1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_; }
193 // Return the instruction sequence type of this.
196 { return this->type_; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_; }
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
275 arm_stub_type_last = arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type, const Insn_template*, size_t);
294 { return this->type_; }
296 // Return an array of instruction templates.
299 { return this->insns_; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_; }
306 // Return size of template in bytes.
309 { return this->size_; }
311 // Return alignment of the stub template.
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian>
451 do_fixed_endian_write(unsigned char*, section_size_type);
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
576 // Functors for STL associative containers.
580 operator()(const Key& k) const
581 { return k.hash_value(); }
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol* symbol;
610 const Relobj* relobj;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
634 return this->destination_address_;
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
755 // Return the associated register.
758 { return this->reg_; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
785 // A template to implement do_write.
786 template<bool big_endian>
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory&
815 static Stub_factory singleton;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
882 { return this->owner_; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
981 // Write out section contents.
983 do_write(Output_file*);
985 // Return the required alignment.
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_; }
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1064 this->do_fixed_endian_write<false>(of);
1067 // Write to a map file.
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1076 do_fixed_endian_write(Output_file*);
1078 // The object containing the section pointed by this.
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1107 // Build output contents.
1109 build_contents(const unsigned char*, section_size_type);
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1122 // Write merged section into file OF.
1124 do_write(Output_file* of);
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1141 // A class to wrap an ordinary input section containing executable code.
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1160 // Whether this is a stub table owner.
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1168 { return this->stub_table_; }
1170 // Set the stub_table.
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1181 // Return the original size of the section.
1183 original_size() const
1184 { return this->original_size_; }
1187 // Write data to output file.
1189 do_write(Output_file*);
1191 // Return required alignment of this.
1193 do_addralign() const
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1199 return this->original_addralign_;
1202 // Finalize data size.
1204 set_final_data_size();
1206 // Reset address and file offset.
1208 do_reset_address_and_file_offset();
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1243 unsigned char* original_contents_;
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1249 class Arm_exidx_fixup
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1261 { delete this->section_offset_map_; }
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1279 add_exidx_cantunwind_as_needed();
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1292 // Type of EXIDX unwind entry.
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1308 process_exidx_entry(uint32_t second_word);
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1331 Output_section* first_output_text_section_;
1333 bool merge_exidx_entries_;
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1357 ~Arm_output_section()
1360 // Group input sections for stub generation.
1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1370 // Append all input text sections in this into LIST.
1372 append_text_sections_to_list(Text_section_list* list);
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
1380 Symbol_table* symtab,
1381 bool merge_exidx_entries,
1384 // Link an EXIDX section into its corresponding text section.
1386 set_exidx_section_link();
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
1398 std::vector<Output_relaxed_input_section*>*,
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1404 class Arm_exidx_input_section
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
1417 ~Arm_exidx_input_section()
1420 // Accessors: This is a read-only class.
1422 // Return the object containing this EXIDX input section.
1425 { return this->relobj_; }
1427 // Return the section index of this EXIDX input section.
1430 { return this->shndx_; }
1432 // Return the section index of linked text section in the same object.
1435 { return this->link_; }
1437 // Return size of the EXIDX input section.
1440 { return this->size_; }
1442 // Return address alignment of EXIDX input section.
1445 { return this->addralign_; }
1447 // Return size of the associated text input section.
1450 { return this->text_size_; }
1452 // Whether there are any errors in the EXIDX input section.
1455 { return this->has_errors_; }
1457 // Set has-errors flag.
1460 { this->has_errors_ = true; }
1463 // Object containing this.
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1469 // Size of this. For ARM 32-bit is sufficient.
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
1473 // Size of associated text section.
1474 uint32_t text_size_;
1475 // Whether this has any errors.
1479 // Arm_relobj class.
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1498 { delete this->attributes_section_data_; }
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
1502 stub_table(unsigned int shndx) const
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1525 // Scan all relocation sections for stub generation.
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1530 // Convert regular input section with index SHNDX to a relaxed section.
1532 convert_input_section_to_relaxed_section(unsigned shndx)
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1546 // Processor-specific flags in ELF file header. This is valid only after
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1552 // Attribute section data This is the contents of the .ARM.attribute section
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1578 // Whether a section contains any Cortex-A8 workaround.
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1586 // Mark a section that has Cortex-A8 workaround.
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1619 // Whether output local symbol count needs updating.
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1624 // Set output_local_symbol_count_needs_update flag to be true.
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1629 // Update output local symbol count at the end of relaxation.
1631 update_output_local_symbol_count();
1633 // Whether we want to merge processor-specific flags and attributes.
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1638 // Export list of EXIDX section indices.
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1655 // Post constructor setup.
1659 // Call parent's setup method.
1660 Sized_relobj_file<32, big_endian>::do_setup();
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1667 // Count the local symbols.
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1678 // Read the symbol information.
1680 do_read_symbols(Read_symbols_data* sd);
1682 // Process relocs for garbage collection.
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1688 // Whether a section needs to be scanned for relocation stubs.
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
1692 const Symbol_table*, const unsigned char*);
1694 // Whether a section is a scannable text section.
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697 const Output_section*, const Symbol_table*);
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
1703 const Symbol_table*);
1705 // Scan a section for the Cortex-A8 erratum.
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1725 make_exidx_input_section(unsigned int shndx,
1726 const elfcpp::Shdr<32, big_endian>& shdr,
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1733 simple_input_section_output_address(unsigned int, Output_section*);
1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1739 // List of stub tables.
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
1756 // Whether we merge processor flags and attributes of this object to
1758 bool merge_flags_and_attributes_;
1761 // Arm_dynobj class.
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
1774 { delete this->attributes_section_data_; }
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1782 // Processor-specific flags in ELF file header. This is valid only after
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1794 // Read the symbol information.
1796 do_read_symbols(Read_symbols_data* sd);
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
1805 // Functor to read reloc addends during stub generation.
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
1818 32, big_endian>::Reloc& /* reloc */) const;
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1826 elfcpp::Elf_types<32>::Elf_Swxword
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1841 elfcpp::Elf_types<32>::Elf_Swxword
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1853 class Cortex_a8_reloc
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1864 // Accessors: This is a read-only class.
1866 // Return the relocation stub associated with this relocation if there is
1870 { return this->reloc_stub_; }
1872 // Return the relocation type.
1875 { return this->r_type_; }
1877 // Return the destination address of the relocation. LSB stores the THUMB
1881 { return this->destination_; }
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1890 Arm_address destination_;
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj_file<32, big_endian>* relobj,
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
1934 Sized_relobj_file<32, big_endian>* object,
1935 unsigned int index);
1938 // Write out the GOT table.
1940 do_write(Output_file*);
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1960 // Return the GOT offset.
1963 { return this->got_offset_; }
1968 { return this->r_type_; }
1970 // Whether the symbol is global or not.
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1975 // For a relocation against a global symbol, the global symbol.
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file<32, big_endian>*
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1991 // For a relocation against a local symbol, the local symbol index.
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2011 // For a global symbol, the symbol itself.
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file<32, big_endian>* relobj;
2018 // For a local symbol, the symbol index.
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2078 // Relocations that write full 32 bits.
2079 case elfcpp::R_ARM_ABS32:
2080 case elfcpp::R_ARM_REL32:
2081 case elfcpp::R_ARM_SBREL32:
2082 case elfcpp::R_ARM_GOTOFF32:
2083 case elfcpp::R_ARM_BASE_PREL:
2084 case elfcpp::R_ARM_GOT_BREL:
2085 case elfcpp::R_ARM_BASE_ABS:
2086 case elfcpp::R_ARM_ABS32_NOI:
2087 case elfcpp::R_ARM_REL32_NOI:
2088 case elfcpp::R_ARM_PLT32_ABS:
2089 case elfcpp::R_ARM_GOT_ABS:
2090 case elfcpp::R_ARM_GOT_PREL:
2091 case elfcpp::R_ARM_TLS_GD32:
2092 case elfcpp::R_ARM_TLS_LDM32:
2093 case elfcpp::R_ARM_TLS_LDO32:
2094 case elfcpp::R_ARM_TLS_IE32:
2095 case elfcpp::R_ARM_TLS_LE32:
2096 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2098 // For all other static relocations, return RELOC_SPECIAL.
2099 return Relocatable_relocs::RELOC_SPECIAL;
2105 // Utilities for manipulating integers of up to 32-bits
2109 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110 // an int32_t. NO_BITS must be between 1 to 32.
2111 template<int no_bits>
2112 static inline int32_t
2113 sign_extend(uint32_t bits)
2115 gold_assert(no_bits >= 0 && no_bits <= 32);
2117 return static_cast<int32_t>(bits);
2118 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2120 uint32_t top_bit = 1U << (no_bits - 1);
2121 int32_t as_signed = static_cast<int32_t>(bits);
2122 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2125 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126 template<int no_bits>
2128 has_overflow(uint32_t bits)
2130 gold_assert(no_bits >= 0 && no_bits <= 32);
2133 int32_t max = (1 << (no_bits - 1)) - 1;
2134 int32_t min = -(1 << (no_bits - 1));
2135 int32_t as_signed = static_cast<int32_t>(bits);
2136 return as_signed > max || as_signed < min;
2139 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140 // fits in the given number of bits as either a signed or unsigned value.
2141 // For example, has_signed_unsigned_overflow<8> would check
2142 // -128 <= bits <= 255
2143 template<int no_bits>
2145 has_signed_unsigned_overflow(uint32_t bits)
2147 gold_assert(no_bits >= 2 && no_bits <= 32);
2150 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151 int32_t min = -(1 << (no_bits - 1));
2152 int32_t as_signed = static_cast<int32_t>(bits);
2153 return as_signed > max || as_signed < min;
2156 // Select bits from A and B using bits in MASK. For each n in [0..31],
2157 // the n-th bit in the result is chosen from the n-th bits of A and B.
2158 // A zero selects A and a one selects B.
2159 static inline uint32_t
2160 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161 { return (a & ~mask) | (b & mask); }
2164 template<bool big_endian>
2165 class Target_arm : public Sized_target<32, big_endian>
2168 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2171 // When were are relocating a stub, we pass this as the relocation number.
2172 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2175 : Sized_target<32, big_endian>(&arm_info),
2176 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180 may_use_blx_(false), should_force_pic_veneer_(false),
2181 arm_input_section_map_(), attributes_section_data_(NULL),
2182 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2185 // Whether we can use BLX.
2188 { return this->may_use_blx_; }
2190 // Set use-BLX flag.
2192 set_may_use_blx(bool value)
2193 { this->may_use_blx_ = value; }
2195 // Whether we force PCI branch veneers.
2197 should_force_pic_veneer() const
2198 { return this->should_force_pic_veneer_; }
2200 // Set PIC veneer flag.
2202 set_should_force_pic_veneer(bool value)
2203 { this->should_force_pic_veneer_ = value; }
2205 // Whether we use THUMB-2 instructions.
2207 using_thumb2() const
2209 Object_attribute* attr =
2210 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2211 int arch = attr->int_value();
2212 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2215 // Whether we use THUMB/THUMB-2 instructions only.
2217 using_thumb_only() const
2219 Object_attribute* attr =
2220 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2222 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2223 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2225 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2226 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2228 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2229 return attr->int_value() == 'M';
2232 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2234 may_use_arm_nop() const
2236 Object_attribute* attr =
2237 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2238 int arch = attr->int_value();
2239 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2240 || arch == elfcpp::TAG_CPU_ARCH_V6K
2241 || arch == elfcpp::TAG_CPU_ARCH_V7
2242 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2245 // Whether we have THUMB-2 NOP.W instruction.
2247 may_use_thumb2_nop() const
2249 Object_attribute* attr =
2250 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2251 int arch = attr->int_value();
2252 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2253 || arch == elfcpp::TAG_CPU_ARCH_V7
2254 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2257 // Process the relocations to determine unreferenced sections for
2258 // garbage collection.
2260 gc_process_relocs(Symbol_table* symtab,
2262 Sized_relobj_file<32, big_endian>* object,
2263 unsigned int data_shndx,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 size_t local_symbol_count,
2270 const unsigned char* plocal_symbols);
2272 // Scan the relocations to look for symbol adjustments.
2274 scan_relocs(Symbol_table* symtab,
2276 Sized_relobj_file<32, big_endian>* object,
2277 unsigned int data_shndx,
2278 unsigned int sh_type,
2279 const unsigned char* prelocs,
2281 Output_section* output_section,
2282 bool needs_special_offset_handling,
2283 size_t local_symbol_count,
2284 const unsigned char* plocal_symbols);
2286 // Finalize the sections.
2288 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2290 // Return the value to use for a dynamic symbol which requires special
2293 do_dynsym_value(const Symbol*) const;
2295 // Relocate a section.
2297 relocate_section(const Relocate_info<32, big_endian>*,
2298 unsigned int sh_type,
2299 const unsigned char* prelocs,
2301 Output_section* output_section,
2302 bool needs_special_offset_handling,
2303 unsigned char* view,
2304 Arm_address view_address,
2305 section_size_type view_size,
2306 const Reloc_symbol_changes*);
2308 // Scan the relocs during a relocatable link.
2310 scan_relocatable_relocs(Symbol_table* symtab,
2312 Sized_relobj_file<32, big_endian>* object,
2313 unsigned int data_shndx,
2314 unsigned int sh_type,
2315 const unsigned char* prelocs,
2317 Output_section* output_section,
2318 bool needs_special_offset_handling,
2319 size_t local_symbol_count,
2320 const unsigned char* plocal_symbols,
2321 Relocatable_relocs*);
2323 // Relocate a section during a relocatable link.
2325 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2326 unsigned int sh_type,
2327 const unsigned char* prelocs,
2329 Output_section* output_section,
2330 off_t offset_in_output_section,
2331 const Relocatable_relocs*,
2332 unsigned char* view,
2333 Arm_address view_address,
2334 section_size_type view_size,
2335 unsigned char* reloc_view,
2336 section_size_type reloc_view_size);
2338 // Perform target-specific processing in a relocatable link. This is
2339 // only used if we use the relocation strategy RELOC_SPECIAL.
2341 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2342 unsigned int sh_type,
2343 const unsigned char* preloc_in,
2345 Output_section* output_section,
2346 off_t offset_in_output_section,
2347 unsigned char* view,
2348 typename elfcpp::Elf_types<32>::Elf_Addr
2350 section_size_type view_size,
2351 unsigned char* preloc_out);
2353 // Return whether SYM is defined by the ABI.
2355 do_is_defined_by_abi(Symbol* sym) const
2356 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2358 // Return whether there is a GOT section.
2360 has_got_section() const
2361 { return this->got_ != NULL; }
2363 // Return the size of the GOT section.
2367 gold_assert(this->got_ != NULL);
2368 return this->got_->data_size();
2371 // Return the number of entries in the GOT.
2373 got_entry_count() const
2375 if (!this->has_got_section())
2377 return this->got_size() / 4;
2380 // Return the number of entries in the PLT.
2382 plt_entry_count() const;
2384 // Return the offset of the first non-reserved PLT entry.
2386 first_plt_entry_offset() const;
2388 // Return the size of each PLT entry.
2390 plt_entry_size() const;
2392 // Map platform-specific reloc types
2394 get_real_reloc_type(unsigned int r_type);
2397 // Methods to support stub-generations.
2400 // Return the stub factory
2402 stub_factory() const
2403 { return this->stub_factory_; }
2405 // Make a new Arm_input_section object.
2406 Arm_input_section<big_endian>*
2407 new_arm_input_section(Relobj*, unsigned int);
2409 // Find the Arm_input_section object corresponding to the SHNDX-th input
2410 // section of RELOBJ.
2411 Arm_input_section<big_endian>*
2412 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2414 // Make a new Stub_table
2415 Stub_table<big_endian>*
2416 new_stub_table(Arm_input_section<big_endian>*);
2418 // Scan a section for stub generation.
2420 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2421 const unsigned char*, size_t, Output_section*,
2422 bool, const unsigned char*, Arm_address,
2427 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2428 Output_section*, unsigned char*, Arm_address,
2431 // Get the default ARM target.
2432 static Target_arm<big_endian>*
2435 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2436 && parameters->target().is_big_endian() == big_endian);
2437 return static_cast<Target_arm<big_endian>*>(
2438 parameters->sized_target<32, big_endian>());
2441 // Whether NAME belongs to a mapping symbol.
2443 is_mapping_symbol_name(const char* name)
2447 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2448 && (name[2] == '\0' || name[2] == '.'));
2451 // Whether we work around the Cortex-A8 erratum.
2453 fix_cortex_a8() const
2454 { return this->fix_cortex_a8_; }
2456 // Whether we merge exidx entries in debuginfo.
2458 merge_exidx_entries() const
2459 { return parameters->options().merge_exidx_entries(); }
2461 // Whether we fix R_ARM_V4BX relocation.
2463 // 1 - replace with MOV instruction (armv4 target)
2464 // 2 - make interworking veneer (>= armv4t targets only)
2465 General_options::Fix_v4bx
2467 { return parameters->options().fix_v4bx(); }
2469 // Scan a span of THUMB code section for Cortex-A8 erratum.
2471 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2472 section_size_type, section_size_type,
2473 const unsigned char*, Arm_address);
2475 // Apply Cortex-A8 workaround to a branch.
2477 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2478 unsigned char*, Arm_address);
2481 // Make an ELF object.
2483 do_make_elf_object(const std::string&, Input_file*, off_t,
2484 const elfcpp::Ehdr<32, big_endian>& ehdr);
2487 do_make_elf_object(const std::string&, Input_file*, off_t,
2488 const elfcpp::Ehdr<32, !big_endian>&)
2489 { gold_unreachable(); }
2492 do_make_elf_object(const std::string&, Input_file*, off_t,
2493 const elfcpp::Ehdr<64, false>&)
2494 { gold_unreachable(); }
2497 do_make_elf_object(const std::string&, Input_file*, off_t,
2498 const elfcpp::Ehdr<64, true>&)
2499 { gold_unreachable(); }
2501 // Make an output section.
2503 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2504 elfcpp::Elf_Xword flags)
2505 { return new Arm_output_section<big_endian>(name, type, flags); }
2508 do_adjust_elf_header(unsigned char* view, int len) const;
2510 // We only need to generate stubs, and hence perform relaxation if we are
2511 // not doing relocatable linking.
2513 do_may_relax() const
2514 { return !parameters->options().relocatable(); }
2517 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2519 // Determine whether an object attribute tag takes an integer, a
2522 do_attribute_arg_type(int tag) const;
2524 // Reorder tags during output.
2526 do_attributes_order(int num) const;
2528 // This is called when the target is selected as the default.
2530 do_select_as_default_target()
2532 // No locking is required since there should only be one default target.
2533 // We cannot have both the big-endian and little-endian ARM targets
2535 gold_assert(arm_reloc_property_table == NULL);
2536 arm_reloc_property_table = new Arm_reloc_property_table();
2539 // Virtual function which is set to return true by a target if
2540 // it can use relocation types to determine if a function's
2541 // pointer is taken.
2543 do_can_check_for_function_pointers() const
2546 // Whether a section called SECTION_NAME may have function pointers to
2547 // sections not eligible for safe ICF folding.
2549 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2551 return (!is_prefix_of(".ARM.exidx", section_name)
2552 && !is_prefix_of(".ARM.extab", section_name)
2553 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2557 // The class which scans relocations.
2562 : issued_non_pic_error_(false)
2566 get_reference_flags(unsigned int r_type);
2569 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2570 Sized_relobj_file<32, big_endian>* object,
2571 unsigned int data_shndx,
2572 Output_section* output_section,
2573 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2574 const elfcpp::Sym<32, big_endian>& lsym);
2577 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2578 Sized_relobj_file<32, big_endian>* object,
2579 unsigned int data_shndx,
2580 Output_section* output_section,
2581 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2585 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2586 Sized_relobj_file<32, big_endian>* ,
2589 const elfcpp::Rel<32, big_endian>& ,
2591 const elfcpp::Sym<32, big_endian>&);
2594 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2595 Sized_relobj_file<32, big_endian>* ,
2598 const elfcpp::Rel<32, big_endian>& ,
2599 unsigned int , Symbol*);
2603 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2604 unsigned int r_type);
2607 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2608 unsigned int r_type, Symbol*);
2611 check_non_pic(Relobj*, unsigned int r_type);
2613 // Almost identical to Symbol::needs_plt_entry except that it also
2614 // handles STT_ARM_TFUNC.
2616 symbol_needs_plt_entry(const Symbol* sym)
2618 // An undefined symbol from an executable does not need a PLT entry.
2619 if (sym->is_undefined() && !parameters->options().shared())
2622 return (!parameters->doing_static_link()
2623 && (sym->type() == elfcpp::STT_FUNC
2624 || sym->type() == elfcpp::STT_ARM_TFUNC)
2625 && (sym->is_from_dynobj()
2626 || sym->is_undefined()
2627 || sym->is_preemptible()));
2631 possible_function_pointer_reloc(unsigned int r_type);
2633 // Whether we have issued an error about a non-PIC compilation.
2634 bool issued_non_pic_error_;
2637 // The class which implements relocation.
2647 // Return whether the static relocation needs to be applied.
2649 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2650 unsigned int r_type,
2652 Output_section* output_section);
2654 // Do a relocation. Return false if the caller should not issue
2655 // any warnings about this relocation.
2657 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2658 Output_section*, size_t relnum,
2659 const elfcpp::Rel<32, big_endian>&,
2660 unsigned int r_type, const Sized_symbol<32>*,
2661 const Symbol_value<32>*,
2662 unsigned char*, Arm_address,
2665 // Return whether we want to pass flag NON_PIC_REF for this
2666 // reloc. This means the relocation type accesses a symbol not via
2669 reloc_is_non_pic(unsigned int r_type)
2673 // These relocation types reference GOT or PLT entries explicitly.
2674 case elfcpp::R_ARM_GOT_BREL:
2675 case elfcpp::R_ARM_GOT_ABS:
2676 case elfcpp::R_ARM_GOT_PREL:
2677 case elfcpp::R_ARM_GOT_BREL12:
2678 case elfcpp::R_ARM_PLT32_ABS:
2679 case elfcpp::R_ARM_TLS_GD32:
2680 case elfcpp::R_ARM_TLS_LDM32:
2681 case elfcpp::R_ARM_TLS_IE32:
2682 case elfcpp::R_ARM_TLS_IE12GP:
2684 // These relocate types may use PLT entries.
2685 case elfcpp::R_ARM_CALL:
2686 case elfcpp::R_ARM_THM_CALL:
2687 case elfcpp::R_ARM_JUMP24:
2688 case elfcpp::R_ARM_THM_JUMP24:
2689 case elfcpp::R_ARM_THM_JUMP19:
2690 case elfcpp::R_ARM_PLT32:
2691 case elfcpp::R_ARM_THM_XPC22:
2692 case elfcpp::R_ARM_PREL31:
2693 case elfcpp::R_ARM_SBREL31:
2702 // Do a TLS relocation.
2703 inline typename Arm_relocate_functions<big_endian>::Status
2704 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2705 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2706 const Sized_symbol<32>*, const Symbol_value<32>*,
2707 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2712 // A class which returns the size required for a relocation type,
2713 // used while scanning relocs during a relocatable link.
2714 class Relocatable_size_for_reloc
2718 get_size_for_reloc(unsigned int, Relobj*);
2721 // Adjust TLS relocation type based on the options and whether this
2722 // is a local symbol.
2723 static tls::Tls_optimization
2724 optimize_tls_reloc(bool is_final, int r_type);
2726 // Get the GOT section, creating it if necessary.
2727 Arm_output_data_got<big_endian>*
2728 got_section(Symbol_table*, Layout*);
2730 // Get the GOT PLT section.
2732 got_plt_section() const
2734 gold_assert(this->got_plt_ != NULL);
2735 return this->got_plt_;
2738 // Create a PLT entry for a global symbol.
2740 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2742 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2744 define_tls_base_symbol(Symbol_table*, Layout*);
2746 // Create a GOT entry for the TLS module index.
2748 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2749 Sized_relobj_file<32, big_endian>* object);
2751 // Get the PLT section.
2752 const Output_data_plt_arm<big_endian>*
2755 gold_assert(this->plt_ != NULL);
2759 // Get the dynamic reloc section, creating it if necessary.
2761 rel_dyn_section(Layout*);
2763 // Get the section to use for TLS_DESC relocations.
2765 rel_tls_desc_section(Layout*) const;
2767 // Return true if the symbol may need a COPY relocation.
2768 // References from an executable object to non-function symbols
2769 // defined in a dynamic object may need a COPY relocation.
2771 may_need_copy_reloc(Symbol* gsym)
2773 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2774 && gsym->may_need_copy_reloc());
2777 // Add a potential copy relocation.
2779 copy_reloc(Symbol_table* symtab, Layout* layout,
2780 Sized_relobj_file<32, big_endian>* object,
2781 unsigned int shndx, Output_section* output_section,
2782 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2784 this->copy_relocs_.copy_reloc(symtab, layout,
2785 symtab->get_sized_symbol<32>(sym),
2786 object, shndx, output_section, reloc,
2787 this->rel_dyn_section(layout));
2790 // Whether two EABI versions are compatible.
2792 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2794 // Merge processor-specific flags from input object and those in the ELF
2795 // header of the output.
2797 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2799 // Get the secondary compatible architecture.
2801 get_secondary_compatible_arch(const Attributes_section_data*);
2803 // Set the secondary compatible architecture.
2805 set_secondary_compatible_arch(Attributes_section_data*, int);
2808 tag_cpu_arch_combine(const char*, int, int*, int, int);
2810 // Helper to print AEABI enum tag value.
2812 aeabi_enum_name(unsigned int);
2814 // Return string value for TAG_CPU_name.
2816 tag_cpu_name_value(unsigned int);
2818 // Merge object attributes from input object and those in the output.
2820 merge_object_attributes(const char*, const Attributes_section_data*);
2822 // Helper to get an AEABI object attribute
2824 get_aeabi_object_attribute(int tag) const
2826 Attributes_section_data* pasd = this->attributes_section_data_;
2827 gold_assert(pasd != NULL);
2828 Object_attribute* attr =
2829 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2830 gold_assert(attr != NULL);
2835 // Methods to support stub-generations.
2838 // Group input sections for stub generation.
2840 group_sections(Layout*, section_size_type, bool, const Task*);
2842 // Scan a relocation for stub generation.
2844 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2845 const Sized_symbol<32>*, unsigned int,
2846 const Symbol_value<32>*,
2847 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2849 // Scan a relocation section for stub.
2850 template<int sh_type>
2852 scan_reloc_section_for_stubs(
2853 const Relocate_info<32, big_endian>* relinfo,
2854 const unsigned char* prelocs,
2856 Output_section* output_section,
2857 bool needs_special_offset_handling,
2858 const unsigned char* view,
2859 elfcpp::Elf_types<32>::Elf_Addr view_address,
2862 // Fix .ARM.exidx section coverage.
2864 fix_exidx_coverage(Layout*, const Input_objects*,
2865 Arm_output_section<big_endian>*, Symbol_table*,
2868 // Functors for STL set.
2869 struct output_section_address_less_than
2872 operator()(const Output_section* s1, const Output_section* s2) const
2873 { return s1->address() < s2->address(); }
2876 // Information about this specific target which we pass to the
2877 // general Target structure.
2878 static const Target::Target_info arm_info;
2880 // The types of GOT entries needed for this platform.
2881 // These values are exposed to the ABI in an incremental link.
2882 // Do not renumber existing values without changing the version
2883 // number of the .gnu_incremental_inputs section.
2886 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2887 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2888 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2889 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2890 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2893 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2895 // Map input section to Arm_input_section.
2896 typedef Unordered_map<Section_id,
2897 Arm_input_section<big_endian>*,
2899 Arm_input_section_map;
2901 // Map output addresses to relocs for Cortex-A8 erratum.
2902 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2903 Cortex_a8_relocs_info;
2906 Arm_output_data_got<big_endian>* got_;
2908 Output_data_plt_arm<big_endian>* plt_;
2909 // The GOT PLT section.
2910 Output_data_space* got_plt_;
2911 // The dynamic reloc section.
2912 Reloc_section* rel_dyn_;
2913 // Relocs saved to avoid a COPY reloc.
2914 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2915 // Space for variables copied with a COPY reloc.
2916 Output_data_space* dynbss_;
2917 // Offset of the GOT entry for the TLS module index.
2918 unsigned int got_mod_index_offset_;
2919 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2920 bool tls_base_symbol_defined_;
2921 // Vector of Stub_tables created.
2922 Stub_table_list stub_tables_;
2924 const Stub_factory &stub_factory_;
2925 // Whether we can use BLX.
2927 // Whether we force PIC branch veneers.
2928 bool should_force_pic_veneer_;
2929 // Map for locating Arm_input_sections.
2930 Arm_input_section_map arm_input_section_map_;
2931 // Attributes section data in output.
2932 Attributes_section_data* attributes_section_data_;
2933 // Whether we want to fix code for Cortex-A8 erratum.
2934 bool fix_cortex_a8_;
2935 // Map addresses to relocs for Cortex-A8 erratum.
2936 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2939 template<bool big_endian>
2940 const Target::Target_info Target_arm<big_endian>::arm_info =
2943 big_endian, // is_big_endian
2944 elfcpp::EM_ARM, // machine_code
2945 false, // has_make_symbol
2946 false, // has_resolve
2947 false, // has_code_fill
2948 true, // is_default_stack_executable
2949 false, // can_icf_inline_merge_sections
2951 "/usr/lib/libc.so.1", // dynamic_linker
2952 0x8000, // default_text_segment_address
2953 0x1000, // abi_pagesize (overridable by -z max-page-size)
2954 0x1000, // common_pagesize (overridable by -z common-page-size)
2955 elfcpp::SHN_UNDEF, // small_common_shndx
2956 elfcpp::SHN_UNDEF, // large_common_shndx
2957 0, // small_common_section_flags
2958 0, // large_common_section_flags
2959 ".ARM.attributes", // attributes_section
2960 "aeabi" // attributes_vendor
2963 // Arm relocate functions class
2966 template<bool big_endian>
2967 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2972 STATUS_OKAY, // No error during relocation.
2973 STATUS_OVERFLOW, // Relocation overflow.
2974 STATUS_BAD_RELOC // Relocation cannot be applied.
2978 typedef Relocate_functions<32, big_endian> Base;
2979 typedef Arm_relocate_functions<big_endian> This;
2981 // Encoding of imm16 argument for movt and movw ARM instructions
2984 // imm16 := imm4 | imm12
2986 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2987 // +-------+---------------+-------+-------+-----------------------+
2988 // | | |imm4 | |imm12 |
2989 // +-------+---------------+-------+-------+-----------------------+
2991 // Extract the relocation addend from VAL based on the ARM
2992 // instruction encoding described above.
2993 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2994 extract_arm_movw_movt_addend(
2995 typename elfcpp::Swap<32, big_endian>::Valtype val)
2997 // According to the Elf ABI for ARM Architecture the immediate
2998 // field is sign-extended to form the addend.
2999 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
3002 // Insert X into VAL based on the ARM instruction encoding described
3004 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3005 insert_val_arm_movw_movt(
3006 typename elfcpp::Swap<32, big_endian>::Valtype val,
3007 typename elfcpp::Swap<32, big_endian>::Valtype x)
3011 val |= (x & 0xf000) << 4;
3015 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3018 // imm16 := imm4 | i | imm3 | imm8
3020 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3021 // +---------+-+-----------+-------++-+-----+-------+---------------+
3022 // | |i| |imm4 || |imm3 | |imm8 |
3023 // +---------+-+-----------+-------++-+-----+-------+---------------+
3025 // Extract the relocation addend from VAL based on the Thumb2
3026 // instruction encoding described above.
