>
4589 void
4590 Stub_table<big_endian>::relocate_stub(
4591     Stub* stub,
4592     const Relocate_info<32, big_endian>* relinfo,
4593     Target_arm<big_endian>* arm_target,
4594     Output_section* output_section,
4595     unsigned char* view,
4596     Arm_address address,
4597     section_size_type view_size)
4598 {
4599   const Stub_template* stub_template = stub->stub_template();
4600   if (stub_template->reloc_count() != 0)
4601     {
4602       // Adjust view to cover the stub only.
4603       section_size_type offset = stub->offset();
4604       section_size_type stub_size = stub_template->size();
4605       gold_assert(offset + stub_size <= view_size);
4606
4607       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4608                                 address + offset, stub_size);
4609     }
4610 }
4611
4612 // Relocate all stubs in this stub table.
4613
4614 template<bool big_endian>
4615 void
4616 Stub_table<big_endian>::relocate_stubs(
4617     const Relocate_info<32, big_endian>* relinfo,
4618     Target_arm<big_endian>* arm_target,
4619     Output_section* output_section,
4620     unsigned char* view,
4621     Arm_address address,
4622     section_size_type view_size)
4623 {
4624   // If we are passed a view bigger than the stub table's.  we need to
4625   // adjust the view.
4626   gold_assert(address == this->address()
4627               && (view_size
4628                   == static_cast<section_size_type>(this->data_size())));
4629
4630   // Relocate all relocation stubs.
4631   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4632       p != this->reloc_stubs_.end();
4633       ++p)
4634     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4635                         address, view_size);
4636
4637   // Relocate all Cortex-A8 stubs.
4638   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4639        p != this->cortex_a8_stubs_.end();
4640        ++p)
4641     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4642                         address, view_size);
4643
4644   // Relocate all ARM V4BX stubs.
4645   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4646        p != this->arm_v4bx_stubs_.end();
4647        ++p)
4648     {
4649       if (*p != NULL)
4650         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4651                             address, view_size);
4652     }
4653 }
4654
4655 // Write out the stubs to file.
4656
4657 template<bool big_endian>
4658 void
4659 Stub_table<big_endian>::do_write(Output_file* of)
4660 {
4661   off_t offset = this->offset();
4662   const section_size_type oview_size =
4663     convert_to_section_size_type(this->data_size());
4664   unsigned char* const oview = of->get_output_view(offset, oview_size);
4665
4666   // Write relocation stubs.
4667   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4668       p != this->reloc_stubs_.end();
4669       ++p)
4670     {
4671       Reloc_stub* stub = p->second;
4672       Arm_address address = this->address() + stub->offset();
4673       gold_assert(address
4674                   == align_address(address,
4675                                    stub->stub_template()->alignment()));
4676       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4677                   big_endian);
4678     }
4679
4680   // Write Cortex-A8 stubs.
4681   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4682        p != this->cortex_a8_stubs_.end();
4683        ++p)
4684     {
4685       Cortex_a8_stub* stub = p->second;
4686       Arm_address address = this->address() + stub->offset();
4687       gold_assert(address
4688                   == align_address(address,
4689                                    stub->stub_template()->alignment()));
4690       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4691                   big_endian);
4692     }
4693
4694   // Write ARM V4BX relocation stubs.
4695   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4696        p != this->arm_v4bx_stubs_.end();
4697        ++p)
4698     {
4699       if (*p == NULL)
4700         continue;
4701
4702       Arm_address address = this->address() + (*p)->offset();
4703       gold_assert(address
4704                   == align_address(address,
4705                                    (*p)->stub_template()->alignment()));
4706       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4707                   big_endian);
4708     }
4709
4710   of->write_output_view(this->offset(), oview_size, oview);
4711 }
4712
4713 // Update the data size and address alignment of the stub table at the end
4714 // of a relaxation pass.   Return true if either the data size or the
4715 // alignment changed in this relaxation pass.
4716
4717 template<bool big_endian>
4718 bool
4719 Stub_table<big_endian>::update_data_size_and_addralign()
4720 {
4721   off_t size = 0;
4722   unsigned addralign = 1;
4723
4724   // Go over all stubs in table to compute data size and address alignment.
4725   
4726   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4727       p != this->reloc_stubs_.end();
4728       ++p)
4729     {
4730       const Stub_template* stub_template = p->second->stub_template();
4731       addralign = std::max(addralign, stub_template->alignment());
4732       size = (align_address(size, stub_template->alignment())
4733               + stub_template->size());
4734     }
4735
4736   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4737        p != this->cortex_a8_stubs_.end();
4738        ++p)
4739     {
4740       const Stub_template* stub_template = p->second->stub_template();
4741       addralign = std::max(addralign, stub_template->alignment());
4742       size = (align_address(size, stub_template->alignment())
4743               + stub_template->size());
4744     }
4745
4746   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4747        p != this->arm_v4bx_stubs_.end();
4748        ++p)
4749     {
4750       if (*p == NULL)
4751         continue;
4752
4753       const Stub_template* stub_template = (*p)->stub_template();
4754       addralign = std::max(addralign, stub_template->alignment());
4755       size = (align_address(size, stub_template->alignment())
4756               + stub_template->size());
4757     }
4758
4759   // Check if either data size or alignment changed in this pass.
4760   // Update prev_data_size_ and prev_addralign_.  These will be used
4761   // as the current data size and address alignment for the next pass.
4762   bool changed = size != this->prev_data_size_;
4763   this->prev_data_size_ = size; 
4764
4765   if (addralign != this->prev_addralign_)
4766     changed = true;
4767   this->prev_addralign_ = addralign;
4768
4769   return changed;
4770 }
4771
4772 // Finalize the stubs.  This sets the offsets of the stubs within the stub
4773 // table.  It also marks all input sections needing Cortex-A8 workaround.
4774
4775 template<bool big_endian>
4776 void
4777 Stub_table<big_endian>::finalize_stubs()
4778 {
4779   off_t off = 0;
4780   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4781       p != this->reloc_stubs_.end();
4782       ++p)
4783     {
4784       Reloc_stub* stub = p->second;
4785       const Stub_template* stub_template = stub->stub_template();
4786       uint64_t stub_addralign = stub_template->alignment();
4787       off = align_address(off, stub_addralign);
4788       stub->set_offset(off);
4789       off += stub_template->size();
4790     }
4791
4792   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4793        p != this->cortex_a8_stubs_.end();
4794        ++p)
4795     {
4796       Cortex_a8_stub* stub = p->second;
4797       const Stub_template* stub_template = stub->stub_template();
4798       uint64_t stub_addralign = stub_template->alignment();
4799       off = align_address(off, stub_addralign);
4800       stub->set_offset(off);
4801       off += stub_template->size();
4802
4803       // Mark input section so that we can determine later if a code section
4804       // needs the Cortex-A8 workaround quickly.
4805       Arm_relobj<big_endian>* arm_relobj =
4806         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4807       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4808     }
4809
4810   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4811       p != this->arm_v4bx_stubs_.end();
4812       ++p)
4813     {
4814       if (*p == NULL)
4815         continue;
4816
4817       const Stub_template* stub_template = (*p)->stub_template();
4818       uint64_t stub_addralign = stub_template->alignment();
4819       off = align_address(off, stub_addralign);
4820       (*p)->set_offset(off);
4821       off += stub_template->size();
4822     }
4823
4824   gold_assert(off <= this->prev_data_size_);
4825 }
4826
4827 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4828 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
4829 // of the address range seen by the linker.
4830
4831 template<bool big_endian>
4832 void
4833 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4834     Target_arm<big_endian>* arm_target,
4835     unsigned char* view,
4836     Arm_address view_address,
4837     section_size_type view_size)
4838 {
4839   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4840   for (Cortex_a8_stub_list::const_iterator p =
4841          this->cortex_a8_stubs_.lower_bound(view_address);
4842        ((p != this->cortex_a8_stubs_.end())
4843         && (p->first < (view_address + view_size)));
4844        ++p)
4845     {
4846       // We do not store the THUMB bit in the LSB of either the branch address
4847       // or the stub offset.  There is no need to strip the LSB.
4848       Arm_address branch_address = p->first;
4849       const Cortex_a8_stub* stub = p->second;
4850       Arm_address stub_address = this->address() + stub->offset();
4851
4852       // Offset of the branch instruction relative to this view.
4853       section_size_type offset =
4854         convert_to_section_size_type(branch_address - view_address);
4855       gold_assert((offset + 4) <= view_size);
4856
4857       arm_target->apply_cortex_a8_workaround(stub, stub_address,
4858                                              view + offset, branch_address);
4859     }
4860 }
4861
4862 // Arm_input_section methods.
4863
4864 // Initialize an Arm_input_section.
4865
4866 template<bool big_endian>
4867 void
4868 Arm_input_section<big_endian>::init()
4869 {
4870   Relobj* relobj = this->relobj();
4871   unsigned int shndx = this->shndx();
4872
4873   // Cache these to speed up size and alignment queries.  It is too slow
4874   // to call section_addraglin and section_size every time.
4875   this->original_addralign_ = relobj->section_addralign(shndx);
4876   this->original_size_ = relobj->section_size(shndx);
4877
4878   // We want to make this look like the original input section after
4879   // output sections are finalized.
4880   Output_section* os = relobj->output_section(shndx);
4881   off_t offset = relobj->output_section_offset(shndx);
4882   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
4883   this->set_address(os->address() + offset);
4884   this->set_file_offset(os->offset() + offset);
4885
4886   this->set_current_data_size(this->original_size_);
4887   this->finalize_data_size();
4888 }
4889
4890 template<bool big_endian>
4891 void
4892 Arm_input_section<big_endian>::do_write(Output_file* of)
4893 {
4894   // We have to write out the original section content.
4895   section_size_type section_size;
4896   const unsigned char* section_contents =
4897     this->relobj()->section_contents(this->shndx(), &section_size, false); 
4898   of->write(this->offset(), section_contents, section_size); 
4899
4900   // If this owns a stub table and it is not empty, write it.
4901   if (this->is_stub_table_owner() && !this->stub_table_->empty())
4902     this->stub_table_->write(of);
4903 }
4904
4905 // Finalize data size.
4906
4907 template<bool big_endian>
4908 void
4909 Arm_input_section<big_endian>::set_final_data_size()
4910 {
4911   // If this owns a stub table, finalize its data size as well.
4912   if (this->is_stub_table_owner())
4913     {
4914       uint64_t address = this->address();
4915
4916       // The stub table comes after the original section contents.
4917       address += this->original_size_;
4918       address = align_address(address, this->stub_table_->addralign());
4919       off_t offset = this->offset() + (address - this->address());
4920       this->stub_table_->set_address_and_file_offset(address, offset);
4921       address += this->stub_table_->data_size();
4922       gold_assert(address == this->address() + this->current_data_size());
4923     }
4924
4925   this->set_data_size(this->current_data_size());
4926 }
4927
4928 // Reset address and file offset.
4929
4930 template<bool big_endian>
4931 void
4932 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
4933 {
4934   // Size of the original input section contents.
4935   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4936
4937   // If this is a stub table owner, account for the stub table size.
4938   if (this->is_stub_table_owner())
4939     {
4940       Stub_table<big_endian>* stub_table = this->stub_table_;
4941
4942       // Reset the stub table's address and file offset.  The
4943       // current data size for child will be updated after that.
4944       stub_table_->reset_address_and_file_offset();
4945       off = align_address(off, stub_table_->addralign());
4946       off += stub_table->current_data_size();
4947     }
4948
4949   this->set_current_data_size(off);
4950 }
4951
4952 // Arm_exidx_cantunwind methods.
4953
4954 // Write this to Output file OF for a fixed endianity.
4955
4956 template<bool big_endian>
4957 void
4958 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
4959 {
4960   off_t offset = this->offset();
4961   const section_size_type oview_size = 8;
4962   unsigned char* const oview = of->get_output_view(offset, oview_size);
4963   
4964   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4965   Valtype* wv = reinterpret_cast<Valtype*>(oview);
4966
4967   Output_section* os = this->relobj_->output_section(this->shndx_);
4968   gold_assert(os != NULL);
4969
4970   Arm_relobj<big_endian>* arm_relobj =
4971     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
4972   Arm_address output_offset =
4973     arm_relobj->get_output_section_offset(this->shndx_);
4974   Arm_address section_start;
4975   if(output_offset != Arm_relobj<big_endian>::invalid_address)
4976     section_start = os->address() + output_offset;
4977   else
4978     {
4979       // Currently this only happens for a relaxed section.
4980       const Output_relaxed_input_section* poris =
4981         os->find_relaxed_input_section(this->relobj_, this->shndx_);
4982       gold_assert(poris != NULL);
4983       section_start = poris->address();
4984     }
4985
4986   // We always append this to the end of an EXIDX section.
4987   Arm_address output_address =
4988     section_start + this->relobj_->section_size(this->shndx_);
4989
4990   // Write out the entry.  The first word either points to the beginning
4991   // or after the end of a text section.  The second word is the special
4992   // EXIDX_CANTUNWIND value.
4993   uint32_t prel31_offset = output_address - this->address();
4994   if (utils::has_overflow<31>(offset))
4995     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
4996   elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
4997   elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
4998
4999   of->write_output_view(this->offset(), oview_size, oview);
5000 }
5001
5002 // Arm_exidx_merged_section methods.
5003
5004 // Constructor for Arm_exidx_merged_section.
5005 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5006 // SECTION_OFFSET_MAP points to a section offset map describing how
5007 // parts of the input section are mapped to output.  DELETED_BYTES is
5008 // the number of bytes deleted from the EXIDX input section.
5009
5010 Arm_exidx_merged_section::Arm_exidx_merged_section(
5011     const Arm_exidx_input_section& exidx_input_section,
5012     const Arm_exidx_section_offset_map& section_offset_map,
5013     uint32_t deleted_bytes)
5014   : Output_relaxed_input_section(exidx_input_section.relobj(),
5015                                  exidx_input_section.shndx(),
5016                                  exidx_input_section.addralign()),
5017     exidx_input_section_(exidx_input_section),
5018     section_offset_map_(section_offset_map)
5019 {
5020   // Fix size here so that we do not need to implement set_final_data_size.
5021   this->set_data_size(exidx_input_section.size() - deleted_bytes);
5022   this->fix_data_size();
5023 }
5024
5025 // Given an input OBJECT, an input section index SHNDX within that
5026 // object, and an OFFSET relative to the start of that input
5027 // section, return whether or not the corresponding offset within
5028 // the output section is known.  If this function returns true, it
5029 // sets *POUTPUT to the output offset.  The value -1 indicates that
5030 // this input offset is being discarded.
5031
5032 bool
5033 Arm_exidx_merged_section::do_output_offset(
5034     const Relobj* relobj,
5035     unsigned int shndx,
5036     section_offset_type offset,
5037     section_offset_type* poutput) const
5038 {
5039   // We only handle offsets for the original EXIDX input section.
5040   if (relobj != this->exidx_input_section_.relobj()
5041       || shndx != this->exidx_input_section_.shndx())
5042     return false;
5043
5044   section_offset_type section_size =
5045     convert_types<section_offset_type>(this->exidx_input_section_.size());
5046   if (offset < 0 || offset >= section_size)
5047     // Input offset is out of valid range.
5048     *poutput = -1;
5049   else
5050     {
5051       // We need to look up the section offset map to determine the output
5052       // offset.  Find the reference point in map that is first offset
5053       // bigger than or equal to this offset.
5054       Arm_exidx_section_offset_map::const_iterator p =
5055         this->section_offset_map_.lower_bound(offset);
5056
5057       // The section offset maps are build such that this should not happen if
5058       // input offset is in the valid range.
5059       gold_assert(p != this->section_offset_map_.end());
5060
5061       // We need to check if this is dropped.
5062      section_offset_type ref = p->first;
5063      section_offset_type mapped_ref = p->second;
5064
5065       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5066         // Offset is present in output.
5067         *poutput = mapped_ref + (offset - ref);
5068       else
5069         // Offset is discarded owing to EXIDX entry merging.
5070         *poutput = -1;
5071     }
5072   
5073   return true;
5074 }
5075
5076 // Write this to output file OF.
5077
5078 void
5079 Arm_exidx_merged_section::do_write(Output_file* of)
5080 {
5081   // If we retain or discard the whole EXIDX input section,  we would
5082   // not be here.
5083   gold_assert(this->data_size() != this->exidx_input_section_.size()
5084               && this->data_size() != 0);
5085
5086   off_t offset = this->offset();
5087   const section_size_type oview_size = this->data_size();
5088   unsigned char* const oview = of->get_output_view(offset, oview_size);
5089   
5090   Output_section* os = this->relobj()->output_section(this->shndx());
5091   gold_assert(os != NULL);
5092
5093   // Get contents of EXIDX input section.
5094   section_size_type section_size;
5095   const unsigned char* section_contents =
5096     this->relobj()->section_contents(this->shndx(), &section_size, false); 
5097   gold_assert(section_size == this->exidx_input_section_.size());
5098
5099   // Go over spans of input offsets and write only those that are not
5100   // discarded.
5101   section_offset_type in_start = 0;
5102   section_offset_type out_start = 0;
5103   for(Arm_exidx_section_offset_map::const_iterator p =
5104         this->section_offset_map_.begin();
5105       p != this->section_offset_map_.end();
5106       ++p)
5107     {
5108       section_offset_type in_end = p->first;
5109       gold_assert(in_end >= in_start);
5110       section_offset_type out_end = p->second;
5111       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5112       if (out_end != -1)
5113         {
5114           size_t out_chunk_size =
5115             convert_types<size_t>(out_end - out_start + 1);
5116           gold_assert(out_chunk_size == in_chunk_size);
5117           memcpy(oview + out_start, section_contents + in_start,
5118                  out_chunk_size);
5119           out_start += out_chunk_size;
5120         }
5121       in_start += in_chunk_size;
5122     }
5123
5124   gold_assert(convert_to_section_size_type(out_start) == oview_size);
5125   of->write_output_view(this->offset(), oview_size, oview);
5126 }
5127
5128 // Arm_exidx_fixup methods.
5129
5130 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5131 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5132 // points to the end of the last seen EXIDX section.
5133
5134 void
5135 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5136 {
5137   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5138       && this->last_input_section_ != NULL)
5139     {
5140       Relobj* relobj = this->last_input_section_->relobj();
5141       unsigned int text_shndx = this->last_input_section_->link();
5142       Arm_exidx_cantunwind* cantunwind =
5143         new Arm_exidx_cantunwind(relobj, text_shndx);
5144       this->exidx_output_section_->add_output_section_data(cantunwind);
5145       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5146     }
5147 }
5148
5149 // Process an EXIDX section entry in input.  Return whether this entry
5150 // can be deleted in the output.  SECOND_WORD in the second word of the
5151 // EXIDX entry.
5152
5153 bool
5154 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5155 {
5156   bool delete_entry;
5157   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5158     {
5159       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5160       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5161       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5162     }
5163   else if ((second_word & 0x80000000) != 0)
5164     {
5165       // Inlined unwinding data.  Merge if equal to previous.
5166       delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
5167                       && this->last_inlined_entry_ == second_word);
5168       this->last_unwind_type_ = UT_INLINED_ENTRY;
5169       this->last_inlined_entry_ = second_word;
5170     }
5171   else
5172     {
5173       // Normal table entry.  In theory we could merge these too,
5174       // but duplicate entries are likely to be much less common.
5175       delete_entry = false;
5176       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5177     }
5178   return delete_entry;
5179 }
5180
5181 // Update the current section offset map during EXIDX section fix-up.
5182 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5183 // reference point, DELETED_BYTES is the number of deleted by in the
5184 // section so far.  If DELETE_ENTRY is true, the reference point and
5185 // all offsets after the previous reference point are discarded.
5186
5187 void
5188 Arm_exidx_fixup::update_offset_map(
5189     section_offset_type input_offset,
5190     section_size_type deleted_bytes,
5191     bool delete_entry)
5192 {
5193   if (this->section_offset_map_ == NULL)
5194     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5195   section_offset_type output_offset = (delete_entry
5196                                        ? -1
5197                                        : input_offset - deleted_bytes);
5198   (*this->section_offset_map_)[input_offset] = output_offset;
5199 }
5200
5201 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5202 // bytes deleted.  If some entries are merged, also store a pointer to a newly
5203 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The
5204 // caller owns the map and is responsible for releasing it after use.
5205
5206 template<bool big_endian>
5207 uint32_t
5208 Arm_exidx_fixup::process_exidx_section(
5209     const Arm_exidx_input_section* exidx_input_section,
5210     Arm_exidx_section_offset_map** psection_offset_map)
5211 {
5212   Relobj* relobj = exidx_input_section->relobj();
5213   unsigned shndx = exidx_input_section->shndx();
5214   section_size_type section_size;
5215   const unsigned char* section_contents =
5216     relobj->section_contents(shndx, &section_size, false);
5217
5218   if ((section_size % 8) != 0)
5219     {
5220       // Something is wrong with this section.  Better not touch it.
5221       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5222                  relobj->name().c_str(), shndx);
5223       this->last_input_section_ = exidx_input_section;
5224       this->last_unwind_type_ = UT_NONE;
5225       return 0;
5226     }
5227   
5228   uint32_t deleted_bytes = 0;
5229   bool prev_delete_entry = false;
5230   gold_assert(this->section_offset_map_ == NULL);
5231
5232   for (section_size_type i = 0; i < section_size; i += 8)
5233     {
5234       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5235       const Valtype* wv =
5236           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5237       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5238
5239       bool delete_entry = this->process_exidx_entry(second_word);
5240
5241       // Entry deletion causes changes in output offsets.  We use a std::map
5242       // to record these.  And entry (x, y) means input offset x
5243       // is mapped to output offset y.  If y is invalid_offset, then x is
5244       // dropped in the output.  Because of the way std::map::lower_bound
5245       // works, we record the last offset in a region w.r.t to keeping or
5246       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5247       // the output offset y0 of it is determined by the output offset y1 of
5248       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5249       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Othewise, y1
5250       // y0 is also -1.
5251       if (delete_entry != prev_delete_entry && i != 0)
5252         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5253
5254       // Update total deleted bytes for this entry.
5255       if (delete_entry)
5256         deleted_bytes += 8;
5257
5258       prev_delete_entry = delete_entry;
5259     }
5260   
5261   // If section offset map is not NULL, make an entry for the end of
5262   // section.
5263   if (this->section_offset_map_ != NULL)
5264     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5265
5266   *psection_offset_map = this->section_offset_map_;
5267   this->section_offset_map_ = NULL;
5268   this->last_input_section_ = exidx_input_section;
5269   
5270   // Set the first output text section so that we can link the EXIDX output
5271   // section to it.  Ignore any EXIDX input section that is completely merged.
5272   if (this->first_output_text_section_ == NULL
5273       && deleted_bytes != section_size)
5274     {
5275       unsigned int link = exidx_input_section->link();
5276       Output_section* os = relobj->output_section(link);
5277       gold_assert(os != NULL);
5278       this->first_output_text_section_ = os;
5279     }
5280
5281   return deleted_bytes;
5282 }
5283
5284 // Arm_output_section methods.
5285
5286 // Create a stub group for input sections from BEGIN to END.  OWNER
5287 // points to the input section to be the owner a new stub table.
5288
5289 template<bool big_endian>
5290 void
5291 Arm_output_section<big_endian>::create_stub_group(
5292   Input_section_list::const_iterator begin,
5293   Input_section_list::const_iterator end,
5294   Input_section_list::const_iterator owner,
5295   Target_arm<big_endian>* target,
5296   std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5297 {
5298   // We use a different kind of relaxed section in an EXIDX section.
5299   // The static casting from Output_relaxed_input_section to
5300   // Arm_input_section is invalid in an EXIDX section.  We are okay
5301   // because we should not be calling this for an EXIDX section. 
5302   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5303
5304   // Currently we convert ordinary input sections into relaxed sections only
5305   // at this point but we may want to support creating relaxed input section
5306   // very early.  So we check here to see if owner is already a relaxed
5307   // section.
5308   
5309   Arm_input_section<big_endian>* arm_input_section;
5310   if (owner->is_relaxed_input_section())
5311     {
5312       arm_input_section =
5313         Arm_input_section<big_endian>::as_arm_input_section(
5314           owner->relaxed_input_section());
5315     }
5316   else
5317     {
5318       gold_assert(owner->is_input_section());
5319       // Create a new relaxed input section.
5320       arm_input_section =
5321         target->new_arm_input_section(owner->relobj(), owner->shndx());
5322       new_relaxed_sections->push_back(arm_input_section);
5323     }
5324
5325   // Create a stub table.
5326   Stub_table<big_endian>* stub_table =
5327     target->new_stub_table(arm_input_section);
5328
5329   arm_input_section->set_stub_table(stub_table);
5330   
5331   Input_section_list::const_iterator p = begin;
5332   Input_section_list::const_iterator prev_p;
5333
5334   // Look for input sections or relaxed input sections in [begin ... end].
5335   do
5336     {
5337       if (p->is_input_section() || p->is_relaxed_input_section())
5338         {
5339           // The stub table information for input sections live
5340           // in their objects.
5341           Arm_relobj<big_endian>* arm_relobj =
5342             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5343           arm_relobj->set_stub_table(p->shndx(), stub_table);
5344         }
5345       prev_p = p++;
5346     }
5347   while (prev_p != end);
5348 }
5349
5350 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5351 // of stub groups.  We grow a stub group by adding input section until the
5352 // size is just below GROUP_SIZE.  The last input section will be converted
5353 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5354 // input section after the stub table, effectively double the group size.
5355 // 
5356 // This is similar to the group_sections() function in elf32-arm.c but is
5357 // implemented differently.
