1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
61 template<bool big_endian>
62 class Output_data_plt_arm;
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
67 template<bool big_endian>
70 template<bool big_endian>
71 class Arm_input_section;
73 class Arm_exidx_cantunwind;
75 class Arm_exidx_merged_section;
77 class Arm_exidx_fixup;
79 template<bool big_endian>
80 class Arm_output_section;
82 class Arm_exidx_input_section;
84 template<bool big_endian>
87 template<bool big_endian>
88 class Arm_relocate_functions;
90 template<bool big_endian>
91 class Arm_output_data_got;
93 template<bool big_endian>
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
110 // The arm target class.
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
119 // There are probably a lot more.
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
141 // Types of instruction templates.
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
155 // Factory methods to create instruction templates in different formats.
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
190 // Accessors. This class is used for read-only objects so no modifiers
195 { return this->data_; }
197 // Return the instruction sequence type of this.
200 { return this->type_; }
202 // Return the ARM relocation type of this.
205 { return this->r_type_; }
209 { return this->reloc_addend_; }
211 // Return size of instruction template in bytes.
215 // Return byte-alignment of instruction template.
220 // We make the constructor private to ensure that only the factory
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
230 // Instruction template type.
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
238 // Macro for generating code to stub types. One entry per long/short
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
262 #define DEF_STUB(x) arm_stub_##x,
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
279 arm_stub_type_last = arm_stub_v4_veneer_bx
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
290 Stub_template(Stub_type, const Insn_template*, size_t);
298 { return this->type_; }
300 // Return an array of instruction templates.
303 { return this->insns_; }
305 // Return size of template in number of instructions.
308 { return this->insn_count_; }
310 // Return size of template in bytes.
313 { return this->size_; }
315 // Return alignment of the stub template.
318 { return this->alignment_; }
320 // Return whether entry point is in thumb mode.
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
325 // Return number of relocations in this template.
328 { return this->relocs_.size(); }
330 // Return index of the I-th instruction with relocation.
332 reloc_insn_index(size_t i) const
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
341 reloc_offset(size_t i) const
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
352 // A Stub_template may not be copied. We want to share templates as much
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
363 // Size of templated instructions in bytes.
365 // Alignment of templated instructions.
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
395 // Return the stub template.
397 stub_template() const
398 { return this->stub_template_; }
400 // Return offset of code stub from beginning of its containing stub table.
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
408 // Set offset of code stub from beginning of its containing stub table.
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
431 // This must be defined in the child class.
433 do_reloc_target(size_t) = 0;
435 // This may be overridden in the child class.
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
442 this->do_fixed_endian_write<false>(view, view_size);
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
452 // A template to implement do_write.
453 template<bool big_endian>
455 do_fixed_endian_write(unsigned char*, section_size_type);
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
466 class Reloc_stub : public Stub
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
473 // Return destination address.
475 destination_address() const
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
481 // Set destination address.
483 set_destination_address(Arm_address address)
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
489 // Reset destination address.
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
532 // Accessors: Keys are meant to be read-only object so no modifiers are
538 { return this->stub_type_; }
540 // Return the local symbol index or invalid_index.
543 { return this->r_sym_; }
545 // Return the symbol if there is one.
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
550 // Return the relobj if there is one.
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
555 // Whether this equals to another key k.
557 eq(const Key& k) const
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
567 // Return a hash value.
571 return (this->stub_type_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
580 // Functors for STL associative containers.
584 operator()(const Key& k) const
585 { return k.hash_value(); }
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
595 // Name of key. This is mainly for debugging.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
613 const Symbol* symbol;
614 const Relobj* relobj;
616 // Addend associated with a reloc.
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
629 friend class Stub_factory;
631 // Return the relocation target address of the i-th relocation in the
634 do_reloc_target(size_t i)
636 // All reloc stub have only one relocation.
638 return this->destination_address_;
642 // Address of destination.
643 Arm_address destination_address_;
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
653 // 3. The branch follows a 32-bit instruction which is not a branch.
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
665 class Cortex_a8_stub : public Stub
671 // Return the object of the code section containing the branch being fixed
675 { return this->relobj_; }
677 // Return the section index of the code section containing the branch being
681 { return this->shndx_; }
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
687 source_address() const
688 { return this->source_address_; }
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
694 destination_address() const
695 { return this->destination_address_; }
697 // Return the instruction being fixed up.
699 original_insn() const
700 { return this->original_insn_; }
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
713 friend class Stub_factory;
715 // Return the relocation target address of the i-th relocation in the
718 do_reloc_target(size_t i)
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
722 // The conditional branch veneer has two relocations.
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 // All other Cortex-A8 stubs have only one relocation.
730 return this->destination_address_;
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
736 do_thumb16_special(size_t);
739 // Object of the code section containing the branch being fixed up.
741 // Section index of the code section containing the branch begin fixed up.
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
759 // Return the associated register.
762 { return this->reg_; }
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
770 friend class Stub_factory;
772 // Return the relocation target address of the i-th relocation in the
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
778 // This may be overridden in the child class.
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 // A template to implement do_write.
790 template<bool big_endian>
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
806 // A register index (r0-r14), which is associated with the stub.
810 // Stub factory class.
815 // Return the unique instance of this class.
816 static const Stub_factory&
819 static Stub_factory singleton;
823 // Make a relocation stub.
825 make_reloc_stub(Stub_type stub_type) const
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
832 // Make a Cortex-A8 stub.
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
847 make_arm_v4bx_stub(uint32_t reg) const
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
868 // A class to hold stubs for the ARM target.
870 template<bool big_endian>
871 class Stub_table : public Output_data
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
886 { return this->owner_; }
888 // Whether this stub table is empty.
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
897 // Return the current data size.
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
940 // Remove all Cortex-A8 stubs.
942 remove_all_cortex_a8_stubs();
944 // Look up a relocation stub using KEY. Return NULL if there is none.
946 find_reloc_stub(const Reloc_stub::Key& key) const
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
955 find_arm_v4bx_stub(const uint32_t reg) const
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
961 // Relocate stubs in this stub table.
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
971 update_data_size_and_addralign();
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
978 // Apply Cortex-A8 workaround to an address range.
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
985 // Write out section contents.
987 do_write(Output_file*);
989 // Return the required alignment.
992 { return this->prev_addralign_; }
994 // Reset address and file offset.
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
999 // Set final data size.
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1005 // Relocate one stub.
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1011 // Unordered map of relocation stubs.
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1044 class Arm_exidx_cantunwind : public Output_section_data
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1051 // Return the object containing the section pointed by this.
1054 { return this->relobj_; }
1056 // Return the section index of the section pointed by this.
1059 { return this->shndx_; }
1063 do_write(Output_file* of)
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1068 this->do_fixed_endian_write<false>(of);
1071 // Write to a map file.
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1080 do_fixed_endian_write(Output_file*);
1082 // The object containing the section pointed by this.
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1111 // Build output contents.
1113 build_contents(const unsigned char*, section_size_type);
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1126 // Write merged section into file OF.
1128 do_write(Output_file* of);
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1145 // A class to wrap an ordinary input section containing executable code.
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1164 // Whether this is a stub table owner.
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1172 { return this->stub_table_; }
1174 // Set the stub_table.
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1185 // Return the original size of the section.
1187 original_size() const
1188 { return this->original_size_; }
1191 // Write data to output file.
1193 do_write(Output_file*);
1195 // Return required alignment of this.
1197 do_addralign() const
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1203 return this->original_addralign_;
1206 // Finalize data size.
1208 set_final_data_size();
1210 // Reset address and file offset.
1212 do_reset_address_and_file_offset();
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1247 unsigned char* original_contents_;
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1253 class Arm_exidx_fixup
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1265 { delete this->section_offset_map_; }
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1283 add_exidx_cantunwind_as_needed();
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1296 // Type of EXIDX unwind entry.
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1312 process_exidx_entry(uint32_t second_word);
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1335 Output_section* first_output_text_section_;
1337 bool merge_exidx_entries_;
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1361 ~Arm_output_section()
1364 // Group input sections for stub generation.
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1374 // Append all input text sections in this into LIST.
1376 append_text_sections_to_list(Text_section_list* list);
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1388 // Link an EXIDX section into its corresponding text section.
1390 set_exidx_section_link();
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1408 class Arm_exidx_input_section
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1421 ~Arm_exidx_input_section()
1424 // Accessors: This is a read-only class.
1426 // Return the object containing this EXIDX input section.
1429 { return this->relobj_; }
1431 // Return the section index of this EXIDX input section.
1434 { return this->shndx_; }
1436 // Return the section index of linked text section in the same object.
1439 { return this->link_; }
1441 // Return size of the EXIDX input section.
1444 { return this->size_; }
1446 // Return address alignment of EXIDX input section.
1449 { return this->addralign_; }
1451 // Return size of the associated text input section.
1454 { return this->text_size_; }
1456 // Whether there are any errors in the EXIDX input section.
1459 { return this->has_errors_; }
1461 // Set has-errors flag.
1464 { this->has_errors_ = true; }
1467 // Object containing this.
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1473 // Size of this. For ARM 32-bit is sufficient.
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1483 // Arm_relobj class.
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1502 { delete this->attributes_section_data_; }
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1529 // Scan all relocation sections for stub generation.
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1534 // Convert regular input section with index SHNDX to a relaxed section.
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1550 // Processor-specific flags in ELF file header. This is valid only after
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1556 // Attribute section data This is the contents of the .ARM.attribute section
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1582 // Whether a section contains any Cortex-A8 workaround.
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1590 // Mark a section that has Cortex-A8 workaround.
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1623 // Whether output local symbol count needs updating.
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1628 // Set output_local_symbol_count_needs_update flag to be true.
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1633 // Update output local symbol count at the end of relaxation.
1635 update_output_local_symbol_count();
1637 // Whether we want to merge processor-specific flags and attributes.
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1642 // Export list of EXIDX section indices.
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1659 // Post constructor setup.
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1671 // Count the local symbols.
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1682 // Read the symbol information.
1684 do_read_symbols(Read_symbols_data* sd);
1686 // Process relocs for garbage collection.
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692 // Whether a section needs to be scanned for relocation stubs.
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1698 // Whether a section is a scannable text section.
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1709 // Scan a section for the Cortex-A8 erratum.
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1737 simple_input_section_output_address(unsigned int, Output_section*);
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1762 bool merge_flags_and_attributes_;
1765 // Arm_dynobj class.
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1778 { delete this->attributes_section_data_; }
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1786 // Processor-specific flags in ELF file header. This is valid only after
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1798 // Read the symbol information.
1800 do_read_symbols(Read_symbols_data* sd);
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1809 // Functor to read reloc addends during stub generation.
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1830 elfcpp::Elf_types<32>::Elf_Swxword
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1845 elfcpp::Elf_types<32>::Elf_Swxword
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1857 class Cortex_a8_reloc
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1868 // Accessors: This is a read-only class.
1870 // Return the relocation stub associated with this relocation if there is
1874 { return this->reloc_stub_; }
1876 // Return the relocation type.
1879 { return this->r_type_; }
1881 // Return the destination address of the relocation. LSB stores the THUMB
1885 { return this->destination_; }
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1894 Arm_address destination_;
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1942 // Write out the GOT table.
1944 do_write(Output_file*);
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1964 // Return the GOT offset.
1967 { return this->got_offset_; }
1972 { return this->r_type_; }
1974 // Whether the symbol is global or not.
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1979 // For a relocation against a global symbol, the global symbol.
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1995 // For a relocation against a local symbol, the local symbol index.
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2015 // For a global symbol, the symbol itself.
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2131 // Whether we force PCI branch veneers.
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2136 // Set PIC veneer flag.
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2141 // Whether we use THUMB-2 instructions.
2143 using_thumb2() const
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2151 // Whether we use THUMB/THUMB-2 instructions only.
2153 using_thumb_only() const
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2170 may_use_arm_nop() const
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2181 // Whether we have THUMB-2 NOP.W instruction.
2183 may_use_thumb2_nop() const
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2193 // Whether we have v4T interworking instructions available.
2195 may_use_v4t_interworking() const
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2204 // Whether we have v5T interworking instructions available.
2206 may_use_v5t_interworking() const
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2226 gc_process_relocs(Symbol_table* symtab,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2238 // Scan the relocations to look for symbol adjustments.
2240 scan_relocs(Symbol_table* symtab,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2252 // Finalize the sections.
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2256 // Return the value to use for a dynamic symbol which requires special
2259 do_dynsym_value(const Symbol*) const;
2261 // Relocate a section.
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
2270 Arm_address view_address,
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
2274 // Scan the relocs during a relocatable link.
2276 scan_relocatable_relocs(Symbol_table* symtab,
2278 Sized_relobj_file<32, big_endian>* object,
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2289 // Emit relocations for a section.
2291 relocate_relocs(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2295 Output_section* output_section,
2296 typename elfcpp::Elf_types<32>::Elf_Off
2297 offset_in_output_section,
2298 const Relocatable_relocs*,
2299 unsigned char* view,
2300 Arm_address view_address,
2301 section_size_type view_size,
2302 unsigned char* reloc_view,
2303 section_size_type reloc_view_size);
2305 // Perform target-specific processing in a relocatable link. This is
2306 // only used if we use the relocation strategy RELOC_SPECIAL.
2308 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 unsigned int sh_type,
2310 const unsigned char* preloc_in,
2312 Output_section* output_section,
2313 typename elfcpp::Elf_types<32>::Elf_Off
2314 offset_in_output_section,
2315 unsigned char* view,
2316 typename elfcpp::Elf_types<32>::Elf_Addr
2318 section_size_type view_size,
2319 unsigned char* preloc_out);
2321 // Return whether SYM is defined by the ABI.
2323 do_is_defined_by_abi(const Symbol* sym) const
2324 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2326 // Return whether there is a GOT section.
2328 has_got_section() const
2329 { return this->got_ != NULL; }
2331 // Return the size of the GOT section.
2335 gold_assert(this->got_ != NULL);
2336 return this->got_->data_size();
2339 // Return the number of entries in the GOT.
2341 got_entry_count() const
2343 if (!this->has_got_section())
2345 return this->got_size() / 4;
2348 // Return the number of entries in the PLT.
2350 plt_entry_count() const;
2352 // Return the offset of the first non-reserved PLT entry.
2354 first_plt_entry_offset() const;
2356 // Return the size of each PLT entry.
2358 plt_entry_size() const;
2360 // Map platform-specific reloc types
2362 get_real_reloc_type(unsigned int r_type);
2365 // Methods to support stub-generations.
2368 // Return the stub factory
2370 stub_factory() const
2371 { return this->stub_factory_; }
2373 // Make a new Arm_input_section object.
2374 Arm_input_section<big_endian>*
2375 new_arm_input_section(Relobj*, unsigned int);
2377 // Find the Arm_input_section object corresponding to the SHNDX-th input
2378 // section of RELOBJ.
2379 Arm_input_section<big_endian>*
2380 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2382 // Make a new Stub_table
2383 Stub_table<big_endian>*
2384 new_stub_table(Arm_input_section<big_endian>*);
2386 // Scan a section for stub generation.
2388 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 const unsigned char*, size_t, Output_section*,
2390 bool, const unsigned char*, Arm_address,
2395 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2396 Output_section*, unsigned char*, Arm_address,
2399 // Get the default ARM target.
2400 static Target_arm<big_endian>*
2403 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 && parameters->target().is_big_endian() == big_endian);
2405 return static_cast<Target_arm<big_endian>*>(
2406 parameters->sized_target<32, big_endian>());
2409 // Whether NAME belongs to a mapping symbol.
2411 is_mapping_symbol_name(const char* name)
2415 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 && (name[2] == '\0' || name[2] == '.'));
2419 // Whether we work around the Cortex-A8 erratum.
2421 fix_cortex_a8() const
2422 { return this->fix_cortex_a8_; }
2424 // Whether we merge exidx entries in debuginfo.
2426 merge_exidx_entries() const
2427 { return parameters->options().merge_exidx_entries(); }
2429 // Whether we fix R_ARM_V4BX relocation.
2431 // 1 - replace with MOV instruction (armv4 target)
2432 // 2 - make interworking veneer (>= armv4t targets only)
2433 General_options::Fix_v4bx
2435 { return parameters->options().fix_v4bx(); }
2437 // Scan a span of THUMB code section for Cortex-A8 erratum.
2439 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 section_size_type, section_size_type,
2441 const unsigned char*, Arm_address);
2443 // Apply Cortex-A8 workaround to a branch.
2445 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 unsigned char*, Arm_address);
2449 // Make the PLT-generator object.
2450 Output_data_plt_arm<big_endian>*
2451 make_data_plt(Layout* layout, Output_data_space* got_plt)
2452 { return this->do_make_data_plt(layout, got_plt); }
2454 // Make an ELF object.
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<32, big_endian>& ehdr);
2460 do_make_elf_object(const std::string&, Input_file*, off_t,
2461 const elfcpp::Ehdr<32, !big_endian>&)
2462 { gold_unreachable(); }
2465 do_make_elf_object(const std::string&, Input_file*, off_t,
2466 const elfcpp::Ehdr<64, false>&)
2467 { gold_unreachable(); }
2470 do_make_elf_object(const std::string&, Input_file*, off_t,
2471 const elfcpp::Ehdr<64, true>&)
2472 { gold_unreachable(); }
2474 // Make an output section.
2476 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 elfcpp::Elf_Xword flags)
2478 { return new Arm_output_section<big_endian>(name, type, flags); }
2481 do_adjust_elf_header(unsigned char* view, int len);
2483 // We only need to generate stubs, and hence perform relaxation if we are
2484 // not doing relocatable linking.
2486 do_may_relax() const
2487 { return !parameters->options().relocatable(); }
2490 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2492 // Determine whether an object attribute tag takes an integer, a
2495 do_attribute_arg_type(int tag) const;
2497 // Reorder tags during output.
2499 do_attributes_order(int num) const;
2501 // This is called when the target is selected as the default.
2503 do_select_as_default_target()
2505 // No locking is required since there should only be one default target.
2506 // We cannot have both the big-endian and little-endian ARM targets
2508 gold_assert(arm_reloc_property_table == NULL);
2509 arm_reloc_property_table = new Arm_reloc_property_table();
2512 // Virtual function which is set to return true by a target if
2513 // it can use relocation types to determine if a function's
2514 // pointer is taken.
2516 do_can_check_for_function_pointers() const
2519 // Whether a section called SECTION_NAME may have function pointers to
2520 // sections not eligible for safe ICF folding.
2522 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2524 return (!is_prefix_of(".ARM.exidx", section_name)
2525 && !is_prefix_of(".ARM.extab", section_name)
2526 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2530 do_define_standard_symbols(Symbol_table*, Layout*);
2532 virtual Output_data_plt_arm<big_endian>*
2533 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2535 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2539 // The class which scans relocations.
2544 : issued_non_pic_error_(false)
2548 get_reference_flags(unsigned int r_type);
2551 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2552 Sized_relobj_file<32, big_endian>* object,
2553 unsigned int data_shndx,
2554 Output_section* output_section,
2555 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2556 const elfcpp::Sym<32, big_endian>& lsym,
2560 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2561 Sized_relobj_file<32, big_endian>* object,
2562 unsigned int data_shndx,
2563 Output_section* output_section,
2564 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2568 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2569 Sized_relobj_file<32, big_endian>* ,
2572 const elfcpp::Rel<32, big_endian>& ,
2574 const elfcpp::Sym<32, big_endian>&);
2577 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2578 Sized_relobj_file<32, big_endian>* ,
2581 const elfcpp::Rel<32, big_endian>& ,
2582 unsigned int , Symbol*);
2586 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2587 unsigned int r_type);
2590 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2591 unsigned int r_type, Symbol*);
2594 check_non_pic(Relobj*, unsigned int r_type);
2596 // Almost identical to Symbol::needs_plt_entry except that it also
2597 // handles STT_ARM_TFUNC.
2599 symbol_needs_plt_entry(const Symbol* sym)
2601 // An undefined symbol from an executable does not need a PLT entry.
2602 if (sym->is_undefined() && !parameters->options().shared())
2605 return (!parameters->doing_static_link()
2606 && (sym->type() == elfcpp::STT_FUNC
2607 || sym->type() == elfcpp::STT_ARM_TFUNC)
2608 && (sym->is_from_dynobj()
2609 || sym->is_undefined()
2610 || sym->is_preemptible()));
2614 possible_function_pointer_reloc(unsigned int r_type);
2616 // Whether we have issued an error about a non-PIC compilation.
2617 bool issued_non_pic_error_;
2620 // The class which implements relocation.
2630 // Return whether the static relocation needs to be applied.
2632 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2633 unsigned int r_type,
2635 Output_section* output_section);
2637 // Do a relocation. Return false if the caller should not issue
2638 // any warnings about this relocation.
2640 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641 Output_section*, size_t relnum,
2642 const elfcpp::Rel<32, big_endian>&,
2643 unsigned int r_type, const Sized_symbol<32>*,
2644 const Symbol_value<32>*,
2645 unsigned char*, Arm_address,
2648 // Return whether we want to pass flag NON_PIC_REF for this
2649 // reloc. This means the relocation type accesses a symbol not via
2652 reloc_is_non_pic(unsigned int r_type)
2656 // These relocation types reference GOT or PLT entries explicitly.
2657 case elfcpp::R_ARM_GOT_BREL:
2658 case elfcpp::R_ARM_GOT_ABS:
2659 case elfcpp::R_ARM_GOT_PREL:
2660 case elfcpp::R_ARM_GOT_BREL12:
2661 case elfcpp::R_ARM_PLT32_ABS:
2662 case elfcpp::R_ARM_TLS_GD32:
2663 case elfcpp::R_ARM_TLS_LDM32:
2664 case elfcpp::R_ARM_TLS_IE32:
2665 case elfcpp::R_ARM_TLS_IE12GP:
2667 // These relocate types may use PLT entries.
2668 case elfcpp::R_ARM_CALL:
2669 case elfcpp::R_ARM_THM_CALL:
2670 case elfcpp::R_ARM_JUMP24:
2671 case elfcpp::R_ARM_THM_JUMP24:
2672 case elfcpp::R_ARM_THM_JUMP19:
2673 case elfcpp::R_ARM_PLT32:
2674 case elfcpp::R_ARM_THM_XPC22:
2675 case elfcpp::R_ARM_PREL31:
2676 case elfcpp::R_ARM_SBREL31:
2685 // Do a TLS relocation.
2686 inline typename Arm_relocate_functions<big_endian>::Status
2687 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2688 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2689 const Sized_symbol<32>*, const Symbol_value<32>*,
2690 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2695 // A class which returns the size required for a relocation type,
2696 // used while scanning relocs during a relocatable link.
2697 class Relocatable_size_for_reloc
2701 get_size_for_reloc(unsigned int, Relobj*);
2704 // Adjust TLS relocation type based on the options and whether this
2705 // is a local symbol.
2706 static tls::Tls_optimization
2707 optimize_tls_reloc(bool is_final, int r_type);
2709 // Get the GOT section, creating it if necessary.
2710 Arm_output_data_got<big_endian>*
2711 got_section(Symbol_table*, Layout*);
2713 // Get the GOT PLT section.
2715 got_plt_section() const
2717 gold_assert(this->got_plt_ != NULL);
2718 return this->got_plt_;
2721 // Create a PLT entry for a global symbol.
2723 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2725 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2727 define_tls_base_symbol(Symbol_table*, Layout*);
2729 // Create a GOT entry for the TLS module index.
2731 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2732 Sized_relobj_file<32, big_endian>* object);
2734 // Get the PLT section.
2735 const Output_data_plt_arm<big_endian>*
2738 gold_assert(this->plt_ != NULL);
2742 // Get the dynamic reloc section, creating it if necessary.
2744 rel_dyn_section(Layout*);
2746 // Get the section to use for TLS_DESC relocations.
2748 rel_tls_desc_section(Layout*) const;
2750 // Return true if the symbol may need a COPY relocation.
2751 // References from an executable object to non-function symbols
2752 // defined in a dynamic object may need a COPY relocation.
2754 may_need_copy_reloc(Symbol* gsym)
2756 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757 && gsym->may_need_copy_reloc());
2760 // Add a potential copy relocation.
2762 copy_reloc(Symbol_table* symtab, Layout* layout,
2763 Sized_relobj_file<32, big_endian>* object,
2764 unsigned int shndx, Output_section* output_section,
2765 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2767 this->copy_relocs_.copy_reloc(symtab, layout,
2768 symtab->get_sized_symbol<32>(sym),
2769 object, shndx, output_section, reloc,
2770 this->rel_dyn_section(layout));
2773 // Whether two EABI versions are compatible.
2775 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2777 // Merge processor-specific flags from input object and those in the ELF
2778 // header of the output.
2780 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2782 // Get the secondary compatible architecture.
2784 get_secondary_compatible_arch(const Attributes_section_data*);
2786 // Set the secondary compatible architecture.
2788 set_secondary_compatible_arch(Attributes_section_data*, int);
2791 tag_cpu_arch_combine(const char*, int, int*, int, int);
2793 // Helper to print AEABI enum tag value.
2795 aeabi_enum_name(unsigned int);
2797 // Return string value for TAG_CPU_name.
2799 tag_cpu_name_value(unsigned int);
2801 // Query attributes object to see if integer divide instructions may be
2802 // present in an object.
2804 attributes_accept_div(int arch, int profile,
2805 const Object_attribute* div_attr);
2807 // Query attributes object to see if integer divide instructions are
2808 // forbidden to be in the object. This is not the inverse of
2809 // attributes_accept_div.
2811 attributes_forbid_div(const Object_attribute* div_attr);
2813 // Merge object attributes from input object and those in the output.
2815 merge_object_attributes(const char*, const Attributes_section_data*);
2817 // Helper to get an AEABI object attribute
2819 get_aeabi_object_attribute(int tag) const
2821 Attributes_section_data* pasd = this->attributes_section_data_;
2822 gold_assert(pasd != NULL);
2823 Object_attribute* attr =
2824 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2825 gold_assert(attr != NULL);
2830 // Methods to support stub-generations.
2833 // Group input sections for stub generation.
2835 group_sections(Layout*, section_size_type, bool, const Task*);
2837 // Scan a relocation for stub generation.
2839 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2840 const Sized_symbol<32>*, unsigned int,
2841 const Symbol_value<32>*,
2842 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2844 // Scan a relocation section for stub.
2845 template<int sh_type>
2847 scan_reloc_section_for_stubs(
2848 const Relocate_info<32, big_endian>* relinfo,
2849 const unsigned char* prelocs,
2851 Output_section* output_section,
2852 bool needs_special_offset_handling,
2853 const unsigned char* view,
2854 elfcpp::Elf_types<32>::Elf_Addr view_address,
2857 // Fix .ARM.exidx section coverage.
2859 fix_exidx_coverage(Layout*, const Input_objects*,
2860 Arm_output_section<big_endian>*, Symbol_table*,
2863 // Functors for STL set.
2864 struct output_section_address_less_than
2867 operator()(const Output_section* s1, const Output_section* s2) const
2868 { return s1->address() < s2->address(); }
2871 // Information about this specific target which we pass to the
2872 // general Target structure.
2873 static const Target::Target_info arm_info;
2875 // The types of GOT entries needed for this platform.
2876 // These values are exposed to the ABI in an incremental link.
2877 // Do not renumber existing values without changing the version
2878 // number of the .gnu_incremental_inputs section.
2881 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2882 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2883 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2884 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2885 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2888 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2890 // Map input section to Arm_input_section.
2891 typedef Unordered_map<Section_id,
2892 Arm_input_section<big_endian>*,
2894 Arm_input_section_map;
2896 // Map output addresses to relocs for Cortex-A8 erratum.
2897 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2898 Cortex_a8_relocs_info;
2901 Arm_output_data_got<big_endian>* got_;
2903 Output_data_plt_arm<big_endian>* plt_;
2904 // The GOT PLT section.
2905 Output_data_space* got_plt_;
2906 // The dynamic reloc section.
2907 Reloc_section* rel_dyn_;
2908 // Relocs saved to avoid a COPY reloc.
2909 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2910 // Space for variables copied with a COPY reloc.
2911 Output_data_space* dynbss_;
2912 // Offset of the GOT entry for the TLS module index.
2913 unsigned int got_mod_index_offset_;
2914 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2915 bool tls_base_symbol_defined_;
2916 // Vector of Stub_tables created.
2917 Stub_table_list stub_tables_;
2919 const Stub_factory &stub_factory_;
2920 // Whether we force PIC branch veneers.
2921 bool should_force_pic_veneer_;
2922 // Map for locating Arm_input_sections.
2923 Arm_input_section_map arm_input_section_map_;
2924 // Attributes section data in output.
2925 Attributes_section_data* attributes_section_data_;
2926 // Whether we want to fix code for Cortex-A8 erratum.
2927 bool fix_cortex_a8_;
2928 // Map addresses to relocs for Cortex-A8 erratum.
2929 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2932 template<bool big_endian>
2933 const Target::Target_info Target_arm<big_endian>::arm_info =
2936 big_endian, // is_big_endian
2937 elfcpp::EM_ARM, // machine_code
2938 false, // has_make_symbol
2939 false, // has_resolve
2940 false, // has_code_fill
2941 true, // is_default_stack_executable
2942 false, // can_icf_inline_merge_sections
2944 "/usr/lib/libc.so.1", // dynamic_linker
2945 0x8000, // default_text_segment_address
2946 0x1000, // abi_pagesize (overridable by -z max-page-size)
2947 0x1000, // common_pagesize (overridable by -z common-page-size)
2948 false, // isolate_execinstr
2950 elfcpp::SHN_UNDEF, // small_common_shndx
2951 elfcpp::SHN_UNDEF, // large_common_shndx
2952 0, // small_common_section_flags
2953 0, // large_common_section_flags
2954 ".ARM.attributes", // attributes_section
2955 "aeabi" // attributes_vendor
2958 // Arm relocate functions class
2961 template<bool big_endian>
2962 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2967 STATUS_OKAY, // No error during relocation.
2968 STATUS_OVERFLOW, // Relocation overflow.
2969 STATUS_BAD_RELOC // Relocation cannot be applied.
2973 typedef Relocate_functions<32, big_endian> Base;
2974 typedef Arm_relocate_functions<big_endian> This;
2976 // Encoding of imm16 argument for movt and movw ARM instructions
2979 // imm16 := imm4 | imm12
2981 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2982 // +-------+---------------+-------+-------+-----------------------+
2983 // | | |imm4 | |imm12 |
2984 // +-------+---------------+-------+-------+-----------------------+
2986 // Extract the relocation addend from VAL based on the ARM
2987 // instruction encoding described above.
2988 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2989 extract_arm_movw_movt_addend(
2990 typename elfcpp::Swap<32, big_endian>::Valtype val)
2992 // According to the Elf ABI for ARM Architecture the immediate
2993 // field is sign-extended to form the addend.
2994 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2997 // Insert X into VAL based on the ARM instruction encoding described
2999 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3000 insert_val_arm_movw_movt(
3001 typename elfcpp::Swap<32, big_endian>::Valtype val,
3002 typename elfcpp::Swap<32, big_endian>::Valtype x)
3006 val |= (x & 0xf000) << 4;
3010 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3013 // imm16 := imm4 | i | imm3 | imm8
3015 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3016 // +---------+-+-----------+-------++-+-----+-------+---------------+
3017 // | |i| |imm4 || |imm3 | |imm8 |
3018 // +---------+-+-----------+-------++-+-----+-------+---------------+
3020 // Extract the relocation addend from VAL based on the Thumb2
3021 // instruction encoding described above.
3022 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3023 extract_thumb_movw_movt_addend(
3024 typename elfcpp::Swap<32, big_endian>::Valtype val)
3026 // According to the Elf ABI for ARM Architecture the immediate
3027 // field is sign-extended to form the addend.
3028 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3029 | ((val >> 15) & 0x0800)
3030 | ((val >> 4) & 0x0700)
3034 // Insert X into VAL based on the Thumb2 instruction encoding
3036 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3037 insert_val_thumb_movw_movt(
3038 typename elfcpp::Swap<32, big_endian>::Valtype val,
3039 typename elfcpp::Swap<32, big_endian>::Valtype x)
3042 val |= (x & 0xf000) << 4;
3043 val |= (x & 0x0800) << 15;
3044 val |= (x & 0x0700) << 4;
3045 val |= (x & 0x00ff);
3049 // Calculate the smallest constant Kn for the specified residual.
3050 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3052 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3058 // Determine the most significant bit in the residual and
3059 // align the resulting value to a 2-bit boundary.
3060 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3062 // The desired shift is now (msb - 6), or zero, whichever
3064 return (((msb - 6) < 0) ? 0 : (msb - 6));
3067 // Calculate the final residual for the specified group index.
3068 // If the passed group index is less than zero, the method will return
3069 // the value of the specified residual without any change.
3070 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3071 static typename elfcpp::Swap<32, big_endian>::Valtype
3072 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3075 for (int n = 0; n <= group; n++)
3077 // Calculate which part of the value to mask.
3078 uint32_t shift = calc_grp_kn(residual);
3079 // Calculate the residual for the next time around.
3080 residual &= ~(residual & (0xff << shift));
3086 // Calculate the value of Gn for the specified group index.
3087 // We return it in the form of an encoded constant-and-rotation.
3088 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3089 static typename elfcpp::Swap<32, big_endian>::Valtype
3090 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3093 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3096 for (int n = 0; n <= group; n++)
3098 // Calculate which part of the value to mask.
3099 shift = calc_grp_kn(residual);
3100 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3101 gn = residual & (0xff << shift);
3102 // Calculate the residual for the next time around.
3105 // Return Gn in the form of an encoded constant-and-rotation.
3106 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3110 // Handle ARM long branches.
3111 static typename This::Status
3112 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3113 unsigned char*, const Sized_symbol<32>*,
3114 const Arm_relobj<big_endian>*, unsigned int,
3115 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3117 // Handle THUMB long branches.
3118 static typename This::Status
3119 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3120 unsigned char*, const Sized_symbol<32>*,
3121 const Arm_relobj<big_endian>*, unsigned int,
3122 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3125 // Return the branch offset of a 32-bit THUMB branch.
3126 static inline int32_t
3127 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3129 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3130 // involving the J1 and J2 bits.
3131 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3132 uint32_t upper = upper_insn & 0x3ffU;
3133 uint32_t lower = lower_insn & 0x7ffU;
3134 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3135 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3136 uint32_t i1 = j1 ^ s ? 0 : 1;
3137 uint32_t i2 = j2 ^ s ? 0 : 1;
3139 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3140 | (upper << 12) | (lower << 1));
3143 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3144 // UPPER_INSN is the original upper instruction of the branch. Caller is
3145 // responsible for overflow checking and BLX offset adjustment.
3146 static inline uint16_t
3147 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3149 uint32_t s = offset < 0 ? 1 : 0;
3150 uint32_t bits = static_cast<uint32_t>(offset);
3151 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3154 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3155 // LOWER_INSN is the original lower instruction of the branch. Caller is
3156 // responsible for overflow checking and BLX offset adjustment.