3027 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3028 extract_thumb_movw_movt_addend(
3029 typename elfcpp::Swap<32, big_endian>::Valtype val)
3031 // According to the Elf ABI for ARM Architecture the immediate
3032 // field is sign-extended to form the addend.
3033 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3034 | ((val >> 15) & 0x0800)
3035 | ((val >> 4) & 0x0700)
3039 // Insert X into VAL based on the Thumb2 instruction encoding
3041 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3042 insert_val_thumb_movw_movt(
3043 typename elfcpp::Swap<32, big_endian>::Valtype val,
3044 typename elfcpp::Swap<32, big_endian>::Valtype x)
3047 val |= (x & 0xf000) << 4;
3048 val |= (x & 0x0800) << 15;
3049 val |= (x & 0x0700) << 4;
3050 val |= (x & 0x00ff);
3054 // Calculate the smallest constant Kn for the specified residual.
3055 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3057 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3063 // Determine the most significant bit in the residual and
3064 // align the resulting value to a 2-bit boundary.
3065 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3067 // The desired shift is now (msb - 6), or zero, whichever
3069 return (((msb - 6) < 0) ? 0 : (msb - 6));
3072 // Calculate the final residual for the specified group index.
3073 // If the passed group index is less than zero, the method will return
3074 // the value of the specified residual without any change.
3075 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3076 static typename elfcpp::Swap<32, big_endian>::Valtype
3077 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3080 for (int n = 0; n <= group; n++)
3082 // Calculate which part of the value to mask.
3083 uint32_t shift = calc_grp_kn(residual);
3084 // Calculate the residual for the next time around.
3085 residual &= ~(residual & (0xff << shift));
3091 // Calculate the value of Gn for the specified group index.
3092 // We return it in the form of an encoded constant-and-rotation.
3093 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3094 static typename elfcpp::Swap<32, big_endian>::Valtype
3095 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3098 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3101 for (int n = 0; n <= group; n++)
3103 // Calculate which part of the value to mask.
3104 shift = calc_grp_kn(residual);
3105 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3106 gn = residual & (0xff << shift);
3107 // Calculate the residual for the next time around.
3110 // Return Gn in the form of an encoded constant-and-rotation.
3111 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3115 // Handle ARM long branches.
3116 static typename This::Status
3117 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3118 unsigned char*, const Sized_symbol<32>*,
3119 const Arm_relobj<big_endian>*, unsigned int,
3120 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3122 // Handle THUMB long branches.
3123 static typename This::Status
3124 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3125 unsigned char*, const Sized_symbol<32>*,
3126 const Arm_relobj<big_endian>*, unsigned int,
3127 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3130 // Return the branch offset of a 32-bit THUMB branch.
3131 static inline int32_t
3132 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3134 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3135 // involving the J1 and J2 bits.
3136 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3137 uint32_t upper = upper_insn & 0x3ffU;
3138 uint32_t lower = lower_insn & 0x7ffU;
3139 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3140 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3141 uint32_t i1 = j1 ^ s ? 0 : 1;
3142 uint32_t i2 = j2 ^ s ? 0 : 1;
3144 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3145 | (upper << 12) | (lower << 1));
3148 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3149 // UPPER_INSN is the original upper instruction of the branch. Caller is
3150 // responsible for overflow checking and BLX offset adjustment.
3151 static inline uint16_t
3152 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3154 uint32_t s = offset < 0 ? 1 : 0;
3155 uint32_t bits = static_cast<uint32_t>(offset);
3156 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3159 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3160 // LOWER_INSN is the original lower instruction of the branch. Caller is
3161 // responsible for overflow checking and BLX offset adjustment.
3162 static inline uint16_t
3163 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3165 uint32_t s = offset < 0 ? 1 : 0;
3166 uint32_t bits = static_cast<uint32_t>(offset);
3167 return ((lower_insn & ~0x2fffU)
3168 | ((((bits >> 23) & 1) ^ !s) << 13)
3169 | ((((bits >> 22) & 1) ^ !s) << 11)
3170 | ((bits >> 1) & 0x7ffU));
3173 // Return the branch offset of a 32-bit THUMB conditional branch.
3174 static inline int32_t
3175 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3177 uint32_t s = (upper_insn & 0x0400U) >> 10;
3178 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3179 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3180 uint32_t lower = (lower_insn & 0x07ffU);
3181 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3183 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3186 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3187 // instruction. UPPER_INSN is the original upper instruction of the branch.
3188 // Caller is responsible for overflow checking.
3189 static inline uint16_t
3190 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3192 uint32_t s = offset < 0 ? 1 : 0;
3193 uint32_t bits = static_cast<uint32_t>(offset);
3194 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3197 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3198 // instruction. LOWER_INSN is the original lower instruction of the branch.
3199 // The caller is responsible for overflow checking.
3200 static inline uint16_t
3201 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3203 uint32_t bits = static_cast<uint32_t>(offset);
3204 uint32_t j2 = (bits & 0x00080000U) >> 19;
3205 uint32_t j1 = (bits & 0x00040000U) >> 18;
3206 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3208 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3211 // R_ARM_ABS8: S + A
3212 static inline typename This::Status
3213 abs8(unsigned char* view,
3214 const Sized_relobj_file<32, big_endian>* object,
3215 const Symbol_value<32>* psymval)
3217 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3218 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3219 Valtype* wv = reinterpret_cast<Valtype*>(view);
3220 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3221 Reltype addend = utils::sign_extend<8>(val);
3222 Reltype x = psymval->value(object, addend);
3223 val = utils::bit_select(val, x, 0xffU);
3224 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3226 // R_ARM_ABS8 permits signed or unsigned results.
3227 int signed_x = static_cast<int32_t>(x);
3228 return ((signed_x < -128 || signed_x > 255)
3229 ? This::STATUS_OVERFLOW
3230 : This::STATUS_OKAY);
3233 // R_ARM_THM_ABS5: S + A
3234 static inline typename This::Status
3235 thm_abs5(unsigned char* view,
3236 const Sized_relobj_file<32, big_endian>* object,
3237 const Symbol_value<32>* psymval)
3239 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3240 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3241 Valtype* wv = reinterpret_cast<Valtype*>(view);
3242 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3243 Reltype addend = (val & 0x7e0U) >> 6;
3244 Reltype x = psymval->value(object, addend);
3245 val = utils::bit_select(val, x << 6, 0x7e0U);
3246 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3248 // R_ARM_ABS16 permits signed or unsigned results.
3249 int signed_x = static_cast<int32_t>(x);
3250 return ((signed_x < -32768 || signed_x > 65535)
3251 ? This::STATUS_OVERFLOW
3252 : This::STATUS_OKAY);
3255 // R_ARM_ABS12: S + A
3256 static inline typename This::Status
3257 abs12(unsigned char* view,
3258 const Sized_relobj_file<32, big_endian>* object,
3259 const Symbol_value<32>* psymval)
3261 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3262 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3263 Valtype* wv = reinterpret_cast<Valtype*>(view);
3264 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3265 Reltype addend = val & 0x0fffU;
3266 Reltype x = psymval->value(object, addend);
3267 val = utils::bit_select(val, x, 0x0fffU);
3268 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3269 return (utils::has_overflow<12>(x)
3270 ? This::STATUS_OVERFLOW
3271 : This::STATUS_OKAY);
3274 // R_ARM_ABS16: S + A
3275 static inline typename This::Status
3276 abs16(unsigned char* view,
3277 const Sized_relobj_file<32, big_endian>* object,
3278 const Symbol_value<32>* psymval)
3280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282 Valtype* wv = reinterpret_cast<Valtype*>(view);
3283 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3284 Reltype addend = utils::sign_extend<16>(val);
3285 Reltype x = psymval->value(object, addend);
3286 val = utils::bit_select(val, x, 0xffffU);
3287 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3288 return (utils::has_signed_unsigned_overflow<16>(x)
3289 ? This::STATUS_OVERFLOW
3290 : This::STATUS_OKAY);
3293 // R_ARM_ABS32: (S + A) | T
3294 static inline typename This::Status
3295 abs32(unsigned char* view,
3296 const Sized_relobj_file<32, big_endian>* object,
3297 const Symbol_value<32>* psymval,
3298 Arm_address thumb_bit)
3300 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3301 Valtype* wv = reinterpret_cast<Valtype*>(view);
3302 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3303 Valtype x = psymval->value(object, addend) | thumb_bit;
3304 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3305 return This::STATUS_OKAY;
3308 // R_ARM_REL32: (S + A) | T - P
3309 static inline typename This::Status
3310 rel32(unsigned char* view,
3311 const Sized_relobj_file<32, big_endian>* object,
3312 const Symbol_value<32>* psymval,
3313 Arm_address address,
3314 Arm_address thumb_bit)
3316 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3317 Valtype* wv = reinterpret_cast<Valtype*>(view);
3318 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3319 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3320 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3321 return This::STATUS_OKAY;
3324 // R_ARM_THM_JUMP24: (S + A) | T - P
3325 static typename This::Status
3326 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3327 const Symbol_value<32>* psymval, Arm_address address,
3328 Arm_address thumb_bit);
3330 // R_ARM_THM_JUMP6: S + A – P
3331 static inline typename This::Status
3332 thm_jump6(unsigned char* view,
3333 const Sized_relobj_file<32, big_endian>* object,
3334 const Symbol_value<32>* psymval,
3335 Arm_address address)
3337 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3338 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3339 Valtype* wv = reinterpret_cast<Valtype*>(view);
3340 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3341 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3342 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3343 Reltype x = (psymval->value(object, addend) - address);
3344 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3345 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3346 // CZB does only forward jumps.
3347 return ((x > 0x007e)
3348 ? This::STATUS_OVERFLOW
3349 : This::STATUS_OKAY);
3352 // R_ARM_THM_JUMP8: S + A – P
3353 static inline typename This::Status
3354 thm_jump8(unsigned char* view,
3355 const Sized_relobj_file<32, big_endian>* object,
3356 const Symbol_value<32>* psymval,
3357 Arm_address address)
3359 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3360 Valtype* wv = reinterpret_cast<Valtype*>(view);
3361 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3362 int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3363 int32_t x = (psymval->value(object, addend) - address);
3364 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3365 | ((x & 0x01fe) >> 1)));
3366 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3367 return (utils::has_overflow<9>(x)
3368 ? This::STATUS_OVERFLOW
3369 : This::STATUS_OKAY);
3372 // R_ARM_THM_JUMP11: S + A – P
3373 static inline typename This::Status
3374 thm_jump11(unsigned char* view,
3375 const Sized_relobj_file<32, big_endian>* object,
3376 const Symbol_value<32>* psymval,
3377 Arm_address address)
3379 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3380 Valtype* wv = reinterpret_cast<Valtype*>(view);
3381 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3382 int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3383 int32_t x = (psymval->value(object, addend) - address);
3384 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3385 | ((x & 0x0ffe) >> 1)));
3386 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3387 return (utils::has_overflow<12>(x)
3388 ? This::STATUS_OVERFLOW
3389 : This::STATUS_OKAY);
3392 // R_ARM_BASE_PREL: B(S) + A - P
3393 static inline typename This::Status
3394 base_prel(unsigned char* view,
3396 Arm_address address)
3398 Base::rel32(view, origin - address);
3402 // R_ARM_BASE_ABS: B(S) + A
3403 static inline typename This::Status
3404 base_abs(unsigned char* view,
3407 Base::rel32(view, origin);
3411 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3412 static inline typename This::Status
3413 got_brel(unsigned char* view,
3414 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3416 Base::rel32(view, got_offset);
3417 return This::STATUS_OKAY;
3420 // R_ARM_GOT_PREL: GOT(S) + A - P
3421 static inline typename This::Status
3422 got_prel(unsigned char* view,
3423 Arm_address got_entry,
3424 Arm_address address)
3426 Base::rel32(view, got_entry - address);
3427 return This::STATUS_OKAY;
3430 // R_ARM_PREL: (S + A) | T - P
3431 static inline typename This::Status
3432 prel31(unsigned char* view,
3433 const Sized_relobj_file<32, big_endian>* object,
3434 const Symbol_value<32>* psymval,
3435 Arm_address address,
3436 Arm_address thumb_bit)
3438 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3439 Valtype* wv = reinterpret_cast<Valtype*>(view);
3440 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3441 Valtype addend = utils::sign_extend<31>(val);
3442 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3443 val = utils::bit_select(val, x, 0x7fffffffU);
3444 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3445 return (utils::has_overflow<31>(x) ?
3446 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3449 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3450 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3451 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3452 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3453 static inline typename This::Status
3454 movw(unsigned char* view,
3455 const Sized_relobj_file<32, big_endian>* object,
3456 const Symbol_value<32>* psymval,
3457 Arm_address relative_address_base,
3458 Arm_address thumb_bit,
3459 bool check_overflow)
3461 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3462 Valtype* wv = reinterpret_cast<Valtype*>(view);
3463 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3464 Valtype addend = This::extract_arm_movw_movt_addend(val);
3465 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3466 - relative_address_base);
3467 val = This::insert_val_arm_movw_movt(val, x);
3468 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3469 return ((check_overflow && utils::has_overflow<16>(x))
3470 ? This::STATUS_OVERFLOW
3471 : This::STATUS_OKAY);
3474 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3475 // R_ARM_MOVT_PREL: S + A - P
3476 // R_ARM_MOVT_BREL: S + A - B(S)
3477 static inline typename This::Status
3478 movt(unsigned char* view,
3479 const Sized_relobj_file<32, big_endian>* object,
3480 const Symbol_value<32>* psymval,
3481 Arm_address relative_address_base)
3483 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3484 Valtype* wv = reinterpret_cast<Valtype*>(view);
3485 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3486 Valtype addend = This::extract_arm_movw_movt_addend(val);
3487 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3488 val = This::insert_val_arm_movw_movt(val, x);
3489 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3490 // FIXME: IHI0044D says that we should check for overflow.
3491 return This::STATUS_OKAY;
3494 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3495 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3496 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3497 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3498 static inline typename This::Status
3499 thm_movw(unsigned char* view,
3500 const Sized_relobj_file<32, big_endian>* object,
3501 const Symbol_value<32>* psymval,
3502 Arm_address relative_address_base,
3503 Arm_address thumb_bit,
3504 bool check_overflow)
3506 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3507 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3508 Valtype* wv = reinterpret_cast<Valtype*>(view);
3509 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3510 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3511 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3513 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3514 val = This::insert_val_thumb_movw_movt(val, x);
3515 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3516 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3517 return ((check_overflow && utils::has_overflow<16>(x))
3518 ? This::STATUS_OVERFLOW
3519 : This::STATUS_OKAY);
3522 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3523 // R_ARM_THM_MOVT_PREL: S + A - P
3524 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3525 static inline typename This::Status
3526 thm_movt(unsigned char* view,
3527 const Sized_relobj_file<32, big_endian>* object,
3528 const Symbol_value<32>* psymval,
3529 Arm_address relative_address_base)
3531 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3532 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3533 Valtype* wv = reinterpret_cast<Valtype*>(view);
3534 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3535 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3536 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3537 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3538 val = This::insert_val_thumb_movw_movt(val, x);
3539 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3540 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3541 return This::STATUS_OKAY;
3544 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3545 static inline typename This::Status
3546 thm_alu11(unsigned char* view,
3547 const Sized_relobj_file<32, big_endian>* object,
3548 const Symbol_value<32>* psymval,
3549 Arm_address address,
3550 Arm_address thumb_bit)
3552 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3553 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3554 Valtype* wv = reinterpret_cast<Valtype*>(view);
3555 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3556 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3558 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3559 // -----------------------------------------------------------------------
3560 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3561 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3562 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3563 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3564 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3565 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3567 // Determine a sign for the addend.
3568 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3569 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3570 // Thumb2 addend encoding:
3571 // imm12 := i | imm3 | imm8
3572 int32_t addend = (insn & 0xff)
3573 | ((insn & 0x00007000) >> 4)
3574 | ((insn & 0x04000000) >> 15);
3575 // Apply a sign to the added.
3578 int32_t x = (psymval->value(object, addend) | thumb_bit)
3579 - (address & 0xfffffffc);
3580 Reltype val = abs(x);
3581 // Mask out the value and a distinct part of the ADD/SUB opcode
3582 // (bits 7:5 of opword).
3583 insn = (insn & 0xfb0f8f00)
3585 | ((val & 0x700) << 4)
3586 | ((val & 0x800) << 15);
3587 // Set the opcode according to whether the value to go in the
3588 // place is negative.
3592 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3593 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3594 return ((val > 0xfff) ?
3595 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3598 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3599 static inline typename This::Status
3600 thm_pc8(unsigned char* view,
3601 const Sized_relobj_file<32, big_endian>* object,
3602 const Symbol_value<32>* psymval,
3603 Arm_address address)
3605 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3606 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3607 Valtype* wv = reinterpret_cast<Valtype*>(view);
3608 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3609 Reltype addend = ((insn & 0x00ff) << 2);
3610 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3611 Reltype val = abs(x);
3612 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3614 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3615 return ((val > 0x03fc)
3616 ? This::STATUS_OVERFLOW
3617 : This::STATUS_OKAY);
3620 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3621 static inline typename This::Status
3622 thm_pc12(unsigned char* view,
3623 const Sized_relobj_file<32, big_endian>* object,
3624 const Symbol_value<32>* psymval,
3625 Arm_address address)
3627 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3628 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3629 Valtype* wv = reinterpret_cast<Valtype*>(view);
3630 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3631 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3632 // Determine a sign for the addend (positive if the U bit is 1).
3633 const int sign = (insn & 0x00800000) ? 1 : -1;
3634 int32_t addend = (insn & 0xfff);
3635 // Apply a sign to the added.
3638 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3639 Reltype val = abs(x);
3640 // Mask out and apply the value and the U bit.
3641 insn = (insn & 0xff7ff000) | (val & 0xfff);
3642 // Set the U bit according to whether the value to go in the
3643 // place is positive.
3647 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3648 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3649 return ((val > 0xfff) ?
3650 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3654 static inline typename This::Status
3655 v4bx(const Relocate_info<32, big_endian>* relinfo,
3656 unsigned char* view,
3657 const Arm_relobj<big_endian>* object,
3658 const Arm_address address,
3659 const bool is_interworking)
3662 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3663 Valtype* wv = reinterpret_cast<Valtype*>(view);
3664 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3666 // Ensure that we have a BX instruction.
3667 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3668 const uint32_t reg = (val & 0xf);
3669 if (is_interworking && reg != 0xf)
3671 Stub_table<big_endian>* stub_table =
3672 object->stub_table(relinfo->data_shndx);
3673 gold_assert(stub_table != NULL);
3675 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3676 gold_assert(stub != NULL);
3678 int32_t veneer_address =
3679 stub_table->address() + stub->offset() - 8 - address;
3680 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3681 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3682 // Replace with a branch to veneer (B <addr>)
3683 val = (val & 0xf0000000) | 0x0a000000
3684 | ((veneer_address >> 2) & 0x00ffffff);
3688 // Preserve Rm (lowest four bits) and the condition code
3689 // (highest four bits). Other bits encode MOV PC,Rm.
3690 val = (val & 0xf000000f) | 0x01a0f000;
3692 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3693 return This::STATUS_OKAY;
3696 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3697 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3698 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3699 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3700 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3701 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3702 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3703 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3704 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3705 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3706 static inline typename This::Status
3707 arm_grp_alu(unsigned char* view,
3708 const Sized_relobj_file<32, big_endian>* object,
3709 const Symbol_value<32>* psymval,
3711 Arm_address address,
3712 Arm_address thumb_bit,
3713 bool check_overflow)
3715 gold_assert(group >= 0 && group < 3);
3716 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3717 Valtype* wv = reinterpret_cast<Valtype*>(view);
3718 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3720 // ALU group relocations are allowed only for the ADD/SUB instructions.
3721 // (0x00800000 - ADD, 0x00400000 - SUB)
3722 const Valtype opcode = insn & 0x01e00000;
3723 if (opcode != 0x00800000 && opcode != 0x00400000)
3724 return This::STATUS_BAD_RELOC;
3726 // Determine a sign for the addend.
3727 const int sign = (opcode == 0x00800000) ? 1 : -1;
3728 // shifter = rotate_imm * 2
3729 const uint32_t shifter = (insn & 0xf00) >> 7;
3730 // Initial addend value.
3731 int32_t addend = insn & 0xff;
3732 // Rotate addend right by shifter.
3733 addend = (addend >> shifter) | (addend << (32 - shifter));
3734 // Apply a sign to the added.
3737 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3738 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3739 // Check for overflow if required
3741 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3742 return This::STATUS_OVERFLOW;
3744 // Mask out the value and the ADD/SUB part of the opcode; take care
3745 // not to destroy the S bit.
3747 // Set the opcode according to whether the value to go in the
3748 // place is negative.
3749 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3750 // Encode the offset (encoded Gn).
3753 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3754 return This::STATUS_OKAY;
3757 // R_ARM_LDR_PC_G0: S + A - P
3758 // R_ARM_LDR_PC_G1: S + A - P
3759 // R_ARM_LDR_PC_G2: S + A - P
3760 // R_ARM_LDR_SB_G0: S + A - B(S)
3761 // R_ARM_LDR_SB_G1: S + A - B(S)
3762 // R_ARM_LDR_SB_G2: S + A - B(S)
3763 static inline typename This::Status
3764 arm_grp_ldr(unsigned char* view,
3765 const Sized_relobj_file<32, big_endian>* object,
3766 const Symbol_value<32>* psymval,
3768 Arm_address address)
3770 gold_assert(group >= 0 && group < 3);
3771 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3772 Valtype* wv = reinterpret_cast<Valtype*>(view);
3773 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3775 const int sign = (insn & 0x00800000) ? 1 : -1;
3776 int32_t addend = (insn & 0xfff) * sign;
3777 int32_t x = (psymval->value(object, addend) - address);
3778 // Calculate the relevant G(n-1) value to obtain this stage residual.
3780 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3781 if (residual >= 0x1000)
3782 return This::STATUS_OVERFLOW;
3784 // Mask out the value and U bit.
3786 // Set the U bit for non-negative values.
3791 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3792 return This::STATUS_OKAY;
3795 // R_ARM_LDRS_PC_G0: S + A - P
3796 // R_ARM_LDRS_PC_G1: S + A - P
3797 // R_ARM_LDRS_PC_G2: S + A - P
3798 // R_ARM_LDRS_SB_G0: S + A - B(S)
3799 // R_ARM_LDRS_SB_G1: S + A - B(S)
3800 // R_ARM_LDRS_SB_G2: S + A - B(S)
3801 static inline typename This::Status
3802 arm_grp_ldrs(unsigned char* view,
3803 const Sized_relobj_file<32, big_endian>* object,
3804 const Symbol_value<32>* psymval,
3806 Arm_address address)
3808 gold_assert(group >= 0 && group < 3);
3809 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3810 Valtype* wv = reinterpret_cast<Valtype*>(view);
3811 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3813 const int sign = (insn & 0x00800000) ? 1 : -1;
3814 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3815 int32_t x = (psymval->value(object, addend) - address);
3816 // Calculate the relevant G(n-1) value to obtain this stage residual.
3818 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3819 if (residual >= 0x100)
3820 return This::STATUS_OVERFLOW;
3822 // Mask out the value and U bit.
3824 // Set the U bit for non-negative values.
3827 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3829 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3830 return This::STATUS_OKAY;
3833 // R_ARM_LDC_PC_G0: S + A - P
3834 // R_ARM_LDC_PC_G1: S + A - P
3835 // R_ARM_LDC_PC_G2: S + A - P
3836 // R_ARM_LDC_SB_G0: S + A - B(S)
3837 // R_ARM_LDC_SB_G1: S + A - B(S)
3838 // R_ARM_LDC_SB_G2: S + A - B(S)
3839 static inline typename This::Status
3840 arm_grp_ldc(unsigned char* view,
3841 const Sized_relobj_file<32, big_endian>* object,
3842 const Symbol_value<32>* psymval,
3844 Arm_address address)
3846 gold_assert(group >= 0 && group < 3);
3847 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3848 Valtype* wv = reinterpret_cast<Valtype*>(view);
3849 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3851 const int sign = (insn & 0x00800000) ? 1 : -1;
3852 int32_t addend = ((insn & 0xff) << 2) * sign;
3853 int32_t x = (psymval->value(object, addend) - address);
3854 // Calculate the relevant G(n-1) value to obtain this stage residual.
3856 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3857 if ((residual & 0x3) != 0 || residual >= 0x400)
3858 return This::STATUS_OVERFLOW;
3860 // Mask out the value and U bit.
3862 // Set the U bit for non-negative values.
3865 insn |= (residual >> 2);
3867 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3868 return This::STATUS_OKAY;
3872 // Relocate ARM long branches. This handles relocation types
3873 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3874 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3875 // undefined and we do not use PLT in this relocation. In such a case,
3876 // the branch is converted into an NOP.
3878 template<bool big_endian>
3879 typename Arm_relocate_functions<big_endian>::Status
3880 Arm_relocate_functions<big_endian>::arm_branch_common(
3881 unsigned int r_type,
3882 const Relocate_info<32, big_endian>* relinfo,
3883 unsigned char* view,
3884 const Sized_symbol<32>* gsym,
3885 const Arm_relobj<big_endian>* object,
3887 const Symbol_value<32>* psymval,
3888 Arm_address address,
3889 Arm_address thumb_bit,
3890 bool is_weakly_undefined_without_plt)
3892 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3893 Valtype* wv = reinterpret_cast<Valtype*>(view);
3894 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3896 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3897 && ((val & 0x0f000000UL) == 0x0a000000UL);
3898 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3899 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3900 && ((val & 0x0f000000UL) == 0x0b000000UL);
3901 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3902 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3904 // Check that the instruction is valid.
3905 if (r_type == elfcpp::R_ARM_CALL)
3907 if (!insn_is_uncond_bl && !insn_is_blx)
3908 return This::STATUS_BAD_RELOC;
3910 else if (r_type == elfcpp::R_ARM_JUMP24)
3912 if (!insn_is_b && !insn_is_cond_bl)
3913 return This::STATUS_BAD_RELOC;
3915 else if (r_type == elfcpp::R_ARM_PLT32)
3917 if (!insn_is_any_branch)
3918 return This::STATUS_BAD_RELOC;
3920 else if (r_type == elfcpp::R_ARM_XPC25)
3922 // FIXME: AAELF document IH0044C does not say much about it other
3923 // than it being obsolete.
3924 if (!insn_is_any_branch)
3925 return This::STATUS_BAD_RELOC;
3930 // A branch to an undefined weak symbol is turned into a jump to
3931 // the next instruction unless a PLT entry will be created.
3932 // Do the same for local undefined symbols.
3933 // The jump to the next instruction is optimized as a NOP depending
3934 // on the architecture.
3935 const Target_arm<big_endian>* arm_target =
3936 Target_arm<big_endian>::default_target();
3937 if (is_weakly_undefined_without_plt)
3939 gold_assert(!parameters->options().relocatable());
3940 Valtype cond = val & 0xf0000000U;
3941 if (arm_target->may_use_arm_nop())
3942 val = cond | 0x0320f000;
3944 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3945 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3946 return This::STATUS_OKAY;
3949 Valtype addend = utils::sign_extend<26>(val << 2);
3950 Valtype branch_target = psymval->value(object, addend);
3951 int32_t branch_offset = branch_target - address;
3953 // We need a stub if the branch offset is too large or if we need
3955 bool may_use_blx = arm_target->may_use_blx();
3956 Reloc_stub* stub = NULL;
3958 if (!parameters->options().relocatable()
3959 && (utils::has_overflow<26>(branch_offset)
3960 || ((thumb_bit != 0)
3961 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3963 Valtype unadjusted_branch_target = psymval->value(object, 0);
3965 Stub_type stub_type =
3966 Reloc_stub::stub_type_for_reloc(r_type, address,
3967 unadjusted_branch_target,
3969 if (stub_type != arm_stub_none)
3971 Stub_table<big_endian>* stub_table =
3972 object->stub_table(relinfo->data_shndx);
3973 gold_assert(stub_table != NULL);
3975 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3976 stub = stub_table->find_reloc_stub(stub_key);
3977 gold_assert(stub != NULL);
3978 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3979 branch_target = stub_table->address() + stub->offset() + addend;
3980 branch_offset = branch_target - address;
3981 gold_assert(!utils::has_overflow<26>(branch_offset));
3985 // At this point, if we still need to switch mode, the instruction
3986 // must either be a BLX or a BL that can be converted to a BLX.
3990 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3991 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3994 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3995 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3996 return (utils::has_overflow<26>(branch_offset)
3997 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
4000 // Relocate THUMB long branches. This handles relocation types
4001 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4002 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4003 // undefined and we do not use PLT in this relocation. In such a case,
4004 // the branch is converted into an NOP.
4006 template<bool big_endian>
4007 typename Arm_relocate_functions<big_endian>::Status
4008 Arm_relocate_functions<big_endian>::thumb_branch_common(
4009 unsigned int r_type,
4010 const Relocate_info<32, big_endian>* relinfo,
4011 unsigned char* view,
4012 const Sized_symbol<32>* gsym,
4013 const Arm_relobj<big_endian>* object,
4015 const Symbol_value<32>* psymval,
4016 Arm_address address,
4017 Arm_address thumb_bit,
4018 bool is_weakly_undefined_without_plt)
4020 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4021 Valtype* wv = reinterpret_cast<Valtype*>(view);
4022 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4023 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4025 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4027 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4028 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4030 // Check that the instruction is valid.
4031 if (r_type == elfcpp::R_ARM_THM_CALL)
4033 if (!is_bl_insn && !is_blx_insn)
4034 return This::STATUS_BAD_RELOC;
4036 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4038 // This cannot be a BLX.
4040 return This::STATUS_BAD_RELOC;
4042 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4044 // Check for Thumb to Thumb call.
4046 return This::STATUS_BAD_RELOC;
4049 gold_warning(_("%s: Thumb BLX instruction targets "
4050 "thumb function '%s'."),
4051 object->name().c_str(),
4052 (gsym ? gsym->name() : "(local)"));
4053 // Convert BLX to BL.
4054 lower_insn |= 0x1000U;
4060 // A branch to an undefined weak symbol is turned into a jump to
4061 // the next instruction unless a PLT entry will be created.
4062 // The jump to the next instruction is optimized as a NOP.W for
4063 // Thumb-2 enabled architectures.
4064 const Target_arm<big_endian>* arm_target =
4065 Target_arm<big_endian>::default_target();
4066 if (is_weakly_undefined_without_plt)
4068 gold_assert(!parameters->options().relocatable());
4069 if (arm_target->may_use_thumb2_nop())
4071 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4072 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4076 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4077 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4079 return This::STATUS_OKAY;
4082 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4083 Arm_address branch_target = psymval->value(object, addend);
4085 // For BLX, bit 1 of target address comes from bit 1 of base address.
4086 bool may_use_blx = arm_target->may_use_blx();
4087 if (thumb_bit == 0 && may_use_blx)
4088 branch_target = utils::bit_select(branch_target, address, 0x2);
4090 int32_t branch_offset = branch_target - address;
4092 // We need a stub if the branch offset is too large or if we need
4094 bool thumb2 = arm_target->using_thumb2();
4095 if (!parameters->options().relocatable()
4096 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4097 || (thumb2 && utils::has_overflow<25>(branch_offset))
4098 || ((thumb_bit == 0)
4099 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4100 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4102 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4104 Stub_type stub_type =
4105 Reloc_stub::stub_type_for_reloc(r_type, address,
4106 unadjusted_branch_target,
4109 if (stub_type != arm_stub_none)
4111 Stub_table<big_endian>* stub_table =
4112 object->stub_table(relinfo->data_shndx);
4113 gold_assert(stub_table != NULL);
4115 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4116 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4117 gold_assert(stub != NULL);
4118 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4119 branch_target = stub_table->address() + stub->offset() + addend;
4120 if (thumb_bit == 0 && may_use_blx)
4121 branch_target = utils::bit_select(branch_target, address, 0x2);
4122 branch_offset = branch_target - address;
4126 // At this point, if we still need to switch mode, the instruction
4127 // must either be a BLX or a BL that can be converted to a BLX.