5358
5359 template<bool big_endian>
5360 void
5361 Arm_output_section<big_endian>::group_sections(
5362     section_size_type group_size,
5363     bool stubs_always_after_branch,
5364     Target_arm<big_endian>* target)
5365 {
5366   // We only care about sections containing code.
5367   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5368     return;
5369
5370   // States for grouping.
5371   typedef enum
5372   {
5373     // No group is being built.
5374     NO_GROUP,
5375     // A group is being built but the stub table is not found yet.
5376     // We keep group a stub group until the size is just under GROUP_SIZE.
5377     // The last input section in the group will be used as the stub table.
5378     FINDING_STUB_SECTION,
5379     // A group is being built and we have already found a stub table.
5380     // We enter this state to grow a stub group by adding input section
5381     // after the stub table.  This effectively doubles the group size.
5382     HAS_STUB_SECTION
5383   } State;
5384
5385   // Any newly created relaxed sections are stored here.
5386   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5387
5388   State state = NO_GROUP;
5389   section_size_type off = 0;
5390   section_size_type group_begin_offset = 0;
5391   section_size_type group_end_offset = 0;
5392   section_size_type stub_table_end_offset = 0;
5393   Input_section_list::const_iterator group_begin =
5394     this->input_sections().end();
5395   Input_section_list::const_iterator stub_table =
5396     this->input_sections().end();
5397   Input_section_list::const_iterator group_end = this->input_sections().end();
5398   for (Input_section_list::const_iterator p = this->input_sections().begin();
5399        p != this->input_sections().end();
5400        ++p)
5401     {
5402       section_size_type section_begin_offset =
5403         align_address(off, p->addralign());
5404       section_size_type section_end_offset =
5405         section_begin_offset + p->data_size(); 
5406       
5407       // Check to see if we should group the previously seens sections.
5408       switch (state)
5409         {
5410         case NO_GROUP:
5411           break;
5412
5413         case FINDING_STUB_SECTION:
5414           // Adding this section makes the group larger than GROUP_SIZE.
5415           if (section_end_offset - group_begin_offset >= group_size)
5416             {
5417               if (stubs_always_after_branch)
5418                 {       
5419                   gold_assert(group_end != this->input_sections().end());
5420                   this->create_stub_group(group_begin, group_end, group_end,
5421                                           target, &new_relaxed_sections);
5422                   state = NO_GROUP;
5423                 }
5424               else
5425                 {
5426                   // But wait, there's more!  Input sections up to
5427                   // stub_group_size bytes after the stub table can be
5428                   // handled by it too.
5429                   state = HAS_STUB_SECTION;
5430                   stub_table = group_end;
5431                   stub_table_end_offset = group_end_offset;
5432                 }
5433             }
5434             break;
5435
5436         case HAS_STUB_SECTION:
5437           // Adding this section makes the post stub-section group larger
5438           // than GROUP_SIZE.
5439           if (section_end_offset - stub_table_end_offset >= group_size)
5440            {
5441              gold_assert(group_end != this->input_sections().end());
5442              this->create_stub_group(group_begin, group_end, stub_table,
5443                                      target, &new_relaxed_sections);
5444              state = NO_GROUP;
5445            }
5446            break;
5447
5448           default:
5449             gold_unreachable();
5450         }       
5451
5452       // If we see an input section and currently there is no group, start
5453       // a new one.  Skip any empty sections.
5454       if ((p->is_input_section() || p->is_relaxed_input_section())
5455           && (p->relobj()->section_size(p->shndx()) != 0))
5456         {
5457           if (state == NO_GROUP)
5458             {
5459               state = FINDING_STUB_SECTION;
5460               group_begin = p;
5461               group_begin_offset = section_begin_offset;
5462             }
5463
5464           // Keep track of the last input section seen.
5465           group_end = p;
5466           group_end_offset = section_end_offset;
5467         }
5468
5469       off = section_end_offset;
5470     }
5471
5472   // Create a stub group for any ungrouped sections.
5473   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5474     {
5475       gold_assert(group_end != this->input_sections().end());
5476       this->create_stub_group(group_begin, group_end,
5477                               (state == FINDING_STUB_SECTION
5478                                ? group_end
5479                                : stub_table),
5480                                target, &new_relaxed_sections);
5481     }
5482
5483   // Convert input section into relaxed input section in a batch.
5484   if (!new_relaxed_sections.empty())
5485     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5486
5487   // Update the section offsets
5488   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5489     {
5490       Arm_relobj<big_endian>* arm_relobj =
5491         Arm_relobj<big_endian>::as_arm_relobj(
5492           new_relaxed_sections[i]->relobj());
5493       unsigned int shndx = new_relaxed_sections[i]->shndx();
5494       // Tell Arm_relobj that this input section is converted.
5495       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5496     }
5497 }
5498
5499 // Append non empty text sections in this to LIST in ascending
5500 // order of their position in this.
5501
5502 template<bool big_endian>
5503 void
5504 Arm_output_section<big_endian>::append_text_sections_to_list(
5505     Text_section_list* list)
5506 {
5507   // We only care about text sections.
5508   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5509     return;
5510
5511   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5512
5513   for (Input_section_list::const_iterator p = this->input_sections().begin();
5514        p != this->input_sections().end();
5515        ++p)
5516     {
5517       // We only care about plain or relaxed input sections.  We also
5518       // ignore any merged sections.
5519       if ((p->is_input_section() || p->is_relaxed_input_section())
5520           && p->data_size() != 0)
5521         list->push_back(Text_section_list::value_type(p->relobj(),
5522                                                       p->shndx()));
5523     }
5524 }
5525
5526 template<bool big_endian>
5527 void
5528 Arm_output_section<big_endian>::fix_exidx_coverage(
5529     Layout* layout,
5530     const Text_section_list& sorted_text_sections,
5531     Symbol_table* symtab)
5532 {
5533   // We should only do this for the EXIDX output section.
5534   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5535
5536   // We don't want the relaxation loop to undo these changes, so we discard
5537   // the current saved states and take another one after the fix-up.
5538   this->discard_states();
5539
5540   // Remove all input sections.
5541   uint64_t address = this->address();
5542   typedef std::list<Simple_input_section> Simple_input_section_list;
5543   Simple_input_section_list input_sections;
5544   this->reset_address_and_file_offset();
5545   this->get_input_sections(address, std::string(""), &input_sections);
5546
5547   if (!this->input_sections().empty())
5548     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5549   
5550   // Go through all the known input sections and record them.
5551   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5552   Section_id_set known_input_sections;
5553   for (Simple_input_section_list::const_iterator p = input_sections.begin();
5554        p != input_sections.end();
5555        ++p)
5556     {
5557       // This should never happen.  At this point, we should only see
5558       // plain EXIDX input sections.
5559       gold_assert(!p->is_relaxed_input_section());
5560       known_input_sections.insert(Section_id(p->relobj(), p->shndx()));
5561     }
5562
5563   Arm_exidx_fixup exidx_fixup(this);
5564
5565   // Go over the sorted text sections.
5566   Section_id_set processed_input_sections;
5567   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5568        p != sorted_text_sections.end();
5569        ++p)
5570     {
5571       Relobj* relobj = p->first;
5572       unsigned int shndx = p->second;
5573
5574       Arm_relobj<big_endian>* arm_relobj =
5575          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5576       const Arm_exidx_input_section* exidx_input_section =
5577          arm_relobj->exidx_input_section_by_link(shndx);
5578
5579       // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5580       // entry pointing to the end of the last seen EXIDX section.
5581       if (exidx_input_section == NULL)
5582         {
5583           exidx_fixup.add_exidx_cantunwind_as_needed();
5584           continue;
5585         }
5586
5587       Relobj* exidx_relobj = exidx_input_section->relobj();
5588       unsigned int exidx_shndx = exidx_input_section->shndx();
5589       Section_id sid(exidx_relobj, exidx_shndx);
5590       if (known_input_sections.find(sid) == known_input_sections.end())
5591         {
5592           // This is odd.  We have not seen this EXIDX input section before.
5593           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5594           // issue a warning instead.  We assume the user knows what he
5595           // or she is doing.  Otherwise, this is an error.
5596           if (layout->script_options()->saw_sections_clause())
5597             gold_warning(_("unwinding may not work because EXIDX input section"
5598                            " %u of %s is not in EXIDX output section"),
5599                          exidx_shndx, exidx_relobj->name().c_str());
5600           else
5601             gold_error(_("unwinding may not work because EXIDX input section"
5602                          " %u of %s is not in EXIDX output section"),
5603                        exidx_shndx, exidx_relobj->name().c_str());
5604
5605           exidx_fixup.add_exidx_cantunwind_as_needed();
5606           continue;
5607         }
5608
5609       // Fix up coverage and append input section to output data list.
5610       Arm_exidx_section_offset_map* section_offset_map = NULL;
5611       uint32_t deleted_bytes =
5612         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5613                                                       &section_offset_map);
5614
5615       if (deleted_bytes == exidx_input_section->size())
5616         {
5617           // The whole EXIDX section got merged.  Remove it from output.
5618           gold_assert(section_offset_map == NULL);
5619           exidx_relobj->set_output_section(exidx_shndx, NULL);
5620
5621           // All local symbols defined in this input section will be dropped.
5622           // We need to adjust output local symbol count.
5623           arm_relobj->set_output_local_symbol_count_needs_update();
5624         }
5625       else if (deleted_bytes > 0)
5626         {
5627           // Some entries are merged.  We need to convert this EXIDX input
5628           // section into a relaxed section.
5629           gold_assert(section_offset_map != NULL);
5630           Arm_exidx_merged_section* merged_section =
5631             new Arm_exidx_merged_section(*exidx_input_section,
5632                                          *section_offset_map, deleted_bytes);
5633           this->add_relaxed_input_section(merged_section);
5634           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5635
5636           // All local symbols defined in discarded portions of this input
5637           // section will be dropped.  We need to adjust output local symbol
5638           // count.
5639           arm_relobj->set_output_local_symbol_count_needs_update();
5640         }
5641       else
5642         {
5643           // Just add back the EXIDX input section.
5644           gold_assert(section_offset_map == NULL);
5645           Output_section::Simple_input_section sis(exidx_relobj, exidx_shndx);
5646           this->add_simple_input_section(sis, exidx_input_section->size(),
5647                                          exidx_input_section->addralign());
5648         }
5649
5650       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5651     }
5652
5653   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5654   exidx_fixup.add_exidx_cantunwind_as_needed();
5655
5656   // Remove any known EXIDX input sections that are not processed.
5657   for (Simple_input_section_list::const_iterator p = input_sections.begin();
5658        p != input_sections.end();
5659        ++p)
5660     {
5661       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5662           == processed_input_sections.end())
5663         {
5664           // We only discard a known EXIDX section because its linked
5665           // text section has been folded by ICF.
5666           Arm_relobj<big_endian>* arm_relobj =
5667             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5668           const Arm_exidx_input_section* exidx_input_section =
5669             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5670           gold_assert(exidx_input_section != NULL);
5671           unsigned int text_shndx = exidx_input_section->link();
5672           gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5673
5674           // Remove this from link.
5675           p->relobj()->set_output_section(p->shndx(), NULL);
5676         }
5677     }
5678     
5679   // Link exidx output section to the first seen output section and
5680   // set correct entry size.
5681   this->set_link_section(exidx_fixup.first_output_text_section());
5682   this->set_entsize(8);
5683
5684   // Make changes permanent.
5685   this->save_states();
5686   this->set_section_offsets_need_adjustment();
5687 }
5688
5689 // Arm_relobj methods.
5690
5691 // Determine if an input section is scannable for stub processing.  SHDR is
5692 // the header of the section and SHNDX is the section index.  OS is the output
5693 // section for the input section and SYMTAB is the global symbol table used to
5694 // look up ICF information.
5695
5696 template<bool big_endian>
5697 bool
5698 Arm_relobj<big_endian>::section_is_scannable(
5699     const elfcpp::Shdr<32, big_endian>& shdr,
5700     unsigned int shndx,
5701     const Output_section* os,
5702     const Symbol_table *symtab)
5703 {
5704   // Skip any empty sections, unallocated sections or sections whose
5705   // type are not SHT_PROGBITS.
5706   if (shdr.get_sh_size() == 0
5707       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5708       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5709     return false;
5710
5711   // Skip any discarded or ICF'ed sections.
5712   if (os == NULL || symtab->is_section_folded(this, shndx))
5713     return false;
5714
5715   // If this requires special offset handling, check to see if it is
5716   // a relaxed section.  If this is not, then it is a merged section that
5717   // we cannot handle.
5718   if (this->is_output_section_offset_invalid(shndx))
5719     {
5720       const Output_relaxed_input_section* poris =
5721         os->find_relaxed_input_section(this, shndx);
5722       if (poris == NULL)
5723         return false;
5724     }
5725
5726   return true;
5727 }
5728
5729 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5730 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5731
5732 template<bool big_endian>
5733 bool
5734 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5735     const elfcpp::Shdr<32, big_endian>& shdr,
5736     const Relobj::Output_sections& out_sections,
5737     const Symbol_table *symtab,
5738     const unsigned char* pshdrs)
5739 {
5740   unsigned int sh_type = shdr.get_sh_type();
5741   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5742     return false;
5743
5744   // Ignore empty section.
5745   off_t sh_size = shdr.get_sh_size();
5746   if (sh_size == 0)
5747     return false;
5748
5749   // Ignore reloc section with unexpected symbol table.  The
5750   // error will be reported in the final link.
5751   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5752     return false;
5753
5754   unsigned int reloc_size;
5755   if (sh_type == elfcpp::SHT_REL)
5756     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5757   else
5758     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5759
5760   // Ignore reloc section with unexpected entsize or uneven size.
5761   // The error will be reported in the final link.
5762   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5763     return false;
5764
5765   // Ignore reloc section with bad info.  This error will be
5766   // reported in the final link.
5767   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5768   if (index >= this->shnum())
5769     return false;
5770
5771   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5772   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5773   return this->section_is_scannable(text_shdr, index,
5774                                    out_sections[index], symtab);
5775 }
5776
5777 // Return the output address of either a plain input section or a relaxed
5778 // input section.  SHNDX is the section index.  We define and use this
5779 // instead of calling Output_section::output_address because that is slow
5780 // for large output.
5781
5782 template<bool big_endian>
5783 Arm_address
5784 Arm_relobj<big_endian>::simple_input_section_output_address(
5785     unsigned int shndx,
5786     Output_section* os)
5787 {
5788   if (this->is_output_section_offset_invalid(shndx))
5789     {
5790       const Output_relaxed_input_section* poris =
5791         os->find_relaxed_input_section(this, shndx);
5792       // We do not handle merged sections here.
5793       gold_assert(poris != NULL);
5794       return poris->address();
5795     }
5796   else
5797     return os->address() + this->get_output_section_offset(shndx);
5798 }
5799
5800 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5801 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5802
5803 template<bool big_endian>
5804 bool
5805 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5806     const elfcpp::Shdr<32, big_endian>& shdr,
5807     unsigned int shndx,
5808     Output_section* os,
5809     const Symbol_table* symtab)
5810 {
5811   if (!this->section_is_scannable(shdr, shndx, os, symtab))
5812     return false;
5813
5814   // If the section does not cross any 4K-boundaries, it does not need to
5815   // be scanned.
5816   Arm_address address = this->simple_input_section_output_address(shndx, os);
5817   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5818     return false;
5819
5820   return true;
5821 }
5822
5823 // Scan a section for Cortex-A8 workaround.
5824
5825 template<bool big_endian>
5826 void
5827 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5828     const elfcpp::Shdr<32, big_endian>& shdr,
5829     unsigned int shndx,
5830     Output_section* os,
5831     Target_arm<big_endian>* arm_target)
5832 {
5833   // Look for the first mapping symbol in this section.  It should be
5834   // at (shndx, 0).
5835   Mapping_symbol_position section_start(shndx, 0);
5836   typename Mapping_symbols_info::const_iterator p =
5837     this->mapping_symbols_info_.lower_bound(section_start);
5838
5839   // There are no mapping symbols for this section.  Treat it as a data-only
5840   // section.
5841   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
5842     return;
5843
5844   Arm_address output_address =
5845     this->simple_input_section_output_address(shndx, os);
5846
5847   // Get the section contents.
5848   section_size_type input_view_size = 0;
5849   const unsigned char* input_view =
5850     this->section_contents(shndx, &input_view_size, false);
5851
5852   // We need to go through the mapping symbols to determine what to
5853   // scan.  There are two reasons.  First, we should look at THUMB code and
5854   // THUMB code only.  Second, we only want to look at the 4K-page boundary
5855   // to speed up the scanning.
5856   
5857   while (p != this->mapping_symbols_info_.end()
5858         && p->first.first == shndx)
5859     {
5860       typename Mapping_symbols_info::const_iterator next =
5861         this->mapping_symbols_info_.upper_bound(p->first);
5862
5863       // Only scan part of a section with THUMB code.
5864       if (p->second == 't')
5865         {
5866           // Determine the end of this range.
5867           section_size_type span_start =
5868             convert_to_section_size_type(p->first.second);
5869           section_size_type span_end;
5870           if (next != this->mapping_symbols_info_.end()
5871               && next->first.first == shndx)
5872             span_end = convert_to_section_size_type(next->first.second);
5873           else
5874             span_end = convert_to_section_size_type(shdr.get_sh_size());
5875           
5876           if (((span_start + output_address) & ~0xfffUL)
5877               != ((span_end + output_address - 1) & ~0xfffUL))
5878             {
5879               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
5880                                                           span_start, span_end,
5881                                                           input_view,
5882                                                           output_address);
5883             }
5884         }
5885
5886       p = next; 
5887     }
5888 }
5889
5890 // Scan relocations for stub generation.
5891
5892 template<bool big_endian>
5893 void
5894 Arm_relobj<big_endian>::scan_sections_for_stubs(
5895     Target_arm<big_endian>* arm_target,
5896     const Symbol_table* symtab,
5897     const Layout* layout)
5898 {
5899   unsigned int shnum = this->shnum();
5900   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5901
5902   // Read the section headers.
5903   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
5904                                                shnum * shdr_size,
5905                                                true, true);
5906
5907   // To speed up processing, we set up hash tables for fast lookup of
5908   // input offsets to output addresses.
5909   this->initialize_input_to_output_maps();
5910
5911   const Relobj::Output_sections& out_sections(this->output_sections());
5912
5913   Relocate_info<32, big_endian> relinfo;
5914   relinfo.symtab = symtab;
5915   relinfo.layout = layout;
5916   relinfo.object = this;
5917
5918   // Do relocation stubs scanning.
5919   const unsigned char* p = pshdrs + shdr_size;
5920   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5921     {
5922       const elfcpp::Shdr<32, big_endian> shdr(p);
5923       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
5924                                                   pshdrs))
5925         {
5926           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5927           Arm_address output_offset = this->get_output_section_offset(index);
5928           Arm_address output_address;
5929           if(output_offset != invalid_address)
5930             output_address = out_sections[index]->address() + output_offset;
5931           else
5932             {
5933               // Currently this only happens for a relaxed section.
5934               const Output_relaxed_input_section* poris =
5935               out_sections[index]->find_relaxed_input_section(this, index);
5936               gold_assert(poris != NULL);
5937               output_address = poris->address();
5938             }
5939
5940           // Get the relocations.
5941           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
5942                                                         shdr.get_sh_size(),
5943                                                         true, false);
5944
5945           // Get the section contents.  This does work for the case in which
5946           // we modify the contents of an input section.  We need to pass the
5947           // output view under such circumstances.
5948           section_size_type input_view_size = 0;
5949           const unsigned char* input_view =
5950             this->section_contents(index, &input_view_size, false);
5951
5952           relinfo.reloc_shndx = i;
5953           relinfo.data_shndx = index;
5954           unsigned int sh_type = shdr.get_sh_type();
5955           unsigned int reloc_size;
5956           if (sh_type == elfcpp::SHT_REL)
5957             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5958           else
5959             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5960
5961           Output_section* os = out_sections[index];
5962           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
5963                                              shdr.get_sh_size() / reloc_size,
5964                                              os,
5965                                              output_offset == invalid_address,
5966                                              input_view, output_address,
5967                                              input_view_size);
5968         }
5969     }
5970
5971   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
5972   // after its relocation section, if there is one, is processed for
5973   // relocation stubs.  Merging this loop with the one above would have been
5974   // complicated since we would have had to make sure that relocation stub
5975   // scanning is done first.
5976   if (arm_target->fix_cortex_a8())
5977     {
5978       const unsigned char* p = pshdrs + shdr_size;
5979       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5980         {
5981           const elfcpp::Shdr<32, big_endian> shdr(p);
5982           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
5983                                                           out_sections[i],
5984                                                           symtab))
5985             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
5986                                                      arm_target);
5987         }
5988     }
5989
5990   // After we've done the relocations, we release the hash tables,
5991   // since we no longer need them.
5992   this->free_input_to_output_maps();
5993 }
5994
5995 // Count the local symbols.  The ARM backend needs to know if a symbol
5996 // is a THUMB function or not.  For global symbols, it is easy because
5997 // the Symbol object keeps the ELF symbol type.  For local symbol it is
5998 // harder because we cannot access this information.   So we override the
5999 // do_count_local_symbol in parent and scan local symbols to mark
6000 // THUMB functions.  This is not the most efficient way but I do not want to
6001 // slow down other ports by calling a per symbol targer hook inside
6002 // Sized_relobj<size, big_endian>::do_count_local_symbols. 
6003
6004 template<bool big_endian>
6005 void
6006 Arm_relobj<big_endian>::do_count_local_symbols(
6007     Stringpool_template<char>* pool,
6008     Stringpool_template<char>* dynpool)
6009 {
6010   // We need to fix-up the values of any local symbols whose type are
6011   // STT_ARM_TFUNC.
6012   
6013   // Ask parent to count the local symbols.
6014   Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6015   const unsigned int loccount = this->local_symbol_count();
6016   if (loccount == 0)
6017     return;
6018
6019   // Intialize the thumb function bit-vector.
6020   std::vector<bool> empty_vector(loccount, false);
6021   this->local_symbol_is_thumb_function_.swap(empty_vector);
6022
6023   // Read the symbol table section header.
6024   const unsigned int symtab_shndx = this->symtab_shndx();
6025   elfcpp::Shdr<32, big_endian>
6026       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6027   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6028
6029   // Read the local symbols.
6030   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6031   gold_assert(loccount == symtabshdr.get_sh_info());
6032   off_t locsize = loccount * sym_size;
6033   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6034                                               locsize, true, true);
6035
6036   // For mapping symbol processing, we need to read the symbol names.
6037   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6038   if (strtab_shndx >= this->shnum())
6039     {
6040       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6041       return;
6042     }
6043
6044   elfcpp::Shdr<32, big_endian>
6045     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6046   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6047     {
6048       this->error(_("symbol table name section has wrong type: %u"),
6049                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6050       return;
6051     }
6052   const char* pnames =
6053     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6054                                                  strtabshdr.get_sh_size(),
6055                                                  false, false));
6056
6057   // Loop over the local symbols and mark any local symbols pointing
6058   // to THUMB functions.
6059
6060   // Skip the first dummy symbol.
6061   psyms += sym_size;
6062   typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6063     this->local_values();
6064   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6065     {
6066       elfcpp::Sym<32, big_endian> sym(psyms);
6067       elfcpp::STT st_type = sym.get_st_type();
6068       Symbol_value<32>& lv((*plocal_values)[i]);
6069       Arm_address input_value = lv.input_value();
6070
6071       // Check to see if this is a mapping symbol.
6072       const char* sym_name = pnames + sym.get_st_name();
6073       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6074         {
6075           unsigned int input_shndx = sym.get_st_shndx();  
6076
6077           // Strip of LSB in case this is a THUMB symbol.
6078           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6079           this->mapping_symbols_info_[msp] = sym_name[1];
6080         }
6081
6082       if (st_type == elfcpp::STT_ARM_TFUNC
6083           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6084         {
6085           // This is a THUMB function.  Mark this and canonicalize the
6086           // symbol value by setting LSB.
6087           this->local_symbol_is_thumb_function_[i] = true;
6088           if ((input_value & 1) == 0)
6089             lv.set_input_value(input_value | 1);
6090         }
6091     }
6092 }
6093
6094 // Relocate sections.
6095 template<bool big_endian>
6096 void
6097 Arm_relobj<big_endian>::do_relocate_sections(
6098     const Symbol_table* symtab,
6099     const Layout* layout,
6100     const unsigned char* pshdrs,
6101     typename Sized_relobj<32, big_endian>::Views* pviews)
6102 {
6103   // Call parent to relocate sections.
6104   Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6105                                                      pviews); 
6106
6107   // We do not generate stubs if doing a relocatable link.
6108   if (parameters->options().relocatable())
6109     return;
6110
6111   // Relocate stub tables.
6112   unsigned int shnum = this->shnum();
6113
6114   Target_arm<big_endian>* arm_target =
6115     Target_arm<big_endian>::default_target();
6116
6117   Relocate_info<32, big_endian> relinfo;
6118   relinfo.symtab = symtab;
6119   relinfo.layout = layout;
6120   relinfo.object = this;
6121
6122   for (unsigned int i = 1; i < shnum; ++i)
6123     {
6124       Arm_input_section<big_endian>* arm_input_section =
6125         arm_target->find_arm_input_section(this, i);
6126
6127       if (arm_input_section != NULL
6128           && arm_input_section->is_stub_table_owner()
6129           && !arm_input_section->stub_table()->empty())
6130         {
6131           // We cannot discard a section if it owns a stub table.