3157 static inline uint16_t
3158 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3160 uint32_t s = offset < 0 ? 1 : 0;
3161 uint32_t bits = static_cast<uint32_t>(offset);
3162 return ((lower_insn & ~0x2fffU)
3163 | ((((bits >> 23) & 1) ^ !s) << 13)
3164 | ((((bits >> 22) & 1) ^ !s) << 11)
3165 | ((bits >> 1) & 0x7ffU));
3168 // Return the branch offset of a 32-bit THUMB conditional branch.
3169 static inline int32_t
3170 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3172 uint32_t s = (upper_insn & 0x0400U) >> 10;
3173 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3174 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3175 uint32_t lower = (lower_insn & 0x07ffU);
3176 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3178 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3181 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3182 // instruction. UPPER_INSN is the original upper instruction of the branch.
3183 // Caller is responsible for overflow checking.
3184 static inline uint16_t
3185 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3187 uint32_t s = offset < 0 ? 1 : 0;
3188 uint32_t bits = static_cast<uint32_t>(offset);
3189 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3192 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3193 // instruction. LOWER_INSN is the original lower instruction of the branch.
3194 // The caller is responsible for overflow checking.
3195 static inline uint16_t
3196 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3198 uint32_t bits = static_cast<uint32_t>(offset);
3199 uint32_t j2 = (bits & 0x00080000U) >> 19;
3200 uint32_t j1 = (bits & 0x00040000U) >> 18;
3201 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3203 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3206 // R_ARM_ABS8: S + A
3207 static inline typename This::Status
3208 abs8(unsigned char* view,
3209 const Sized_relobj_file<32, big_endian>* object,
3210 const Symbol_value<32>* psymval)
3212 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3213 Valtype* wv = reinterpret_cast<Valtype*>(view);
3214 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3215 int32_t addend = Bits<8>::sign_extend32(val);
3216 Arm_address x = psymval->value(object, addend);
3217 val = Bits<32>::bit_select32(val, x, 0xffU);
3218 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3220 // R_ARM_ABS8 permits signed or unsigned results.
3221 return (Bits<8>::has_signed_unsigned_overflow32(x)
3222 ? This::STATUS_OVERFLOW
3223 : This::STATUS_OKAY);
3226 // R_ARM_THM_ABS5: S + A
3227 static inline typename This::Status
3228 thm_abs5(unsigned char* view,
3229 const Sized_relobj_file<32, big_endian>* object,
3230 const Symbol_value<32>* psymval)
3232 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3233 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3234 Valtype* wv = reinterpret_cast<Valtype*>(view);
3235 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3236 Reltype addend = (val & 0x7e0U) >> 6;
3237 Reltype x = psymval->value(object, addend);
3238 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3239 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3240 return (Bits<5>::has_overflow32(x)
3241 ? This::STATUS_OVERFLOW
3242 : This::STATUS_OKAY);
3245 // R_ARM_ABS12: S + A
3246 static inline typename This::Status
3247 abs12(unsigned char* view,
3248 const Sized_relobj_file<32, big_endian>* object,
3249 const Symbol_value<32>* psymval)
3251 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3252 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3253 Valtype* wv = reinterpret_cast<Valtype*>(view);
3254 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3255 Reltype addend = val & 0x0fffU;
3256 Reltype x = psymval->value(object, addend);
3257 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3258 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3259 return (Bits<12>::has_overflow32(x)
3260 ? This::STATUS_OVERFLOW
3261 : This::STATUS_OKAY);
3264 // R_ARM_ABS16: S + A
3265 static inline typename This::Status
3266 abs16(unsigned char* view,
3267 const Sized_relobj_file<32, big_endian>* object,
3268 const Symbol_value<32>* psymval)
3270 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3271 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3272 int32_t addend = Bits<16>::sign_extend32(val);
3273 Arm_address x = psymval->value(object, addend);
3274 val = Bits<32>::bit_select32(val, x, 0xffffU);
3275 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3277 // R_ARM_ABS16 permits signed or unsigned results.
3278 return (Bits<16>::has_signed_unsigned_overflow32(x)
3279 ? This::STATUS_OVERFLOW
3280 : This::STATUS_OKAY);
3283 // R_ARM_ABS32: (S + A) | T
3284 static inline typename This::Status
3285 abs32(unsigned char* view,
3286 const Sized_relobj_file<32, big_endian>* object,
3287 const Symbol_value<32>* psymval,
3288 Arm_address thumb_bit)
3290 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3291 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3292 Valtype x = psymval->value(object, addend) | thumb_bit;
3293 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3294 return This::STATUS_OKAY;
3297 // R_ARM_REL32: (S + A) | T - P
3298 static inline typename This::Status
3299 rel32(unsigned char* view,
3300 const Sized_relobj_file<32, big_endian>* object,
3301 const Symbol_value<32>* psymval,
3302 Arm_address address,
3303 Arm_address thumb_bit)
3305 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3306 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3307 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3308 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3309 return This::STATUS_OKAY;
3312 // R_ARM_THM_JUMP24: (S + A) | T - P
3313 static typename This::Status
3314 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3315 const Symbol_value<32>* psymval, Arm_address address,
3316 Arm_address thumb_bit);
3318 // R_ARM_THM_JUMP6: S + A – P
3319 static inline typename This::Status
3320 thm_jump6(unsigned char* view,
3321 const Sized_relobj_file<32, big_endian>* object,
3322 const Symbol_value<32>* psymval,
3323 Arm_address address)
3325 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3326 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3327 Valtype* wv = reinterpret_cast<Valtype*>(view);
3328 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3329 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3330 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3331 Reltype x = (psymval->value(object, addend) - address);
3332 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3333 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3334 // CZB does only forward jumps.
3335 return ((x > 0x007e)
3336 ? This::STATUS_OVERFLOW
3337 : This::STATUS_OKAY);
3340 // R_ARM_THM_JUMP8: S + A – P
3341 static inline typename This::Status
3342 thm_jump8(unsigned char* view,
3343 const Sized_relobj_file<32, big_endian>* object,
3344 const Symbol_value<32>* psymval,
3345 Arm_address address)
3347 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3348 Valtype* wv = reinterpret_cast<Valtype*>(view);
3349 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3350 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3351 int32_t x = (psymval->value(object, addend) - address);
3352 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3353 | ((x & 0x01fe) >> 1)));
3354 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3355 return (Bits<9>::has_overflow32(x)
3356 ? This::STATUS_OVERFLOW
3357 : This::STATUS_OKAY);
3360 // R_ARM_THM_JUMP11: S + A – P
3361 static inline typename This::Status
3362 thm_jump11(unsigned char* view,
3363 const Sized_relobj_file<32, big_endian>* object,
3364 const Symbol_value<32>* psymval,
3365 Arm_address address)
3367 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3368 Valtype* wv = reinterpret_cast<Valtype*>(view);
3369 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3370 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3371 int32_t x = (psymval->value(object, addend) - address);
3372 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3373 | ((x & 0x0ffe) >> 1)));
3374 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3375 return (Bits<12>::has_overflow32(x)
3376 ? This::STATUS_OVERFLOW
3377 : This::STATUS_OKAY);
3380 // R_ARM_BASE_PREL: B(S) + A - P
3381 static inline typename This::Status
3382 base_prel(unsigned char* view,
3384 Arm_address address)
3386 Base::rel32(view, origin - address);
3390 // R_ARM_BASE_ABS: B(S) + A
3391 static inline typename This::Status
3392 base_abs(unsigned char* view,
3395 Base::rel32(view, origin);
3399 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3400 static inline typename This::Status
3401 got_brel(unsigned char* view,
3402 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3404 Base::rel32(view, got_offset);
3405 return This::STATUS_OKAY;
3408 // R_ARM_GOT_PREL: GOT(S) + A - P
3409 static inline typename This::Status
3410 got_prel(unsigned char* view,
3411 Arm_address got_entry,
3412 Arm_address address)
3414 Base::rel32(view, got_entry - address);
3415 return This::STATUS_OKAY;
3418 // R_ARM_PREL: (S + A) | T - P
3419 static inline typename This::Status
3420 prel31(unsigned char* view,
3421 const Sized_relobj_file<32, big_endian>* object,
3422 const Symbol_value<32>* psymval,
3423 Arm_address address,
3424 Arm_address thumb_bit)
3426 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3427 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3428 Valtype addend = Bits<31>::sign_extend32(val);
3429 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3430 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3431 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3432 return (Bits<31>::has_overflow32(x)
3433 ? This::STATUS_OVERFLOW
3434 : This::STATUS_OKAY);
3437 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3438 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3439 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3440 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3441 static inline typename This::Status
3442 movw(unsigned char* view,
3443 const Sized_relobj_file<32, big_endian>* object,
3444 const Symbol_value<32>* psymval,
3445 Arm_address relative_address_base,
3446 Arm_address thumb_bit,
3447 bool check_overflow)
3449 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3450 Valtype* wv = reinterpret_cast<Valtype*>(view);
3451 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3452 Valtype addend = This::extract_arm_movw_movt_addend(val);
3453 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3454 - relative_address_base);
3455 val = This::insert_val_arm_movw_movt(val, x);
3456 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3457 return ((check_overflow && Bits<16>::has_overflow32(x))
3458 ? This::STATUS_OVERFLOW
3459 : This::STATUS_OKAY);
3462 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3463 // R_ARM_MOVT_PREL: S + A - P
3464 // R_ARM_MOVT_BREL: S + A - B(S)
3465 static inline typename This::Status
3466 movt(unsigned char* view,
3467 const Sized_relobj_file<32, big_endian>* object,
3468 const Symbol_value<32>* psymval,
3469 Arm_address relative_address_base)
3471 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3472 Valtype* wv = reinterpret_cast<Valtype*>(view);
3473 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3474 Valtype addend = This::extract_arm_movw_movt_addend(val);
3475 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3476 val = This::insert_val_arm_movw_movt(val, x);
3477 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3478 // FIXME: IHI0044D says that we should check for overflow.
3479 return This::STATUS_OKAY;
3482 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3483 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3484 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3485 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3486 static inline typename This::Status
3487 thm_movw(unsigned char* view,
3488 const Sized_relobj_file<32, big_endian>* object,
3489 const Symbol_value<32>* psymval,
3490 Arm_address relative_address_base,
3491 Arm_address thumb_bit,
3492 bool check_overflow)
3494 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3495 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3496 Valtype* wv = reinterpret_cast<Valtype*>(view);
3497 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3498 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3499 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3501 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3502 val = This::insert_val_thumb_movw_movt(val, x);
3503 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3504 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3505 return ((check_overflow && Bits<16>::has_overflow32(x))
3506 ? This::STATUS_OVERFLOW
3507 : This::STATUS_OKAY);
3510 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3511 // R_ARM_THM_MOVT_PREL: S + A - P
3512 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3513 static inline typename This::Status
3514 thm_movt(unsigned char* view,
3515 const Sized_relobj_file<32, big_endian>* object,
3516 const Symbol_value<32>* psymval,
3517 Arm_address relative_address_base)
3519 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3520 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3521 Valtype* wv = reinterpret_cast<Valtype*>(view);
3522 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3523 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3524 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3525 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3526 val = This::insert_val_thumb_movw_movt(val, x);
3527 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3528 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3529 return This::STATUS_OKAY;
3532 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3533 static inline typename This::Status
3534 thm_alu11(unsigned char* view,
3535 const Sized_relobj_file<32, big_endian>* object,
3536 const Symbol_value<32>* psymval,
3537 Arm_address address,
3538 Arm_address thumb_bit)
3540 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3541 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3542 Valtype* wv = reinterpret_cast<Valtype*>(view);
3543 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3544 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3546 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3547 // -----------------------------------------------------------------------
3548 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3549 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3550 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3551 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3552 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3553 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3555 // Determine a sign for the addend.
3556 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3557 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3558 // Thumb2 addend encoding:
3559 // imm12 := i | imm3 | imm8
3560 int32_t addend = (insn & 0xff)
3561 | ((insn & 0x00007000) >> 4)
3562 | ((insn & 0x04000000) >> 15);
3563 // Apply a sign to the added.
3566 int32_t x = (psymval->value(object, addend) | thumb_bit)
3567 - (address & 0xfffffffc);
3568 Reltype val = abs(x);
3569 // Mask out the value and a distinct part of the ADD/SUB opcode
3570 // (bits 7:5 of opword).
3571 insn = (insn & 0xfb0f8f00)
3573 | ((val & 0x700) << 4)
3574 | ((val & 0x800) << 15);
3575 // Set the opcode according to whether the value to go in the
3576 // place is negative.
3580 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3581 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3582 return ((val > 0xfff) ?
3583 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3586 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3587 static inline typename This::Status
3588 thm_pc8(unsigned char* view,
3589 const Sized_relobj_file<32, big_endian>* object,
3590 const Symbol_value<32>* psymval,
3591 Arm_address address)
3593 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3594 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3595 Valtype* wv = reinterpret_cast<Valtype*>(view);
3596 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3597 Reltype addend = ((insn & 0x00ff) << 2);
3598 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3599 Reltype val = abs(x);
3600 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3602 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3603 return ((val > 0x03fc)
3604 ? This::STATUS_OVERFLOW
3605 : This::STATUS_OKAY);
3608 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3609 static inline typename This::Status
3610 thm_pc12(unsigned char* view,
3611 const Sized_relobj_file<32, big_endian>* object,
3612 const Symbol_value<32>* psymval,
3613 Arm_address address)
3615 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3616 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3617 Valtype* wv = reinterpret_cast<Valtype*>(view);
3618 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3619 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3620 // Determine a sign for the addend (positive if the U bit is 1).
3621 const int sign = (insn & 0x00800000) ? 1 : -1;
3622 int32_t addend = (insn & 0xfff);
3623 // Apply a sign to the added.
3626 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3627 Reltype val = abs(x);
3628 // Mask out and apply the value and the U bit.
3629 insn = (insn & 0xff7ff000) | (val & 0xfff);
3630 // Set the U bit according to whether the value to go in the
3631 // place is positive.
3635 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3636 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3637 return ((val > 0xfff) ?
3638 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3642 static inline typename This::Status
3643 v4bx(const Relocate_info<32, big_endian>* relinfo,
3644 unsigned char* view,
3645 const Arm_relobj<big_endian>* object,
3646 const Arm_address address,
3647 const bool is_interworking)
3650 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3651 Valtype* wv = reinterpret_cast<Valtype*>(view);
3652 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3654 // Ensure that we have a BX instruction.
3655 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3656 const uint32_t reg = (val & 0xf);
3657 if (is_interworking && reg != 0xf)
3659 Stub_table<big_endian>* stub_table =
3660 object->stub_table(relinfo->data_shndx);
3661 gold_assert(stub_table != NULL);
3663 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3664 gold_assert(stub != NULL);
3666 int32_t veneer_address =
3667 stub_table->address() + stub->offset() - 8 - address;
3668 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3669 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3670 // Replace with a branch to veneer (B <addr>)
3671 val = (val & 0xf0000000) | 0x0a000000
3672 | ((veneer_address >> 2) & 0x00ffffff);
3676 // Preserve Rm (lowest four bits) and the condition code
3677 // (highest four bits). Other bits encode MOV PC,Rm.
3678 val = (val & 0xf000000f) | 0x01a0f000;
3680 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3681 return This::STATUS_OKAY;
3684 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3685 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3686 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3687 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3688 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3689 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3690 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3691 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3692 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3693 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3694 static inline typename This::Status
3695 arm_grp_alu(unsigned char* view,
3696 const Sized_relobj_file<32, big_endian>* object,
3697 const Symbol_value<32>* psymval,
3699 Arm_address address,
3700 Arm_address thumb_bit,
3701 bool check_overflow)
3703 gold_assert(group >= 0 && group < 3);
3704 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3705 Valtype* wv = reinterpret_cast<Valtype*>(view);
3706 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3708 // ALU group relocations are allowed only for the ADD/SUB instructions.
3709 // (0x00800000 - ADD, 0x00400000 - SUB)
3710 const Valtype opcode = insn & 0x01e00000;
3711 if (opcode != 0x00800000 && opcode != 0x00400000)
3712 return This::STATUS_BAD_RELOC;
3714 // Determine a sign for the addend.
3715 const int sign = (opcode == 0x00800000) ? 1 : -1;
3716 // shifter = rotate_imm * 2
3717 const uint32_t shifter = (insn & 0xf00) >> 7;
3718 // Initial addend value.
3719 int32_t addend = insn & 0xff;
3720 // Rotate addend right by shifter.
3721 addend = (addend >> shifter) | (addend << (32 - shifter));
3722 // Apply a sign to the added.
3725 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3726 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3727 // Check for overflow if required
3729 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3730 return This::STATUS_OVERFLOW;
3732 // Mask out the value and the ADD/SUB part of the opcode; take care
3733 // not to destroy the S bit.
3735 // Set the opcode according to whether the value to go in the
3736 // place is negative.
3737 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3738 // Encode the offset (encoded Gn).
3741 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3742 return This::STATUS_OKAY;
3745 // R_ARM_LDR_PC_G0: S + A - P
3746 // R_ARM_LDR_PC_G1: S + A - P
3747 // R_ARM_LDR_PC_G2: S + A - P
3748 // R_ARM_LDR_SB_G0: S + A - B(S)
3749 // R_ARM_LDR_SB_G1: S + A - B(S)
3750 // R_ARM_LDR_SB_G2: S + A - B(S)
3751 static inline typename This::Status
3752 arm_grp_ldr(unsigned char* view,
3753 const Sized_relobj_file<32, big_endian>* object,
3754 const Symbol_value<32>* psymval,
3756 Arm_address address)
3758 gold_assert(group >= 0 && group < 3);
3759 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3760 Valtype* wv = reinterpret_cast<Valtype*>(view);
3761 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3763 const int sign = (insn & 0x00800000) ? 1 : -1;
3764 int32_t addend = (insn & 0xfff) * sign;
3765 int32_t x = (psymval->value(object, addend) - address);
3766 // Calculate the relevant G(n-1) value to obtain this stage residual.
3768 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3769 if (residual >= 0x1000)
3770 return This::STATUS_OVERFLOW;
3772 // Mask out the value and U bit.
3774 // Set the U bit for non-negative values.
3779 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3780 return This::STATUS_OKAY;
3783 // R_ARM_LDRS_PC_G0: S + A - P
3784 // R_ARM_LDRS_PC_G1: S + A - P
3785 // R_ARM_LDRS_PC_G2: S + A - P
3786 // R_ARM_LDRS_SB_G0: S + A - B(S)
3787 // R_ARM_LDRS_SB_G1: S + A - B(S)
3788 // R_ARM_LDRS_SB_G2: S + A - B(S)
3789 static inline typename This::Status
3790 arm_grp_ldrs(unsigned char* view,
3791 const Sized_relobj_file<32, big_endian>* object,
3792 const Symbol_value<32>* psymval,
3794 Arm_address address)
3796 gold_assert(group >= 0 && group < 3);
3797 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3798 Valtype* wv = reinterpret_cast<Valtype*>(view);
3799 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3801 const int sign = (insn & 0x00800000) ? 1 : -1;
3802 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3803 int32_t x = (psymval->value(object, addend) - address);
3804 // Calculate the relevant G(n-1) value to obtain this stage residual.
3806 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3807 if (residual >= 0x100)
3808 return This::STATUS_OVERFLOW;
3810 // Mask out the value and U bit.
3812 // Set the U bit for non-negative values.
3815 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3817 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3818 return This::STATUS_OKAY;
3821 // R_ARM_LDC_PC_G0: S + A - P
3822 // R_ARM_LDC_PC_G1: S + A - P
3823 // R_ARM_LDC_PC_G2: S + A - P
3824 // R_ARM_LDC_SB_G0: S + A - B(S)
3825 // R_ARM_LDC_SB_G1: S + A - B(S)
3826 // R_ARM_LDC_SB_G2: S + A - B(S)
3827 static inline typename This::Status
3828 arm_grp_ldc(unsigned char* view,
3829 const Sized_relobj_file<32, big_endian>* object,
3830 const Symbol_value<32>* psymval,
3832 Arm_address address)
3834 gold_assert(group >= 0 && group < 3);
3835 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3836 Valtype* wv = reinterpret_cast<Valtype*>(view);
3837 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3839 const int sign = (insn & 0x00800000) ? 1 : -1;
3840 int32_t addend = ((insn & 0xff) << 2) * sign;
3841 int32_t x = (psymval->value(object, addend) - address);
3842 // Calculate the relevant G(n-1) value to obtain this stage residual.
3844 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3845 if ((residual & 0x3) != 0 || residual >= 0x400)
3846 return This::STATUS_OVERFLOW;
3848 // Mask out the value and U bit.
3850 // Set the U bit for non-negative values.
3853 insn |= (residual >> 2);
3855 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3856 return This::STATUS_OKAY;
3860 // Relocate ARM long branches. This handles relocation types
3861 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3862 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3863 // undefined and we do not use PLT in this relocation. In such a case,
3864 // the branch is converted into an NOP.
3866 template<bool big_endian>
3867 typename Arm_relocate_functions<big_endian>::Status
3868 Arm_relocate_functions<big_endian>::arm_branch_common(
3869 unsigned int r_type,
3870 const Relocate_info<32, big_endian>* relinfo,
3871 unsigned char* view,
3872 const Sized_symbol<32>* gsym,
3873 const Arm_relobj<big_endian>* object,
3875 const Symbol_value<32>* psymval,
3876 Arm_address address,
3877 Arm_address thumb_bit,
3878 bool is_weakly_undefined_without_plt)
3880 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3881 Valtype* wv = reinterpret_cast<Valtype*>(view);
3882 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3884 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3885 && ((val & 0x0f000000UL) == 0x0a000000UL);
3886 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3887 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3888 && ((val & 0x0f000000UL) == 0x0b000000UL);
3889 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3890 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3892 // Check that the instruction is valid.
3893 if (r_type == elfcpp::R_ARM_CALL)
3895 if (!insn_is_uncond_bl && !insn_is_blx)
3896 return This::STATUS_BAD_RELOC;
3898 else if (r_type == elfcpp::R_ARM_JUMP24)
3900 if (!insn_is_b && !insn_is_cond_bl)
3901 return This::STATUS_BAD_RELOC;
3903 else if (r_type == elfcpp::R_ARM_PLT32)
3905 if (!insn_is_any_branch)
3906 return This::STATUS_BAD_RELOC;
3908 else if (r_type == elfcpp::R_ARM_XPC25)
3910 // FIXME: AAELF document IH0044C does not say much about it other
3911 // than it being obsolete.
3912 if (!insn_is_any_branch)
3913 return This::STATUS_BAD_RELOC;
3918 // A branch to an undefined weak symbol is turned into a jump to
3919 // the next instruction unless a PLT entry will be created.
3920 // Do the same for local undefined symbols.
3921 // The jump to the next instruction is optimized as a NOP depending
3922 // on the architecture.
3923 const Target_arm<big_endian>* arm_target =
3924 Target_arm<big_endian>::default_target();
3925 if (is_weakly_undefined_without_plt)
3927 gold_assert(!parameters->options().relocatable());
3928 Valtype cond = val & 0xf0000000U;
3929 if (arm_target->may_use_arm_nop())
3930 val = cond | 0x0320f000;
3932 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3933 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3934 return This::STATUS_OKAY;
3937 Valtype addend = Bits<26>::sign_extend32(val << 2);
3938 Valtype branch_target = psymval->value(object, addend);
3939 int32_t branch_offset = branch_target - address;
3941 // We need a stub if the branch offset is too large or if we need
3943 bool may_use_blx = arm_target->may_use_v5t_interworking();
3944 Reloc_stub* stub = NULL;
3946 if (!parameters->options().relocatable()
3947 && (Bits<26>::has_overflow32(branch_offset)
3948 || ((thumb_bit != 0)
3949 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3951 Valtype unadjusted_branch_target = psymval->value(object, 0);
3953 Stub_type stub_type =
3954 Reloc_stub::stub_type_for_reloc(r_type, address,
3955 unadjusted_branch_target,
3957 if (stub_type != arm_stub_none)
3959 Stub_table<big_endian>* stub_table =
3960 object->stub_table(relinfo->data_shndx);
3961 gold_assert(stub_table != NULL);
3963 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3964 stub = stub_table->find_reloc_stub(stub_key);
3965 gold_assert(stub != NULL);
3966 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3967 branch_target = stub_table->address() + stub->offset() + addend;
3968 branch_offset = branch_target - address;
3969 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3973 // At this point, if we still need to switch mode, the instruction
3974 // must either be a BLX or a BL that can be converted to a BLX.
3978 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3979 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3982 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3983 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3984 return (Bits<26>::has_overflow32(branch_offset)
3985 ? This::STATUS_OVERFLOW
3986 : This::STATUS_OKAY);
3989 // Relocate THUMB long branches. This handles relocation types
3990 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3991 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3992 // undefined and we do not use PLT in this relocation. In such a case,
3993 // the branch is converted into an NOP.
3995 template<bool big_endian>
3996 typename Arm_relocate_functions<big_endian>::Status
3997 Arm_relocate_functions<big_endian>::thumb_branch_common(
3998 unsigned int r_type,
3999 const Relocate_info<32, big_endian>* relinfo,
4000 unsigned char* view,
4001 const Sized_symbol<32>* gsym,
4002 const Arm_relobj<big_endian>* object,
4004 const Symbol_value<32>* psymval,
4005 Arm_address address,
4006 Arm_address thumb_bit,
4007 bool is_weakly_undefined_without_plt)
4009 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4010 Valtype* wv = reinterpret_cast<Valtype*>(view);
4011 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4012 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4014 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4016 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4017 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4019 // Check that the instruction is valid.
4020 if (r_type == elfcpp::R_ARM_THM_CALL)
4022 if (!is_bl_insn && !is_blx_insn)
4023 return This::STATUS_BAD_RELOC;
4025 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4027 // This cannot be a BLX.
4029 return This::STATUS_BAD_RELOC;
4031 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4033 // Check for Thumb to Thumb call.
4035 return This::STATUS_BAD_RELOC;
4038 gold_warning(_("%s: Thumb BLX instruction targets "
4039 "thumb function '%s'."),
4040 object->name().c_str(),
4041 (gsym ? gsym->name() : "(local)"));
4042 // Convert BLX to BL.
4043 lower_insn |= 0x1000U;
4049 // A branch to an undefined weak symbol is turned into a jump to
4050 // the next instruction unless a PLT entry will be created.
4051 // The jump to the next instruction is optimized as a NOP.W for
4052 // Thumb-2 enabled architectures.
4053 const Target_arm<big_endian>* arm_target =
4054 Target_arm<big_endian>::default_target();
4055 if (is_weakly_undefined_without_plt)
4057 gold_assert(!parameters->options().relocatable());
4058 if (arm_target->may_use_thumb2_nop())
4060 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4061 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4065 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4066 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4068 return This::STATUS_OKAY;
4071 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4072 Arm_address branch_target = psymval->value(object, addend);
4074 // For BLX, bit 1 of target address comes from bit 1 of base address.
4075 bool may_use_blx = arm_target->may_use_v5t_interworking();
4076 if (thumb_bit == 0 && may_use_blx)
4077 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4079 int32_t branch_offset = branch_target - address;
4081 // We need a stub if the branch offset is too large or if we need
4083 bool thumb2 = arm_target->using_thumb2();
4084 if (!parameters->options().relocatable()
4085 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4086 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4087 || ((thumb_bit == 0)
4088 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4089 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4091 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4093 Stub_type stub_type =
4094 Reloc_stub::stub_type_for_reloc(r_type, address,
4095 unadjusted_branch_target,
4098 if (stub_type != arm_stub_none)
4100 Stub_table<big_endian>* stub_table =
4101 object->stub_table(relinfo->data_shndx);
4102 gold_assert(stub_table != NULL);
4104 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4105 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4106 gold_assert(stub != NULL);
4107 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4108 branch_target = stub_table->address() + stub->offset() + addend;
4109 if (thumb_bit == 0 && may_use_blx)
4110 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4111 branch_offset = branch_target - address;
4115 // At this point, if we still need to switch mode, the instruction
4116 // must either be a BLX or a BL that can be converted to a BLX.
4119 gold_assert(may_use_blx
4120 && (r_type == elfcpp::R_ARM_THM_CALL
4121 || r_type == elfcpp::R_ARM_THM_XPC22));
4122 // Make sure this is a BLX.
4123 lower_insn &= ~0x1000U;
4127 // Make sure this is a BL.
4128 lower_insn |= 0x1000U;
4131 // For a BLX instruction, make sure that the relocation is rounded up
4132 // to a word boundary. This follows the semantics of the instruction
4133 // which specifies that bit 1 of the target address will come from bit
4134 // 1 of the base address.
4135 if ((lower_insn & 0x5000U) == 0x4000U)
4136 gold_assert((branch_offset & 3) == 0);
4138 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4139 // We use the Thumb-2 encoding, which is safe even if dealing with
4140 // a Thumb-1 instruction by virtue of our overflow check above. */
4141 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4142 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4144 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4145 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4147 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4150 ? Bits<25>::has_overflow32(branch_offset)
4151 : Bits<23>::has_overflow32(branch_offset))
4152 ? This::STATUS_OVERFLOW
4153 : This::STATUS_OKAY);
4156 // Relocate THUMB-2 long conditional branches.
4157 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4158 // undefined and we do not use PLT in this relocation. In such a case,
4159 // the branch is converted into an NOP.
4161 template<bool big_endian>
4162 typename Arm_relocate_functions<big_endian>::Status
4163 Arm_relocate_functions<big_endian>::thm_jump19(
4164 unsigned char* view,
4165 const Arm_relobj<big_endian>* object,
4166 const Symbol_value<32>* psymval,
4167 Arm_address address,
4168 Arm_address thumb_bit)
4170 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4171 Valtype* wv = reinterpret_cast<Valtype*>(view);
4172 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4173 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4174 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4176 Arm_address branch_target = psymval->value(object, addend);
4177 int32_t branch_offset = branch_target - address;
4179 // ??? Should handle interworking? GCC might someday try to
4180 // use this for tail calls.
4181 // FIXME: We do support thumb entry to PLT yet.
4184 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4185 return This::STATUS_BAD_RELOC;
4188 // Put RELOCATION back into the insn.
4189 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4190 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4192 // Put the relocated value back in the object file:
4193 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4194 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4196 return (Bits<21>::has_overflow32(branch_offset)
4197 ? This::STATUS_OVERFLOW
4198 : This::STATUS_OKAY);
4201 // Get the GOT section, creating it if necessary.
4203 template<bool big_endian>
4204 Arm_output_data_got<big_endian>*
4205 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4207 if (this->got_ == NULL)
4209 gold_assert(symtab != NULL && layout != NULL);
4211 // When using -z now, we can treat .got as a relro section.
4212 // Without -z now, it is modified after program startup by lazy
4214 bool is_got_relro = parameters->options().now();
4215 Output_section_order got_order = (is_got_relro
4219 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4220 // .got.plt sections in output. The output .got section contains both
4221 // PLT and non-PLT GOT entries.
4222 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4224 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4225 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4226 this->got_, got_order, is_got_relro);
4228 // The old GNU linker creates a .got.plt section. We just
4229 // create another set of data in the .got section. Note that we
4230 // always create a PLT if we create a GOT, although the PLT
4232 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4233 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4234 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4235 this->got_plt_, got_order, is_got_relro);
4237 // The first three entries are reserved.
4238 this->got_plt_->set_current_data_size(3 * 4);
4240 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4241 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4242 Symbol_table::PREDEFINED,
4244 0, 0, elfcpp::STT_OBJECT,
4246 elfcpp::STV_HIDDEN, 0,
4252 // Get the dynamic reloc section, creating it if necessary.
4254 template<bool big_endian>
4255 typename Target_arm<big_endian>::Reloc_section*
4256 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4258 if (this->rel_dyn_ == NULL)
4260 gold_assert(layout != NULL);
4261 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4262 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4263 elfcpp::SHF_ALLOC, this->rel_dyn_,
4264 ORDER_DYNAMIC_RELOCS, false);
4266 return this->rel_dyn_;
4269 // Insn_template methods.
4271 // Return byte size of an instruction template.
4274 Insn_template::size() const
4276 switch (this->type())
4279 case THUMB16_SPECIAL_TYPE:
4290 // Return alignment of an instruction template.
4293 Insn_template::alignment() const
4295 switch (this->type())
4298 case THUMB16_SPECIAL_TYPE:
4309 // Stub_template methods.
4311 Stub_template::Stub_template(
4312 Stub_type type, const Insn_template* insns,
4314 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4315 entry_in_thumb_mode_(false), relocs_()
4319 // Compute byte size and alignment of stub template.
4320 for (size_t i = 0; i < insn_count; i++)
4322 unsigned insn_alignment = insns[i].alignment();
4323 size_t insn_size = insns[i].size();
4324 gold_assert((offset & (insn_alignment - 1)) == 0);
4325 this->alignment_ = std::max(this->alignment_, insn_alignment);
4326 switch (insns[i].type())
4328 case Insn_template::THUMB16_TYPE:
4329 case Insn_template::THUMB16_SPECIAL_TYPE:
4331 this->entry_in_thumb_mode_ = true;
4334 case Insn_template::THUMB32_TYPE:
4335 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4336 this->relocs_.push_back(Reloc(i, offset));
4338 this->entry_in_thumb_mode_ = true;
4341 case Insn_template::ARM_TYPE:
4342 // Handle cases where the target is encoded within the
4344 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4345 this->relocs_.push_back(Reloc(i, offset));
4348 case Insn_template::DATA_TYPE:
4349 // Entry point cannot be data.
4350 gold_assert(i != 0);
4351 this->relocs_.push_back(Reloc(i, offset));
4357 offset += insn_size;
4359 this->size_ = offset;
4364 // Template to implement do_write for a specific target endianness.
4366 template<bool big_endian>
4368 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4370 const Stub_template* stub_template = this->stub_template();
4371 const Insn_template* insns = stub_template->insns();
4373 // FIXME: We do not handle BE8 encoding yet.
4374 unsigned char* pov = view;
4375 for (size_t i = 0; i < stub_template->insn_count(); i++)
4377 switch (insns[i].type())
4379 case Insn_template::THUMB16_TYPE:
4380 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4382 case Insn_template::THUMB16_SPECIAL_TYPE:
4383 elfcpp::Swap<16, big_endian>::writeval(
4385 this->thumb16_special(i));
4387 case Insn_template::THUMB32_TYPE:
4389 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4390 uint32_t lo = insns[i].data() & 0xffff;
4391 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4392 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4395 case Insn_template::ARM_TYPE:
4396 case Insn_template::DATA_TYPE:
4397 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4402 pov += insns[i].size();
4404 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4407 // Reloc_stub::Key methods.
4409 // Dump a Key as a string for debugging.