4130 gold_assert(may_use_blx
4131 && (r_type == elfcpp::R_ARM_THM_CALL
4132 || r_type == elfcpp::R_ARM_THM_XPC22));
4133 // Make sure this is a BLX.
4134 lower_insn &= ~0x1000U;
4138 // Make sure this is a BL.
4139 lower_insn |= 0x1000U;
4142 // For a BLX instruction, make sure that the relocation is rounded up
4143 // to a word boundary. This follows the semantics of the instruction
4144 // which specifies that bit 1 of the target address will come from bit
4145 // 1 of the base address.
4146 if ((lower_insn & 0x5000U) == 0x4000U)
4147 gold_assert((branch_offset & 3) == 0);
4149 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4150 // We use the Thumb-2 encoding, which is safe even if dealing with
4151 // a Thumb-1 instruction by virtue of our overflow check above. */
4152 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4153 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4155 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4156 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4158 gold_assert(!utils::has_overflow<25>(branch_offset));
4161 ? utils::has_overflow<25>(branch_offset)
4162 : utils::has_overflow<23>(branch_offset))
4163 ? This::STATUS_OVERFLOW
4164 : This::STATUS_OKAY);
4167 // Relocate THUMB-2 long conditional branches.
4168 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4169 // undefined and we do not use PLT in this relocation. In such a case,
4170 // the branch is converted into an NOP.
4172 template<bool big_endian>
4173 typename Arm_relocate_functions<big_endian>::Status
4174 Arm_relocate_functions<big_endian>::thm_jump19(
4175 unsigned char* view,
4176 const Arm_relobj<big_endian>* object,
4177 const Symbol_value<32>* psymval,
4178 Arm_address address,
4179 Arm_address thumb_bit)
4181 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4182 Valtype* wv = reinterpret_cast<Valtype*>(view);
4183 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4184 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4185 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4187 Arm_address branch_target = psymval->value(object, addend);
4188 int32_t branch_offset = branch_target - address;
4190 // ??? Should handle interworking? GCC might someday try to
4191 // use this for tail calls.
4192 // FIXME: We do support thumb entry to PLT yet.
4195 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4196 return This::STATUS_BAD_RELOC;
4199 // Put RELOCATION back into the insn.
4200 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4201 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4203 // Put the relocated value back in the object file:
4204 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4205 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4207 return (utils::has_overflow<21>(branch_offset)
4208 ? This::STATUS_OVERFLOW
4209 : This::STATUS_OKAY);
4212 // Get the GOT section, creating it if necessary.
4214 template<bool big_endian>
4215 Arm_output_data_got<big_endian>*
4216 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4218 if (this->got_ == NULL)
4220 gold_assert(symtab != NULL && layout != NULL);
4222 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4224 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4225 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4226 this->got_, ORDER_DATA, false);
4228 // The old GNU linker creates a .got.plt section. We just
4229 // create another set of data in the .got section. Note that we
4230 // always create a PLT if we create a GOT, although the PLT
4232 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4233 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4234 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4235 this->got_plt_, ORDER_DATA, false);
4237 // The first three entries are reserved.
4238 this->got_plt_->set_current_data_size(3 * 4);
4240 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4241 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4242 Symbol_table::PREDEFINED,
4244 0, 0, elfcpp::STT_OBJECT,
4246 elfcpp::STV_HIDDEN, 0,
4252 // Get the dynamic reloc section, creating it if necessary.
4254 template<bool big_endian>
4255 typename Target_arm<big_endian>::Reloc_section*
4256 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4258 if (this->rel_dyn_ == NULL)
4260 gold_assert(layout != NULL);
4261 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4262 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4263 elfcpp::SHF_ALLOC, this->rel_dyn_,
4264 ORDER_DYNAMIC_RELOCS, false);
4266 return this->rel_dyn_;
4269 // Insn_template methods.
4271 // Return byte size of an instruction template.
4274 Insn_template::size() const
4276 switch (this->type())
4279 case THUMB16_SPECIAL_TYPE:
4290 // Return alignment of an instruction template.
4293 Insn_template::alignment() const
4295 switch (this->type())
4298 case THUMB16_SPECIAL_TYPE:
4309 // Stub_template methods.
4311 Stub_template::Stub_template(
4312 Stub_type type, const Insn_template* insns,
4314 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4315 entry_in_thumb_mode_(false), relocs_()
4319 // Compute byte size and alignment of stub template.
4320 for (size_t i = 0; i < insn_count; i++)
4322 unsigned insn_alignment = insns[i].alignment();
4323 size_t insn_size = insns[i].size();
4324 gold_assert((offset & (insn_alignment - 1)) == 0);
4325 this->alignment_ = std::max(this->alignment_, insn_alignment);
4326 switch (insns[i].type())
4328 case Insn_template::THUMB16_TYPE:
4329 case Insn_template::THUMB16_SPECIAL_TYPE:
4331 this->entry_in_thumb_mode_ = true;
4334 case Insn_template::THUMB32_TYPE:
4335 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4336 this->relocs_.push_back(Reloc(i, offset));
4338 this->entry_in_thumb_mode_ = true;
4341 case Insn_template::ARM_TYPE:
4342 // Handle cases where the target is encoded within the
4344 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4345 this->relocs_.push_back(Reloc(i, offset));
4348 case Insn_template::DATA_TYPE:
4349 // Entry point cannot be data.
4350 gold_assert(i != 0);
4351 this->relocs_.push_back(Reloc(i, offset));
4357 offset += insn_size;
4359 this->size_ = offset;
4364 // Template to implement do_write for a specific target endianness.
4366 template<bool big_endian>
4368 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4370 const Stub_template* stub_template = this->stub_template();
4371 const Insn_template* insns = stub_template->insns();
4373 // FIXME: We do not handle BE8 encoding yet.
4374 unsigned char* pov = view;
4375 for (size_t i = 0; i < stub_template->insn_count(); i++)
4377 switch (insns[i].type())
4379 case Insn_template::THUMB16_TYPE:
4380 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4382 case Insn_template::THUMB16_SPECIAL_TYPE:
4383 elfcpp::Swap<16, big_endian>::writeval(
4385 this->thumb16_special(i));
4387 case Insn_template::THUMB32_TYPE:
4389 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4390 uint32_t lo = insns[i].data() & 0xffff;
4391 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4392 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4395 case Insn_template::ARM_TYPE:
4396 case Insn_template::DATA_TYPE:
4397 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4402 pov += insns[i].size();
4404 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4407 // Reloc_stub::Key methods.
4409 // Dump a Key as a string for debugging.
4412 Reloc_stub::Key::name() const
4414 if (this->r_sym_ == invalid_index)
4416 // Global symbol key name
4417 // <stub-type>:<symbol name>:<addend>.
4418 const std::string sym_name = this->u_.symbol->name();
4419 // We need to print two hex number and two colons. So just add 100 bytes
4420 // to the symbol name size.
4421 size_t len = sym_name.size() + 100;
4422 char* buffer = new char[len];
4423 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4424 sym_name.c_str(), this->addend_);
4425 gold_assert(c > 0 && c < static_cast<int>(len));
4427 return std::string(buffer);
4431 // local symbol key name
4432 // <stub-type>:<object>:<r_sym>:<addend>.
4433 const size_t len = 200;
4435 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4436 this->u_.relobj, this->r_sym_, this->addend_);
4437 gold_assert(c > 0 && c < static_cast<int>(len));
4438 return std::string(buffer);
4442 // Reloc_stub methods.
4444 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4445 // LOCATION to DESTINATION.
4446 // This code is based on the arm_type_of_stub function in
4447 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4451 Reloc_stub::stub_type_for_reloc(
4452 unsigned int r_type,
4453 Arm_address location,
4454 Arm_address destination,
4455 bool target_is_thumb)
4457 Stub_type stub_type = arm_stub_none;
4459 // This is a bit ugly but we want to avoid using a templated class for
4460 // big and little endianities.
4462 bool should_force_pic_veneer;
4465 if (parameters->target().is_big_endian())
4467 const Target_arm<true>* big_endian_target =
4468 Target_arm<true>::default_target();
4469 may_use_blx = big_endian_target->may_use_blx();
4470 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4471 thumb2 = big_endian_target->using_thumb2();
4472 thumb_only = big_endian_target->using_thumb_only();
4476 const Target_arm<false>* little_endian_target =
4477 Target_arm<false>::default_target();
4478 may_use_blx = little_endian_target->may_use_blx();
4479 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4480 thumb2 = little_endian_target->using_thumb2();
4481 thumb_only = little_endian_target->using_thumb_only();
4484 int64_t branch_offset;
4485 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4487 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4488 // base address (instruction address + 4).
4489 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4490 destination = utils::bit_select(destination, location, 0x2);
4491 branch_offset = static_cast<int64_t>(destination) - location;
4493 // Handle cases where:
4494 // - this call goes too far (different Thumb/Thumb2 max
4496 // - it's a Thumb->Arm call and blx is not available, or it's a
4497 // Thumb->Arm branch (not bl). A stub is needed in this case.
4499 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4500 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4502 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4503 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4504 || ((!target_is_thumb)
4505 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4506 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4508 if (target_is_thumb)
4513 stub_type = (parameters->options().shared()
4514 || should_force_pic_veneer)
4517 && (r_type == elfcpp::R_ARM_THM_CALL))
4518 // V5T and above. Stub starts with ARM code, so
4519 // we must be able to switch mode before
4520 // reaching it, which is only possible for 'bl'
4521 // (ie R_ARM_THM_CALL relocation).
4522 ? arm_stub_long_branch_any_thumb_pic
4523 // On V4T, use Thumb code only.
4524 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4528 && (r_type == elfcpp::R_ARM_THM_CALL))
4529 ? arm_stub_long_branch_any_any // V5T and above.
4530 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4534 stub_type = (parameters->options().shared()
4535 || should_force_pic_veneer)
4536 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4537 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4544 // FIXME: We should check that the input section is from an
4545 // object that has interwork enabled.
4547 stub_type = (parameters->options().shared()
4548 || should_force_pic_veneer)
4551 && (r_type == elfcpp::R_ARM_THM_CALL))
4552 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4553 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4557 && (r_type == elfcpp::R_ARM_THM_CALL))
4558 ? arm_stub_long_branch_any_any // V5T and above.
4559 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4561 // Handle v4t short branches.
4562 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4563 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4564 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4565 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4569 else if (r_type == elfcpp::R_ARM_CALL
4570 || r_type == elfcpp::R_ARM_JUMP24
4571 || r_type == elfcpp::R_ARM_PLT32)
4573 branch_offset = static_cast<int64_t>(destination) - location;
4574 if (target_is_thumb)
4578 // FIXME: We should check that the input section is from an
4579 // object that has interwork enabled.
4581 // We have an extra 2-bytes reach because of
4582 // the mode change (bit 24 (H) of BLX encoding).
4583 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4584 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4585 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4586 || (r_type == elfcpp::R_ARM_JUMP24)
4587 || (r_type == elfcpp::R_ARM_PLT32))
4589 stub_type = (parameters->options().shared()
4590 || should_force_pic_veneer)
4593 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4594 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4598 ? arm_stub_long_branch_any_any // V5T and above.
4599 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4605 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4606 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4608 stub_type = (parameters->options().shared()
4609 || should_force_pic_veneer)
4610 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4611 : arm_stub_long_branch_any_any; /// non-PIC.
4619 // Cortex_a8_stub methods.
4621 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4622 // I is the position of the instruction template in the stub template.
4625 Cortex_a8_stub::do_thumb16_special(size_t i)
4627 // The only use of this is to copy condition code from a conditional
4628 // branch being worked around to the corresponding conditional branch in
4630 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4632 uint16_t data = this->stub_template()->insns()[i].data();
4633 gold_assert((data & 0xff00U) == 0xd000U);
4634 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4638 // Stub_factory methods.
4640 Stub_factory::Stub_factory()
4642 // The instruction template sequences are declared as static
4643 // objects and initialized first time the constructor runs.
4645 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4646 // to reach the stub if necessary.
4647 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4649 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4650 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4651 // dcd R_ARM_ABS32(X)
4654 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4656 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4658 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4659 Insn_template::arm_insn(0xe12fff1c), // bx ip
4660 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4661 // dcd R_ARM_ABS32(X)
4664 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4665 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4667 Insn_template::thumb16_insn(0xb401), // push {r0}
4668 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4669 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4670 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4671 Insn_template::thumb16_insn(0x4760), // bx ip
4672 Insn_template::thumb16_insn(0xbf00), // nop
4673 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4674 // dcd R_ARM_ABS32(X)
4677 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4679 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4681 Insn_template::thumb16_insn(0x4778), // bx pc
4682 Insn_template::thumb16_insn(0x46c0), // nop
4683 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4684 Insn_template::arm_insn(0xe12fff1c), // bx ip
4685 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4686 // dcd R_ARM_ABS32(X)
4689 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4691 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4693 Insn_template::thumb16_insn(0x4778), // bx pc
4694 Insn_template::thumb16_insn(0x46c0), // nop
4695 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4696 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4697 // dcd R_ARM_ABS32(X)
4700 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4701 // one, when the destination is close enough.
4702 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4704 Insn_template::thumb16_insn(0x4778), // bx pc
4705 Insn_template::thumb16_insn(0x46c0), // nop
4706 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4709 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4710 // blx to reach the stub if necessary.
4711 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4713 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4714 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4715 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4716 // dcd R_ARM_REL32(X-4)
4719 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4720 // blx to reach the stub if necessary. We can not add into pc;
4721 // it is not guaranteed to mode switch (different in ARMv6 and
4723 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4725 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4726 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4727 Insn_template::arm_insn(0xe12fff1c), // bx ip
4728 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4729 // dcd R_ARM_REL32(X)
4732 // V4T ARM -> ARM long branch stub, PIC.
4733 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4735 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4736 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4737 Insn_template::arm_insn(0xe12fff1c), // bx ip
4738 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4739 // dcd R_ARM_REL32(X)
4742 // V4T Thumb -> ARM long branch stub, PIC.
4743 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4745 Insn_template::thumb16_insn(0x4778), // bx pc
4746 Insn_template::thumb16_insn(0x46c0), // nop
4747 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4748 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4749 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4750 // dcd R_ARM_REL32(X)
4753 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4755 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4757 Insn_template::thumb16_insn(0xb401), // push {r0}
4758 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4759 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4760 Insn_template::thumb16_insn(0x4484), // add ip, r0
4761 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4762 Insn_template::thumb16_insn(0x4760), // bx ip
4763 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4764 // dcd R_ARM_REL32(X)
4767 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4769 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4771 Insn_template::thumb16_insn(0x4778), // bx pc
4772 Insn_template::thumb16_insn(0x46c0), // nop
4773 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4774 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4775 Insn_template::arm_insn(0xe12fff1c), // bx ip
4776 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4777 // dcd R_ARM_REL32(X)
4780 // Cortex-A8 erratum-workaround stubs.
4782 // Stub used for conditional branches (which may be beyond +/-1MB away,
4783 // so we can't use a conditional branch to reach this stub).
4790 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4792 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4793 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4794 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4798 // Stub used for b.w and bl.w instructions.
4800 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4802 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4805 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4807 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4810 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4811 // instruction (which switches to ARM mode) to point to this stub. Jump to
4812 // the real destination using an ARM-mode branch.
4813 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4815 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4818 // Stub used to provide an interworking for R_ARM_V4BX relocation
4819 // (bx r[n] instruction).
4820 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4822 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4823 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4824 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4827 // Fill in the stub template look-up table. Stub templates are constructed
4828 // per instance of Stub_factory for fast look-up without locking
4829 // in a thread-enabled environment.
4831 this->stub_templates_[arm_stub_none] =
4832 new Stub_template(arm_stub_none, NULL, 0);
4834 #define DEF_STUB(x) \
4838 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4839 Stub_type type = arm_stub_##x; \
4840 this->stub_templates_[type] = \
4841 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4849 // Stub_table methods.
4851 // Remove all Cortex-A8 stub.
4853 template<bool big_endian>
4855 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4857 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4858 p != this->cortex_a8_stubs_.end();
4861 this->cortex_a8_stubs_.clear();
4864 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4866 template<bool big_endian>
4868 Stub_table<big_endian>::relocate_stub(
4870 const Relocate_info<32, big_endian>* relinfo,
4871 Target_arm<big_endian>* arm_target,
4872 Output_section* output_section,
4873 unsigned char* view,
4874 Arm_address address,
4875 section_size_type view_size)
4877 const Stub_template* stub_template = stub->stub_template();
4878 if (stub_template->reloc_count() != 0)
4880 // Adjust view to cover the stub only.
4881 section_size_type offset = stub->offset();
4882 section_size_type stub_size = stub_template->size();
4883 gold_assert(offset + stub_size <= view_size);
4885 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4886 address + offset, stub_size);
4890 // Relocate all stubs in this stub table.
4892 template<bool big_endian>
4894 Stub_table<big_endian>::relocate_stubs(
4895 const Relocate_info<32, big_endian>* relinfo,
4896 Target_arm<big_endian>* arm_target,
4897 Output_section* output_section,
4898 unsigned char* view,
4899 Arm_address address,
4900 section_size_type view_size)
4902 // If we are passed a view bigger than the stub table's. we need to
4904 gold_assert(address == this->address()
4906 == static_cast<section_size_type>(this->data_size())));
4908 // Relocate all relocation stubs.
4909 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4910 p != this->reloc_stubs_.end();
4912 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4913 address, view_size);
4915 // Relocate all Cortex-A8 stubs.
4916 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4917 p != this->cortex_a8_stubs_.end();
4919 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4920 address, view_size);
4922 // Relocate all ARM V4BX stubs.
4923 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4924 p != this->arm_v4bx_stubs_.end();
4928 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4929 address, view_size);
4933 // Write out the stubs to file.
4935 template<bool big_endian>
4937 Stub_table<big_endian>::do_write(Output_file* of)
4939 off_t offset = this->offset();
4940 const section_size_type oview_size =
4941 convert_to_section_size_type(this->data_size());
4942 unsigned char* const oview = of->get_output_view(offset, oview_size);
4944 // Write relocation stubs.
4945 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4946 p != this->reloc_stubs_.end();
4949 Reloc_stub* stub = p->second;
4950 Arm_address address = this->address() + stub->offset();
4952 == align_address(address,
4953 stub->stub_template()->alignment()));
4954 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4958 // Write Cortex-A8 stubs.
4959 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4960 p != this->cortex_a8_stubs_.end();
4963 Cortex_a8_stub* stub = p->second;
4964 Arm_address address = this->address() + stub->offset();
4966 == align_address(address,
4967 stub->stub_template()->alignment()));
4968 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4972 // Write ARM V4BX relocation stubs.
4973 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4974 p != this->arm_v4bx_stubs_.end();
4980 Arm_address address = this->address() + (*p)->offset();
4982 == align_address(address,
4983 (*p)->stub_template()->alignment()));
4984 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4988 of->write_output_view(this->offset(), oview_size, oview);
4991 // Update the data size and address alignment of the stub table at the end
4992 // of a relaxation pass. Return true if either the data size or the
4993 // alignment changed in this relaxation pass.
4995 template<bool big_endian>
4997 Stub_table<big_endian>::update_data_size_and_addralign()
4999 // Go over all stubs in table to compute data size and address alignment.
5000 off_t size = this->reloc_stubs_size_;
5001 unsigned addralign = this->reloc_stubs_addralign_;
5003 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5004 p != this->cortex_a8_stubs_.end();
5007 const Stub_template* stub_template = p->second->stub_template();
5008 addralign = std::max(addralign, stub_template->alignment());
5009 size = (align_address(size, stub_template->alignment())
5010 + stub_template->size());
5013 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5014 p != this->arm_v4bx_stubs_.end();
5020 const Stub_template* stub_template = (*p)->stub_template();
5021 addralign = std::max(addralign, stub_template->alignment());
5022 size = (align_address(size, stub_template->alignment())
5023 + stub_template->size());
5026 // Check if either data size or alignment changed in this pass.
5027 // Update prev_data_size_ and prev_addralign_. These will be used
5028 // as the current data size and address alignment for the next pass.
5029 bool changed = size != this->prev_data_size_;
5030 this->prev_data_size_ = size;
5032 if (addralign != this->prev_addralign_)
5034 this->prev_addralign_ = addralign;
5039 // Finalize the stubs. This sets the offsets of the stubs within the stub
5040 // table. It also marks all input sections needing Cortex-A8 workaround.
5042 template<bool big_endian>
5044 Stub_table<big_endian>::finalize_stubs()
5046 off_t off = this->reloc_stubs_size_;
5047 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5048 p != this->cortex_a8_stubs_.end();
5051 Cortex_a8_stub* stub = p->second;
5052 const Stub_template* stub_template = stub->stub_template();
5053 uint64_t stub_addralign = stub_template->alignment();
5054 off = align_address(off, stub_addralign);
5055 stub->set_offset(off);
5056 off += stub_template->size();
5058 // Mark input section so that we can determine later if a code section
5059 // needs the Cortex-A8 workaround quickly.
5060 Arm_relobj<big_endian>* arm_relobj =
5061 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5062 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5065 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5066 p != this->arm_v4bx_stubs_.end();
5072 const Stub_template* stub_template = (*p)->stub_template();
5073 uint64_t stub_addralign = stub_template->alignment();
5074 off = align_address(off, stub_addralign);
5075 (*p)->set_offset(off);
5076 off += stub_template->size();
5079 gold_assert(off <= this->prev_data_size_);
5082 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5083 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5084 // of the address range seen by the linker.
5086 template<bool big_endian>
5088 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5089 Target_arm<big_endian>* arm_target,
5090 unsigned char* view,
5091 Arm_address view_address,
5092 section_size_type view_size)
5094 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5095 for (Cortex_a8_stub_list::const_iterator p =
5096 this->cortex_a8_stubs_.lower_bound(view_address);
5097 ((p != this->cortex_a8_stubs_.end())
5098 && (p->first < (view_address + view_size)));
5101 // We do not store the THUMB bit in the LSB of either the branch address
5102 // or the stub offset. There is no need to strip the LSB.
5103 Arm_address branch_address = p->first;
5104 const Cortex_a8_stub* stub = p->second;
5105 Arm_address stub_address = this->address() + stub->offset();
5107 // Offset of the branch instruction relative to this view.
5108 section_size_type offset =
5109 convert_to_section_size_type(branch_address - view_address);
5110 gold_assert((offset + 4) <= view_size);
5112 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5113 view + offset, branch_address);
5117 // Arm_input_section methods.
5119 // Initialize an Arm_input_section.
5121 template<bool big_endian>
5123 Arm_input_section<big_endian>::init()
5125 Relobj* relobj = this->relobj();
5126 unsigned int shndx = this->shndx();
5128 // We have to cache original size, alignment and contents to avoid locking
5129 // the original file.
5130 this->original_addralign_ =
5131 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5133 // This is not efficient but we expect only a small number of relaxed
5134 // input sections for stubs.
5135 section_size_type section_size;
5136 const unsigned char* section_contents =
5137 relobj->section_contents(shndx, §ion_size, false);
5138 this->original_size_ =
5139 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5141 gold_assert(this->original_contents_ == NULL);
5142 this->original_contents_ = new unsigned char[section_size];
5143 memcpy(this->original_contents_, section_contents, section_size);
5145 // We want to make this look like the original input section after
5146 // output sections are finalized.
5147 Output_section* os = relobj->output_section(shndx);
5148 off_t offset = relobj->output_section_offset(shndx);
5149 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5150 this->set_address(os->address() + offset);
5151 this->set_file_offset(os->offset() + offset);
5153 this->set_current_data_size(this->original_size_);
5154 this->finalize_data_size();
5157 template<bool big_endian>
5159 Arm_input_section<big_endian>::do_write(Output_file* of)
5161 // We have to write out the original section content.
5162 gold_assert(this->original_contents_ != NULL);
5163 of->write(this->offset(), this->original_contents_,
5164 this->original_size_);
5166 // If this owns a stub table and it is not empty, write it.
5167 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5168 this->stub_table_->write(of);
5171 // Finalize data size.
5173 template<bool big_endian>
5175 Arm_input_section<big_endian>::set_final_data_size()
5177 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5179 if (this->is_stub_table_owner())
5181 this->stub_table_->finalize_data_size();
5182 off = align_address(off, this->stub_table_->addralign());
5183 off += this->stub_table_->data_size();
5185 this->set_data_size(off);
5188 // Reset address and file offset.
5190 template<bool big_endian>
5192 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5194 // Size of the original input section contents.
5195 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5197 // If this is a stub table owner, account for the stub table size.
5198 if (this->is_stub_table_owner())
5200 Stub_table<big_endian>* stub_table = this->stub_table_;
5202 // Reset the stub table's address and file offset. The
5203 // current data size for child will be updated after that.
5204 stub_table_->reset_address_and_file_offset();
5205 off = align_address(off, stub_table_->addralign());
5206 off += stub_table->current_data_size();
5209 this->set_current_data_size(off);
5212 // Arm_exidx_cantunwind methods.
5214 // Write this to Output file OF for a fixed endianness.
5216 template<bool big_endian>
5218 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5220 off_t offset = this->offset();
5221 const section_size_type oview_size = 8;
5222 unsigned char* const oview = of->get_output_view(offset, oview_size);
5224 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5225 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5227 Output_section* os = this->relobj_->output_section(this->shndx_);
5228 gold_assert(os != NULL);
5230 Arm_relobj<big_endian>* arm_relobj =
5231 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5232 Arm_address output_offset =
5233 arm_relobj->get_output_section_offset(this->shndx_);
5234 Arm_address section_start;
5235 section_size_type section_size;
5237 // Find out the end of the text section referred by this.
5238 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5240 section_start = os->address() + output_offset;
5241 const Arm_exidx_input_section* exidx_input_section =
5242 arm_relobj->exidx_input_section_by_link(this->shndx_);
5243 gold_assert(exidx_input_section != NULL);
5245 convert_to_section_size_type(exidx_input_section->text_size());
5249 // Currently this only happens for a relaxed section.
5250 const Output_relaxed_input_section* poris =
5251 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5252 gold_assert(poris != NULL);
5253 section_start = poris->address();
5254 section_size = convert_to_section_size_type(poris->data_size());
5257 // We always append this to the end of an EXIDX section.
5258 Arm_address output_address = section_start + section_size;
5260 // Write out the entry. The first word either points to the beginning
5261 // or after the end of a text section. The second word is the special
5262 // EXIDX_CANTUNWIND value.
5263 uint32_t prel31_offset = output_address - this->address();
5264 if (utils::has_overflow<31>(offset))
5265 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5266 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5267 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5269 of->write_output_view(this->offset(), oview_size, oview);
5272 // Arm_exidx_merged_section methods.
5274 // Constructor for Arm_exidx_merged_section.
5275 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5276 // SECTION_OFFSET_MAP points to a section offset map describing how
5277 // parts of the input section are mapped to output. DELETED_BYTES is
5278 // the number of bytes deleted from the EXIDX input section.
5280 Arm_exidx_merged_section::Arm_exidx_merged_section(
5281 const Arm_exidx_input_section& exidx_input_section,
5282 const Arm_exidx_section_offset_map& section_offset_map,
5283 uint32_t deleted_bytes)
5284 : Output_relaxed_input_section(exidx_input_section.relobj(),
5285 exidx_input_section.shndx(),
5286 exidx_input_section.addralign()),
5287 exidx_input_section_(exidx_input_section),
5288 section_offset_map_(section_offset_map)
5290 // If we retain or discard the whole EXIDX input section, we would
5292 gold_assert(deleted_bytes != 0
5293 && deleted_bytes != this->exidx_input_section_.size());
5295 // Fix size here so that we do not need to implement set_final_data_size.
5296 uint32_t size = exidx_input_section.size() - deleted_bytes;
5297 this->set_data_size(size);
5298 this->fix_data_size();
5300 // Allocate buffer for section contents and build contents.
5301 this->section_contents_ = new unsigned char[size];
5304 // Build the contents of a merged EXIDX output section.
5307 Arm_exidx_merged_section::build_contents(
5308 const unsigned char* original_contents,
5309 section_size_type original_size)
5311 // Go over spans of input offsets and write only those that are not
5313 section_offset_type in_start = 0;
5314 section_offset_type out_start = 0;
5315 section_offset_type in_max =
5316 convert_types<section_offset_type>(original_size);
5317 section_offset_type out_max =
5318 convert_types<section_offset_type>(this->data_size());
5319 for (Arm_exidx_section_offset_map::const_iterator p =
5320 this->section_offset_map_.begin();
5321 p != this->section_offset_map_.end();
5324 section_offset_type in_end = p->first;
5325 gold_assert(in_end >= in_start);
5326 section_offset_type out_end = p->second;
5327 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5330 size_t out_chunk_size =
5331 convert_types<size_t>(out_end - out_start + 1);
5333 gold_assert(out_chunk_size == in_chunk_size
5334 && in_end < in_max && out_end < out_max);
5336 memcpy(this->section_contents_ + out_start,
5337 original_contents + in_start,
5339 out_start += out_chunk_size;
5341 in_start += in_chunk_size;
5345 // Given an input OBJECT, an input section index SHNDX within that
5346 // object, and an OFFSET relative to the start of that input
5347 // section, return whether or not the corresponding offset within
5348 // the output section is known. If this function returns true, it
5349 // sets *POUTPUT to the output offset. The value -1 indicates that
5350 // this input offset is being discarded.
5353 Arm_exidx_merged_section::do_output_offset(
5354 const Relobj* relobj,
5356 section_offset_type offset,
5357 section_offset_type* poutput) const
5359 // We only handle offsets for the original EXIDX input section.
5360 if (relobj != this->exidx_input_section_.relobj()
5361 || shndx != this->exidx_input_section_.shndx())
5364 section_offset_type section_size =
5365 convert_types<section_offset_type>(this->exidx_input_section_.size());
5366 if (offset < 0 || offset >= section_size)
5367 // Input offset is out of valid range.
5371 // We need to look up the section offset map to determine the output
5372 // offset. Find the reference point in map that is first offset
5373 // bigger than or equal to this offset.
5374 Arm_exidx_section_offset_map::const_iterator p =
5375 this->section_offset_map_.lower_bound(offset);
5377 // The section offset maps are build such that this should not happen if
5378 // input offset is in the valid range.
5379 gold_assert(p != this->section_offset_map_.end());
5381 // We need to check if this is dropped.
5382 section_offset_type ref = p->first;
5383 section_offset_type mapped_ref = p->second;
5385 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5386 // Offset is present in output.
5387 *poutput = mapped_ref + (offset - ref);
5389 // Offset is discarded owing to EXIDX entry merging.
5396 // Write this to output file OF.
5399 Arm_exidx_merged_section::do_write(Output_file* of)
5401 off_t offset = this->offset();
5402 const section_size_type oview_size = this->data_size();
5403 unsigned char* const oview = of->get_output_view(offset, oview_size);
5405 Output_section* os = this->relobj()->output_section(this->shndx());
5406 gold_assert(os != NULL);
5408 memcpy(oview, this->section_contents_, oview_size);
5409 of->write_output_view(this->offset(), oview_size, oview);
5412 // Arm_exidx_fixup methods.