6132           Output_section* os = this->output_section(i);
6133           gold_assert(os != NULL);
6134
6135           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6136           relinfo.reloc_shdr = NULL;
6137           relinfo.data_shndx = i;
6138           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6139
6140           gold_assert((*pviews)[i].view != NULL);
6141
6142           // We are passed the output section view.  Adjust it to cover the
6143           // stub table only.
6144           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6145           gold_assert((stub_table->address() >= (*pviews)[i].address)
6146                       && ((stub_table->address() + stub_table->data_size())
6147                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6148
6149           off_t offset = stub_table->address() - (*pviews)[i].address;
6150           unsigned char* view = (*pviews)[i].view + offset;
6151           Arm_address address = stub_table->address();
6152           section_size_type view_size = stub_table->data_size();
6153  
6154           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6155                                      view_size);
6156         }
6157
6158       // Apply Cortex A8 workaround if applicable.
6159       if (this->section_has_cortex_a8_workaround(i))
6160         {
6161           unsigned char* view = (*pviews)[i].view;
6162           Arm_address view_address = (*pviews)[i].address;
6163           section_size_type view_size = (*pviews)[i].view_size;
6164           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6165
6166           // Adjust view to cover section.
6167           Output_section* os = this->output_section(i);
6168           gold_assert(os != NULL);
6169           Arm_address section_address =
6170             this->simple_input_section_output_address(i, os);
6171           uint64_t section_size = this->section_size(i);
6172
6173           gold_assert(section_address >= view_address
6174                       && ((section_address + section_size)
6175                           <= (view_address + view_size)));
6176
6177           unsigned char* section_view = view + (section_address - view_address);
6178
6179           // Apply the Cortex-A8 workaround to the output address range
6180           // corresponding to this input section.
6181           stub_table->apply_cortex_a8_workaround_to_address_range(
6182               arm_target,
6183               section_view,
6184               section_address,
6185               section_size);
6186         }
6187     }
6188 }
6189
6190 // Find the linked text section of an EXIDX section by looking the the first
6191 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6192 // must be linked to to its associated code section via the sh_link field of
6193 // its section header.  However, some tools are broken and the link is not
6194 // always set.  LD just drops such an EXIDX section silently, causing the
6195 // associated code not unwindabled.   Here we try a little bit harder to
6196 // discover the linked code section.
6197 //
6198 // PSHDR points to the section header of a relocation section of an EXIDX
6199 // section.  If we can find a linked text section, return true and
6200 // store the text section index in the location PSHNDX.  Otherwise
6201 // return false.
6202
6203 template<bool big_endian>
6204 bool
6205 Arm_relobj<big_endian>::find_linked_text_section(
6206     const unsigned char* pshdr,
6207     const unsigned char* psyms,
6208     unsigned int* pshndx)
6209 {
6210   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6211   
6212   // If there is no relocation, we cannot find the linked text section.
6213   size_t reloc_size;
6214   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6215       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6216   else
6217       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6218   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6219  
6220   // Get the relocations.
6221   const unsigned char* prelocs =
6222       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6223
6224   // Find the REL31 relocation for the first word of the first EXIDX entry.
6225   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6226     {
6227       Arm_address r_offset;
6228       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6229       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6230         {
6231           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6232           r_info = reloc.get_r_info();
6233           r_offset = reloc.get_r_offset();
6234         }
6235       else
6236         {
6237           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6238           r_info = reloc.get_r_info();
6239           r_offset = reloc.get_r_offset();
6240         }
6241
6242       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6243       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6244         continue;
6245
6246       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6247       if (r_sym == 0
6248           || r_sym >= this->local_symbol_count()
6249           || r_offset != 0)
6250         continue;
6251
6252       // This is the relocation for the first word of the first EXIDX entry.
6253       // We expect to see a local section symbol.
6254       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6255       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6256       if (sym.get_st_type() == elfcpp::STT_SECTION)
6257         {
6258           *pshndx = this->adjust_shndx(sym.get_st_shndx());
6259           return true;
6260         }
6261       else
6262         return false;
6263     }
6264
6265   return false;
6266 }
6267
6268 // Make an EXIDX input section object for an EXIDX section whose index is
6269 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6270 // is the section index of the linked text section.
6271
6272 template<bool big_endian>
6273 void
6274 Arm_relobj<big_endian>::make_exidx_input_section(
6275     unsigned int shndx,
6276     const elfcpp::Shdr<32, big_endian>& shdr,
6277     unsigned int text_shndx)
6278 {
6279   // Issue an error and ignore this EXIDX section if it points to a text
6280   // section already has an EXIDX section.
6281   if (this->exidx_section_map_[text_shndx] != NULL)
6282     {
6283       gold_error(_("EXIDX sections %u and %u both link to text section %u "
6284                    "in %s"),
6285                  shndx, this->exidx_section_map_[text_shndx]->shndx(),
6286                  text_shndx, this->name().c_str());
6287       return;
6288     }
6289
6290   // Create an Arm_exidx_input_section object for this EXIDX section.
6291   Arm_exidx_input_section* exidx_input_section =
6292     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6293                                 shdr.get_sh_addralign());
6294   this->exidx_section_map_[text_shndx] = exidx_input_section;
6295
6296   // Also map the EXIDX section index to this.
6297   gold_assert(this->exidx_section_map_[shndx] == NULL);
6298   this->exidx_section_map_[shndx] = exidx_input_section;
6299 }
6300
6301 // Read the symbol information.
6302
6303 template<bool big_endian>
6304 void
6305 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6306 {
6307   // Call parent class to read symbol information.
6308   Sized_relobj<32, big_endian>::do_read_symbols(sd);
6309
6310   // Read processor-specific flags in ELF file header.
6311   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6312                                               elfcpp::Elf_sizes<32>::ehdr_size,
6313                                               true, false);
6314   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6315   this->processor_specific_flags_ = ehdr.get_e_flags();
6316
6317   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6318   // sections.
6319   std::vector<unsigned int> deferred_exidx_sections;
6320   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6321   const unsigned char* pshdrs = sd->section_headers->data();
6322   const unsigned char *ps = pshdrs + shdr_size;
6323   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6324     {
6325       elfcpp::Shdr<32, big_endian> shdr(ps);
6326       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6327         {
6328           gold_assert(this->attributes_section_data_ == NULL);
6329           section_offset_type section_offset = shdr.get_sh_offset();
6330           section_size_type section_size =
6331             convert_to_section_size_type(shdr.get_sh_size());
6332           File_view* view = this->get_lasting_view(section_offset,
6333                                                    section_size, true, false);
6334           this->attributes_section_data_ =
6335             new Attributes_section_data(view->data(), section_size);
6336         }
6337       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6338         {
6339           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6340           if (text_shndx >= this->shnum())
6341             gold_error(_("EXIDX section %u linked to invalid section %u"),
6342                        i, text_shndx);
6343           else if (text_shndx == elfcpp::SHN_UNDEF)
6344             deferred_exidx_sections.push_back(i);
6345           else
6346             this->make_exidx_input_section(i, shdr, text_shndx);
6347         }
6348     }
6349
6350   // Some tools are broken and they do not set the link of EXIDX sections. 
6351   // We look at the first relocation to figure out the linked sections.
6352   if (!deferred_exidx_sections.empty())
6353     {
6354       // We need to go over the section headers again to find the mapping
6355       // from sections being relocated to their relocation sections.  This is
6356       // a bit inefficient as we could do that in the loop above.  However,
6357       // we do not expect any deferred EXIDX sections normally.  So we do not
6358       // want to slow down the most common path.
6359       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6360       Reloc_map reloc_map;
6361       ps = pshdrs + shdr_size;
6362       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6363         {
6364           elfcpp::Shdr<32, big_endian> shdr(ps);
6365           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6366           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6367             {
6368               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6369               if (info_shndx >= this->shnum())
6370                 gold_error(_("relocation section %u has invalid info %u"),
6371                            i, info_shndx);
6372               Reloc_map::value_type value(info_shndx, i);
6373               std::pair<Reloc_map::iterator, bool> result =
6374                 reloc_map.insert(value);
6375               if (!result.second)
6376                 gold_error(_("section %u has multiple relocation sections "
6377                              "%u and %u"),
6378                            info_shndx, i, reloc_map[info_shndx]);
6379             }
6380         }
6381
6382       // Read the symbol table section header.
6383       const unsigned int symtab_shndx = this->symtab_shndx();
6384       elfcpp::Shdr<32, big_endian>
6385           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6386       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6387
6388       // Read the local symbols.
6389       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6390       const unsigned int loccount = this->local_symbol_count();
6391       gold_assert(loccount == symtabshdr.get_sh_info());
6392       off_t locsize = loccount * sym_size;
6393       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6394                                                   locsize, true, true);
6395
6396       // Process the deferred EXIDX sections. 
6397       for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6398         {
6399           unsigned int shndx = deferred_exidx_sections[i];
6400           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6401           unsigned int text_shndx;
6402           Reloc_map::const_iterator it = reloc_map.find(shndx);
6403           if (it != reloc_map.end()
6404               && find_linked_text_section(pshdrs + it->second * shdr_size,
6405                                           psyms, &text_shndx))
6406             this->make_exidx_input_section(shndx, shdr, text_shndx);
6407           else
6408             gold_error(_("EXIDX section %u has no linked text section."),
6409                        shndx);
6410         }
6411     }
6412 }
6413
6414 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6415 // sections for unwinding.  These sections are referenced implicitly by 
6416 // text sections linked in the section headers.  If we ignore these implict
6417 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6418 // will be garbage-collected incorrectly.  Hence we override the same function
6419 // in the base class to handle these implicit references.
6420
6421 template<bool big_endian>
6422 void
6423 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6424                                              Layout* layout,
6425                                              Read_relocs_data* rd)
6426 {
6427   // First, call base class method to process relocations in this object.
6428   Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6429
6430   // If --gc-sections is not specified, there is nothing more to do.
6431   // This happens when --icf is used but --gc-sections is not.
6432   if (!parameters->options().gc_sections())
6433     return;
6434   
6435   unsigned int shnum = this->shnum();
6436   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6437   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6438                                                shnum * shdr_size,
6439                                                true, true);
6440
6441   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6442   // to these from the linked text sections.
6443   const unsigned char* ps = pshdrs + shdr_size;
6444   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6445     {
6446       elfcpp::Shdr<32, big_endian> shdr(ps);
6447       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6448         {
6449           // Found an .ARM.exidx section, add it to the set of reachable
6450           // sections from its linked text section.
6451           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6452           symtab->gc()->add_reference(this, text_shndx, this, i);
6453         }
6454     }
6455 }
6456
6457 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6458 // symbols  will be removed in output.  Adjust output local symbol count
6459 // accordingly.  We can only changed the static output local symbol count.  It
6460 // is too late to change the dynamic symbols.
6461
6462 template<bool big_endian>
6463 void
6464 Arm_relobj<big_endian>::update_output_local_symbol_count()
6465 {
6466   // Caller should check that this needs updating.  We want caller checking
6467   // because output_local_symbol_count_needs_update() is most likely inlined.
6468   gold_assert(this->output_local_symbol_count_needs_update_);
6469
6470   gold_assert(this->symtab_shndx() != -1U);
6471   if (this->symtab_shndx() == 0)
6472     {
6473       // This object has no symbols.  Weird but legal.
6474       return;
6475     }
6476
6477   // Read the symbol table section header.
6478   const unsigned int symtab_shndx = this->symtab_shndx();
6479   elfcpp::Shdr<32, big_endian>
6480     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6481   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6482
6483   // Read the local symbols.
6484   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6485   const unsigned int loccount = this->local_symbol_count();
6486   gold_assert(loccount == symtabshdr.get_sh_info());
6487   off_t locsize = loccount * sym_size;
6488   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6489                                               locsize, true, true);
6490
6491   // Loop over the local symbols.
6492
6493   typedef typename Sized_relobj<32, big_endian>::Output_sections
6494      Output_sections;
6495   const Output_sections& out_sections(this->output_sections());
6496   unsigned int shnum = this->shnum();
6497   unsigned int count = 0;
6498   // Skip the first, dummy, symbol.
6499   psyms += sym_size;
6500   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6501     {
6502       elfcpp::Sym<32, big_endian> sym(psyms);
6503
6504       Symbol_value<32>& lv((*this->local_values())[i]);
6505
6506       // This local symbol was already discarded by do_count_local_symbols.
6507       if (!lv.needs_output_symtab_entry())
6508         continue;
6509
6510       bool is_ordinary;
6511       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6512                                                   &is_ordinary);
6513
6514       if (shndx < shnum)
6515         {
6516           Output_section* os = out_sections[shndx];
6517
6518           // This local symbol no longer has an output section.  Discard it.
6519           if (os == NULL)
6520             {
6521               lv.set_no_output_symtab_entry();
6522               continue;
6523             }
6524
6525           // Currently we only discard parts of EXIDX input sections.
6526           // We explicitly check for a merged EXIDX input section to avoid
6527           // calling Output_section_data::output_offset unless necessary.
6528           if ((this->get_output_section_offset(shndx) == invalid_address)
6529               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6530             {
6531               section_offset_type output_offset =
6532                 os->output_offset(this, shndx, lv.input_value());
6533               if (output_offset == -1)
6534                 {
6535                   // This symbol is defined in a part of an EXIDX input section
6536                   // that is discarded due to entry merging.
6537                   lv.set_no_output_symtab_entry();
6538                   continue;
6539                 }       
6540             }
6541         }
6542
6543       ++count;
6544     }
6545
6546   this->set_output_local_symbol_count(count);
6547   this->output_local_symbol_count_needs_update_ = false;
6548 }
6549
6550 // Arm_dynobj methods.
6551
6552 // Read the symbol information.
6553
6554 template<bool big_endian>
6555 void
6556 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6557 {
6558   // Call parent class to read symbol information.
6559   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6560
6561   // Read processor-specific flags in ELF file header.
6562   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6563                                               elfcpp::Elf_sizes<32>::ehdr_size,
6564                                               true, false);
6565   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6566   this->processor_specific_flags_ = ehdr.get_e_flags();
6567
6568   // Read the attributes section if there is one.
6569   // We read from the end because gas seems to put it near the end of
6570   // the section headers.
6571   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6572   const unsigned char *ps =
6573     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6574   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6575     {
6576       elfcpp::Shdr<32, big_endian> shdr(ps);
6577       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6578         {
6579           section_offset_type section_offset = shdr.get_sh_offset();
6580           section_size_type section_size =
6581             convert_to_section_size_type(shdr.get_sh_size());
6582           File_view* view = this->get_lasting_view(section_offset,
6583                                                    section_size, true, false);
6584           this->attributes_section_data_ =
6585             new Attributes_section_data(view->data(), section_size);
6586           break;
6587         }
6588     }
6589 }
6590
6591 // Stub_addend_reader methods.
6592
6593 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6594
6595 template<bool big_endian>
6596 elfcpp::Elf_types<32>::Elf_Swxword
6597 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6598     unsigned int r_type,
6599     const unsigned char* view,
6600     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6601 {
6602   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6603   
6604   switch (r_type)
6605     {
6606     case elfcpp::R_ARM_CALL:
6607     case elfcpp::R_ARM_JUMP24:
6608     case elfcpp::R_ARM_PLT32:
6609       {
6610         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6611         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6612         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6613         return utils::sign_extend<26>(val << 2);
6614       }
6615
6616     case elfcpp::R_ARM_THM_CALL:
6617     case elfcpp::R_ARM_THM_JUMP24:
6618     case elfcpp::R_ARM_THM_XPC22:
6619       {
6620         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6621         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6622         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6623         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6624         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6625       }
6626
6627     case elfcpp::R_ARM_THM_JUMP19:
6628       {
6629         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6630         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6631         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6632         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6633         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6634       }
6635
6636     default:
6637       gold_unreachable();
6638     }
6639 }
6640
6641 // Arm_output_data_got methods.
6642
6643 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
6644 // The first one is initialized to be 1, which is the module index for
6645 // the main executable and the second one 0.  A reloc of the type
6646 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6647 // be applied by gold.  GSYM is a global symbol.
6648 //
6649 template<bool big_endian>
6650 void
6651 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6652     unsigned int got_type,
6653     Symbol* gsym)
6654 {
6655   if (gsym->has_got_offset(got_type))
6656     return;
6657
6658   // We are doing a static link.  Just mark it as belong to module 1,
6659   // the executable.
6660   unsigned int got_offset = this->add_constant(1);
6661   gsym->set_got_offset(got_type, got_offset); 
6662   got_offset = this->add_constant(0);
6663   this->static_relocs_.push_back(Static_reloc(got_offset,
6664                                               elfcpp::R_ARM_TLS_DTPOFF32,
6665                                               gsym));
6666 }
6667
6668 // Same as the above but for a local symbol.
6669
6670 template<bool big_endian>
6671 void
6672 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6673   unsigned int got_type,
6674   Sized_relobj<32, big_endian>* object,
6675   unsigned int index)
6676 {
6677   if (object->local_has_got_offset(index, got_type))
6678     return;
6679
6680   // We are doing a static link.  Just mark it as belong to module 1,
6681   // the executable.
6682   unsigned int got_offset = this->add_constant(1);
6683   object->set_local_got_offset(index, got_type, got_offset);
6684   got_offset = this->add_constant(0);
6685   this->static_relocs_.push_back(Static_reloc(got_offset, 
6686                                               elfcpp::R_ARM_TLS_DTPOFF32, 
6687                                               object, index));
6688 }
6689
6690 template<bool big_endian>
6691 void
6692 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6693 {
6694   // Call parent to write out GOT.
6695   Output_data_got<32, big_endian>::do_write(of);
6696
6697   // We are done if there is no fix up.
6698   if (this->static_relocs_.empty())
6699     return;
6700
6701   gold_assert(parameters->doing_static_link());
6702
6703   const off_t offset = this->offset();
6704   const section_size_type oview_size =
6705     convert_to_section_size_type(this->data_size());
6706   unsigned char* const oview = of->get_output_view(offset, oview_size);
6707
6708   Output_segment* tls_segment = this->layout_->tls_segment();
6709   gold_assert(tls_segment != NULL);
6710   
6711   // The thread pointer $tp points to the TCB, which is followed by the
6712   // TLS.  So we need to adjust $tp relative addressing by this amount.
6713   Arm_address aligned_tcb_size =
6714     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6715
6716   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6717     {
6718       Static_reloc& reloc(this->static_relocs_[i]);
6719       
6720       Arm_address value;
6721       if (!reloc.symbol_is_global())
6722         {
6723           Sized_relobj<32, big_endian>* object = reloc.relobj();
6724           const Symbol_value<32>* psymval =
6725             reloc.relobj()->local_symbol(reloc.index());
6726
6727           // We are doing static linking.  Issue an error and skip this
6728           // relocation if the symbol is undefined or in a discarded_section.
6729           bool is_ordinary;
6730           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6731           if ((shndx == elfcpp::SHN_UNDEF)
6732               || (is_ordinary
6733                   && shndx != elfcpp::SHN_UNDEF
6734                   && !object->is_section_included(shndx)
6735                   && !this->symbol_table_->is_section_folded(object, shndx)))
6736             {
6737               gold_error(_("undefined or discarded local symbol %u from "
6738                            " object %s in GOT"),
6739                          reloc.index(), reloc.relobj()->name().c_str());
6740               continue;
6741             }
6742           
6743           value = psymval->value(object, 0);
6744         }
6745       else
6746         {
6747           const Symbol* gsym = reloc.symbol();
6748           gold_assert(gsym != NULL);
6749           if (gsym->is_forwarder())
6750             gsym = this->symbol_table_->resolve_forwards(gsym);
6751
6752           // We are doing static linking.  Issue an error and skip this
6753           // relocation if the symbol is undefined or in a discarded_section
6754           // unless it is a weakly_undefined symbol.
6755           if ((gsym->is_defined_in_discarded_section()
6756                || gsym->is_undefined())
6757               && !gsym->is_weak_undefined())
6758             {
6759               gold_error(_("undefined or discarded symbol %s in GOT"),
6760                          gsym->name());
6761               continue;
6762             }
6763
6764           if (!gsym->is_weak_undefined())
6765             {
6766               const Sized_symbol<32>* sym =
6767                 static_cast<const Sized_symbol<32>*>(gsym);
6768               value = sym->value();
6769             }
6770           else
6771               value = 0;
6772         }
6773
6774       unsigned got_offset = reloc.got_offset();
6775       gold_assert(got_offset < oview_size);
6776
6777       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6778       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6779       Valtype x;
6780       switch (reloc.r_type())
6781         {
6782         case elfcpp::R_ARM_TLS_DTPOFF32:
6783           x = value;
6784           break;
6785         case elfcpp::R_ARM_TLS_TPOFF32:
6786           x = value + aligned_tcb_size;
6787           break;
6788         default:
6789           gold_unreachable();
6790         }
6791       elfcpp::Swap<32, big_endian>::writeval(wv, x);
6792     }
6793
6794   of->write_output_view(offset, oview_size, oview);
6795 }
6796
6797 // A class to handle the PLT data.
6798
6799 template<bool big_endian>
6800 class Output_data_plt_arm : public Output_section_data
6801 {
6802  public:
6803   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6804     Reloc_section;
6805
6806   Output_data_plt_arm(Layout*, Output_data_space*);
6807
6808   // Add an entry to the PLT.
6809   void
6810   add_entry(Symbol* gsym);
6811
6812   // Return the .rel.plt section data.
6813   const Reloc_section*
6814   rel_plt() const
6815   { return this->rel_; }
6816
6817  protected:
6818   void
6819   do_adjust_output_section(Output_section* os);
6820
6821   // Write to a map file.
6822   void
6823   do_print_to_mapfile(Mapfile* mapfile) const
6824   { mapfile->print_output_data(this, _("** PLT")); }
6825
6826  private:
6827   // Template for the first PLT entry.
6828   static const uint32_t first_plt_entry[5];
6829
6830   // Template for subsequent PLT entries. 
6831   static const uint32_t plt_entry[3];
6832
6833   // Set the final size.
6834   void
6835   set_final_data_size()
6836   {
6837     this->set_data_size(sizeof(first_plt_entry)
6838                         + this->count_ * sizeof(plt_entry));
6839   }
6840
6841   // Write out the PLT data.
6842   void
6843   do_write(Output_file*);
6844
6845   // The reloc section.
6846   Reloc_section* rel_;
6847   // The .got.plt section.
6848   Output_data_space* got_plt_;
6849   // The number of PLT entries.
6850   unsigned int count_;
6851 };
6852
6853 // Create the PLT section.  The ordinary .got section is an argument,
6854 // since we need to refer to the start.  We also create our own .got
6855 // section just for PLT entries.
6856
6857 template<bool big_endian>
6858 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
6859                                                      Output_data_space* got_plt)
6860   : Output_section_data(4), got_plt_(got_plt), count_(0)
6861 {
6862   this->rel_ = new Reloc_section(false);
6863   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
6864                                   elfcpp::SHF_ALLOC, this->rel_, true, false,
6865                                   false, false);
6866 }
6867
6868 template<bool big_endian>
6869 void
6870 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
6871 {
6872   os->set_entsize(0);
6873 }
6874
6875 // Add an entry to the PLT.
6876
6877 template<bool big_endian>
6878 void
6879 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
6880 {
6881   gold_assert(!gsym->has_plt_offset());
6882
6883   // Note that when setting the PLT offset we skip the initial
6884   // reserved PLT entry.
6885   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
6886                        + sizeof(first_plt_entry));
6887
6888   ++this->count_;
6889
6890   section_offset_type got_offset = this->got_plt_->current_data_size();
6891
6892   // Every PLT entry needs a GOT entry which points back to the PLT
6893   // entry (this will be changed by the dynamic linker, normally
6894   // lazily when the function is called).
6895   this->got_plt_->set_current_data_size(got_offset + 4);
6896
6897   // Every PLT entry needs a reloc.
6898   gsym->set_needs_dynsym_entry();
6899   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
6900                          got_offset);
6901
6902   // Note that we don't need to save the symbol.  The contents of the
6903   // PLT are independent of which symbols are used.  The symbols only
6904   // appear in the relocations.
6905 }
6906
6907 // ARM PLTs.
6908 // FIXME:  This is not very flexible.  Right now this has only been tested
6909 // on armv5te.  If we are to support additional architecture features like
6910 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6911
6912 // The first entry in the PLT.
6913 template<bool big_endian>
6914 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
6915 {
6916   0xe52de004,   // str   lr, [sp, #-4]!
6917   0xe59fe004,   // ldr   lr, [pc, #4]
6918   0xe08fe00e,   // add   lr, pc, lr 
6919   0xe5bef008,   // ldr   pc, [lr, #8]!
6920   0x00000000,   // &GOT[0] - .
6921 };
6922
6923 // Subsequent entries in the PLT.
6924
6925 template<bool big_endian>
6926 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
6927 {
6928   0xe28fc600,   // add   ip, pc, #0xNN00000
6929   0xe28cca00,   // add   ip, ip, #0xNN000
6930   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
6931 };
6932
6933 // Write out the PLT.  This uses the hand-coded instructions above,
6934 // and adjusts them as needed.  This is all specified by the arm ELF
6935 // Processor Supplement.
6936
6937 template<bool big_endian>
6938 void
6939 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
6940 {
6941   const off_t offset = this->offset();
6942   const section_size_type oview_size =
6943     convert_to_section_size_type(this->data_size());
6944   unsigned char* const oview = of->get_output_view(offset, oview_size);
6945
6946   const off_t got_file_offset = this->got_plt_->offset();
6947   const section_size_type got_size =
6948     convert_to_section_size_type(this->got_plt_->data_size());
6949   unsigned char* const got_view = of->get_output_view(got_file_offset,
6950                                                       got_size);
6951   unsigned char* pov = oview;
6952
6953   Arm_address plt_address = this->address();
6954   Arm_address got_address = this->got_plt_->address();
6955
6956   // Write first PLT entry.  All but the last word are constants.