4412 Reloc_stub::Key::name() const
4414 if (this->r_sym_ == invalid_index)
4416 // Global symbol key name
4417 // <stub-type>:<symbol name>:<addend>.
4418 const std::string sym_name = this->u_.symbol->name();
4419 // We need to print two hex number and two colons. So just add 100 bytes
4420 // to the symbol name size.
4421 size_t len = sym_name.size() + 100;
4422 char* buffer = new char[len];
4423 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4424 sym_name.c_str(), this->addend_);
4425 gold_assert(c > 0 && c < static_cast<int>(len));
4427 return std::string(buffer);
4431 // local symbol key name
4432 // <stub-type>:<object>:<r_sym>:<addend>.
4433 const size_t len = 200;
4435 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4436 this->u_.relobj, this->r_sym_, this->addend_);
4437 gold_assert(c > 0 && c < static_cast<int>(len));
4438 return std::string(buffer);
4442 // Reloc_stub methods.
4444 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4445 // LOCATION to DESTINATION.
4446 // This code is based on the arm_type_of_stub function in
4447 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4451 Reloc_stub::stub_type_for_reloc(
4452 unsigned int r_type,
4453 Arm_address location,
4454 Arm_address destination,
4455 bool target_is_thumb)
4457 Stub_type stub_type = arm_stub_none;
4459 // This is a bit ugly but we want to avoid using a templated class for
4460 // big and little endianities.
4462 bool should_force_pic_veneer;
4465 if (parameters->target().is_big_endian())
4467 const Target_arm<true>* big_endian_target =
4468 Target_arm<true>::default_target();
4469 may_use_blx = big_endian_target->may_use_v5t_interworking();
4470 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4471 thumb2 = big_endian_target->using_thumb2();
4472 thumb_only = big_endian_target->using_thumb_only();
4476 const Target_arm<false>* little_endian_target =
4477 Target_arm<false>::default_target();
4478 may_use_blx = little_endian_target->may_use_v5t_interworking();
4479 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4480 thumb2 = little_endian_target->using_thumb2();
4481 thumb_only = little_endian_target->using_thumb_only();
4484 int64_t branch_offset;
4485 bool output_is_position_independent =
4486 parameters->options().output_is_position_independent();
4487 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4489 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4490 // base address (instruction address + 4).
4491 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4492 destination = Bits<32>::bit_select32(destination, location, 0x2);
4493 branch_offset = static_cast<int64_t>(destination) - location;
4495 // Handle cases where:
4496 // - this call goes too far (different Thumb/Thumb2 max
4498 // - it's a Thumb->Arm call and blx is not available, or it's a
4499 // Thumb->Arm branch (not bl). A stub is needed in this case.
4501 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4502 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4504 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4505 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4506 || ((!target_is_thumb)
4507 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4508 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4510 if (target_is_thumb)
4515 stub_type = (output_is_position_independent
4516 || should_force_pic_veneer)
4519 && (r_type == elfcpp::R_ARM_THM_CALL))
4520 // V5T and above. Stub starts with ARM code, so
4521 // we must be able to switch mode before
4522 // reaching it, which is only possible for 'bl'
4523 // (ie R_ARM_THM_CALL relocation).
4524 ? arm_stub_long_branch_any_thumb_pic
4525 // On V4T, use Thumb code only.
4526 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4530 && (r_type == elfcpp::R_ARM_THM_CALL))
4531 ? arm_stub_long_branch_any_any // V5T and above.
4532 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4536 stub_type = (output_is_position_independent
4537 || should_force_pic_veneer)
4538 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4539 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4546 // FIXME: We should check that the input section is from an
4547 // object that has interwork enabled.
4549 stub_type = (output_is_position_independent
4550 || should_force_pic_veneer)
4553 && (r_type == elfcpp::R_ARM_THM_CALL))
4554 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4555 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4559 && (r_type == elfcpp::R_ARM_THM_CALL))
4560 ? arm_stub_long_branch_any_any // V5T and above.
4561 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4563 // Handle v4t short branches.
4564 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4565 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4566 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4567 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4571 else if (r_type == elfcpp::R_ARM_CALL
4572 || r_type == elfcpp::R_ARM_JUMP24
4573 || r_type == elfcpp::R_ARM_PLT32)
4575 branch_offset = static_cast<int64_t>(destination) - location;
4576 if (target_is_thumb)
4580 // FIXME: We should check that the input section is from an
4581 // object that has interwork enabled.
4583 // We have an extra 2-bytes reach because of
4584 // the mode change (bit 24 (H) of BLX encoding).
4585 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4586 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4587 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4588 || (r_type == elfcpp::R_ARM_JUMP24)
4589 || (r_type == elfcpp::R_ARM_PLT32))
4591 stub_type = (output_is_position_independent
4592 || should_force_pic_veneer)
4595 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4596 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4600 ? arm_stub_long_branch_any_any // V5T and above.
4601 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4607 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4608 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4610 stub_type = (output_is_position_independent
4611 || should_force_pic_veneer)
4612 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4613 : arm_stub_long_branch_any_any; /// non-PIC.
4621 // Cortex_a8_stub methods.
4623 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4624 // I is the position of the instruction template in the stub template.
4627 Cortex_a8_stub::do_thumb16_special(size_t i)
4629 // The only use of this is to copy condition code from a conditional
4630 // branch being worked around to the corresponding conditional branch in
4632 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4634 uint16_t data = this->stub_template()->insns()[i].data();
4635 gold_assert((data & 0xff00U) == 0xd000U);
4636 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4640 // Stub_factory methods.
4642 Stub_factory::Stub_factory()
4644 // The instruction template sequences are declared as static
4645 // objects and initialized first time the constructor runs.
4647 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4648 // to reach the stub if necessary.
4649 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4651 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4652 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4653 // dcd R_ARM_ABS32(X)
4656 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4658 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4660 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4661 Insn_template::arm_insn(0xe12fff1c), // bx ip
4662 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4663 // dcd R_ARM_ABS32(X)
4666 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4667 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4669 Insn_template::thumb16_insn(0xb401), // push {r0}
4670 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4671 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4672 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4673 Insn_template::thumb16_insn(0x4760), // bx ip
4674 Insn_template::thumb16_insn(0xbf00), // nop
4675 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4676 // dcd R_ARM_ABS32(X)
4679 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4681 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4683 Insn_template::thumb16_insn(0x4778), // bx pc
4684 Insn_template::thumb16_insn(0x46c0), // nop
4685 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4686 Insn_template::arm_insn(0xe12fff1c), // bx ip
4687 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4688 // dcd R_ARM_ABS32(X)
4691 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4693 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4695 Insn_template::thumb16_insn(0x4778), // bx pc
4696 Insn_template::thumb16_insn(0x46c0), // nop
4697 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4698 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4699 // dcd R_ARM_ABS32(X)
4702 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4703 // one, when the destination is close enough.
4704 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4706 Insn_template::thumb16_insn(0x4778), // bx pc
4707 Insn_template::thumb16_insn(0x46c0), // nop
4708 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4711 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4712 // blx to reach the stub if necessary.
4713 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4715 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4716 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4717 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4718 // dcd R_ARM_REL32(X-4)
4721 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4722 // blx to reach the stub if necessary. We can not add into pc;
4723 // it is not guaranteed to mode switch (different in ARMv6 and
4725 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4727 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4728 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4729 Insn_template::arm_insn(0xe12fff1c), // bx ip
4730 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4731 // dcd R_ARM_REL32(X)
4734 // V4T ARM -> ARM long branch stub, PIC.
4735 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4737 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4738 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4739 Insn_template::arm_insn(0xe12fff1c), // bx ip
4740 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4741 // dcd R_ARM_REL32(X)
4744 // V4T Thumb -> ARM long branch stub, PIC.
4745 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4747 Insn_template::thumb16_insn(0x4778), // bx pc
4748 Insn_template::thumb16_insn(0x46c0), // nop
4749 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4750 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4751 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4752 // dcd R_ARM_REL32(X)
4755 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4757 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4759 Insn_template::thumb16_insn(0xb401), // push {r0}
4760 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4761 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4762 Insn_template::thumb16_insn(0x4484), // add ip, r0
4763 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4764 Insn_template::thumb16_insn(0x4760), // bx ip
4765 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4766 // dcd R_ARM_REL32(X)
4769 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4771 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4773 Insn_template::thumb16_insn(0x4778), // bx pc
4774 Insn_template::thumb16_insn(0x46c0), // nop
4775 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4776 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4777 Insn_template::arm_insn(0xe12fff1c), // bx ip
4778 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4779 // dcd R_ARM_REL32(X)
4782 // Cortex-A8 erratum-workaround stubs.
4784 // Stub used for conditional branches (which may be beyond +/-1MB away,
4785 // so we can't use a conditional branch to reach this stub).
4792 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4794 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4795 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4796 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4800 // Stub used for b.w and bl.w instructions.
4802 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4804 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4807 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4809 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4812 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4813 // instruction (which switches to ARM mode) to point to this stub. Jump to
4814 // the real destination using an ARM-mode branch.
4815 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4817 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4820 // Stub used to provide an interworking for R_ARM_V4BX relocation
4821 // (bx r[n] instruction).
4822 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4824 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4825 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4826 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4829 // Fill in the stub template look-up table. Stub templates are constructed
4830 // per instance of Stub_factory for fast look-up without locking
4831 // in a thread-enabled environment.
4833 this->stub_templates_[arm_stub_none] =
4834 new Stub_template(arm_stub_none, NULL, 0);
4836 #define DEF_STUB(x) \
4840 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4841 Stub_type type = arm_stub_##x; \
4842 this->stub_templates_[type] = \
4843 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4851 // Stub_table methods.
4853 // Remove all Cortex-A8 stub.
4855 template<bool big_endian>
4857 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4859 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4860 p != this->cortex_a8_stubs_.end();
4863 this->cortex_a8_stubs_.clear();
4866 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4868 template<bool big_endian>
4870 Stub_table<big_endian>::relocate_stub(
4872 const Relocate_info<32, big_endian>* relinfo,
4873 Target_arm<big_endian>* arm_target,
4874 Output_section* output_section,
4875 unsigned char* view,
4876 Arm_address address,
4877 section_size_type view_size)
4879 const Stub_template* stub_template = stub->stub_template();
4880 if (stub_template->reloc_count() != 0)
4882 // Adjust view to cover the stub only.
4883 section_size_type offset = stub->offset();
4884 section_size_type stub_size = stub_template->size();
4885 gold_assert(offset + stub_size <= view_size);
4887 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4888 address + offset, stub_size);
4892 // Relocate all stubs in this stub table.
4894 template<bool big_endian>
4896 Stub_table<big_endian>::relocate_stubs(
4897 const Relocate_info<32, big_endian>* relinfo,
4898 Target_arm<big_endian>* arm_target,
4899 Output_section* output_section,
4900 unsigned char* view,
4901 Arm_address address,
4902 section_size_type view_size)
4904 // If we are passed a view bigger than the stub table's. we need to
4906 gold_assert(address == this->address()
4908 == static_cast<section_size_type>(this->data_size())));
4910 // Relocate all relocation stubs.
4911 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4912 p != this->reloc_stubs_.end();
4914 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4915 address, view_size);
4917 // Relocate all Cortex-A8 stubs.
4918 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4919 p != this->cortex_a8_stubs_.end();
4921 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4922 address, view_size);
4924 // Relocate all ARM V4BX stubs.
4925 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4926 p != this->arm_v4bx_stubs_.end();
4930 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4931 address, view_size);
4935 // Write out the stubs to file.
4937 template<bool big_endian>
4939 Stub_table<big_endian>::do_write(Output_file* of)
4941 off_t offset = this->offset();
4942 const section_size_type oview_size =
4943 convert_to_section_size_type(this->data_size());
4944 unsigned char* const oview = of->get_output_view(offset, oview_size);
4946 // Write relocation stubs.
4947 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4948 p != this->reloc_stubs_.end();
4951 Reloc_stub* stub = p->second;
4952 Arm_address address = this->address() + stub->offset();
4954 == align_address(address,
4955 stub->stub_template()->alignment()));
4956 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4960 // Write Cortex-A8 stubs.
4961 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4962 p != this->cortex_a8_stubs_.end();
4965 Cortex_a8_stub* stub = p->second;
4966 Arm_address address = this->address() + stub->offset();
4968 == align_address(address,
4969 stub->stub_template()->alignment()));
4970 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4974 // Write ARM V4BX relocation stubs.
4975 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4976 p != this->arm_v4bx_stubs_.end();
4982 Arm_address address = this->address() + (*p)->offset();
4984 == align_address(address,
4985 (*p)->stub_template()->alignment()));
4986 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4990 of->write_output_view(this->offset(), oview_size, oview);
4993 // Update the data size and address alignment of the stub table at the end
4994 // of a relaxation pass. Return true if either the data size or the
4995 // alignment changed in this relaxation pass.
4997 template<bool big_endian>
4999 Stub_table<big_endian>::update_data_size_and_addralign()
5001 // Go over all stubs in table to compute data size and address alignment.
5002 off_t size = this->reloc_stubs_size_;
5003 unsigned addralign = this->reloc_stubs_addralign_;
5005 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5006 p != this->cortex_a8_stubs_.end();
5009 const Stub_template* stub_template = p->second->stub_template();
5010 addralign = std::max(addralign, stub_template->alignment());
5011 size = (align_address(size, stub_template->alignment())
5012 + stub_template->size());
5015 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5016 p != this->arm_v4bx_stubs_.end();
5022 const Stub_template* stub_template = (*p)->stub_template();
5023 addralign = std::max(addralign, stub_template->alignment());
5024 size = (align_address(size, stub_template->alignment())
5025 + stub_template->size());
5028 // Check if either data size or alignment changed in this pass.
5029 // Update prev_data_size_ and prev_addralign_. These will be used
5030 // as the current data size and address alignment for the next pass.
5031 bool changed = size != this->prev_data_size_;
5032 this->prev_data_size_ = size;
5034 if (addralign != this->prev_addralign_)
5036 this->prev_addralign_ = addralign;
5041 // Finalize the stubs. This sets the offsets of the stubs within the stub
5042 // table. It also marks all input sections needing Cortex-A8 workaround.
5044 template<bool big_endian>
5046 Stub_table<big_endian>::finalize_stubs()
5048 off_t off = this->reloc_stubs_size_;
5049 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5050 p != this->cortex_a8_stubs_.end();
5053 Cortex_a8_stub* stub = p->second;
5054 const Stub_template* stub_template = stub->stub_template();
5055 uint64_t stub_addralign = stub_template->alignment();
5056 off = align_address(off, stub_addralign);
5057 stub->set_offset(off);
5058 off += stub_template->size();
5060 // Mark input section so that we can determine later if a code section
5061 // needs the Cortex-A8 workaround quickly.
5062 Arm_relobj<big_endian>* arm_relobj =
5063 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5064 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5067 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5068 p != this->arm_v4bx_stubs_.end();
5074 const Stub_template* stub_template = (*p)->stub_template();
5075 uint64_t stub_addralign = stub_template->alignment();
5076 off = align_address(off, stub_addralign);
5077 (*p)->set_offset(off);
5078 off += stub_template->size();
5081 gold_assert(off <= this->prev_data_size_);
5084 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5085 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5086 // of the address range seen by the linker.
5088 template<bool big_endian>
5090 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5091 Target_arm<big_endian>* arm_target,
5092 unsigned char* view,
5093 Arm_address view_address,
5094 section_size_type view_size)
5096 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5097 for (Cortex_a8_stub_list::const_iterator p =
5098 this->cortex_a8_stubs_.lower_bound(view_address);
5099 ((p != this->cortex_a8_stubs_.end())
5100 && (p->first < (view_address + view_size)));
5103 // We do not store the THUMB bit in the LSB of either the branch address
5104 // or the stub offset. There is no need to strip the LSB.
5105 Arm_address branch_address = p->first;
5106 const Cortex_a8_stub* stub = p->second;
5107 Arm_address stub_address = this->address() + stub->offset();
5109 // Offset of the branch instruction relative to this view.
5110 section_size_type offset =
5111 convert_to_section_size_type(branch_address - view_address);
5112 gold_assert((offset + 4) <= view_size);
5114 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5115 view + offset, branch_address);
5119 // Arm_input_section methods.
5121 // Initialize an Arm_input_section.
5123 template<bool big_endian>
5125 Arm_input_section<big_endian>::init()
5127 Relobj* relobj = this->relobj();
5128 unsigned int shndx = this->shndx();
5130 // We have to cache original size, alignment and contents to avoid locking
5131 // the original file.
5132 this->original_addralign_ =
5133 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5135 // This is not efficient but we expect only a small number of relaxed
5136 // input sections for stubs.
5137 section_size_type section_size;
5138 const unsigned char* section_contents =
5139 relobj->section_contents(shndx, §ion_size, false);
5140 this->original_size_ =
5141 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5143 gold_assert(this->original_contents_ == NULL);
5144 this->original_contents_ = new unsigned char[section_size];
5145 memcpy(this->original_contents_, section_contents, section_size);
5147 // We want to make this look like the original input section after
5148 // output sections are finalized.
5149 Output_section* os = relobj->output_section(shndx);
5150 off_t offset = relobj->output_section_offset(shndx);
5151 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5152 this->set_address(os->address() + offset);
5153 this->set_file_offset(os->offset() + offset);
5155 this->set_current_data_size(this->original_size_);
5156 this->finalize_data_size();
5159 template<bool big_endian>
5161 Arm_input_section<big_endian>::do_write(Output_file* of)
5163 // We have to write out the original section content.
5164 gold_assert(this->original_contents_ != NULL);
5165 of->write(this->offset(), this->original_contents_,
5166 this->original_size_);
5168 // If this owns a stub table and it is not empty, write it.
5169 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5170 this->stub_table_->write(of);
5173 // Finalize data size.
5175 template<bool big_endian>
5177 Arm_input_section<big_endian>::set_final_data_size()
5179 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5181 if (this->is_stub_table_owner())
5183 this->stub_table_->finalize_data_size();
5184 off = align_address(off, this->stub_table_->addralign());
5185 off += this->stub_table_->data_size();
5187 this->set_data_size(off);
5190 // Reset address and file offset.
5192 template<bool big_endian>
5194 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5196 // Size of the original input section contents.
5197 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5199 // If this is a stub table owner, account for the stub table size.
5200 if (this->is_stub_table_owner())
5202 Stub_table<big_endian>* stub_table = this->stub_table_;
5204 // Reset the stub table's address and file offset. The
5205 // current data size for child will be updated after that.
5206 stub_table_->reset_address_and_file_offset();
5207 off = align_address(off, stub_table_->addralign());
5208 off += stub_table->current_data_size();
5211 this->set_current_data_size(off);
5214 // Arm_exidx_cantunwind methods.
5216 // Write this to Output file OF for a fixed endianness.
5218 template<bool big_endian>
5220 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5222 off_t offset = this->offset();
5223 const section_size_type oview_size = 8;
5224 unsigned char* const oview = of->get_output_view(offset, oview_size);
5226 Output_section* os = this->relobj_->output_section(this->shndx_);
5227 gold_assert(os != NULL);
5229 Arm_relobj<big_endian>* arm_relobj =
5230 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5231 Arm_address output_offset =
5232 arm_relobj->get_output_section_offset(this->shndx_);
5233 Arm_address section_start;
5234 section_size_type section_size;
5236 // Find out the end of the text section referred by this.
5237 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5239 section_start = os->address() + output_offset;
5240 const Arm_exidx_input_section* exidx_input_section =
5241 arm_relobj->exidx_input_section_by_link(this->shndx_);
5242 gold_assert(exidx_input_section != NULL);
5244 convert_to_section_size_type(exidx_input_section->text_size());
5248 // Currently this only happens for a relaxed section.
5249 const Output_relaxed_input_section* poris =
5250 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5251 gold_assert(poris != NULL);
5252 section_start = poris->address();
5253 section_size = convert_to_section_size_type(poris->data_size());
5256 // We always append this to the end of an EXIDX section.
5257 Arm_address output_address = section_start + section_size;
5259 // Write out the entry. The first word either points to the beginning
5260 // or after the end of a text section. The second word is the special
5261 // EXIDX_CANTUNWIND value.
5262 uint32_t prel31_offset = output_address - this->address();
5263 if (Bits<31>::has_overflow32(offset))
5264 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5265 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5266 prel31_offset & 0x7fffffffU);
5267 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5268 elfcpp::EXIDX_CANTUNWIND);
5270 of->write_output_view(this->offset(), oview_size, oview);
5273 // Arm_exidx_merged_section methods.
5275 // Constructor for Arm_exidx_merged_section.
5276 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5277 // SECTION_OFFSET_MAP points to a section offset map describing how
5278 // parts of the input section are mapped to output. DELETED_BYTES is
5279 // the number of bytes deleted from the EXIDX input section.
5281 Arm_exidx_merged_section::Arm_exidx_merged_section(
5282 const Arm_exidx_input_section& exidx_input_section,
5283 const Arm_exidx_section_offset_map& section_offset_map,
5284 uint32_t deleted_bytes)
5285 : Output_relaxed_input_section(exidx_input_section.relobj(),
5286 exidx_input_section.shndx(),
5287 exidx_input_section.addralign()),
5288 exidx_input_section_(exidx_input_section),
5289 section_offset_map_(section_offset_map)
5291 // If we retain or discard the whole EXIDX input section, we would
5293 gold_assert(deleted_bytes != 0
5294 && deleted_bytes != this->exidx_input_section_.size());
5296 // Fix size here so that we do not need to implement set_final_data_size.
5297 uint32_t size = exidx_input_section.size() - deleted_bytes;
5298 this->set_data_size(size);
5299 this->fix_data_size();
5301 // Allocate buffer for section contents and build contents.
5302 this->section_contents_ = new unsigned char[size];
5305 // Build the contents of a merged EXIDX output section.
5308 Arm_exidx_merged_section::build_contents(
5309 const unsigned char* original_contents,
5310 section_size_type original_size)
5312 // Go over spans of input offsets and write only those that are not
5314 section_offset_type in_start = 0;
5315 section_offset_type out_start = 0;
5316 section_offset_type in_max =
5317 convert_types<section_offset_type>(original_size);
5318 section_offset_type out_max =
5319 convert_types<section_offset_type>(this->data_size());
5320 for (Arm_exidx_section_offset_map::const_iterator p =
5321 this->section_offset_map_.begin();
5322 p != this->section_offset_map_.end();
5325 section_offset_type in_end = p->first;
5326 gold_assert(in_end >= in_start);
5327 section_offset_type out_end = p->second;
5328 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5331 size_t out_chunk_size =
5332 convert_types<size_t>(out_end - out_start + 1);
5334 gold_assert(out_chunk_size == in_chunk_size
5335 && in_end < in_max && out_end < out_max);
5337 memcpy(this->section_contents_ + out_start,
5338 original_contents + in_start,
5340 out_start += out_chunk_size;
5342 in_start += in_chunk_size;
5346 // Given an input OBJECT, an input section index SHNDX within that
5347 // object, and an OFFSET relative to the start of that input
5348 // section, return whether or not the corresponding offset within
5349 // the output section is known. If this function returns true, it
5350 // sets *POUTPUT to the output offset. The value -1 indicates that
5351 // this input offset is being discarded.
5354 Arm_exidx_merged_section::do_output_offset(
5355 const Relobj* relobj,
5357 section_offset_type offset,
5358 section_offset_type* poutput) const
5360 // We only handle offsets for the original EXIDX input section.
5361 if (relobj != this->exidx_input_section_.relobj()
5362 || shndx != this->exidx_input_section_.shndx())
5365 section_offset_type section_size =
5366 convert_types<section_offset_type>(this->exidx_input_section_.size());
5367 if (offset < 0 || offset >= section_size)
5368 // Input offset is out of valid range.
5372 // We need to look up the section offset map to determine the output
5373 // offset. Find the reference point in map that is first offset
5374 // bigger than or equal to this offset.
5375 Arm_exidx_section_offset_map::const_iterator p =
5376 this->section_offset_map_.lower_bound(offset);
5378 // The section offset maps are build such that this should not happen if
5379 // input offset is in the valid range.
5380 gold_assert(p != this->section_offset_map_.end());
5382 // We need to check if this is dropped.
5383 section_offset_type ref = p->first;
5384 section_offset_type mapped_ref = p->second;
5386 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5387 // Offset is present in output.
5388 *poutput = mapped_ref + (offset - ref);
5390 // Offset is discarded owing to EXIDX entry merging.
5397 // Write this to output file OF.
5400 Arm_exidx_merged_section::do_write(Output_file* of)
5402 off_t offset = this->offset();
5403 const section_size_type oview_size = this->data_size();
5404 unsigned char* const oview = of->get_output_view(offset, oview_size);
5406 Output_section* os = this->relobj()->output_section(this->shndx());
5407 gold_assert(os != NULL);
5409 memcpy(oview, this->section_contents_, oview_size);
5410 of->write_output_view(this->offset(), oview_size, oview);
5413 // Arm_exidx_fixup methods.
5415 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5416 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5417 // points to the end of the last seen EXIDX section.
5420 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5422 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5423 && this->last_input_section_ != NULL)
5425 Relobj* relobj = this->last_input_section_->relobj();
5426 unsigned int text_shndx = this->last_input_section_->link();
5427 Arm_exidx_cantunwind* cantunwind =
5428 new Arm_exidx_cantunwind(relobj, text_shndx);
5429 this->exidx_output_section_->add_output_section_data(cantunwind);
5430 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5434 // Process an EXIDX section entry in input. Return whether this entry
5435 // can be deleted in the output. SECOND_WORD in the second word of the
5439 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5442 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5444 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5445 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5446 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5448 else if ((second_word & 0x80000000) != 0)
5450 // Inlined unwinding data. Merge if equal to previous.
5451 delete_entry = (merge_exidx_entries_
5452 && this->last_unwind_type_ == UT_INLINED_ENTRY
5453 && this->last_inlined_entry_ == second_word);
5454 this->last_unwind_type_ = UT_INLINED_ENTRY;
5455 this->last_inlined_entry_ = second_word;
5459 // Normal table entry. In theory we could merge these too,
5460 // but duplicate entries are likely to be much less common.
5461 delete_entry = false;
5462 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5464 return delete_entry;
5467 // Update the current section offset map during EXIDX section fix-up.
5468 // If there is no map, create one. INPUT_OFFSET is the offset of a
5469 // reference point, DELETED_BYTES is the number of deleted by in the
5470 // section so far. If DELETE_ENTRY is true, the reference point and
5471 // all offsets after the previous reference point are discarded.
5474 Arm_exidx_fixup::update_offset_map(
5475 section_offset_type input_offset,
5476 section_size_type deleted_bytes,
5479 if (this->section_offset_map_ == NULL)
5480 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5481 section_offset_type output_offset;
5483 output_offset = Arm_exidx_input_section::invalid_offset;
5485 output_offset = input_offset - deleted_bytes;
5486 (*this->section_offset_map_)[input_offset] = output_offset;
5489 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5490 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5491 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5492 // If some entries are merged, also store a pointer to a newly created
5493 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5494 // owns the map and is responsible for releasing it after use.
5496 template<bool big_endian>
5498 Arm_exidx_fixup::process_exidx_section(
5499 const Arm_exidx_input_section* exidx_input_section,
5500 const unsigned char* section_contents,
5501 section_size_type section_size,
5502 Arm_exidx_section_offset_map** psection_offset_map)
5504 Relobj* relobj = exidx_input_section->relobj();
5505 unsigned shndx = exidx_input_section->shndx();
5507 if ((section_size % 8) != 0)
5509 // Something is wrong with this section. Better not touch it.
5510 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5511 relobj->name().c_str(), shndx);
5512 this->last_input_section_ = exidx_input_section;
5513 this->last_unwind_type_ = UT_NONE;
5517 uint32_t deleted_bytes = 0;
5518 bool prev_delete_entry = false;
5519 gold_assert(this->section_offset_map_ == NULL);
5521 for (section_size_type i = 0; i < section_size; i += 8)
5523 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5525 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5526 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5528 bool delete_entry = this->process_exidx_entry(second_word);
5530 // Entry deletion causes changes in output offsets. We use a std::map
5531 // to record these. And entry (x, y) means input offset x
5532 // is mapped to output offset y. If y is invalid_offset, then x is
5533 // dropped in the output. Because of the way std::map::lower_bound
5534 // works, we record the last offset in a region w.r.t to keeping or
5535 // dropping. If there is no entry (x0, y0) for an input offset x0,
5536 // the output offset y0 of it is determined by the output offset y1 of
5537 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5538 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5540 if (delete_entry != prev_delete_entry && i != 0)
5541 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5543 // Update total deleted bytes for this entry.
5547 prev_delete_entry = delete_entry;
5550 // If section offset map is not NULL, make an entry for the end of
5552 if (this->section_offset_map_ != NULL)
5553 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5555 *psection_offset_map = this->section_offset_map_;
5556 this->section_offset_map_ = NULL;
5557 this->last_input_section_ = exidx_input_section;
5559 // Set the first output text section so that we can link the EXIDX output
5560 // section to it. Ignore any EXIDX input section that is completely merged.
5561 if (this->first_output_text_section_ == NULL
5562 && deleted_bytes != section_size)
5564 unsigned int link = exidx_input_section->link();
5565 Output_section* os = relobj->output_section(link);
5566 gold_assert(os != NULL);
5567 this->first_output_text_section_ = os;
5570 return deleted_bytes;
5573 // Arm_output_section methods.
5575 // Create a stub group for input sections from BEGIN to END. OWNER
5576 // points to the input section to be the owner a new stub table.
5578 template<bool big_endian>
5580 Arm_output_section<big_endian>::create_stub_group(
5581 Input_section_list::const_iterator begin,
5582 Input_section_list::const_iterator end,
5583 Input_section_list::const_iterator owner,
5584 Target_arm<big_endian>* target,
5585 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5588 // We use a different kind of relaxed section in an EXIDX section.
5589 // The static casting from Output_relaxed_input_section to
5590 // Arm_input_section is invalid in an EXIDX section. We are okay
5591 // because we should not be calling this for an EXIDX section.
5592 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5594 // Currently we convert ordinary input sections into relaxed sections only
5595 // at this point but we may want to support creating relaxed input section
5596 // very early. So we check here to see if owner is already a relaxed
5599 Arm_input_section<big_endian>* arm_input_section;
5600 if (owner->is_relaxed_input_section())
5603 Arm_input_section<big_endian>::as_arm_input_section(
5604 owner->relaxed_input_section());
5608 gold_assert(owner->is_input_section());
5609 // Create a new relaxed input section. We need to lock the original
5611 Task_lock_obj<Object> tl(task, owner->relobj());
5613 target->new_arm_input_section(owner->relobj(), owner->shndx());
5614 new_relaxed_sections->push_back(arm_input_section);
5617 // Create a stub table.
5618 Stub_table<big_endian>* stub_table =
5619 target->new_stub_table(arm_input_section);
5621 arm_input_section->set_stub_table(stub_table);
5623 Input_section_list::const_iterator p = begin;
5624 Input_section_list::const_iterator prev_p;
5626 // Look for input sections or relaxed input sections in [begin ... end].
5629 if (p->is_input_section() || p->is_relaxed_input_section())
5631 // The stub table information for input sections live
5632 // in their objects.
5633 Arm_relobj<big_endian>* arm_relobj =
5634 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5635 arm_relobj->set_stub_table(p->shndx(), stub_table);
5639 while (prev_p != end);
5642 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5643 // of stub groups. We grow a stub group by adding input section until the
5644 // size is just below GROUP_SIZE. The last input section will be converted
5645 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5646 // input section after the stub table, effectively double the group size.
5648 // This is similar to the group_sections() function in elf32-arm.c but is
5649 // implemented differently.
5651 template<bool big_endian>
5653 Arm_output_section<big_endian>::group_sections(
5654 section_size_type group_size,
5655 bool stubs_always_after_branch,
5656 Target_arm<big_endian>* target,
5659 // States for grouping.
5662 // No group is being built.
5664 // A group is being built but the stub table is not found yet.
5665 // We keep group a stub group until the size is just under GROUP_SIZE.
5666 // The last input section in the group will be used as the stub table.
5667 FINDING_STUB_SECTION,
5668 // A group is being built and we have already found a stub table.
5669 // We enter this state to grow a stub group by adding input section
5670 // after the stub table. This effectively doubles the group size.
5674 // Any newly created relaxed sections are stored here.
5675 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5677 State state = NO_GROUP;
5678 section_size_type off = 0;
5679 section_size_type group_begin_offset = 0;
5680 section_size_type group_end_offset = 0;
5681 section_size_type stub_table_end_offset = 0;
5682 Input_section_list::const_iterator group_begin =
5683 this->input_sections().end();
5684 Input_section_list::const_iterator stub_table =
5685 this->input_sections().end();
5686 Input_section_list::const_iterator group_end = this->input_sections().end();
5687 for (Input_section_list::const_iterator p = this->input_sections().begin();
5688 p != this->input_sections().end();
5691 section_size_type section_begin_offset =
5692 align_address(off, p->addralign());
5693 section_size_type section_end_offset =
5694 section_begin_offset + p->data_size();
5696 // Check to see if we should group the previously seen sections.
5702 case FINDING_STUB_SECTION:
5703 // Adding this section makes the group larger than GROUP_SIZE.
5704 if (section_end_offset - group_begin_offset >= group_size)
5706 if (stubs_always_after_branch)
5708 gold_assert(group_end != this->input_sections().end());
5709 this->create_stub_group(group_begin, group_end, group_end,
5710 target, &new_relaxed_sections,
5716 // But wait, there's more! Input sections up to
5717 // stub_group_size bytes after the stub table can be
5718 // handled by it too.
5719 state = HAS_STUB_SECTION;
5720 stub_table = group_end;
5721 stub_table_end_offset = group_end_offset;
5726 case HAS_STUB_SECTION:
5727 // Adding this section makes the post stub-section group larger
5729 if (section_end_offset - stub_table_end_offset >= group_size)
5731 gold_assert(group_end != this->input_sections().end());
5732 this->create_stub_group(group_begin, group_end, stub_table,
5733 target, &new_relaxed_sections, task);
5742 // If we see an input section and currently there is no group, start
5743 // a new one. Skip any empty sections. We look at the data size
5744 // instead of calling p->relobj()->section_size() to avoid locking.
5745 if ((p->is_input_section() || p->is_relaxed_input_section())
5746 && (p->data_size() != 0))
5748 if (state == NO_GROUP)
5750 state = FINDING_STUB_SECTION;
5752 group_begin_offset = section_begin_offset;
5755 // Keep track of the last input section seen.
5757 group_end_offset = section_end_offset;
5760 off = section_end_offset;
5763 // Create a stub group for any ungrouped sections.
5764 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5766 gold_assert(group_end != this->input_sections().end());
5767 this->create_stub_group(group_begin, group_end,
5768 (state == FINDING_STUB_SECTION
5771 target, &new_relaxed_sections, task);
5774 // Convert input section into relaxed input section in a batch.