5414 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5415 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5416 // points to the end of the last seen EXIDX section.
5419 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5421 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5422 && this->last_input_section_ != NULL)
5424 Relobj* relobj = this->last_input_section_->relobj();
5425 unsigned int text_shndx = this->last_input_section_->link();
5426 Arm_exidx_cantunwind* cantunwind =
5427 new Arm_exidx_cantunwind(relobj, text_shndx);
5428 this->exidx_output_section_->add_output_section_data(cantunwind);
5429 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5433 // Process an EXIDX section entry in input. Return whether this entry
5434 // can be deleted in the output. SECOND_WORD in the second word of the
5438 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5441 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5443 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5444 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5445 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5447 else if ((second_word & 0x80000000) != 0)
5449 // Inlined unwinding data. Merge if equal to previous.
5450 delete_entry = (merge_exidx_entries_
5451 && this->last_unwind_type_ == UT_INLINED_ENTRY
5452 && this->last_inlined_entry_ == second_word);
5453 this->last_unwind_type_ = UT_INLINED_ENTRY;
5454 this->last_inlined_entry_ = second_word;
5458 // Normal table entry. In theory we could merge these too,
5459 // but duplicate entries are likely to be much less common.
5460 delete_entry = false;
5461 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5463 return delete_entry;
5466 // Update the current section offset map during EXIDX section fix-up.
5467 // If there is no map, create one. INPUT_OFFSET is the offset of a
5468 // reference point, DELETED_BYTES is the number of deleted by in the
5469 // section so far. If DELETE_ENTRY is true, the reference point and
5470 // all offsets after the previous reference point are discarded.
5473 Arm_exidx_fixup::update_offset_map(
5474 section_offset_type input_offset,
5475 section_size_type deleted_bytes,
5478 if (this->section_offset_map_ == NULL)
5479 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5480 section_offset_type output_offset;
5482 output_offset = Arm_exidx_input_section::invalid_offset;
5484 output_offset = input_offset - deleted_bytes;
5485 (*this->section_offset_map_)[input_offset] = output_offset;
5488 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5489 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5490 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5491 // If some entries are merged, also store a pointer to a newly created
5492 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5493 // owns the map and is responsible for releasing it after use.
5495 template<bool big_endian>
5497 Arm_exidx_fixup::process_exidx_section(
5498 const Arm_exidx_input_section* exidx_input_section,
5499 const unsigned char* section_contents,
5500 section_size_type section_size,
5501 Arm_exidx_section_offset_map** psection_offset_map)
5503 Relobj* relobj = exidx_input_section->relobj();
5504 unsigned shndx = exidx_input_section->shndx();
5506 if ((section_size % 8) != 0)
5508 // Something is wrong with this section. Better not touch it.
5509 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5510 relobj->name().c_str(), shndx);
5511 this->last_input_section_ = exidx_input_section;
5512 this->last_unwind_type_ = UT_NONE;
5516 uint32_t deleted_bytes = 0;
5517 bool prev_delete_entry = false;
5518 gold_assert(this->section_offset_map_ == NULL);
5520 for (section_size_type i = 0; i < section_size; i += 8)
5522 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5524 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5525 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5527 bool delete_entry = this->process_exidx_entry(second_word);
5529 // Entry deletion causes changes in output offsets. We use a std::map
5530 // to record these. And entry (x, y) means input offset x
5531 // is mapped to output offset y. If y is invalid_offset, then x is
5532 // dropped in the output. Because of the way std::map::lower_bound
5533 // works, we record the last offset in a region w.r.t to keeping or
5534 // dropping. If there is no entry (x0, y0) for an input offset x0,
5535 // the output offset y0 of it is determined by the output offset y1 of
5536 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5537 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5539 if (delete_entry != prev_delete_entry && i != 0)
5540 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5542 // Update total deleted bytes for this entry.
5546 prev_delete_entry = delete_entry;
5549 // If section offset map is not NULL, make an entry for the end of
5551 if (this->section_offset_map_ != NULL)
5552 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5554 *psection_offset_map = this->section_offset_map_;
5555 this->section_offset_map_ = NULL;
5556 this->last_input_section_ = exidx_input_section;
5558 // Set the first output text section so that we can link the EXIDX output
5559 // section to it. Ignore any EXIDX input section that is completely merged.
5560 if (this->first_output_text_section_ == NULL
5561 && deleted_bytes != section_size)
5563 unsigned int link = exidx_input_section->link();
5564 Output_section* os = relobj->output_section(link);
5565 gold_assert(os != NULL);
5566 this->first_output_text_section_ = os;
5569 return deleted_bytes;
5572 // Arm_output_section methods.
5574 // Create a stub group for input sections from BEGIN to END. OWNER
5575 // points to the input section to be the owner a new stub table.
5577 template<bool big_endian>
5579 Arm_output_section<big_endian>::create_stub_group(
5580 Input_section_list::const_iterator begin,
5581 Input_section_list::const_iterator end,
5582 Input_section_list::const_iterator owner,
5583 Target_arm<big_endian>* target,
5584 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5587 // We use a different kind of relaxed section in an EXIDX section.
5588 // The static casting from Output_relaxed_input_section to
5589 // Arm_input_section is invalid in an EXIDX section. We are okay
5590 // because we should not be calling this for an EXIDX section.
5591 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5593 // Currently we convert ordinary input sections into relaxed sections only
5594 // at this point but we may want to support creating relaxed input section
5595 // very early. So we check here to see if owner is already a relaxed
5598 Arm_input_section<big_endian>* arm_input_section;
5599 if (owner->is_relaxed_input_section())
5602 Arm_input_section<big_endian>::as_arm_input_section(
5603 owner->relaxed_input_section());
5607 gold_assert(owner->is_input_section());
5608 // Create a new relaxed input section. We need to lock the original
5610 Task_lock_obj<Object> tl(task, owner->relobj());
5612 target->new_arm_input_section(owner->relobj(), owner->shndx());
5613 new_relaxed_sections->push_back(arm_input_section);
5616 // Create a stub table.
5617 Stub_table<big_endian>* stub_table =
5618 target->new_stub_table(arm_input_section);
5620 arm_input_section->set_stub_table(stub_table);
5622 Input_section_list::const_iterator p = begin;
5623 Input_section_list::const_iterator prev_p;
5625 // Look for input sections or relaxed input sections in [begin ... end].
5628 if (p->is_input_section() || p->is_relaxed_input_section())
5630 // The stub table information for input sections live
5631 // in their objects.
5632 Arm_relobj<big_endian>* arm_relobj =
5633 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5634 arm_relobj->set_stub_table(p->shndx(), stub_table);
5638 while (prev_p != end);
5641 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5642 // of stub groups. We grow a stub group by adding input section until the
5643 // size is just below GROUP_SIZE. The last input section will be converted
5644 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5645 // input section after the stub table, effectively double the group size.
5647 // This is similar to the group_sections() function in elf32-arm.c but is
5648 // implemented differently.
5650 template<bool big_endian>
5652 Arm_output_section<big_endian>::group_sections(
5653 section_size_type group_size,
5654 bool stubs_always_after_branch,
5655 Target_arm<big_endian>* target,
5658 // We only care about sections containing code.
5659 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5662 // States for grouping.
5665 // No group is being built.
5667 // A group is being built but the stub table is not found yet.
5668 // We keep group a stub group until the size is just under GROUP_SIZE.
5669 // The last input section in the group will be used as the stub table.
5670 FINDING_STUB_SECTION,
5671 // A group is being built and we have already found a stub table.
5672 // We enter this state to grow a stub group by adding input section
5673 // after the stub table. This effectively doubles the group size.
5677 // Any newly created relaxed sections are stored here.
5678 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5680 State state = NO_GROUP;
5681 section_size_type off = 0;
5682 section_size_type group_begin_offset = 0;
5683 section_size_type group_end_offset = 0;
5684 section_size_type stub_table_end_offset = 0;
5685 Input_section_list::const_iterator group_begin =
5686 this->input_sections().end();
5687 Input_section_list::const_iterator stub_table =
5688 this->input_sections().end();
5689 Input_section_list::const_iterator group_end = this->input_sections().end();
5690 for (Input_section_list::const_iterator p = this->input_sections().begin();
5691 p != this->input_sections().end();
5694 section_size_type section_begin_offset =
5695 align_address(off, p->addralign());
5696 section_size_type section_end_offset =
5697 section_begin_offset + p->data_size();
5699 // Check to see if we should group the previously seen sections.
5705 case FINDING_STUB_SECTION:
5706 // Adding this section makes the group larger than GROUP_SIZE.
5707 if (section_end_offset - group_begin_offset >= group_size)
5709 if (stubs_always_after_branch)
5711 gold_assert(group_end != this->input_sections().end());
5712 this->create_stub_group(group_begin, group_end, group_end,
5713 target, &new_relaxed_sections,
5719 // But wait, there's more! Input sections up to
5720 // stub_group_size bytes after the stub table can be
5721 // handled by it too.
5722 state = HAS_STUB_SECTION;
5723 stub_table = group_end;
5724 stub_table_end_offset = group_end_offset;
5729 case HAS_STUB_SECTION:
5730 // Adding this section makes the post stub-section group larger
5732 if (section_end_offset - stub_table_end_offset >= group_size)
5734 gold_assert(group_end != this->input_sections().end());
5735 this->create_stub_group(group_begin, group_end, stub_table,
5736 target, &new_relaxed_sections, task);
5745 // If we see an input section and currently there is no group, start
5746 // a new one. Skip any empty sections. We look at the data size
5747 // instead of calling p->relobj()->section_size() to avoid locking.
5748 if ((p->is_input_section() || p->is_relaxed_input_section())
5749 && (p->data_size() != 0))
5751 if (state == NO_GROUP)
5753 state = FINDING_STUB_SECTION;
5755 group_begin_offset = section_begin_offset;
5758 // Keep track of the last input section seen.
5760 group_end_offset = section_end_offset;
5763 off = section_end_offset;
5766 // Create a stub group for any ungrouped sections.
5767 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5769 gold_assert(group_end != this->input_sections().end());
5770 this->create_stub_group(group_begin, group_end,
5771 (state == FINDING_STUB_SECTION
5774 target, &new_relaxed_sections, task);
5777 // Convert input section into relaxed input section in a batch.
5778 if (!new_relaxed_sections.empty())
5779 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5781 // Update the section offsets
5782 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5784 Arm_relobj<big_endian>* arm_relobj =
5785 Arm_relobj<big_endian>::as_arm_relobj(
5786 new_relaxed_sections[i]->relobj());
5787 unsigned int shndx = new_relaxed_sections[i]->shndx();
5788 // Tell Arm_relobj that this input section is converted.
5789 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5793 // Append non empty text sections in this to LIST in ascending
5794 // order of their position in this.
5796 template<bool big_endian>
5798 Arm_output_section<big_endian>::append_text_sections_to_list(
5799 Text_section_list* list)
5801 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5803 for (Input_section_list::const_iterator p = this->input_sections().begin();
5804 p != this->input_sections().end();
5807 // We only care about plain or relaxed input sections. We also
5808 // ignore any merged sections.
5809 if (p->is_input_section() || p->is_relaxed_input_section())
5810 list->push_back(Text_section_list::value_type(p->relobj(),
5815 template<bool big_endian>
5817 Arm_output_section<big_endian>::fix_exidx_coverage(
5819 const Text_section_list& sorted_text_sections,
5820 Symbol_table* symtab,
5821 bool merge_exidx_entries,
5824 // We should only do this for the EXIDX output section.
5825 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5827 // We don't want the relaxation loop to undo these changes, so we discard
5828 // the current saved states and take another one after the fix-up.
5829 this->discard_states();
5831 // Remove all input sections.
5832 uint64_t address = this->address();
5833 typedef std::list<Output_section::Input_section> Input_section_list;
5834 Input_section_list input_sections;
5835 this->reset_address_and_file_offset();
5836 this->get_input_sections(address, std::string(""), &input_sections);
5838 if (!this->input_sections().empty())
5839 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5841 // Go through all the known input sections and record them.
5842 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5843 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5844 Section_id_hash> Text_to_exidx_map;
5845 Text_to_exidx_map text_to_exidx_map;
5846 for (Input_section_list::const_iterator p = input_sections.begin();
5847 p != input_sections.end();
5850 // This should never happen. At this point, we should only see
5851 // plain EXIDX input sections.
5852 gold_assert(!p->is_relaxed_input_section());
5853 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5856 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5858 // Go over the sorted text sections.
5859 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5860 Section_id_set processed_input_sections;
5861 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5862 p != sorted_text_sections.end();
5865 Relobj* relobj = p->first;
5866 unsigned int shndx = p->second;
5868 Arm_relobj<big_endian>* arm_relobj =
5869 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5870 const Arm_exidx_input_section* exidx_input_section =
5871 arm_relobj->exidx_input_section_by_link(shndx);
5873 // If this text section has no EXIDX section or if the EXIDX section
5874 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5875 // of the last seen EXIDX section.
5876 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5878 exidx_fixup.add_exidx_cantunwind_as_needed();
5882 Relobj* exidx_relobj = exidx_input_section->relobj();
5883 unsigned int exidx_shndx = exidx_input_section->shndx();
5884 Section_id sid(exidx_relobj, exidx_shndx);
5885 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5886 if (iter == text_to_exidx_map.end())
5888 // This is odd. We have not seen this EXIDX input section before.
5889 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5890 // issue a warning instead. We assume the user knows what he
5891 // or she is doing. Otherwise, this is an error.
5892 if (layout->script_options()->saw_sections_clause())
5893 gold_warning(_("unwinding may not work because EXIDX input section"
5894 " %u of %s is not in EXIDX output section"),
5895 exidx_shndx, exidx_relobj->name().c_str());
5897 gold_error(_("unwinding may not work because EXIDX input section"
5898 " %u of %s is not in EXIDX output section"),
5899 exidx_shndx, exidx_relobj->name().c_str());
5901 exidx_fixup.add_exidx_cantunwind_as_needed();
5905 // We need to access the contents of the EXIDX section, lock the
5907 Task_lock_obj<Object> tl(task, exidx_relobj);
5908 section_size_type exidx_size;
5909 const unsigned char* exidx_contents =
5910 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5912 // Fix up coverage and append input section to output data list.
5913 Arm_exidx_section_offset_map* section_offset_map = NULL;
5914 uint32_t deleted_bytes =
5915 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5918 §ion_offset_map);
5920 if (deleted_bytes == exidx_input_section->size())
5922 // The whole EXIDX section got merged. Remove it from output.
5923 gold_assert(section_offset_map == NULL);
5924 exidx_relobj->set_output_section(exidx_shndx, NULL);
5926 // All local symbols defined in this input section will be dropped.
5927 // We need to adjust output local symbol count.
5928 arm_relobj->set_output_local_symbol_count_needs_update();
5930 else if (deleted_bytes > 0)
5932 // Some entries are merged. We need to convert this EXIDX input
5933 // section into a relaxed section.
5934 gold_assert(section_offset_map != NULL);
5936 Arm_exidx_merged_section* merged_section =
5937 new Arm_exidx_merged_section(*exidx_input_section,
5938 *section_offset_map, deleted_bytes);
5939 merged_section->build_contents(exidx_contents, exidx_size);
5941 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5942 this->add_relaxed_input_section(layout, merged_section, secname);
5943 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5945 // All local symbols defined in discarded portions of this input
5946 // section will be dropped. We need to adjust output local symbol
5948 arm_relobj->set_output_local_symbol_count_needs_update();
5952 // Just add back the EXIDX input section.
5953 gold_assert(section_offset_map == NULL);
5954 const Output_section::Input_section* pis = iter->second;
5955 gold_assert(pis->is_input_section());
5956 this->add_script_input_section(*pis);
5959 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5962 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5963 exidx_fixup.add_exidx_cantunwind_as_needed();
5965 // Remove any known EXIDX input sections that are not processed.
5966 for (Input_section_list::const_iterator p = input_sections.begin();
5967 p != input_sections.end();
5970 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5971 == processed_input_sections.end())
5973 // We discard a known EXIDX section because its linked
5974 // text section has been folded by ICF. We also discard an
5975 // EXIDX section with error, the output does not matter in this
5976 // case. We do this to avoid triggering asserts.
5977 Arm_relobj<big_endian>* arm_relobj =
5978 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5979 const Arm_exidx_input_section* exidx_input_section =
5980 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5981 gold_assert(exidx_input_section != NULL);
5982 if (!exidx_input_section->has_errors())
5984 unsigned int text_shndx = exidx_input_section->link();
5985 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5988 // Remove this from link. We also need to recount the
5990 p->relobj()->set_output_section(p->shndx(), NULL);
5991 arm_relobj->set_output_local_symbol_count_needs_update();
5995 // Link exidx output section to the first seen output section and
5996 // set correct entry size.
5997 this->set_link_section(exidx_fixup.first_output_text_section());
5998 this->set_entsize(8);
6000 // Make changes permanent.
6001 this->save_states();
6002 this->set_section_offsets_need_adjustment();
6005 // Link EXIDX output sections to text output sections.
6007 template<bool big_endian>
6009 Arm_output_section<big_endian>::set_exidx_section_link()
6011 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6012 if (!this->input_sections().empty())
6014 Input_section_list::const_iterator p = this->input_sections().begin();
6015 Arm_relobj<big_endian>* arm_relobj =
6016 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6017 unsigned exidx_shndx = p->shndx();
6018 const Arm_exidx_input_section* exidx_input_section =
6019 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6020 gold_assert(exidx_input_section != NULL);
6021 unsigned int text_shndx = exidx_input_section->link();
6022 Output_section* os = arm_relobj->output_section(text_shndx);
6023 this->set_link_section(os);
6027 // Arm_relobj methods.
6029 // Determine if an input section is scannable for stub processing. SHDR is
6030 // the header of the section and SHNDX is the section index. OS is the output
6031 // section for the input section and SYMTAB is the global symbol table used to
6032 // look up ICF information.
6034 template<bool big_endian>
6036 Arm_relobj<big_endian>::section_is_scannable(
6037 const elfcpp::Shdr<32, big_endian>& shdr,
6039 const Output_section* os,
6040 const Symbol_table* symtab)
6042 // Skip any empty sections, unallocated sections or sections whose
6043 // type are not SHT_PROGBITS.
6044 if (shdr.get_sh_size() == 0
6045 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6046 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6049 // Skip any discarded or ICF'ed sections.
6050 if (os == NULL || symtab->is_section_folded(this, shndx))
6053 // If this requires special offset handling, check to see if it is
6054 // a relaxed section. If this is not, then it is a merged section that
6055 // we cannot handle.
6056 if (this->is_output_section_offset_invalid(shndx))
6058 const Output_relaxed_input_section* poris =
6059 os->find_relaxed_input_section(this, shndx);
6067 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6068 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6070 template<bool big_endian>
6072 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6073 const elfcpp::Shdr<32, big_endian>& shdr,
6074 const Relobj::Output_sections& out_sections,
6075 const Symbol_table* symtab,
6076 const unsigned char* pshdrs)
6078 unsigned int sh_type = shdr.get_sh_type();
6079 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6082 // Ignore empty section.
6083 off_t sh_size = shdr.get_sh_size();
6087 // Ignore reloc section with unexpected symbol table. The
6088 // error will be reported in the final link.
6089 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6092 unsigned int reloc_size;
6093 if (sh_type == elfcpp::SHT_REL)
6094 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6096 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6098 // Ignore reloc section with unexpected entsize or uneven size.
6099 // The error will be reported in the final link.
6100 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6103 // Ignore reloc section with bad info. This error will be
6104 // reported in the final link.
6105 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6106 if (index >= this->shnum())
6109 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6110 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6111 return this->section_is_scannable(text_shdr, index,
6112 out_sections[index], symtab);
6115 // Return the output address of either a plain input section or a relaxed
6116 // input section. SHNDX is the section index. We define and use this
6117 // instead of calling Output_section::output_address because that is slow
6118 // for large output.
6120 template<bool big_endian>
6122 Arm_relobj<big_endian>::simple_input_section_output_address(
6126 if (this->is_output_section_offset_invalid(shndx))
6128 const Output_relaxed_input_section* poris =
6129 os->find_relaxed_input_section(this, shndx);
6130 // We do not handle merged sections here.
6131 gold_assert(poris != NULL);
6132 return poris->address();
6135 return os->address() + this->get_output_section_offset(shndx);
6138 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6139 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6141 template<bool big_endian>
6143 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6144 const elfcpp::Shdr<32, big_endian>& shdr,
6147 const Symbol_table* symtab)
6149 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6152 // If the section does not cross any 4K-boundaries, it does not need to
6154 Arm_address address = this->simple_input_section_output_address(shndx, os);
6155 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6161 // Scan a section for Cortex-A8 workaround.
6163 template<bool big_endian>
6165 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6166 const elfcpp::Shdr<32, big_endian>& shdr,
6169 Target_arm<big_endian>* arm_target)
6171 // Look for the first mapping symbol in this section. It should be
6173 Mapping_symbol_position section_start(shndx, 0);
6174 typename Mapping_symbols_info::const_iterator p =
6175 this->mapping_symbols_info_.lower_bound(section_start);
6177 // There are no mapping symbols for this section. Treat it as a data-only
6178 // section. Issue a warning if section is marked as containing
6180 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6182 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6183 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6184 "erratum because it has no mapping symbols."),
6185 shndx, this->name().c_str());
6189 Arm_address output_address =
6190 this->simple_input_section_output_address(shndx, os);
6192 // Get the section contents.
6193 section_size_type input_view_size = 0;
6194 const unsigned char* input_view =
6195 this->section_contents(shndx, &input_view_size, false);
6197 // We need to go through the mapping symbols to determine what to
6198 // scan. There are two reasons. First, we should look at THUMB code and
6199 // THUMB code only. Second, we only want to look at the 4K-page boundary
6200 // to speed up the scanning.
6202 while (p != this->mapping_symbols_info_.end()
6203 && p->first.first == shndx)
6205 typename Mapping_symbols_info::const_iterator next =
6206 this->mapping_symbols_info_.upper_bound(p->first);
6208 // Only scan part of a section with THUMB code.
6209 if (p->second == 't')
6211 // Determine the end of this range.
6212 section_size_type span_start =
6213 convert_to_section_size_type(p->first.second);
6214 section_size_type span_end;
6215 if (next != this->mapping_symbols_info_.end()
6216 && next->first.first == shndx)
6217 span_end = convert_to_section_size_type(next->first.second);
6219 span_end = convert_to_section_size_type(shdr.get_sh_size());
6221 if (((span_start + output_address) & ~0xfffUL)
6222 != ((span_end + output_address - 1) & ~0xfffUL))
6224 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6225 span_start, span_end,
6235 // Scan relocations for stub generation.
6237 template<bool big_endian>
6239 Arm_relobj<big_endian>::scan_sections_for_stubs(
6240 Target_arm<big_endian>* arm_target,
6241 const Symbol_table* symtab,
6242 const Layout* layout)
6244 unsigned int shnum = this->shnum();
6245 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6247 // Read the section headers.
6248 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6252 // To speed up processing, we set up hash tables for fast lookup of
6253 // input offsets to output addresses.
6254 this->initialize_input_to_output_maps();
6256 const Relobj::Output_sections& out_sections(this->output_sections());
6258 Relocate_info<32, big_endian> relinfo;
6259 relinfo.symtab = symtab;
6260 relinfo.layout = layout;
6261 relinfo.object = this;
6263 // Do relocation stubs scanning.
6264 const unsigned char* p = pshdrs + shdr_size;
6265 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6267 const elfcpp::Shdr<32, big_endian> shdr(p);
6268 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6271 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6272 Arm_address output_offset = this->get_output_section_offset(index);
6273 Arm_address output_address;
6274 if (output_offset != invalid_address)
6275 output_address = out_sections[index]->address() + output_offset;
6278 // Currently this only happens for a relaxed section.
6279 const Output_relaxed_input_section* poris =
6280 out_sections[index]->find_relaxed_input_section(this, index);
6281 gold_assert(poris != NULL);
6282 output_address = poris->address();
6285 // Get the relocations.
6286 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6290 // Get the section contents. This does work for the case in which
6291 // we modify the contents of an input section. We need to pass the
6292 // output view under such circumstances.
6293 section_size_type input_view_size = 0;
6294 const unsigned char* input_view =
6295 this->section_contents(index, &input_view_size, false);
6297 relinfo.reloc_shndx = i;
6298 relinfo.data_shndx = index;
6299 unsigned int sh_type = shdr.get_sh_type();
6300 unsigned int reloc_size;
6301 if (sh_type == elfcpp::SHT_REL)
6302 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6304 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6306 Output_section* os = out_sections[index];
6307 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6308 shdr.get_sh_size() / reloc_size,
6310 output_offset == invalid_address,
6311 input_view, output_address,
6316 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6317 // after its relocation section, if there is one, is processed for
6318 // relocation stubs. Merging this loop with the one above would have been
6319 // complicated since we would have had to make sure that relocation stub
6320 // scanning is done first.
6321 if (arm_target->fix_cortex_a8())
6323 const unsigned char* p = pshdrs + shdr_size;
6324 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6326 const elfcpp::Shdr<32, big_endian> shdr(p);
6327 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6330 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6335 // After we've done the relocations, we release the hash tables,
6336 // since we no longer need them.
6337 this->free_input_to_output_maps();
6340 // Count the local symbols. The ARM backend needs to know if a symbol
6341 // is a THUMB function or not. For global symbols, it is easy because
6342 // the Symbol object keeps the ELF symbol type. For local symbol it is
6343 // harder because we cannot access this information. So we override the
6344 // do_count_local_symbol in parent and scan local symbols to mark
6345 // THUMB functions. This is not the most efficient way but I do not want to
6346 // slow down other ports by calling a per symbol target hook inside
6347 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6349 template<bool big_endian>
6351 Arm_relobj<big_endian>::do_count_local_symbols(
6352 Stringpool_template<char>* pool,
6353 Stringpool_template<char>* dynpool)
6355 // We need to fix-up the values of any local symbols whose type are
6358 // Ask parent to count the local symbols.
6359 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6360 const unsigned int loccount = this->local_symbol_count();
6364 // Initialize the thumb function bit-vector.
6365 std::vector<bool> empty_vector(loccount, false);
6366 this->local_symbol_is_thumb_function_.swap(empty_vector);
6368 // Read the symbol table section header.
6369 const unsigned int symtab_shndx = this->symtab_shndx();
6370 elfcpp::Shdr<32, big_endian>
6371 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6372 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6374 // Read the local symbols.
6375 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6376 gold_assert(loccount == symtabshdr.get_sh_info());
6377 off_t locsize = loccount * sym_size;
6378 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6379 locsize, true, true);
6381 // For mapping symbol processing, we need to read the symbol names.
6382 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6383 if (strtab_shndx >= this->shnum())
6385 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6389 elfcpp::Shdr<32, big_endian>
6390 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6391 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6393 this->error(_("symbol table name section has wrong type: %u"),
6394 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6397 const char* pnames =
6398 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6399 strtabshdr.get_sh_size(),
6402 // Loop over the local symbols and mark any local symbols pointing
6403 // to THUMB functions.
6405 // Skip the first dummy symbol.
6407 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6408 this->local_values();
6409 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6411 elfcpp::Sym<32, big_endian> sym(psyms);
6412 elfcpp::STT st_type = sym.get_st_type();
6413 Symbol_value<32>& lv((*plocal_values)[i]);
6414 Arm_address input_value = lv.input_value();
6416 // Check to see if this is a mapping symbol.
6417 const char* sym_name = pnames + sym.get_st_name();
6418 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6421 unsigned int input_shndx =
6422 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6423 gold_assert(is_ordinary);
6425 // Strip of LSB in case this is a THUMB symbol.
6426 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6427 this->mapping_symbols_info_[msp] = sym_name[1];
6430 if (st_type == elfcpp::STT_ARM_TFUNC
6431 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6433 // This is a THUMB function. Mark this and canonicalize the
6434 // symbol value by setting LSB.
6435 this->local_symbol_is_thumb_function_[i] = true;
6436 if ((input_value & 1) == 0)
6437 lv.set_input_value(input_value | 1);
6442 // Relocate sections.
6443 template<bool big_endian>
6445 Arm_relobj<big_endian>::do_relocate_sections(
6446 const Symbol_table* symtab,
6447 const Layout* layout,
6448 const unsigned char* pshdrs,
6450 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6452 // Call parent to relocate sections.
6453 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6454 pshdrs, of, pviews);
6456 // We do not generate stubs if doing a relocatable link.
6457 if (parameters->options().relocatable())
6460 // Relocate stub tables.
6461 unsigned int shnum = this->shnum();
6463 Target_arm<big_endian>* arm_target =
6464 Target_arm<big_endian>::default_target();
6466 Relocate_info<32, big_endian> relinfo;
6467 relinfo.symtab = symtab;
6468 relinfo.layout = layout;
6469 relinfo.object = this;
6471 for (unsigned int i = 1; i < shnum; ++i)
6473 Arm_input_section<big_endian>* arm_input_section =
6474 arm_target->find_arm_input_section(this, i);
6476 if (arm_input_section != NULL
6477 && arm_input_section->is_stub_table_owner()
6478 && !arm_input_section->stub_table()->empty())
6480 // We cannot discard a section if it owns a stub table.
6481 Output_section* os = this->output_section(i);
6482 gold_assert(os != NULL);
6484 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6485 relinfo.reloc_shdr = NULL;
6486 relinfo.data_shndx = i;
6487 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6489 gold_assert((*pviews)[i].view != NULL);
6491 // We are passed the output section view. Adjust it to cover the
6493 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6494 gold_assert((stub_table->address() >= (*pviews)[i].address)
6495 && ((stub_table->address() + stub_table->data_size())
6496 <= (*pviews)[i].address + (*pviews)[i].view_size));
6498 off_t offset = stub_table->address() - (*pviews)[i].address;
6499 unsigned char* view = (*pviews)[i].view + offset;
6500 Arm_address address = stub_table->address();
6501 section_size_type view_size = stub_table->data_size();
6503 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6507 // Apply Cortex A8 workaround if applicable.
6508 if (this->section_has_cortex_a8_workaround(i))
6510 unsigned char* view = (*pviews)[i].view;
6511 Arm_address view_address = (*pviews)[i].address;
6512 section_size_type view_size = (*pviews)[i].view_size;
6513 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6515 // Adjust view to cover section.
6516 Output_section* os = this->output_section(i);
6517 gold_assert(os != NULL);
6518 Arm_address section_address =
6519 this->simple_input_section_output_address(i, os);
6520 uint64_t section_size = this->section_size(i);
6522 gold_assert(section_address >= view_address
6523 && ((section_address + section_size)
6524 <= (view_address + view_size)));
6526 unsigned char* section_view = view + (section_address - view_address);
6528 // Apply the Cortex-A8 workaround to the output address range
6529 // corresponding to this input section.
6530 stub_table->apply_cortex_a8_workaround_to_address_range(
6539 // Find the linked text section of an EXIDX section by looking at the first
6540 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6541 // must be linked to its associated code section via the sh_link field of
6542 // its section header. However, some tools are broken and the link is not
6543 // always set. LD just drops such an EXIDX section silently, causing the
6544 // associated code not unwindabled. Here we try a little bit harder to
6545 // discover the linked code section.
6547 // PSHDR points to the section header of a relocation section of an EXIDX
6548 // section. If we can find a linked text section, return true and
6549 // store the text section index in the location PSHNDX. Otherwise
6552 template<bool big_endian>
6554 Arm_relobj<big_endian>::find_linked_text_section(
6555 const unsigned char* pshdr,
6556 const unsigned char* psyms,
6557 unsigned int* pshndx)
6559 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6561 // If there is no relocation, we cannot find the linked text section.