6957   const size_t num_first_plt_words = (sizeof(first_plt_entry)
6958                                       / sizeof(plt_entry[0]));
6959   for (size_t i = 0; i < num_first_plt_words - 1; i++)
6960     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
6961   // Last word in first PLT entry is &GOT[0] - .
6962   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
6963                                          got_address - (plt_address + 16));
6964   pov += sizeof(first_plt_entry);
6965
6966   unsigned char* got_pov = got_view;
6967
6968   memset(got_pov, 0, 12);
6969   got_pov += 12;
6970
6971   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
6972   unsigned int plt_offset = sizeof(first_plt_entry);
6973   unsigned int plt_rel_offset = 0;
6974   unsigned int got_offset = 12;
6975   const unsigned int count = this->count_;
6976   for (unsigned int i = 0;
6977        i < count;
6978        ++i,
6979          pov += sizeof(plt_entry),
6980          got_pov += 4,
6981          plt_offset += sizeof(plt_entry),
6982          plt_rel_offset += rel_size,
6983          got_offset += 4)
6984     {
6985       // Set and adjust the PLT entry itself.
6986       int32_t offset = ((got_address + got_offset)
6987                          - (plt_address + plt_offset + 8));
6988
6989       gold_assert(offset >= 0 && offset < 0x0fffffff);
6990       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
6991       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
6992       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
6993       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
6994       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
6995       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
6996
6997       // Set the entry in the GOT.
6998       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
6999     }
7000
7001   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7002   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7003
7004   of->write_output_view(offset, oview_size, oview);
7005   of->write_output_view(got_file_offset, got_size, got_view);
7006 }
7007
7008 // Create a PLT entry for a global symbol.
7009
7010 template<bool big_endian>
7011 void
7012 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7013                                        Symbol* gsym)
7014 {
7015   if (gsym->has_plt_offset())
7016     return;
7017
7018   if (this->plt_ == NULL)
7019     {
7020       // Create the GOT sections first.
7021       this->got_section(symtab, layout);
7022
7023       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7024       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7025                                       (elfcpp::SHF_ALLOC
7026                                        | elfcpp::SHF_EXECINSTR),
7027                                       this->plt_, false, false, false, false);
7028     }
7029   this->plt_->add_entry(gsym);
7030 }
7031
7032 // Get the section to use for TLS_DESC relocations.
7033
7034 template<bool big_endian>
7035 typename Target_arm<big_endian>::Reloc_section*
7036 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7037 {
7038   return this->plt_section()->rel_tls_desc(layout);
7039 }
7040
7041 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7042
7043 template<bool big_endian>
7044 void
7045 Target_arm<big_endian>::define_tls_base_symbol(
7046     Symbol_table* symtab,
7047     Layout* layout)
7048 {
7049   if (this->tls_base_symbol_defined_)
7050     return;
7051
7052   Output_segment* tls_segment = layout->tls_segment();
7053   if (tls_segment != NULL)
7054     {
7055       bool is_exec = parameters->options().output_is_executable();
7056       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7057                                        Symbol_table::PREDEFINED,
7058                                        tls_segment, 0, 0,
7059                                        elfcpp::STT_TLS,
7060                                        elfcpp::STB_LOCAL,
7061                                        elfcpp::STV_HIDDEN, 0,
7062                                        (is_exec
7063                                         ? Symbol::SEGMENT_END
7064                                         : Symbol::SEGMENT_START),
7065                                        true);
7066     }
7067   this->tls_base_symbol_defined_ = true;
7068 }
7069
7070 // Create a GOT entry for the TLS module index.
7071
7072 template<bool big_endian>
7073 unsigned int
7074 Target_arm<big_endian>::got_mod_index_entry(
7075     Symbol_table* symtab,
7076     Layout* layout,
7077     Sized_relobj<32, big_endian>* object)
7078 {
7079   if (this->got_mod_index_offset_ == -1U)
7080     {
7081       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7082       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7083       unsigned int got_offset;
7084       if (!parameters->doing_static_link())
7085         {
7086           got_offset = got->add_constant(0);
7087           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7088           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7089                              got_offset);
7090         }
7091       else
7092         {
7093           // We are doing a static link.  Just mark it as belong to module 1,
7094           // the executable.
7095           got_offset = got->add_constant(1);
7096         }
7097
7098       got->add_constant(0);
7099       this->got_mod_index_offset_ = got_offset;
7100     }
7101   return this->got_mod_index_offset_;
7102 }
7103
7104 // Optimize the TLS relocation type based on what we know about the
7105 // symbol.  IS_FINAL is true if the final address of this symbol is
7106 // known at link time.
7107
7108 template<bool big_endian>
7109 tls::Tls_optimization
7110 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7111 {
7112   // FIXME: Currently we do not do any TLS optimization.
7113   return tls::TLSOPT_NONE;
7114 }
7115
7116 // Report an unsupported relocation against a local symbol.
7117
7118 template<bool big_endian>
7119 void
7120 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7121     Sized_relobj<32, big_endian>* object,
7122     unsigned int r_type)
7123 {
7124   gold_error(_("%s: unsupported reloc %u against local symbol"),
7125              object->name().c_str(), r_type);
7126 }
7127
7128 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7129 // dynamic linker does not support it, issue an error.  The GNU linker
7130 // only issues a non-PIC error for an allocated read-only section.
7131 // Here we know the section is allocated, but we don't know that it is
7132 // read-only.  But we check for all the relocation types which the
7133 // glibc dynamic linker supports, so it seems appropriate to issue an
7134 // error even if the section is not read-only.
7135
7136 template<bool big_endian>
7137 void
7138 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7139                                             unsigned int r_type)
7140 {
7141   switch (r_type)
7142     {
7143     // These are the relocation types supported by glibc for ARM.
7144     case elfcpp::R_ARM_RELATIVE:
7145     case elfcpp::R_ARM_COPY:
7146     case elfcpp::R_ARM_GLOB_DAT:
7147     case elfcpp::R_ARM_JUMP_SLOT:
7148     case elfcpp::R_ARM_ABS32:
7149     case elfcpp::R_ARM_ABS32_NOI:
7150     case elfcpp::R_ARM_PC24:
7151     // FIXME: The following 3 types are not supported by Android's dynamic
7152     // linker.
7153     case elfcpp::R_ARM_TLS_DTPMOD32:
7154     case elfcpp::R_ARM_TLS_DTPOFF32:
7155     case elfcpp::R_ARM_TLS_TPOFF32:
7156       return;
7157
7158     default:
7159       {
7160         // This prevents us from issuing more than one error per reloc
7161         // section.  But we can still wind up issuing more than one
7162         // error per object file.
7163         if (this->issued_non_pic_error_)
7164           return;
7165         const Arm_reloc_property* reloc_property =
7166           arm_reloc_property_table->get_reloc_property(r_type);
7167         gold_assert(reloc_property != NULL);
7168         object->error(_("requires unsupported dynamic reloc %s; "
7169                       "recompile with -fPIC"),
7170                       reloc_property->name().c_str());
7171         this->issued_non_pic_error_ = true;
7172         return;
7173       }
7174
7175     case elfcpp::R_ARM_NONE:
7176       gold_unreachable();
7177     }
7178 }
7179
7180 // Scan a relocation for a local symbol.
7181 // FIXME: This only handles a subset of relocation types used by Android
7182 // on ARM v5te devices.
7183
7184 template<bool big_endian>
7185 inline void
7186 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7187                                     Layout* layout,
7188                                     Target_arm* target,
7189                                     Sized_relobj<32, big_endian>* object,
7190                                     unsigned int data_shndx,
7191                                     Output_section* output_section,
7192                                     const elfcpp::Rel<32, big_endian>& reloc,
7193                                     unsigned int r_type,
7194                                     const elfcpp::Sym<32, big_endian>& lsym)
7195 {
7196   r_type = get_real_reloc_type(r_type);
7197   switch (r_type)
7198     {
7199     case elfcpp::R_ARM_NONE:
7200     case elfcpp::R_ARM_V4BX:
7201     case elfcpp::R_ARM_GNU_VTENTRY:
7202     case elfcpp::R_ARM_GNU_VTINHERIT:
7203       break;
7204
7205     case elfcpp::R_ARM_ABS32:
7206     case elfcpp::R_ARM_ABS32_NOI:
7207       // If building a shared library (or a position-independent
7208       // executable), we need to create a dynamic relocation for
7209       // this location. The relocation applied at link time will
7210       // apply the link-time value, so we flag the location with
7211       // an R_ARM_RELATIVE relocation so the dynamic loader can
7212       // relocate it easily.
7213       if (parameters->options().output_is_position_independent())
7214         {
7215           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7216           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7217           // If we are to add more other reloc types than R_ARM_ABS32,
7218           // we need to add check_non_pic(object, r_type) here.
7219           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7220                                       output_section, data_shndx,
7221                                       reloc.get_r_offset());
7222         }
7223       break;
7224
7225     case elfcpp::R_ARM_ABS16:
7226     case elfcpp::R_ARM_ABS12:
7227     case elfcpp::R_ARM_THM_ABS5:
7228     case elfcpp::R_ARM_ABS8:
7229     case elfcpp::R_ARM_BASE_ABS:
7230     case elfcpp::R_ARM_MOVW_ABS_NC:
7231     case elfcpp::R_ARM_MOVT_ABS:
7232     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7233     case elfcpp::R_ARM_THM_MOVT_ABS:
7234       // If building a shared library (or a position-independent
7235       // executable), we need to create a dynamic relocation for
7236       // this location. Because the addend needs to remain in the
7237       // data section, we need to be careful not to apply this
7238       // relocation statically.
7239       if (parameters->options().output_is_position_independent())
7240         {
7241           check_non_pic(object, r_type);
7242           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7243           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7244           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7245             rel_dyn->add_local(object, r_sym, r_type, output_section,
7246                                data_shndx, reloc.get_r_offset());
7247           else
7248             {
7249               gold_assert(lsym.get_st_value() == 0);
7250               unsigned int shndx = lsym.get_st_shndx();
7251               bool is_ordinary;
7252               shndx = object->adjust_sym_shndx(r_sym, shndx,
7253                                                &is_ordinary);
7254               if (!is_ordinary)
7255                 object->error(_("section symbol %u has bad shndx %u"),
7256                               r_sym, shndx);
7257               else
7258                 rel_dyn->add_local_section(object, shndx,
7259                                            r_type, output_section,
7260                                            data_shndx, reloc.get_r_offset());
7261             }
7262         }
7263       break;
7264
7265     case elfcpp::R_ARM_PC24:
7266     case elfcpp::R_ARM_REL32:
7267     case elfcpp::R_ARM_LDR_PC_G0:
7268     case elfcpp::R_ARM_SBREL32:
7269     case elfcpp::R_ARM_THM_CALL:
7270     case elfcpp::R_ARM_THM_PC8:
7271     case elfcpp::R_ARM_BASE_PREL:
7272     case elfcpp::R_ARM_PLT32:
7273     case elfcpp::R_ARM_CALL:
7274     case elfcpp::R_ARM_JUMP24:
7275     case elfcpp::R_ARM_THM_JUMP24:
7276     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7277     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7278     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7279     case elfcpp::R_ARM_SBREL31:
7280     case elfcpp::R_ARM_PREL31:
7281     case elfcpp::R_ARM_MOVW_PREL_NC:
7282     case elfcpp::R_ARM_MOVT_PREL:
7283     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7284     case elfcpp::R_ARM_THM_MOVT_PREL:
7285     case elfcpp::R_ARM_THM_JUMP19:
7286     case elfcpp::R_ARM_THM_JUMP6:
7287     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7288     case elfcpp::R_ARM_THM_PC12:
7289     case elfcpp::R_ARM_REL32_NOI:
7290     case elfcpp::R_ARM_ALU_PC_G0_NC:
7291     case elfcpp::R_ARM_ALU_PC_G0:
7292     case elfcpp::R_ARM_ALU_PC_G1_NC:
7293     case elfcpp::R_ARM_ALU_PC_G1:
7294     case elfcpp::R_ARM_ALU_PC_G2:
7295     case elfcpp::R_ARM_LDR_PC_G1:
7296     case elfcpp::R_ARM_LDR_PC_G2:
7297     case elfcpp::R_ARM_LDRS_PC_G0:
7298     case elfcpp::R_ARM_LDRS_PC_G1:
7299     case elfcpp::R_ARM_LDRS_PC_G2:
7300     case elfcpp::R_ARM_LDC_PC_G0:
7301     case elfcpp::R_ARM_LDC_PC_G1:
7302     case elfcpp::R_ARM_LDC_PC_G2:
7303     case elfcpp::R_ARM_ALU_SB_G0_NC:
7304     case elfcpp::R_ARM_ALU_SB_G0:
7305     case elfcpp::R_ARM_ALU_SB_G1_NC:
7306     case elfcpp::R_ARM_ALU_SB_G1:
7307     case elfcpp::R_ARM_ALU_SB_G2:
7308     case elfcpp::R_ARM_LDR_SB_G0:
7309     case elfcpp::R_ARM_LDR_SB_G1:
7310     case elfcpp::R_ARM_LDR_SB_G2:
7311     case elfcpp::R_ARM_LDRS_SB_G0:
7312     case elfcpp::R_ARM_LDRS_SB_G1:
7313     case elfcpp::R_ARM_LDRS_SB_G2:
7314     case elfcpp::R_ARM_LDC_SB_G0:
7315     case elfcpp::R_ARM_LDC_SB_G1:
7316     case elfcpp::R_ARM_LDC_SB_G2:
7317     case elfcpp::R_ARM_MOVW_BREL_NC:
7318     case elfcpp::R_ARM_MOVT_BREL:
7319     case elfcpp::R_ARM_MOVW_BREL:
7320     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7321     case elfcpp::R_ARM_THM_MOVT_BREL:
7322     case elfcpp::R_ARM_THM_MOVW_BREL:
7323     case elfcpp::R_ARM_THM_JUMP11:
7324     case elfcpp::R_ARM_THM_JUMP8:
7325       // We don't need to do anything for a relative addressing relocation
7326       // against a local symbol if it does not reference the GOT.
7327       break;
7328
7329     case elfcpp::R_ARM_GOTOFF32:
7330     case elfcpp::R_ARM_GOTOFF12:
7331       // We need a GOT section:
7332       target->got_section(symtab, layout);
7333       break;
7334
7335     case elfcpp::R_ARM_GOT_BREL:
7336     case elfcpp::R_ARM_GOT_PREL:
7337       {
7338         // The symbol requires a GOT entry.
7339         Arm_output_data_got<big_endian>* got =
7340           target->got_section(symtab, layout);
7341         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7342         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7343           {
7344             // If we are generating a shared object, we need to add a
7345             // dynamic RELATIVE relocation for this symbol's GOT entry.
7346             if (parameters->options().output_is_position_independent())
7347               {
7348                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7349                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7350                 rel_dyn->add_local_relative(
7351                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7352                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7353               }
7354           }
7355       }
7356       break;
7357
7358     case elfcpp::R_ARM_TARGET1:
7359     case elfcpp::R_ARM_TARGET2:
7360       // This should have been mapped to another type already.
7361       // Fall through.
7362     case elfcpp::R_ARM_COPY:
7363     case elfcpp::R_ARM_GLOB_DAT:
7364     case elfcpp::R_ARM_JUMP_SLOT:
7365     case elfcpp::R_ARM_RELATIVE:
7366       // These are relocations which should only be seen by the
7367       // dynamic linker, and should never be seen here.
7368       gold_error(_("%s: unexpected reloc %u in object file"),
7369                  object->name().c_str(), r_type);
7370       break;
7371
7372
7373       // These are initial TLS relocs, which are expected when
7374       // linking.
7375     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7376     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7377     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7378     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7379     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7380       {
7381         bool output_is_shared = parameters->options().shared();
7382         const tls::Tls_optimization optimized_type
7383             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7384                                                          r_type);
7385         switch (r_type)
7386           {
7387           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7388             if (optimized_type == tls::TLSOPT_NONE)
7389               {
7390                 // Create a pair of GOT entries for the module index and
7391                 // dtv-relative offset.
7392                 Arm_output_data_got<big_endian>* got
7393                     = target->got_section(symtab, layout);
7394                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7395                 unsigned int shndx = lsym.get_st_shndx();
7396                 bool is_ordinary;
7397                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7398                 if (!is_ordinary)
7399                   {
7400                     object->error(_("local symbol %u has bad shndx %u"),
7401                                   r_sym, shndx);
7402                     break;
7403                   }
7404
7405                 if (!parameters->doing_static_link())
7406                   got->add_local_pair_with_rel(object, r_sym, shndx,
7407                                                GOT_TYPE_TLS_PAIR,
7408                                                target->rel_dyn_section(layout),
7409                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7410                 else
7411                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7412                                                       object, r_sym);
7413               }
7414             else
7415               // FIXME: TLS optimization not supported yet.
7416               gold_unreachable();
7417             break;
7418
7419           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7420             if (optimized_type == tls::TLSOPT_NONE)
7421               {
7422                 // Create a GOT entry for the module index.
7423                 target->got_mod_index_entry(symtab, layout, object);
7424               }
7425             else
7426               // FIXME: TLS optimization not supported yet.
7427               gold_unreachable();
7428             break;
7429
7430           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7431             break;
7432
7433           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7434             layout->set_has_static_tls();
7435             if (optimized_type == tls::TLSOPT_NONE)
7436               {
7437                 // Create a GOT entry for the tp-relative offset.
7438                 Arm_output_data_got<big_endian>* got
7439                   = target->got_section(symtab, layout);
7440                 unsigned int r_sym =
7441                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
7442                 if (!parameters->doing_static_link())
7443                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7444                                             target->rel_dyn_section(layout),
7445                                             elfcpp::R_ARM_TLS_TPOFF32);
7446                 else if (!object->local_has_got_offset(r_sym,
7447                                                        GOT_TYPE_TLS_OFFSET))
7448                   {
7449                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7450                     unsigned int got_offset =
7451                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7452                     got->add_static_reloc(got_offset,
7453                                           elfcpp::R_ARM_TLS_TPOFF32, object,
7454                                           r_sym);
7455                   }
7456               }
7457             else
7458               // FIXME: TLS optimization not supported yet.
7459               gold_unreachable();
7460             break;
7461
7462           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
7463             layout->set_has_static_tls();
7464             if (output_is_shared)
7465               {
7466                 // We need to create a dynamic relocation.
7467                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7468                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7469                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7470                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7471                                    output_section, data_shndx,
7472                                    reloc.get_r_offset());
7473               }
7474             break;
7475
7476           default:
7477             gold_unreachable();
7478           }
7479       }
7480       break;
7481
7482     default:
7483       unsupported_reloc_local(object, r_type);
7484       break;
7485     }
7486 }
7487
7488 // Report an unsupported relocation against a global symbol.
7489
7490 template<bool big_endian>
7491 void
7492 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7493     Sized_relobj<32, big_endian>* object,
7494     unsigned int r_type,
7495     Symbol* gsym)
7496 {
7497   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7498              object->name().c_str(), r_type, gsym->demangled_name().c_str());
7499 }
7500
7501 // Scan a relocation for a global symbol.
7502
7503 template<bool big_endian>
7504 inline void
7505 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7506                                      Layout* layout,
7507                                      Target_arm* target,
7508                                      Sized_relobj<32, big_endian>* object,
7509                                      unsigned int data_shndx,
7510                                      Output_section* output_section,
7511                                      const elfcpp::Rel<32, big_endian>& reloc,
7512                                      unsigned int r_type,
7513                                      Symbol* gsym)
7514 {
7515   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7516   // section.  We check here to avoid creating a dynamic reloc against
7517   // _GLOBAL_OFFSET_TABLE_.
7518   if (!target->has_got_section()
7519       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7520     target->got_section(symtab, layout);
7521
7522   r_type = get_real_reloc_type(r_type);
7523   switch (r_type)
7524     {
7525     case elfcpp::R_ARM_NONE:
7526     case elfcpp::R_ARM_V4BX:
7527     case elfcpp::R_ARM_GNU_VTENTRY:
7528     case elfcpp::R_ARM_GNU_VTINHERIT:
7529       break;
7530
7531     case elfcpp::R_ARM_ABS32:
7532     case elfcpp::R_ARM_ABS16:
7533     case elfcpp::R_ARM_ABS12:
7534     case elfcpp::R_ARM_THM_ABS5:
7535     case elfcpp::R_ARM_ABS8:
7536     case elfcpp::R_ARM_BASE_ABS:
7537     case elfcpp::R_ARM_MOVW_ABS_NC:
7538     case elfcpp::R_ARM_MOVT_ABS:
7539     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7540     case elfcpp::R_ARM_THM_MOVT_ABS:
7541     case elfcpp::R_ARM_ABS32_NOI:
7542       // Absolute addressing relocations.
7543       {
7544         // Make a PLT entry if necessary.
7545         if (this->symbol_needs_plt_entry(gsym))
7546           {
7547             target->make_plt_entry(symtab, layout, gsym);
7548             // Since this is not a PC-relative relocation, we may be
7549             // taking the address of a function. In that case we need to
7550             // set the entry in the dynamic symbol table to the address of
7551             // the PLT entry.
7552             if (gsym->is_from_dynobj() && !parameters->options().shared())
7553               gsym->set_needs_dynsym_value();
7554           }
7555         // Make a dynamic relocation if necessary.
7556         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7557           {
7558             if (gsym->may_need_copy_reloc())
7559               {
7560                 target->copy_reloc(symtab, layout, object,
7561                                    data_shndx, output_section, gsym, reloc);
7562               }
7563             else if ((r_type == elfcpp::R_ARM_ABS32
7564                       || r_type == elfcpp::R_ARM_ABS32_NOI)
7565                      && gsym->can_use_relative_reloc(false))
7566               {
7567                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7568                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7569                                              output_section, object,
7570                                              data_shndx, reloc.get_r_offset());
7571               }
7572             else
7573               {
7574                 check_non_pic(object, r_type);
7575                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7576                 rel_dyn->add_global(gsym, r_type, output_section, object,
7577                                     data_shndx, reloc.get_r_offset());
7578               }
7579           }
7580       }
7581       break;
7582
7583     case elfcpp::R_ARM_GOTOFF32:
7584     case elfcpp::R_ARM_GOTOFF12:
7585       // We need a GOT section.
7586       target->got_section(symtab, layout);
7587       break;
7588       
7589     case elfcpp::R_ARM_REL32:
7590     case elfcpp::R_ARM_LDR_PC_G0:
7591     case elfcpp::R_ARM_SBREL32:
7592     case elfcpp::R_ARM_THM_PC8:
7593     case elfcpp::R_ARM_BASE_PREL:
7594     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7595     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7596     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7597     case elfcpp::R_ARM_MOVW_PREL_NC:
7598     case elfcpp::R_ARM_MOVT_PREL:
7599     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7600     case elfcpp::R_ARM_THM_MOVT_PREL:
7601     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7602     case elfcpp::R_ARM_THM_PC12:
7603     case elfcpp::R_ARM_REL32_NOI:
7604     case elfcpp::R_ARM_ALU_PC_G0_NC:
7605     case elfcpp::R_ARM_ALU_PC_G0:
7606     case elfcpp::R_ARM_ALU_PC_G1_NC:
7607     case elfcpp::R_ARM_ALU_PC_G1:
7608     case elfcpp::R_ARM_ALU_PC_G2:
7609     case elfcpp::R_ARM_LDR_PC_G1:
7610     case elfcpp::R_ARM_LDR_PC_G2:
7611     case elfcpp::R_ARM_LDRS_PC_G0:
7612     case elfcpp::R_ARM_LDRS_PC_G1:
7613     case elfcpp::R_ARM_LDRS_PC_G2:
7614     case elfcpp::R_ARM_LDC_PC_G0:
7615     case elfcpp::R_ARM_LDC_PC_G1:
7616     case elfcpp::R_ARM_LDC_PC_G2:
7617     case elfcpp::R_ARM_ALU_SB_G0_NC:
7618     case elfcpp::R_ARM_ALU_SB_G0:
7619     case elfcpp::R_ARM_ALU_SB_G1_NC:
7620     case elfcpp::R_ARM_ALU_SB_G1:
7621     case elfcpp::R_ARM_ALU_SB_G2:
7622     case elfcpp::R_ARM_LDR_SB_G0:
7623     case elfcpp::R_ARM_LDR_SB_G1:
7624     case elfcpp::R_ARM_LDR_SB_G2:
7625     case elfcpp::R_ARM_LDRS_SB_G0:
7626     case elfcpp::R_ARM_LDRS_SB_G1:
7627     case elfcpp::R_ARM_LDRS_SB_G2:
7628     case elfcpp::R_ARM_LDC_SB_G0:
7629     case elfcpp::R_ARM_LDC_SB_G1:
7630     case elfcpp::R_ARM_LDC_SB_G2:
7631     case elfcpp::R_ARM_MOVW_BREL_NC:
7632     case elfcpp::R_ARM_MOVT_BREL:
7633     case elfcpp::R_ARM_MOVW_BREL:
7634     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7635     case elfcpp::R_ARM_THM_MOVT_BREL:
7636     case elfcpp::R_ARM_THM_MOVW_BREL:
7637       // Relative addressing relocations.
7638       {
7639         // Make a dynamic relocation if necessary.