5775 if (!new_relaxed_sections.empty())
5776 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5778 // Update the section offsets
5779 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5781 Arm_relobj<big_endian>* arm_relobj =
5782 Arm_relobj<big_endian>::as_arm_relobj(
5783 new_relaxed_sections[i]->relobj());
5784 unsigned int shndx = new_relaxed_sections[i]->shndx();
5785 // Tell Arm_relobj that this input section is converted.
5786 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5790 // Append non empty text sections in this to LIST in ascending
5791 // order of their position in this.
5793 template<bool big_endian>
5795 Arm_output_section<big_endian>::append_text_sections_to_list(
5796 Text_section_list* list)
5798 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5800 for (Input_section_list::const_iterator p = this->input_sections().begin();
5801 p != this->input_sections().end();
5804 // We only care about plain or relaxed input sections. We also
5805 // ignore any merged sections.
5806 if (p->is_input_section() || p->is_relaxed_input_section())
5807 list->push_back(Text_section_list::value_type(p->relobj(),
5812 template<bool big_endian>
5814 Arm_output_section<big_endian>::fix_exidx_coverage(
5816 const Text_section_list& sorted_text_sections,
5817 Symbol_table* symtab,
5818 bool merge_exidx_entries,
5821 // We should only do this for the EXIDX output section.
5822 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5824 // We don't want the relaxation loop to undo these changes, so we discard
5825 // the current saved states and take another one after the fix-up.
5826 this->discard_states();
5828 // Remove all input sections.
5829 uint64_t address = this->address();
5830 typedef std::list<Output_section::Input_section> Input_section_list;
5831 Input_section_list input_sections;
5832 this->reset_address_and_file_offset();
5833 this->get_input_sections(address, std::string(""), &input_sections);
5835 if (!this->input_sections().empty())
5836 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5838 // Go through all the known input sections and record them.
5839 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5840 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5841 Section_id_hash> Text_to_exidx_map;
5842 Text_to_exidx_map text_to_exidx_map;
5843 for (Input_section_list::const_iterator p = input_sections.begin();
5844 p != input_sections.end();
5847 // This should never happen. At this point, we should only see
5848 // plain EXIDX input sections.
5849 gold_assert(!p->is_relaxed_input_section());
5850 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5853 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5855 // Go over the sorted text sections.
5856 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5857 Section_id_set processed_input_sections;
5858 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5859 p != sorted_text_sections.end();
5862 Relobj* relobj = p->first;
5863 unsigned int shndx = p->second;
5865 Arm_relobj<big_endian>* arm_relobj =
5866 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5867 const Arm_exidx_input_section* exidx_input_section =
5868 arm_relobj->exidx_input_section_by_link(shndx);
5870 // If this text section has no EXIDX section or if the EXIDX section
5871 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5872 // of the last seen EXIDX section.
5873 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5875 exidx_fixup.add_exidx_cantunwind_as_needed();
5879 Relobj* exidx_relobj = exidx_input_section->relobj();
5880 unsigned int exidx_shndx = exidx_input_section->shndx();
5881 Section_id sid(exidx_relobj, exidx_shndx);
5882 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5883 if (iter == text_to_exidx_map.end())
5885 // This is odd. We have not seen this EXIDX input section before.
5886 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5887 // issue a warning instead. We assume the user knows what he
5888 // or she is doing. Otherwise, this is an error.
5889 if (layout->script_options()->saw_sections_clause())
5890 gold_warning(_("unwinding may not work because EXIDX input section"
5891 " %u of %s is not in EXIDX output section"),
5892 exidx_shndx, exidx_relobj->name().c_str());
5894 gold_error(_("unwinding may not work because EXIDX input section"
5895 " %u of %s is not in EXIDX output section"),
5896 exidx_shndx, exidx_relobj->name().c_str());
5898 exidx_fixup.add_exidx_cantunwind_as_needed();
5902 // We need to access the contents of the EXIDX section, lock the
5904 Task_lock_obj<Object> tl(task, exidx_relobj);
5905 section_size_type exidx_size;
5906 const unsigned char* exidx_contents =
5907 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5909 // Fix up coverage and append input section to output data list.
5910 Arm_exidx_section_offset_map* section_offset_map = NULL;
5911 uint32_t deleted_bytes =
5912 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5915 §ion_offset_map);
5917 if (deleted_bytes == exidx_input_section->size())
5919 // The whole EXIDX section got merged. Remove it from output.
5920 gold_assert(section_offset_map == NULL);
5921 exidx_relobj->set_output_section(exidx_shndx, NULL);
5923 // All local symbols defined in this input section will be dropped.
5924 // We need to adjust output local symbol count.
5925 arm_relobj->set_output_local_symbol_count_needs_update();
5927 else if (deleted_bytes > 0)
5929 // Some entries are merged. We need to convert this EXIDX input
5930 // section into a relaxed section.
5931 gold_assert(section_offset_map != NULL);
5933 Arm_exidx_merged_section* merged_section =
5934 new Arm_exidx_merged_section(*exidx_input_section,
5935 *section_offset_map, deleted_bytes);
5936 merged_section->build_contents(exidx_contents, exidx_size);
5938 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5939 this->add_relaxed_input_section(layout, merged_section, secname);
5940 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5942 // All local symbols defined in discarded portions of this input
5943 // section will be dropped. We need to adjust output local symbol
5945 arm_relobj->set_output_local_symbol_count_needs_update();
5949 // Just add back the EXIDX input section.
5950 gold_assert(section_offset_map == NULL);
5951 const Output_section::Input_section* pis = iter->second;
5952 gold_assert(pis->is_input_section());
5953 this->add_script_input_section(*pis);
5956 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5959 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5960 exidx_fixup.add_exidx_cantunwind_as_needed();
5962 // Remove any known EXIDX input sections that are not processed.
5963 for (Input_section_list::const_iterator p = input_sections.begin();
5964 p != input_sections.end();
5967 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5968 == processed_input_sections.end())
5970 // We discard a known EXIDX section because its linked
5971 // text section has been folded by ICF. We also discard an
5972 // EXIDX section with error, the output does not matter in this
5973 // case. We do this to avoid triggering asserts.
5974 Arm_relobj<big_endian>* arm_relobj =
5975 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5976 const Arm_exidx_input_section* exidx_input_section =
5977 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5978 gold_assert(exidx_input_section != NULL);
5979 if (!exidx_input_section->has_errors())
5981 unsigned int text_shndx = exidx_input_section->link();
5982 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5985 // Remove this from link. We also need to recount the
5987 p->relobj()->set_output_section(p->shndx(), NULL);
5988 arm_relobj->set_output_local_symbol_count_needs_update();
5992 // Link exidx output section to the first seen output section and
5993 // set correct entry size.
5994 this->set_link_section(exidx_fixup.first_output_text_section());
5995 this->set_entsize(8);
5997 // Make changes permanent.
5998 this->save_states();
5999 this->set_section_offsets_need_adjustment();
6002 // Link EXIDX output sections to text output sections.
6004 template<bool big_endian>
6006 Arm_output_section<big_endian>::set_exidx_section_link()
6008 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6009 if (!this->input_sections().empty())
6011 Input_section_list::const_iterator p = this->input_sections().begin();
6012 Arm_relobj<big_endian>* arm_relobj =
6013 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6014 unsigned exidx_shndx = p->shndx();
6015 const Arm_exidx_input_section* exidx_input_section =
6016 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6017 gold_assert(exidx_input_section != NULL);
6018 unsigned int text_shndx = exidx_input_section->link();
6019 Output_section* os = arm_relobj->output_section(text_shndx);
6020 this->set_link_section(os);
6024 // Arm_relobj methods.
6026 // Determine if an input section is scannable for stub processing. SHDR is
6027 // the header of the section and SHNDX is the section index. OS is the output
6028 // section for the input section and SYMTAB is the global symbol table used to
6029 // look up ICF information.
6031 template<bool big_endian>
6033 Arm_relobj<big_endian>::section_is_scannable(
6034 const elfcpp::Shdr<32, big_endian>& shdr,
6036 const Output_section* os,
6037 const Symbol_table* symtab)
6039 // Skip any empty sections, unallocated sections or sections whose
6040 // type are not SHT_PROGBITS.
6041 if (shdr.get_sh_size() == 0
6042 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6043 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6046 // Skip any discarded or ICF'ed sections.
6047 if (os == NULL || symtab->is_section_folded(this, shndx))
6050 // If this requires special offset handling, check to see if it is
6051 // a relaxed section. If this is not, then it is a merged section that
6052 // we cannot handle.
6053 if (this->is_output_section_offset_invalid(shndx))
6055 const Output_relaxed_input_section* poris =
6056 os->find_relaxed_input_section(this, shndx);
6064 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6065 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6067 template<bool big_endian>
6069 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6070 const elfcpp::Shdr<32, big_endian>& shdr,
6071 const Relobj::Output_sections& out_sections,
6072 const Symbol_table* symtab,
6073 const unsigned char* pshdrs)
6075 unsigned int sh_type = shdr.get_sh_type();
6076 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6079 // Ignore empty section.
6080 off_t sh_size = shdr.get_sh_size();
6084 // Ignore reloc section with unexpected symbol table. The
6085 // error will be reported in the final link.
6086 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6089 unsigned int reloc_size;
6090 if (sh_type == elfcpp::SHT_REL)
6091 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6093 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6095 // Ignore reloc section with unexpected entsize or uneven size.
6096 // The error will be reported in the final link.
6097 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6100 // Ignore reloc section with bad info. This error will be
6101 // reported in the final link.
6102 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6103 if (index >= this->shnum())
6106 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6107 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6108 return this->section_is_scannable(text_shdr, index,
6109 out_sections[index], symtab);
6112 // Return the output address of either a plain input section or a relaxed
6113 // input section. SHNDX is the section index. We define and use this
6114 // instead of calling Output_section::output_address because that is slow
6115 // for large output.
6117 template<bool big_endian>
6119 Arm_relobj<big_endian>::simple_input_section_output_address(
6123 if (this->is_output_section_offset_invalid(shndx))
6125 const Output_relaxed_input_section* poris =
6126 os->find_relaxed_input_section(this, shndx);
6127 // We do not handle merged sections here.
6128 gold_assert(poris != NULL);
6129 return poris->address();
6132 return os->address() + this->get_output_section_offset(shndx);
6135 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6136 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6138 template<bool big_endian>
6140 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6141 const elfcpp::Shdr<32, big_endian>& shdr,
6144 const Symbol_table* symtab)
6146 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6149 // If the section does not cross any 4K-boundaries, it does not need to
6151 Arm_address address = this->simple_input_section_output_address(shndx, os);
6152 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6158 // Scan a section for Cortex-A8 workaround.
6160 template<bool big_endian>
6162 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6163 const elfcpp::Shdr<32, big_endian>& shdr,
6166 Target_arm<big_endian>* arm_target)
6168 // Look for the first mapping symbol in this section. It should be
6170 Mapping_symbol_position section_start(shndx, 0);
6171 typename Mapping_symbols_info::const_iterator p =
6172 this->mapping_symbols_info_.lower_bound(section_start);
6174 // There are no mapping symbols for this section. Treat it as a data-only
6175 // section. Issue a warning if section is marked as containing
6177 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6179 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6180 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6181 "erratum because it has no mapping symbols."),
6182 shndx, this->name().c_str());
6186 Arm_address output_address =
6187 this->simple_input_section_output_address(shndx, os);
6189 // Get the section contents.
6190 section_size_type input_view_size = 0;
6191 const unsigned char* input_view =
6192 this->section_contents(shndx, &input_view_size, false);
6194 // We need to go through the mapping symbols to determine what to
6195 // scan. There are two reasons. First, we should look at THUMB code and
6196 // THUMB code only. Second, we only want to look at the 4K-page boundary
6197 // to speed up the scanning.
6199 while (p != this->mapping_symbols_info_.end()
6200 && p->first.first == shndx)
6202 typename Mapping_symbols_info::const_iterator next =
6203 this->mapping_symbols_info_.upper_bound(p->first);
6205 // Only scan part of a section with THUMB code.
6206 if (p->second == 't')
6208 // Determine the end of this range.
6209 section_size_type span_start =
6210 convert_to_section_size_type(p->first.second);
6211 section_size_type span_end;
6212 if (next != this->mapping_symbols_info_.end()
6213 && next->first.first == shndx)
6214 span_end = convert_to_section_size_type(next->first.second);
6216 span_end = convert_to_section_size_type(shdr.get_sh_size());
6218 if (((span_start + output_address) & ~0xfffUL)
6219 != ((span_end + output_address - 1) & ~0xfffUL))
6221 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6222 span_start, span_end,
6232 // Scan relocations for stub generation.
6234 template<bool big_endian>
6236 Arm_relobj<big_endian>::scan_sections_for_stubs(
6237 Target_arm<big_endian>* arm_target,
6238 const Symbol_table* symtab,
6239 const Layout* layout)
6241 unsigned int shnum = this->shnum();
6242 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6244 // Read the section headers.
6245 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6249 // To speed up processing, we set up hash tables for fast lookup of
6250 // input offsets to output addresses.
6251 this->initialize_input_to_output_maps();
6253 const Relobj::Output_sections& out_sections(this->output_sections());
6255 Relocate_info<32, big_endian> relinfo;
6256 relinfo.symtab = symtab;
6257 relinfo.layout = layout;
6258 relinfo.object = this;
6260 // Do relocation stubs scanning.
6261 const unsigned char* p = pshdrs + shdr_size;
6262 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6264 const elfcpp::Shdr<32, big_endian> shdr(p);
6265 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6268 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6269 Arm_address output_offset = this->get_output_section_offset(index);
6270 Arm_address output_address;
6271 if (output_offset != invalid_address)
6272 output_address = out_sections[index]->address() + output_offset;
6275 // Currently this only happens for a relaxed section.
6276 const Output_relaxed_input_section* poris =
6277 out_sections[index]->find_relaxed_input_section(this, index);
6278 gold_assert(poris != NULL);
6279 output_address = poris->address();
6282 // Get the relocations.
6283 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6287 // Get the section contents. This does work for the case in which
6288 // we modify the contents of an input section. We need to pass the
6289 // output view under such circumstances.
6290 section_size_type input_view_size = 0;
6291 const unsigned char* input_view =
6292 this->section_contents(index, &input_view_size, false);
6294 relinfo.reloc_shndx = i;
6295 relinfo.data_shndx = index;
6296 unsigned int sh_type = shdr.get_sh_type();
6297 unsigned int reloc_size;
6298 if (sh_type == elfcpp::SHT_REL)
6299 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6301 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6303 Output_section* os = out_sections[index];
6304 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6305 shdr.get_sh_size() / reloc_size,
6307 output_offset == invalid_address,
6308 input_view, output_address,
6313 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6314 // after its relocation section, if there is one, is processed for
6315 // relocation stubs. Merging this loop with the one above would have been
6316 // complicated since we would have had to make sure that relocation stub
6317 // scanning is done first.
6318 if (arm_target->fix_cortex_a8())
6320 const unsigned char* p = pshdrs + shdr_size;
6321 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6323 const elfcpp::Shdr<32, big_endian> shdr(p);
6324 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6327 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6332 // After we've done the relocations, we release the hash tables,
6333 // since we no longer need them.
6334 this->free_input_to_output_maps();
6337 // Count the local symbols. The ARM backend needs to know if a symbol
6338 // is a THUMB function or not. For global symbols, it is easy because
6339 // the Symbol object keeps the ELF symbol type. For local symbol it is
6340 // harder because we cannot access this information. So we override the
6341 // do_count_local_symbol in parent and scan local symbols to mark
6342 // THUMB functions. This is not the most efficient way but I do not want to
6343 // slow down other ports by calling a per symbol target hook inside
6344 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6346 template<bool big_endian>
6348 Arm_relobj<big_endian>::do_count_local_symbols(
6349 Stringpool_template<char>* pool,
6350 Stringpool_template<char>* dynpool)
6352 // We need to fix-up the values of any local symbols whose type are
6355 // Ask parent to count the local symbols.
6356 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6357 const unsigned int loccount = this->local_symbol_count();
6361 // Initialize the thumb function bit-vector.
6362 std::vector<bool> empty_vector(loccount, false);
6363 this->local_symbol_is_thumb_function_.swap(empty_vector);
6365 // Read the symbol table section header.
6366 const unsigned int symtab_shndx = this->symtab_shndx();
6367 elfcpp::Shdr<32, big_endian>
6368 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6369 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6371 // Read the local symbols.
6372 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6373 gold_assert(loccount == symtabshdr.get_sh_info());
6374 off_t locsize = loccount * sym_size;
6375 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6376 locsize, true, true);
6378 // For mapping symbol processing, we need to read the symbol names.
6379 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6380 if (strtab_shndx >= this->shnum())
6382 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6386 elfcpp::Shdr<32, big_endian>
6387 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6388 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6390 this->error(_("symbol table name section has wrong type: %u"),
6391 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6394 const char* pnames =
6395 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6396 strtabshdr.get_sh_size(),
6399 // Loop over the local symbols and mark any local symbols pointing
6400 // to THUMB functions.
6402 // Skip the first dummy symbol.
6404 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6405 this->local_values();
6406 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6408 elfcpp::Sym<32, big_endian> sym(psyms);
6409 elfcpp::STT st_type = sym.get_st_type();
6410 Symbol_value<32>& lv((*plocal_values)[i]);
6411 Arm_address input_value = lv.input_value();
6413 // Check to see if this is a mapping symbol.
6414 const char* sym_name = pnames + sym.get_st_name();
6415 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6418 unsigned int input_shndx =
6419 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6420 gold_assert(is_ordinary);
6422 // Strip of LSB in case this is a THUMB symbol.
6423 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6424 this->mapping_symbols_info_[msp] = sym_name[1];
6427 if (st_type == elfcpp::STT_ARM_TFUNC
6428 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6430 // This is a THUMB function. Mark this and canonicalize the
6431 // symbol value by setting LSB.
6432 this->local_symbol_is_thumb_function_[i] = true;
6433 if ((input_value & 1) == 0)
6434 lv.set_input_value(input_value | 1);
6439 // Relocate sections.
6440 template<bool big_endian>
6442 Arm_relobj<big_endian>::do_relocate_sections(
6443 const Symbol_table* symtab,
6444 const Layout* layout,
6445 const unsigned char* pshdrs,
6447 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6449 // Call parent to relocate sections.
6450 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6451 pshdrs, of, pviews);
6453 // We do not generate stubs if doing a relocatable link.
6454 if (parameters->options().relocatable())
6457 // Relocate stub tables.
6458 unsigned int shnum = this->shnum();
6460 Target_arm<big_endian>* arm_target =
6461 Target_arm<big_endian>::default_target();
6463 Relocate_info<32, big_endian> relinfo;
6464 relinfo.symtab = symtab;
6465 relinfo.layout = layout;
6466 relinfo.object = this;
6468 for (unsigned int i = 1; i < shnum; ++i)
6470 Arm_input_section<big_endian>* arm_input_section =
6471 arm_target->find_arm_input_section(this, i);
6473 if (arm_input_section != NULL
6474 && arm_input_section->is_stub_table_owner()
6475 && !arm_input_section->stub_table()->empty())
6477 // We cannot discard a section if it owns a stub table.
6478 Output_section* os = this->output_section(i);
6479 gold_assert(os != NULL);
6481 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6482 relinfo.reloc_shdr = NULL;
6483 relinfo.data_shndx = i;
6484 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6486 gold_assert((*pviews)[i].view != NULL);
6488 // We are passed the output section view. Adjust it to cover the
6490 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6491 gold_assert((stub_table->address() >= (*pviews)[i].address)
6492 && ((stub_table->address() + stub_table->data_size())
6493 <= (*pviews)[i].address + (*pviews)[i].view_size));
6495 off_t offset = stub_table->address() - (*pviews)[i].address;
6496 unsigned char* view = (*pviews)[i].view + offset;
6497 Arm_address address = stub_table->address();
6498 section_size_type view_size = stub_table->data_size();
6500 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6504 // Apply Cortex A8 workaround if applicable.
6505 if (this->section_has_cortex_a8_workaround(i))
6507 unsigned char* view = (*pviews)[i].view;
6508 Arm_address view_address = (*pviews)[i].address;
6509 section_size_type view_size = (*pviews)[i].view_size;
6510 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6512 // Adjust view to cover section.
6513 Output_section* os = this->output_section(i);
6514 gold_assert(os != NULL);
6515 Arm_address section_address =
6516 this->simple_input_section_output_address(i, os);
6517 uint64_t section_size = this->section_size(i);
6519 gold_assert(section_address >= view_address
6520 && ((section_address + section_size)
6521 <= (view_address + view_size)));
6523 unsigned char* section_view = view + (section_address - view_address);
6525 // Apply the Cortex-A8 workaround to the output address range
6526 // corresponding to this input section.
6527 stub_table->apply_cortex_a8_workaround_to_address_range(
6536 // Find the linked text section of an EXIDX section by looking at the first
6537 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6538 // must be linked to its associated code section via the sh_link field of
6539 // its section header. However, some tools are broken and the link is not
6540 // always set. LD just drops such an EXIDX section silently, causing the
6541 // associated code not unwindabled. Here we try a little bit harder to
6542 // discover the linked code section.
6544 // PSHDR points to the section header of a relocation section of an EXIDX
6545 // section. If we can find a linked text section, return true and
6546 // store the text section index in the location PSHNDX. Otherwise
6549 template<bool big_endian>
6551 Arm_relobj<big_endian>::find_linked_text_section(
6552 const unsigned char* pshdr,
6553 const unsigned char* psyms,
6554 unsigned int* pshndx)
6556 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6558 // If there is no relocation, we cannot find the linked text section.
6560 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6561 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6563 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6564 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6566 // Get the relocations.
6567 const unsigned char* prelocs =
6568 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6570 // Find the REL31 relocation for the first word of the first EXIDX entry.
6571 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6573 Arm_address r_offset;
6574 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6575 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6577 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6578 r_info = reloc.get_r_info();
6579 r_offset = reloc.get_r_offset();
6583 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6584 r_info = reloc.get_r_info();
6585 r_offset = reloc.get_r_offset();
6588 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6589 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6592 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6594 || r_sym >= this->local_symbol_count()
6598 // This is the relocation for the first word of the first EXIDX entry.
6599 // We expect to see a local section symbol.
6600 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6601 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6602 if (sym.get_st_type() == elfcpp::STT_SECTION)
6606 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6607 gold_assert(is_ordinary);
6617 // Make an EXIDX input section object for an EXIDX section whose index is
6618 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6619 // is the section index of the linked text section.
6621 template<bool big_endian>
6623 Arm_relobj<big_endian>::make_exidx_input_section(
6625 const elfcpp::Shdr<32, big_endian>& shdr,
6626 unsigned int text_shndx,
6627 const elfcpp::Shdr<32, big_endian>& text_shdr)
6629 // Create an Arm_exidx_input_section object for this EXIDX section.
6630 Arm_exidx_input_section* exidx_input_section =
6631 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6632 shdr.get_sh_addralign(),
6633 text_shdr.get_sh_size());
6635 gold_assert(this->exidx_section_map_[shndx] == NULL);
6636 this->exidx_section_map_[shndx] = exidx_input_section;
6638 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6640 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6641 this->section_name(shndx).c_str(), shndx, text_shndx,
6642 this->name().c_str());
6643 exidx_input_section->set_has_errors();
6645 else if (this->exidx_section_map_[text_shndx] != NULL)
6647 unsigned other_exidx_shndx =
6648 this->exidx_section_map_[text_shndx]->shndx();
6649 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6651 this->section_name(shndx).c_str(), shndx,
6652 this->section_name(other_exidx_shndx).c_str(),
6653 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6654 text_shndx, this->name().c_str());
6655 exidx_input_section->set_has_errors();
6658 this->exidx_section_map_[text_shndx] = exidx_input_section;
6660 // Check section flags of text section.
6661 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6663 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6665 this->section_name(shndx).c_str(), shndx,
6666 this->section_name(text_shndx).c_str(), text_shndx,
6667 this->name().c_str());
6668 exidx_input_section->set_has_errors();
6670 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6671 // I would like to make this an error but currently ld just ignores
6673 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6675 this->section_name(shndx).c_str(), shndx,
6676 this->section_name(text_shndx).c_str(), text_shndx,
6677 this->name().c_str());
6680 // Read the symbol information.
6682 template<bool big_endian>
6684 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6686 // Call parent class to read symbol information.
6687 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6689 // If this input file is a binary file, it has no processor
6690 // specific flags and attributes section.
6691 Input_file::Format format = this->input_file()->format();
6692 if (format != Input_file::FORMAT_ELF)
6694 gold_assert(format == Input_file::FORMAT_BINARY);
6695 this->merge_flags_and_attributes_ = false;
6699 // Read processor-specific flags in ELF file header.
6700 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6701 elfcpp::Elf_sizes<32>::ehdr_size,
6703 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6704 this->processor_specific_flags_ = ehdr.get_e_flags();
6706 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6708 std::vector<unsigned int> deferred_exidx_sections;
6709 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6710 const unsigned char* pshdrs = sd->section_headers->data();
6711 const unsigned char* ps = pshdrs + shdr_size;
6712 bool must_merge_flags_and_attributes = false;
6713 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6715 elfcpp::Shdr<32, big_endian> shdr(ps);
6717 // Sometimes an object has no contents except the section name string
6718 // table and an empty symbol table with the undefined symbol. We
6719 // don't want to merge processor-specific flags from such an object.
6720 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6722 // Symbol table is not empty.
6723 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6724 elfcpp::Elf_sizes<32>::sym_size;
6725 if (shdr.get_sh_size() > sym_size)
6726 must_merge_flags_and_attributes = true;
6728 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6729 // If this is neither an empty symbol table nor a string table,
6731 must_merge_flags_and_attributes = true;
6733 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6735 gold_assert(this->attributes_section_data_ == NULL);
6736 section_offset_type section_offset = shdr.get_sh_offset();
6737 section_size_type section_size =
6738 convert_to_section_size_type(shdr.get_sh_size());
6739 const unsigned char* view =
6740 this->get_view(section_offset, section_size, true, false);
6741 this->attributes_section_data_ =
6742 new Attributes_section_data(view, section_size);
6744 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6746 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6747 if (text_shndx == elfcpp::SHN_UNDEF)
6748 deferred_exidx_sections.push_back(i);
6751 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6752 + text_shndx * shdr_size);
6753 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6755 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6756 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6757 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6758 this->section_name(i).c_str(), this->name().c_str());
6763 if (!must_merge_flags_and_attributes)
6765 gold_assert(deferred_exidx_sections.empty());
6766 this->merge_flags_and_attributes_ = false;
6770 // Some tools are broken and they do not set the link of EXIDX sections.
6771 // We look at the first relocation to figure out the linked sections.
6772 if (!deferred_exidx_sections.empty())
6774 // We need to go over the section headers again to find the mapping
6775 // from sections being relocated to their relocation sections. This is
6776 // a bit inefficient as we could do that in the loop above. However,
6777 // we do not expect any deferred EXIDX sections normally. So we do not
6778 // want to slow down the most common path.
6779 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6780 Reloc_map reloc_map;
6781 ps = pshdrs + shdr_size;
6782 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6784 elfcpp::Shdr<32, big_endian> shdr(ps);
6785 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6786 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6788 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6789 if (info_shndx >= this->shnum())
6790 gold_error(_("relocation section %u has invalid info %u"),
6792 Reloc_map::value_type value(info_shndx, i);
6793 std::pair<Reloc_map::iterator, bool> result =
6794 reloc_map.insert(value);
6796 gold_error(_("section %u has multiple relocation sections "
6798 info_shndx, i, reloc_map[info_shndx]);
6802 // Read the symbol table section header.
6803 const unsigned int symtab_shndx = this->symtab_shndx();
6804 elfcpp::Shdr<32, big_endian>
6805 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6806 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6808 // Read the local symbols.
6809 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6810 const unsigned int loccount = this->local_symbol_count();
6811 gold_assert(loccount == symtabshdr.get_sh_info());
6812 off_t locsize = loccount * sym_size;
6813 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6814 locsize, true, true);
6816 // Process the deferred EXIDX sections.
6817 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6819 unsigned int shndx = deferred_exidx_sections[i];
6820 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6821 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6822 Reloc_map::const_iterator it = reloc_map.find(shndx);
6823 if (it != reloc_map.end())
6824 find_linked_text_section(pshdrs + it->second * shdr_size,
6825 psyms, &text_shndx);
6826 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6827 + text_shndx * shdr_size);
6828 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6833 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6834 // sections for unwinding. These sections are referenced implicitly by
6835 // text sections linked in the section headers. If we ignore these implicit
6836 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6837 // will be garbage-collected incorrectly. Hence we override the same function
6838 // in the base class to handle these implicit references.
6840 template<bool big_endian>
6842 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6844 Read_relocs_data* rd)
6846 // First, call base class method to process relocations in this object.
6847 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6849 // If --gc-sections is not specified, there is nothing more to do.
6850 // This happens when --icf is used but --gc-sections is not.
6851 if (!parameters->options().gc_sections())
6854 unsigned int shnum = this->shnum();
6855 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6856 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6860 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6861 // to these from the linked text sections.
6862 const unsigned char* ps = pshdrs + shdr_size;
6863 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6865 elfcpp::Shdr<32, big_endian> shdr(ps);
6866 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6868 // Found an .ARM.exidx section, add it to the set of reachable
6869 // sections from its linked text section.
6870 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6871 symtab->gc()->add_reference(this, text_shndx, this, i);
6876 // Update output local symbol count. Owing to EXIDX entry merging, some local
6877 // symbols will be removed in output. Adjust output local symbol count
6878 // accordingly. We can only changed the static output local symbol count. It
6879 // is too late to change the dynamic symbols.
6881 template<bool big_endian>
6883 Arm_relobj<big_endian>::update_output_local_symbol_count()
6885 // Caller should check that this needs updating. We want caller checking
6886 // because output_local_symbol_count_needs_update() is most likely inlined.
6887 gold_assert(this->output_local_symbol_count_needs_update_);
6889 gold_assert(this->symtab_shndx() != -1U);
6890 if (this->symtab_shndx() == 0)
6892 // This object has no symbols. Weird but legal.
6896 // Read the symbol table section header.
6897 const unsigned int symtab_shndx = this->symtab_shndx();
6898 elfcpp::Shdr<32, big_endian>
6899 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6900 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6902 // Read the local symbols.
6903 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6904 const unsigned int loccount = this->local_symbol_count();
6905 gold_assert(loccount == symtabshdr.get_sh_info());
6906 off_t locsize = loccount * sym_size;
6907 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6908 locsize, true, true);
6910 // Loop over the local symbols.
6912 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6914 const Output_sections& out_sections(this->output_sections());
6915 unsigned int shnum = this->shnum();
6916 unsigned int count = 0;
6917 // Skip the first, dummy, symbol.
6919 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6921 elfcpp::Sym<32, big_endian> sym(psyms);
6923 Symbol_value<32>& lv((*this->local_values())[i]);
6925 // This local symbol was already discarded by do_count_local_symbols.
6926 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6930 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6935 Output_section* os = out_sections[shndx];
6937 // This local symbol no longer has an output section. Discard it.
6940 lv.set_no_output_symtab_entry();
6944 // Currently we only discard parts of EXIDX input sections.
6945 // We explicitly check for a merged EXIDX input section to avoid
6946 // calling Output_section_data::output_offset unless necessary.
6947 if ((this->get_output_section_offset(shndx) == invalid_address)
6948 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6950 section_offset_type output_offset =
6951 os->output_offset(this, shndx, lv.input_value());
6952 if (output_offset == -1)
6954 // This symbol is defined in a part of an EXIDX input section
6955 // that is discarded due to entry merging.
6956 lv.set_no_output_symtab_entry();
6965 this->set_output_local_symbol_count(count);
6966 this->output_local_symbol_count_needs_update_ = false;
6969 // Arm_dynobj methods.
6971 // Read the symbol information.
6973 template<bool big_endian>
6975 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6977 // Call parent class to read symbol information.
6978 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6980 // Read processor-specific flags in ELF file header.
6981 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6982 elfcpp::Elf_sizes<32>::ehdr_size,
6984 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6985 this->processor_specific_flags_ = ehdr.get_e_flags();
6987 // Read the attributes section if there is one.
6988 // We read from the end because gas seems to put it near the end of
6989 // the section headers.
6990 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6991 const unsigned char* ps =
6992 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6993 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6995 elfcpp::Shdr<32, big_endian> shdr(ps);
6996 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6998 section_offset_type section_offset = shdr.get_sh_offset();
6999 section_size_type section_size =
7000 convert_to_section_size_type(shdr.get_sh_size());
7001 const unsigned char* view =
7002 this->get_view(section_offset, section_size, true, false);
7003 this->attributes_section_data_ =
7004 new Attributes_section_data(view, section_size);
7010 // Stub_addend_reader methods.
7012 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7014 template<bool big_endian>
7015 elfcpp::Elf_types<32>::Elf_Swxword
7016 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7017 unsigned int r_type,
7018 const unsigned char* view,
7019 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7021 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7025 case elfcpp::R_ARM_CALL:
7026 case elfcpp::R_ARM_JUMP24:
7027 case elfcpp::R_ARM_PLT32:
7029 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7030 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7031 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7032 return Bits<26>::sign_extend32(val << 2);
7035 case elfcpp::R_ARM_THM_CALL:
7036 case elfcpp::R_ARM_THM_JUMP24:
7037 case elfcpp::R_ARM_THM_XPC22:
7039 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7040 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7041 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7042 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7043 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7046 case elfcpp::R_ARM_THM_JUMP19:
7048 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7049 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7050 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7051 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7052 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7060 // Arm_output_data_got methods.
7062 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7063 // The first one is initialized to be 1, which is the module index for
7064 // the main executable and the second one 0. A reloc of the type
7065 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7066 // be applied by gold. GSYM is a global symbol.
7068 template<bool big_endian>
7070 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7071 unsigned int got_type,
7074 if (gsym->has_got_offset(got_type))
7077 // We are doing a static link. Just mark it as belong to module 1,
7079 unsigned int got_offset = this->add_constant(1);
7080 gsym->set_got_offset(got_type, got_offset);
7081 got_offset = this->add_constant(0);
7082 this->static_relocs_.push_back(Static_reloc(got_offset,
7083 elfcpp::R_ARM_TLS_DTPOFF32,
7087 // Same as the above but for a local symbol.
7089 template<bool big_endian>
7091 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7092 unsigned int got_type,
7093 Sized_relobj_file<32, big_endian>* object,
7096 if (object->local_has_got_offset(index, got_type))
7099 // We are doing a static link. Just mark it as belong to module 1,
7101 unsigned int got_offset = this->add_constant(1);
7102 object->set_local_got_offset(index, got_type, got_offset);
7103 got_offset = this->add_constant(0);
7104 this->static_relocs_.push_back(Static_reloc(got_offset,
7105 elfcpp::R_ARM_TLS_DTPOFF32,
7109 template<bool big_endian>
7111 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7113 // Call parent to write out GOT.