6563 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6564 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6566 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6567 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6569 // Get the relocations.
6570 const unsigned char* prelocs =
6571 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6573 // Find the REL31 relocation for the first word of the first EXIDX entry.
6574 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6576 Arm_address r_offset;
6577 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6578 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6580 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6581 r_info = reloc.get_r_info();
6582 r_offset = reloc.get_r_offset();
6586 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6587 r_info = reloc.get_r_info();
6588 r_offset = reloc.get_r_offset();
6591 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6592 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6595 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6597 || r_sym >= this->local_symbol_count()
6601 // This is the relocation for the first word of the first EXIDX entry.
6602 // We expect to see a local section symbol.
6603 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6604 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6605 if (sym.get_st_type() == elfcpp::STT_SECTION)
6609 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6610 gold_assert(is_ordinary);
6620 // Make an EXIDX input section object for an EXIDX section whose index is
6621 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6622 // is the section index of the linked text section.
6624 template<bool big_endian>
6626 Arm_relobj<big_endian>::make_exidx_input_section(
6628 const elfcpp::Shdr<32, big_endian>& shdr,
6629 unsigned int text_shndx,
6630 const elfcpp::Shdr<32, big_endian>& text_shdr)
6632 // Create an Arm_exidx_input_section object for this EXIDX section.
6633 Arm_exidx_input_section* exidx_input_section =
6634 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6635 shdr.get_sh_addralign(),
6636 text_shdr.get_sh_size());
6638 gold_assert(this->exidx_section_map_[shndx] == NULL);
6639 this->exidx_section_map_[shndx] = exidx_input_section;
6641 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6643 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6644 this->section_name(shndx).c_str(), shndx, text_shndx,
6645 this->name().c_str());
6646 exidx_input_section->set_has_errors();
6648 else if (this->exidx_section_map_[text_shndx] != NULL)
6650 unsigned other_exidx_shndx =
6651 this->exidx_section_map_[text_shndx]->shndx();
6652 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6654 this->section_name(shndx).c_str(), shndx,
6655 this->section_name(other_exidx_shndx).c_str(),
6656 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6657 text_shndx, this->name().c_str());
6658 exidx_input_section->set_has_errors();
6661 this->exidx_section_map_[text_shndx] = exidx_input_section;
6663 // Check section flags of text section.
6664 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6666 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6668 this->section_name(shndx).c_str(), shndx,
6669 this->section_name(text_shndx).c_str(), text_shndx,
6670 this->name().c_str());
6671 exidx_input_section->set_has_errors();
6673 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6674 // I would like to make this an error but currently ld just ignores
6676 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6678 this->section_name(shndx).c_str(), shndx,
6679 this->section_name(text_shndx).c_str(), text_shndx,
6680 this->name().c_str());
6683 // Read the symbol information.
6685 template<bool big_endian>
6687 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6689 // Call parent class to read symbol information.
6690 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6692 // If this input file is a binary file, it has no processor
6693 // specific flags and attributes section.
6694 Input_file::Format format = this->input_file()->format();
6695 if (format != Input_file::FORMAT_ELF)
6697 gold_assert(format == Input_file::FORMAT_BINARY);
6698 this->merge_flags_and_attributes_ = false;
6702 // Read processor-specific flags in ELF file header.
6703 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6704 elfcpp::Elf_sizes<32>::ehdr_size,
6706 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6707 this->processor_specific_flags_ = ehdr.get_e_flags();
6709 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6711 std::vector<unsigned int> deferred_exidx_sections;
6712 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6713 const unsigned char* pshdrs = sd->section_headers->data();
6714 const unsigned char* ps = pshdrs + shdr_size;
6715 bool must_merge_flags_and_attributes = false;
6716 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6718 elfcpp::Shdr<32, big_endian> shdr(ps);
6720 // Sometimes an object has no contents except the section name string
6721 // table and an empty symbol table with the undefined symbol. We
6722 // don't want to merge processor-specific flags from such an object.
6723 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6725 // Symbol table is not empty.
6726 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6727 elfcpp::Elf_sizes<32>::sym_size;
6728 if (shdr.get_sh_size() > sym_size)
6729 must_merge_flags_and_attributes = true;
6731 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6732 // If this is neither an empty symbol table nor a string table,
6734 must_merge_flags_and_attributes = true;
6736 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6738 gold_assert(this->attributes_section_data_ == NULL);
6739 section_offset_type section_offset = shdr.get_sh_offset();
6740 section_size_type section_size =
6741 convert_to_section_size_type(shdr.get_sh_size());
6742 const unsigned char* view =
6743 this->get_view(section_offset, section_size, true, false);
6744 this->attributes_section_data_ =
6745 new Attributes_section_data(view, section_size);
6747 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6749 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6750 if (text_shndx == elfcpp::SHN_UNDEF)
6751 deferred_exidx_sections.push_back(i);
6754 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6755 + text_shndx * shdr_size);
6756 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6758 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6759 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6760 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6761 this->section_name(i).c_str(), this->name().c_str());
6766 if (!must_merge_flags_and_attributes)
6768 gold_assert(deferred_exidx_sections.empty());
6769 this->merge_flags_and_attributes_ = false;
6773 // Some tools are broken and they do not set the link of EXIDX sections.
6774 // We look at the first relocation to figure out the linked sections.
6775 if (!deferred_exidx_sections.empty())
6777 // We need to go over the section headers again to find the mapping
6778 // from sections being relocated to their relocation sections. This is
6779 // a bit inefficient as we could do that in the loop above. However,
6780 // we do not expect any deferred EXIDX sections normally. So we do not
6781 // want to slow down the most common path.
6782 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6783 Reloc_map reloc_map;
6784 ps = pshdrs + shdr_size;
6785 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6787 elfcpp::Shdr<32, big_endian> shdr(ps);
6788 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6789 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6791 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6792 if (info_shndx >= this->shnum())
6793 gold_error(_("relocation section %u has invalid info %u"),
6795 Reloc_map::value_type value(info_shndx, i);
6796 std::pair<Reloc_map::iterator, bool> result =
6797 reloc_map.insert(value);
6799 gold_error(_("section %u has multiple relocation sections "
6801 info_shndx, i, reloc_map[info_shndx]);
6805 // Read the symbol table section header.
6806 const unsigned int symtab_shndx = this->symtab_shndx();
6807 elfcpp::Shdr<32, big_endian>
6808 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6809 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6811 // Read the local symbols.
6812 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6813 const unsigned int loccount = this->local_symbol_count();
6814 gold_assert(loccount == symtabshdr.get_sh_info());
6815 off_t locsize = loccount * sym_size;
6816 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6817 locsize, true, true);
6819 // Process the deferred EXIDX sections.
6820 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6822 unsigned int shndx = deferred_exidx_sections[i];
6823 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6824 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6825 Reloc_map::const_iterator it = reloc_map.find(shndx);
6826 if (it != reloc_map.end())
6827 find_linked_text_section(pshdrs + it->second * shdr_size,
6828 psyms, &text_shndx);
6829 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6830 + text_shndx * shdr_size);
6831 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6836 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6837 // sections for unwinding. These sections are referenced implicitly by
6838 // text sections linked in the section headers. If we ignore these implicit
6839 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6840 // will be garbage-collected incorrectly. Hence we override the same function
6841 // in the base class to handle these implicit references.
6843 template<bool big_endian>
6845 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6847 Read_relocs_data* rd)
6849 // First, call base class method to process relocations in this object.
6850 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6852 // If --gc-sections is not specified, there is nothing more to do.
6853 // This happens when --icf is used but --gc-sections is not.
6854 if (!parameters->options().gc_sections())
6857 unsigned int shnum = this->shnum();
6858 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6859 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6863 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6864 // to these from the linked text sections.
6865 const unsigned char* ps = pshdrs + shdr_size;
6866 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6868 elfcpp::Shdr<32, big_endian> shdr(ps);
6869 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6871 // Found an .ARM.exidx section, add it to the set of reachable
6872 // sections from its linked text section.
6873 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6874 symtab->gc()->add_reference(this, text_shndx, this, i);
6879 // Update output local symbol count. Owing to EXIDX entry merging, some local
6880 // symbols will be removed in output. Adjust output local symbol count
6881 // accordingly. We can only changed the static output local symbol count. It
6882 // is too late to change the dynamic symbols.
6884 template<bool big_endian>
6886 Arm_relobj<big_endian>::update_output_local_symbol_count()
6888 // Caller should check that this needs updating. We want caller checking
6889 // because output_local_symbol_count_needs_update() is most likely inlined.
6890 gold_assert(this->output_local_symbol_count_needs_update_);
6892 gold_assert(this->symtab_shndx() != -1U);
6893 if (this->symtab_shndx() == 0)
6895 // This object has no symbols. Weird but legal.
6899 // Read the symbol table section header.
6900 const unsigned int symtab_shndx = this->symtab_shndx();
6901 elfcpp::Shdr<32, big_endian>
6902 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6903 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6905 // Read the local symbols.
6906 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6907 const unsigned int loccount = this->local_symbol_count();
6908 gold_assert(loccount == symtabshdr.get_sh_info());
6909 off_t locsize = loccount * sym_size;
6910 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6911 locsize, true, true);
6913 // Loop over the local symbols.
6915 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6917 const Output_sections& out_sections(this->output_sections());
6918 unsigned int shnum = this->shnum();
6919 unsigned int count = 0;
6920 // Skip the first, dummy, symbol.
6922 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6924 elfcpp::Sym<32, big_endian> sym(psyms);
6926 Symbol_value<32>& lv((*this->local_values())[i]);
6928 // This local symbol was already discarded by do_count_local_symbols.
6929 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6933 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6938 Output_section* os = out_sections[shndx];
6940 // This local symbol no longer has an output section. Discard it.
6943 lv.set_no_output_symtab_entry();
6947 // Currently we only discard parts of EXIDX input sections.
6948 // We explicitly check for a merged EXIDX input section to avoid
6949 // calling Output_section_data::output_offset unless necessary.
6950 if ((this->get_output_section_offset(shndx) == invalid_address)
6951 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6953 section_offset_type output_offset =
6954 os->output_offset(this, shndx, lv.input_value());
6955 if (output_offset == -1)
6957 // This symbol is defined in a part of an EXIDX input section
6958 // that is discarded due to entry merging.
6959 lv.set_no_output_symtab_entry();
6968 this->set_output_local_symbol_count(count);
6969 this->output_local_symbol_count_needs_update_ = false;
6972 // Arm_dynobj methods.
6974 // Read the symbol information.
6976 template<bool big_endian>
6978 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6980 // Call parent class to read symbol information.
6981 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6983 // Read processor-specific flags in ELF file header.
6984 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6985 elfcpp::Elf_sizes<32>::ehdr_size,
6987 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6988 this->processor_specific_flags_ = ehdr.get_e_flags();
6990 // Read the attributes section if there is one.
6991 // We read from the end because gas seems to put it near the end of
6992 // the section headers.
6993 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6994 const unsigned char* ps =
6995 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6996 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6998 elfcpp::Shdr<32, big_endian> shdr(ps);
6999 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7001 section_offset_type section_offset = shdr.get_sh_offset();
7002 section_size_type section_size =
7003 convert_to_section_size_type(shdr.get_sh_size());
7004 const unsigned char* view =
7005 this->get_view(section_offset, section_size, true, false);
7006 this->attributes_section_data_ =
7007 new Attributes_section_data(view, section_size);
7013 // Stub_addend_reader methods.
7015 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7017 template<bool big_endian>
7018 elfcpp::Elf_types<32>::Elf_Swxword
7019 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7020 unsigned int r_type,
7021 const unsigned char* view,
7022 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7024 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7028 case elfcpp::R_ARM_CALL:
7029 case elfcpp::R_ARM_JUMP24:
7030 case elfcpp::R_ARM_PLT32:
7032 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7033 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7034 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7035 return utils::sign_extend<26>(val << 2);
7038 case elfcpp::R_ARM_THM_CALL:
7039 case elfcpp::R_ARM_THM_JUMP24:
7040 case elfcpp::R_ARM_THM_XPC22:
7042 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7043 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7044 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7045 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7046 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7049 case elfcpp::R_ARM_THM_JUMP19:
7051 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7052 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7053 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7054 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7055 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7063 // Arm_output_data_got methods.
7065 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7066 // The first one is initialized to be 1, which is the module index for
7067 // the main executable and the second one 0. A reloc of the type
7068 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7069 // be applied by gold. GSYM is a global symbol.
7071 template<bool big_endian>
7073 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7074 unsigned int got_type,
7077 if (gsym->has_got_offset(got_type))
7080 // We are doing a static link. Just mark it as belong to module 1,
7082 unsigned int got_offset = this->add_constant(1);
7083 gsym->set_got_offset(got_type, got_offset);
7084 got_offset = this->add_constant(0);
7085 this->static_relocs_.push_back(Static_reloc(got_offset,
7086 elfcpp::R_ARM_TLS_DTPOFF32,
7090 // Same as the above but for a local symbol.
7092 template<bool big_endian>
7094 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7095 unsigned int got_type,
7096 Sized_relobj_file<32, big_endian>* object,
7099 if (object->local_has_got_offset(index, got_type))
7102 // We are doing a static link. Just mark it as belong to module 1,
7104 unsigned int got_offset = this->add_constant(1);
7105 object->set_local_got_offset(index, got_type, got_offset);
7106 got_offset = this->add_constant(0);
7107 this->static_relocs_.push_back(Static_reloc(got_offset,
7108 elfcpp::R_ARM_TLS_DTPOFF32,
7112 template<bool big_endian>
7114 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7116 // Call parent to write out GOT.
7117 Output_data_got<32, big_endian>::do_write(of);
7119 // We are done if there is no fix up.
7120 if (this->static_relocs_.empty())
7123 gold_assert(parameters->doing_static_link());
7125 const off_t offset = this->offset();
7126 const section_size_type oview_size =
7127 convert_to_section_size_type(this->data_size());
7128 unsigned char* const oview = of->get_output_view(offset, oview_size);
7130 Output_segment* tls_segment = this->layout_->tls_segment();
7131 gold_assert(tls_segment != NULL);
7133 // The thread pointer $tp points to the TCB, which is followed by the
7134 // TLS. So we need to adjust $tp relative addressing by this amount.
7135 Arm_address aligned_tcb_size =
7136 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7138 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7140 Static_reloc& reloc(this->static_relocs_[i]);
7143 if (!reloc.symbol_is_global())
7145 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7146 const Symbol_value<32>* psymval =
7147 reloc.relobj()->local_symbol(reloc.index());
7149 // We are doing static linking. Issue an error and skip this
7150 // relocation if the symbol is undefined or in a discarded_section.
7152 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7153 if ((shndx == elfcpp::SHN_UNDEF)
7155 && shndx != elfcpp::SHN_UNDEF
7156 && !object->is_section_included(shndx)
7157 && !this->symbol_table_->is_section_folded(object, shndx)))
7159 gold_error(_("undefined or discarded local symbol %u from "
7160 " object %s in GOT"),
7161 reloc.index(), reloc.relobj()->name().c_str());
7165 value = psymval->value(object, 0);
7169 const Symbol* gsym = reloc.symbol();
7170 gold_assert(gsym != NULL);
7171 if (gsym->is_forwarder())
7172 gsym = this->symbol_table_->resolve_forwards(gsym);
7174 // We are doing static linking. Issue an error and skip this
7175 // relocation if the symbol is undefined or in a discarded_section
7176 // unless it is a weakly_undefined symbol.
7177 if ((gsym->is_defined_in_discarded_section()
7178 || gsym->is_undefined())
7179 && !gsym->is_weak_undefined())
7181 gold_error(_("undefined or discarded symbol %s in GOT"),
7186 if (!gsym->is_weak_undefined())
7188 const Sized_symbol<32>* sym =
7189 static_cast<const Sized_symbol<32>*>(gsym);
7190 value = sym->value();
7196 unsigned got_offset = reloc.got_offset();
7197 gold_assert(got_offset < oview_size);
7199 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7200 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7202 switch (reloc.r_type())
7204 case elfcpp::R_ARM_TLS_DTPOFF32:
7207 case elfcpp::R_ARM_TLS_TPOFF32:
7208 x = value + aligned_tcb_size;
7213 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7216 of->write_output_view(offset, oview_size, oview);
7219 // A class to handle the PLT data.
7221 template<bool big_endian>
7222 class Output_data_plt_arm : public Output_section_data
7225 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7228 Output_data_plt_arm(Layout*, Output_data_space*);
7230 // Add an entry to the PLT.
7232 add_entry(Symbol* gsym);
7234 // Return the .rel.plt section data.
7235 const Reloc_section*
7237 { return this->rel_; }
7239 // Return the number of PLT entries.
7242 { return this->count_; }
7244 // Return the offset of the first non-reserved PLT entry.
7246 first_plt_entry_offset()
7247 { return sizeof(first_plt_entry); }
7249 // Return the size of a PLT entry.
7251 get_plt_entry_size()
7252 { return sizeof(plt_entry); }
7256 do_adjust_output_section(Output_section* os);
7258 // Write to a map file.
7260 do_print_to_mapfile(Mapfile* mapfile) const
7261 { mapfile->print_output_data(this, _("** PLT")); }
7264 // Template for the first PLT entry.
7265 static const uint32_t first_plt_entry[5];
7267 // Template for subsequent PLT entries.
7268 static const uint32_t plt_entry[3];
7270 // Set the final size.
7272 set_final_data_size()
7274 this->set_data_size(sizeof(first_plt_entry)
7275 + this->count_ * sizeof(plt_entry));
7278 // Write out the PLT data.
7280 do_write(Output_file*);
7282 // The reloc section.
7283 Reloc_section* rel_;
7284 // The .got.plt section.
7285 Output_data_space* got_plt_;
7286 // The number of PLT entries.
7287 unsigned int count_;
7290 // Create the PLT section. The ordinary .got section is an argument,
7291 // since we need to refer to the start. We also create our own .got
7292 // section just for PLT entries.
7294 template<bool big_endian>
7295 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7296 Output_data_space* got_plt)
7297 : Output_section_data(4), got_plt_(got_plt), count_(0)
7299 this->rel_ = new Reloc_section(false);
7300 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7301 elfcpp::SHF_ALLOC, this->rel_,
7302 ORDER_DYNAMIC_PLT_RELOCS, false);
7305 template<bool big_endian>
7307 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7312 // Add an entry to the PLT.
7314 template<bool big_endian>
7316 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7318 gold_assert(!gsym->has_plt_offset());
7320 // Note that when setting the PLT offset we skip the initial
7321 // reserved PLT entry.
7322 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7323 + sizeof(first_plt_entry));
7327 section_offset_type got_offset = this->got_plt_->current_data_size();
7329 // Every PLT entry needs a GOT entry which points back to the PLT
7330 // entry (this will be changed by the dynamic linker, normally
7331 // lazily when the function is called).
7332 this->got_plt_->set_current_data_size(got_offset + 4);
7334 // Every PLT entry needs a reloc.
7335 gsym->set_needs_dynsym_entry();
7336 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7339 // Note that we don't need to save the symbol. The contents of the
7340 // PLT are independent of which symbols are used. The symbols only
7341 // appear in the relocations.
7345 // FIXME: This is not very flexible. Right now this has only been tested
7346 // on armv5te. If we are to support additional architecture features like
7347 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7349 // The first entry in the PLT.
7350 template<bool big_endian>
7351 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7353 0xe52de004, // str lr, [sp, #-4]!
7354 0xe59fe004, // ldr lr, [pc, #4]
7355 0xe08fe00e, // add lr, pc, lr
7356 0xe5bef008, // ldr pc, [lr, #8]!
7357 0x00000000, // &GOT[0] - .
7360 // Subsequent entries in the PLT.
7362 template<bool big_endian>
7363 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7365 0xe28fc600, // add ip, pc, #0xNN00000
7366 0xe28cca00, // add ip, ip, #0xNN000
7367 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7370 // Write out the PLT. This uses the hand-coded instructions above,
7371 // and adjusts them as needed. This is all specified by the arm ELF
7372 // Processor Supplement.
7374 template<bool big_endian>
7376 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7378 const off_t offset = this->offset();
7379 const section_size_type oview_size =
7380 convert_to_section_size_type(this->data_size());
7381 unsigned char* const oview = of->get_output_view(offset, oview_size);
7383 const off_t got_file_offset = this->got_plt_->offset();
7384 const section_size_type got_size =
7385 convert_to_section_size_type(this->got_plt_->data_size());
7386 unsigned char* const got_view = of->get_output_view(got_file_offset,
7388 unsigned char* pov = oview;
7390 Arm_address plt_address = this->address();
7391 Arm_address got_address = this->got_plt_->address();
7393 // Write first PLT entry. All but the last word are constants.
7394 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7395 / sizeof(plt_entry[0]));
7396 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7397 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7398 // Last word in first PLT entry is &GOT[0] - .
7399 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7400 got_address - (plt_address + 16));
7401 pov += sizeof(first_plt_entry);
7403 unsigned char* got_pov = got_view;
7405 memset(got_pov, 0, 12);
7408 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7409 unsigned int plt_offset = sizeof(first_plt_entry);
7410 unsigned int plt_rel_offset = 0;
7411 unsigned int got_offset = 12;
7412 const unsigned int count = this->count_;
7413 for (unsigned int i = 0;
7416 pov += sizeof(plt_entry),
7418 plt_offset += sizeof(plt_entry),
7419 plt_rel_offset += rel_size,
7422 // Set and adjust the PLT entry itself.
7423 int32_t offset = ((got_address + got_offset)
7424 - (plt_address + plt_offset + 8));
7426 gold_assert(offset >= 0 && offset < 0x0fffffff);
7427 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7428 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7429 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7430 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7431 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7432 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7434 // Set the entry in the GOT.
7435 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7438 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7439 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7441 of->write_output_view(offset, oview_size, oview);
7442 of->write_output_view(got_file_offset, got_size, got_view);
7445 // Create a PLT entry for a global symbol.
7447 template<bool big_endian>
7449 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7452 if (gsym->has_plt_offset())
7455 if (this->plt_ == NULL)
7457 // Create the GOT sections first.
7458 this->got_section(symtab, layout);
7460 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7461 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7463 | elfcpp::SHF_EXECINSTR),
7464 this->plt_, ORDER_PLT, false);
7466 this->plt_->add_entry(gsym);
7469 // Return the number of entries in the PLT.
7471 template<bool big_endian>
7473 Target_arm<big_endian>::plt_entry_count() const
7475 if (this->plt_ == NULL)
7477 return this->plt_->entry_count();
7480 // Return the offset of the first non-reserved PLT entry.
7482 template<bool big_endian>
7484 Target_arm<big_endian>::first_plt_entry_offset() const
7486 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7489 // Return the size of each PLT entry.
7491 template<bool big_endian>
7493 Target_arm<big_endian>::plt_entry_size() const
7495 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7498 // Get the section to use for TLS_DESC relocations.
7500 template<bool big_endian>
7501 typename Target_arm<big_endian>::Reloc_section*
7502 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7504 return this->plt_section()->rel_tls_desc(layout);
7507 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7509 template<bool big_endian>
7511 Target_arm<big_endian>::define_tls_base_symbol(
7512 Symbol_table* symtab,
7515 if (this->tls_base_symbol_defined_)
7518 Output_segment* tls_segment = layout->tls_segment();
7519 if (tls_segment != NULL)
7521 bool is_exec = parameters->options().output_is_executable();
7522 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7523 Symbol_table::PREDEFINED,
7527 elfcpp::STV_HIDDEN, 0,
7529 ? Symbol::SEGMENT_END
7530 : Symbol::SEGMENT_START),
7533 this->tls_base_symbol_defined_ = true;
7536 // Create a GOT entry for the TLS module index.
7538 template<bool big_endian>
7540 Target_arm<big_endian>::got_mod_index_entry(
7541 Symbol_table* symtab,
7543 Sized_relobj_file<32, big_endian>* object)
7545 if (this->got_mod_index_offset_ == -1U)
7547 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7548 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7549 unsigned int got_offset;
7550 if (!parameters->doing_static_link())
7552 got_offset = got->add_constant(0);
7553 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7554 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7559 // We are doing a static link. Just mark it as belong to module 1,
7561 got_offset = got->add_constant(1);
7564 got->add_constant(0);
7565 this->got_mod_index_offset_ = got_offset;
7567 return this->got_mod_index_offset_;
7570 // Optimize the TLS relocation type based on what we know about the
7571 // symbol. IS_FINAL is true if the final address of this symbol is
7572 // known at link time.
7574 template<bool big_endian>
7575 tls::Tls_optimization
7576 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7578 // FIXME: Currently we do not do any TLS optimization.
7579 return tls::TLSOPT_NONE;
7582 // Get the Reference_flags for a particular relocation.
7584 template<bool big_endian>
7586 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7590 case elfcpp::R_ARM_NONE:
7591 case elfcpp::R_ARM_V4BX:
7592 case elfcpp::R_ARM_GNU_VTENTRY:
7593 case elfcpp::R_ARM_GNU_VTINHERIT:
7594 // No symbol reference.
7597 case elfcpp::R_ARM_ABS32:
7598 case elfcpp::R_ARM_ABS16:
7599 case elfcpp::R_ARM_ABS12:
7600 case elfcpp::R_ARM_THM_ABS5:
7601 case elfcpp::R_ARM_ABS8:
7602 case elfcpp::R_ARM_BASE_ABS:
7603 case elfcpp::R_ARM_MOVW_ABS_NC:
7604 case elfcpp::R_ARM_MOVT_ABS:
7605 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7606 case elfcpp::R_ARM_THM_MOVT_ABS:
7607 case elfcpp::R_ARM_ABS32_NOI:
7608 return Symbol::ABSOLUTE_REF;
7610 case elfcpp::R_ARM_REL32:
7611 case elfcpp::R_ARM_LDR_PC_G0:
7612 case elfcpp::R_ARM_SBREL32:
7613 case elfcpp::R_ARM_THM_PC8:
7614 case elfcpp::R_ARM_BASE_PREL:
7615 case elfcpp::R_ARM_MOVW_PREL_NC:
7616 case elfcpp::R_ARM_MOVT_PREL:
7617 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7618 case elfcpp::R_ARM_THM_MOVT_PREL:
7619 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7620 case elfcpp::R_ARM_THM_PC12:
7621 case elfcpp::R_ARM_REL32_NOI:
7622 case elfcpp::R_ARM_ALU_PC_G0_NC:
7623 case elfcpp::R_ARM_ALU_PC_G0:
7624 case elfcpp::R_ARM_ALU_PC_G1_NC:
7625 case elfcpp::R_ARM_ALU_PC_G1:
7626 case elfcpp::R_ARM_ALU_PC_G2:
7627 case elfcpp::R_ARM_LDR_PC_G1:
7628 case elfcpp::R_ARM_LDR_PC_G2:
7629 case elfcpp::R_ARM_LDRS_PC_G0:
7630 case elfcpp::R_ARM_LDRS_PC_G1:
7631 case elfcpp::R_ARM_LDRS_PC_G2:
7632 case elfcpp::R_ARM_LDC_PC_G0:
7633 case elfcpp::R_ARM_LDC_PC_G1:
7634 case elfcpp::R_ARM_LDC_PC_G2:
7635 case elfcpp::R_ARM_ALU_SB_G0_NC:
7636 case elfcpp::R_ARM_ALU_SB_G0:
7637 case elfcpp::R_ARM_ALU_SB_G1_NC:
7638 case elfcpp::R_ARM_ALU_SB_G1:
7639 case elfcpp::R_ARM_ALU_SB_G2:
7640 case elfcpp::R_ARM_LDR_SB_G0:
7641 case elfcpp::R_ARM_LDR_SB_G1:
7642 case elfcpp::R_ARM_LDR_SB_G2:
7643 case elfcpp::R_ARM_LDRS_SB_G0:
7644 case elfcpp::R_ARM_LDRS_SB_G1:
7645 case elfcpp::R_ARM_LDRS_SB_G2:
7646 case elfcpp::R_ARM_LDC_SB_G0:
7647 case elfcpp::R_ARM_LDC_SB_G1:
7648 case elfcpp::R_ARM_LDC_SB_G2:
7649 case elfcpp::R_ARM_MOVW_BREL_NC:
7650 case elfcpp::R_ARM_MOVT_BREL:
7651 case elfcpp::R_ARM_MOVW_BREL:
7652 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7653 case elfcpp::R_ARM_THM_MOVT_BREL:
7654 case elfcpp::R_ARM_THM_MOVW_BREL:
7655 case elfcpp::R_ARM_GOTOFF32:
7656 case elfcpp::R_ARM_GOTOFF12:
7657 case elfcpp::R_ARM_SBREL31:
7658 return Symbol::RELATIVE_REF;
7660 case elfcpp::R_ARM_PLT32:
7661 case elfcpp::R_ARM_CALL:
7662 case elfcpp::R_ARM_JUMP24:
7663 case elfcpp::R_ARM_THM_CALL:
7664 case elfcpp::R_ARM_THM_JUMP24:
7665 case elfcpp::R_ARM_THM_JUMP19:
7666 case elfcpp::R_ARM_THM_JUMP6:
7667 case elfcpp::R_ARM_THM_JUMP11:
7668 case elfcpp::R_ARM_THM_JUMP8:
7669 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7670 // in unwind tables. It may point to functions via PLTs.
7671 // So we treat it like call/jump relocations above.
7672 case elfcpp::R_ARM_PREL31:
7673 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7675 case elfcpp::R_ARM_GOT_BREL:
7676 case elfcpp::R_ARM_GOT_ABS:
7677 case elfcpp::R_ARM_GOT_PREL:
7679 return Symbol::ABSOLUTE_REF;
7681 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7682 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7683 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7684 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7685 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7686 return Symbol::TLS_REF;
7688 case elfcpp::R_ARM_TARGET1:
7689 case elfcpp::R_ARM_TARGET2:
7690 case elfcpp::R_ARM_COPY:
7691 case elfcpp::R_ARM_GLOB_DAT:
7692 case elfcpp::R_ARM_JUMP_SLOT:
7693 case elfcpp::R_ARM_RELATIVE:
7694 case elfcpp::R_ARM_PC24:
7695 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7696 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7697 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7699 // Not expected. We will give an error later.
7704 // Report an unsupported relocation against a local symbol.
7706 template<bool big_endian>
7708 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7709 Sized_relobj_file<32, big_endian>* object,
7710 unsigned int r_type)
7712 gold_error(_("%s: unsupported reloc %u against local symbol"),
7713 object->name().c_str(), r_type);
7716 // We are about to emit a dynamic relocation of type R_TYPE. If the
7717 // dynamic linker does not support it, issue an error. The GNU linker
7718 // only issues a non-PIC error for an allocated read-only section.
7719 // Here we know the section is allocated, but we don't know that it is
7720 // read-only. But we check for all the relocation types which the
7721 // glibc dynamic linker supports, so it seems appropriate to issue an
7722 // error even if the section is not read-only.
7724 template<bool big_endian>
7726 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7727 unsigned int r_type)
7731 // These are the relocation types supported by glibc for ARM.
7732 case elfcpp::R_ARM_RELATIVE:
7733 case elfcpp::R_ARM_COPY:
7734 case elfcpp::R_ARM_GLOB_DAT:
7735 case elfcpp::R_ARM_JUMP_SLOT:
7736 case elfcpp::R_ARM_ABS32:
7737 case elfcpp::R_ARM_ABS32_NOI:
7738 case elfcpp::R_ARM_PC24:
7739 // FIXME: The following 3 types are not supported by Android's dynamic
7741 case elfcpp::R_ARM_TLS_DTPMOD32:
7742 case elfcpp::R_ARM_TLS_DTPOFF32:
7743 case elfcpp::R_ARM_TLS_TPOFF32:
7748 // This prevents us from issuing more than one error per reloc
7749 // section. But we can still wind up issuing more than one
7750 // error per object file.