7640         int flags = Symbol::NON_PIC_REF;
7641         if (gsym->needs_dynamic_reloc(flags))
7642           {
7643             if (target->may_need_copy_reloc(gsym))
7644               {
7645                 target->copy_reloc(symtab, layout, object,
7646                                    data_shndx, output_section, gsym, reloc);
7647               }
7648             else
7649               {
7650                 check_non_pic(object, r_type);
7651                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7652                 rel_dyn->add_global(gsym, r_type, output_section, object,
7653                                     data_shndx, reloc.get_r_offset());
7654               }
7655           }
7656       }
7657       break;
7658
7659     case elfcpp::R_ARM_PC24:
7660     case elfcpp::R_ARM_THM_CALL:
7661     case elfcpp::R_ARM_PLT32:
7662     case elfcpp::R_ARM_CALL:
7663     case elfcpp::R_ARM_JUMP24:
7664     case elfcpp::R_ARM_THM_JUMP24:
7665     case elfcpp::R_ARM_SBREL31:
7666     case elfcpp::R_ARM_PREL31:
7667     case elfcpp::R_ARM_THM_JUMP19:
7668     case elfcpp::R_ARM_THM_JUMP6:
7669     case elfcpp::R_ARM_THM_JUMP11:
7670     case elfcpp::R_ARM_THM_JUMP8:
7671       // All the relocation above are branches except for the PREL31 ones.
7672       // A PREL31 relocation can point to a personality function in a shared
7673       // library.  In that case we want to use a PLT because we want to
7674       // call the personality routine and the dyanmic linkers we care about
7675       // do not support dynamic PREL31 relocations. An REL31 relocation may
7676       // point to a function whose unwinding behaviour is being described but
7677       // we will not mistakenly generate a PLT for that because we should use
7678       // a local section symbol.
7679
7680       // If the symbol is fully resolved, this is just a relative
7681       // local reloc.  Otherwise we need a PLT entry.
7682       if (gsym->final_value_is_known())
7683         break;
7684       // If building a shared library, we can also skip the PLT entry
7685       // if the symbol is defined in the output file and is protected
7686       // or hidden.
7687       if (gsym->is_defined()
7688           && !gsym->is_from_dynobj()
7689           && !gsym->is_preemptible())
7690         break;
7691       target->make_plt_entry(symtab, layout, gsym);
7692       break;
7693
7694     case elfcpp::R_ARM_GOT_BREL:
7695     case elfcpp::R_ARM_GOT_ABS:
7696     case elfcpp::R_ARM_GOT_PREL:
7697       {
7698         // The symbol requires a GOT entry.
7699         Arm_output_data_got<big_endian>* got =
7700           target->got_section(symtab, layout);
7701         if (gsym->final_value_is_known())
7702           got->add_global(gsym, GOT_TYPE_STANDARD);
7703         else
7704           {
7705             // If this symbol is not fully resolved, we need to add a
7706             // GOT entry with a dynamic relocation.
7707             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7708             if (gsym->is_from_dynobj()
7709                 || gsym->is_undefined()
7710                 || gsym->is_preemptible())
7711               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7712                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7713             else
7714               {
7715                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7716                   rel_dyn->add_global_relative(
7717                       gsym, elfcpp::R_ARM_RELATIVE, got,
7718                       gsym->got_offset(GOT_TYPE_STANDARD));
7719               }
7720           }
7721       }
7722       break;
7723
7724     case elfcpp::R_ARM_TARGET1:
7725     case elfcpp::R_ARM_TARGET2:
7726       // These should have been mapped to other types already.
7727       // Fall through.
7728     case elfcpp::R_ARM_COPY:
7729     case elfcpp::R_ARM_GLOB_DAT:
7730     case elfcpp::R_ARM_JUMP_SLOT:
7731     case elfcpp::R_ARM_RELATIVE:
7732       // These are relocations which should only be seen by the
7733       // dynamic linker, and should never be seen here.
7734       gold_error(_("%s: unexpected reloc %u in object file"),
7735                  object->name().c_str(), r_type);
7736       break;
7737
7738       // These are initial tls relocs, which are expected when
7739       // linking.
7740     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7741     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7742     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7743     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7744     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7745       {
7746         const bool is_final = gsym->final_value_is_known();
7747         const tls::Tls_optimization optimized_type
7748             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7749         switch (r_type)
7750           {
7751           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7752             if (optimized_type == tls::TLSOPT_NONE)
7753               {
7754                 // Create a pair of GOT entries for the module index and
7755                 // dtv-relative offset.
7756                 Arm_output_data_got<big_endian>* got
7757                     = target->got_section(symtab, layout);
7758                 if (!parameters->doing_static_link())
7759                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7760                                                 target->rel_dyn_section(layout),
7761                                                 elfcpp::R_ARM_TLS_DTPMOD32,
7762                                                 elfcpp::R_ARM_TLS_DTPOFF32);
7763                 else
7764                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
7765               }
7766             else
7767               // FIXME: TLS optimization not supported yet.
7768               gold_unreachable();
7769             break;
7770
7771           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7772             if (optimized_type == tls::TLSOPT_NONE)
7773               {
7774                 // Create a GOT entry for the module index.
7775                 target->got_mod_index_entry(symtab, layout, object);
7776               }
7777             else
7778               // FIXME: TLS optimization not supported yet.
7779               gold_unreachable();
7780             break;
7781
7782           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7783             break;
7784
7785           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7786             layout->set_has_static_tls();
7787             if (optimized_type == tls::TLSOPT_NONE)
7788               {
7789                 // Create a GOT entry for the tp-relative offset.
7790                 Arm_output_data_got<big_endian>* got
7791                   = target->got_section(symtab, layout);
7792                 if (!parameters->doing_static_link())
7793                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7794                                            target->rel_dyn_section(layout),
7795                                            elfcpp::R_ARM_TLS_TPOFF32);
7796                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7797                   {
7798                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7799                     unsigned int got_offset =
7800                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7801                     got->add_static_reloc(got_offset,
7802                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
7803                   }
7804               }
7805             else
7806               // FIXME: TLS optimization not supported yet.
7807               gold_unreachable();
7808             break;
7809
7810           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
7811             layout->set_has_static_tls();
7812             if (parameters->options().shared())
7813               {
7814                 // We need to create a dynamic relocation.
7815                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7816                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
7817                                     output_section, object,
7818                                     data_shndx, reloc.get_r_offset());
7819               }
7820             break;
7821
7822           default:
7823             gold_unreachable();
7824           }
7825       }
7826       break;
7827
7828     default:
7829       unsupported_reloc_global(object, r_type, gsym);
7830       break;
7831     }
7832 }
7833
7834 // Process relocations for gc.
7835
7836 template<bool big_endian>
7837 void
7838 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
7839                                           Layout* layout,
7840                                           Sized_relobj<32, big_endian>* object,
7841                                           unsigned int data_shndx,
7842                                           unsigned int,
7843                                           const unsigned char* prelocs,
7844                                           size_t reloc_count,
7845                                           Output_section* output_section,
7846                                           bool needs_special_offset_handling,
7847                                           size_t local_symbol_count,
7848                                           const unsigned char* plocal_symbols)
7849 {
7850   typedef Target_arm<big_endian> Arm;
7851   typedef typename Target_arm<big_endian>::Scan Scan;
7852
7853   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
7854     symtab,
7855     layout,
7856     this,
7857     object,
7858     data_shndx,
7859     prelocs,
7860     reloc_count,
7861     output_section,
7862     needs_special_offset_handling,
7863     local_symbol_count,
7864     plocal_symbols);
7865 }
7866
7867 // Scan relocations for a section.
7868
7869 template<bool big_endian>
7870 void
7871 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
7872                                     Layout* layout,
7873                                     Sized_relobj<32, big_endian>* object,
7874                                     unsigned int data_shndx,
7875                                     unsigned int sh_type,
7876                                     const unsigned char* prelocs,
7877                                     size_t reloc_count,
7878                                     Output_section* output_section,
7879                                     bool needs_special_offset_handling,
7880                                     size_t local_symbol_count,
7881                                     const unsigned char* plocal_symbols)
7882 {
7883   typedef typename Target_arm<big_endian>::Scan Scan;
7884   if (sh_type == elfcpp::SHT_RELA)
7885     {
7886       gold_error(_("%s: unsupported RELA reloc section"),
7887                  object->name().c_str());
7888       return;
7889     }
7890
7891   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
7892     symtab,
7893     layout,
7894     this,
7895     object,
7896     data_shndx,
7897     prelocs,
7898     reloc_count,
7899     output_section,
7900     needs_special_offset_handling,
7901     local_symbol_count,
7902     plocal_symbols);
7903 }
7904
7905 // Finalize the sections.
7906
7907 template<bool big_endian>
7908 void
7909 Target_arm<big_endian>::do_finalize_sections(
7910     Layout* layout,
7911     const Input_objects* input_objects,
7912     Symbol_table* symtab)
7913 {
7914   // Create an empty uninitialized attribute section if we still don't have it
7915   // at this moment.
7916   if (this->attributes_section_data_ == NULL)
7917     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
7918
7919   // Merge processor-specific flags.
7920   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7921        p != input_objects->relobj_end();
7922        ++p)
7923     {
7924       // If this input file is a binary file, it has no processor
7925       // specific flags and attributes section.
7926       Input_file::Format format = (*p)->input_file()->format();
7927       if (format != Input_file::FORMAT_ELF)
7928         {
7929           gold_assert(format == Input_file::FORMAT_BINARY);
7930           continue;
7931         }
7932
7933       Arm_relobj<big_endian>* arm_relobj =
7934         Arm_relobj<big_endian>::as_arm_relobj(*p);
7935       this->merge_processor_specific_flags(
7936           arm_relobj->name(),
7937           arm_relobj->processor_specific_flags());
7938       this->merge_object_attributes(arm_relobj->name().c_str(),
7939                                     arm_relobj->attributes_section_data());
7940
7941     } 
7942
7943   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
7944        p != input_objects->dynobj_end();
7945        ++p)
7946     {
7947       Arm_dynobj<big_endian>* arm_dynobj =
7948         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
7949       this->merge_processor_specific_flags(
7950           arm_dynobj->name(),
7951           arm_dynobj->processor_specific_flags());
7952       this->merge_object_attributes(arm_dynobj->name().c_str(),
7953                                     arm_dynobj->attributes_section_data());
7954     }
7955
7956   // Check BLX use.
7957   const Object_attribute* cpu_arch_attr =
7958     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
7959   if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
7960     this->set_may_use_blx(true);
7961  
7962   // Check if we need to use Cortex-A8 workaround.
7963   if (parameters->options().user_set_fix_cortex_a8())
7964     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
7965   else
7966     {
7967       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
7968       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
7969       // profile.  
7970       const Object_attribute* cpu_arch_profile_attr =
7971         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
7972       this->fix_cortex_a8_ =
7973         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
7974          && (cpu_arch_profile_attr->int_value() == 'A'
7975              || cpu_arch_profile_attr->int_value() == 0));
7976     }
7977   
7978   // Check if we can use V4BX interworking.
7979   // The V4BX interworking stub contains BX instruction,
7980   // which is not specified for some profiles.
7981   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
7982       && !this->may_use_blx())
7983     gold_error(_("unable to provide V4BX reloc interworking fix up; "
7984                  "the target profile does not support BX instruction"));
7985
7986   // Fill in some more dynamic tags.
7987   const Reloc_section* rel_plt = (this->plt_ == NULL
7988                                   ? NULL
7989                                   : this->plt_->rel_plt());
7990   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
7991                                   this->rel_dyn_, true, false);
7992
7993   // Emit any relocs we saved in an attempt to avoid generating COPY
7994   // relocs.
7995   if (this->copy_relocs_.any_saved_relocs())
7996     this->copy_relocs_.emit(this->rel_dyn_section(layout));
7997
7998   // Handle the .ARM.exidx section.
7999   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8000   if (exidx_section != NULL
8001       && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8002       && !parameters->options().relocatable())
8003     {
8004       // Create __exidx_start and __exdix_end symbols.
8005       symtab->define_in_output_data("__exidx_start", NULL,
8006                                     Symbol_table::PREDEFINED,
8007                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8008                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8009                                     false, true);
8010       symtab->define_in_output_data("__exidx_end", NULL,
8011                                     Symbol_table::PREDEFINED,
8012                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8013                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8014                                     true, true);
8015
8016       // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8017       // the .ARM.exidx section.
8018       if (!layout->script_options()->saw_phdrs_clause())
8019         {
8020           gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8021                       == NULL);
8022           Output_segment*  exidx_segment =
8023             layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8024           exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8025                                             false);
8026         }
8027     }
8028
8029   // Create an .ARM.attributes section if there is not one already.
8030   Output_attributes_section_data* attributes_section =
8031     new Output_attributes_section_data(*this->attributes_section_data_);
8032   layout->add_output_section_data(".ARM.attributes",
8033                                   elfcpp::SHT_ARM_ATTRIBUTES, 0,
8034                                   attributes_section, false, false, false,
8035                                   false);
8036 }
8037
8038 // Return whether a direct absolute static relocation needs to be applied.
8039 // In cases where Scan::local() or Scan::global() has created
8040 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8041 // of the relocation is carried in the data, and we must not
8042 // apply the static relocation.
8043
8044 template<bool big_endian>
8045 inline bool
8046 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8047     const Sized_symbol<32>* gsym,
8048     int ref_flags,
8049     bool is_32bit,
8050     Output_section* output_section)
8051 {
8052   // If the output section is not allocated, then we didn't call
8053   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8054   // the reloc here.
8055   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8056       return true;
8057
8058   // For local symbols, we will have created a non-RELATIVE dynamic
8059   // relocation only if (a) the output is position independent,
8060   // (b) the relocation is absolute (not pc- or segment-relative), and
8061   // (c) the relocation is not 32 bits wide.
8062   if (gsym == NULL)
8063     return !(parameters->options().output_is_position_independent()
8064              && (ref_flags & Symbol::ABSOLUTE_REF)
8065              && !is_32bit);
8066
8067   // For global symbols, we use the same helper routines used in the
8068   // scan pass.  If we did not create a dynamic relocation, or if we
8069   // created a RELATIVE dynamic relocation, we should apply the static
8070   // relocation.
8071   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8072   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8073                  && gsym->can_use_relative_reloc(ref_flags
8074                                                  & Symbol::FUNCTION_CALL);
8075   return !has_dyn || is_rel;
8076 }
8077
8078 // Perform a relocation.
8079
8080 template<bool big_endian>
8081 inline bool
8082 Target_arm<big_endian>::Relocate::relocate(
8083     const Relocate_info<32, big_endian>* relinfo,
8084     Target_arm* target,
8085     Output_section *output_section,
8086     size_t relnum,
8087     const elfcpp::Rel<32, big_endian>& rel,
8088     unsigned int r_type,
8089     const Sized_symbol<32>* gsym,
8090     const Symbol_value<32>* psymval,
8091     unsigned char* view,
8092     Arm_address address,
8093     section_size_type view_size)
8094 {
8095   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8096
8097   r_type = get_real_reloc_type(r_type);
8098   const Arm_reloc_property* reloc_property =
8099     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8100   if (reloc_property == NULL)
8101     {
8102       std::string reloc_name =
8103         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8104       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8105                              _("cannot relocate %s in object file"),
8106                              reloc_name.c_str());
8107       return true;
8108     }
8109
8110   const Arm_relobj<big_endian>* object =
8111     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8112
8113   // If the final branch target of a relocation is THUMB instruction, this
8114   // is 1.  Otherwise it is 0.
8115   Arm_address thumb_bit = 0;
8116   Symbol_value<32> symval;
8117   bool is_weakly_undefined_without_plt = false;
8118   if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8119     {
8120       if (gsym != NULL)
8121         {
8122           // This is a global symbol.  Determine if we use PLT and if the
8123           // final target is THUMB.
8124           if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8125             {
8126               // This uses a PLT, change the symbol value.
8127               symval.set_output_value(target->plt_section()->address()
8128                                       + gsym->plt_offset());
8129               psymval = &symval;
8130             }
8131           else if (gsym->is_weak_undefined())
8132             {
8133               // This is a weakly undefined symbol and we do not use PLT
8134               // for this relocation.  A branch targeting this symbol will
8135               // be converted into an NOP.
8136               is_weakly_undefined_without_plt = true;
8137             }
8138           else
8139             {
8140               // Set thumb bit if symbol:
8141               // -Has type STT_ARM_TFUNC or
8142               // -Has type STT_FUNC, is defined and with LSB in value set.
8143               thumb_bit =
8144                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8145                  || (gsym->type() == elfcpp::STT_FUNC
8146                      && !gsym->is_undefined()
8147                      && ((psymval->value(object, 0) & 1) != 0)))
8148                 ? 1
8149                 : 0);
8150             }
8151         }
8152       else
8153         {
8154           // This is a local symbol.  Determine if the final target is THUMB.
8155           // We saved this information when all the local symbols were read.
8156           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8157           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8158           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8159         }
8160     }
8161   else
8162     {
8163       // This is a fake relocation synthesized for a stub.  It does not have
8164       // a real symbol.  We just look at the LSB of the symbol value to
8165       // determine if the target is THUMB or not.
8166       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8167     }
8168
8169   // Strip LSB if this points to a THUMB target.
8170   if (thumb_bit != 0
8171       && reloc_property->uses_thumb_bit() 
8172       && ((psymval->value(object, 0) & 1) != 0))
8173     {
8174       Arm_address stripped_value =
8175         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8176       symval.set_output_value(stripped_value);
8177       psymval = &symval;
8178     } 
8179
8180   // Get the GOT offset if needed.
8181   // The GOT pointer points to the end of the GOT section.
8182   // We need to subtract the size of the GOT section to get
8183   // the actual offset to use in the relocation.
8184   bool have_got_offset = false;
8185   unsigned int got_offset = 0;
8186   switch (r_type)
8187     {
8188     case elfcpp::R_ARM_GOT_BREL:
8189     case elfcpp::R_ARM_GOT_PREL:
8190       if (gsym != NULL)
8191         {
8192           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8193           got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8194                         - target->got_size());
8195         }
8196       else
8197         {
8198           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8199           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8200           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8201                         - target->got_size());
8202         }
8203       have_got_offset = true;
8204       break;
8205
8206     default:
8207       break;
8208     }
8209
8210   // To look up relocation stubs, we need to pass the symbol table index of
8211   // a local symbol.
8212   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8213
8214   // Get the addressing origin of the output segment defining the
8215   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8216   Arm_address sym_origin = 0;
8217   if (reloc_property->uses_symbol_base())
8218     {
8219       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8220         // R_ARM_BASE_ABS with the NULL symbol will give the
8221         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8222         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8223         sym_origin = target->got_plt_section()->address();
8224       else if (gsym == NULL)
8225         sym_origin = 0;
8226       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8227         sym_origin = gsym->output_segment()->vaddr();
8228       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8229         sym_origin = gsym->output_data()->address();
8230
8231       // TODO: Assumes the segment base to be zero for the global symbols
8232       // till the proper support for the segment-base-relative addressing
8233       // will be implemented.  This is consistent with GNU ld.
8234     }
8235
8236   // For relative addressing relocation, find out the relative address base.
8237   Arm_address relative_address_base = 0;
8238   switch(reloc_property->relative_address_base())
8239     {
8240     case Arm_reloc_property::RAB_NONE:
8241     // Relocations with relative address bases RAB_TLS and RAB_tp are
8242     // handled by relocate_tls.  So we do not need to do anything here.
8243     case Arm_reloc_property::RAB_TLS:
8244     case Arm_reloc_property::RAB_tp:
8245       break;
8246     case Arm_reloc_property::RAB_B_S:
8247       relative_address_base = sym_origin;
8248       break;
8249     case Arm_reloc_property::RAB_GOT_ORG:
8250       relative_address_base = target->got_plt_section()->address();
8251       break;
8252     case Arm_reloc_property::RAB_P:
8253       relative_address_base = address;
8254       break;
8255     case Arm_reloc_property::RAB_Pa:
8256       relative_address_base = address & 0xfffffffcU;
8257       break;
8258     default:
8259       gold_unreachable(); 
8260     }
8261     
8262   typename Arm_relocate_functions::Status reloc_status =
8263         Arm_relocate_functions::STATUS_OKAY;
8264   bool check_overflow = reloc_property->checks_overflow();
8265   switch (r_type)
8266     {
8267     case elfcpp::R_ARM_NONE:
8268       break;
8269
8270     case elfcpp::R_ARM_ABS8:
8271       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8272                                     output_section))
8273         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8274       break;
8275
8276     case elfcpp::R_ARM_ABS12:
8277       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8278                                     output_section))
8279         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8280       break;
8281
8282     case elfcpp::R_ARM_ABS16:
8283       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8284                                     output_section))
8285         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8286       break;
8287
8288     case elfcpp::R_ARM_ABS32:
8289       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8290                                     output_section))
8291         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8292                                                      thumb_bit);
8293       break;
8294
8295     case elfcpp::R_ARM_ABS32_NOI:
8296       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8297                                     output_section))
8298         // No thumb bit for this relocation: (S + A)
8299         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8300                                                      0);
8301       break;
8302
8303     case elfcpp::R_ARM_MOVW_ABS_NC:
8304       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8305                                     output_section))
8306         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8307                                                     0, thumb_bit,
8308                                                     check_overflow);
8309       break;
8310
8311     case elfcpp::R_ARM_MOVT_ABS:
8312       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8313                                     output_section))
8314         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8315       break;
8316
8317     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8318       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8319                                     output_section))
8320         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8321                                                         0, thumb_bit, false);
8322       break;
8323
8324     case elfcpp::R_ARM_THM_MOVT_ABS:
8325       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8326                                     output_section))
8327         reloc_status = Arm_relocate_functions::thm_movt(view, object,
8328                                                         psymval, 0);
8329       break;
8330
8331     case elfcpp::R_ARM_MOVW_PREL_NC:
8332     case elfcpp::R_ARM_MOVW_BREL_NC:
8333     case elfcpp::R_ARM_MOVW_BREL:
8334       reloc_status =
8335         Arm_relocate_functions::movw(view, object, psymval,
8336                                      relative_address_base, thumb_bit,
8337                                      check_overflow);
8338       break;
8339
8340     case elfcpp::R_ARM_MOVT_PREL:
8341     case elfcpp::R_ARM_MOVT_BREL:
8342       reloc_status =
8343         Arm_relocate_functions::movt(view, object, psymval,
8344                                      relative_address_base);
8345       break;
8346
8347     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8348     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8349     case elfcpp::R_ARM_THM_MOVW_BREL:
8350       reloc_status =
8351         Arm_relocate_functions::thm_movw(view, object, psymval,
8352                                          relative_address_base,
8353                                          thumb_bit, check_overflow);
8354       break;
8355
8356     case elfcpp::R_ARM_THM_MOVT_PREL:
8357     case elfcpp::R_ARM_THM_MOVT_BREL:
8358       reloc_status =
8359         Arm_relocate_functions::thm_movt(view, object, psymval,
8360                                          relative_address_base);
8361       break;
8362         
8363     case elfcpp::R_ARM_REL32:
8364       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8365                                                    address, thumb_bit);
8366       break;
8367
8368     case elfcpp::R_ARM_THM_ABS5:
8369       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8370                                     output_section))
8371         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8372       break;
8373
8374     // Thumb long branches.
8375     case elfcpp::R_ARM_THM_CALL:
8376     case elfcpp::R_ARM_THM_XPC22:
8377     case elfcpp::R_ARM_THM_JUMP24:
8378       reloc_status =
8379         Arm_relocate_functions::thumb_branch_common(
8380             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8381             thumb_bit, is_weakly_undefined_without_plt);
8382       break;
8383
8384     case elfcpp::R_ARM_GOTOFF32:
8385       {
8386         Arm_address got_origin;
8387         got_origin = target->got_plt_section()->address();
8388         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8389                                                      got_origin, thumb_bit);
8390       }
8391       break;
8392
8393     case elfcpp::R_ARM_BASE_PREL:
8394       gold_assert(gsym != NULL);
8395       reloc_status =
8396           Arm_relocate_functions::base_prel(view, sym_origin, address);
8397       break;
8398
8399     case elfcpp::R_ARM_BASE_ABS:
8400       {
8401         if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8402                                       output_section))
8403           break;
8404
8405         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8406       }
8407       break;
8408
8409     case elfcpp::R_ARM_GOT_BREL:
8410       gold_assert(have_got_offset);
8411       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8412       break;
8413
8414     case elfcpp::R_ARM_GOT_PREL:
8415       gold_assert(have_got_offset);
8416       // Get the address origin for GOT PLT, which is allocated right
8417       // after the GOT section, to calculate an absolute address of
8418       // the symbol GOT entry (got_origin + got_offset).