7114 Output_data_got<32, big_endian>::do_write(of);
7116 // We are done if there is no fix up.
7117 if (this->static_relocs_.empty())
7120 gold_assert(parameters->doing_static_link());
7122 const off_t offset = this->offset();
7123 const section_size_type oview_size =
7124 convert_to_section_size_type(this->data_size());
7125 unsigned char* const oview = of->get_output_view(offset, oview_size);
7127 Output_segment* tls_segment = this->layout_->tls_segment();
7128 gold_assert(tls_segment != NULL);
7130 // The thread pointer $tp points to the TCB, which is followed by the
7131 // TLS. So we need to adjust $tp relative addressing by this amount.
7132 Arm_address aligned_tcb_size =
7133 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7135 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7137 Static_reloc& reloc(this->static_relocs_[i]);
7140 if (!reloc.symbol_is_global())
7142 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7143 const Symbol_value<32>* psymval =
7144 reloc.relobj()->local_symbol(reloc.index());
7146 // We are doing static linking. Issue an error and skip this
7147 // relocation if the symbol is undefined or in a discarded_section.
7149 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7150 if ((shndx == elfcpp::SHN_UNDEF)
7152 && shndx != elfcpp::SHN_UNDEF
7153 && !object->is_section_included(shndx)
7154 && !this->symbol_table_->is_section_folded(object, shndx)))
7156 gold_error(_("undefined or discarded local symbol %u from "
7157 " object %s in GOT"),
7158 reloc.index(), reloc.relobj()->name().c_str());
7162 value = psymval->value(object, 0);
7166 const Symbol* gsym = reloc.symbol();
7167 gold_assert(gsym != NULL);
7168 if (gsym->is_forwarder())
7169 gsym = this->symbol_table_->resolve_forwards(gsym);
7171 // We are doing static linking. Issue an error and skip this
7172 // relocation if the symbol is undefined or in a discarded_section
7173 // unless it is a weakly_undefined symbol.
7174 if ((gsym->is_defined_in_discarded_section()
7175 || gsym->is_undefined())
7176 && !gsym->is_weak_undefined())
7178 gold_error(_("undefined or discarded symbol %s in GOT"),
7183 if (!gsym->is_weak_undefined())
7185 const Sized_symbol<32>* sym =
7186 static_cast<const Sized_symbol<32>*>(gsym);
7187 value = sym->value();
7193 unsigned got_offset = reloc.got_offset();
7194 gold_assert(got_offset < oview_size);
7196 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7197 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7199 switch (reloc.r_type())
7201 case elfcpp::R_ARM_TLS_DTPOFF32:
7204 case elfcpp::R_ARM_TLS_TPOFF32:
7205 x = value + aligned_tcb_size;
7210 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7213 of->write_output_view(offset, oview_size, oview);
7216 // A class to handle the PLT data.
7217 // This is an abstract base class that handles most of the linker details
7218 // but does not know the actual contents of PLT entries. The derived
7219 // classes below fill in those details.
7221 template<bool big_endian>
7222 class Output_data_plt_arm : public Output_section_data
7225 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7228 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7230 // Add an entry to the PLT.
7232 add_entry(Symbol* gsym);
7234 // Return the .rel.plt section data.
7235 const Reloc_section*
7237 { return this->rel_; }
7239 // Return the number of PLT entries.
7242 { return this->count_; }
7244 // Return the offset of the first non-reserved PLT entry.
7246 first_plt_entry_offset() const
7247 { return this->do_first_plt_entry_offset(); }
7249 // Return the size of a PLT entry.
7251 get_plt_entry_size() const
7252 { return this->do_get_plt_entry_size(); }
7255 // Fill in the first PLT entry.
7257 fill_first_plt_entry(unsigned char* pov,
7258 Arm_address got_address,
7259 Arm_address plt_address)
7260 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7263 fill_plt_entry(unsigned char* pov,
7264 Arm_address got_address,
7265 Arm_address plt_address,
7266 unsigned int got_offset,
7267 unsigned int plt_offset)
7268 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7270 virtual unsigned int
7271 do_first_plt_entry_offset() const = 0;
7273 virtual unsigned int
7274 do_get_plt_entry_size() const = 0;
7277 do_fill_first_plt_entry(unsigned char* pov,
7278 Arm_address got_address,
7279 Arm_address plt_address) = 0;
7282 do_fill_plt_entry(unsigned char* pov,
7283 Arm_address got_address,
7284 Arm_address plt_address,
7285 unsigned int got_offset,
7286 unsigned int plt_offset) = 0;
7289 do_adjust_output_section(Output_section* os);
7291 // Write to a map file.
7293 do_print_to_mapfile(Mapfile* mapfile) const
7294 { mapfile->print_output_data(this, _("** PLT")); }
7297 // Set the final size.
7299 set_final_data_size()
7301 this->set_data_size(this->first_plt_entry_offset()
7302 + this->count_ * this->get_plt_entry_size());
7305 // Write out the PLT data.
7307 do_write(Output_file*);
7309 // The reloc section.
7310 Reloc_section* rel_;
7311 // The .got.plt section.
7312 Output_data_space* got_plt_;
7313 // The number of PLT entries.
7314 unsigned int count_;
7317 // Create the PLT section. The ordinary .got section is an argument,
7318 // since we need to refer to the start. We also create our own .got
7319 // section just for PLT entries.
7321 template<bool big_endian>
7322 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7324 Output_data_space* got_plt)
7325 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7327 this->rel_ = new Reloc_section(false);
7328 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7329 elfcpp::SHF_ALLOC, this->rel_,
7330 ORDER_DYNAMIC_PLT_RELOCS, false);
7333 template<bool big_endian>
7335 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7340 // Add an entry to the PLT.
7342 template<bool big_endian>
7344 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7346 gold_assert(!gsym->has_plt_offset());
7348 // Note that when setting the PLT offset we skip the initial
7349 // reserved PLT entry.
7350 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7351 + this->first_plt_entry_offset());
7355 section_offset_type got_offset = this->got_plt_->current_data_size();
7357 // Every PLT entry needs a GOT entry which points back to the PLT
7358 // entry (this will be changed by the dynamic linker, normally
7359 // lazily when the function is called).
7360 this->got_plt_->set_current_data_size(got_offset + 4);
7362 // Every PLT entry needs a reloc.
7363 gsym->set_needs_dynsym_entry();
7364 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7367 // Note that we don't need to save the symbol. The contents of the
7368 // PLT are independent of which symbols are used. The symbols only
7369 // appear in the relocations.
7372 template<bool big_endian>
7373 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7376 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7377 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7381 // Return the offset of the first non-reserved PLT entry.
7382 virtual unsigned int
7383 do_first_plt_entry_offset() const
7384 { return sizeof(first_plt_entry); }
7386 // Return the size of a PLT entry.
7387 virtual unsigned int
7388 do_get_plt_entry_size() const
7389 { return sizeof(plt_entry); }
7392 do_fill_first_plt_entry(unsigned char* pov,
7393 Arm_address got_address,
7394 Arm_address plt_address);
7397 do_fill_plt_entry(unsigned char* pov,
7398 Arm_address got_address,
7399 Arm_address plt_address,
7400 unsigned int got_offset,
7401 unsigned int plt_offset);
7404 // Template for the first PLT entry.
7405 static const uint32_t first_plt_entry[5];
7407 // Template for subsequent PLT entries.
7408 static const uint32_t plt_entry[3];
7412 // FIXME: This is not very flexible. Right now this has only been tested
7413 // on armv5te. If we are to support additional architecture features like
7414 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7416 // The first entry in the PLT.
7417 template<bool big_endian>
7418 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7420 0xe52de004, // str lr, [sp, #-4]!
7421 0xe59fe004, // ldr lr, [pc, #4]
7422 0xe08fe00e, // add lr, pc, lr
7423 0xe5bef008, // ldr pc, [lr, #8]!
7424 0x00000000, // &GOT[0] - .
7427 template<bool big_endian>
7429 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7431 Arm_address got_address,
7432 Arm_address plt_address)
7434 // Write first PLT entry. All but the last word are constants.
7435 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7436 / sizeof(plt_entry[0]));
7437 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7438 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7439 // Last word in first PLT entry is &GOT[0] - .
7440 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7441 got_address - (plt_address + 16));
7444 // Subsequent entries in the PLT.
7446 template<bool big_endian>
7447 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7449 0xe28fc600, // add ip, pc, #0xNN00000
7450 0xe28cca00, // add ip, ip, #0xNN000
7451 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7454 template<bool big_endian>
7456 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7458 Arm_address got_address,
7459 Arm_address plt_address,
7460 unsigned int got_offset,
7461 unsigned int plt_offset)
7463 int32_t offset = ((got_address + got_offset)
7464 - (plt_address + plt_offset + 8));
7466 gold_assert(offset >= 0 && offset < 0x0fffffff);
7467 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7468 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7469 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7470 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7471 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7472 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7475 // Write out the PLT. This uses the hand-coded instructions above,
7476 // and adjusts them as needed. This is all specified by the arm ELF
7477 // Processor Supplement.
7479 template<bool big_endian>
7481 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7483 const off_t offset = this->offset();
7484 const section_size_type oview_size =
7485 convert_to_section_size_type(this->data_size());
7486 unsigned char* const oview = of->get_output_view(offset, oview_size);
7488 const off_t got_file_offset = this->got_plt_->offset();
7489 const section_size_type got_size =
7490 convert_to_section_size_type(this->got_plt_->data_size());
7491 unsigned char* const got_view = of->get_output_view(got_file_offset,
7493 unsigned char* pov = oview;
7495 Arm_address plt_address = this->address();
7496 Arm_address got_address = this->got_plt_->address();
7498 // Write first PLT entry.
7499 this->fill_first_plt_entry(pov, got_address, plt_address);
7500 pov += this->first_plt_entry_offset();
7502 unsigned char* got_pov = got_view;
7504 memset(got_pov, 0, 12);
7507 unsigned int plt_offset = this->first_plt_entry_offset();
7508 unsigned int got_offset = 12;
7509 const unsigned int count = this->count_;
7510 for (unsigned int i = 0;
7513 pov += this->get_plt_entry_size(),
7515 plt_offset += this->get_plt_entry_size(),
7518 // Set and adjust the PLT entry itself.
7519 this->fill_plt_entry(pov, got_address, plt_address,
7520 got_offset, plt_offset);
7522 // Set the entry in the GOT.
7523 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7526 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7527 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7529 of->write_output_view(offset, oview_size, oview);
7530 of->write_output_view(got_file_offset, got_size, got_view);
7533 // Create a PLT entry for a global symbol.
7535 template<bool big_endian>
7537 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7540 if (gsym->has_plt_offset())
7543 if (this->plt_ == NULL)
7545 // Create the GOT sections first.
7546 this->got_section(symtab, layout);
7548 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7550 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7552 | elfcpp::SHF_EXECINSTR),
7553 this->plt_, ORDER_PLT, false);
7555 this->plt_->add_entry(gsym);
7558 // Return the number of entries in the PLT.
7560 template<bool big_endian>
7562 Target_arm<big_endian>::plt_entry_count() const
7564 if (this->plt_ == NULL)
7566 return this->plt_->entry_count();
7569 // Return the offset of the first non-reserved PLT entry.
7571 template<bool big_endian>
7573 Target_arm<big_endian>::first_plt_entry_offset() const
7575 return this->plt_->first_plt_entry_offset();
7578 // Return the size of each PLT entry.
7580 template<bool big_endian>
7582 Target_arm<big_endian>::plt_entry_size() const
7584 return this->plt_->get_plt_entry_size();
7587 // Get the section to use for TLS_DESC relocations.
7589 template<bool big_endian>
7590 typename Target_arm<big_endian>::Reloc_section*
7591 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7593 return this->plt_section()->rel_tls_desc(layout);
7596 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7598 template<bool big_endian>
7600 Target_arm<big_endian>::define_tls_base_symbol(
7601 Symbol_table* symtab,
7604 if (this->tls_base_symbol_defined_)
7607 Output_segment* tls_segment = layout->tls_segment();
7608 if (tls_segment != NULL)
7610 bool is_exec = parameters->options().output_is_executable();
7611 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7612 Symbol_table::PREDEFINED,
7616 elfcpp::STV_HIDDEN, 0,
7618 ? Symbol::SEGMENT_END
7619 : Symbol::SEGMENT_START),
7622 this->tls_base_symbol_defined_ = true;
7625 // Create a GOT entry for the TLS module index.
7627 template<bool big_endian>
7629 Target_arm<big_endian>::got_mod_index_entry(
7630 Symbol_table* symtab,
7632 Sized_relobj_file<32, big_endian>* object)
7634 if (this->got_mod_index_offset_ == -1U)
7636 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7637 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7638 unsigned int got_offset;
7639 if (!parameters->doing_static_link())
7641 got_offset = got->add_constant(0);
7642 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7643 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7648 // We are doing a static link. Just mark it as belong to module 1,
7650 got_offset = got->add_constant(1);
7653 got->add_constant(0);
7654 this->got_mod_index_offset_ = got_offset;
7656 return this->got_mod_index_offset_;
7659 // Optimize the TLS relocation type based on what we know about the
7660 // symbol. IS_FINAL is true if the final address of this symbol is
7661 // known at link time.
7663 template<bool big_endian>
7664 tls::Tls_optimization
7665 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7667 // FIXME: Currently we do not do any TLS optimization.
7668 return tls::TLSOPT_NONE;
7671 // Get the Reference_flags for a particular relocation.
7673 template<bool big_endian>
7675 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7679 case elfcpp::R_ARM_NONE:
7680 case elfcpp::R_ARM_V4BX:
7681 case elfcpp::R_ARM_GNU_VTENTRY:
7682 case elfcpp::R_ARM_GNU_VTINHERIT:
7683 // No symbol reference.
7686 case elfcpp::R_ARM_ABS32:
7687 case elfcpp::R_ARM_ABS16:
7688 case elfcpp::R_ARM_ABS12:
7689 case elfcpp::R_ARM_THM_ABS5:
7690 case elfcpp::R_ARM_ABS8:
7691 case elfcpp::R_ARM_BASE_ABS:
7692 case elfcpp::R_ARM_MOVW_ABS_NC:
7693 case elfcpp::R_ARM_MOVT_ABS:
7694 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7695 case elfcpp::R_ARM_THM_MOVT_ABS:
7696 case elfcpp::R_ARM_ABS32_NOI:
7697 return Symbol::ABSOLUTE_REF;
7699 case elfcpp::R_ARM_REL32:
7700 case elfcpp::R_ARM_LDR_PC_G0:
7701 case elfcpp::R_ARM_SBREL32:
7702 case elfcpp::R_ARM_THM_PC8:
7703 case elfcpp::R_ARM_BASE_PREL:
7704 case elfcpp::R_ARM_MOVW_PREL_NC:
7705 case elfcpp::R_ARM_MOVT_PREL:
7706 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7707 case elfcpp::R_ARM_THM_MOVT_PREL:
7708 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7709 case elfcpp::R_ARM_THM_PC12:
7710 case elfcpp::R_ARM_REL32_NOI:
7711 case elfcpp::R_ARM_ALU_PC_G0_NC:
7712 case elfcpp::R_ARM_ALU_PC_G0:
7713 case elfcpp::R_ARM_ALU_PC_G1_NC:
7714 case elfcpp::R_ARM_ALU_PC_G1:
7715 case elfcpp::R_ARM_ALU_PC_G2:
7716 case elfcpp::R_ARM_LDR_PC_G1:
7717 case elfcpp::R_ARM_LDR_PC_G2:
7718 case elfcpp::R_ARM_LDRS_PC_G0:
7719 case elfcpp::R_ARM_LDRS_PC_G1:
7720 case elfcpp::R_ARM_LDRS_PC_G2:
7721 case elfcpp::R_ARM_LDC_PC_G0:
7722 case elfcpp::R_ARM_LDC_PC_G1:
7723 case elfcpp::R_ARM_LDC_PC_G2:
7724 case elfcpp::R_ARM_ALU_SB_G0_NC:
7725 case elfcpp::R_ARM_ALU_SB_G0:
7726 case elfcpp::R_ARM_ALU_SB_G1_NC:
7727 case elfcpp::R_ARM_ALU_SB_G1:
7728 case elfcpp::R_ARM_ALU_SB_G2:
7729 case elfcpp::R_ARM_LDR_SB_G0:
7730 case elfcpp::R_ARM_LDR_SB_G1:
7731 case elfcpp::R_ARM_LDR_SB_G2:
7732 case elfcpp::R_ARM_LDRS_SB_G0:
7733 case elfcpp::R_ARM_LDRS_SB_G1:
7734 case elfcpp::R_ARM_LDRS_SB_G2:
7735 case elfcpp::R_ARM_LDC_SB_G0:
7736 case elfcpp::R_ARM_LDC_SB_G1:
7737 case elfcpp::R_ARM_LDC_SB_G2:
7738 case elfcpp::R_ARM_MOVW_BREL_NC:
7739 case elfcpp::R_ARM_MOVT_BREL:
7740 case elfcpp::R_ARM_MOVW_BREL:
7741 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7742 case elfcpp::R_ARM_THM_MOVT_BREL:
7743 case elfcpp::R_ARM_THM_MOVW_BREL:
7744 case elfcpp::R_ARM_GOTOFF32:
7745 case elfcpp::R_ARM_GOTOFF12:
7746 case elfcpp::R_ARM_SBREL31:
7747 return Symbol::RELATIVE_REF;
7749 case elfcpp::R_ARM_PLT32:
7750 case elfcpp::R_ARM_CALL:
7751 case elfcpp::R_ARM_JUMP24:
7752 case elfcpp::R_ARM_THM_CALL:
7753 case elfcpp::R_ARM_THM_JUMP24:
7754 case elfcpp::R_ARM_THM_JUMP19:
7755 case elfcpp::R_ARM_THM_JUMP6:
7756 case elfcpp::R_ARM_THM_JUMP11:
7757 case elfcpp::R_ARM_THM_JUMP8:
7758 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7759 // in unwind tables. It may point to functions via PLTs.
7760 // So we treat it like call/jump relocations above.
7761 case elfcpp::R_ARM_PREL31:
7762 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7764 case elfcpp::R_ARM_GOT_BREL:
7765 case elfcpp::R_ARM_GOT_ABS:
7766 case elfcpp::R_ARM_GOT_PREL:
7768 return Symbol::ABSOLUTE_REF;
7770 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7771 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7772 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7773 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7774 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7775 return Symbol::TLS_REF;
7777 case elfcpp::R_ARM_TARGET1:
7778 case elfcpp::R_ARM_TARGET2:
7779 case elfcpp::R_ARM_COPY:
7780 case elfcpp::R_ARM_GLOB_DAT:
7781 case elfcpp::R_ARM_JUMP_SLOT:
7782 case elfcpp::R_ARM_RELATIVE:
7783 case elfcpp::R_ARM_PC24:
7784 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7785 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7786 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7788 // Not expected. We will give an error later.
7793 // Report an unsupported relocation against a local symbol.
7795 template<bool big_endian>
7797 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7798 Sized_relobj_file<32, big_endian>* object,
7799 unsigned int r_type)
7801 gold_error(_("%s: unsupported reloc %u against local symbol"),
7802 object->name().c_str(), r_type);
7805 // We are about to emit a dynamic relocation of type R_TYPE. If the
7806 // dynamic linker does not support it, issue an error. The GNU linker
7807 // only issues a non-PIC error for an allocated read-only section.
7808 // Here we know the section is allocated, but we don't know that it is
7809 // read-only. But we check for all the relocation types which the
7810 // glibc dynamic linker supports, so it seems appropriate to issue an
7811 // error even if the section is not read-only.
7813 template<bool big_endian>
7815 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7816 unsigned int r_type)
7820 // These are the relocation types supported by glibc for ARM.
7821 case elfcpp::R_ARM_RELATIVE:
7822 case elfcpp::R_ARM_COPY:
7823 case elfcpp::R_ARM_GLOB_DAT:
7824 case elfcpp::R_ARM_JUMP_SLOT:
7825 case elfcpp::R_ARM_ABS32:
7826 case elfcpp::R_ARM_ABS32_NOI:
7827 case elfcpp::R_ARM_PC24:
7828 // FIXME: The following 3 types are not supported by Android's dynamic
7830 case elfcpp::R_ARM_TLS_DTPMOD32:
7831 case elfcpp::R_ARM_TLS_DTPOFF32:
7832 case elfcpp::R_ARM_TLS_TPOFF32:
7837 // This prevents us from issuing more than one error per reloc
7838 // section. But we can still wind up issuing more than one
7839 // error per object file.
7840 if (this->issued_non_pic_error_)
7842 const Arm_reloc_property* reloc_property =
7843 arm_reloc_property_table->get_reloc_property(r_type);
7844 gold_assert(reloc_property != NULL);
7845 object->error(_("requires unsupported dynamic reloc %s; "
7846 "recompile with -fPIC"),
7847 reloc_property->name().c_str());
7848 this->issued_non_pic_error_ = true;
7852 case elfcpp::R_ARM_NONE:
7857 // Scan a relocation for a local symbol.
7858 // FIXME: This only handles a subset of relocation types used by Android
7859 // on ARM v5te devices.
7861 template<bool big_endian>
7863 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7866 Sized_relobj_file<32, big_endian>* object,
7867 unsigned int data_shndx,
7868 Output_section* output_section,
7869 const elfcpp::Rel<32, big_endian>& reloc,
7870 unsigned int r_type,
7871 const elfcpp::Sym<32, big_endian>& lsym,
7877 r_type = get_real_reloc_type(r_type);
7880 case elfcpp::R_ARM_NONE:
7881 case elfcpp::R_ARM_V4BX:
7882 case elfcpp::R_ARM_GNU_VTENTRY:
7883 case elfcpp::R_ARM_GNU_VTINHERIT:
7886 case elfcpp::R_ARM_ABS32:
7887 case elfcpp::R_ARM_ABS32_NOI:
7888 // If building a shared library (or a position-independent
7889 // executable), we need to create a dynamic relocation for
7890 // this location. The relocation applied at link time will
7891 // apply the link-time value, so we flag the location with
7892 // an R_ARM_RELATIVE relocation so the dynamic loader can
7893 // relocate it easily.
7894 if (parameters->options().output_is_position_independent())
7896 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7897 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7898 // If we are to add more other reloc types than R_ARM_ABS32,
7899 // we need to add check_non_pic(object, r_type) here.
7900 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7901 output_section, data_shndx,
7902 reloc.get_r_offset());
7906 case elfcpp::R_ARM_ABS16:
7907 case elfcpp::R_ARM_ABS12:
7908 case elfcpp::R_ARM_THM_ABS5:
7909 case elfcpp::R_ARM_ABS8:
7910 case elfcpp::R_ARM_BASE_ABS:
7911 case elfcpp::R_ARM_MOVW_ABS_NC:
7912 case elfcpp::R_ARM_MOVT_ABS:
7913 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7914 case elfcpp::R_ARM_THM_MOVT_ABS:
7915 // If building a shared library (or a position-independent
7916 // executable), we need to create a dynamic relocation for
7917 // this location. Because the addend needs to remain in the
7918 // data section, we need to be careful not to apply this
7919 // relocation statically.
7920 if (parameters->options().output_is_position_independent())
7922 check_non_pic(object, r_type);
7923 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7924 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7925 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7926 rel_dyn->add_local(object, r_sym, r_type, output_section,
7927 data_shndx, reloc.get_r_offset());
7930 gold_assert(lsym.get_st_value() == 0);
7931 unsigned int shndx = lsym.get_st_shndx();
7933 shndx = object->adjust_sym_shndx(r_sym, shndx,
7936 object->error(_("section symbol %u has bad shndx %u"),
7939 rel_dyn->add_local_section(object, shndx,
7940 r_type, output_section,
7941 data_shndx, reloc.get_r_offset());
7946 case elfcpp::R_ARM_REL32:
7947 case elfcpp::R_ARM_LDR_PC_G0:
7948 case elfcpp::R_ARM_SBREL32:
7949 case elfcpp::R_ARM_THM_CALL:
7950 case elfcpp::R_ARM_THM_PC8:
7951 case elfcpp::R_ARM_BASE_PREL:
7952 case elfcpp::R_ARM_PLT32:
7953 case elfcpp::R_ARM_CALL:
7954 case elfcpp::R_ARM_JUMP24:
7955 case elfcpp::R_ARM_THM_JUMP24:
7956 case elfcpp::R_ARM_SBREL31:
7957 case elfcpp::R_ARM_PREL31:
7958 case elfcpp::R_ARM_MOVW_PREL_NC:
7959 case elfcpp::R_ARM_MOVT_PREL:
7960 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7961 case elfcpp::R_ARM_THM_MOVT_PREL:
7962 case elfcpp::R_ARM_THM_JUMP19:
7963 case elfcpp::R_ARM_THM_JUMP6:
7964 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7965 case elfcpp::R_ARM_THM_PC12:
7966 case elfcpp::R_ARM_REL32_NOI:
7967 case elfcpp::R_ARM_ALU_PC_G0_NC:
7968 case elfcpp::R_ARM_ALU_PC_G0:
7969 case elfcpp::R_ARM_ALU_PC_G1_NC:
7970 case elfcpp::R_ARM_ALU_PC_G1:
7971 case elfcpp::R_ARM_ALU_PC_G2:
7972 case elfcpp::R_ARM_LDR_PC_G1:
7973 case elfcpp::R_ARM_LDR_PC_G2:
7974 case elfcpp::R_ARM_LDRS_PC_G0:
7975 case elfcpp::R_ARM_LDRS_PC_G1:
7976 case elfcpp::R_ARM_LDRS_PC_G2:
7977 case elfcpp::R_ARM_LDC_PC_G0:
7978 case elfcpp::R_ARM_LDC_PC_G1:
7979 case elfcpp::R_ARM_LDC_PC_G2:
7980 case elfcpp::R_ARM_ALU_SB_G0_NC:
7981 case elfcpp::R_ARM_ALU_SB_G0:
7982 case elfcpp::R_ARM_ALU_SB_G1_NC:
7983 case elfcpp::R_ARM_ALU_SB_G1:
7984 case elfcpp::R_ARM_ALU_SB_G2:
7985 case elfcpp::R_ARM_LDR_SB_G0:
7986 case elfcpp::R_ARM_LDR_SB_G1:
7987 case elfcpp::R_ARM_LDR_SB_G2:
7988 case elfcpp::R_ARM_LDRS_SB_G0:
7989 case elfcpp::R_ARM_LDRS_SB_G1:
7990 case elfcpp::R_ARM_LDRS_SB_G2:
7991 case elfcpp::R_ARM_LDC_SB_G0:
7992 case elfcpp::R_ARM_LDC_SB_G1:
7993 case elfcpp::R_ARM_LDC_SB_G2:
7994 case elfcpp::R_ARM_MOVW_BREL_NC:
7995 case elfcpp::R_ARM_MOVT_BREL:
7996 case elfcpp::R_ARM_MOVW_BREL:
7997 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7998 case elfcpp::R_ARM_THM_MOVT_BREL:
7999 case elfcpp::R_ARM_THM_MOVW_BREL:
8000 case elfcpp::R_ARM_THM_JUMP11:
8001 case elfcpp::R_ARM_THM_JUMP8:
8002 // We don't need to do anything for a relative addressing relocation
8003 // against a local symbol if it does not reference the GOT.
8006 case elfcpp::R_ARM_GOTOFF32:
8007 case elfcpp::R_ARM_GOTOFF12:
8008 // We need a GOT section:
8009 target->got_section(symtab, layout);
8012 case elfcpp::R_ARM_GOT_BREL:
8013 case elfcpp::R_ARM_GOT_PREL:
8015 // The symbol requires a GOT entry.
8016 Arm_output_data_got<big_endian>* got =
8017 target->got_section(symtab, layout);
8018 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8019 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8021 // If we are generating a shared object, we need to add a
8022 // dynamic RELATIVE relocation for this symbol's GOT entry.
8023 if (parameters->options().output_is_position_independent())
8025 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8026 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8027 rel_dyn->add_local_relative(
8028 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8029 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8035 case elfcpp::R_ARM_TARGET1:
8036 case elfcpp::R_ARM_TARGET2:
8037 // This should have been mapped to another type already.
8039 case elfcpp::R_ARM_COPY:
8040 case elfcpp::R_ARM_GLOB_DAT:
8041 case elfcpp::R_ARM_JUMP_SLOT:
8042 case elfcpp::R_ARM_RELATIVE:
8043 // These are relocations which should only be seen by the
8044 // dynamic linker, and should never be seen here.
8045 gold_error(_("%s: unexpected reloc %u in object file"),
8046 object->name().c_str(), r_type);
8050 // These are initial TLS relocs, which are expected when
8052 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8053 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8054 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8055 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8056 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8058 bool output_is_shared = parameters->options().shared();
8059 const tls::Tls_optimization optimized_type
8060 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8064 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8065 if (optimized_type == tls::TLSOPT_NONE)
8067 // Create a pair of GOT entries for the module index and
8068 // dtv-relative offset.
8069 Arm_output_data_got<big_endian>* got
8070 = target->got_section(symtab, layout);
8071 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8072 unsigned int shndx = lsym.get_st_shndx();
8074 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8077 object->error(_("local symbol %u has bad shndx %u"),
8082 if (!parameters->doing_static_link())
8083 got->add_local_pair_with_rel(object, r_sym, shndx,
8085 target->rel_dyn_section(layout),
8086 elfcpp::R_ARM_TLS_DTPMOD32);
8088 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8092 // FIXME: TLS optimization not supported yet.
8096 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8097 if (optimized_type == tls::TLSOPT_NONE)
8099 // Create a GOT entry for the module index.
8100 target->got_mod_index_entry(symtab, layout, object);
8103 // FIXME: TLS optimization not supported yet.
8107 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8110 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8111 layout->set_has_static_tls();
8112 if (optimized_type == tls::TLSOPT_NONE)
8114 // Create a GOT entry for the tp-relative offset.
8115 Arm_output_data_got<big_endian>* got
8116 = target->got_section(symtab, layout);
8117 unsigned int r_sym =
8118 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8119 if (!parameters->doing_static_link())
8120 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8121 target->rel_dyn_section(layout),
8122 elfcpp::R_ARM_TLS_TPOFF32);
8123 else if (!object->local_has_got_offset(r_sym,
8124 GOT_TYPE_TLS_OFFSET))
8126 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8127 unsigned int got_offset =
8128 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8129 got->add_static_reloc(got_offset,
8130 elfcpp::R_ARM_TLS_TPOFF32, object,
8135 // FIXME: TLS optimization not supported yet.
8139 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8140 layout->set_has_static_tls();
8141 if (output_is_shared)
8143 // We need to create a dynamic relocation.
8144 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8145 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8146 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8147 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8148 output_section, data_shndx,
8149 reloc.get_r_offset());
8159 case elfcpp::R_ARM_PC24:
8160 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8161 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8162 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8164 unsupported_reloc_local(object, r_type);
8169 // Report an unsupported relocation against a global symbol.
8171 template<bool big_endian>
8173 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8174 Sized_relobj_file<32, big_endian>* object,
8175 unsigned int r_type,
8178 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8179 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8182 template<bool big_endian>
8184 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8185 unsigned int r_type)
8189 case elfcpp::R_ARM_PC24:
8190 case elfcpp::R_ARM_THM_CALL:
8191 case elfcpp::R_ARM_PLT32:
8192 case elfcpp::R_ARM_CALL:
8193 case elfcpp::R_ARM_JUMP24:
8194 case elfcpp::R_ARM_THM_JUMP24:
8195 case elfcpp::R_ARM_SBREL31:
8196 case elfcpp::R_ARM_PREL31:
8197 case elfcpp::R_ARM_THM_JUMP19:
8198 case elfcpp::R_ARM_THM_JUMP6:
8199 case elfcpp::R_ARM_THM_JUMP11:
8200 case elfcpp::R_ARM_THM_JUMP8:
8201 // All the relocations above are branches except SBREL31 and PREL31.
8205 // Be conservative and assume this is a function pointer.
8210 template<bool big_endian>
8212 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8215 Target_arm<big_endian>* target,
8216 Sized_relobj_file<32, big_endian>*,
8219 const elfcpp::Rel<32, big_endian>&,
8220 unsigned int r_type,
8221 const elfcpp::Sym<32, big_endian>&)
8223 r_type = target->get_real_reloc_type(r_type);
8224 return possible_function_pointer_reloc(r_type);
8227 template<bool big_endian>
8229 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8232 Target_arm<big_endian>* target,
8233 Sized_relobj_file<32, big_endian>*,
8236 const elfcpp::Rel<32, big_endian>&,
8237 unsigned int r_type,
8240 // GOT is not a function.
8241 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8244 r_type = target->get_real_reloc_type(r_type);
8245 return possible_function_pointer_reloc(r_type);
8248 // Scan a relocation for a global symbol.
8250 template<bool big_endian>
8252 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8255 Sized_relobj_file<32, big_endian>* object,
8256 unsigned int data_shndx,
8257 Output_section* output_section,
8258 const elfcpp::Rel<32, big_endian>& reloc,
8259 unsigned int r_type,
8262 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8263 // section. We check here to avoid creating a dynamic reloc against
8264 // _GLOBAL_OFFSET_TABLE_.
8265 if (!target->has_got_section()
8266 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8267 target->got_section(symtab, layout);
8269 r_type = get_real_reloc_type(r_type);
8272 case elfcpp::R_ARM_NONE:
8273 case elfcpp::R_ARM_V4BX:
8274 case elfcpp::R_ARM_GNU_VTENTRY:
8275 case elfcpp::R_ARM_GNU_VTINHERIT:
8278 case elfcpp::R_ARM_ABS32:
8279 case elfcpp::R_ARM_ABS16:
8280 case elfcpp::R_ARM_ABS12:
8281 case elfcpp::R_ARM_THM_ABS5:
8282 case elfcpp::R_ARM_ABS8:
8283 case elfcpp::R_ARM_BASE_ABS:
8284 case elfcpp::R_ARM_MOVW_ABS_NC:
8285 case elfcpp::R_ARM_MOVT_ABS:
8286 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8287 case elfcpp::R_ARM_THM_MOVT_ABS:
8288 case elfcpp::R_ARM_ABS32_NOI:
8289 // Absolute addressing relocations.
8291 // Make a PLT entry if necessary.
8292 if (this->symbol_needs_plt_entry(gsym))
8294 target->make_plt_entry(symtab, layout, gsym);
8295 // Since this is not a PC-relative relocation, we may be
8296 // taking the address of a function. In that case we need to
8297 // set the entry in the dynamic symbol table to the address of
8299 if (gsym->is_from_dynobj() && !parameters->options().shared())
8300 gsym->set_needs_dynsym_value();
8302 // Make a dynamic relocation if necessary.