7751 if (this->issued_non_pic_error_)
7753 const Arm_reloc_property* reloc_property =
7754 arm_reloc_property_table->get_reloc_property(r_type);
7755 gold_assert(reloc_property != NULL);
7756 object->error(_("requires unsupported dynamic reloc %s; "
7757 "recompile with -fPIC"),
7758 reloc_property->name().c_str());
7759 this->issued_non_pic_error_ = true;
7763 case elfcpp::R_ARM_NONE:
7768 // Scan a relocation for a local symbol.
7769 // FIXME: This only handles a subset of relocation types used by Android
7770 // on ARM v5te devices.
7772 template<bool big_endian>
7774 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7777 Sized_relobj_file<32, big_endian>* object,
7778 unsigned int data_shndx,
7779 Output_section* output_section,
7780 const elfcpp::Rel<32, big_endian>& reloc,
7781 unsigned int r_type,
7782 const elfcpp::Sym<32, big_endian>& lsym)
7784 r_type = get_real_reloc_type(r_type);
7787 case elfcpp::R_ARM_NONE:
7788 case elfcpp::R_ARM_V4BX:
7789 case elfcpp::R_ARM_GNU_VTENTRY:
7790 case elfcpp::R_ARM_GNU_VTINHERIT:
7793 case elfcpp::R_ARM_ABS32:
7794 case elfcpp::R_ARM_ABS32_NOI:
7795 // If building a shared library (or a position-independent
7796 // executable), we need to create a dynamic relocation for
7797 // this location. The relocation applied at link time will
7798 // apply the link-time value, so we flag the location with
7799 // an R_ARM_RELATIVE relocation so the dynamic loader can
7800 // relocate it easily.
7801 if (parameters->options().output_is_position_independent())
7803 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7804 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7805 // If we are to add more other reloc types than R_ARM_ABS32,
7806 // we need to add check_non_pic(object, r_type) here.
7807 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7808 output_section, data_shndx,
7809 reloc.get_r_offset());
7813 case elfcpp::R_ARM_ABS16:
7814 case elfcpp::R_ARM_ABS12:
7815 case elfcpp::R_ARM_THM_ABS5:
7816 case elfcpp::R_ARM_ABS8:
7817 case elfcpp::R_ARM_BASE_ABS:
7818 case elfcpp::R_ARM_MOVW_ABS_NC:
7819 case elfcpp::R_ARM_MOVT_ABS:
7820 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7821 case elfcpp::R_ARM_THM_MOVT_ABS:
7822 // If building a shared library (or a position-independent
7823 // executable), we need to create a dynamic relocation for
7824 // this location. Because the addend needs to remain in the
7825 // data section, we need to be careful not to apply this
7826 // relocation statically.
7827 if (parameters->options().output_is_position_independent())
7829 check_non_pic(object, r_type);
7830 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7831 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7832 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7833 rel_dyn->add_local(object, r_sym, r_type, output_section,
7834 data_shndx, reloc.get_r_offset());
7837 gold_assert(lsym.get_st_value() == 0);
7838 unsigned int shndx = lsym.get_st_shndx();
7840 shndx = object->adjust_sym_shndx(r_sym, shndx,
7843 object->error(_("section symbol %u has bad shndx %u"),
7846 rel_dyn->add_local_section(object, shndx,
7847 r_type, output_section,
7848 data_shndx, reloc.get_r_offset());
7853 case elfcpp::R_ARM_REL32:
7854 case elfcpp::R_ARM_LDR_PC_G0:
7855 case elfcpp::R_ARM_SBREL32:
7856 case elfcpp::R_ARM_THM_CALL:
7857 case elfcpp::R_ARM_THM_PC8:
7858 case elfcpp::R_ARM_BASE_PREL:
7859 case elfcpp::R_ARM_PLT32:
7860 case elfcpp::R_ARM_CALL:
7861 case elfcpp::R_ARM_JUMP24:
7862 case elfcpp::R_ARM_THM_JUMP24:
7863 case elfcpp::R_ARM_SBREL31:
7864 case elfcpp::R_ARM_PREL31:
7865 case elfcpp::R_ARM_MOVW_PREL_NC:
7866 case elfcpp::R_ARM_MOVT_PREL:
7867 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7868 case elfcpp::R_ARM_THM_MOVT_PREL:
7869 case elfcpp::R_ARM_THM_JUMP19:
7870 case elfcpp::R_ARM_THM_JUMP6:
7871 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7872 case elfcpp::R_ARM_THM_PC12:
7873 case elfcpp::R_ARM_REL32_NOI:
7874 case elfcpp::R_ARM_ALU_PC_G0_NC:
7875 case elfcpp::R_ARM_ALU_PC_G0:
7876 case elfcpp::R_ARM_ALU_PC_G1_NC:
7877 case elfcpp::R_ARM_ALU_PC_G1:
7878 case elfcpp::R_ARM_ALU_PC_G2:
7879 case elfcpp::R_ARM_LDR_PC_G1:
7880 case elfcpp::R_ARM_LDR_PC_G2:
7881 case elfcpp::R_ARM_LDRS_PC_G0:
7882 case elfcpp::R_ARM_LDRS_PC_G1:
7883 case elfcpp::R_ARM_LDRS_PC_G2:
7884 case elfcpp::R_ARM_LDC_PC_G0:
7885 case elfcpp::R_ARM_LDC_PC_G1:
7886 case elfcpp::R_ARM_LDC_PC_G2:
7887 case elfcpp::R_ARM_ALU_SB_G0_NC:
7888 case elfcpp::R_ARM_ALU_SB_G0:
7889 case elfcpp::R_ARM_ALU_SB_G1_NC:
7890 case elfcpp::R_ARM_ALU_SB_G1:
7891 case elfcpp::R_ARM_ALU_SB_G2:
7892 case elfcpp::R_ARM_LDR_SB_G0:
7893 case elfcpp::R_ARM_LDR_SB_G1:
7894 case elfcpp::R_ARM_LDR_SB_G2:
7895 case elfcpp::R_ARM_LDRS_SB_G0:
7896 case elfcpp::R_ARM_LDRS_SB_G1:
7897 case elfcpp::R_ARM_LDRS_SB_G2:
7898 case elfcpp::R_ARM_LDC_SB_G0:
7899 case elfcpp::R_ARM_LDC_SB_G1:
7900 case elfcpp::R_ARM_LDC_SB_G2:
7901 case elfcpp::R_ARM_MOVW_BREL_NC:
7902 case elfcpp::R_ARM_MOVT_BREL:
7903 case elfcpp::R_ARM_MOVW_BREL:
7904 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7905 case elfcpp::R_ARM_THM_MOVT_BREL:
7906 case elfcpp::R_ARM_THM_MOVW_BREL:
7907 case elfcpp::R_ARM_THM_JUMP11:
7908 case elfcpp::R_ARM_THM_JUMP8:
7909 // We don't need to do anything for a relative addressing relocation
7910 // against a local symbol if it does not reference the GOT.
7913 case elfcpp::R_ARM_GOTOFF32:
7914 case elfcpp::R_ARM_GOTOFF12:
7915 // We need a GOT section:
7916 target->got_section(symtab, layout);
7919 case elfcpp::R_ARM_GOT_BREL:
7920 case elfcpp::R_ARM_GOT_PREL:
7922 // The symbol requires a GOT entry.
7923 Arm_output_data_got<big_endian>* got =
7924 target->got_section(symtab, layout);
7925 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7926 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7928 // If we are generating a shared object, we need to add a
7929 // dynamic RELATIVE relocation for this symbol's GOT entry.
7930 if (parameters->options().output_is_position_independent())
7932 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7933 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7934 rel_dyn->add_local_relative(
7935 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7936 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7942 case elfcpp::R_ARM_TARGET1:
7943 case elfcpp::R_ARM_TARGET2:
7944 // This should have been mapped to another type already.
7946 case elfcpp::R_ARM_COPY:
7947 case elfcpp::R_ARM_GLOB_DAT:
7948 case elfcpp::R_ARM_JUMP_SLOT:
7949 case elfcpp::R_ARM_RELATIVE:
7950 // These are relocations which should only be seen by the
7951 // dynamic linker, and should never be seen here.
7952 gold_error(_("%s: unexpected reloc %u in object file"),
7953 object->name().c_str(), r_type);
7957 // These are initial TLS relocs, which are expected when
7959 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7960 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7961 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7962 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7963 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7965 bool output_is_shared = parameters->options().shared();
7966 const tls::Tls_optimization optimized_type
7967 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7971 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7972 if (optimized_type == tls::TLSOPT_NONE)
7974 // Create a pair of GOT entries for the module index and
7975 // dtv-relative offset.
7976 Arm_output_data_got<big_endian>* got
7977 = target->got_section(symtab, layout);
7978 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7979 unsigned int shndx = lsym.get_st_shndx();
7981 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7984 object->error(_("local symbol %u has bad shndx %u"),
7989 if (!parameters->doing_static_link())
7990 got->add_local_pair_with_rel(object, r_sym, shndx,
7992 target->rel_dyn_section(layout),
7993 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7995 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7999 // FIXME: TLS optimization not supported yet.
8003 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8004 if (optimized_type == tls::TLSOPT_NONE)
8006 // Create a GOT entry for the module index.
8007 target->got_mod_index_entry(symtab, layout, object);
8010 // FIXME: TLS optimization not supported yet.
8014 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8017 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8018 layout->set_has_static_tls();
8019 if (optimized_type == tls::TLSOPT_NONE)
8021 // Create a GOT entry for the tp-relative offset.
8022 Arm_output_data_got<big_endian>* got
8023 = target->got_section(symtab, layout);
8024 unsigned int r_sym =
8025 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8026 if (!parameters->doing_static_link())
8027 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8028 target->rel_dyn_section(layout),
8029 elfcpp::R_ARM_TLS_TPOFF32);
8030 else if (!object->local_has_got_offset(r_sym,
8031 GOT_TYPE_TLS_OFFSET))
8033 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8034 unsigned int got_offset =
8035 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8036 got->add_static_reloc(got_offset,
8037 elfcpp::R_ARM_TLS_TPOFF32, object,
8042 // FIXME: TLS optimization not supported yet.
8046 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8047 layout->set_has_static_tls();
8048 if (output_is_shared)
8050 // We need to create a dynamic relocation.
8051 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8052 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8053 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8054 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8055 output_section, data_shndx,
8056 reloc.get_r_offset());
8066 case elfcpp::R_ARM_PC24:
8067 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8068 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8069 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8071 unsupported_reloc_local(object, r_type);
8076 // Report an unsupported relocation against a global symbol.
8078 template<bool big_endian>
8080 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8081 Sized_relobj_file<32, big_endian>* object,
8082 unsigned int r_type,
8085 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8086 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8089 template<bool big_endian>
8091 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8092 unsigned int r_type)
8096 case elfcpp::R_ARM_PC24:
8097 case elfcpp::R_ARM_THM_CALL:
8098 case elfcpp::R_ARM_PLT32:
8099 case elfcpp::R_ARM_CALL:
8100 case elfcpp::R_ARM_JUMP24:
8101 case elfcpp::R_ARM_THM_JUMP24:
8102 case elfcpp::R_ARM_SBREL31:
8103 case elfcpp::R_ARM_PREL31:
8104 case elfcpp::R_ARM_THM_JUMP19:
8105 case elfcpp::R_ARM_THM_JUMP6:
8106 case elfcpp::R_ARM_THM_JUMP11:
8107 case elfcpp::R_ARM_THM_JUMP8:
8108 // All the relocations above are branches except SBREL31 and PREL31.
8112 // Be conservative and assume this is a function pointer.
8117 template<bool big_endian>
8119 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8122 Target_arm<big_endian>* target,
8123 Sized_relobj_file<32, big_endian>*,
8126 const elfcpp::Rel<32, big_endian>&,
8127 unsigned int r_type,
8128 const elfcpp::Sym<32, big_endian>&)
8130 r_type = target->get_real_reloc_type(r_type);
8131 return possible_function_pointer_reloc(r_type);
8134 template<bool big_endian>
8136 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8139 Target_arm<big_endian>* target,
8140 Sized_relobj_file<32, big_endian>*,
8143 const elfcpp::Rel<32, big_endian>&,
8144 unsigned int r_type,
8147 // GOT is not a function.
8148 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8151 r_type = target->get_real_reloc_type(r_type);
8152 return possible_function_pointer_reloc(r_type);
8155 // Scan a relocation for a global symbol.
8157 template<bool big_endian>
8159 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8162 Sized_relobj_file<32, big_endian>* object,
8163 unsigned int data_shndx,
8164 Output_section* output_section,
8165 const elfcpp::Rel<32, big_endian>& reloc,
8166 unsigned int r_type,
8169 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8170 // section. We check here to avoid creating a dynamic reloc against
8171 // _GLOBAL_OFFSET_TABLE_.
8172 if (!target->has_got_section()
8173 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8174 target->got_section(symtab, layout);
8176 r_type = get_real_reloc_type(r_type);
8179 case elfcpp::R_ARM_NONE:
8180 case elfcpp::R_ARM_V4BX:
8181 case elfcpp::R_ARM_GNU_VTENTRY:
8182 case elfcpp::R_ARM_GNU_VTINHERIT:
8185 case elfcpp::R_ARM_ABS32:
8186 case elfcpp::R_ARM_ABS16:
8187 case elfcpp::R_ARM_ABS12:
8188 case elfcpp::R_ARM_THM_ABS5:
8189 case elfcpp::R_ARM_ABS8:
8190 case elfcpp::R_ARM_BASE_ABS:
8191 case elfcpp::R_ARM_MOVW_ABS_NC:
8192 case elfcpp::R_ARM_MOVT_ABS:
8193 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8194 case elfcpp::R_ARM_THM_MOVT_ABS:
8195 case elfcpp::R_ARM_ABS32_NOI:
8196 // Absolute addressing relocations.
8198 // Make a PLT entry if necessary.
8199 if (this->symbol_needs_plt_entry(gsym))
8201 target->make_plt_entry(symtab, layout, gsym);
8202 // Since this is not a PC-relative relocation, we may be
8203 // taking the address of a function. In that case we need to
8204 // set the entry in the dynamic symbol table to the address of
8206 if (gsym->is_from_dynobj() && !parameters->options().shared())
8207 gsym->set_needs_dynsym_value();
8209 // Make a dynamic relocation if necessary.
8210 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8212 if (gsym->may_need_copy_reloc())
8214 target->copy_reloc(symtab, layout, object,
8215 data_shndx, output_section, gsym, reloc);
8217 else if ((r_type == elfcpp::R_ARM_ABS32
8218 || r_type == elfcpp::R_ARM_ABS32_NOI)
8219 && gsym->can_use_relative_reloc(false))
8221 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8222 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8223 output_section, object,
8224 data_shndx, reloc.get_r_offset());
8228 check_non_pic(object, r_type);
8229 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8230 rel_dyn->add_global(gsym, r_type, output_section, object,
8231 data_shndx, reloc.get_r_offset());
8237 case elfcpp::R_ARM_GOTOFF32:
8238 case elfcpp::R_ARM_GOTOFF12:
8239 // We need a GOT section.
8240 target->got_section(symtab, layout);
8243 case elfcpp::R_ARM_REL32:
8244 case elfcpp::R_ARM_LDR_PC_G0:
8245 case elfcpp::R_ARM_SBREL32:
8246 case elfcpp::R_ARM_THM_PC8:
8247 case elfcpp::R_ARM_BASE_PREL:
8248 case elfcpp::R_ARM_MOVW_PREL_NC:
8249 case elfcpp::R_ARM_MOVT_PREL:
8250 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8251 case elfcpp::R_ARM_THM_MOVT_PREL:
8252 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8253 case elfcpp::R_ARM_THM_PC12:
8254 case elfcpp::R_ARM_REL32_NOI:
8255 case elfcpp::R_ARM_ALU_PC_G0_NC:
8256 case elfcpp::R_ARM_ALU_PC_G0:
8257 case elfcpp::R_ARM_ALU_PC_G1_NC:
8258 case elfcpp::R_ARM_ALU_PC_G1:
8259 case elfcpp::R_ARM_ALU_PC_G2:
8260 case elfcpp::R_ARM_LDR_PC_G1:
8261 case elfcpp::R_ARM_LDR_PC_G2:
8262 case elfcpp::R_ARM_LDRS_PC_G0:
8263 case elfcpp::R_ARM_LDRS_PC_G1:
8264 case elfcpp::R_ARM_LDRS_PC_G2:
8265 case elfcpp::R_ARM_LDC_PC_G0:
8266 case elfcpp::R_ARM_LDC_PC_G1:
8267 case elfcpp::R_ARM_LDC_PC_G2:
8268 case elfcpp::R_ARM_ALU_SB_G0_NC:
8269 case elfcpp::R_ARM_ALU_SB_G0:
8270 case elfcpp::R_ARM_ALU_SB_G1_NC:
8271 case elfcpp::R_ARM_ALU_SB_G1:
8272 case elfcpp::R_ARM_ALU_SB_G2:
8273 case elfcpp::R_ARM_LDR_SB_G0:
8274 case elfcpp::R_ARM_LDR_SB_G1:
8275 case elfcpp::R_ARM_LDR_SB_G2:
8276 case elfcpp::R_ARM_LDRS_SB_G0:
8277 case elfcpp::R_ARM_LDRS_SB_G1:
8278 case elfcpp::R_ARM_LDRS_SB_G2:
8279 case elfcpp::R_ARM_LDC_SB_G0:
8280 case elfcpp::R_ARM_LDC_SB_G1:
8281 case elfcpp::R_ARM_LDC_SB_G2:
8282 case elfcpp::R_ARM_MOVW_BREL_NC:
8283 case elfcpp::R_ARM_MOVT_BREL:
8284 case elfcpp::R_ARM_MOVW_BREL:
8285 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8286 case elfcpp::R_ARM_THM_MOVT_BREL:
8287 case elfcpp::R_ARM_THM_MOVW_BREL:
8288 // Relative addressing relocations.
8290 // Make a dynamic relocation if necessary.
8291 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8293 if (target->may_need_copy_reloc(gsym))
8295 target->copy_reloc(symtab, layout, object,
8296 data_shndx, output_section, gsym, reloc);
8300 check_non_pic(object, r_type);
8301 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8302 rel_dyn->add_global(gsym, r_type, output_section, object,
8303 data_shndx, reloc.get_r_offset());
8309 case elfcpp::R_ARM_THM_CALL:
8310 case elfcpp::R_ARM_PLT32:
8311 case elfcpp::R_ARM_CALL:
8312 case elfcpp::R_ARM_JUMP24:
8313 case elfcpp::R_ARM_THM_JUMP24:
8314 case elfcpp::R_ARM_SBREL31:
8315 case elfcpp::R_ARM_PREL31:
8316 case elfcpp::R_ARM_THM_JUMP19:
8317 case elfcpp::R_ARM_THM_JUMP6:
8318 case elfcpp::R_ARM_THM_JUMP11:
8319 case elfcpp::R_ARM_THM_JUMP8:
8320 // All the relocation above are branches except for the PREL31 ones.
8321 // A PREL31 relocation can point to a personality function in a shared
8322 // library. In that case we want to use a PLT because we want to
8323 // call the personality routine and the dynamic linkers we care about
8324 // do not support dynamic PREL31 relocations. An REL31 relocation may
8325 // point to a function whose unwinding behaviour is being described but
8326 // we will not mistakenly generate a PLT for that because we should use
8327 // a local section symbol.
8329 // If the symbol is fully resolved, this is just a relative
8330 // local reloc. Otherwise we need a PLT entry.
8331 if (gsym->final_value_is_known())
8333 // If building a shared library, we can also skip the PLT entry
8334 // if the symbol is defined in the output file and is protected
8336 if (gsym->is_defined()
8337 && !gsym->is_from_dynobj()
8338 && !gsym->is_preemptible())
8340 target->make_plt_entry(symtab, layout, gsym);
8343 case elfcpp::R_ARM_GOT_BREL:
8344 case elfcpp::R_ARM_GOT_ABS:
8345 case elfcpp::R_ARM_GOT_PREL:
8347 // The symbol requires a GOT entry.
8348 Arm_output_data_got<big_endian>* got =
8349 target->got_section(symtab, layout);
8350 if (gsym->final_value_is_known())
8351 got->add_global(gsym, GOT_TYPE_STANDARD);
8354 // If this symbol is not fully resolved, we need to add a
8355 // GOT entry with a dynamic relocation.
8356 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8357 if (gsym->is_from_dynobj()
8358 || gsym->is_undefined()
8359 || gsym->is_preemptible())
8360 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8361 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8364 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8365 rel_dyn->add_global_relative(
8366 gsym, elfcpp::R_ARM_RELATIVE, got,
8367 gsym->got_offset(GOT_TYPE_STANDARD));
8373 case elfcpp::R_ARM_TARGET1:
8374 case elfcpp::R_ARM_TARGET2:
8375 // These should have been mapped to other types already.
8377 case elfcpp::R_ARM_COPY:
8378 case elfcpp::R_ARM_GLOB_DAT:
8379 case elfcpp::R_ARM_JUMP_SLOT:
8380 case elfcpp::R_ARM_RELATIVE:
8381 // These are relocations which should only be seen by the
8382 // dynamic linker, and should never be seen here.
8383 gold_error(_("%s: unexpected reloc %u in object file"),
8384 object->name().c_str(), r_type);
8387 // These are initial tls relocs, which are expected when
8389 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8390 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8391 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8392 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8393 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8395 const bool is_final = gsym->final_value_is_known();
8396 const tls::Tls_optimization optimized_type
8397 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8400 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8401 if (optimized_type == tls::TLSOPT_NONE)
8403 // Create a pair of GOT entries for the module index and
8404 // dtv-relative offset.
8405 Arm_output_data_got<big_endian>* got
8406 = target->got_section(symtab, layout);
8407 if (!parameters->doing_static_link())
8408 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8409 target->rel_dyn_section(layout),
8410 elfcpp::R_ARM_TLS_DTPMOD32,
8411 elfcpp::R_ARM_TLS_DTPOFF32);
8413 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8416 // FIXME: TLS optimization not supported yet.
8420 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8421 if (optimized_type == tls::TLSOPT_NONE)
8423 // Create a GOT entry for the module index.
8424 target->got_mod_index_entry(symtab, layout, object);
8427 // FIXME: TLS optimization not supported yet.
8431 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8434 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8435 layout->set_has_static_tls();
8436 if (optimized_type == tls::TLSOPT_NONE)
8438 // Create a GOT entry for the tp-relative offset.
8439 Arm_output_data_got<big_endian>* got
8440 = target->got_section(symtab, layout);
8441 if (!parameters->doing_static_link())
8442 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8443 target->rel_dyn_section(layout),
8444 elfcpp::R_ARM_TLS_TPOFF32);
8445 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8447 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8448 unsigned int got_offset =
8449 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8450 got->add_static_reloc(got_offset,
8451 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8455 // FIXME: TLS optimization not supported yet.
8459 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8460 layout->set_has_static_tls();
8461 if (parameters->options().shared())
8463 // We need to create a dynamic relocation.
8464 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8465 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8466 output_section, object,
8467 data_shndx, reloc.get_r_offset());
8477 case elfcpp::R_ARM_PC24:
8478 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8479 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8480 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8482 unsupported_reloc_global(object, r_type, gsym);
8487 // Process relocations for gc.
8489 template<bool big_endian>
8491 Target_arm<big_endian>::gc_process_relocs(
8492 Symbol_table* symtab,
8494 Sized_relobj_file<32, big_endian>* object,
8495 unsigned int data_shndx,
8497 const unsigned char* prelocs,
8499 Output_section* output_section,
8500 bool needs_special_offset_handling,
8501 size_t local_symbol_count,
8502 const unsigned char* plocal_symbols)
8504 typedef Target_arm<big_endian> Arm;
8505 typedef typename Target_arm<big_endian>::Scan Scan;
8507 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8508 typename Target_arm::Relocatable_size_for_reloc>(
8517 needs_special_offset_handling,
8522 // Scan relocations for a section.
8524 template<bool big_endian>
8526 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8528 Sized_relobj_file<32, big_endian>* object,
8529 unsigned int data_shndx,
8530 unsigned int sh_type,
8531 const unsigned char* prelocs,
8533 Output_section* output_section,
8534 bool needs_special_offset_handling,
8535 size_t local_symbol_count,
8536 const unsigned char* plocal_symbols)
8538 typedef typename Target_arm<big_endian>::Scan Scan;
8539 if (sh_type == elfcpp::SHT_RELA)
8541 gold_error(_("%s: unsupported RELA reloc section"),
8542 object->name().c_str());
8546 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8555 needs_special_offset_handling,
8560 // Finalize the sections.
8562 template<bool big_endian>
8564 Target_arm<big_endian>::do_finalize_sections(
8566 const Input_objects* input_objects,
8567 Symbol_table* symtab)
8569 bool merged_any_attributes = false;
8570 // Merge processor-specific flags.
8571 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8572 p != input_objects->relobj_end();
8575 Arm_relobj<big_endian>* arm_relobj =
8576 Arm_relobj<big_endian>::as_arm_relobj(*p);
8577 if (arm_relobj->merge_flags_and_attributes())
8579 this->merge_processor_specific_flags(
8581 arm_relobj->processor_specific_flags());
8582 this->merge_object_attributes(arm_relobj->name().c_str(),
8583 arm_relobj->attributes_section_data());
8584 merged_any_attributes = true;
8588 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8589 p != input_objects->dynobj_end();
8592 Arm_dynobj<big_endian>* arm_dynobj =
8593 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8594 this->merge_processor_specific_flags(
8596 arm_dynobj->processor_specific_flags());
8597 this->merge_object_attributes(arm_dynobj->name().c_str(),
8598 arm_dynobj->attributes_section_data());
8599 merged_any_attributes = true;
8602 // Create an empty uninitialized attribute section if we still don't have it
8603 // at this moment. This happens if there is no attributes sections in all
8605 if (this->attributes_section_data_ == NULL)
8606 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8609 const Object_attribute* cpu_arch_attr =
8610 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8611 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8612 this->set_may_use_blx(true);
8614 // Check if we need to use Cortex-A8 workaround.
8615 if (parameters->options().user_set_fix_cortex_a8())
8616 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8619 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8620 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8622 const Object_attribute* cpu_arch_profile_attr =
8623 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8624 this->fix_cortex_a8_ =
8625 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8626 && (cpu_arch_profile_attr->int_value() == 'A'
8627 || cpu_arch_profile_attr->int_value() == 0));
8630 // Check if we can use V4BX interworking.
8631 // The V4BX interworking stub contains BX instruction,
8632 // which is not specified for some profiles.
8633 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8634 && !this->may_use_blx())
8635 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8636 "the target profile does not support BX instruction"));
8638 // Fill in some more dynamic tags.
8639 const Reloc_section* rel_plt = (this->plt_ == NULL
8641 : this->plt_->rel_plt());
8642 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8643 this->rel_dyn_, true, false);
8645 // Emit any relocs we saved in an attempt to avoid generating COPY
8647 if (this->copy_relocs_.any_saved_relocs())
8648 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8650 // Handle the .ARM.exidx section.
8651 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8653 if (!parameters->options().relocatable())
8655 if (exidx_section != NULL
8656 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8658 // Create __exidx_start and __exidx_end symbols.
8659 symtab->define_in_output_data("__exidx_start", NULL,
8660 Symbol_table::PREDEFINED,
8661 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8662 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8664 symtab->define_in_output_data("__exidx_end", NULL,
8665 Symbol_table::PREDEFINED,
8666 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8667 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8670 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8671 // the .ARM.exidx section.
8672 if (!layout->script_options()->saw_phdrs_clause())
8674 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8677 Output_segment* exidx_segment =
8678 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8679 exidx_segment->add_output_section_to_nonload(exidx_section,
8685 symtab->define_as_constant("__exidx_start", NULL,
8686 Symbol_table::PREDEFINED,
8687 0, 0, elfcpp::STT_OBJECT,
8688 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8690 symtab->define_as_constant("__exidx_end", NULL,
8691 Symbol_table::PREDEFINED,
8692 0, 0, elfcpp::STT_OBJECT,
8693 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8698 // Create an .ARM.attributes section if we have merged any attributes
8700 if (merged_any_attributes)
8702 Output_attributes_section_data* attributes_section =
8703 new Output_attributes_section_data(*this->attributes_section_data_);
8704 layout->add_output_section_data(".ARM.attributes",
8705 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8706 attributes_section, ORDER_INVALID,
8710 // Fix up links in section EXIDX headers.
8711 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8712 p != layout->section_list().end();
8714 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8716 Arm_output_section<big_endian>* os =
8717 Arm_output_section<big_endian>::as_arm_output_section(*p);
8718 os->set_exidx_section_link();
8722 // Return whether a direct absolute static relocation needs to be applied.
8723 // In cases where Scan::local() or Scan::global() has created
8724 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8725 // of the relocation is carried in the data, and we must not
8726 // apply the static relocation.
8728 template<bool big_endian>
8730 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8731 const Sized_symbol<32>* gsym,
8732 unsigned int r_type,
8734 Output_section* output_section)
8736 // If the output section is not allocated, then we didn't call
8737 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8739 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8742 int ref_flags = Scan::get_reference_flags(r_type);
8744 // For local symbols, we will have created a non-RELATIVE dynamic
8745 // relocation only if (a) the output is position independent,
8746 // (b) the relocation is absolute (not pc- or segment-relative), and
8747 // (c) the relocation is not 32 bits wide.
8749 return !(parameters->options().output_is_position_independent()
8750 && (ref_flags & Symbol::ABSOLUTE_REF)
8753 // For global symbols, we use the same helper routines used in the
8754 // scan pass. If we did not create a dynamic relocation, or if we
8755 // created a RELATIVE dynamic relocation, we should apply the static
8757 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8758 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8759 && gsym->can_use_relative_reloc(ref_flags
8760 & Symbol::FUNCTION_CALL);
8761 return !has_dyn || is_rel;
8764 // Perform a relocation.
8766 template<bool big_endian>
8768 Target_arm<big_endian>::Relocate::relocate(
8769 const Relocate_info<32, big_endian>* relinfo,
8771 Output_section* output_section,
8773 const elfcpp::Rel<32, big_endian>& rel,
8774 unsigned int r_type,
8775 const Sized_symbol<32>* gsym,
8776 const Symbol_value<32>* psymval,
8777 unsigned char* view,
8778 Arm_address address,
8779 section_size_type view_size)
8781 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8783 r_type = get_real_reloc_type(r_type);
8784 const Arm_reloc_property* reloc_property =
8785 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8786 if (reloc_property == NULL)
8788 std::string reloc_name =
8789 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8790 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8791 _("cannot relocate %s in object file"),
8792 reloc_name.c_str());
8796 const Arm_relobj<big_endian>* object =
8797 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8799 // If the final branch target of a relocation is THUMB instruction, this
8800 // is 1. Otherwise it is 0.
8801 Arm_address thumb_bit = 0;
8802 Symbol_value<32> symval;
8803 bool is_weakly_undefined_without_plt = false;
8804 bool have_got_offset = false;
8805 unsigned int got_offset = 0;
8807 // If the relocation uses the GOT entry of a symbol instead of the symbol
8808 // itself, we don't care about whether the symbol is defined or what kind
8810 if (reloc_property->uses_got_entry())
8812 // Get the GOT offset.
8813 // The GOT pointer points to the end of the GOT section.