8419       Arm_address got_origin;
8420       got_origin = target->got_plt_section()->address();
8421       reloc_status = Arm_relocate_functions::got_prel(view,
8422                                                       got_origin + got_offset,
8423                                                       address);
8424       break;
8425
8426     case elfcpp::R_ARM_PLT32:
8427     case elfcpp::R_ARM_CALL:
8428     case elfcpp::R_ARM_JUMP24:
8429     case elfcpp::R_ARM_XPC25:
8430       gold_assert(gsym == NULL
8431                   || gsym->has_plt_offset()
8432                   || gsym->final_value_is_known()
8433                   || (gsym->is_defined()
8434                       && !gsym->is_from_dynobj()
8435                       && !gsym->is_preemptible()));
8436       reloc_status =
8437         Arm_relocate_functions::arm_branch_common(
8438             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8439             thumb_bit, is_weakly_undefined_without_plt);
8440       break;
8441
8442     case elfcpp::R_ARM_THM_JUMP19:
8443       reloc_status =
8444         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8445                                            thumb_bit);
8446       break;
8447
8448     case elfcpp::R_ARM_THM_JUMP6:
8449       reloc_status =
8450         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8451       break;
8452
8453     case elfcpp::R_ARM_THM_JUMP8:
8454       reloc_status =
8455         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8456       break;
8457
8458     case elfcpp::R_ARM_THM_JUMP11:
8459       reloc_status =
8460         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8461       break;
8462
8463     case elfcpp::R_ARM_PREL31:
8464       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8465                                                     address, thumb_bit);
8466       break;
8467
8468     case elfcpp::R_ARM_V4BX:
8469       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8470         {
8471           const bool is_v4bx_interworking =
8472               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8473           reloc_status =
8474             Arm_relocate_functions::v4bx(relinfo, view, object, address,
8475                                          is_v4bx_interworking);
8476         }
8477       break;
8478
8479     case elfcpp::R_ARM_THM_PC8:
8480       reloc_status =
8481         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8482       break;
8483
8484     case elfcpp::R_ARM_THM_PC12:
8485       reloc_status =
8486         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8487       break;
8488
8489     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8490       reloc_status =
8491         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8492                                           thumb_bit);
8493       break;
8494
8495     case elfcpp::R_ARM_ALU_PC_G0_NC:
8496     case elfcpp::R_ARM_ALU_PC_G0:
8497     case elfcpp::R_ARM_ALU_PC_G1_NC:
8498     case elfcpp::R_ARM_ALU_PC_G1:
8499     case elfcpp::R_ARM_ALU_PC_G2:
8500     case elfcpp::R_ARM_ALU_SB_G0_NC:
8501     case elfcpp::R_ARM_ALU_SB_G0:
8502     case elfcpp::R_ARM_ALU_SB_G1_NC:
8503     case elfcpp::R_ARM_ALU_SB_G1:
8504     case elfcpp::R_ARM_ALU_SB_G2:
8505       reloc_status =
8506         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8507                                             reloc_property->group_index(),
8508                                             relative_address_base,
8509                                             thumb_bit, check_overflow);
8510       break;
8511
8512     case elfcpp::R_ARM_LDR_PC_G0:
8513     case elfcpp::R_ARM_LDR_PC_G1:
8514     case elfcpp::R_ARM_LDR_PC_G2:
8515     case elfcpp::R_ARM_LDR_SB_G0:
8516     case elfcpp::R_ARM_LDR_SB_G1:
8517     case elfcpp::R_ARM_LDR_SB_G2:
8518       reloc_status =
8519           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8520                                               reloc_property->group_index(),
8521                                               relative_address_base);
8522       break;
8523
8524     case elfcpp::R_ARM_LDRS_PC_G0:
8525     case elfcpp::R_ARM_LDRS_PC_G1:
8526     case elfcpp::R_ARM_LDRS_PC_G2:
8527     case elfcpp::R_ARM_LDRS_SB_G0:
8528     case elfcpp::R_ARM_LDRS_SB_G1:
8529     case elfcpp::R_ARM_LDRS_SB_G2:
8530       reloc_status =
8531           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8532                                                reloc_property->group_index(),
8533                                                relative_address_base);
8534       break;
8535
8536     case elfcpp::R_ARM_LDC_PC_G0:
8537     case elfcpp::R_ARM_LDC_PC_G1:
8538     case elfcpp::R_ARM_LDC_PC_G2:
8539     case elfcpp::R_ARM_LDC_SB_G0:
8540     case elfcpp::R_ARM_LDC_SB_G1:
8541     case elfcpp::R_ARM_LDC_SB_G2:
8542       reloc_status =
8543           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8544                                               reloc_property->group_index(),
8545                                               relative_address_base);
8546       break;
8547
8548       // These are initial tls relocs, which are expected when
8549       // linking.
8550     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8551     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8552     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8553     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8554     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8555       reloc_status =
8556         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8557                            view, address, view_size);
8558       break;
8559
8560     default:
8561       gold_unreachable();
8562     }
8563
8564   // Report any errors.
8565   switch (reloc_status)
8566     {
8567     case Arm_relocate_functions::STATUS_OKAY:
8568       break;
8569     case Arm_relocate_functions::STATUS_OVERFLOW:
8570       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8571                              _("relocation overflow in relocation %u"),
8572                              r_type);
8573       break;
8574     case Arm_relocate_functions::STATUS_BAD_RELOC:
8575       gold_error_at_location(
8576         relinfo,
8577         relnum,
8578         rel.get_r_offset(),
8579         _("unexpected opcode while processing relocation %u"),
8580         r_type);
8581       break;
8582     default:
8583       gold_unreachable();
8584     }
8585
8586   return true;
8587 }
8588
8589 // Perform a TLS relocation.
8590
8591 template<bool big_endian>
8592 inline typename Arm_relocate_functions<big_endian>::Status
8593 Target_arm<big_endian>::Relocate::relocate_tls(
8594     const Relocate_info<32, big_endian>* relinfo,
8595     Target_arm<big_endian>* target,
8596     size_t relnum,
8597     const elfcpp::Rel<32, big_endian>& rel,
8598     unsigned int r_type,
8599     const Sized_symbol<32>* gsym,
8600     const Symbol_value<32>* psymval,
8601     unsigned char* view,
8602     elfcpp::Elf_types<32>::Elf_Addr address,
8603     section_size_type /*view_size*/ )
8604 {
8605   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8606   typedef Relocate_functions<32, big_endian> RelocFuncs;
8607   Output_segment* tls_segment = relinfo->layout->tls_segment();
8608
8609   const Sized_relobj<32, big_endian>* object = relinfo->object;
8610
8611   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8612
8613   const bool is_final = (gsym == NULL
8614                          ? !parameters->options().shared()
8615                          : gsym->final_value_is_known());
8616   const tls::Tls_optimization optimized_type
8617       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8618   switch (r_type)
8619     {
8620     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8621         {
8622           unsigned int got_type = GOT_TYPE_TLS_PAIR;
8623           unsigned int got_offset;
8624           if (gsym != NULL)
8625             {
8626               gold_assert(gsym->has_got_offset(got_type));
8627               got_offset = gsym->got_offset(got_type) - target->got_size();
8628             }
8629           else
8630             {
8631               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8632               gold_assert(object->local_has_got_offset(r_sym, got_type));
8633               got_offset = (object->local_got_offset(r_sym, got_type)
8634                             - target->got_size());
8635             }
8636           if (optimized_type == tls::TLSOPT_NONE)
8637             {
8638               Arm_address got_entry =
8639                 target->got_plt_section()->address() + got_offset;
8640               
8641               // Relocate the field with the PC relative offset of the pair of
8642               // GOT entries.
8643               RelocFuncs::pcrel32(view, got_entry, address);
8644               return ArmRelocFuncs::STATUS_OKAY;
8645             }
8646         }
8647       break;
8648
8649     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8650       if (optimized_type == tls::TLSOPT_NONE)
8651         {
8652           // Relocate the field with the offset of the GOT entry for
8653           // the module index.
8654           unsigned int got_offset;
8655           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8656                         - target->got_size());
8657           Arm_address got_entry =
8658             target->got_plt_section()->address() + got_offset;
8659
8660           // Relocate the field with the PC relative offset of the pair of
8661           // GOT entries.
8662           RelocFuncs::pcrel32(view, got_entry, address);
8663           return ArmRelocFuncs::STATUS_OKAY;
8664         }
8665       break;
8666
8667     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8668       RelocFuncs::rel32(view, value);
8669       return ArmRelocFuncs::STATUS_OKAY;
8670
8671     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8672       if (optimized_type == tls::TLSOPT_NONE)
8673         {
8674           // Relocate the field with the offset of the GOT entry for
8675           // the tp-relative offset of the symbol.
8676           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8677           unsigned int got_offset;
8678           if (gsym != NULL)
8679             {
8680               gold_assert(gsym->has_got_offset(got_type));
8681               got_offset = gsym->got_offset(got_type);
8682             }
8683           else
8684             {
8685               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8686               gold_assert(object->local_has_got_offset(r_sym, got_type));
8687               got_offset = object->local_got_offset(r_sym, got_type);
8688             }
8689
8690           // All GOT offsets are relative to the end of the GOT.
8691           got_offset -= target->got_size();
8692
8693           Arm_address got_entry =
8694             target->got_plt_section()->address() + got_offset;
8695
8696           // Relocate the field with the PC relative offset of the GOT entry.
8697           RelocFuncs::pcrel32(view, got_entry, address);
8698           return ArmRelocFuncs::STATUS_OKAY;
8699         }
8700       break;
8701
8702     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8703       // If we're creating a shared library, a dynamic relocation will
8704       // have been created for this location, so do not apply it now.
8705       if (!parameters->options().shared())
8706         {
8707           gold_assert(tls_segment != NULL);
8708
8709           // $tp points to the TCB, which is followed by the TLS, so we
8710           // need to add TCB size to the offset.
8711           Arm_address aligned_tcb_size =
8712             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8713           RelocFuncs::rel32(view, value + aligned_tcb_size);
8714
8715         }
8716       return ArmRelocFuncs::STATUS_OKAY;
8717     
8718     default:
8719       gold_unreachable();
8720     }
8721
8722   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8723                          _("unsupported reloc %u"),
8724                          r_type);
8725   return ArmRelocFuncs::STATUS_BAD_RELOC;
8726 }
8727
8728 // Relocate section data.
8729
8730 template<bool big_endian>
8731 void
8732 Target_arm<big_endian>::relocate_section(
8733     const Relocate_info<32, big_endian>* relinfo,
8734     unsigned int sh_type,
8735     const unsigned char* prelocs,
8736     size_t reloc_count,
8737     Output_section* output_section,
8738     bool needs_special_offset_handling,
8739     unsigned char* view,
8740     Arm_address address,
8741     section_size_type view_size,
8742     const Reloc_symbol_changes* reloc_symbol_changes)
8743 {
8744   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8745   gold_assert(sh_type == elfcpp::SHT_REL);
8746
8747   // See if we are relocating a relaxed input section.  If so, the view
8748   // covers the whole output section and we need to adjust accordingly.
8749   if (needs_special_offset_handling)
8750     {
8751       const Output_relaxed_input_section* poris =
8752         output_section->find_relaxed_input_section(relinfo->object,
8753                                                    relinfo->data_shndx);
8754       if (poris != NULL)
8755         {
8756           Arm_address section_address = poris->address();
8757           section_size_type section_size = poris->data_size();
8758
8759           gold_assert((section_address >= address)
8760                       && ((section_address + section_size)
8761                           <= (address + view_size)));
8762
8763           off_t offset = section_address - address;
8764           view += offset;
8765           address += offset;
8766           view_size = section_size;
8767         }
8768     }
8769
8770   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8771                          Arm_relocate>(
8772     relinfo,
8773     this,
8774     prelocs,
8775     reloc_count,
8776     output_section,
8777     needs_special_offset_handling,
8778     view,
8779     address,
8780     view_size,
8781     reloc_symbol_changes);
8782 }
8783
8784 // Return the size of a relocation while scanning during a relocatable
8785 // link.
8786
8787 template<bool big_endian>
8788 unsigned int
8789 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8790     unsigned int r_type,
8791     Relobj* object)
8792 {
8793   r_type = get_real_reloc_type(r_type);
8794   const Arm_reloc_property* arp =
8795       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8796   if (arp != NULL)
8797     return arp->size();
8798   else
8799     {
8800       std::string reloc_name =
8801         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8802       gold_error(_("%s: unexpected %s in object file"),
8803                  object->name().c_str(), reloc_name.c_str());
8804       return 0;
8805     }
8806 }
8807
8808 // Scan the relocs during a relocatable link.
8809
8810 template<bool big_endian>
8811 void
8812 Target_arm<big_endian>::scan_relocatable_relocs(
8813     Symbol_table* symtab,
8814     Layout* layout,
8815     Sized_relobj<32, big_endian>* object,
8816     unsigned int data_shndx,
8817     unsigned int sh_type,
8818     const unsigned char* prelocs,
8819     size_t reloc_count,
8820     Output_section* output_section,
8821     bool needs_special_offset_handling,
8822     size_t local_symbol_count,
8823     const unsigned char* plocal_symbols,
8824     Relocatable_relocs* rr)
8825 {
8826   gold_assert(sh_type == elfcpp::SHT_REL);
8827
8828   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
8829     Relocatable_size_for_reloc> Scan_relocatable_relocs;
8830
8831   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
8832       Scan_relocatable_relocs>(
8833     symtab,
8834     layout,
8835     object,
8836     data_shndx,
8837     prelocs,
8838     reloc_count,
8839     output_section,
8840     needs_special_offset_handling,
8841     local_symbol_count,
8842     plocal_symbols,
8843     rr);
8844 }
8845
8846 // Relocate a section during a relocatable link.
8847
8848 template<bool big_endian>
8849 void
8850 Target_arm<big_endian>::relocate_for_relocatable(
8851     const Relocate_info<32, big_endian>* relinfo,
8852     unsigned int sh_type,
8853     const unsigned char* prelocs,
8854     size_t reloc_count,
8855     Output_section* output_section,
8856     off_t offset_in_output_section,
8857     const Relocatable_relocs* rr,
8858     unsigned char* view,
8859     Arm_address view_address,
8860     section_size_type view_size,
8861     unsigned char* reloc_view,
8862     section_size_type reloc_view_size)
8863 {
8864   gold_assert(sh_type == elfcpp::SHT_REL);
8865
8866   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
8867     relinfo,
8868     prelocs,
8869     reloc_count,
8870     output_section,
8871     offset_in_output_section,
8872     rr,
8873     view,
8874     view_address,
8875     view_size,
8876     reloc_view,
8877     reloc_view_size);
8878 }
8879
8880 // Return the value to use for a dynamic symbol which requires special
8881 // treatment.  This is how we support equality comparisons of function
8882 // pointers across shared library boundaries, as described in the
8883 // processor specific ABI supplement.
8884
8885 template<bool big_endian>
8886 uint64_t
8887 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
8888 {
8889   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8890   return this->plt_section()->address() + gsym->plt_offset();
8891 }
8892
8893 // Map platform-specific relocs to real relocs
8894 //
8895 template<bool big_endian>
8896 unsigned int
8897 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
8898 {
8899   switch (r_type)
8900     {
8901     case elfcpp::R_ARM_TARGET1:
8902       // This is either R_ARM_ABS32 or R_ARM_REL32;
8903       return elfcpp::R_ARM_ABS32;
8904
8905     case elfcpp::R_ARM_TARGET2:
8906       // This can be any reloc type but ususally is R_ARM_GOT_PREL
8907       return elfcpp::R_ARM_GOT_PREL;
8908
8909     default:
8910       return r_type;
8911     }
8912 }
8913
8914 // Whether if two EABI versions V1 and V2 are compatible.
8915
8916 template<bool big_endian>
8917 bool
8918 Target_arm<big_endian>::are_eabi_versions_compatible(
8919     elfcpp::Elf_Word v1,
8920     elfcpp::Elf_Word v2)
8921 {
8922   // v4 and v5 are the same spec before and after it was released,
8923   // so allow mixing them.
8924   if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
8925       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
8926     return true;
8927
8928   return v1 == v2;
8929 }
8930
8931 // Combine FLAGS from an input object called NAME and the processor-specific
8932 // flags in the ELF header of the output.  Much of this is adapted from the
8933 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
8934 // in bfd/elf32-arm.c.
8935
8936 template<bool big_endian>
8937 void
8938 Target_arm<big_endian>::merge_processor_specific_flags(
8939     const std::string& name,
8940     elfcpp::Elf_Word flags)
8941 {
8942   if (this->are_processor_specific_flags_set())
8943     {
8944       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
8945
8946       // Nothing to merge if flags equal to those in output.
8947       if (flags == out_flags)
8948         return;
8949
8950       // Complain about various flag mismatches.
8951       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
8952       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
8953       if (!this->are_eabi_versions_compatible(version1, version2))
8954         gold_error(_("Source object %s has EABI version %d but output has "
8955                      "EABI version %d."),
8956                    name.c_str(),
8957                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
8958                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
8959     }
8960   else
8961     {
8962       // If the input is the default architecture and had the default
8963       // flags then do not bother setting the flags for the output
8964       // architecture, instead allow future merges to do this.  If no
8965       // future merges ever set these flags then they will retain their
8966       // uninitialised values, which surprise surprise, correspond
8967       // to the default values.
8968       if (flags == 0)
8969         return;
8970
8971       // This is the first time, just copy the flags.
8972       // We only copy the EABI version for now.
8973       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
8974     }
8975 }
8976
8977 // Adjust ELF file header.
8978 template<bool big_endian>
8979 void
8980 Target_arm<big_endian>::do_adjust_elf_header(
8981     unsigned char* view,
8982     int len) const
8983 {
8984   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
8985
8986   elfcpp::Ehdr<32, big_endian> ehdr(view);
8987   unsigned char e_ident[elfcpp::EI_NIDENT];
8988   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
8989
8990   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
8991       == elfcpp::EF_ARM_EABI_UNKNOWN)
8992     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
8993   else
8994     e_ident[elfcpp::EI_OSABI] = 0;
8995   e_ident[elfcpp::EI_ABIVERSION] = 0;
8996
8997   // FIXME: Do EF_ARM_BE8 adjustment.
8998
8999   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9000   oehdr.put_e_ident(e_ident);
9001 }
9002
9003 // do_make_elf_object to override the same function in the base class.
9004 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9005 // to store ARM specific information.  Hence we need to have our own
9006 // ELF object creation.
9007
9008 template<bool big_endian>
9009 Object*
9010 Target_arm<big_endian>::do_make_elf_object(
9011     const std::string& name,
9012     Input_file* input_file,
9013     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9014 {
9015   int et = ehdr.get_e_type();
9016   if (et == elfcpp::ET_REL)
9017     {
9018       Arm_relobj<big_endian>* obj =
9019         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9020       obj->setup();
9021       return obj;
9022     }
9023   else if (et == elfcpp::ET_DYN)
9024     {
9025       Sized_dynobj<32, big_endian>* obj =
9026         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9027       obj->setup();
9028       return obj;
9029     }
9030   else
9031     {
9032       gold_error(_("%s: unsupported ELF file type %d"),
9033                  name.c_str(), et);
9034       return NULL;
9035     }
9036 }
9037
9038 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9039 // Returns -1 if no architecture could be read.
9040 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9041
9042 template<bool big_endian>
9043 int
9044 Target_arm<big_endian>::get_secondary_compatible_arch(
9045     const Attributes_section_data* pasd)
9046 {
9047   const Object_attribute *known_attributes =
9048     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9049
9050   // Note: the tag and its argument below are uleb128 values, though
9051   // currently-defined values fit in one byte for each.
9052   const std::string& sv =
9053     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9054   if (sv.size() == 2
9055       && sv.data()[0] == elfcpp::Tag_CPU_arch
9056       && (sv.data()[1] & 128) != 128)
9057    return sv.data()[1];
9058
9059   // This tag is "safely ignorable", so don't complain if it looks funny.
9060   return -1;
9061 }
9062
9063 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9064 // The tag is removed if ARCH is -1.
9065 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9066
9067 template<bool big_endian>
9068 void
9069 Target_arm<big_endian>::set_secondary_compatible_arch(
9070     Attributes_section_data* pasd,
9071     int arch)
9072 {
9073   Object_attribute *known_attributes =
9074     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9075
9076   if (arch == -1)
9077     {
9078       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9079       return;
9080     }
9081
9082   // Note: the tag and its argument below are uleb128 values, though
9083   // currently-defined values fit in one byte for each.
9084   char sv[3];
9085   sv[0] = elfcpp::Tag_CPU_arch;
9086   gold_assert(arch != 0);
9087   sv[1] = arch;
9088   sv[2] = '\0';
9089
9090   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9091 }
9092
9093 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9094 // into account.
9095 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9096
9097 template<bool big_endian>
9098 int
9099 Target_arm<big_endian>::tag_cpu_arch_combine(
9100     const char* name,
9101     int oldtag,
9102     int* secondary_compat_out,
9103     int newtag,
9104     int secondary_compat)
9105 {
9106 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9107   static const int v6t2[] =
9108     {
9109       T(V6T2),   // PRE_V4.
9110       T(V6T2),   // V4.
9111       T(V6T2),   // V4T.
9112       T(V6T2),   // V5T.
9113       T(V6T2),   // V5TE.
9114       T(V6T2),   // V5TEJ.
9115       T(V6T2),   // V6.
9116       T(V7),     // V6KZ.
9117       T(V6T2)    // V6T2.
9118     };
9119   static const int v6k[] =
9120     {
9121       T(V6K),    // PRE_V4.
9122       T(V6K),    // V4.
9123       T(V6K),    // V4T.
9124       T(V6K),    // V5T.
9125       T(V6K),    // V5TE.
9126       T(V6K),    // V5TEJ.
9127       T(V6K),    // V6.
9128       T(V6KZ),   // V6KZ.
9129       T(V7),     // V6T2.
9130       T(V6K)     // V6K.
9131     };
9132   static const int v7[] =
9133     {
9134       T(V7),     // PRE_V4.
9135       T(V7),     // V4.
9136       T(V7),     // V4T.
9137       T(V7),     // V5T.
9138       T(V7),     // V5TE.
9139       T(V7),     // V5TEJ.
9140       T(V7),     // V6.
9141       T(V7),     // V6KZ.
9142       T(V7),     // V6T2.
9143       T(V7),     // V6K.
9144       T(V7)      // V7.
9145     };
9146   static const int v6_m[] =
9147     {
9148       -1,        // PRE_V4.
9149       -1,        // V4.
9150       T(V6K),    // V4T.
9151       T(V6K),    // V5T.
9152       T(V6K),    // V5TE.
9153       T(V6K),    // V5TEJ.
9154       T(V6K),    // V6.
9155       T(V6KZ),   // V6KZ.
9156       T(V7),     // V6T2.
9157       T(V6K),    // V6K.
9158       T(V7),     // V7.
9159       T(V6_M)    // V6_M.
9160     };
9161   static const int v6s_m[] =
9162     {
9163       -1,        // PRE_V4.
9164       -1,        // V4.
9165       T(V6K),    // V4T.
9166       T(V6K),    // V5T.
9167       T(V6K),    // V5TE.
9168       T(V6K),    // V5TEJ.
9169       T(V6K),    // V6.
9170       T(V6KZ),   // V6KZ.
9171       T(V7),     // V6T2.
9172       T(V6K),    // V6K.
9173       T(V7),     // V7.
9174       T(V6S_M),  // V6_M.
9175       T(V6S_M)   // V6S_M.
9176     };
9177   static const int v7e_m[] =
9178     {
9179       -1,       // PRE_V4.
9180       -1,       // V4.
9181       T(V7E_M), // V4T.
9182       T(V7E_M), // V5T.
9183       T(V7E_M), // V5TE.
9184       T(V7E_M), // V5TEJ.
9185       T(V7E_M), // V6.
9186       T(V7E_M), // V6KZ.
9187       T(V7E_M), // V6T2.
9188       T(V7E_M), // V6K.
9189       T(V7E_M), // V7.
9190       T(V7E_M), // V6_M.
9191       T(V7E_M), // V6S_M.
9192       T(V7E_M)  // V7E_M.
9193     };
9194   static const int v4t_plus_v6_m[] =
9195     {
9196       -1,               // PRE_V4.
9197       -1,               // V4.
9198       T(V4T),           // V4T.
9199       T(V5T),           // V5T.
9200       T(V5TE),          // V5TE.
9201       T(V5TEJ),         // V5TEJ.
9202       T(V6),            // V6.
9203       T(V6KZ),          // V6KZ.
9204       T(V6T2),          // V6T2.
9205       T(V6K),           // V6K.
9206       T(V7),            // V7.
9207       T(V6_M),          // V6_M.
9208       T(V6S_M),         // V6S_M.
9209       T(V7E_M),         // V7E_M.
9210       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
9211     };
9212   static const int *comb[] =
9213     {
9214       v6t2,
9215       v6k,
9216       v7,
9217       v6_m,
9218       v6s_m,
9219       v7e_m,
9220       // Pseudo-architecture.
9221       v4t_plus_v6_m
9222     };
9223
9224   // Check we've not got a higher architecture than we know about.
9225
9226   if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9227     {
9228       gold_error(_("%s: unknown CPU architecture"), name);
9229       return -1;
9230     }
9231
9232   // Override old tag if we have a Tag_also_compatible_with on the output.
9233
9234   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9235       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9236     oldtag = T(V4T_PLUS_V6_M);
9237
9238   // And override the new tag if we have a Tag_also_compatible_with on the
9239   // input.
9240
9241   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9242       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9243     newtag = T(V4T_PLUS_V6_M);
9244
9245   // Architectures before V6KZ add features monotonically.
9246   int tagh = std::max(oldtag, newtag);
9247   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9248     return tagh;
9249
9250   int tagl = std::min(oldtag, newtag);
9251   int result = comb[tagh - T(V6T2)][tagl];
9252
9253   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9254   // as the canonical version.
9255   if (result == T(V4T_PLUS_V6_M))
9256     {
9257       result = T(V4T);
9258       *secondary_compat_out = T(V6_M);
9259     }
9260   else
9261     *secondary_compat_out = -1;
9262
9263   if (result == -1)
9264     {
9265       gold_error(_("%s: conflicting CPU architectures %d/%d"),
9266                  name, oldtag, newtag);
9267       return -1;
9268     }
9269
9270   return result;
9271 #undef T
9272 }
9273
9274 // Helper to print AEABI enum tag value.
9275
9276 template<bool big_endian>
9277 std::string
9278 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9279 {
9280   static const char *aeabi_enum_names[] =
9281     { "", "variable-size", "32-bit", "" };
9282   const size_t aeabi_enum_names_size =
9283     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9284
9285   if (value < aeabi_enum_names_size)
9286     return std::string(aeabi_enum_names[value]);
9287   else
9288     {
9289       char buffer[100];
9290       sprintf(buffer, "<unknown value %u>", value);
9291       return std::string(buffer);
9292     }
9293 }
9294
9295 // Return the string value to store in TAG_CPU_name.