8303 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8305 if (gsym->may_need_copy_reloc())
8307 target->copy_reloc(symtab, layout, object,
8308 data_shndx, output_section, gsym, reloc);
8310 else if ((r_type == elfcpp::R_ARM_ABS32
8311 || r_type == elfcpp::R_ARM_ABS32_NOI)
8312 && gsym->can_use_relative_reloc(false))
8314 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8315 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8316 output_section, object,
8317 data_shndx, reloc.get_r_offset());
8321 check_non_pic(object, r_type);
8322 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8323 rel_dyn->add_global(gsym, r_type, output_section, object,
8324 data_shndx, reloc.get_r_offset());
8330 case elfcpp::R_ARM_GOTOFF32:
8331 case elfcpp::R_ARM_GOTOFF12:
8332 // We need a GOT section.
8333 target->got_section(symtab, layout);
8336 case elfcpp::R_ARM_REL32:
8337 case elfcpp::R_ARM_LDR_PC_G0:
8338 case elfcpp::R_ARM_SBREL32:
8339 case elfcpp::R_ARM_THM_PC8:
8340 case elfcpp::R_ARM_BASE_PREL:
8341 case elfcpp::R_ARM_MOVW_PREL_NC:
8342 case elfcpp::R_ARM_MOVT_PREL:
8343 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8344 case elfcpp::R_ARM_THM_MOVT_PREL:
8345 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8346 case elfcpp::R_ARM_THM_PC12:
8347 case elfcpp::R_ARM_REL32_NOI:
8348 case elfcpp::R_ARM_ALU_PC_G0_NC:
8349 case elfcpp::R_ARM_ALU_PC_G0:
8350 case elfcpp::R_ARM_ALU_PC_G1_NC:
8351 case elfcpp::R_ARM_ALU_PC_G1:
8352 case elfcpp::R_ARM_ALU_PC_G2:
8353 case elfcpp::R_ARM_LDR_PC_G1:
8354 case elfcpp::R_ARM_LDR_PC_G2:
8355 case elfcpp::R_ARM_LDRS_PC_G0:
8356 case elfcpp::R_ARM_LDRS_PC_G1:
8357 case elfcpp::R_ARM_LDRS_PC_G2:
8358 case elfcpp::R_ARM_LDC_PC_G0:
8359 case elfcpp::R_ARM_LDC_PC_G1:
8360 case elfcpp::R_ARM_LDC_PC_G2:
8361 case elfcpp::R_ARM_ALU_SB_G0_NC:
8362 case elfcpp::R_ARM_ALU_SB_G0:
8363 case elfcpp::R_ARM_ALU_SB_G1_NC:
8364 case elfcpp::R_ARM_ALU_SB_G1:
8365 case elfcpp::R_ARM_ALU_SB_G2:
8366 case elfcpp::R_ARM_LDR_SB_G0:
8367 case elfcpp::R_ARM_LDR_SB_G1:
8368 case elfcpp::R_ARM_LDR_SB_G2:
8369 case elfcpp::R_ARM_LDRS_SB_G0:
8370 case elfcpp::R_ARM_LDRS_SB_G1:
8371 case elfcpp::R_ARM_LDRS_SB_G2:
8372 case elfcpp::R_ARM_LDC_SB_G0:
8373 case elfcpp::R_ARM_LDC_SB_G1:
8374 case elfcpp::R_ARM_LDC_SB_G2:
8375 case elfcpp::R_ARM_MOVW_BREL_NC:
8376 case elfcpp::R_ARM_MOVT_BREL:
8377 case elfcpp::R_ARM_MOVW_BREL:
8378 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8379 case elfcpp::R_ARM_THM_MOVT_BREL:
8380 case elfcpp::R_ARM_THM_MOVW_BREL:
8381 // Relative addressing relocations.
8383 // Make a dynamic relocation if necessary.
8384 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8386 if (target->may_need_copy_reloc(gsym))
8388 target->copy_reloc(symtab, layout, object,
8389 data_shndx, output_section, gsym, reloc);
8393 check_non_pic(object, r_type);
8394 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8395 rel_dyn->add_global(gsym, r_type, output_section, object,
8396 data_shndx, reloc.get_r_offset());
8402 case elfcpp::R_ARM_THM_CALL:
8403 case elfcpp::R_ARM_PLT32:
8404 case elfcpp::R_ARM_CALL:
8405 case elfcpp::R_ARM_JUMP24:
8406 case elfcpp::R_ARM_THM_JUMP24:
8407 case elfcpp::R_ARM_SBREL31:
8408 case elfcpp::R_ARM_PREL31:
8409 case elfcpp::R_ARM_THM_JUMP19:
8410 case elfcpp::R_ARM_THM_JUMP6:
8411 case elfcpp::R_ARM_THM_JUMP11:
8412 case elfcpp::R_ARM_THM_JUMP8:
8413 // All the relocation above are branches except for the PREL31 ones.
8414 // A PREL31 relocation can point to a personality function in a shared
8415 // library. In that case we want to use a PLT because we want to
8416 // call the personality routine and the dynamic linkers we care about
8417 // do not support dynamic PREL31 relocations. An REL31 relocation may
8418 // point to a function whose unwinding behaviour is being described but
8419 // we will not mistakenly generate a PLT for that because we should use
8420 // a local section symbol.
8422 // If the symbol is fully resolved, this is just a relative
8423 // local reloc. Otherwise we need a PLT entry.
8424 if (gsym->final_value_is_known())
8426 // If building a shared library, we can also skip the PLT entry
8427 // if the symbol is defined in the output file and is protected
8429 if (gsym->is_defined()
8430 && !gsym->is_from_dynobj()
8431 && !gsym->is_preemptible())
8433 target->make_plt_entry(symtab, layout, gsym);
8436 case elfcpp::R_ARM_GOT_BREL:
8437 case elfcpp::R_ARM_GOT_ABS:
8438 case elfcpp::R_ARM_GOT_PREL:
8440 // The symbol requires a GOT entry.
8441 Arm_output_data_got<big_endian>* got =
8442 target->got_section(symtab, layout);
8443 if (gsym->final_value_is_known())
8444 got->add_global(gsym, GOT_TYPE_STANDARD);
8447 // If this symbol is not fully resolved, we need to add a
8448 // GOT entry with a dynamic relocation.
8449 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8450 if (gsym->is_from_dynobj()
8451 || gsym->is_undefined()
8452 || gsym->is_preemptible()
8453 || (gsym->visibility() == elfcpp::STV_PROTECTED
8454 && parameters->options().shared()))
8455 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8456 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8459 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8460 rel_dyn->add_global_relative(
8461 gsym, elfcpp::R_ARM_RELATIVE, got,
8462 gsym->got_offset(GOT_TYPE_STANDARD));
8468 case elfcpp::R_ARM_TARGET1:
8469 case elfcpp::R_ARM_TARGET2:
8470 // These should have been mapped to other types already.
8472 case elfcpp::R_ARM_COPY:
8473 case elfcpp::R_ARM_GLOB_DAT:
8474 case elfcpp::R_ARM_JUMP_SLOT:
8475 case elfcpp::R_ARM_RELATIVE:
8476 // These are relocations which should only be seen by the
8477 // dynamic linker, and should never be seen here.
8478 gold_error(_("%s: unexpected reloc %u in object file"),
8479 object->name().c_str(), r_type);
8482 // These are initial tls relocs, which are expected when
8484 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8485 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8486 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8487 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8488 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8490 const bool is_final = gsym->final_value_is_known();
8491 const tls::Tls_optimization optimized_type
8492 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8495 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8496 if (optimized_type == tls::TLSOPT_NONE)
8498 // Create a pair of GOT entries for the module index and
8499 // dtv-relative offset.
8500 Arm_output_data_got<big_endian>* got
8501 = target->got_section(symtab, layout);
8502 if (!parameters->doing_static_link())
8503 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8504 target->rel_dyn_section(layout),
8505 elfcpp::R_ARM_TLS_DTPMOD32,
8506 elfcpp::R_ARM_TLS_DTPOFF32);
8508 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8511 // FIXME: TLS optimization not supported yet.
8515 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8516 if (optimized_type == tls::TLSOPT_NONE)
8518 // Create a GOT entry for the module index.
8519 target->got_mod_index_entry(symtab, layout, object);
8522 // FIXME: TLS optimization not supported yet.
8526 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8529 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8530 layout->set_has_static_tls();
8531 if (optimized_type == tls::TLSOPT_NONE)
8533 // Create a GOT entry for the tp-relative offset.
8534 Arm_output_data_got<big_endian>* got
8535 = target->got_section(symtab, layout);
8536 if (!parameters->doing_static_link())
8537 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8538 target->rel_dyn_section(layout),
8539 elfcpp::R_ARM_TLS_TPOFF32);
8540 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8542 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8543 unsigned int got_offset =
8544 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8545 got->add_static_reloc(got_offset,
8546 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8550 // FIXME: TLS optimization not supported yet.
8554 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8555 layout->set_has_static_tls();
8556 if (parameters->options().shared())
8558 // We need to create a dynamic relocation.
8559 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8560 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8561 output_section, object,
8562 data_shndx, reloc.get_r_offset());
8572 case elfcpp::R_ARM_PC24:
8573 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8574 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8575 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8577 unsupported_reloc_global(object, r_type, gsym);
8582 // Process relocations for gc.
8584 template<bool big_endian>
8586 Target_arm<big_endian>::gc_process_relocs(
8587 Symbol_table* symtab,
8589 Sized_relobj_file<32, big_endian>* object,
8590 unsigned int data_shndx,
8592 const unsigned char* prelocs,
8594 Output_section* output_section,
8595 bool needs_special_offset_handling,
8596 size_t local_symbol_count,
8597 const unsigned char* plocal_symbols)
8599 typedef Target_arm<big_endian> Arm;
8600 typedef typename Target_arm<big_endian>::Scan Scan;
8602 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8603 typename Target_arm::Relocatable_size_for_reloc>(
8612 needs_special_offset_handling,
8617 // Scan relocations for a section.
8619 template<bool big_endian>
8621 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8623 Sized_relobj_file<32, big_endian>* object,
8624 unsigned int data_shndx,
8625 unsigned int sh_type,
8626 const unsigned char* prelocs,
8628 Output_section* output_section,
8629 bool needs_special_offset_handling,
8630 size_t local_symbol_count,
8631 const unsigned char* plocal_symbols)
8633 typedef typename Target_arm<big_endian>::Scan Scan;
8634 if (sh_type == elfcpp::SHT_RELA)
8636 gold_error(_("%s: unsupported RELA reloc section"),
8637 object->name().c_str());
8641 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8650 needs_special_offset_handling,
8655 // Finalize the sections.
8657 template<bool big_endian>
8659 Target_arm<big_endian>::do_finalize_sections(
8661 const Input_objects* input_objects,
8664 bool merged_any_attributes = false;
8665 // Merge processor-specific flags.
8666 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8667 p != input_objects->relobj_end();
8670 Arm_relobj<big_endian>* arm_relobj =
8671 Arm_relobj<big_endian>::as_arm_relobj(*p);
8672 if (arm_relobj->merge_flags_and_attributes())
8674 this->merge_processor_specific_flags(
8676 arm_relobj->processor_specific_flags());
8677 this->merge_object_attributes(arm_relobj->name().c_str(),
8678 arm_relobj->attributes_section_data());
8679 merged_any_attributes = true;
8683 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8684 p != input_objects->dynobj_end();
8687 Arm_dynobj<big_endian>* arm_dynobj =
8688 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8689 this->merge_processor_specific_flags(
8691 arm_dynobj->processor_specific_flags());
8692 this->merge_object_attributes(arm_dynobj->name().c_str(),
8693 arm_dynobj->attributes_section_data());
8694 merged_any_attributes = true;
8697 // Create an empty uninitialized attribute section if we still don't have it
8698 // at this moment. This happens if there is no attributes sections in all
8700 if (this->attributes_section_data_ == NULL)
8701 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8703 const Object_attribute* cpu_arch_attr =
8704 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8705 // Check if we need to use Cortex-A8 workaround.
8706 if (parameters->options().user_set_fix_cortex_a8())
8707 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8710 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8711 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8713 const Object_attribute* cpu_arch_profile_attr =
8714 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8715 this->fix_cortex_a8_ =
8716 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8717 && (cpu_arch_profile_attr->int_value() == 'A'
8718 || cpu_arch_profile_attr->int_value() == 0));
8721 // Check if we can use V4BX interworking.
8722 // The V4BX interworking stub contains BX instruction,
8723 // which is not specified for some profiles.
8724 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8725 && !this->may_use_v4t_interworking())
8726 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8727 "the target profile does not support BX instruction"));
8729 // Fill in some more dynamic tags.
8730 const Reloc_section* rel_plt = (this->plt_ == NULL
8732 : this->plt_->rel_plt());
8733 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8734 this->rel_dyn_, true, false);
8736 // Emit any relocs we saved in an attempt to avoid generating COPY
8738 if (this->copy_relocs_.any_saved_relocs())
8739 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8741 // Handle the .ARM.exidx section.
8742 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8744 if (!parameters->options().relocatable())
8746 if (exidx_section != NULL
8747 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8749 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8750 // the .ARM.exidx section.
8751 if (!layout->script_options()->saw_phdrs_clause())
8753 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8756 Output_segment* exidx_segment =
8757 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8758 exidx_segment->add_output_section_to_nonload(exidx_section,
8764 // Create an .ARM.attributes section if we have merged any attributes
8766 if (merged_any_attributes)
8768 Output_attributes_section_data* attributes_section =
8769 new Output_attributes_section_data(*this->attributes_section_data_);
8770 layout->add_output_section_data(".ARM.attributes",
8771 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8772 attributes_section, ORDER_INVALID,
8776 // Fix up links in section EXIDX headers.
8777 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8778 p != layout->section_list().end();
8780 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8782 Arm_output_section<big_endian>* os =
8783 Arm_output_section<big_endian>::as_arm_output_section(*p);
8784 os->set_exidx_section_link();
8788 // Return whether a direct absolute static relocation needs to be applied.
8789 // In cases where Scan::local() or Scan::global() has created
8790 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8791 // of the relocation is carried in the data, and we must not
8792 // apply the static relocation.
8794 template<bool big_endian>
8796 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8797 const Sized_symbol<32>* gsym,
8798 unsigned int r_type,
8800 Output_section* output_section)
8802 // If the output section is not allocated, then we didn't call
8803 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8805 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8808 int ref_flags = Scan::get_reference_flags(r_type);
8810 // For local symbols, we will have created a non-RELATIVE dynamic
8811 // relocation only if (a) the output is position independent,
8812 // (b) the relocation is absolute (not pc- or segment-relative), and
8813 // (c) the relocation is not 32 bits wide.
8815 return !(parameters->options().output_is_position_independent()
8816 && (ref_flags & Symbol::ABSOLUTE_REF)
8819 // For global symbols, we use the same helper routines used in the
8820 // scan pass. If we did not create a dynamic relocation, or if we
8821 // created a RELATIVE dynamic relocation, we should apply the static
8823 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8824 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8825 && gsym->can_use_relative_reloc(ref_flags
8826 & Symbol::FUNCTION_CALL);
8827 return !has_dyn || is_rel;
8830 // Perform a relocation.
8832 template<bool big_endian>
8834 Target_arm<big_endian>::Relocate::relocate(
8835 const Relocate_info<32, big_endian>* relinfo,
8837 Output_section* output_section,
8839 const elfcpp::Rel<32, big_endian>& rel,
8840 unsigned int r_type,
8841 const Sized_symbol<32>* gsym,
8842 const Symbol_value<32>* psymval,
8843 unsigned char* view,
8844 Arm_address address,
8845 section_size_type view_size)
8850 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8852 r_type = get_real_reloc_type(r_type);
8853 const Arm_reloc_property* reloc_property =
8854 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8855 if (reloc_property == NULL)
8857 std::string reloc_name =
8858 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8859 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8860 _("cannot relocate %s in object file"),
8861 reloc_name.c_str());
8865 const Arm_relobj<big_endian>* object =
8866 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8868 // If the final branch target of a relocation is THUMB instruction, this
8869 // is 1. Otherwise it is 0.
8870 Arm_address thumb_bit = 0;
8871 Symbol_value<32> symval;
8872 bool is_weakly_undefined_without_plt = false;
8873 bool have_got_offset = false;
8874 unsigned int got_offset = 0;
8876 // If the relocation uses the GOT entry of a symbol instead of the symbol
8877 // itself, we don't care about whether the symbol is defined or what kind
8879 if (reloc_property->uses_got_entry())
8881 // Get the GOT offset.
8882 // The GOT pointer points to the end of the GOT section.
8883 // We need to subtract the size of the GOT section to get
8884 // the actual offset to use in the relocation.
8885 // TODO: We should move GOT offset computing code in TLS relocations
8889 case elfcpp::R_ARM_GOT_BREL:
8890 case elfcpp::R_ARM_GOT_PREL:
8893 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8894 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8895 - target->got_size());
8899 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8900 gold_assert(object->local_has_got_offset(r_sym,
8901 GOT_TYPE_STANDARD));
8902 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8903 - target->got_size());
8905 have_got_offset = true;
8912 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8916 // This is a global symbol. Determine if we use PLT and if the
8917 // final target is THUMB.
8918 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8920 // This uses a PLT, change the symbol value.
8921 symval.set_output_value(target->plt_section()->address()
8922 + gsym->plt_offset());
8925 else if (gsym->is_weak_undefined())
8927 // This is a weakly undefined symbol and we do not use PLT
8928 // for this relocation. A branch targeting this symbol will
8929 // be converted into an NOP.
8930 is_weakly_undefined_without_plt = true;
8932 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8934 // This relocation uses the symbol value but the symbol is
8935 // undefined. Exit early and have the caller reporting an
8941 // Set thumb bit if symbol:
8942 // -Has type STT_ARM_TFUNC or
8943 // -Has type STT_FUNC, is defined and with LSB in value set.
8945 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8946 || (gsym->type() == elfcpp::STT_FUNC
8947 && !gsym->is_undefined()
8948 && ((psymval->value(object, 0) & 1) != 0)))
8955 // This is a local symbol. Determine if the final target is THUMB.
8956 // We saved this information when all the local symbols were read.
8957 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8958 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8959 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8964 // This is a fake relocation synthesized for a stub. It does not have
8965 // a real symbol. We just look at the LSB of the symbol value to
8966 // determine if the target is THUMB or not.
8967 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8970 // Strip LSB if this points to a THUMB target.
8972 && reloc_property->uses_thumb_bit()
8973 && ((psymval->value(object, 0) & 1) != 0))
8975 Arm_address stripped_value =
8976 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8977 symval.set_output_value(stripped_value);
8981 // To look up relocation stubs, we need to pass the symbol table index of
8983 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8985 // Get the addressing origin of the output segment defining the
8986 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8987 Arm_address sym_origin = 0;
8988 if (reloc_property->uses_symbol_base())
8990 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8991 // R_ARM_BASE_ABS with the NULL symbol will give the
8992 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8993 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8994 sym_origin = target->got_plt_section()->address();
8995 else if (gsym == NULL)
8997 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8998 sym_origin = gsym->output_segment()->vaddr();
8999 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9000 sym_origin = gsym->output_data()->address();
9002 // TODO: Assumes the segment base to be zero for the global symbols
9003 // till the proper support for the segment-base-relative addressing
9004 // will be implemented. This is consistent with GNU ld.
9007 // For relative addressing relocation, find out the relative address base.
9008 Arm_address relative_address_base = 0;
9009 switch(reloc_property->relative_address_base())
9011 case Arm_reloc_property::RAB_NONE:
9012 // Relocations with relative address bases RAB_TLS and RAB_tp are
9013 // handled by relocate_tls. So we do not need to do anything here.
9014 case Arm_reloc_property::RAB_TLS:
9015 case Arm_reloc_property::RAB_tp:
9017 case Arm_reloc_property::RAB_B_S:
9018 relative_address_base = sym_origin;
9020 case Arm_reloc_property::RAB_GOT_ORG:
9021 relative_address_base = target->got_plt_section()->address();
9023 case Arm_reloc_property::RAB_P:
9024 relative_address_base = address;
9026 case Arm_reloc_property::RAB_Pa:
9027 relative_address_base = address & 0xfffffffcU;
9033 typename Arm_relocate_functions::Status reloc_status =
9034 Arm_relocate_functions::STATUS_OKAY;
9035 bool check_overflow = reloc_property->checks_overflow();
9038 case elfcpp::R_ARM_NONE:
9041 case elfcpp::R_ARM_ABS8:
9042 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9043 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9046 case elfcpp::R_ARM_ABS12:
9047 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9048 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9051 case elfcpp::R_ARM_ABS16:
9052 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9053 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9056 case elfcpp::R_ARM_ABS32:
9057 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9058 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9062 case elfcpp::R_ARM_ABS32_NOI:
9063 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9064 // No thumb bit for this relocation: (S + A)
9065 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9069 case elfcpp::R_ARM_MOVW_ABS_NC:
9070 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9071 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9076 case elfcpp::R_ARM_MOVT_ABS:
9077 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9078 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9081 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9082 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9083 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9084 0, thumb_bit, false);
9087 case elfcpp::R_ARM_THM_MOVT_ABS:
9088 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9089 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9093 case elfcpp::R_ARM_MOVW_PREL_NC:
9094 case elfcpp::R_ARM_MOVW_BREL_NC:
9095 case elfcpp::R_ARM_MOVW_BREL:
9097 Arm_relocate_functions::movw(view, object, psymval,
9098 relative_address_base, thumb_bit,
9102 case elfcpp::R_ARM_MOVT_PREL:
9103 case elfcpp::R_ARM_MOVT_BREL:
9105 Arm_relocate_functions::movt(view, object, psymval,
9106 relative_address_base);
9109 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9110 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9111 case elfcpp::R_ARM_THM_MOVW_BREL:
9113 Arm_relocate_functions::thm_movw(view, object, psymval,
9114 relative_address_base,
9115 thumb_bit, check_overflow);
9118 case elfcpp::R_ARM_THM_MOVT_PREL:
9119 case elfcpp::R_ARM_THM_MOVT_BREL:
9121 Arm_relocate_functions::thm_movt(view, object, psymval,
9122 relative_address_base);
9125 case elfcpp::R_ARM_REL32:
9126 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9127 address, thumb_bit);
9130 case elfcpp::R_ARM_THM_ABS5:
9131 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9132 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9135 // Thumb long branches.
9136 case elfcpp::R_ARM_THM_CALL:
9137 case elfcpp::R_ARM_THM_XPC22:
9138 case elfcpp::R_ARM_THM_JUMP24:
9140 Arm_relocate_functions::thumb_branch_common(
9141 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9142 thumb_bit, is_weakly_undefined_without_plt);
9145 case elfcpp::R_ARM_GOTOFF32:
9147 Arm_address got_origin;
9148 got_origin = target->got_plt_section()->address();
9149 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9150 got_origin, thumb_bit);
9154 case elfcpp::R_ARM_BASE_PREL:
9155 gold_assert(gsym != NULL);
9157 Arm_relocate_functions::base_prel(view, sym_origin, address);
9160 case elfcpp::R_ARM_BASE_ABS:
9161 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9162 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9165 case elfcpp::R_ARM_GOT_BREL:
9166 gold_assert(have_got_offset);
9167 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9170 case elfcpp::R_ARM_GOT_PREL:
9171 gold_assert(have_got_offset);
9172 // Get the address origin for GOT PLT, which is allocated right
9173 // after the GOT section, to calculate an absolute address of
9174 // the symbol GOT entry (got_origin + got_offset).
9175 Arm_address got_origin;
9176 got_origin = target->got_plt_section()->address();
9177 reloc_status = Arm_relocate_functions::got_prel(view,
9178 got_origin + got_offset,
9182 case elfcpp::R_ARM_PLT32:
9183 case elfcpp::R_ARM_CALL:
9184 case elfcpp::R_ARM_JUMP24:
9185 case elfcpp::R_ARM_XPC25:
9186 gold_assert(gsym == NULL
9187 || gsym->has_plt_offset()
9188 || gsym->final_value_is_known()
9189 || (gsym->is_defined()
9190 && !gsym->is_from_dynobj()
9191 && !gsym->is_preemptible()));
9193 Arm_relocate_functions::arm_branch_common(
9194 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9195 thumb_bit, is_weakly_undefined_without_plt);
9198 case elfcpp::R_ARM_THM_JUMP19:
9200 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9204 case elfcpp::R_ARM_THM_JUMP6:
9206 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9209 case elfcpp::R_ARM_THM_JUMP8:
9211 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9214 case elfcpp::R_ARM_THM_JUMP11:
9216 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9219 case elfcpp::R_ARM_PREL31:
9220 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9221 address, thumb_bit);
9224 case elfcpp::R_ARM_V4BX:
9225 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9227 const bool is_v4bx_interworking =
9228 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9230 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9231 is_v4bx_interworking);
9235 case elfcpp::R_ARM_THM_PC8:
9237 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9240 case elfcpp::R_ARM_THM_PC12:
9242 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9245 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9247 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9251 case elfcpp::R_ARM_ALU_PC_G0_NC:
9252 case elfcpp::R_ARM_ALU_PC_G0:
9253 case elfcpp::R_ARM_ALU_PC_G1_NC:
9254 case elfcpp::R_ARM_ALU_PC_G1:
9255 case elfcpp::R_ARM_ALU_PC_G2:
9256 case elfcpp::R_ARM_ALU_SB_G0_NC:
9257 case elfcpp::R_ARM_ALU_SB_G0:
9258 case elfcpp::R_ARM_ALU_SB_G1_NC:
9259 case elfcpp::R_ARM_ALU_SB_G1:
9260 case elfcpp::R_ARM_ALU_SB_G2:
9262 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9263 reloc_property->group_index(),
9264 relative_address_base,
9265 thumb_bit, check_overflow);
9268 case elfcpp::R_ARM_LDR_PC_G0:
9269 case elfcpp::R_ARM_LDR_PC_G1:
9270 case elfcpp::R_ARM_LDR_PC_G2:
9271 case elfcpp::R_ARM_LDR_SB_G0:
9272 case elfcpp::R_ARM_LDR_SB_G1:
9273 case elfcpp::R_ARM_LDR_SB_G2:
9275 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9276 reloc_property->group_index(),
9277 relative_address_base);
9280 case elfcpp::R_ARM_LDRS_PC_G0:
9281 case elfcpp::R_ARM_LDRS_PC_G1:
9282 case elfcpp::R_ARM_LDRS_PC_G2:
9283 case elfcpp::R_ARM_LDRS_SB_G0:
9284 case elfcpp::R_ARM_LDRS_SB_G1:
9285 case elfcpp::R_ARM_LDRS_SB_G2:
9287 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9288 reloc_property->group_index(),
9289 relative_address_base);
9292 case elfcpp::R_ARM_LDC_PC_G0:
9293 case elfcpp::R_ARM_LDC_PC_G1:
9294 case elfcpp::R_ARM_LDC_PC_G2:
9295 case elfcpp::R_ARM_LDC_SB_G0:
9296 case elfcpp::R_ARM_LDC_SB_G1:
9297 case elfcpp::R_ARM_LDC_SB_G2:
9299 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9300 reloc_property->group_index(),
9301 relative_address_base);
9304 // These are initial tls relocs, which are expected when
9306 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9307 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9308 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9309 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9310 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9312 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9313 view, address, view_size);
9316 // The known and unknown unsupported and/or deprecated relocations.
9317 case elfcpp::R_ARM_PC24:
9318 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9319 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9320 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9322 // Just silently leave the method. We should get an appropriate error
9323 // message in the scan methods.
9327 // Report any errors.
9328 switch (reloc_status)
9330 case Arm_relocate_functions::STATUS_OKAY:
9332 case Arm_relocate_functions::STATUS_OVERFLOW:
9333 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9334 _("relocation overflow in %s"),
9335 reloc_property->name().c_str());
9337 case Arm_relocate_functions::STATUS_BAD_RELOC:
9338 gold_error_at_location(
9342 _("unexpected opcode while processing relocation %s"),
9343 reloc_property->name().c_str());
9352 // Perform a TLS relocation.
9354 template<bool big_endian>
9355 inline typename Arm_relocate_functions<big_endian>::Status
9356 Target_arm<big_endian>::Relocate::relocate_tls(
9357 const Relocate_info<32, big_endian>* relinfo,
9358 Target_arm<big_endian>* target,
9360 const elfcpp::Rel<32, big_endian>& rel,
9361 unsigned int r_type,
9362 const Sized_symbol<32>* gsym,
9363 const Symbol_value<32>* psymval,
9364 unsigned char* view,
9365 elfcpp::Elf_types<32>::Elf_Addr address,
9366 section_size_type /*view_size*/ )
9368 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9369 typedef Relocate_functions<32, big_endian> RelocFuncs;
9370 Output_segment* tls_segment = relinfo->layout->tls_segment();
9372 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9374 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9376 const bool is_final = (gsym == NULL
9377 ? !parameters->options().shared()
9378 : gsym->final_value_is_known());
9379 const tls::Tls_optimization optimized_type
9380 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9383 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9385 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9386 unsigned int got_offset;
9389 gold_assert(gsym->has_got_offset(got_type));
9390 got_offset = gsym->got_offset(got_type) - target->got_size();
9394 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9395 gold_assert(object->local_has_got_offset(r_sym, got_type));
9396 got_offset = (object->local_got_offset(r_sym, got_type)
9397 - target->got_size());
9399 if (optimized_type == tls::TLSOPT_NONE)
9401 Arm_address got_entry =
9402 target->got_plt_section()->address() + got_offset;
9404 // Relocate the field with the PC relative offset of the pair of
9406 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9407 return ArmRelocFuncs::STATUS_OKAY;
9412 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9413 if (optimized_type == tls::TLSOPT_NONE)
9415 // Relocate the field with the offset of the GOT entry for
9416 // the module index.
9417 unsigned int got_offset;
9418 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9419 - target->got_size());
9420 Arm_address got_entry =
9421 target->got_plt_section()->address() + got_offset;
9423 // Relocate the field with the PC relative offset of the pair of
9425 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9426 return ArmRelocFuncs::STATUS_OKAY;
9430 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9431 RelocFuncs::rel32_unaligned(view, value);
9432 return ArmRelocFuncs::STATUS_OKAY;
9434 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9435 if (optimized_type == tls::TLSOPT_NONE)
9437 // Relocate the field with the offset of the GOT entry for
9438 // the tp-relative offset of the symbol.
9439 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9440 unsigned int got_offset;
9443 gold_assert(gsym->has_got_offset(got_type));
9444 got_offset = gsym->got_offset(got_type);
9448 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9449 gold_assert(object->local_has_got_offset(r_sym, got_type));
9450 got_offset = object->local_got_offset(r_sym, got_type);
9453 // All GOT offsets are relative to the end of the GOT.
9454 got_offset -= target->got_size();
9456 Arm_address got_entry =
9457 target->got_plt_section()->address() + got_offset;
9459 // Relocate the field with the PC relative offset of the GOT entry.
9460 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9461 return ArmRelocFuncs::STATUS_OKAY;
9465 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9466 // If we're creating a shared library, a dynamic relocation will
9467 // have been created for this location, so do not apply it now.
9468 if (!parameters->options().shared())
9470 gold_assert(tls_segment != NULL);
9472 // $tp points to the TCB, which is followed by the TLS, so we
9473 // need to add TCB size to the offset.
9474 Arm_address aligned_tcb_size =
9475 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9476 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9479 return ArmRelocFuncs::STATUS_OKAY;
9485 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9486 _("unsupported reloc %u"),
9488 return ArmRelocFuncs::STATUS_BAD_RELOC;
9491 // Relocate section data.
9493 template<bool big_endian>
9495 Target_arm<big_endian>::relocate_section(
9496 const Relocate_info<32, big_endian>* relinfo,
9497 unsigned int sh_type,
9498 const unsigned char* prelocs,
9500 Output_section* output_section,
9501 bool needs_special_offset_handling,
9502 unsigned char* view,
9503 Arm_address address,
9504 section_size_type view_size,
9505 const Reloc_symbol_changes* reloc_symbol_changes)
9507 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9508 gold_assert(sh_type == elfcpp::SHT_REL);
9510 // See if we are relocating a relaxed input section. If so, the view
9511 // covers the whole output section and we need to adjust accordingly.
9512 if (needs_special_offset_handling)
9514 const Output_relaxed_input_section* poris =
9515 output_section->find_relaxed_input_section(relinfo->object,
9516 relinfo->data_shndx);
9519 Arm_address section_address = poris->address();
9520 section_size_type section_size = poris->data_size();
9522 gold_assert((section_address >= address)
9523 && ((section_address + section_size)
9524 <= (address + view_size)));
9526 off_t offset = section_address - address;
9529 view_size = section_size;
9533 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9534 Arm_relocate, gold::Default_comdat_behavior>(
9540 needs_special_offset_handling,
9544 reloc_symbol_changes);
9547 // Return the size of a relocation while scanning during a relocatable
9550 template<bool big_endian>
9552 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9553 unsigned int r_type,
9556 r_type = get_real_reloc_type(r_type);
9557 const Arm_reloc_property* arp =
9558 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9563 std::string reloc_name =
9564 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9565 gold_error(_("%s: unexpected %s in object file"),
9566 object->name().c_str(), reloc_name.c_str());
9571 // Scan the relocs during a relocatable link.
9573 template<bool big_endian>
9575 Target_arm<big_endian>::scan_relocatable_relocs(
9576 Symbol_table* symtab,
9578 Sized_relobj_file<32, big_endian>* object,
9579 unsigned int data_shndx,
9580 unsigned int sh_type,
9581 const unsigned char* prelocs,
9583 Output_section* output_section,
9584 bool needs_special_offset_handling,
9585 size_t local_symbol_count,
9586 const unsigned char* plocal_symbols,
9587 Relocatable_relocs* rr)
9589 gold_assert(sh_type == elfcpp::SHT_REL);
9591 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9592 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9594 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9595 Scan_relocatable_relocs>(
9603 needs_special_offset_handling,
9609 // Emit relocations for a section.
9611 template<bool big_endian>
9613 Target_arm<big_endian>::relocate_relocs(
9614 const Relocate_info<32, big_endian>* relinfo,
9615 unsigned int sh_type,
9616 const unsigned char* prelocs,
9618 Output_section* output_section,
9619 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9620 const Relocatable_relocs* rr,
9621 unsigned char* view,
9622 Arm_address view_address,
9623 section_size_type view_size,
9624 unsigned char* reloc_view,
9625 section_size_type reloc_view_size)
9627 gold_assert(sh_type == elfcpp::SHT_REL);
9629 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
9634 offset_in_output_section,
9643 // Perform target-specific processing in a relocatable link. This is
9644 // only used if we use the relocation strategy RELOC_SPECIAL.