8814 // We need to subtract the size of the GOT section to get
8815 // the actual offset to use in the relocation.
8816 // TODO: We should move GOT offset computing code in TLS relocations
8820 case elfcpp::R_ARM_GOT_BREL:
8821 case elfcpp::R_ARM_GOT_PREL:
8824 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8825 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8826 - target->got_size());
8830 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8831 gold_assert(object->local_has_got_offset(r_sym,
8832 GOT_TYPE_STANDARD));
8833 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8834 - target->got_size());
8836 have_got_offset = true;
8843 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8847 // This is a global symbol. Determine if we use PLT and if the
8848 // final target is THUMB.
8849 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8851 // This uses a PLT, change the symbol value.
8852 symval.set_output_value(target->plt_section()->address()
8853 + gsym->plt_offset());
8856 else if (gsym->is_weak_undefined())
8858 // This is a weakly undefined symbol and we do not use PLT
8859 // for this relocation. A branch targeting this symbol will
8860 // be converted into an NOP.
8861 is_weakly_undefined_without_plt = true;
8863 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8865 // This relocation uses the symbol value but the symbol is
8866 // undefined. Exit early and have the caller reporting an
8872 // Set thumb bit if symbol:
8873 // -Has type STT_ARM_TFUNC or
8874 // -Has type STT_FUNC, is defined and with LSB in value set.
8876 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8877 || (gsym->type() == elfcpp::STT_FUNC
8878 && !gsym->is_undefined()
8879 && ((psymval->value(object, 0) & 1) != 0)))
8886 // This is a local symbol. Determine if the final target is THUMB.
8887 // We saved this information when all the local symbols were read.
8888 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8889 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8890 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8895 // This is a fake relocation synthesized for a stub. It does not have
8896 // a real symbol. We just look at the LSB of the symbol value to
8897 // determine if the target is THUMB or not.
8898 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8901 // Strip LSB if this points to a THUMB target.
8903 && reloc_property->uses_thumb_bit()
8904 && ((psymval->value(object, 0) & 1) != 0))
8906 Arm_address stripped_value =
8907 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8908 symval.set_output_value(stripped_value);
8912 // To look up relocation stubs, we need to pass the symbol table index of
8914 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8916 // Get the addressing origin of the output segment defining the
8917 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8918 Arm_address sym_origin = 0;
8919 if (reloc_property->uses_symbol_base())
8921 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8922 // R_ARM_BASE_ABS with the NULL symbol will give the
8923 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8924 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8925 sym_origin = target->got_plt_section()->address();
8926 else if (gsym == NULL)
8928 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8929 sym_origin = gsym->output_segment()->vaddr();
8930 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8931 sym_origin = gsym->output_data()->address();
8933 // TODO: Assumes the segment base to be zero for the global symbols
8934 // till the proper support for the segment-base-relative addressing
8935 // will be implemented. This is consistent with GNU ld.
8938 // For relative addressing relocation, find out the relative address base.
8939 Arm_address relative_address_base = 0;
8940 switch(reloc_property->relative_address_base())
8942 case Arm_reloc_property::RAB_NONE:
8943 // Relocations with relative address bases RAB_TLS and RAB_tp are
8944 // handled by relocate_tls. So we do not need to do anything here.
8945 case Arm_reloc_property::RAB_TLS:
8946 case Arm_reloc_property::RAB_tp:
8948 case Arm_reloc_property::RAB_B_S:
8949 relative_address_base = sym_origin;
8951 case Arm_reloc_property::RAB_GOT_ORG:
8952 relative_address_base = target->got_plt_section()->address();
8954 case Arm_reloc_property::RAB_P:
8955 relative_address_base = address;
8957 case Arm_reloc_property::RAB_Pa:
8958 relative_address_base = address & 0xfffffffcU;
8964 typename Arm_relocate_functions::Status reloc_status =
8965 Arm_relocate_functions::STATUS_OKAY;
8966 bool check_overflow = reloc_property->checks_overflow();
8969 case elfcpp::R_ARM_NONE:
8972 case elfcpp::R_ARM_ABS8:
8973 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8974 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8977 case elfcpp::R_ARM_ABS12:
8978 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8979 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8982 case elfcpp::R_ARM_ABS16:
8983 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8984 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8987 case elfcpp::R_ARM_ABS32:
8988 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8989 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8993 case elfcpp::R_ARM_ABS32_NOI:
8994 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8995 // No thumb bit for this relocation: (S + A)
8996 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9000 case elfcpp::R_ARM_MOVW_ABS_NC:
9001 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9002 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9007 case elfcpp::R_ARM_MOVT_ABS:
9008 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9009 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9012 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9013 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9014 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9015 0, thumb_bit, false);
9018 case elfcpp::R_ARM_THM_MOVT_ABS:
9019 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9020 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9024 case elfcpp::R_ARM_MOVW_PREL_NC:
9025 case elfcpp::R_ARM_MOVW_BREL_NC:
9026 case elfcpp::R_ARM_MOVW_BREL:
9028 Arm_relocate_functions::movw(view, object, psymval,
9029 relative_address_base, thumb_bit,
9033 case elfcpp::R_ARM_MOVT_PREL:
9034 case elfcpp::R_ARM_MOVT_BREL:
9036 Arm_relocate_functions::movt(view, object, psymval,
9037 relative_address_base);
9040 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9041 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9042 case elfcpp::R_ARM_THM_MOVW_BREL:
9044 Arm_relocate_functions::thm_movw(view, object, psymval,
9045 relative_address_base,
9046 thumb_bit, check_overflow);
9049 case elfcpp::R_ARM_THM_MOVT_PREL:
9050 case elfcpp::R_ARM_THM_MOVT_BREL:
9052 Arm_relocate_functions::thm_movt(view, object, psymval,
9053 relative_address_base);
9056 case elfcpp::R_ARM_REL32:
9057 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9058 address, thumb_bit);
9061 case elfcpp::R_ARM_THM_ABS5:
9062 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9063 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9066 // Thumb long branches.
9067 case elfcpp::R_ARM_THM_CALL:
9068 case elfcpp::R_ARM_THM_XPC22:
9069 case elfcpp::R_ARM_THM_JUMP24:
9071 Arm_relocate_functions::thumb_branch_common(
9072 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9073 thumb_bit, is_weakly_undefined_without_plt);
9076 case elfcpp::R_ARM_GOTOFF32:
9078 Arm_address got_origin;
9079 got_origin = target->got_plt_section()->address();
9080 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9081 got_origin, thumb_bit);
9085 case elfcpp::R_ARM_BASE_PREL:
9086 gold_assert(gsym != NULL);
9088 Arm_relocate_functions::base_prel(view, sym_origin, address);
9091 case elfcpp::R_ARM_BASE_ABS:
9092 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9093 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9096 case elfcpp::R_ARM_GOT_BREL:
9097 gold_assert(have_got_offset);
9098 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9101 case elfcpp::R_ARM_GOT_PREL:
9102 gold_assert(have_got_offset);
9103 // Get the address origin for GOT PLT, which is allocated right
9104 // after the GOT section, to calculate an absolute address of
9105 // the symbol GOT entry (got_origin + got_offset).
9106 Arm_address got_origin;
9107 got_origin = target->got_plt_section()->address();
9108 reloc_status = Arm_relocate_functions::got_prel(view,
9109 got_origin + got_offset,
9113 case elfcpp::R_ARM_PLT32:
9114 case elfcpp::R_ARM_CALL:
9115 case elfcpp::R_ARM_JUMP24:
9116 case elfcpp::R_ARM_XPC25:
9117 gold_assert(gsym == NULL
9118 || gsym->has_plt_offset()
9119 || gsym->final_value_is_known()
9120 || (gsym->is_defined()
9121 && !gsym->is_from_dynobj()
9122 && !gsym->is_preemptible()));
9124 Arm_relocate_functions::arm_branch_common(
9125 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9126 thumb_bit, is_weakly_undefined_without_plt);
9129 case elfcpp::R_ARM_THM_JUMP19:
9131 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9135 case elfcpp::R_ARM_THM_JUMP6:
9137 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9140 case elfcpp::R_ARM_THM_JUMP8:
9142 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9145 case elfcpp::R_ARM_THM_JUMP11:
9147 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9150 case elfcpp::R_ARM_PREL31:
9151 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9152 address, thumb_bit);
9155 case elfcpp::R_ARM_V4BX:
9156 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9158 const bool is_v4bx_interworking =
9159 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9161 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9162 is_v4bx_interworking);
9166 case elfcpp::R_ARM_THM_PC8:
9168 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9171 case elfcpp::R_ARM_THM_PC12:
9173 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9176 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9178 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9182 case elfcpp::R_ARM_ALU_PC_G0_NC:
9183 case elfcpp::R_ARM_ALU_PC_G0:
9184 case elfcpp::R_ARM_ALU_PC_G1_NC:
9185 case elfcpp::R_ARM_ALU_PC_G1:
9186 case elfcpp::R_ARM_ALU_PC_G2:
9187 case elfcpp::R_ARM_ALU_SB_G0_NC:
9188 case elfcpp::R_ARM_ALU_SB_G0:
9189 case elfcpp::R_ARM_ALU_SB_G1_NC:
9190 case elfcpp::R_ARM_ALU_SB_G1:
9191 case elfcpp::R_ARM_ALU_SB_G2:
9193 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9194 reloc_property->group_index(),
9195 relative_address_base,
9196 thumb_bit, check_overflow);
9199 case elfcpp::R_ARM_LDR_PC_G0:
9200 case elfcpp::R_ARM_LDR_PC_G1:
9201 case elfcpp::R_ARM_LDR_PC_G2:
9202 case elfcpp::R_ARM_LDR_SB_G0:
9203 case elfcpp::R_ARM_LDR_SB_G1:
9204 case elfcpp::R_ARM_LDR_SB_G2:
9206 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9207 reloc_property->group_index(),
9208 relative_address_base);
9211 case elfcpp::R_ARM_LDRS_PC_G0:
9212 case elfcpp::R_ARM_LDRS_PC_G1:
9213 case elfcpp::R_ARM_LDRS_PC_G2:
9214 case elfcpp::R_ARM_LDRS_SB_G0:
9215 case elfcpp::R_ARM_LDRS_SB_G1:
9216 case elfcpp::R_ARM_LDRS_SB_G2:
9218 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9219 reloc_property->group_index(),
9220 relative_address_base);
9223 case elfcpp::R_ARM_LDC_PC_G0:
9224 case elfcpp::R_ARM_LDC_PC_G1:
9225 case elfcpp::R_ARM_LDC_PC_G2:
9226 case elfcpp::R_ARM_LDC_SB_G0:
9227 case elfcpp::R_ARM_LDC_SB_G1:
9228 case elfcpp::R_ARM_LDC_SB_G2:
9230 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9231 reloc_property->group_index(),
9232 relative_address_base);
9235 // These are initial tls relocs, which are expected when
9237 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9238 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9239 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9240 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9241 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9243 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9244 view, address, view_size);
9247 // The known and unknown unsupported and/or deprecated relocations.
9248 case elfcpp::R_ARM_PC24:
9249 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9250 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9251 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9253 // Just silently leave the method. We should get an appropriate error
9254 // message in the scan methods.
9258 // Report any errors.
9259 switch (reloc_status)
9261 case Arm_relocate_functions::STATUS_OKAY:
9263 case Arm_relocate_functions::STATUS_OVERFLOW:
9264 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9265 _("relocation overflow in %s"),
9266 reloc_property->name().c_str());
9268 case Arm_relocate_functions::STATUS_BAD_RELOC:
9269 gold_error_at_location(
9273 _("unexpected opcode while processing relocation %s"),
9274 reloc_property->name().c_str());
9283 // Perform a TLS relocation.
9285 template<bool big_endian>
9286 inline typename Arm_relocate_functions<big_endian>::Status
9287 Target_arm<big_endian>::Relocate::relocate_tls(
9288 const Relocate_info<32, big_endian>* relinfo,
9289 Target_arm<big_endian>* target,
9291 const elfcpp::Rel<32, big_endian>& rel,
9292 unsigned int r_type,
9293 const Sized_symbol<32>* gsym,
9294 const Symbol_value<32>* psymval,
9295 unsigned char* view,
9296 elfcpp::Elf_types<32>::Elf_Addr address,
9297 section_size_type /*view_size*/ )
9299 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9300 typedef Relocate_functions<32, big_endian> RelocFuncs;
9301 Output_segment* tls_segment = relinfo->layout->tls_segment();
9303 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9305 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9307 const bool is_final = (gsym == NULL
9308 ? !parameters->options().shared()
9309 : gsym->final_value_is_known());
9310 const tls::Tls_optimization optimized_type
9311 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9314 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9316 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9317 unsigned int got_offset;
9320 gold_assert(gsym->has_got_offset(got_type));
9321 got_offset = gsym->got_offset(got_type) - target->got_size();
9325 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9326 gold_assert(object->local_has_got_offset(r_sym, got_type));
9327 got_offset = (object->local_got_offset(r_sym, got_type)
9328 - target->got_size());
9330 if (optimized_type == tls::TLSOPT_NONE)
9332 Arm_address got_entry =
9333 target->got_plt_section()->address() + got_offset;
9335 // Relocate the field with the PC relative offset of the pair of
9337 RelocFuncs::pcrel32(view, got_entry, address);
9338 return ArmRelocFuncs::STATUS_OKAY;
9343 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9344 if (optimized_type == tls::TLSOPT_NONE)
9346 // Relocate the field with the offset of the GOT entry for
9347 // the module index.
9348 unsigned int got_offset;
9349 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9350 - target->got_size());
9351 Arm_address got_entry =
9352 target->got_plt_section()->address() + got_offset;
9354 // Relocate the field with the PC relative offset of the pair of
9356 RelocFuncs::pcrel32(view, got_entry, address);
9357 return ArmRelocFuncs::STATUS_OKAY;
9361 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9362 RelocFuncs::rel32(view, value);
9363 return ArmRelocFuncs::STATUS_OKAY;
9365 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9366 if (optimized_type == tls::TLSOPT_NONE)
9368 // Relocate the field with the offset of the GOT entry for
9369 // the tp-relative offset of the symbol.
9370 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9371 unsigned int got_offset;
9374 gold_assert(gsym->has_got_offset(got_type));
9375 got_offset = gsym->got_offset(got_type);
9379 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9380 gold_assert(object->local_has_got_offset(r_sym, got_type));
9381 got_offset = object->local_got_offset(r_sym, got_type);
9384 // All GOT offsets are relative to the end of the GOT.
9385 got_offset -= target->got_size();
9387 Arm_address got_entry =
9388 target->got_plt_section()->address() + got_offset;
9390 // Relocate the field with the PC relative offset of the GOT entry.
9391 RelocFuncs::pcrel32(view, got_entry, address);
9392 return ArmRelocFuncs::STATUS_OKAY;
9396 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9397 // If we're creating a shared library, a dynamic relocation will
9398 // have been created for this location, so do not apply it now.
9399 if (!parameters->options().shared())
9401 gold_assert(tls_segment != NULL);
9403 // $tp points to the TCB, which is followed by the TLS, so we
9404 // need to add TCB size to the offset.
9405 Arm_address aligned_tcb_size =
9406 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9407 RelocFuncs::rel32(view, value + aligned_tcb_size);
9410 return ArmRelocFuncs::STATUS_OKAY;
9416 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9417 _("unsupported reloc %u"),
9419 return ArmRelocFuncs::STATUS_BAD_RELOC;
9422 // Relocate section data.
9424 template<bool big_endian>
9426 Target_arm<big_endian>::relocate_section(
9427 const Relocate_info<32, big_endian>* relinfo,
9428 unsigned int sh_type,
9429 const unsigned char* prelocs,
9431 Output_section* output_section,
9432 bool needs_special_offset_handling,
9433 unsigned char* view,
9434 Arm_address address,
9435 section_size_type view_size,
9436 const Reloc_symbol_changes* reloc_symbol_changes)
9438 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9439 gold_assert(sh_type == elfcpp::SHT_REL);
9441 // See if we are relocating a relaxed input section. If so, the view
9442 // covers the whole output section and we need to adjust accordingly.
9443 if (needs_special_offset_handling)
9445 const Output_relaxed_input_section* poris =
9446 output_section->find_relaxed_input_section(relinfo->object,
9447 relinfo->data_shndx);
9450 Arm_address section_address = poris->address();
9451 section_size_type section_size = poris->data_size();
9453 gold_assert((section_address >= address)
9454 && ((section_address + section_size)
9455 <= (address + view_size)));
9457 off_t offset = section_address - address;
9460 view_size = section_size;
9464 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9471 needs_special_offset_handling,
9475 reloc_symbol_changes);
9478 // Return the size of a relocation while scanning during a relocatable
9481 template<bool big_endian>
9483 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9484 unsigned int r_type,
9487 r_type = get_real_reloc_type(r_type);
9488 const Arm_reloc_property* arp =
9489 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9494 std::string reloc_name =
9495 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9496 gold_error(_("%s: unexpected %s in object file"),
9497 object->name().c_str(), reloc_name.c_str());
9502 // Scan the relocs during a relocatable link.
9504 template<bool big_endian>
9506 Target_arm<big_endian>::scan_relocatable_relocs(
9507 Symbol_table* symtab,
9509 Sized_relobj_file<32, big_endian>* object,
9510 unsigned int data_shndx,
9511 unsigned int sh_type,
9512 const unsigned char* prelocs,
9514 Output_section* output_section,
9515 bool needs_special_offset_handling,
9516 size_t local_symbol_count,
9517 const unsigned char* plocal_symbols,
9518 Relocatable_relocs* rr)
9520 gold_assert(sh_type == elfcpp::SHT_REL);
9522 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9523 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9525 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9526 Scan_relocatable_relocs>(
9534 needs_special_offset_handling,
9540 // Relocate a section during a relocatable link.
9542 template<bool big_endian>
9544 Target_arm<big_endian>::relocate_for_relocatable(
9545 const Relocate_info<32, big_endian>* relinfo,
9546 unsigned int sh_type,
9547 const unsigned char* prelocs,
9549 Output_section* output_section,
9550 off_t offset_in_output_section,
9551 const Relocatable_relocs* rr,
9552 unsigned char* view,
9553 Arm_address view_address,
9554 section_size_type view_size,
9555 unsigned char* reloc_view,
9556 section_size_type reloc_view_size)
9558 gold_assert(sh_type == elfcpp::SHT_REL);
9560 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9565 offset_in_output_section,
9574 // Perform target-specific processing in a relocatable link. This is
9575 // only used if we use the relocation strategy RELOC_SPECIAL.
9577 template<bool big_endian>
9579 Target_arm<big_endian>::relocate_special_relocatable(
9580 const Relocate_info<32, big_endian>* relinfo,
9581 unsigned int sh_type,
9582 const unsigned char* preloc_in,
9584 Output_section* output_section,
9585 off_t offset_in_output_section,
9586 unsigned char* view,
9587 elfcpp::Elf_types<32>::Elf_Addr view_address,
9589 unsigned char* preloc_out)
9591 // We can only handle REL type relocation sections.
9592 gold_assert(sh_type == elfcpp::SHT_REL);
9594 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9595 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9597 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9599 const Arm_relobj<big_endian>* object =
9600 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9601 const unsigned int local_count = object->local_symbol_count();
9603 Reltype reloc(preloc_in);
9604 Reltype_write reloc_write(preloc_out);
9606 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9607 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9608 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9610 const Arm_reloc_property* arp =
9611 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9612 gold_assert(arp != NULL);
9614 // Get the new symbol index.
9615 // We only use RELOC_SPECIAL strategy in local relocations.
9616 gold_assert(r_sym < local_count);
9618 // We are adjusting a section symbol. We need to find
9619 // the symbol table index of the section symbol for
9620 // the output section corresponding to input section
9621 // in which this symbol is defined.
9623 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9624 gold_assert(is_ordinary);
9625 Output_section* os = object->output_section(shndx);
9626 gold_assert(os != NULL);
9627 gold_assert(os->needs_symtab_index());
9628 unsigned int new_symndx = os->symtab_index();
9630 // Get the new offset--the location in the output section where
9631 // this relocation should be applied.
9633 Arm_address offset = reloc.get_r_offset();
9634 Arm_address new_offset;
9635 if (offset_in_output_section != invalid_address)
9636 new_offset = offset + offset_in_output_section;
9639 section_offset_type sot_offset =
9640 convert_types<section_offset_type, Arm_address>(offset);
9641 section_offset_type new_sot_offset =
9642 output_section->output_offset(object, relinfo->data_shndx,
9644 gold_assert(new_sot_offset != -1);
9645 new_offset = new_sot_offset;
9648 // In an object file, r_offset is an offset within the section.
9649 // In an executable or dynamic object, generated by
9650 // --emit-relocs, r_offset is an absolute address.
9651 if (!parameters->options().relocatable())
9653 new_offset += view_address;
9654 if (offset_in_output_section != invalid_address)
9655 new_offset -= offset_in_output_section;
9658 reloc_write.put_r_offset(new_offset);
9659 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9661 // Handle the reloc addend.
9662 // The relocation uses a section symbol in the input file.
9663 // We are adjusting it to use a section symbol in the output
9664 // file. The input section symbol refers to some address in
9665 // the input section. We need the relocation in the output
9666 // file to refer to that same address. This adjustment to
9667 // the addend is the same calculation we use for a simple
9668 // absolute relocation for the input section symbol.
9670 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9672 // Handle THUMB bit.
9673 Symbol_value<32> symval;
9674 Arm_address thumb_bit =
9675 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9677 && arp->uses_thumb_bit()
9678 && ((psymval->value(object, 0) & 1) != 0))
9680 Arm_address stripped_value =
9681 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9682 symval.set_output_value(stripped_value);
9686 unsigned char* paddend = view + offset;
9687 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9688 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9691 case elfcpp::R_ARM_ABS8:
9692 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9696 case elfcpp::R_ARM_ABS12:
9697 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9701 case elfcpp::R_ARM_ABS16:
9702 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9706 case elfcpp::R_ARM_THM_ABS5:
9707 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9712 case elfcpp::R_ARM_MOVW_ABS_NC:
9713 case elfcpp::R_ARM_MOVW_PREL_NC:
9714 case elfcpp::R_ARM_MOVW_BREL_NC:
9715 case elfcpp::R_ARM_MOVW_BREL:
9716 reloc_status = Arm_relocate_functions<big_endian>::movw(
9717 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9720 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9721 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9722 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9723 case elfcpp::R_ARM_THM_MOVW_BREL:
9724 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9725 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9728 case elfcpp::R_ARM_THM_CALL:
9729 case elfcpp::R_ARM_THM_XPC22:
9730 case elfcpp::R_ARM_THM_JUMP24:
9732 Arm_relocate_functions<big_endian>::thumb_branch_common(
9733 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9737 case elfcpp::R_ARM_PLT32:
9738 case elfcpp::R_ARM_CALL:
9739 case elfcpp::R_ARM_JUMP24:
9740 case elfcpp::R_ARM_XPC25:
9742 Arm_relocate_functions<big_endian>::arm_branch_common(
9743 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9747 case elfcpp::R_ARM_THM_JUMP19:
9749 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9750 psymval, 0, thumb_bit);
9753 case elfcpp::R_ARM_THM_JUMP6:
9755 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9759 case elfcpp::R_ARM_THM_JUMP8:
9761 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9765 case elfcpp::R_ARM_THM_JUMP11:
9767 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9771 case elfcpp::R_ARM_PREL31:
9773 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9777 case elfcpp::R_ARM_THM_PC8:
9779 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9783 case elfcpp::R_ARM_THM_PC12:
9785 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9789 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9791 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9795 // These relocation truncate relocation results so we cannot handle them
9796 // in a relocatable link.
9797 case elfcpp::R_ARM_MOVT_ABS:
9798 case elfcpp::R_ARM_THM_MOVT_ABS:
9799 case elfcpp::R_ARM_MOVT_PREL:
9800 case elfcpp::R_ARM_MOVT_BREL:
9801 case elfcpp::R_ARM_THM_MOVT_PREL:
9802 case elfcpp::R_ARM_THM_MOVT_BREL:
9803 case elfcpp::R_ARM_ALU_PC_G0_NC:
9804 case elfcpp::R_ARM_ALU_PC_G0:
9805 case elfcpp::R_ARM_ALU_PC_G1_NC:
9806 case elfcpp::R_ARM_ALU_PC_G1:
9807 case elfcpp::R_ARM_ALU_PC_G2:
9808 case elfcpp::R_ARM_ALU_SB_G0_NC:
9809 case elfcpp::R_ARM_ALU_SB_G0:
9810 case elfcpp::R_ARM_ALU_SB_G1_NC:
9811 case elfcpp::R_ARM_ALU_SB_G1:
9812 case elfcpp::R_ARM_ALU_SB_G2:
9813 case elfcpp::R_ARM_LDR_PC_G0:
9814 case elfcpp::R_ARM_LDR_PC_G1:
9815 case elfcpp::R_ARM_LDR_PC_G2:
9816 case elfcpp::R_ARM_LDR_SB_G0:
9817 case elfcpp::R_ARM_LDR_SB_G1:
9818 case elfcpp::R_ARM_LDR_SB_G2:
9819 case elfcpp::R_ARM_LDRS_PC_G0:
9820 case elfcpp::R_ARM_LDRS_PC_G1:
9821 case elfcpp::R_ARM_LDRS_PC_G2:
9822 case elfcpp::R_ARM_LDRS_SB_G0:
9823 case elfcpp::R_ARM_LDRS_SB_G1:
9824 case elfcpp::R_ARM_LDRS_SB_G2:
9825 case elfcpp::R_ARM_LDC_PC_G0:
9826 case elfcpp::R_ARM_LDC_PC_G1:
9827 case elfcpp::R_ARM_LDC_PC_G2:
9828 case elfcpp::R_ARM_LDC_SB_G0:
9829 case elfcpp::R_ARM_LDC_SB_G1:
9830 case elfcpp::R_ARM_LDC_SB_G2:
9831 gold_error(_("cannot handle %s in a relocatable link"),
9832 arp->name().c_str());
9839 // Report any errors.
9840 switch (reloc_status)
9842 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9844 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9845 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9846 _("relocation overflow in %s"),
9847 arp->name().c_str());
9849 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9850 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9851 _("unexpected opcode while processing relocation %s"),
9852 arp->name().c_str());
9859 // Return the value to use for a dynamic symbol which requires special
9860 // treatment. This is how we support equality comparisons of function
9861 // pointers across shared library boundaries, as described in the
9862 // processor specific ABI supplement.
9864 template<bool big_endian>
9866 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9868 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9869 return this->plt_section()->address() + gsym->plt_offset();
9872 // Map platform-specific relocs to real relocs
9874 template<bool big_endian>
9876 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9880 case elfcpp::R_ARM_TARGET1:
9881 // This is either R_ARM_ABS32 or R_ARM_REL32;
9882 return elfcpp::R_ARM_ABS32;
9884 case elfcpp::R_ARM_TARGET2:
9885 // This can be any reloc type but usually is R_ARM_GOT_PREL
9886 return elfcpp::R_ARM_GOT_PREL;
9893 // Whether if two EABI versions V1 and V2 are compatible.
9895 template<bool big_endian>
9897 Target_arm<big_endian>::are_eabi_versions_compatible(
9898 elfcpp::Elf_Word v1,
9899 elfcpp::Elf_Word v2)
9901 // v4 and v5 are the same spec before and after it was released,
9902 // so allow mixing them.
9903 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9904 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9905 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9911 // Combine FLAGS from an input object called NAME and the processor-specific
9912 // flags in the ELF header of the output. Much of this is adapted from the
9913 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9914 // in bfd/elf32-arm.c.
9916 template<bool big_endian>
9918 Target_arm<big_endian>::merge_processor_specific_flags(
9919 const std::string& name,
9920 elfcpp::Elf_Word flags)
9922 if (this->are_processor_specific_flags_set())
9924 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9926 // Nothing to merge if flags equal to those in output.
9927 if (flags == out_flags)
9930 // Complain about various flag mismatches.
9931 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9932 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9933 if (!this->are_eabi_versions_compatible(version1, version2)
9934 && parameters->options().warn_mismatch())
9935 gold_error(_("Source object %s has EABI version %d but output has "
9936 "EABI version %d."),
9938 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9939 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9943 // If the input is the default architecture and had the default
9944 // flags then do not bother setting the flags for the output
9945 // architecture, instead allow future merges to do this. If no
9946 // future merges ever set these flags then they will retain their
9947 // uninitialised values, which surprise surprise, correspond
9948 // to the default values.
9952 // This is the first time, just copy the flags.
9953 // We only copy the EABI version for now.
9954 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9958 // Adjust ELF file header.
9959 template<bool big_endian>
9961 Target_arm<big_endian>::do_adjust_elf_header(
9962 unsigned char* view,
9965 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9967 elfcpp::Ehdr<32, big_endian> ehdr(view);
9968 unsigned char e_ident[elfcpp::EI_NIDENT];
9969 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9971 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9972 == elfcpp::EF_ARM_EABI_UNKNOWN)
9973 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9975 e_ident[elfcpp::EI_OSABI] = 0;
9976 e_ident[elfcpp::EI_ABIVERSION] = 0;
9978 // FIXME: Do EF_ARM_BE8 adjustment.
9980 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9981 oehdr.put_e_ident(e_ident);
9984 // do_make_elf_object to override the same function in the base class.
9985 // We need to use a target-specific sub-class of
9986 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9987 // Hence we need to have our own ELF object creation.
9989 template<bool big_endian>
9991 Target_arm<big_endian>::do_make_elf_object(
9992 const std::string& name,
9993 Input_file* input_file,
9994 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9996 int et = ehdr.get_e_type();
9997 if (et == elfcpp::ET_REL)
9999 Arm_relobj<big_endian>* obj =
10000 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10004 else if (et == elfcpp::ET_DYN)
10006 Sized_dynobj<32, big_endian>* obj =
10007 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10013 gold_error(_("%s: unsupported ELF file type %d"),
10019 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10020 // Returns -1 if no architecture could be read.
10021 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10023 template<bool big_endian>
10025 Target_arm<big_endian>::get_secondary_compatible_arch(
10026 const Attributes_section_data* pasd)
10028 const Object_attribute* known_attributes =
10029 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10031 // Note: the tag and its argument below are uleb128 values, though
10032 // currently-defined values fit in one byte for each.
10033 const std::string& sv =
10034 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10036 && sv.data()[0] == elfcpp::Tag_CPU_arch
10037 && (sv.data()[1] & 128) != 128)
10038 return sv.data()[1];
10040 // This tag is "safely ignorable", so don't complain if it looks funny.
10044 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10045 // The tag is removed if ARCH is -1.
10046 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10048 template<bool big_endian>
10050 Target_arm<big_endian>::set_secondary_compatible_arch(
10051 Attributes_section_data* pasd,
10054 Object_attribute* known_attributes =
10055 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10059 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10063 // Note: the tag and its argument below are uleb128 values, though
10064 // currently-defined values fit in one byte for each.
10066 sv[0] = elfcpp::Tag_CPU_arch;
10067 gold_assert(arch != 0);
10071 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10074 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10076 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10078 template<bool big_endian>
10080 Target_arm<big_endian>::tag_cpu_arch_combine(
10083 int* secondary_compat_out,
10085 int secondary_compat)
10087 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10088 static const int v6t2[] =
10090 T(V6T2), // PRE_V4.
10100 static const int v6k[] =
10113 static const int v7[] =
10127 static const int v6_m[] =
10142 static const int v6s_m[] =
10158 static const int v7e_m[] =
10165 T(V7E_M), // V5TEJ.
10172 T(V7E_M), // V6S_M.
10175 static const int v4t_plus_v6_m[] =
10182 T(V5TEJ), // V5TEJ.
10189 T(V6S_M), // V6S_M.
10190 T(V7E_M), // V7E_M.
10191 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10193 static const int* comb[] =
10201 // Pseudo-architecture.