9296
9297 template<bool big_endian>
9298 std::string
9299 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9300 {
9301   static const char *name_table[] = {
9302     // These aren't real CPU names, but we can't guess
9303     // that from the architecture version alone.
9304    "Pre v4",
9305    "ARM v4",
9306    "ARM v4T",
9307    "ARM v5T",
9308    "ARM v5TE",
9309    "ARM v5TEJ",
9310    "ARM v6",
9311    "ARM v6KZ",
9312    "ARM v6T2",
9313    "ARM v6K",
9314    "ARM v7",
9315    "ARM v6-M",
9316    "ARM v6S-M",
9317    "ARM v7E-M"
9318  };
9319  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9320
9321   if (value < name_table_size)
9322     return std::string(name_table[value]);
9323   else
9324     {
9325       char buffer[100];
9326       sprintf(buffer, "<unknown CPU value %u>", value);
9327       return std::string(buffer);
9328     } 
9329 }
9330
9331 // Merge object attributes from input file called NAME with those of the
9332 // output.  The input object attributes are in the object pointed by PASD.
9333
9334 template<bool big_endian>
9335 void
9336 Target_arm<big_endian>::merge_object_attributes(
9337     const char* name,
9338     const Attributes_section_data* pasd)
9339 {
9340   // Return if there is no attributes section data.
9341   if (pasd == NULL)
9342     return;
9343
9344   // If output has no object attributes, just copy.
9345   if (this->attributes_section_data_ == NULL)
9346     {
9347       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9348       return;
9349     }
9350
9351   const int vendor = Object_attribute::OBJ_ATTR_PROC;
9352   const Object_attribute* in_attr = pasd->known_attributes(vendor);
9353   Object_attribute* out_attr =
9354     this->attributes_section_data_->known_attributes(vendor);
9355
9356   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
9357   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9358       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9359     {
9360       // Ignore mismatches if the object doesn't use floating point.  */
9361       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9362         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9363             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9364       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
9365         gold_error(_("%s uses VFP register arguments, output does not"),
9366                    name);
9367     }
9368
9369   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9370     {
9371       // Merge this attribute with existing attributes.
9372       switch (i)
9373         {
9374         case elfcpp::Tag_CPU_raw_name:
9375         case elfcpp::Tag_CPU_name:
9376           // These are merged after Tag_CPU_arch.
9377           break;
9378
9379         case elfcpp::Tag_ABI_optimization_goals:
9380         case elfcpp::Tag_ABI_FP_optimization_goals:
9381           // Use the first value seen.
9382           break;
9383
9384         case elfcpp::Tag_CPU_arch:
9385           {
9386             unsigned int saved_out_attr = out_attr->int_value();
9387             // Merge Tag_CPU_arch and Tag_also_compatible_with.
9388             int secondary_compat =
9389               this->get_secondary_compatible_arch(pasd);
9390             int secondary_compat_out =
9391               this->get_secondary_compatible_arch(
9392                   this->attributes_section_data_);
9393             out_attr[i].set_int_value(
9394                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9395                                      &secondary_compat_out,
9396                                      in_attr[i].int_value(),
9397                                      secondary_compat));
9398             this->set_secondary_compatible_arch(this->attributes_section_data_,
9399                                                 secondary_compat_out);
9400
9401             // Merge Tag_CPU_name and Tag_CPU_raw_name.
9402             if (out_attr[i].int_value() == saved_out_attr)
9403               ; // Leave the names alone.
9404             else if (out_attr[i].int_value() == in_attr[i].int_value())
9405               {
9406                 // The output architecture has been changed to match the
9407                 // input architecture.  Use the input names.
9408                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9409                     in_attr[elfcpp::Tag_CPU_name].string_value());
9410                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9411                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9412               }
9413             else
9414               {
9415                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9416                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9417               }
9418
9419             // If we still don't have a value for Tag_CPU_name,
9420             // make one up now.  Tag_CPU_raw_name remains blank.
9421             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9422               {
9423                 const std::string cpu_name =
9424                   this->tag_cpu_name_value(out_attr[i].int_value());
9425                 // FIXME:  If we see an unknown CPU, this will be set
9426                 // to "<unknown CPU n>", where n is the attribute value.
9427                 // This is different from BFD, which leaves the name alone.
9428                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9429               }
9430           }
9431           break;
9432
9433         case elfcpp::Tag_ARM_ISA_use:
9434         case elfcpp::Tag_THUMB_ISA_use:
9435         case elfcpp::Tag_WMMX_arch:
9436         case elfcpp::Tag_Advanced_SIMD_arch:
9437           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9438         case elfcpp::Tag_ABI_FP_rounding:
9439         case elfcpp::Tag_ABI_FP_exceptions:
9440         case elfcpp::Tag_ABI_FP_user_exceptions:
9441         case elfcpp::Tag_ABI_FP_number_model:
9442         case elfcpp::Tag_VFP_HP_extension:
9443         case elfcpp::Tag_CPU_unaligned_access:
9444         case elfcpp::Tag_T2EE_use:
9445         case elfcpp::Tag_Virtualization_use:
9446         case elfcpp::Tag_MPextension_use:
9447           // Use the largest value specified.
9448           if (in_attr[i].int_value() > out_attr[i].int_value())
9449             out_attr[i].set_int_value(in_attr[i].int_value());
9450           break;
9451
9452         case elfcpp::Tag_ABI_align8_preserved:
9453         case elfcpp::Tag_ABI_PCS_RO_data:
9454           // Use the smallest value specified.
9455           if (in_attr[i].int_value() < out_attr[i].int_value())
9456             out_attr[i].set_int_value(in_attr[i].int_value());
9457           break;
9458
9459         case elfcpp::Tag_ABI_align8_needed:
9460           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9461               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9462                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9463                       == 0)))
9464             {
9465               // This error message should be enabled once all non-conformant
9466               // binaries in the toolchain have had the attributes set
9467               // properly.
9468               // gold_error(_("output 8-byte data alignment conflicts with %s"),
9469               //            name);
9470             }
9471           // Fall through.
9472         case elfcpp::Tag_ABI_FP_denormal:
9473         case elfcpp::Tag_ABI_PCS_GOT_use:
9474           {
9475             // These tags have 0 = don't care, 1 = strong requirement,
9476             // 2 = weak requirement.
9477             static const int order_021[3] = {0, 2, 1};
9478
9479             // Use the "greatest" from the sequence 0, 2, 1, or the largest
9480             // value if greater than 2 (for future-proofing).
9481             if ((in_attr[i].int_value() > 2
9482                  && in_attr[i].int_value() > out_attr[i].int_value())
9483                 || (in_attr[i].int_value() <= 2
9484                     && out_attr[i].int_value() <= 2
9485                     && (order_021[in_attr[i].int_value()]
9486                         > order_021[out_attr[i].int_value()])))
9487               out_attr[i].set_int_value(in_attr[i].int_value());
9488           }
9489           break;
9490
9491         case elfcpp::Tag_CPU_arch_profile:
9492           if (out_attr[i].int_value() != in_attr[i].int_value())
9493             {
9494               // 0 will merge with anything.
9495               // 'A' and 'S' merge to 'A'.
9496               // 'R' and 'S' merge to 'R'.
9497               // 'M' and 'A|R|S' is an error.
9498               if (out_attr[i].int_value() == 0
9499                   || (out_attr[i].int_value() == 'S'
9500                       && (in_attr[i].int_value() == 'A'
9501                           || in_attr[i].int_value() == 'R')))
9502                 out_attr[i].set_int_value(in_attr[i].int_value());
9503               else if (in_attr[i].int_value() == 0
9504                        || (in_attr[i].int_value() == 'S'
9505                            && (out_attr[i].int_value() == 'A'
9506                                || out_attr[i].int_value() == 'R')))
9507                 ; // Do nothing.
9508               else
9509                 {
9510                   gold_error
9511                     (_("conflicting architecture profiles %c/%c"),
9512                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
9513                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
9514                 }
9515             }
9516           break;
9517         case elfcpp::Tag_VFP_arch:
9518             {
9519               static const struct
9520               {
9521                   int ver;
9522                   int regs;
9523               } vfp_versions[7] =
9524                 {
9525                   {0, 0},
9526                   {1, 16},
9527                   {2, 16},
9528                   {3, 32},
9529                   {3, 16},
9530                   {4, 32},
9531                   {4, 16}
9532                 };
9533
9534               // Values greater than 6 aren't defined, so just pick the
9535               // biggest.
9536               if (in_attr[i].int_value() > 6
9537                   && in_attr[i].int_value() > out_attr[i].int_value())
9538                 {
9539                   *out_attr = *in_attr;
9540                   break;
9541                 }
9542               // The output uses the superset of input features
9543               // (ISA version) and registers.
9544               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
9545                                  vfp_versions[out_attr[i].int_value()].ver);
9546               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
9547                                   vfp_versions[out_attr[i].int_value()].regs);
9548               // This assumes all possible supersets are also a valid
9549               // options.
9550               int newval;
9551               for (newval = 6; newval > 0; newval--)
9552                 {
9553                   if (regs == vfp_versions[newval].regs
9554                       && ver == vfp_versions[newval].ver)
9555                     break;
9556                 }
9557               out_attr[i].set_int_value(newval);
9558             }
9559           break;
9560         case elfcpp::Tag_PCS_config:
9561           if (out_attr[i].int_value() == 0)
9562             out_attr[i].set_int_value(in_attr[i].int_value());
9563           else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9564             {
9565               // It's sometimes ok to mix different configs, so this is only
9566               // a warning.
9567               gold_warning(_("%s: conflicting platform configuration"), name);
9568             }
9569           break;
9570         case elfcpp::Tag_ABI_PCS_R9_use:
9571           if (in_attr[i].int_value() != out_attr[i].int_value()
9572               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
9573               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
9574             {
9575               gold_error(_("%s: conflicting use of R9"), name);
9576             }
9577           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
9578             out_attr[i].set_int_value(in_attr[i].int_value());
9579           break;
9580         case elfcpp::Tag_ABI_PCS_RW_data:
9581           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9582               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9583                   != elfcpp::AEABI_R9_SB)
9584               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9585                   != elfcpp::AEABI_R9_unused))
9586             {
9587               gold_error(_("%s: SB relative addressing conflicts with use "
9588                            "of R9"),
9589                          name);
9590             }
9591           // Use the smallest value specified.
9592           if (in_attr[i].int_value() < out_attr[i].int_value())
9593             out_attr[i].set_int_value(in_attr[i].int_value());
9594           break;
9595         case elfcpp::Tag_ABI_PCS_wchar_t:
9596           // FIXME: Make it possible to turn off this warning.
9597           if (out_attr[i].int_value()
9598               && in_attr[i].int_value()
9599               && out_attr[i].int_value() != in_attr[i].int_value())
9600             {
9601               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9602                              "use %u-byte wchar_t; use of wchar_t values "
9603                              "across objects may fail"),
9604                            name, in_attr[i].int_value(),
9605                            out_attr[i].int_value());
9606             }
9607           else if (in_attr[i].int_value() && !out_attr[i].int_value())
9608             out_attr[i].set_int_value(in_attr[i].int_value());
9609           break;
9610         case elfcpp::Tag_ABI_enum_size:
9611           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
9612             {
9613               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
9614                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
9615                 {
9616                   // The existing object is compatible with anything.
9617                   // Use whatever requirements the new object has.
9618                   out_attr[i].set_int_value(in_attr[i].int_value());
9619                 }
9620               // FIXME: Make it possible to turn off this warning.
9621               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
9622                        && out_attr[i].int_value() != in_attr[i].int_value())
9623                 {
9624                   unsigned int in_value = in_attr[i].int_value();
9625                   unsigned int out_value = out_attr[i].int_value();
9626                   gold_warning(_("%s uses %s enums yet the output is to use "
9627                                  "%s enums; use of enum values across objects "
9628                                  "may fail"),
9629                                name,
9630                                this->aeabi_enum_name(in_value).c_str(),
9631                                this->aeabi_enum_name(out_value).c_str());
9632                 }
9633             }
9634           break;
9635         case elfcpp::Tag_ABI_VFP_args:
9636           // Aready done.
9637           break;
9638         case elfcpp::Tag_ABI_WMMX_args:
9639           if (in_attr[i].int_value() != out_attr[i].int_value())
9640             {
9641               gold_error(_("%s uses iWMMXt register arguments, output does "
9642                            "not"),
9643                          name);
9644             }
9645           break;
9646         case Object_attribute::Tag_compatibility:
9647           // Merged in target-independent code.
9648           break;
9649         case elfcpp::Tag_ABI_HardFP_use:
9650           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9651           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
9652               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
9653             out_attr[i].set_int_value(3);
9654           else if (in_attr[i].int_value() > out_attr[i].int_value())
9655             out_attr[i].set_int_value(in_attr[i].int_value());
9656           break;
9657         case elfcpp::Tag_ABI_FP_16bit_format:
9658           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9659             {
9660               if (in_attr[i].int_value() != out_attr[i].int_value())
9661                 gold_error(_("fp16 format mismatch between %s and output"),
9662                            name);
9663             }
9664           if (in_attr[i].int_value() != 0)
9665             out_attr[i].set_int_value(in_attr[i].int_value());
9666           break;
9667
9668         case elfcpp::Tag_nodefaults:
9669           // This tag is set if it exists, but the value is unused (and is
9670           // typically zero).  We don't actually need to do anything here -
9671           // the merge happens automatically when the type flags are merged
9672           // below.
9673           break;
9674         case elfcpp::Tag_also_compatible_with:
9675           // Already done in Tag_CPU_arch.
9676           break;
9677         case elfcpp::Tag_conformance:
9678           // Keep the attribute if it matches.  Throw it away otherwise.
9679           // No attribute means no claim to conform.
9680           if (in_attr[i].string_value() != out_attr[i].string_value())
9681             out_attr[i].set_string_value("");
9682           break;
9683
9684         default:
9685           {
9686             const char* err_object = NULL;
9687
9688             // The "known_obj_attributes" table does contain some undefined
9689             // attributes.  Ensure that there are unused.
9690             if (out_attr[i].int_value() != 0
9691                 || out_attr[i].string_value() != "")
9692               err_object = "output";
9693             else if (in_attr[i].int_value() != 0
9694                      || in_attr[i].string_value() != "")
9695               err_object = name;
9696
9697             if (err_object != NULL)
9698               {
9699                 // Attribute numbers >=64 (mod 128) can be safely ignored.
9700                 if ((i & 127) < 64)
9701                   gold_error(_("%s: unknown mandatory EABI object attribute "
9702                                "%d"),
9703                              err_object, i);
9704                 else
9705                   gold_warning(_("%s: unknown EABI object attribute %d"),
9706                                err_object, i);
9707               }
9708
9709             // Only pass on attributes that match in both inputs.
9710             if (!in_attr[i].matches(out_attr[i]))
9711               {
9712                 out_attr[i].set_int_value(0);
9713                 out_attr[i].set_string_value("");
9714               }
9715           }
9716         }
9717
9718       // If out_attr was copied from in_attr then it won't have a type yet.
9719       if (in_attr[i].type() && !out_attr[i].type())
9720         out_attr[i].set_type(in_attr[i].type());
9721     }
9722
9723   // Merge Tag_compatibility attributes and any common GNU ones.
9724   this->attributes_section_data_->merge(name, pasd);
9725
9726   // Check for any attributes not known on ARM.
9727   typedef Vendor_object_attributes::Other_attributes Other_attributes;
9728   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
9729   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
9730   Other_attributes* out_other_attributes =
9731     this->attributes_section_data_->other_attributes(vendor);
9732   Other_attributes::iterator out_iter = out_other_attributes->begin();
9733
9734   while (in_iter != in_other_attributes->end()
9735          || out_iter != out_other_attributes->end())
9736     {
9737       const char* err_object = NULL;
9738       int err_tag = 0;
9739
9740       // The tags for each list are in numerical order.
9741       // If the tags are equal, then merge.
9742       if (out_iter != out_other_attributes->end()
9743           && (in_iter == in_other_attributes->end()
9744               || in_iter->first > out_iter->first))
9745         {
9746           // This attribute only exists in output.  We can't merge, and we
9747           // don't know what the tag means, so delete it.
9748           err_object = "output";
9749           err_tag = out_iter->first;
9750           int saved_tag = out_iter->first;
9751           delete out_iter->second;
9752           out_other_attributes->erase(out_iter); 
9753           out_iter = out_other_attributes->upper_bound(saved_tag);
9754         }
9755       else if (in_iter != in_other_attributes->end()
9756                && (out_iter != out_other_attributes->end()
9757                    || in_iter->first < out_iter->first))
9758         {
9759           // This attribute only exists in input. We can't merge, and we
9760           // don't know what the tag means, so ignore it.
9761           err_object = name;
9762           err_tag = in_iter->first;
9763           ++in_iter;
9764         }
9765       else // The tags are equal.
9766         {
9767           // As present, all attributes in the list are unknown, and
9768           // therefore can't be merged meaningfully.
9769           err_object = "output";
9770           err_tag = out_iter->first;
9771
9772           //  Only pass on attributes that match in both inputs.
9773           if (!in_iter->second->matches(*(out_iter->second)))
9774             {
9775               // No match.  Delete the attribute.
9776               int saved_tag = out_iter->first;
9777               delete out_iter->second;
9778               out_other_attributes->erase(out_iter);
9779               out_iter = out_other_attributes->upper_bound(saved_tag);
9780             }
9781           else
9782             {
9783               // Matched.  Keep the attribute and move to the next.
9784               ++out_iter;
9785               ++in_iter;
9786             }
9787         }
9788
9789       if (err_object)
9790         {
9791           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
9792           if ((err_tag & 127) < 64)
9793             {
9794               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9795                          err_object, err_tag);
9796             }
9797           else
9798             {
9799               gold_warning(_("%s: unknown EABI object attribute %d"),
9800                            err_object, err_tag);
9801             }
9802         }
9803     }
9804 }
9805
9806 // Stub-generation methods for Target_arm.
9807
9808 // Make a new Arm_input_section object.
9809
9810 template<bool big_endian>
9811 Arm_input_section<big_endian>*
9812 Target_arm<big_endian>::new_arm_input_section(
9813     Relobj* relobj,
9814     unsigned int shndx)
9815 {
9816   Section_id sid(relobj, shndx);
9817
9818   Arm_input_section<big_endian>* arm_input_section =
9819     new Arm_input_section<big_endian>(relobj, shndx);
9820   arm_input_section->init();
9821
9822   // Register new Arm_input_section in map for look-up.
9823   std::pair<typename Arm_input_section_map::iterator, bool> ins =
9824     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
9825
9826   // Make sure that it we have not created another Arm_input_section
9827   // for this input section already.
9828   gold_assert(ins.second);
9829
9830   return arm_input_section; 
9831 }
9832
9833 // Find the Arm_input_section object corresponding to the SHNDX-th input
9834 // section of RELOBJ.
9835
9836 template<bool big_endian>
9837 Arm_input_section<big_endian>*
9838 Target_arm<big_endian>::find_arm_input_section(
9839     Relobj* relobj,
9840     unsigned int shndx) const
9841 {
9842   Section_id sid(relobj, shndx);
9843   typename Arm_input_section_map::const_iterator p =
9844     this->arm_input_section_map_.find(sid);
9845   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
9846 }
9847
9848 // Make a new stub table.
9849
9850 template<bool big_endian>
9851 Stub_table<big_endian>*
9852 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
9853 {
9854   Stub_table<big_endian>* stub_table =
9855     new Stub_table<big_endian>(owner);
9856   this->stub_tables_.push_back(stub_table);
9857
9858   stub_table->set_address(owner->address() + owner->data_size());
9859   stub_table->set_file_offset(owner->offset() + owner->data_size());
9860   stub_table->finalize_data_size();
9861
9862   return stub_table;
9863 }
9864
9865 // Scan a relocation for stub generation.
9866
9867 template<bool big_endian>
9868 void
9869 Target_arm<big_endian>::scan_reloc_for_stub(
9870     const Relocate_info<32, big_endian>* relinfo,
9871     unsigned int r_type,
9872     const Sized_symbol<32>* gsym,
9873     unsigned int r_sym,
9874     const Symbol_value<32>* psymval,
9875     elfcpp::Elf_types<32>::Elf_Swxword addend,
9876     Arm_address address)
9877 {
9878   typedef typename Target_arm<big_endian>::Relocate Relocate;
9879
9880   const Arm_relobj<big_endian>* arm_relobj =
9881     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9882
9883   bool target_is_thumb;
9884   Symbol_value<32> symval;
9885   if (gsym != NULL)
9886     {
9887       // This is a global symbol.  Determine if we use PLT and if the
9888       // final target is THUMB.
9889       if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
9890         {
9891           // This uses a PLT, change the symbol value.
9892           symval.set_output_value(this->plt_section()->address()
9893                                   + gsym->plt_offset());
9894           psymval = &symval;
9895           target_is_thumb = false;
9896         }
9897       else if (gsym->is_undefined())
9898         // There is no need to generate a stub symbol is undefined.
9899         return;
9900       else
9901         {
9902           target_is_thumb =
9903             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
9904              || (gsym->type() == elfcpp::STT_FUNC
9905                  && !gsym->is_undefined()
9906                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
9907         }
9908     }
9909   else
9910     {
9911       // This is a local symbol.  Determine if the final target is THUMB.
9912       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
9913     }
9914
9915   // Strip LSB if this points to a THUMB target.
9916   const Arm_reloc_property* reloc_property =
9917     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9918   gold_assert(reloc_property != NULL);
9919   if (target_is_thumb
9920       && reloc_property->uses_thumb_bit()
9921       && ((psymval->value(arm_relobj, 0) & 1) != 0))
9922     {
9923       Arm_address stripped_value =
9924         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
9925       symval.set_output_value(stripped_value);
9926       psymval = &symval;
9927     } 
9928
9929   // Get the symbol value.
9930   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
9931
9932   // Owing to pipelining, the PC relative branches below actually skip
9933   // two instructions when the branch offset is 0.
9934   Arm_address destination;
9935   switch (r_type)
9936     {
9937     case elfcpp::R_ARM_CALL:
9938     case elfcpp::R_ARM_JUMP24:
9939     case elfcpp::R_ARM_PLT32:
9940       // ARM branches.
9941       destination = value + addend + 8;
9942       break;
9943     case elfcpp::R_ARM_THM_CALL:
9944     case elfcpp::R_ARM_THM_XPC22:
9945     case elfcpp::R_ARM_THM_JUMP24:
9946     case elfcpp::R_ARM_THM_JUMP19:
9947       // THUMB branches.
9948       destination = value + addend + 4;
9949       break;
9950     default:
9951       gold_unreachable();
9952     }
9953
9954   Reloc_stub* stub = NULL;
9955   Stub_type stub_type =
9956     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
9957                                     target_is_thumb);
9958   if (stub_type != arm_stub_none)
9959     {
9960       // Try looking up an existing stub from a stub table.
9961       Stub_table<big_endian>* stub_table = 
9962         arm_relobj->stub_table(relinfo->data_shndx);
9963       gold_assert(stub_table != NULL);
9964    
9965       // Locate stub by destination.
9966       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
9967
9968       // Create a stub if there is not one already
9969       stub = stub_table->find_reloc_stub(stub_key);
9970       if (stub == NULL)
9971         {
9972           // create a new stub and add it to stub table.
9973           stub = this->stub_factory().make_reloc_stub(stub_type);
9974           stub_table->add_reloc_stub(stub, stub_key);
9975         }
9976
9977       // Record the destination address.
9978       stub->set_destination_address(destination
9979                                     | (target_is_thumb ? 1 : 0));
9980     }
9981
9982   // For Cortex-A8, we need to record a relocation at 4K page boundary.
9983   if (this->fix_cortex_a8_
9984       && (r_type == elfcpp::R_ARM_THM_JUMP24
9985           || r_type == elfcpp::R_ARM_THM_JUMP19
9986           || r_type == elfcpp::R_ARM_THM_CALL
9987           || r_type == elfcpp::R_ARM_THM_XPC22)
9988       && (address & 0xfffU) == 0xffeU)
9989     {
9990       // Found a candidate.  Note we haven't checked the destination is
9991       // within 4K here: if we do so (and don't create a record) we can't
9992       // tell that a branch should have been relocated when scanning later.
9993       this->cortex_a8_relocs_info_[address] =
9994         new Cortex_a8_reloc(stub, r_type,
9995                             destination | (target_is_thumb ? 1 : 0));
9996     }
9997 }
9998
9999 // This function scans a relocation sections for stub generation.
10000 // The template parameter Relocate must be a class type which provides
10001 // a single function, relocate(), which implements the machine
10002 // specific part of a relocation.
10003
10004 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
10005 // SHT_REL or SHT_RELA.
10006
10007 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
10008 // of relocs.  OUTPUT_SECTION is the output section.
10009 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10010 // mapped to output offsets.
10011
10012 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10013 // VIEW_SIZE is the size.  These refer to the input section, unless
10014 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10015 // the output section.
10016
10017 template<bool big_endian>
10018 template<int sh_type>
10019 void inline
10020 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10021     const Relocate_info<32, big_endian>* relinfo,
10022     const unsigned char* prelocs,
10023     size_t reloc_count,
10024     Output_section* output_section,
10025     bool needs_special_offset_handling,
10026     const unsigned char* view,
10027     elfcpp::Elf_types<32>::Elf_Addr view_address,
10028     section_size_type)
10029 {
10030   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10031   const int reloc_size =
10032     Reloc_types<sh_type, 32, big_endian>::reloc_size;
10033
10034   Arm_relobj<big_endian>* arm_object =
10035     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10036   unsigned int local_count = arm_object->local_symbol_count();
10037
10038   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10039
10040   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10041     {
10042       Reltype reloc(prelocs);
10043
10044       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10045       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10046       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10047
10048       r_type = this->get_real_reloc_type(r_type);
10049
10050       // Only a few relocation types need stubs.