9646 template<bool big_endian>
9648 Target_arm<big_endian>::relocate_special_relocatable(
9649 const Relocate_info<32, big_endian>* relinfo,
9650 unsigned int sh_type,
9651 const unsigned char* preloc_in,
9653 Output_section* output_section,
9654 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9655 unsigned char* view,
9656 elfcpp::Elf_types<32>::Elf_Addr view_address,
9658 unsigned char* preloc_out)
9660 // We can only handle REL type relocation sections.
9661 gold_assert(sh_type == elfcpp::SHT_REL);
9663 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9664 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9666 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9668 const Arm_relobj<big_endian>* object =
9669 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9670 const unsigned int local_count = object->local_symbol_count();
9672 Reltype reloc(preloc_in);
9673 Reltype_write reloc_write(preloc_out);
9675 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9676 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9677 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9679 const Arm_reloc_property* arp =
9680 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9681 gold_assert(arp != NULL);
9683 // Get the new symbol index.
9684 // We only use RELOC_SPECIAL strategy in local relocations.
9685 gold_assert(r_sym < local_count);
9687 // We are adjusting a section symbol. We need to find
9688 // the symbol table index of the section symbol for
9689 // the output section corresponding to input section
9690 // in which this symbol is defined.
9692 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9693 gold_assert(is_ordinary);
9694 Output_section* os = object->output_section(shndx);
9695 gold_assert(os != NULL);
9696 gold_assert(os->needs_symtab_index());
9697 unsigned int new_symndx = os->symtab_index();
9699 // Get the new offset--the location in the output section where
9700 // this relocation should be applied.
9702 Arm_address offset = reloc.get_r_offset();
9703 Arm_address new_offset;
9704 if (offset_in_output_section != invalid_address)
9705 new_offset = offset + offset_in_output_section;
9708 section_offset_type sot_offset =
9709 convert_types<section_offset_type, Arm_address>(offset);
9710 section_offset_type new_sot_offset =
9711 output_section->output_offset(object, relinfo->data_shndx,
9713 gold_assert(new_sot_offset != -1);
9714 new_offset = new_sot_offset;
9717 // In an object file, r_offset is an offset within the section.
9718 // In an executable or dynamic object, generated by
9719 // --emit-relocs, r_offset is an absolute address.
9720 if (!parameters->options().relocatable())
9722 new_offset += view_address;
9723 if (offset_in_output_section != invalid_address)
9724 new_offset -= offset_in_output_section;
9727 reloc_write.put_r_offset(new_offset);
9728 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9730 // Handle the reloc addend.
9731 // The relocation uses a section symbol in the input file.
9732 // We are adjusting it to use a section symbol in the output
9733 // file. The input section symbol refers to some address in
9734 // the input section. We need the relocation in the output
9735 // file to refer to that same address. This adjustment to
9736 // the addend is the same calculation we use for a simple
9737 // absolute relocation for the input section symbol.
9739 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9741 // Handle THUMB bit.
9742 Symbol_value<32> symval;
9743 Arm_address thumb_bit =
9744 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9746 && arp->uses_thumb_bit()
9747 && ((psymval->value(object, 0) & 1) != 0))
9749 Arm_address stripped_value =
9750 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9751 symval.set_output_value(stripped_value);
9755 unsigned char* paddend = view + offset;
9756 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9757 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9760 case elfcpp::R_ARM_ABS8:
9761 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9765 case elfcpp::R_ARM_ABS12:
9766 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9770 case elfcpp::R_ARM_ABS16:
9771 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9775 case elfcpp::R_ARM_THM_ABS5:
9776 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9781 case elfcpp::R_ARM_MOVW_ABS_NC:
9782 case elfcpp::R_ARM_MOVW_PREL_NC:
9783 case elfcpp::R_ARM_MOVW_BREL_NC:
9784 case elfcpp::R_ARM_MOVW_BREL:
9785 reloc_status = Arm_relocate_functions<big_endian>::movw(
9786 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9789 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9790 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9791 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9792 case elfcpp::R_ARM_THM_MOVW_BREL:
9793 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9794 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9797 case elfcpp::R_ARM_THM_CALL:
9798 case elfcpp::R_ARM_THM_XPC22:
9799 case elfcpp::R_ARM_THM_JUMP24:
9801 Arm_relocate_functions<big_endian>::thumb_branch_common(
9802 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9806 case elfcpp::R_ARM_PLT32:
9807 case elfcpp::R_ARM_CALL:
9808 case elfcpp::R_ARM_JUMP24:
9809 case elfcpp::R_ARM_XPC25:
9811 Arm_relocate_functions<big_endian>::arm_branch_common(
9812 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9816 case elfcpp::R_ARM_THM_JUMP19:
9818 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9819 psymval, 0, thumb_bit);
9822 case elfcpp::R_ARM_THM_JUMP6:
9824 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9828 case elfcpp::R_ARM_THM_JUMP8:
9830 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9834 case elfcpp::R_ARM_THM_JUMP11:
9836 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9840 case elfcpp::R_ARM_PREL31:
9842 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9846 case elfcpp::R_ARM_THM_PC8:
9848 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9852 case elfcpp::R_ARM_THM_PC12:
9854 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9858 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9860 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9864 // These relocation truncate relocation results so we cannot handle them
9865 // in a relocatable link.
9866 case elfcpp::R_ARM_MOVT_ABS:
9867 case elfcpp::R_ARM_THM_MOVT_ABS:
9868 case elfcpp::R_ARM_MOVT_PREL:
9869 case elfcpp::R_ARM_MOVT_BREL:
9870 case elfcpp::R_ARM_THM_MOVT_PREL:
9871 case elfcpp::R_ARM_THM_MOVT_BREL:
9872 case elfcpp::R_ARM_ALU_PC_G0_NC:
9873 case elfcpp::R_ARM_ALU_PC_G0:
9874 case elfcpp::R_ARM_ALU_PC_G1_NC:
9875 case elfcpp::R_ARM_ALU_PC_G1:
9876 case elfcpp::R_ARM_ALU_PC_G2:
9877 case elfcpp::R_ARM_ALU_SB_G0_NC:
9878 case elfcpp::R_ARM_ALU_SB_G0:
9879 case elfcpp::R_ARM_ALU_SB_G1_NC:
9880 case elfcpp::R_ARM_ALU_SB_G1:
9881 case elfcpp::R_ARM_ALU_SB_G2:
9882 case elfcpp::R_ARM_LDR_PC_G0:
9883 case elfcpp::R_ARM_LDR_PC_G1:
9884 case elfcpp::R_ARM_LDR_PC_G2:
9885 case elfcpp::R_ARM_LDR_SB_G0:
9886 case elfcpp::R_ARM_LDR_SB_G1:
9887 case elfcpp::R_ARM_LDR_SB_G2:
9888 case elfcpp::R_ARM_LDRS_PC_G0:
9889 case elfcpp::R_ARM_LDRS_PC_G1:
9890 case elfcpp::R_ARM_LDRS_PC_G2:
9891 case elfcpp::R_ARM_LDRS_SB_G0:
9892 case elfcpp::R_ARM_LDRS_SB_G1:
9893 case elfcpp::R_ARM_LDRS_SB_G2:
9894 case elfcpp::R_ARM_LDC_PC_G0:
9895 case elfcpp::R_ARM_LDC_PC_G1:
9896 case elfcpp::R_ARM_LDC_PC_G2:
9897 case elfcpp::R_ARM_LDC_SB_G0:
9898 case elfcpp::R_ARM_LDC_SB_G1:
9899 case elfcpp::R_ARM_LDC_SB_G2:
9900 gold_error(_("cannot handle %s in a relocatable link"),
9901 arp->name().c_str());
9908 // Report any errors.
9909 switch (reloc_status)
9911 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9913 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9914 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9915 _("relocation overflow in %s"),
9916 arp->name().c_str());
9918 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9919 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9920 _("unexpected opcode while processing relocation %s"),
9921 arp->name().c_str());
9928 // Return the value to use for a dynamic symbol which requires special
9929 // treatment. This is how we support equality comparisons of function
9930 // pointers across shared library boundaries, as described in the
9931 // processor specific ABI supplement.
9933 template<bool big_endian>
9935 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9937 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9938 return this->plt_section()->address() + gsym->plt_offset();
9941 // Map platform-specific relocs to real relocs
9943 template<bool big_endian>
9945 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9949 case elfcpp::R_ARM_TARGET1:
9950 // This is either R_ARM_ABS32 or R_ARM_REL32;
9951 return elfcpp::R_ARM_ABS32;
9953 case elfcpp::R_ARM_TARGET2:
9954 // This can be any reloc type but usually is R_ARM_GOT_PREL
9955 return elfcpp::R_ARM_GOT_PREL;
9962 // Whether if two EABI versions V1 and V2 are compatible.
9964 template<bool big_endian>
9966 Target_arm<big_endian>::are_eabi_versions_compatible(
9967 elfcpp::Elf_Word v1,
9968 elfcpp::Elf_Word v2)
9970 // v4 and v5 are the same spec before and after it was released,
9971 // so allow mixing them.
9972 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9973 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9974 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9980 // Combine FLAGS from an input object called NAME and the processor-specific
9981 // flags in the ELF header of the output. Much of this is adapted from the
9982 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9983 // in bfd/elf32-arm.c.
9985 template<bool big_endian>
9987 Target_arm<big_endian>::merge_processor_specific_flags(
9988 const std::string& name,
9989 elfcpp::Elf_Word flags)
9991 if (this->are_processor_specific_flags_set())
9993 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9995 // Nothing to merge if flags equal to those in output.
9996 if (flags == out_flags)
9999 // Complain about various flag mismatches.
10000 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10001 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10002 if (!this->are_eabi_versions_compatible(version1, version2)
10003 && parameters->options().warn_mismatch())
10004 gold_error(_("Source object %s has EABI version %d but output has "
10005 "EABI version %d."),
10007 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10008 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10012 // If the input is the default architecture and had the default
10013 // flags then do not bother setting the flags for the output
10014 // architecture, instead allow future merges to do this. If no
10015 // future merges ever set these flags then they will retain their
10016 // uninitialised values, which surprise surprise, correspond
10017 // to the default values.
10021 // This is the first time, just copy the flags.
10022 // We only copy the EABI version for now.
10023 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10027 // Adjust ELF file header.
10028 template<bool big_endian>
10030 Target_arm<big_endian>::do_adjust_elf_header(
10031 unsigned char* view,
10034 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10036 elfcpp::Ehdr<32, big_endian> ehdr(view);
10037 elfcpp::Elf_Word flags = this->processor_specific_flags();
10038 unsigned char e_ident[elfcpp::EI_NIDENT];
10039 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10041 if (elfcpp::arm_eabi_version(flags)
10042 == elfcpp::EF_ARM_EABI_UNKNOWN)
10043 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10045 e_ident[elfcpp::EI_OSABI] = 0;
10046 e_ident[elfcpp::EI_ABIVERSION] = 0;
10048 // FIXME: Do EF_ARM_BE8 adjustment.
10050 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10052 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10054 elfcpp::Elf_Half type = ehdr.get_e_type();
10055 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10057 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10058 if (attr->int_value())
10059 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10061 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10062 this->set_processor_specific_flags(flags);
10065 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10066 oehdr.put_e_ident(e_ident);
10069 // do_make_elf_object to override the same function in the base class.
10070 // We need to use a target-specific sub-class of
10071 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10072 // Hence we need to have our own ELF object creation.
10074 template<bool big_endian>
10076 Target_arm<big_endian>::do_make_elf_object(
10077 const std::string& name,
10078 Input_file* input_file,
10079 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10081 int et = ehdr.get_e_type();
10082 // ET_EXEC files are valid input for --just-symbols/-R,
10083 // and we treat them as relocatable objects.
10084 if (et == elfcpp::ET_REL
10085 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10087 Arm_relobj<big_endian>* obj =
10088 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10092 else if (et == elfcpp::ET_DYN)
10094 Sized_dynobj<32, big_endian>* obj =
10095 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10101 gold_error(_("%s: unsupported ELF file type %d"),
10107 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10108 // Returns -1 if no architecture could be read.
10109 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10111 template<bool big_endian>
10113 Target_arm<big_endian>::get_secondary_compatible_arch(
10114 const Attributes_section_data* pasd)
10116 const Object_attribute* known_attributes =
10117 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10119 // Note: the tag and its argument below are uleb128 values, though
10120 // currently-defined values fit in one byte for each.
10121 const std::string& sv =
10122 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10124 && sv.data()[0] == elfcpp::Tag_CPU_arch
10125 && (sv.data()[1] & 128) != 128)
10126 return sv.data()[1];
10128 // This tag is "safely ignorable", so don't complain if it looks funny.
10132 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10133 // The tag is removed if ARCH is -1.
10134 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10136 template<bool big_endian>
10138 Target_arm<big_endian>::set_secondary_compatible_arch(
10139 Attributes_section_data* pasd,
10142 Object_attribute* known_attributes =
10143 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10147 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10151 // Note: the tag and its argument below are uleb128 values, though
10152 // currently-defined values fit in one byte for each.
10154 sv[0] = elfcpp::Tag_CPU_arch;
10155 gold_assert(arch != 0);
10159 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10162 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10164 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10166 template<bool big_endian>
10168 Target_arm<big_endian>::tag_cpu_arch_combine(
10171 int* secondary_compat_out,
10173 int secondary_compat)
10175 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10176 static const int v6t2[] =
10178 T(V6T2), // PRE_V4.
10188 static const int v6k[] =
10201 static const int v7[] =
10215 static const int v6_m[] =
10230 static const int v6s_m[] =
10246 static const int v7e_m[] =
10253 T(V7E_M), // V5TEJ.
10260 T(V7E_M), // V6S_M.
10263 static const int v4t_plus_v6_m[] =
10270 T(V5TEJ), // V5TEJ.
10277 T(V6S_M), // V6S_M.
10278 T(V7E_M), // V7E_M.
10279 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10281 static const int* comb[] =
10289 // Pseudo-architecture.
10293 // Check we've not got a higher architecture than we know about.
10295 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10297 gold_error(_("%s: unknown CPU architecture"), name);
10301 // Override old tag if we have a Tag_also_compatible_with on the output.
10303 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10304 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10305 oldtag = T(V4T_PLUS_V6_M);
10307 // And override the new tag if we have a Tag_also_compatible_with on the
10310 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10311 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10312 newtag = T(V4T_PLUS_V6_M);
10314 // Architectures before V6KZ add features monotonically.
10315 int tagh = std::max(oldtag, newtag);
10316 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10319 int tagl = std::min(oldtag, newtag);
10320 int result = comb[tagh - T(V6T2)][tagl];
10322 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10323 // as the canonical version.
10324 if (result == T(V4T_PLUS_V6_M))
10327 *secondary_compat_out = T(V6_M);
10330 *secondary_compat_out = -1;
10334 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10335 name, oldtag, newtag);
10343 // Helper to print AEABI enum tag value.
10345 template<bool big_endian>
10347 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10349 static const char* aeabi_enum_names[] =
10350 { "", "variable-size", "32-bit", "" };
10351 const size_t aeabi_enum_names_size =
10352 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10354 if (value < aeabi_enum_names_size)
10355 return std::string(aeabi_enum_names[value]);
10359 sprintf(buffer, "<unknown value %u>", value);
10360 return std::string(buffer);
10364 // Return the string value to store in TAG_CPU_name.
10366 template<bool big_endian>
10368 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10370 static const char* name_table[] = {
10371 // These aren't real CPU names, but we can't guess
10372 // that from the architecture version alone.
10388 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10390 if (value < name_table_size)
10391 return std::string(name_table[value]);
10395 sprintf(buffer, "<unknown CPU value %u>", value);
10396 return std::string(buffer);
10400 // Query attributes object to see if integer divide instructions may be
10401 // present in an object.
10403 template<bool big_endian>
10405 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10406 const Object_attribute* div_attr)
10408 switch (div_attr->int_value())
10411 // Integer divide allowed if instruction contained in
10413 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10415 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10421 // Integer divide explicitly prohibited.
10425 // Unrecognised case - treat as allowing divide everywhere.
10427 // Integer divide allowed in ARM state.
10432 // Query attributes object to see if integer divide instructions are
10433 // forbidden to be in the object. This is not the inverse of
10434 // attributes_accept_div.
10436 template<bool big_endian>
10438 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10440 return div_attr->int_value() == 1;
10443 // Merge object attributes from input file called NAME with those of the
10444 // output. The input object attributes are in the object pointed by PASD.
10446 template<bool big_endian>
10448 Target_arm<big_endian>::merge_object_attributes(
10450 const Attributes_section_data* pasd)
10452 // Return if there is no attributes section data.
10456 // If output has no object attributes, just copy.
10457 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10458 if (this->attributes_section_data_ == NULL)
10460 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10461 Object_attribute* out_attr =
10462 this->attributes_section_data_->known_attributes(vendor);
10464 // We do not output objects with Tag_MPextension_use_legacy - we move
10465 // the attribute's value to Tag_MPextension_use. */
10466 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10468 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10469 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10470 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10472 gold_error(_("%s has both the current and legacy "
10473 "Tag_MPextension_use attributes"),
10477 out_attr[elfcpp::Tag_MPextension_use] =
10478 out_attr[elfcpp::Tag_MPextension_use_legacy];
10479 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10480 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10486 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10487 Object_attribute* out_attr =
10488 this->attributes_section_data_->known_attributes(vendor);
10490 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10491 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10492 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10494 // Ignore mismatches if the object doesn't use floating point. */
10495 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10496 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10497 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10498 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10499 && parameters->options().warn_mismatch())
10500 gold_error(_("%s uses VFP register arguments, output does not"),
10504 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10506 // Merge this attribute with existing attributes.
10509 case elfcpp::Tag_CPU_raw_name:
10510 case elfcpp::Tag_CPU_name:
10511 // These are merged after Tag_CPU_arch.
10514 case elfcpp::Tag_ABI_optimization_goals:
10515 case elfcpp::Tag_ABI_FP_optimization_goals:
10516 // Use the first value seen.
10519 case elfcpp::Tag_CPU_arch:
10521 unsigned int saved_out_attr = out_attr->int_value();
10522 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10523 int secondary_compat =
10524 this->get_secondary_compatible_arch(pasd);
10525 int secondary_compat_out =
10526 this->get_secondary_compatible_arch(
10527 this->attributes_section_data_);
10528 out_attr[i].set_int_value(
10529 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10530 &secondary_compat_out,
10531 in_attr[i].int_value(),
10532 secondary_compat));
10533 this->set_secondary_compatible_arch(this->attributes_section_data_,
10534 secondary_compat_out);
10536 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10537 if (out_attr[i].int_value() == saved_out_attr)
10538 ; // Leave the names alone.
10539 else if (out_attr[i].int_value() == in_attr[i].int_value())
10541 // The output architecture has been changed to match the
10542 // input architecture. Use the input names.
10543 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10544 in_attr[elfcpp::Tag_CPU_name].string_value());
10545 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10546 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10550 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10551 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10554 // If we still don't have a value for Tag_CPU_name,
10555 // make one up now. Tag_CPU_raw_name remains blank.
10556 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10558 const std::string cpu_name =
10559 this->tag_cpu_name_value(out_attr[i].int_value());
10560 // FIXME: If we see an unknown CPU, this will be set
10561 // to "<unknown CPU n>", where n is the attribute value.
10562 // This is different from BFD, which leaves the name alone.
10563 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10568 case elfcpp::Tag_ARM_ISA_use:
10569 case elfcpp::Tag_THUMB_ISA_use:
10570 case elfcpp::Tag_WMMX_arch:
10571 case elfcpp::Tag_Advanced_SIMD_arch:
10572 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10573 case elfcpp::Tag_ABI_FP_rounding:
10574 case elfcpp::Tag_ABI_FP_exceptions:
10575 case elfcpp::Tag_ABI_FP_user_exceptions:
10576 case elfcpp::Tag_ABI_FP_number_model:
10577 case elfcpp::Tag_VFP_HP_extension:
10578 case elfcpp::Tag_CPU_unaligned_access:
10579 case elfcpp::Tag_T2EE_use:
10580 case elfcpp::Tag_Virtualization_use:
10581 case elfcpp::Tag_MPextension_use:
10582 // Use the largest value specified.
10583 if (in_attr[i].int_value() > out_attr[i].int_value())
10584 out_attr[i].set_int_value(in_attr[i].int_value());
10587 case elfcpp::Tag_ABI_align8_preserved:
10588 case elfcpp::Tag_ABI_PCS_RO_data:
10589 // Use the smallest value specified.
10590 if (in_attr[i].int_value() < out_attr[i].int_value())
10591 out_attr[i].set_int_value(in_attr[i].int_value());
10594 case elfcpp::Tag_ABI_align8_needed:
10595 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10596 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10597 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10600 // This error message should be enabled once all non-conforming
10601 // binaries in the toolchain have had the attributes set
10603 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10607 case elfcpp::Tag_ABI_FP_denormal:
10608 case elfcpp::Tag_ABI_PCS_GOT_use:
10610 // These tags have 0 = don't care, 1 = strong requirement,
10611 // 2 = weak requirement.
10612 static const int order_021[3] = {0, 2, 1};
10614 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10615 // value if greater than 2 (for future-proofing).
10616 if ((in_attr[i].int_value() > 2
10617 && in_attr[i].int_value() > out_attr[i].int_value())
10618 || (in_attr[i].int_value() <= 2
10619 && out_attr[i].int_value() <= 2
10620 && (order_021[in_attr[i].int_value()]
10621 > order_021[out_attr[i].int_value()])))
10622 out_attr[i].set_int_value(in_attr[i].int_value());
10626 case elfcpp::Tag_CPU_arch_profile:
10627 if (out_attr[i].int_value() != in_attr[i].int_value())
10629 // 0 will merge with anything.
10630 // 'A' and 'S' merge to 'A'.
10631 // 'R' and 'S' merge to 'R'.
10632 // 'M' and 'A|R|S' is an error.
10633 if (out_attr[i].int_value() == 0
10634 || (out_attr[i].int_value() == 'S'
10635 && (in_attr[i].int_value() == 'A'
10636 || in_attr[i].int_value() == 'R')))
10637 out_attr[i].set_int_value(in_attr[i].int_value());
10638 else if (in_attr[i].int_value() == 0
10639 || (in_attr[i].int_value() == 'S'
10640 && (out_attr[i].int_value() == 'A'
10641 || out_attr[i].int_value() == 'R')))
10643 else if (parameters->options().warn_mismatch())
10646 (_("conflicting architecture profiles %c/%c"),
10647 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10648 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10652 case elfcpp::Tag_VFP_arch:
10654 static const struct
10658 } vfp_versions[7] =
10669 // Values greater than 6 aren't defined, so just pick the
10671 if (in_attr[i].int_value() > 6
10672 && in_attr[i].int_value() > out_attr[i].int_value())
10674 *out_attr = *in_attr;
10677 // The output uses the superset of input features
10678 // (ISA version) and registers.
10679 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10680 vfp_versions[out_attr[i].int_value()].ver);
10681 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10682 vfp_versions[out_attr[i].int_value()].regs);
10683 // This assumes all possible supersets are also a valid
10686 for (newval = 6; newval > 0; newval--)
10688 if (regs == vfp_versions[newval].regs
10689 && ver == vfp_versions[newval].ver)
10692 out_attr[i].set_int_value(newval);
10695 case elfcpp::Tag_PCS_config:
10696 if (out_attr[i].int_value() == 0)
10697 out_attr[i].set_int_value(in_attr[i].int_value());
10698 else if (in_attr[i].int_value() != 0
10699 && out_attr[i].int_value() != 0
10700 && parameters->options().warn_mismatch())
10702 // It's sometimes ok to mix different configs, so this is only
10704 gold_warning(_("%s: conflicting platform configuration"), name);
10707 case elfcpp::Tag_ABI_PCS_R9_use:
10708 if (in_attr[i].int_value() != out_attr[i].int_value()
10709 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10710 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10711 && parameters->options().warn_mismatch())
10713 gold_error(_("%s: conflicting use of R9"), name);
10715 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10716 out_attr[i].set_int_value(in_attr[i].int_value());
10718 case elfcpp::Tag_ABI_PCS_RW_data:
10719 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10720 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10721 != elfcpp::AEABI_R9_SB)
10722 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10723 != elfcpp::AEABI_R9_unused)
10724 && parameters->options().warn_mismatch())
10726 gold_error(_("%s: SB relative addressing conflicts with use "
10730 // Use the smallest value specified.
10731 if (in_attr[i].int_value() < out_attr[i].int_value())
10732 out_attr[i].set_int_value(in_attr[i].int_value());
10734 case elfcpp::Tag_ABI_PCS_wchar_t:
10735 if (out_attr[i].int_value()
10736 && in_attr[i].int_value()
10737 && out_attr[i].int_value() != in_attr[i].int_value()
10738 && parameters->options().warn_mismatch()
10739 && parameters->options().wchar_size_warning())
10741 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10742 "use %u-byte wchar_t; use of wchar_t values "
10743 "across objects may fail"),
10744 name, in_attr[i].int_value(),
10745 out_attr[i].int_value());
10747 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10748 out_attr[i].set_int_value(in_attr[i].int_value());
10750 case elfcpp::Tag_ABI_enum_size:
10751 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10753 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10754 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10756 // The existing object is compatible with anything.
10757 // Use whatever requirements the new object has.
10758 out_attr[i].set_int_value(in_attr[i].int_value());
10760 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10761 && out_attr[i].int_value() != in_attr[i].int_value()
10762 && parameters->options().warn_mismatch()
10763 && parameters->options().enum_size_warning())
10765 unsigned int in_value = in_attr[i].int_value();
10766 unsigned int out_value = out_attr[i].int_value();
10767 gold_warning(_("%s uses %s enums yet the output is to use "
10768 "%s enums; use of enum values across objects "
10771 this->aeabi_enum_name(in_value).c_str(),
10772 this->aeabi_enum_name(out_value).c_str());
10776 case elfcpp::Tag_ABI_VFP_args:
10779 case elfcpp::Tag_ABI_WMMX_args:
10780 if (in_attr[i].int_value() != out_attr[i].int_value()
10781 && parameters->options().warn_mismatch())
10783 gold_error(_("%s uses iWMMXt register arguments, output does "
10788 case Object_attribute::Tag_compatibility:
10789 // Merged in target-independent code.
10791 case elfcpp::Tag_ABI_HardFP_use:
10792 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10793 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10794 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10795 out_attr[i].set_int_value(3);
10796 else if (in_attr[i].int_value() > out_attr[i].int_value())
10797 out_attr[i].set_int_value(in_attr[i].int_value());
10799 case elfcpp::Tag_ABI_FP_16bit_format:
10800 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10802 if (in_attr[i].int_value() != out_attr[i].int_value()
10803 && parameters->options().warn_mismatch())
10804 gold_error(_("fp16 format mismatch between %s and output"),
10807 if (in_attr[i].int_value() != 0)
10808 out_attr[i].set_int_value(in_attr[i].int_value());
10811 case elfcpp::Tag_DIV_use:
10813 // A value of zero on input means that the divide
10814 // instruction may be used if available in the base
10815 // architecture as specified via Tag_CPU_arch and
10816 // Tag_CPU_arch_profile. A value of 1 means that the user
10817 // did not want divide instructions. A value of 2
10818 // explicitly means that divide instructions were allowed
10819 // in ARM and Thumb state.
10821 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
10823 int profile = this->
10824 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
10826 if (in_attr[i].int_value() == out_attr[i].int_value())
10830 else if (attributes_forbid_div(&in_attr[i])
10831 && !attributes_accept_div(arch, profile, &out_attr[i]))
10832 out_attr[i].set_int_value(1);
10833 else if (attributes_forbid_div(&out_attr[i])
10834 && attributes_accept_div(arch, profile, &in_attr[i]))
10835 out_attr[i].set_int_value(in_attr[i].int_value());
10836 else if (in_attr[i].int_value() == 2)
10837 out_attr[i].set_int_value(in_attr[i].int_value());
10841 case elfcpp::Tag_MPextension_use_legacy:
10842 // We don't output objects with Tag_MPextension_use_legacy - we
10843 // move the value to Tag_MPextension_use.
10844 if (in_attr[i].int_value() != 0
10845 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10847 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10848 != in_attr[i].int_value())
10850 gold_error(_("%s has has both the current and legacy "
10851 "Tag_MPextension_use attributes"),
10856 if (in_attr[i].int_value()
10857 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10858 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10862 case elfcpp::Tag_nodefaults:
10863 // This tag is set if it exists, but the value is unused (and is
10864 // typically zero). We don't actually need to do anything here -
10865 // the merge happens automatically when the type flags are merged
10868 case elfcpp::Tag_also_compatible_with:
10869 // Already done in Tag_CPU_arch.
10871 case elfcpp::Tag_conformance:
10872 // Keep the attribute if it matches. Throw it away otherwise.
10873 // No attribute means no claim to conform.
10874 if (in_attr[i].string_value() != out_attr[i].string_value())
10875 out_attr[i].set_string_value("");
10880 const char* err_object = NULL;
10882 // The "known_obj_attributes" table does contain some undefined
10883 // attributes. Ensure that there are unused.
10884 if (out_attr[i].int_value() != 0
10885 || out_attr[i].string_value() != "")
10886 err_object = "output";
10887 else if (in_attr[i].int_value() != 0
10888 || in_attr[i].string_value() != "")
10891 if (err_object != NULL
10892 && parameters->options().warn_mismatch())
10894 // Attribute numbers >=64 (mod 128) can be safely ignored.
10895 if ((i & 127) < 64)
10896 gold_error(_("%s: unknown mandatory EABI object attribute "
10900 gold_warning(_("%s: unknown EABI object attribute %d"),
10904 // Only pass on attributes that match in both inputs.
10905 if (!in_attr[i].matches(out_attr[i]))
10907 out_attr[i].set_int_value(0);
10908 out_attr[i].set_string_value("");
10913 // If out_attr was copied from in_attr then it won't have a type yet.
10914 if (in_attr[i].type() && !out_attr[i].type())
10915 out_attr[i].set_type(in_attr[i].type());
10918 // Merge Tag_compatibility attributes and any common GNU ones.
10919 this->attributes_section_data_->merge(name, pasd);
10921 // Check for any attributes not known on ARM.
10922 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10923 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10924 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10925 Other_attributes* out_other_attributes =
10926 this->attributes_section_data_->other_attributes(vendor);
10927 Other_attributes::iterator out_iter = out_other_attributes->begin();
10929 while (in_iter != in_other_attributes->end()
10930 || out_iter != out_other_attributes->end())
10932 const char* err_object = NULL;
10935 // The tags for each list are in numerical order.
10936 // If the tags are equal, then merge.
10937 if (out_iter != out_other_attributes->end()
10938 && (in_iter == in_other_attributes->end()
10939 || in_iter->first > out_iter->first))
10941 // This attribute only exists in output. We can't merge, and we
10942 // don't know what the tag means, so delete it.
10943 err_object = "output";
10944 err_tag = out_iter->first;
10945 int saved_tag = out_iter->first;
10946 delete out_iter->second;
10947 out_other_attributes->erase(out_iter);
10948 out_iter = out_other_attributes->upper_bound(saved_tag);
10950 else if (in_iter != in_other_attributes->end()
10951 && (out_iter != out_other_attributes->end()
10952 || in_iter->first < out_iter->first))
10954 // This attribute only exists in input. We can't merge, and we
10955 // don't know what the tag means, so ignore it.
10957 err_tag = in_iter->first;
10960 else // The tags are equal.
10962 // As present, all attributes in the list are unknown, and
10963 // therefore can't be merged meaningfully.
10964 err_object = "output";
10965 err_tag = out_iter->first;
10967 // Only pass on attributes that match in both inputs.
10968 if (!in_iter->second->matches(*(out_iter->second)))
10970 // No match. Delete the attribute.
10971 int saved_tag = out_iter->first;
10972 delete out_iter->second;
10973 out_other_attributes->erase(out_iter);
10974 out_iter = out_other_attributes->upper_bound(saved_tag);
10978 // Matched. Keep the attribute and move to the next.
10984 if (err_object && parameters->options().warn_mismatch())
10986 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10987 if ((err_tag & 127) < 64)
10989 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10990 err_object, err_tag);
10994 gold_warning(_("%s: unknown EABI object attribute %d"),
10995 err_object, err_tag);
11001 // Stub-generation methods for Target_arm.
11003 // Make a new Arm_input_section object.
11005 template<bool big_endian>
11006 Arm_input_section<big_endian>*
11007 Target_arm<big_endian>::new_arm_input_section(
11009 unsigned int shndx)
11011 Section_id sid(relobj, shndx);
11013 Arm_input_section<big_endian>* arm_input_section =
11014 new Arm_input_section<big_endian>(relobj, shndx);
11015 arm_input_section->init();
11017 // Register new Arm_input_section in map for look-up.
11018 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11019 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11021 // Make sure that it we have not created another Arm_input_section
11022 // for this input section already.
11023 gold_assert(ins.second);
11025 return arm_input_section;
11028 // Find the Arm_input_section object corresponding to the SHNDX-th input
11029 // section of RELOBJ.
11031 template<bool big_endian>
11032 Arm_input_section<big_endian>*
11033 Target_arm<big_endian>::find_arm_input_section(
11035 unsigned int shndx) const
11037 Section_id sid(relobj, shndx);
11038 typename Arm_input_section_map::const_iterator p =
11039 this->arm_input_section_map_.find(sid);
11040 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11043 // Make a new stub table.
11045 template<bool big_endian>
11046 Stub_table<big_endian>*
11047 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11049 Stub_table<big_endian>* stub_table =
11050 new Stub_table<big_endian>(owner);
11051 this->stub_tables_.push_back(stub_table);
11053 stub_table->set_address(owner->address() + owner->data_size());
11054 stub_table->set_file_offset(owner->offset() + owner->data_size());
11055 stub_table->finalize_data_size();
11060 // Scan a relocation for stub generation.
11062 template<bool big_endian>
11064 Target_arm<big_endian>::scan_reloc_for_stub(
11065 const Relocate_info<32, big_endian>* relinfo,
11066 unsigned int r_type,
11067 const Sized_symbol<32>* gsym,
11068 unsigned int r_sym,
11069 const Symbol_value<32>* psymval,
11070 elfcpp::Elf_types<32>::Elf_Swxword addend,
11071 Arm_address address)
11073 const Arm_relobj<big_endian>* arm_relobj =
11074 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11076 bool target_is_thumb;
11077 Symbol_value<32> symval;
11080 // This is a global symbol. Determine if we use PLT and if the
11081 // final target is THUMB.
11082 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11084 // This uses a PLT, change the symbol value.
11085 symval.set_output_value(this->plt_section()->address()
11086 + gsym->plt_offset());
11088 target_is_thumb = false;
11090 else if (gsym->is_undefined())
11091 // There is no need to generate a stub symbol is undefined.
11096 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11097 || (gsym->type() == elfcpp::STT_FUNC
11098 && !gsym->is_undefined()
11099 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11104 // This is a local symbol. Determine if the final target is THUMB.
11105 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11108 // Strip LSB if this points to a THUMB target.
11109 const Arm_reloc_property* reloc_property =
11110 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11111 gold_assert(reloc_property != NULL);
11112 if (target_is_thumb
11113 && reloc_property->uses_thumb_bit()
11114 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11116 Arm_address stripped_value =
11117 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11118 symval.set_output_value(stripped_value);
11122 // Get the symbol value.
11123 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11125 // Owing to pipelining, the PC relative branches below actually skip
11126 // two instructions when the branch offset is 0.
11127 Arm_address destination;
11130 case elfcpp::R_ARM_CALL:
11131 case elfcpp::R_ARM_JUMP24:
11132 case elfcpp::R_ARM_PLT32:
11134 destination = value + addend + 8;
11136 case elfcpp::R_ARM_THM_CALL:
11137 case elfcpp::R_ARM_THM_XPC22:
11138 case elfcpp::R_ARM_THM_JUMP24:
11139 case elfcpp::R_ARM_THM_JUMP19:
11141 destination = value + addend + 4;
11144 gold_unreachable();
11147 Reloc_stub* stub = NULL;
11148 Stub_type stub_type =
11149 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11151 if (stub_type != arm_stub_none)
11153 // Try looking up an existing stub from a stub table.
11154 Stub_table<big_endian>* stub_table =
11155 arm_relobj->stub_table(relinfo->data_shndx);
11156 gold_assert(stub_table != NULL);
11158 // Locate stub by destination.
11159 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11161 // Create a stub if there is not one already
11162 stub = stub_table->find_reloc_stub(stub_key);
11165 // create a new stub and add it to stub table.
11166 stub = this->stub_factory().make_reloc_stub(stub_type);
11167 stub_table->add_reloc_stub(stub, stub_key);
11170 // Record the destination address.
11171 stub->set_destination_address(destination
11172 | (target_is_thumb ? 1 : 0));
11175 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11176 if (this->fix_cortex_a8_
11177 && (r_type == elfcpp::R_ARM_THM_JUMP24
11178 || r_type == elfcpp::R_ARM_THM_JUMP19
11179 || r_type == elfcpp::R_ARM_THM_CALL
11180 || r_type == elfcpp::R_ARM_THM_XPC22)
11181 && (address & 0xfffU) == 0xffeU)
11183 // Found a candidate. Note we haven't checked the destination is
11184 // within 4K here: if we do so (and don't create a record) we can't
11185 // tell that a branch should have been relocated when scanning later.
11186 this->cortex_a8_relocs_info_[address] =
11187 new Cortex_a8_reloc(stub, r_type,
11188 destination | (target_is_thumb ? 1 : 0));
11192 // This function scans a relocation sections for stub generation.
11193 // The template parameter Relocate must be a class type which provides
11194 // a single function, relocate(), which implements the machine
11195 // specific part of a relocation.
11197 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11198 // SHT_REL or SHT_RELA.
11200 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11201 // of relocs. OUTPUT_SECTION is the output section.
11202 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11203 // mapped to output offsets.
11205 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11206 // VIEW_SIZE is the size. These refer to the input section, unless
11207 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11208 // the output section.
11210 template<bool big_endian>
11211 template<int sh_type>
11213 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11214 const Relocate_info<32, big_endian>* relinfo,
11215 const unsigned char* prelocs,
11216 size_t reloc_count,
11217 Output_section* output_section,
11218 bool needs_special_offset_handling,
11219 const unsigned char* view,
11220 elfcpp::Elf_types<32>::Elf_Addr view_address,
11223 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11224 const int reloc_size =
11225 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11227 Arm_relobj<big_endian>* arm_object =
11228 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11229 unsigned int local_count = arm_object->local_symbol_count();
11231 gold::Default_comdat_behavior default_comdat_behavior;
11232 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11234 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11236 Reltype reloc(prelocs);
11238 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11239 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11240 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11242 r_type = this->get_real_reloc_type(r_type);
11244 // Only a few relocation types need stubs.
11245 if ((r_type != elfcpp::R_ARM_CALL)
11246 && (r_type != elfcpp::R_ARM_JUMP24)
11247 && (r_type != elfcpp::R_ARM_PLT32)
11248 && (r_type != elfcpp::R_ARM_THM_CALL)
11249 && (r_type != elfcpp::R_ARM_THM_XPC22)
11250 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11251 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11252 && (r_type != elfcpp::R_ARM_V4BX))
11255 section_offset_type offset =
11256 convert_to_section_size_type(reloc.get_r_offset());
11258 if (needs_special_offset_handling)
11260 offset = output_section->output_offset(relinfo->object,
11261 relinfo->data_shndx,
11267 // Create a v4bx stub if --fix-v4bx-interworking is used.
11268 if (r_type == elfcpp::R_ARM_V4BX)
11270 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11272 // Get the BX instruction.
11273 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11274 const Valtype* wv =
11275 reinterpret_cast<const Valtype*>(view + offset);
11276 elfcpp::Elf_types<32>::Elf_Swxword insn =
11277 elfcpp::Swap<32, big_endian>::readval(wv);
11278 const uint32_t reg = (insn & 0xf);
11282 // Try looking up an existing stub from a stub table.
11283 Stub_table<big_endian>* stub_table =
11284 arm_object->stub_table(relinfo->data_shndx);
11285 gold_assert(stub_table != NULL);
11287 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11289 // create a new stub and add it to stub table.
11290 Arm_v4bx_stub* stub =
11291 this->stub_factory().make_arm_v4bx_stub(reg);
11292 gold_assert(stub != NULL);
11293 stub_table->add_arm_v4bx_stub(stub);
11301 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11302 elfcpp::Elf_types<32>::Elf_Swxword addend =
11303 stub_addend_reader(r_type, view + offset, reloc);
11305 const Sized_symbol<32>* sym;
11307 Symbol_value<32> symval;
11308 const Symbol_value<32> *psymval;
11309 bool is_defined_in_discarded_section;
11310 unsigned int shndx;
11311 if (r_sym < local_count)
11314 psymval = arm_object->local_symbol(r_sym);
11316 // If the local symbol belongs to a section we are discarding,
11317 // and that section is a debug section, try to find the
11318 // corresponding kept section and map this symbol to its
11319 // counterpart in the kept section. The symbol must not
11320 // correspond to a section we are folding.
11322 shndx = psymval->input_shndx(&is_ordinary);
11323 is_defined_in_discarded_section =
11325 && shndx != elfcpp::SHN_UNDEF
11326 && !arm_object->is_section_included(shndx)
11327 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11329 // We need to compute the would-be final value of this local
11331 if (!is_defined_in_discarded_section)
11333 typedef Sized_relobj_file<32, big_endian> ObjType;
11334 typename ObjType::Compute_final_local_value_status status =
11335 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11337 if (status == ObjType::CFLV_OK)
11339 // Currently we cannot handle a branch to a target in
11340 // a merged section. If this is the case, issue an error
11341 // and also free the merge symbol value.
11342 if (!symval.has_output_value())
11344 const std::string& section_name =
11345 arm_object->section_name(shndx);
11346 arm_object->error(_("cannot handle branch to local %u "
11347 "in a merged section %s"),
11348 r_sym, section_name.c_str());
11354 // We cannot determine the final value.
11361 const Symbol* gsym;
11362 gsym = arm_object->global_symbol(r_sym);
11363 gold_assert(gsym != NULL);
11364 if (gsym->is_forwarder())
11365 gsym = relinfo->symtab->resolve_forwards(gsym);
11367 sym = static_cast<const Sized_symbol<32>*>(gsym);
11368 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11369 symval.set_output_symtab_index(sym->symtab_index());
11371 symval.set_no_output_symtab_entry();
11373 // We need to compute the would-be final value of this global
11375 const Symbol_table* symtab = relinfo->symtab;
11376 const Sized_symbol<32>* sized_symbol =
11377 symtab->get_sized_symbol<32>(gsym);
11378 Symbol_table::Compute_final_value_status status;
11379 Arm_address value =
11380 symtab->compute_final_value<32>(sized_symbol, &status);
11382 // Skip this if the symbol has not output section.
11383 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11385 symval.set_output_value(value);
11387 if (gsym->type() == elfcpp::STT_TLS)
11388 symval.set_is_tls_symbol();
11389 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11390 symval.set_is_ifunc_symbol();
11393 is_defined_in_discarded_section =
11394 (gsym->is_defined_in_discarded_section()
11395 && gsym->is_undefined());
11399 Symbol_value<32> symval2;
11400 if (is_defined_in_discarded_section)
11402 if (comdat_behavior == CB_UNDETERMINED)
11404 std::string name = arm_object->section_name(relinfo->data_shndx);
11405 comdat_behavior = default_comdat_behavior.get(name.c_str());
11407 if (comdat_behavior == CB_PRETEND)
11409 // FIXME: This case does not work for global symbols.
11410 // We have no place to store the original section index.
11411 // Fortunately this does not matter for comdat sections,
11412 // only for sections explicitly discarded by a linker
11415 typename elfcpp::Elf_types<32>::Elf_Addr value =
11416 arm_object->map_to_kept_section(shndx, &found);
11418 symval2.set_output_value(value + psymval->input_value());
11420 symval2.set_output_value(0);
11424 if (comdat_behavior == CB_WARNING)
11425 gold_warning_at_location(relinfo, i, offset,
11426 _("relocation refers to discarded "
11428 symval2.set_output_value(0);
11430 symval2.set_no_output_symtab_entry();
11431 psymval = &symval2;
11434 // If symbol is a section symbol, we don't know the actual type of
11435 // destination. Give up.
11436 if (psymval->is_section_symbol())
11439 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11440 addend, view_address + offset);
11444 // Scan an input section for stub generation.
11446 template<bool big_endian>
11448 Target_arm<big_endian>::scan_section_for_stubs(
11449 const Relocate_info<32, big_endian>* relinfo,
11450 unsigned int sh_type,
11451 const unsigned char* prelocs,
11452 size_t reloc_count,
11453 Output_section* output_section,
11454 bool needs_special_offset_handling,
11455 const unsigned char* view,
11456 Arm_address view_address,
11457 section_size_type view_size)
11459 if (sh_type == elfcpp::SHT_REL)
11460 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11465 needs_special_offset_handling,
11469 else if (sh_type == elfcpp::SHT_RELA)
11470 // We do not support RELA type relocations yet. This is provided for
11472 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11477 needs_special_offset_handling,
11482 gold_unreachable();
11485 // Group input sections for stub generation.
11487 // We group input sections in an output section so that the total size,
11488 // including any padding space due to alignment is smaller than GROUP_SIZE
11489 // unless the only input section in group is bigger than GROUP_SIZE already.
11490 // Then an ARM stub table is created to follow the last input section
11491 // in group. For each group an ARM stub table is created an is placed
11492 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11493 // extend the group after the stub table.
11495 template<bool big_endian>
11497 Target_arm<big_endian>::group_sections(
11499 section_size_type group_size,
11500 bool stubs_always_after_branch,
11503 // Group input sections and insert stub table
11504 Layout::Section_list section_list;
11505 layout->get_executable_sections(§ion_list);
11506 for (Layout::Section_list::const_iterator p = section_list.begin();
11507 p != section_list.end();
11510 Arm_output_section<big_endian>* output_section =
11511 Arm_output_section<big_endian>::as_arm_output_section(*p);
11512 output_section->group_sections(group_size, stubs_always_after_branch,
11517 // Relaxation hook. This is where we do stub generation.
11519 template<bool big_endian>
11521 Target_arm<big_endian>::do_relax(
11523 const Input_objects* input_objects,
11524 Symbol_table* symtab,
11528 // No need to generate stubs if this is a relocatable link.
11529 gold_assert(!parameters->options().relocatable());
11531 // If this is the first pass, we need to group input sections into
11533 bool done_exidx_fixup = false;
11534 typedef typename Stub_table_list::iterator Stub_table_iterator;
11537 // Determine the stub group size. The group size is the absolute
11538 // value of the parameter --stub-group-size. If --stub-group-size
11539 // is passed a negative value, we restrict stubs to be always after
11540 // the stubbed branches.
11541 int32_t stub_group_size_param =
11542 parameters->options().stub_group_size();
11543 bool stubs_always_after_branch = stub_group_size_param < 0;
11544 section_size_type stub_group_size = abs(stub_group_size_param);
11546 if (stub_group_size == 1)
11549 // Thumb branch range is +-4MB has to be used as the default
11550 // maximum size (a given section can contain both ARM and Thumb
11551 // code, so the worst case has to be taken into account). If we are
11552 // fixing cortex-a8 errata, the branch range has to be even smaller,
11553 // since wide conditional branch has a range of +-1MB only.
11555 // This value is 48K less than that, which allows for 4096
11556 // 12-byte stubs. If we exceed that, then we will fail to link.
11557 // The user will have to relink with an explicit group size
11559 stub_group_size = 4145152;
11562 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11563 // page as the first half of a 32-bit branch straddling two 4K pages.
11564 // This is a crude way of enforcing that. In addition, long conditional
11565 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11566 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11567 // cortex-A8 stubs from long conditional branches.
11568 if (this->fix_cortex_a8_)
11570 stubs_always_after_branch = true;
11571 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11572 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11575 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11577 // Also fix .ARM.exidx section coverage.
11578 Arm_output_section<big_endian>* exidx_output_section = NULL;
11579 for (Layout::Section_list::const_iterator p =
11580 layout->section_list().begin();
11581 p != layout->section_list().end();
11583 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11585 if (exidx_output_section == NULL)
11586 exidx_output_section =
11587 Arm_output_section<big_endian>::as_arm_output_section(*p);
11589 // We cannot handle this now.
11590 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11591 "non-relocatable link"),
11592 exidx_output_section->name(),
11596 if (exidx_output_section != NULL)
11598 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11600 done_exidx_fixup = true;
11605 // If this is not the first pass, addresses and file offsets have
11606 // been reset at this point, set them here.
11607 for (Stub_table_iterator sp = this->stub_tables_.begin();
11608 sp != this->stub_tables_.end();
11611 Arm_input_section<big_endian>* owner = (*sp)->owner();
11612 off_t off = align_address(owner->original_size(),
11613 (*sp)->addralign());
11614 (*sp)->set_address_and_file_offset(owner->address() + off,
11615 owner->offset() + off);
11619 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11620 // beginning of each relaxation pass, just blow away all the stubs.
11621 // Alternatively, we could selectively remove only the stubs and reloc
11622 // information for code sections that have moved since the last pass.
11623 // That would require more book-keeping.
11624 if (this->fix_cortex_a8_)
11626 // Clear all Cortex-A8 reloc information.
11627 for (typename Cortex_a8_relocs_info::const_iterator p =
11628 this->cortex_a8_relocs_info_.begin();
11629 p != this->cortex_a8_relocs_info_.end();
11632 this->cortex_a8_relocs_info_.clear();
11634 // Remove all Cortex-A8 stubs.
11635 for (Stub_table_iterator sp = this->stub_tables_.begin();
11636 sp != this->stub_tables_.end();
11638 (*sp)->remove_all_cortex_a8_stubs();
11641 // Scan relocs for relocation stubs
11642 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11643 op != input_objects->relobj_end();
11646 Arm_relobj<big_endian>* arm_relobj =
11647 Arm_relobj<big_endian>::as_arm_relobj(*op);
11648 // Lock the object so we can read from it. This is only called
11649 // single-threaded from Layout::finalize, so it is OK to lock.
11650 Task_lock_obj<Object> tl(task, arm_relobj);
11651 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11654 // Check all stub tables to see if any of them have their data sizes
11655 // or addresses alignments changed. These are the only things that
11657 bool any_stub_table_changed = false;
11658 Unordered_set<const Output_section*> sections_needing_adjustment;
11659 for (Stub_table_iterator sp = this->stub_tables_.begin();
11660 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11663 if ((*sp)->update_data_size_and_addralign())
11665 // Update data size of stub table owner.
11666 Arm_input_section<big_endian>* owner = (*sp)->owner();
11667 uint64_t address = owner->address();
11668 off_t offset = owner->offset();
11669 owner->reset_address_and_file_offset();
11670 owner->set_address_and_file_offset(address, offset);
11672 sections_needing_adjustment.insert(owner->output_section());
11673 any_stub_table_changed = true;
11677 // Output_section_data::output_section() returns a const pointer but we
11678 // need to update output sections, so we record all output sections needing
11679 // update above and scan the sections here to find out what sections need
11681 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11682 p != layout->section_list().end();
11685 if (sections_needing_adjustment.find(*p)
11686 != sections_needing_adjustment.end())
11687 (*p)->set_section_offsets_need_adjustment();
11690 // Stop relaxation if no EXIDX fix-up and no stub table change.
11691 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11693 // Finalize the stubs in the last relaxation pass.
11694 if (!continue_relaxation)
11696 for (Stub_table_iterator sp = this->stub_tables_.begin();
11697 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11699 (*sp)->finalize_stubs();
11701 // Update output local symbol counts of objects if necessary.
11702 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11703 op != input_objects->relobj_end();
11706 Arm_relobj<big_endian>* arm_relobj =
11707 Arm_relobj<big_endian>::as_arm_relobj(*op);
11709 // Update output local symbol counts. We need to discard local
11710 // symbols defined in parts of input sections that are discarded by
11712 if (arm_relobj->output_local_symbol_count_needs_update())
11714 // We need to lock the object's file to update it.
11715 Task_lock_obj<Object> tl(task, arm_relobj);
11716 arm_relobj->update_output_local_symbol_count();
11721 return continue_relaxation;
11724 // Relocate a stub.
11726 template<bool big_endian>
11728 Target_arm<big_endian>::relocate_stub(
11730 const Relocate_info<32, big_endian>* relinfo,
11731 Output_section* output_section,
11732 unsigned char* view,
11733 Arm_address address,
11734 section_size_type view_size)
11737 const Stub_template* stub_template = stub->stub_template();
11738 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11740 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11741 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11743 unsigned int r_type = insn->r_type();
11744 section_size_type reloc_offset = stub_template->reloc_offset(i);
11745 section_size_type reloc_size = insn->size();
11746 gold_assert(reloc_offset + reloc_size <= view_size);
11748 // This is the address of the stub destination.
11749 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11750 Symbol_value<32> symval;
11751 symval.set_output_value(target);
11753 // Synthesize a fake reloc just in case. We don't have a symbol so
11755 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11756 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11757 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11758 reloc_write.put_r_offset(reloc_offset);
11759 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11760 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11762 relocate.relocate(relinfo, this, output_section,
11763 this->fake_relnum_for_stubs, rel, r_type,
11764 NULL, &symval, view + reloc_offset,
11765 address + reloc_offset, reloc_size);
11769 // Determine whether an object attribute tag takes an integer, a
11772 template<bool big_endian>
11774 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11776 if (tag == Object_attribute::Tag_compatibility)
11777 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11778 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11779 else if (tag == elfcpp::Tag_nodefaults)
11780 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11781 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11782 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11783 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11785 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11787 return ((tag & 1) != 0
11788 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11789 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11792 // Reorder attributes.
11794 // The ABI defines that Tag_conformance should be emitted first, and that
11795 // Tag_nodefaults should be second (if either is defined). This sets those
11796 // two positions, and bumps up the position of all the remaining tags to
11799 template<bool big_endian>
11801 Target_arm<big_endian>::do_attributes_order(int num) const
11803 // Reorder the known object attributes in output. We want to move
11804 // Tag_conformance to position 4 and Tag_conformance to position 5
11805 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11807 return elfcpp::Tag_conformance;
11809 return elfcpp::Tag_nodefaults;
11810 if ((num - 2) < elfcpp::Tag_nodefaults)
11812 if ((num - 1) < elfcpp::Tag_conformance)
11817 // Scan a span of THUMB code for Cortex-A8 erratum.
11819 template<bool big_endian>
11821 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11822 Arm_relobj<big_endian>* arm_relobj,
11823 unsigned int shndx,
11824 section_size_type span_start,
11825 section_size_type span_end,
11826 const unsigned char* view,
11827 Arm_address address)
11829 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11831 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11832 // The branch target is in the same 4KB region as the
11833 // first half of the branch.
11834 // The instruction before the branch is a 32-bit
11835 // length non-branch instruction.
11836 section_size_type i = span_start;
11837 bool last_was_32bit = false;
11838 bool last_was_branch = false;
11839 while (i < span_end)
11841 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11842 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11843 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11844 bool is_blx = false, is_b = false;
11845 bool is_bl = false, is_bcc = false;
11847 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11850 // Load the rest of the insn (in manual-friendly order).
11851 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11853 // Encoding T4: B<c>.W.
11854 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11855 // Encoding T1: BL<c>.W.
11856 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11857 // Encoding T2: BLX<c>.W.
11858 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11859 // Encoding T3: B<c>.W (not permitted in IT block).
11860 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11861 && (insn & 0x07f00000U) != 0x03800000U);
11864 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11866 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11867 // page boundary and it follows 32-bit non-branch instruction,
11868 // we need to work around.
11869 if (is_32bit_branch
11870 && ((address + i) & 0xfffU) == 0xffeU
11872 && !last_was_branch)
11874 // Check to see if there is a relocation stub for this branch.
11875 bool force_target_arm = false;
11876 bool force_target_thumb = false;
11877 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11878 Cortex_a8_relocs_info::const_iterator p =
11879 this->cortex_a8_relocs_info_.find(address + i);
11881 if (p != this->cortex_a8_relocs_info_.end())
11883 cortex_a8_reloc = p->second;
11884 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11886 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11887 && !target_is_thumb)
11888 force_target_arm = true;
11889 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11890 && target_is_thumb)
11891 force_target_thumb = true;
11895 Stub_type stub_type = arm_stub_none;
11897 // Check if we have an offending branch instruction.
11898 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11899 uint16_t lower_insn = insn & 0xffffU;
11900 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11902 if (cortex_a8_reloc != NULL
11903 && cortex_a8_reloc->reloc_stub() != NULL)
11904 // We've already made a stub for this instruction, e.g.
11905 // it's a long branch or a Thumb->ARM stub. Assume that
11906 // stub will suffice to work around the A8 erratum (see
11907 // setting of always_after_branch above).
11911 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11913 stub_type = arm_stub_a8_veneer_b_cond;
11915 else if (is_b || is_bl || is_blx)
11917 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11922 stub_type = (is_blx
11923 ? arm_stub_a8_veneer_blx
11925 ? arm_stub_a8_veneer_bl
11926 : arm_stub_a8_veneer_b));
11929 if (stub_type != arm_stub_none)
11931 Arm_address pc_for_insn = address + i + 4;
11933 // The original instruction is a BL, but the target is
11934 // an ARM instruction. If we were not making a stub,
11935 // the BL would have been converted to a BLX. Use the
11936 // BLX stub instead in that case.
11937 if (this->may_use_v5t_interworking() && force_target_arm
11938 && stub_type == arm_stub_a8_veneer_bl)
11940 stub_type = arm_stub_a8_veneer_blx;
11944 // Conversely, if the original instruction was
11945 // BLX but the target is Thumb mode, use the BL stub.
11946 else if (force_target_thumb
11947 && stub_type == arm_stub_a8_veneer_blx)
11949 stub_type = arm_stub_a8_veneer_bl;
11957 // If we found a relocation, use the proper destination,
11958 // not the offset in the (unrelocated) instruction.
11959 // Note this is always done if we switched the stub type above.
11960 if (cortex_a8_reloc != NULL)
11961 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11963 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11965 // Add a new stub if destination address in in the same page.
11966 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11968 Cortex_a8_stub* stub =
11969 this->stub_factory_.make_cortex_a8_stub(stub_type,
11973 Stub_table<big_endian>* stub_table =
11974 arm_relobj->stub_table(shndx);
11975 gold_assert(stub_table != NULL);
11976 stub_table->add_cortex_a8_stub(address + i, stub);
11981 i += insn_32bit ? 4 : 2;
11982 last_was_32bit = insn_32bit;
11983 last_was_branch = is_32bit_branch;
11987 // Apply the Cortex-A8 workaround.
11989 template<bool big_endian>
11991 Target_arm<big_endian>::apply_cortex_a8_workaround(
11992 const Cortex_a8_stub* stub,
11993 Arm_address stub_address,
11994 unsigned char* insn_view,
11995 Arm_address insn_address)
11997 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11998 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11999 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12000 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12001 off_t branch_offset = stub_address - (insn_address + 4);
12003 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12004 switch (stub->stub_template()->type())
12006 case arm_stub_a8_veneer_b_cond:
12007 // For a conditional branch, we re-write it to be an unconditional
12008 // branch to the stub. We use the THUMB-2 encoding here.
12009 upper_insn = 0xf000U;
12010 lower_insn = 0xb800U;
12012 case arm_stub_a8_veneer_b:
12013 case arm_stub_a8_veneer_bl:
12014 case arm_stub_a8_veneer_blx:
12015 if ((lower_insn & 0x5000U) == 0x4000U)
12016 // For a BLX instruction, make sure that the relocation is
12017 // rounded up to a word boundary. This follows the semantics of
12018 // the instruction which specifies that bit 1 of the target
12019 // address will come from bit 1 of the base address.
12020 branch_offset = (branch_offset + 2) & ~3;
12022 // Put BRANCH_OFFSET back into the insn.
12023 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12024 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12025 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12029 gold_unreachable();
12032 // Put the relocated value back in the object file:
12033 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12034 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12037 // Target selector for ARM. Note this is never instantiated directly.
12038 // It's only used in Target_selector_arm_nacl, below.
12040 template<bool big_endian>
12041 class Target_selector_arm : public Target_selector
12044 Target_selector_arm()
12045 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12046 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12047 (big_endian ? "armelfb" : "armelf"))
12051 do_instantiate_target()
12052 { return new Target_arm<big_endian>(); }
12055 // Fix .ARM.exidx section coverage.
12057 template<bool big_endian>
12059 Target_arm<big_endian>::fix_exidx_coverage(
12061 const Input_objects* input_objects,
12062 Arm_output_section<big_endian>* exidx_section,
12063 Symbol_table* symtab,
12066 // We need to look at all the input sections in output in ascending
12067 // order of of output address. We do that by building a sorted list
12068 // of output sections by addresses. Then we looks at the output sections
12069 // in order. The input sections in an output section are already sorted
12070 // by addresses within the output section.
12072 typedef std::set<Output_section*, output_section_address_less_than>
12073 Sorted_output_section_list;
12074 Sorted_output_section_list sorted_output_sections;
12076 // Find out all the output sections of input sections pointed by
12077 // EXIDX input sections.
12078 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12079 p != input_objects->relobj_end();
12082 Arm_relobj<big_endian>* arm_relobj =
12083 Arm_relobj<big_endian>::as_arm_relobj(*p);
12084 std::vector<unsigned int> shndx_list;
12085 arm_relobj->get_exidx_shndx_list(&shndx_list);
12086 for (size_t i = 0; i < shndx_list.size(); ++i)
12088 const Arm_exidx_input_section* exidx_input_section =
12089 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12090 gold_assert(exidx_input_section != NULL);
12091 if (!exidx_input_section->has_errors())
12093 unsigned int text_shndx = exidx_input_section->link();
12094 Output_section* os = arm_relobj->output_section(text_shndx);
12095 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12096 sorted_output_sections.insert(os);
12101 // Go over the output sections in ascending order of output addresses.
12102 typedef typename Arm_output_section<big_endian>::Text_section_list
12104 Text_section_list sorted_text_sections;
12105 for (typename Sorted_output_section_list::iterator p =
12106 sorted_output_sections.begin();
12107 p != sorted_output_sections.end();
12110 Arm_output_section<big_endian>* arm_output_section =
12111 Arm_output_section<big_endian>::as_arm_output_section(*p);
12112 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12115 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12116 merge_exidx_entries(), task);
12119 template<bool big_endian>
12121 Target_arm<big_endian>::do_define_standard_symbols(
12122 Symbol_table* symtab,
12125 // Handle the .ARM.exidx section.
12126 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12128 if (exidx_section != NULL)
12130 // Create __exidx_start and __exidx_end symbols.
12131 symtab->define_in_output_data("__exidx_start",
12133 Symbol_table::PREDEFINED,
12137 elfcpp::STT_NOTYPE,
12138 elfcpp::STB_GLOBAL,
12139 elfcpp::STV_HIDDEN,
12141 false, // offset_is_from_end
12142 true); // only_if_ref
12144 symtab->define_in_output_data("__exidx_end",
12146 Symbol_table::PREDEFINED,
12150 elfcpp::STT_NOTYPE,
12151 elfcpp::STB_GLOBAL,
12152 elfcpp::STV_HIDDEN,
12154 true, // offset_is_from_end
12155 true); // only_if_ref
12159 // Define __exidx_start and __exidx_end even when .ARM.exidx
12160 // section is missing to match ld's behaviour.
12161 symtab->define_as_constant("__exidx_start", NULL,
12162 Symbol_table::PREDEFINED,
12163 0, 0, elfcpp::STT_OBJECT,
12164 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12166 symtab->define_as_constant("__exidx_end", NULL,
12167 Symbol_table::PREDEFINED,
12168 0, 0, elfcpp::STT_OBJECT,
12169 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12174 // NaCl variant. It uses different PLT contents.
12176 template<bool big_endian>
12177 class Output_data_plt_arm_nacl;
12179 template<bool big_endian>
12180 class Target_arm_nacl : public Target_arm<big_endian>
12184 : Target_arm<big_endian>(&arm_nacl_info)
12188 virtual Output_data_plt_arm<big_endian>*
12189 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12190 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12193 static const Target::Target_info arm_nacl_info;
12196 template<bool big_endian>
12197 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12200 big_endian, // is_big_endian
12201 elfcpp::EM_ARM, // machine_code
12202 false, // has_make_symbol
12203 false, // has_resolve
12204 false, // has_code_fill
12205 true, // is_default_stack_executable
12206 false, // can_icf_inline_merge_sections
12208 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12209 0x20000, // default_text_segment_address
12210 0x10000, // abi_pagesize (overridable by -z max-page-size)
12211 0x10000, // common_pagesize (overridable by -z common-page-size)
12212 true, // isolate_execinstr
12213 0x10000000, // rosegment_gap
12214 elfcpp::SHN_UNDEF, // small_common_shndx
12215 elfcpp::SHN_UNDEF, // large_common_shndx
12216 0, // small_common_section_flags
12217 0, // large_common_section_flags
12218 ".ARM.attributes", // attributes_section
12219 "aeabi" // attributes_vendor
12222 template<bool big_endian>
12223 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12226 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12227 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12231 // Return the offset of the first non-reserved PLT entry.
12232 virtual unsigned int
12233 do_first_plt_entry_offset() const
12234 { return sizeof(first_plt_entry); }
12236 // Return the size of a PLT entry.
12237 virtual unsigned int
12238 do_get_plt_entry_size() const
12239 { return sizeof(plt_entry); }
12242 do_fill_first_plt_entry(unsigned char* pov,
12243 Arm_address got_address,
12244 Arm_address plt_address);
12247 do_fill_plt_entry(unsigned char* pov,
12248 Arm_address got_address,
12249 Arm_address plt_address,
12250 unsigned int got_offset,
12251 unsigned int plt_offset);
12254 inline uint32_t arm_movw_immediate(uint32_t value)
12256 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12259 inline uint32_t arm_movt_immediate(uint32_t value)
12261 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12264 // Template for the first PLT entry.
12265 static const uint32_t first_plt_entry[16];
12267 // Template for subsequent PLT entries.
12268 static const uint32_t plt_entry[4];
12271 // The first entry in the PLT.
12272 template<bool big_endian>
12273 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12276 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12277 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12278 0xe08cc00f, // add ip, ip, pc
12279 0xe52dc008, // str ip, [sp, #-8]!
12281 0xe3ccc103, // bic ip, ip, #0xc0000000
12282 0xe59cc000, // ldr ip, [ip]
12283 0xe3ccc13f, // bic ip, ip, #0xc000000f
12284 0xe12fff1c, // bx ip
12290 0xe50dc004, // str ip, [sp, #-4]
12292 0xe3ccc103, // bic ip, ip, #0xc0000000
12293 0xe59cc000, // ldr ip, [ip]
12294 0xe3ccc13f, // bic ip, ip, #0xc000000f
12295 0xe12fff1c, // bx ip
12298 template<bool big_endian>
12300 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12301 unsigned char* pov,
12302 Arm_address got_address,
12303 Arm_address plt_address)
12305 // Write first PLT entry. All but first two words are constants.
12306 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12307 / sizeof(first_plt_entry[0]));
12309 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12311 elfcpp::Swap<32, big_endian>::writeval
12312 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12313 elfcpp::Swap<32, big_endian>::writeval
12314 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12316 for (size_t i = 2; i < num_first_plt_words; ++i)
12317 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12320 // Subsequent entries in the PLT.
12322 template<bool big_endian>
12323 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12325 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12326 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12327 0xe08cc00f, // add ip, ip, pc
12328 0xea000000, // b .Lplt_tail
12331 template<bool big_endian>
12333 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12334 unsigned char* pov,
12335 Arm_address got_address,
12336 Arm_address plt_address,
12337 unsigned int got_offset,
12338 unsigned int plt_offset)
12340 // Calculate the displacement between the PLT slot and the
12341 // common tail that's part of the special initial PLT slot.
12342 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12343 - (plt_address + plt_offset
12344 + sizeof(plt_entry) + sizeof(uint32_t)));
12345 gold_assert((tail_displacement & 3) == 0);
12346 tail_displacement >>= 2;
12348 gold_assert ((tail_displacement & 0xff000000) == 0
12349 || (-tail_displacement & 0xff000000) == 0);
12351 // Calculate the displacement between the PLT slot and the entry
12352 // in the GOT. The offset accounts for the value produced by
12353 // adding to pc in the penultimate instruction of the PLT stub.
12354 const int32_t got_displacement = (got_address + got_offset
12355 - (plt_address + sizeof(plt_entry)));
12357 elfcpp::Swap<32, big_endian>::writeval
12358 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12359 elfcpp::Swap<32, big_endian>::writeval
12360 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12361 elfcpp::Swap<32, big_endian>::writeval
12362 (pov + 8, plt_entry[2]);
12363 elfcpp::Swap<32, big_endian>::writeval
12364 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12367 // Target selectors.
12369 template<bool big_endian>
12370 class Target_selector_arm_nacl
12371 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12372 Target_arm_nacl<big_endian> >
12375 Target_selector_arm_nacl()
12376 : Target_selector_nacl<Target_selector_arm<big_endian>,
12377 Target_arm_nacl<big_endian> >(
12379 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12380 big_endian ? "armelfb_nacl" : "armelf_nacl")
12384 Target_selector_arm_nacl<false> target_selector_arm;
12385 Target_selector_arm_nacl<true> target_selector_armbe;
12387 } // End anonymous namespace.