10051       if ((r_type != elfcpp::R_ARM_CALL)
10052          && (r_type != elfcpp::R_ARM_JUMP24)
10053          && (r_type != elfcpp::R_ARM_PLT32)
10054          && (r_type != elfcpp::R_ARM_THM_CALL)
10055          && (r_type != elfcpp::R_ARM_THM_XPC22)
10056          && (r_type != elfcpp::R_ARM_THM_JUMP24)
10057          && (r_type != elfcpp::R_ARM_THM_JUMP19)
10058          && (r_type != elfcpp::R_ARM_V4BX))
10059         continue;
10060
10061       section_offset_type offset =
10062         convert_to_section_size_type(reloc.get_r_offset());
10063
10064       if (needs_special_offset_handling)
10065         {
10066           offset = output_section->output_offset(relinfo->object,
10067                                                  relinfo->data_shndx,
10068                                                  offset);
10069           if (offset == -1)
10070             continue;
10071         }
10072
10073       // Create a v4bx stub if --fix-v4bx-interworking is used.
10074       if (r_type == elfcpp::R_ARM_V4BX)
10075         {
10076           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10077             {
10078               // Get the BX instruction.
10079               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10080               const Valtype* wv =
10081                 reinterpret_cast<const Valtype*>(view + offset);
10082               elfcpp::Elf_types<32>::Elf_Swxword insn =
10083                 elfcpp::Swap<32, big_endian>::readval(wv);
10084               const uint32_t reg = (insn & 0xf);
10085
10086               if (reg < 0xf)
10087                 {
10088                   // Try looking up an existing stub from a stub table.
10089                   Stub_table<big_endian>* stub_table =
10090                     arm_object->stub_table(relinfo->data_shndx);
10091                   gold_assert(stub_table != NULL);
10092
10093                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10094                     {
10095                       // create a new stub and add it to stub table.
10096                       Arm_v4bx_stub* stub =
10097                         this->stub_factory().make_arm_v4bx_stub(reg);
10098                       gold_assert(stub != NULL);
10099                       stub_table->add_arm_v4bx_stub(stub);
10100                     }
10101                 }
10102             }
10103           continue;
10104         }
10105
10106       // Get the addend.
10107       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10108       elfcpp::Elf_types<32>::Elf_Swxword addend =
10109         stub_addend_reader(r_type, view + offset, reloc);
10110
10111       const Sized_symbol<32>* sym;
10112
10113       Symbol_value<32> symval;
10114       const Symbol_value<32> *psymval;
10115       if (r_sym < local_count)
10116         {
10117           sym = NULL;
10118           psymval = arm_object->local_symbol(r_sym);
10119
10120           // If the local symbol belongs to a section we are discarding,
10121           // and that section is a debug section, try to find the
10122           // corresponding kept section and map this symbol to its
10123           // counterpart in the kept section.  The symbol must not 
10124           // correspond to a section we are folding.
10125           bool is_ordinary;
10126           unsigned int shndx = psymval->input_shndx(&is_ordinary);
10127           if (is_ordinary
10128               && shndx != elfcpp::SHN_UNDEF
10129               && !arm_object->is_section_included(shndx) 
10130               && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10131             {
10132               if (comdat_behavior == CB_UNDETERMINED)
10133                 {
10134                   std::string name =
10135                     arm_object->section_name(relinfo->data_shndx);
10136                   comdat_behavior = get_comdat_behavior(name.c_str());
10137                 }
10138               if (comdat_behavior == CB_PRETEND)
10139                 {
10140                   bool found;
10141                   typename elfcpp::Elf_types<32>::Elf_Addr value =
10142                     arm_object->map_to_kept_section(shndx, &found);
10143                   if (found)
10144                     symval.set_output_value(value + psymval->input_value());
10145                   else
10146                     symval.set_output_value(0);
10147                 }
10148               else
10149                 {
10150                   symval.set_output_value(0);
10151                 }
10152               symval.set_no_output_symtab_entry();
10153               psymval = &symval;
10154             }
10155         }
10156       else
10157         {
10158           const Symbol* gsym = arm_object->global_symbol(r_sym);
10159           gold_assert(gsym != NULL);
10160           if (gsym->is_forwarder())
10161             gsym = relinfo->symtab->resolve_forwards(gsym);
10162
10163           sym = static_cast<const Sized_symbol<32>*>(gsym);
10164           if (sym->has_symtab_index())
10165             symval.set_output_symtab_index(sym->symtab_index());
10166           else
10167             symval.set_no_output_symtab_entry();
10168
10169           // We need to compute the would-be final value of this global
10170           // symbol.
10171           const Symbol_table* symtab = relinfo->symtab;
10172           const Sized_symbol<32>* sized_symbol =
10173             symtab->get_sized_symbol<32>(gsym);
10174           Symbol_table::Compute_final_value_status status;
10175           Arm_address value =
10176             symtab->compute_final_value<32>(sized_symbol, &status);
10177
10178           // Skip this if the symbol has not output section.
10179           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10180             continue;
10181
10182           symval.set_output_value(value);
10183           psymval = &symval;
10184         }
10185
10186       // If symbol is a section symbol, we don't know the actual type of
10187       // destination.  Give up.
10188       if (psymval->is_section_symbol())
10189         continue;
10190
10191       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10192                                 addend, view_address + offset);
10193     }
10194 }
10195
10196 // Scan an input section for stub generation.
10197
10198 template<bool big_endian>
10199 void
10200 Target_arm<big_endian>::scan_section_for_stubs(
10201     const Relocate_info<32, big_endian>* relinfo,
10202     unsigned int sh_type,
10203     const unsigned char* prelocs,
10204     size_t reloc_count,
10205     Output_section* output_section,
10206     bool needs_special_offset_handling,
10207     const unsigned char* view,
10208     Arm_address view_address,
10209     section_size_type view_size)
10210 {
10211   if (sh_type == elfcpp::SHT_REL)
10212     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10213         relinfo,
10214         prelocs,
10215         reloc_count,
10216         output_section,
10217         needs_special_offset_handling,
10218         view,
10219         view_address,
10220         view_size);
10221   else if (sh_type == elfcpp::SHT_RELA)
10222     // We do not support RELA type relocations yet.  This is provided for
10223     // completeness.
10224     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10225         relinfo,
10226         prelocs,
10227         reloc_count,
10228         output_section,
10229         needs_special_offset_handling,
10230         view,
10231         view_address,
10232         view_size);
10233   else
10234     gold_unreachable();
10235 }
10236
10237 // Group input sections for stub generation.
10238 //
10239 // We goup input sections in an output sections so that the total size,
10240 // including any padding space due to alignment is smaller than GROUP_SIZE
10241 // unless the only input section in group is bigger than GROUP_SIZE already.
10242 // Then an ARM stub table is created to follow the last input section
10243 // in group.  For each group an ARM stub table is created an is placed
10244 // after the last group.  If STUB_ALWATS_AFTER_BRANCH is false, we further
10245 // extend the group after the stub table.
10246
10247 template<bool big_endian>
10248 void
10249 Target_arm<big_endian>::group_sections(
10250     Layout* layout,
10251     section_size_type group_size,
10252     bool stubs_always_after_branch)
10253 {
10254   // Group input sections and insert stub table
10255   Layout::Section_list section_list;
10256   layout->get_allocated_sections(&section_list);
10257   for (Layout::Section_list::const_iterator p = section_list.begin();
10258        p != section_list.end();
10259        ++p)
10260     {
10261       Arm_output_section<big_endian>* output_section =
10262         Arm_output_section<big_endian>::as_arm_output_section(*p);
10263       output_section->group_sections(group_size, stubs_always_after_branch,
10264                                      this);
10265     }
10266 }
10267
10268 // Relaxation hook.  This is where we do stub generation.
10269
10270 template<bool big_endian>
10271 bool
10272 Target_arm<big_endian>::do_relax(
10273     int pass,
10274     const Input_objects* input_objects,
10275     Symbol_table* symtab,
10276     Layout* layout)
10277 {
10278   // No need to generate stubs if this is a relocatable link.
10279   gold_assert(!parameters->options().relocatable());
10280
10281   // If this is the first pass, we need to group input sections into
10282   // stub groups.
10283   bool done_exidx_fixup = false;
10284   if (pass == 1)
10285     {
10286       // Determine the stub group size.  The group size is the absolute
10287       // value of the parameter --stub-group-size.  If --stub-group-size
10288       // is passed a negative value, we restict stubs to be always after
10289       // the stubbed branches.
10290       int32_t stub_group_size_param =
10291         parameters->options().stub_group_size();
10292       bool stubs_always_after_branch = stub_group_size_param < 0;
10293       section_size_type stub_group_size = abs(stub_group_size_param);
10294
10295       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10296       // page as the first half of a 32-bit branch straddling two 4K pages.
10297       // This is a crude way of enforcing that.
10298       if (this->fix_cortex_a8_)
10299         stubs_always_after_branch = true;
10300
10301       if (stub_group_size == 1)
10302         {
10303           // Default value.
10304           // Thumb branch range is +-4MB has to be used as the default
10305           // maximum size (a given section can contain both ARM and Thumb
10306           // code, so the worst case has to be taken into account).
10307           //
10308           // This value is 24K less than that, which allows for 2025
10309           // 12-byte stubs.  If we exceed that, then we will fail to link.
10310           // The user will have to relink with an explicit group size
10311           // option.
10312           stub_group_size = 4170000;
10313         }
10314
10315       group_sections(layout, stub_group_size, stubs_always_after_branch);
10316      
10317       // Also fix .ARM.exidx section coverage.
10318       Output_section* os = layout->find_output_section(".ARM.exidx");
10319       if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10320         {
10321           Arm_output_section<big_endian>* exidx_output_section =
10322             Arm_output_section<big_endian>::as_arm_output_section(os);
10323           this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10324           done_exidx_fixup = true;
10325         }
10326     }
10327
10328   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
10329   // beginning of each relaxation pass, just blow away all the stubs.
10330   // Alternatively, we could selectively remove only the stubs and reloc
10331   // information for code sections that have moved since the last pass.
10332   // That would require more book-keeping.
10333   typedef typename Stub_table_list::iterator Stub_table_iterator;
10334   if (this->fix_cortex_a8_)
10335     {
10336       // Clear all Cortex-A8 reloc information.
10337       for (typename Cortex_a8_relocs_info::const_iterator p =
10338              this->cortex_a8_relocs_info_.begin();
10339            p != this->cortex_a8_relocs_info_.end();
10340            ++p)
10341         delete p->second;
10342       this->cortex_a8_relocs_info_.clear();
10343
10344       // Remove all Cortex-A8 stubs.
10345       for (Stub_table_iterator sp = this->stub_tables_.begin();
10346            sp != this->stub_tables_.end();
10347            ++sp)
10348         (*sp)->remove_all_cortex_a8_stubs();
10349     }
10350   
10351   // Scan relocs for relocation stubs
10352   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10353        op != input_objects->relobj_end();
10354        ++op)
10355     {
10356       Arm_relobj<big_endian>* arm_relobj =
10357         Arm_relobj<big_endian>::as_arm_relobj(*op);
10358       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
10359     }
10360
10361   // Check all stub tables to see if any of them have their data sizes
10362   // or addresses alignments changed.  These are the only things that
10363   // matter.
10364   bool any_stub_table_changed = false;
10365   Unordered_set<const Output_section*> sections_needing_adjustment;
10366   for (Stub_table_iterator sp = this->stub_tables_.begin();
10367        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10368        ++sp)
10369     {
10370       if ((*sp)->update_data_size_and_addralign())
10371         {
10372           // Update data size of stub table owner.
10373           Arm_input_section<big_endian>* owner = (*sp)->owner();
10374           uint64_t address = owner->address();
10375           off_t offset = owner->offset();
10376           owner->reset_address_and_file_offset();
10377           owner->set_address_and_file_offset(address, offset);
10378
10379           sections_needing_adjustment.insert(owner->output_section());
10380           any_stub_table_changed = true;
10381         }
10382     }
10383
10384   // Output_section_data::output_section() returns a const pointer but we
10385   // need to update output sections, so we record all output sections needing
10386   // update above and scan the sections here to find out what sections need
10387   // to be updated.
10388   for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10389       p != layout->section_list().end();
10390       ++p)
10391     {
10392       if (sections_needing_adjustment.find(*p)
10393           != sections_needing_adjustment.end())
10394         (*p)->set_section_offsets_need_adjustment();
10395     }
10396
10397   // Stop relaxation if no EXIDX fix-up and no stub table change.
10398   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10399
10400   // Finalize the stubs in the last relaxation pass.
10401   if (!continue_relaxation)
10402     {
10403       for (Stub_table_iterator sp = this->stub_tables_.begin();
10404            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10405             ++sp)
10406         (*sp)->finalize_stubs();
10407
10408       // Update output local symbol counts of objects if necessary.
10409       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10410            op != input_objects->relobj_end();
10411            ++op)
10412         {
10413           Arm_relobj<big_endian>* arm_relobj =
10414             Arm_relobj<big_endian>::as_arm_relobj(*op);
10415
10416           // Update output local symbol counts.  We need to discard local
10417           // symbols defined in parts of input sections that are discarded by
10418           // relaxation.
10419           if (arm_relobj->output_local_symbol_count_needs_update())
10420             arm_relobj->update_output_local_symbol_count();
10421         }
10422     }
10423
10424   return continue_relaxation;
10425 }
10426
10427 // Relocate a stub.
10428
10429 template<bool big_endian>
10430 void
10431 Target_arm<big_endian>::relocate_stub(
10432     Stub* stub,
10433     const Relocate_info<32, big_endian>* relinfo,
10434     Output_section* output_section,
10435     unsigned char* view,
10436     Arm_address address,
10437     section_size_type view_size)
10438 {
10439   Relocate relocate;
10440   const Stub_template* stub_template = stub->stub_template();
10441   for (size_t i = 0; i < stub_template->reloc_count(); i++)
10442     {
10443       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
10444       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
10445
10446       unsigned int r_type = insn->r_type();
10447       section_size_type reloc_offset = stub_template->reloc_offset(i);
10448       section_size_type reloc_size = insn->size();
10449       gold_assert(reloc_offset + reloc_size <= view_size);
10450
10451       // This is the address of the stub destination.
10452       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
10453       Symbol_value<32> symval;
10454       symval.set_output_value(target);
10455
10456       // Synthesize a fake reloc just in case.  We don't have a symbol so
10457       // we use 0.
10458       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
10459       memset(reloc_buffer, 0, sizeof(reloc_buffer));
10460       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
10461       reloc_write.put_r_offset(reloc_offset);
10462       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
10463       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
10464
10465       relocate.relocate(relinfo, this, output_section,
10466                         this->fake_relnum_for_stubs, rel, r_type,
10467                         NULL, &symval, view + reloc_offset,
10468                         address + reloc_offset, reloc_size);
10469     }
10470 }
10471
10472 // Determine whether an object attribute tag takes an integer, a
10473 // string or both.
10474
10475 template<bool big_endian>
10476 int
10477 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
10478 {
10479   if (tag == Object_attribute::Tag_compatibility)
10480     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10481             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
10482   else if (tag == elfcpp::Tag_nodefaults)
10483     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10484             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
10485   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
10486     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
10487   else if (tag < 32)
10488     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
10489   else
10490     return ((tag & 1) != 0
10491             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10492             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10493 }
10494
10495 // Reorder attributes.
10496 //
10497 // The ABI defines that Tag_conformance should be emitted first, and that
10498 // Tag_nodefaults should be second (if either is defined).  This sets those
10499 // two positions, and bumps up the position of all the remaining tags to
10500 // compensate.
10501
10502 template<bool big_endian>
10503 int
10504 Target_arm<big_endian>::do_attributes_order(int num) const
10505 {
10506   // Reorder the known object attributes in output.  We want to move
10507   // Tag_conformance to position 4 and Tag_conformance to position 5
10508   // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10509   if (num == 4)
10510     return elfcpp::Tag_conformance;
10511   if (num == 5)
10512     return elfcpp::Tag_nodefaults;
10513   if ((num - 2) < elfcpp::Tag_nodefaults)
10514     return num - 2;
10515   if ((num - 1) < elfcpp::Tag_conformance)
10516     return num - 1;
10517   return num;
10518 }
10519
10520 // Scan a span of THUMB code for Cortex-A8 erratum.
10521
10522 template<bool big_endian>
10523 void
10524 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
10525     Arm_relobj<big_endian>* arm_relobj,
10526     unsigned int shndx,
10527     section_size_type span_start,
10528     section_size_type span_end,
10529     const unsigned char* view,
10530     Arm_address address)
10531 {
10532   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10533   //
10534   // The opcode is BLX.W, BL.W, B.W, Bcc.W
10535   // The branch target is in the same 4KB region as the
10536   // first half of the branch.
10537   // The instruction before the branch is a 32-bit
10538   // length non-branch instruction.
10539   section_size_type i = span_start;
10540   bool last_was_32bit = false;
10541   bool last_was_branch = false;
10542   while (i < span_end)
10543     {
10544       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10545       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
10546       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
10547       bool is_blx = false, is_b = false;
10548       bool is_bl = false, is_bcc = false;
10549
10550       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
10551       if (insn_32bit)
10552         {
10553           // Load the rest of the insn (in manual-friendly order).
10554           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
10555
10556           // Encoding T4: B<c>.W.
10557           is_b = (insn & 0xf800d000U) == 0xf0009000U;
10558           // Encoding T1: BL<c>.W.
10559           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
10560           // Encoding T2: BLX<c>.W.
10561           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
10562           // Encoding T3: B<c>.W (not permitted in IT block).
10563           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
10564                     && (insn & 0x07f00000U) != 0x03800000U);
10565         }
10566
10567       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
10568                            
10569       // If this instruction is a 32-bit THUMB branch that crosses a 4K
10570       // page boundary and it follows 32-bit non-branch instruction,
10571       // we need to work around.
10572       if (is_32bit_branch
10573           && ((address + i) & 0xfffU) == 0xffeU
10574           && last_was_32bit
10575           && !last_was_branch)
10576         {
10577           // Check to see if there is a relocation stub for this branch.
10578           bool force_target_arm = false;
10579           bool force_target_thumb = false;
10580           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
10581           Cortex_a8_relocs_info::const_iterator p =
10582             this->cortex_a8_relocs_info_.find(address + i);
10583
10584           if (p != this->cortex_a8_relocs_info_.end())
10585             {
10586               cortex_a8_reloc = p->second;
10587               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
10588
10589               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10590                   && !target_is_thumb)
10591                 force_target_arm = true;
10592               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10593                        && target_is_thumb)
10594                 force_target_thumb = true;
10595             }
10596
10597           off_t offset;
10598           Stub_type stub_type = arm_stub_none;
10599
10600           // Check if we have an offending branch instruction.
10601           uint16_t upper_insn = (insn >> 16) & 0xffffU;
10602           uint16_t lower_insn = insn & 0xffffU;
10603           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10604
10605           if (cortex_a8_reloc != NULL
10606               && cortex_a8_reloc->reloc_stub() != NULL)
10607             // We've already made a stub for this instruction, e.g.
10608             // it's a long branch or a Thumb->ARM stub.  Assume that
10609             // stub will suffice to work around the A8 erratum (see
10610             // setting of always_after_branch above).
10611             ;
10612           else if (is_bcc)
10613             {
10614               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
10615                                                               lower_insn);
10616               stub_type = arm_stub_a8_veneer_b_cond;
10617             }
10618           else if (is_b || is_bl || is_blx)
10619             {
10620               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
10621                                                          lower_insn);
10622               if (is_blx)
10623                 offset &= ~3;
10624
10625               stub_type = (is_blx
10626                            ? arm_stub_a8_veneer_blx
10627                            : (is_bl
10628                               ? arm_stub_a8_veneer_bl
10629                               : arm_stub_a8_veneer_b));
10630             }
10631
10632           if (stub_type != arm_stub_none)
10633             {
10634               Arm_address pc_for_insn = address + i + 4;
10635
10636               // The original instruction is a BL, but the target is
10637               // an ARM instruction.  If we were not making a stub,
10638               // the BL would have been converted to a BLX.  Use the
10639               // BLX stub instead in that case.
10640               if (this->may_use_blx() && force_target_arm
10641                   && stub_type == arm_stub_a8_veneer_bl)
10642                 {
10643                   stub_type = arm_stub_a8_veneer_blx;
10644                   is_blx = true;
10645                   is_bl = false;
10646                 }
10647               // Conversely, if the original instruction was
10648               // BLX but the target is Thumb mode, use the BL stub.
10649               else if (force_target_thumb
10650                        && stub_type == arm_stub_a8_veneer_blx)
10651                 {
10652                   stub_type = arm_stub_a8_veneer_bl;
10653                   is_blx = false;
10654                   is_bl = true;
10655                 }
10656
10657               if (is_blx)
10658                 pc_for_insn &= ~3;
10659
10660               // If we found a relocation, use the proper destination,
10661               // not the offset in the (unrelocated) instruction.
10662               // Note this is always done if we switched the stub type above.
10663               if (cortex_a8_reloc != NULL)
10664                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
10665
10666               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
10667
10668               // Add a new stub if destination address in in the same page.
10669               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
10670                 {
10671                   Cortex_a8_stub* stub =
10672                     this->stub_factory_.make_cortex_a8_stub(stub_type,
10673                                                             arm_relobj, shndx,
10674                                                             address + i,
10675                                                             target, insn);
10676                   Stub_table<big_endian>* stub_table =
10677                     arm_relobj->stub_table(shndx);
10678                   gold_assert(stub_table != NULL);
10679                   stub_table->add_cortex_a8_stub(address + i, stub);
10680                 }
10681             }
10682         }
10683
10684       i += insn_32bit ? 4 : 2;
10685       last_was_32bit = insn_32bit;
10686       last_was_branch = is_32bit_branch;
10687     }
10688 }
10689
10690 // Apply the Cortex-A8 workaround.
10691
10692 template<bool big_endian>
10693 void
10694 Target_arm<big_endian>::apply_cortex_a8_workaround(
10695     const Cortex_a8_stub* stub,
10696     Arm_address stub_address,
10697     unsigned char* insn_view,
10698     Arm_address insn_address)
10699 {
10700   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10701   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
10702   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
10703   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
10704   off_t branch_offset = stub_address - (insn_address + 4);
10705
10706   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10707   switch (stub->stub_template()->type())
10708     {
10709     case arm_stub_a8_veneer_b_cond:
10710       gold_assert(!utils::has_overflow<21>(branch_offset));
10711       upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
10712                                                          branch_offset);
10713       lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
10714                                                          branch_offset);
10715       break;
10716
10717     case arm_stub_a8_veneer_b:
10718     case arm_stub_a8_veneer_bl:
10719     case arm_stub_a8_veneer_blx:
10720       if ((lower_insn & 0x5000U) == 0x4000U)
10721         // For a BLX instruction, make sure that the relocation is
10722         // rounded up to a word boundary.  This follows the semantics of
10723         // the instruction which specifies that bit 1 of the target
10724         // address will come from bit 1 of the base address.
10725         branch_offset = (branch_offset + 2) & ~3;
10726
10727       // Put BRANCH_OFFSET back into the insn.
10728       gold_assert(!utils::has_overflow<25>(branch_offset));
10729       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
10730       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
10731       break;
10732
10733     default:
10734       gold_unreachable();
10735     }
10736
10737   // Put the relocated value back in the object file:
10738   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
10739   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
10740 }
10741
10742 template<bool big_endian>
10743 class Target_selector_arm : public Target_selector
10744 {
10745  public:
10746   Target_selector_arm()
10747     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
10748                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
10749   { }
10750
10751   Target*
10752   do_instantiate_target()
10753   { return new Target_arm<big_endian>(); }
10754 };
10755
10756 // Fix .ARM.exidx section coverage.
10757
10758 template<bool big_endian>
10759 void
10760 Target_arm<big_endian>::fix_exidx_coverage(
10761     Layout* layout,
10762     Arm_output_section<big_endian>* exidx_section,
10763     Symbol_table* symtab)
10764 {
10765   // We need to look at all the input sections in output in ascending
10766   // order of of output address.  We do that by building a sorted list
10767   // of output sections by addresses.  Then we looks at the output sections
10768   // in order.  The input sections in an output section are already sorted
10769   // by addresses within the output section.
10770
10771   typedef std::set<Output_section*, output_section_address_less_than>
10772       Sorted_output_section_list;
10773   Sorted_output_section_list sorted_output_sections;
10774   Layout::Section_list section_list;
10775   layout->get_allocated_sections(&section_list);
10776   for (Layout::Section_list::const_iterator p = section_list.begin();
10777        p != section_list.end();
10778        ++p)
10779     {
10780       // We only care about output sections that contain executable code.
10781       if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
10782         sorted_output_sections.insert(*p);
10783     }
10784
10785   // Go over the output sections in ascending order of output addresses.
10786   typedef typename Arm_output_section<big_endian>::Text_section_list
10787       Text_section_list;
10788   Text_section_list sorted_text_sections;
10789   for(typename Sorted_output_section_list::iterator p =
10790         sorted_output_sections.begin();
10791       p != sorted_output_sections.end();
10792       ++p)
10793     {
10794       Arm_output_section<big_endian>* arm_output_section =
10795         Arm_output_section<big_endian>::as_arm_output_section(*p);
10796       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
10797     } 
10798
10799   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab);
10800 }
10801
10802 Target_selector_arm<false> target_selector_arm;
10803 Target_selector_arm<true> target_selector_armbe;
10804
10805 } // End anonymous namespace.