10205 // Check we've not got a higher architecture than we know about.
10207 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10209 gold_error(_("%s: unknown CPU architecture"), name);
10213 // Override old tag if we have a Tag_also_compatible_with on the output.
10215 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10216 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10217 oldtag = T(V4T_PLUS_V6_M);
10219 // And override the new tag if we have a Tag_also_compatible_with on the
10222 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10223 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10224 newtag = T(V4T_PLUS_V6_M);
10226 // Architectures before V6KZ add features monotonically.
10227 int tagh = std::max(oldtag, newtag);
10228 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10231 int tagl = std::min(oldtag, newtag);
10232 int result = comb[tagh - T(V6T2)][tagl];
10234 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10235 // as the canonical version.
10236 if (result == T(V4T_PLUS_V6_M))
10239 *secondary_compat_out = T(V6_M);
10242 *secondary_compat_out = -1;
10246 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10247 name, oldtag, newtag);
10255 // Helper to print AEABI enum tag value.
10257 template<bool big_endian>
10259 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10261 static const char* aeabi_enum_names[] =
10262 { "", "variable-size", "32-bit", "" };
10263 const size_t aeabi_enum_names_size =
10264 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10266 if (value < aeabi_enum_names_size)
10267 return std::string(aeabi_enum_names[value]);
10271 sprintf(buffer, "<unknown value %u>", value);
10272 return std::string(buffer);
10276 // Return the string value to store in TAG_CPU_name.
10278 template<bool big_endian>
10280 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10282 static const char* name_table[] = {
10283 // These aren't real CPU names, but we can't guess
10284 // that from the architecture version alone.
10300 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10302 if (value < name_table_size)
10303 return std::string(name_table[value]);
10307 sprintf(buffer, "<unknown CPU value %u>", value);
10308 return std::string(buffer);
10312 // Merge object attributes from input file called NAME with those of the
10313 // output. The input object attributes are in the object pointed by PASD.
10315 template<bool big_endian>
10317 Target_arm<big_endian>::merge_object_attributes(
10319 const Attributes_section_data* pasd)
10321 // Return if there is no attributes section data.
10325 // If output has no object attributes, just copy.
10326 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10327 if (this->attributes_section_data_ == NULL)
10329 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10330 Object_attribute* out_attr =
10331 this->attributes_section_data_->known_attributes(vendor);
10333 // We do not output objects with Tag_MPextension_use_legacy - we move
10334 // the attribute's value to Tag_MPextension_use. */
10335 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10337 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10338 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10339 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10341 gold_error(_("%s has both the current and legacy "
10342 "Tag_MPextension_use attributes"),
10346 out_attr[elfcpp::Tag_MPextension_use] =
10347 out_attr[elfcpp::Tag_MPextension_use_legacy];
10348 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10349 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10355 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10356 Object_attribute* out_attr =
10357 this->attributes_section_data_->known_attributes(vendor);
10359 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10360 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10361 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10363 // Ignore mismatches if the object doesn't use floating point. */
10364 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10365 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10366 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10367 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10368 && parameters->options().warn_mismatch())
10369 gold_error(_("%s uses VFP register arguments, output does not"),
10373 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10375 // Merge this attribute with existing attributes.
10378 case elfcpp::Tag_CPU_raw_name:
10379 case elfcpp::Tag_CPU_name:
10380 // These are merged after Tag_CPU_arch.
10383 case elfcpp::Tag_ABI_optimization_goals:
10384 case elfcpp::Tag_ABI_FP_optimization_goals:
10385 // Use the first value seen.
10388 case elfcpp::Tag_CPU_arch:
10390 unsigned int saved_out_attr = out_attr->int_value();
10391 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10392 int secondary_compat =
10393 this->get_secondary_compatible_arch(pasd);
10394 int secondary_compat_out =
10395 this->get_secondary_compatible_arch(
10396 this->attributes_section_data_);
10397 out_attr[i].set_int_value(
10398 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10399 &secondary_compat_out,
10400 in_attr[i].int_value(),
10401 secondary_compat));
10402 this->set_secondary_compatible_arch(this->attributes_section_data_,
10403 secondary_compat_out);
10405 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10406 if (out_attr[i].int_value() == saved_out_attr)
10407 ; // Leave the names alone.
10408 else if (out_attr[i].int_value() == in_attr[i].int_value())
10410 // The output architecture has been changed to match the
10411 // input architecture. Use the input names.
10412 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10413 in_attr[elfcpp::Tag_CPU_name].string_value());
10414 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10415 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10419 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10420 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10423 // If we still don't have a value for Tag_CPU_name,
10424 // make one up now. Tag_CPU_raw_name remains blank.
10425 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10427 const std::string cpu_name =
10428 this->tag_cpu_name_value(out_attr[i].int_value());
10429 // FIXME: If we see an unknown CPU, this will be set
10430 // to "<unknown CPU n>", where n is the attribute value.
10431 // This is different from BFD, which leaves the name alone.
10432 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10437 case elfcpp::Tag_ARM_ISA_use:
10438 case elfcpp::Tag_THUMB_ISA_use:
10439 case elfcpp::Tag_WMMX_arch:
10440 case elfcpp::Tag_Advanced_SIMD_arch:
10441 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10442 case elfcpp::Tag_ABI_FP_rounding:
10443 case elfcpp::Tag_ABI_FP_exceptions:
10444 case elfcpp::Tag_ABI_FP_user_exceptions:
10445 case elfcpp::Tag_ABI_FP_number_model:
10446 case elfcpp::Tag_VFP_HP_extension:
10447 case elfcpp::Tag_CPU_unaligned_access:
10448 case elfcpp::Tag_T2EE_use:
10449 case elfcpp::Tag_Virtualization_use:
10450 case elfcpp::Tag_MPextension_use:
10451 // Use the largest value specified.
10452 if (in_attr[i].int_value() > out_attr[i].int_value())
10453 out_attr[i].set_int_value(in_attr[i].int_value());
10456 case elfcpp::Tag_ABI_align8_preserved:
10457 case elfcpp::Tag_ABI_PCS_RO_data:
10458 // Use the smallest value specified.
10459 if (in_attr[i].int_value() < out_attr[i].int_value())
10460 out_attr[i].set_int_value(in_attr[i].int_value());
10463 case elfcpp::Tag_ABI_align8_needed:
10464 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10465 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10466 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10469 // This error message should be enabled once all non-conforming
10470 // binaries in the toolchain have had the attributes set
10472 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10476 case elfcpp::Tag_ABI_FP_denormal:
10477 case elfcpp::Tag_ABI_PCS_GOT_use:
10479 // These tags have 0 = don't care, 1 = strong requirement,
10480 // 2 = weak requirement.
10481 static const int order_021[3] = {0, 2, 1};
10483 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10484 // value if greater than 2 (for future-proofing).
10485 if ((in_attr[i].int_value() > 2
10486 && in_attr[i].int_value() > out_attr[i].int_value())
10487 || (in_attr[i].int_value() <= 2
10488 && out_attr[i].int_value() <= 2
10489 && (order_021[in_attr[i].int_value()]
10490 > order_021[out_attr[i].int_value()])))
10491 out_attr[i].set_int_value(in_attr[i].int_value());
10495 case elfcpp::Tag_CPU_arch_profile:
10496 if (out_attr[i].int_value() != in_attr[i].int_value())
10498 // 0 will merge with anything.
10499 // 'A' and 'S' merge to 'A'.
10500 // 'R' and 'S' merge to 'R'.
10501 // 'M' and 'A|R|S' is an error.
10502 if (out_attr[i].int_value() == 0
10503 || (out_attr[i].int_value() == 'S'
10504 && (in_attr[i].int_value() == 'A'
10505 || in_attr[i].int_value() == 'R')))
10506 out_attr[i].set_int_value(in_attr[i].int_value());
10507 else if (in_attr[i].int_value() == 0
10508 || (in_attr[i].int_value() == 'S'
10509 && (out_attr[i].int_value() == 'A'
10510 || out_attr[i].int_value() == 'R')))
10512 else if (parameters->options().warn_mismatch())
10515 (_("conflicting architecture profiles %c/%c"),
10516 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10517 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10521 case elfcpp::Tag_VFP_arch:
10523 static const struct
10527 } vfp_versions[7] =
10538 // Values greater than 6 aren't defined, so just pick the
10540 if (in_attr[i].int_value() > 6
10541 && in_attr[i].int_value() > out_attr[i].int_value())
10543 *out_attr = *in_attr;
10546 // The output uses the superset of input features
10547 // (ISA version) and registers.
10548 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10549 vfp_versions[out_attr[i].int_value()].ver);
10550 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10551 vfp_versions[out_attr[i].int_value()].regs);
10552 // This assumes all possible supersets are also a valid
10555 for (newval = 6; newval > 0; newval--)
10557 if (regs == vfp_versions[newval].regs
10558 && ver == vfp_versions[newval].ver)
10561 out_attr[i].set_int_value(newval);
10564 case elfcpp::Tag_PCS_config:
10565 if (out_attr[i].int_value() == 0)
10566 out_attr[i].set_int_value(in_attr[i].int_value());
10567 else if (in_attr[i].int_value() != 0
10568 && out_attr[i].int_value() != 0
10569 && parameters->options().warn_mismatch())
10571 // It's sometimes ok to mix different configs, so this is only
10573 gold_warning(_("%s: conflicting platform configuration"), name);
10576 case elfcpp::Tag_ABI_PCS_R9_use:
10577 if (in_attr[i].int_value() != out_attr[i].int_value()
10578 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10579 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10580 && parameters->options().warn_mismatch())
10582 gold_error(_("%s: conflicting use of R9"), name);
10584 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10585 out_attr[i].set_int_value(in_attr[i].int_value());
10587 case elfcpp::Tag_ABI_PCS_RW_data:
10588 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10589 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10590 != elfcpp::AEABI_R9_SB)
10591 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10592 != elfcpp::AEABI_R9_unused)
10593 && parameters->options().warn_mismatch())
10595 gold_error(_("%s: SB relative addressing conflicts with use "
10599 // Use the smallest value specified.
10600 if (in_attr[i].int_value() < out_attr[i].int_value())
10601 out_attr[i].set_int_value(in_attr[i].int_value());
10603 case elfcpp::Tag_ABI_PCS_wchar_t:
10604 if (out_attr[i].int_value()
10605 && in_attr[i].int_value()
10606 && out_attr[i].int_value() != in_attr[i].int_value()
10607 && parameters->options().warn_mismatch()
10608 && parameters->options().wchar_size_warning())
10610 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10611 "use %u-byte wchar_t; use of wchar_t values "
10612 "across objects may fail"),
10613 name, in_attr[i].int_value(),
10614 out_attr[i].int_value());
10616 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10617 out_attr[i].set_int_value(in_attr[i].int_value());
10619 case elfcpp::Tag_ABI_enum_size:
10620 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10622 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10623 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10625 // The existing object is compatible with anything.
10626 // Use whatever requirements the new object has.
10627 out_attr[i].set_int_value(in_attr[i].int_value());
10629 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10630 && out_attr[i].int_value() != in_attr[i].int_value()
10631 && parameters->options().warn_mismatch()
10632 && parameters->options().enum_size_warning())
10634 unsigned int in_value = in_attr[i].int_value();
10635 unsigned int out_value = out_attr[i].int_value();
10636 gold_warning(_("%s uses %s enums yet the output is to use "
10637 "%s enums; use of enum values across objects "
10640 this->aeabi_enum_name(in_value).c_str(),
10641 this->aeabi_enum_name(out_value).c_str());
10645 case elfcpp::Tag_ABI_VFP_args:
10648 case elfcpp::Tag_ABI_WMMX_args:
10649 if (in_attr[i].int_value() != out_attr[i].int_value()
10650 && parameters->options().warn_mismatch())
10652 gold_error(_("%s uses iWMMXt register arguments, output does "
10657 case Object_attribute::Tag_compatibility:
10658 // Merged in target-independent code.
10660 case elfcpp::Tag_ABI_HardFP_use:
10661 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10662 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10663 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10664 out_attr[i].set_int_value(3);
10665 else if (in_attr[i].int_value() > out_attr[i].int_value())
10666 out_attr[i].set_int_value(in_attr[i].int_value());
10668 case elfcpp::Tag_ABI_FP_16bit_format:
10669 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10671 if (in_attr[i].int_value() != out_attr[i].int_value()
10672 && parameters->options().warn_mismatch())
10673 gold_error(_("fp16 format mismatch between %s and output"),
10676 if (in_attr[i].int_value() != 0)
10677 out_attr[i].set_int_value(in_attr[i].int_value());
10680 case elfcpp::Tag_DIV_use:
10681 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10682 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10683 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10684 // CPU. We will merge as follows: If the input attribute's value
10685 // is one then the output attribute's value remains unchanged. If
10686 // the input attribute's value is zero or two then if the output
10687 // attribute's value is one the output value is set to the input
10688 // value, otherwise the output value must be the same as the
10690 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10692 if (in_attr[i].int_value() != out_attr[i].int_value())
10694 gold_error(_("DIV usage mismatch between %s and output"),
10699 if (in_attr[i].int_value() != 1)
10700 out_attr[i].set_int_value(in_attr[i].int_value());
10704 case elfcpp::Tag_MPextension_use_legacy:
10705 // We don't output objects with Tag_MPextension_use_legacy - we
10706 // move the value to Tag_MPextension_use.
10707 if (in_attr[i].int_value() != 0
10708 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10710 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10711 != in_attr[i].int_value())
10713 gold_error(_("%s has has both the current and legacy "
10714 "Tag_MPextension_use attributes"),
10719 if (in_attr[i].int_value()
10720 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10721 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10725 case elfcpp::Tag_nodefaults:
10726 // This tag is set if it exists, but the value is unused (and is
10727 // typically zero). We don't actually need to do anything here -
10728 // the merge happens automatically when the type flags are merged
10731 case elfcpp::Tag_also_compatible_with:
10732 // Already done in Tag_CPU_arch.
10734 case elfcpp::Tag_conformance:
10735 // Keep the attribute if it matches. Throw it away otherwise.
10736 // No attribute means no claim to conform.
10737 if (in_attr[i].string_value() != out_attr[i].string_value())
10738 out_attr[i].set_string_value("");
10743 const char* err_object = NULL;
10745 // The "known_obj_attributes" table does contain some undefined
10746 // attributes. Ensure that there are unused.
10747 if (out_attr[i].int_value() != 0
10748 || out_attr[i].string_value() != "")
10749 err_object = "output";
10750 else if (in_attr[i].int_value() != 0
10751 || in_attr[i].string_value() != "")
10754 if (err_object != NULL
10755 && parameters->options().warn_mismatch())
10757 // Attribute numbers >=64 (mod 128) can be safely ignored.
10758 if ((i & 127) < 64)
10759 gold_error(_("%s: unknown mandatory EABI object attribute "
10763 gold_warning(_("%s: unknown EABI object attribute %d"),
10767 // Only pass on attributes that match in both inputs.
10768 if (!in_attr[i].matches(out_attr[i]))
10770 out_attr[i].set_int_value(0);
10771 out_attr[i].set_string_value("");
10776 // If out_attr was copied from in_attr then it won't have a type yet.
10777 if (in_attr[i].type() && !out_attr[i].type())
10778 out_attr[i].set_type(in_attr[i].type());
10781 // Merge Tag_compatibility attributes and any common GNU ones.
10782 this->attributes_section_data_->merge(name, pasd);
10784 // Check for any attributes not known on ARM.
10785 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10786 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10787 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10788 Other_attributes* out_other_attributes =
10789 this->attributes_section_data_->other_attributes(vendor);
10790 Other_attributes::iterator out_iter = out_other_attributes->begin();
10792 while (in_iter != in_other_attributes->end()
10793 || out_iter != out_other_attributes->end())
10795 const char* err_object = NULL;
10798 // The tags for each list are in numerical order.
10799 // If the tags are equal, then merge.
10800 if (out_iter != out_other_attributes->end()
10801 && (in_iter == in_other_attributes->end()
10802 || in_iter->first > out_iter->first))
10804 // This attribute only exists in output. We can't merge, and we
10805 // don't know what the tag means, so delete it.
10806 err_object = "output";
10807 err_tag = out_iter->first;
10808 int saved_tag = out_iter->first;
10809 delete out_iter->second;
10810 out_other_attributes->erase(out_iter);
10811 out_iter = out_other_attributes->upper_bound(saved_tag);
10813 else if (in_iter != in_other_attributes->end()
10814 && (out_iter != out_other_attributes->end()
10815 || in_iter->first < out_iter->first))
10817 // This attribute only exists in input. We can't merge, and we
10818 // don't know what the tag means, so ignore it.
10820 err_tag = in_iter->first;
10823 else // The tags are equal.
10825 // As present, all attributes in the list are unknown, and
10826 // therefore can't be merged meaningfully.
10827 err_object = "output";
10828 err_tag = out_iter->first;
10830 // Only pass on attributes that match in both inputs.
10831 if (!in_iter->second->matches(*(out_iter->second)))
10833 // No match. Delete the attribute.
10834 int saved_tag = out_iter->first;
10835 delete out_iter->second;
10836 out_other_attributes->erase(out_iter);
10837 out_iter = out_other_attributes->upper_bound(saved_tag);
10841 // Matched. Keep the attribute and move to the next.
10847 if (err_object && parameters->options().warn_mismatch())
10849 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10850 if ((err_tag & 127) < 64)
10852 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10853 err_object, err_tag);
10857 gold_warning(_("%s: unknown EABI object attribute %d"),
10858 err_object, err_tag);
10864 // Stub-generation methods for Target_arm.
10866 // Make a new Arm_input_section object.
10868 template<bool big_endian>
10869 Arm_input_section<big_endian>*
10870 Target_arm<big_endian>::new_arm_input_section(
10872 unsigned int shndx)
10874 Section_id sid(relobj, shndx);
10876 Arm_input_section<big_endian>* arm_input_section =
10877 new Arm_input_section<big_endian>(relobj, shndx);
10878 arm_input_section->init();
10880 // Register new Arm_input_section in map for look-up.
10881 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10882 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10884 // Make sure that it we have not created another Arm_input_section
10885 // for this input section already.
10886 gold_assert(ins.second);
10888 return arm_input_section;
10891 // Find the Arm_input_section object corresponding to the SHNDX-th input
10892 // section of RELOBJ.
10894 template<bool big_endian>
10895 Arm_input_section<big_endian>*
10896 Target_arm<big_endian>::find_arm_input_section(
10898 unsigned int shndx) const
10900 Section_id sid(relobj, shndx);
10901 typename Arm_input_section_map::const_iterator p =
10902 this->arm_input_section_map_.find(sid);
10903 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10906 // Make a new stub table.
10908 template<bool big_endian>
10909 Stub_table<big_endian>*
10910 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10912 Stub_table<big_endian>* stub_table =
10913 new Stub_table<big_endian>(owner);
10914 this->stub_tables_.push_back(stub_table);
10916 stub_table->set_address(owner->address() + owner->data_size());
10917 stub_table->set_file_offset(owner->offset() + owner->data_size());
10918 stub_table->finalize_data_size();
10923 // Scan a relocation for stub generation.
10925 template<bool big_endian>
10927 Target_arm<big_endian>::scan_reloc_for_stub(
10928 const Relocate_info<32, big_endian>* relinfo,
10929 unsigned int r_type,
10930 const Sized_symbol<32>* gsym,
10931 unsigned int r_sym,
10932 const Symbol_value<32>* psymval,
10933 elfcpp::Elf_types<32>::Elf_Swxword addend,
10934 Arm_address address)
10936 typedef typename Target_arm<big_endian>::Relocate Relocate;
10938 const Arm_relobj<big_endian>* arm_relobj =
10939 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10941 bool target_is_thumb;
10942 Symbol_value<32> symval;
10945 // This is a global symbol. Determine if we use PLT and if the
10946 // final target is THUMB.
10947 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10949 // This uses a PLT, change the symbol value.
10950 symval.set_output_value(this->plt_section()->address()
10951 + gsym->plt_offset());
10953 target_is_thumb = false;
10955 else if (gsym->is_undefined())
10956 // There is no need to generate a stub symbol is undefined.
10961 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10962 || (gsym->type() == elfcpp::STT_FUNC
10963 && !gsym->is_undefined()
10964 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10969 // This is a local symbol. Determine if the final target is THUMB.
10970 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10973 // Strip LSB if this points to a THUMB target.
10974 const Arm_reloc_property* reloc_property =
10975 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10976 gold_assert(reloc_property != NULL);
10977 if (target_is_thumb
10978 && reloc_property->uses_thumb_bit()
10979 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10981 Arm_address stripped_value =
10982 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10983 symval.set_output_value(stripped_value);
10987 // Get the symbol value.
10988 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10990 // Owing to pipelining, the PC relative branches below actually skip
10991 // two instructions when the branch offset is 0.
10992 Arm_address destination;
10995 case elfcpp::R_ARM_CALL:
10996 case elfcpp::R_ARM_JUMP24:
10997 case elfcpp::R_ARM_PLT32:
10999 destination = value + addend + 8;
11001 case elfcpp::R_ARM_THM_CALL:
11002 case elfcpp::R_ARM_THM_XPC22:
11003 case elfcpp::R_ARM_THM_JUMP24:
11004 case elfcpp::R_ARM_THM_JUMP19:
11006 destination = value + addend + 4;
11009 gold_unreachable();
11012 Reloc_stub* stub = NULL;
11013 Stub_type stub_type =
11014 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11016 if (stub_type != arm_stub_none)
11018 // Try looking up an existing stub from a stub table.
11019 Stub_table<big_endian>* stub_table =
11020 arm_relobj->stub_table(relinfo->data_shndx);
11021 gold_assert(stub_table != NULL);
11023 // Locate stub by destination.
11024 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11026 // Create a stub if there is not one already
11027 stub = stub_table->find_reloc_stub(stub_key);
11030 // create a new stub and add it to stub table.
11031 stub = this->stub_factory().make_reloc_stub(stub_type);
11032 stub_table->add_reloc_stub(stub, stub_key);
11035 // Record the destination address.
11036 stub->set_destination_address(destination
11037 | (target_is_thumb ? 1 : 0));
11040 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11041 if (this->fix_cortex_a8_
11042 && (r_type == elfcpp::R_ARM_THM_JUMP24
11043 || r_type == elfcpp::R_ARM_THM_JUMP19
11044 || r_type == elfcpp::R_ARM_THM_CALL
11045 || r_type == elfcpp::R_ARM_THM_XPC22)
11046 && (address & 0xfffU) == 0xffeU)
11048 // Found a candidate. Note we haven't checked the destination is
11049 // within 4K here: if we do so (and don't create a record) we can't
11050 // tell that a branch should have been relocated when scanning later.
11051 this->cortex_a8_relocs_info_[address] =
11052 new Cortex_a8_reloc(stub, r_type,
11053 destination | (target_is_thumb ? 1 : 0));
11057 // This function scans a relocation sections for stub generation.
11058 // The template parameter Relocate must be a class type which provides
11059 // a single function, relocate(), which implements the machine
11060 // specific part of a relocation.
11062 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11063 // SHT_REL or SHT_RELA.
11065 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11066 // of relocs. OUTPUT_SECTION is the output section.
11067 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11068 // mapped to output offsets.
11070 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11071 // VIEW_SIZE is the size. These refer to the input section, unless
11072 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11073 // the output section.
11075 template<bool big_endian>
11076 template<int sh_type>
11078 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11079 const Relocate_info<32, big_endian>* relinfo,
11080 const unsigned char* prelocs,
11081 size_t reloc_count,
11082 Output_section* output_section,
11083 bool needs_special_offset_handling,
11084 const unsigned char* view,
11085 elfcpp::Elf_types<32>::Elf_Addr view_address,
11088 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11089 const int reloc_size =
11090 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11092 Arm_relobj<big_endian>* arm_object =
11093 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11094 unsigned int local_count = arm_object->local_symbol_count();
11096 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11098 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11100 Reltype reloc(prelocs);
11102 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11103 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11104 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11106 r_type = this->get_real_reloc_type(r_type);
11108 // Only a few relocation types need stubs.
11109 if ((r_type != elfcpp::R_ARM_CALL)
11110 && (r_type != elfcpp::R_ARM_JUMP24)
11111 && (r_type != elfcpp::R_ARM_PLT32)
11112 && (r_type != elfcpp::R_ARM_THM_CALL)
11113 && (r_type != elfcpp::R_ARM_THM_XPC22)
11114 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11115 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11116 && (r_type != elfcpp::R_ARM_V4BX))
11119 section_offset_type offset =
11120 convert_to_section_size_type(reloc.get_r_offset());
11122 if (needs_special_offset_handling)
11124 offset = output_section->output_offset(relinfo->object,
11125 relinfo->data_shndx,
11131 // Create a v4bx stub if --fix-v4bx-interworking is used.
11132 if (r_type == elfcpp::R_ARM_V4BX)
11134 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11136 // Get the BX instruction.
11137 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11138 const Valtype* wv =
11139 reinterpret_cast<const Valtype*>(view + offset);
11140 elfcpp::Elf_types<32>::Elf_Swxword insn =
11141 elfcpp::Swap<32, big_endian>::readval(wv);
11142 const uint32_t reg = (insn & 0xf);
11146 // Try looking up an existing stub from a stub table.
11147 Stub_table<big_endian>* stub_table =
11148 arm_object->stub_table(relinfo->data_shndx);
11149 gold_assert(stub_table != NULL);
11151 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11153 // create a new stub and add it to stub table.
11154 Arm_v4bx_stub* stub =
11155 this->stub_factory().make_arm_v4bx_stub(reg);
11156 gold_assert(stub != NULL);
11157 stub_table->add_arm_v4bx_stub(stub);
11165 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11166 elfcpp::Elf_types<32>::Elf_Swxword addend =
11167 stub_addend_reader(r_type, view + offset, reloc);
11169 const Sized_symbol<32>* sym;
11171 Symbol_value<32> symval;
11172 const Symbol_value<32> *psymval;
11173 bool is_defined_in_discarded_section;
11174 unsigned int shndx;
11175 if (r_sym < local_count)
11178 psymval = arm_object->local_symbol(r_sym);
11180 // If the local symbol belongs to a section we are discarding,
11181 // and that section is a debug section, try to find the
11182 // corresponding kept section and map this symbol to its
11183 // counterpart in the kept section. The symbol must not
11184 // correspond to a section we are folding.
11186 shndx = psymval->input_shndx(&is_ordinary);
11187 is_defined_in_discarded_section =
11189 && shndx != elfcpp::SHN_UNDEF
11190 && !arm_object->is_section_included(shndx)
11191 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11193 // We need to compute the would-be final value of this local
11195 if (!is_defined_in_discarded_section)
11197 typedef Sized_relobj_file<32, big_endian> ObjType;
11198 typename ObjType::Compute_final_local_value_status status =
11199 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11201 if (status == ObjType::CFLV_OK)
11203 // Currently we cannot handle a branch to a target in
11204 // a merged section. If this is the case, issue an error
11205 // and also free the merge symbol value.
11206 if (!symval.has_output_value())
11208 const std::string& section_name =
11209 arm_object->section_name(shndx);
11210 arm_object->error(_("cannot handle branch to local %u "
11211 "in a merged section %s"),
11212 r_sym, section_name.c_str());
11218 // We cannot determine the final value.
11225 const Symbol* gsym;
11226 gsym = arm_object->global_symbol(r_sym);
11227 gold_assert(gsym != NULL);
11228 if (gsym->is_forwarder())
11229 gsym = relinfo->symtab->resolve_forwards(gsym);
11231 sym = static_cast<const Sized_symbol<32>*>(gsym);
11232 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11233 symval.set_output_symtab_index(sym->symtab_index());
11235 symval.set_no_output_symtab_entry();
11237 // We need to compute the would-be final value of this global
11239 const Symbol_table* symtab = relinfo->symtab;
11240 const Sized_symbol<32>* sized_symbol =
11241 symtab->get_sized_symbol<32>(gsym);
11242 Symbol_table::Compute_final_value_status status;
11243 Arm_address value =
11244 symtab->compute_final_value<32>(sized_symbol, &status);
11246 // Skip this if the symbol has not output section.
11247 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11249 symval.set_output_value(value);
11251 if (gsym->type() == elfcpp::STT_TLS)
11252 symval.set_is_tls_symbol();
11253 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11254 symval.set_is_ifunc_symbol();
11257 is_defined_in_discarded_section =
11258 (gsym->is_defined_in_discarded_section()
11259 && gsym->is_undefined());
11263 Symbol_value<32> symval2;
11264 if (is_defined_in_discarded_section)
11266 if (comdat_behavior == CB_UNDETERMINED)
11268 std::string name = arm_object->section_name(relinfo->data_shndx);
11269 comdat_behavior = get_comdat_behavior(name.c_str());
11271 if (comdat_behavior == CB_PRETEND)
11273 // FIXME: This case does not work for global symbols.
11274 // We have no place to store the original section index.
11275 // Fortunately this does not matter for comdat sections,
11276 // only for sections explicitly discarded by a linker
11279 typename elfcpp::Elf_types<32>::Elf_Addr value =
11280 arm_object->map_to_kept_section(shndx, &found);
11282 symval2.set_output_value(value + psymval->input_value());
11284 symval2.set_output_value(0);
11288 if (comdat_behavior == CB_WARNING)
11289 gold_warning_at_location(relinfo, i, offset,
11290 _("relocation refers to discarded "
11292 symval2.set_output_value(0);
11294 symval2.set_no_output_symtab_entry();
11295 psymval = &symval2;
11298 // If symbol is a section symbol, we don't know the actual type of
11299 // destination. Give up.
11300 if (psymval->is_section_symbol())
11303 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11304 addend, view_address + offset);
11308 // Scan an input section for stub generation.
11310 template<bool big_endian>
11312 Target_arm<big_endian>::scan_section_for_stubs(
11313 const Relocate_info<32, big_endian>* relinfo,
11314 unsigned int sh_type,
11315 const unsigned char* prelocs,
11316 size_t reloc_count,
11317 Output_section* output_section,
11318 bool needs_special_offset_handling,
11319 const unsigned char* view,
11320 Arm_address view_address,
11321 section_size_type view_size)
11323 if (sh_type == elfcpp::SHT_REL)
11324 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11329 needs_special_offset_handling,
11333 else if (sh_type == elfcpp::SHT_RELA)
11334 // We do not support RELA type relocations yet. This is provided for
11336 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11341 needs_special_offset_handling,
11346 gold_unreachable();
11349 // Group input sections for stub generation.
11351 // We group input sections in an output section so that the total size,
11352 // including any padding space due to alignment is smaller than GROUP_SIZE
11353 // unless the only input section in group is bigger than GROUP_SIZE already.
11354 // Then an ARM stub table is created to follow the last input section
11355 // in group. For each group an ARM stub table is created an is placed
11356 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11357 // extend the group after the stub table.
11359 template<bool big_endian>
11361 Target_arm<big_endian>::group_sections(
11363 section_size_type group_size,
11364 bool stubs_always_after_branch,
11367 // Group input sections and insert stub table
11368 Layout::Section_list section_list;
11369 layout->get_allocated_sections(§ion_list);
11370 for (Layout::Section_list::const_iterator p = section_list.begin();
11371 p != section_list.end();
11374 Arm_output_section<big_endian>* output_section =
11375 Arm_output_section<big_endian>::as_arm_output_section(*p);
11376 output_section->group_sections(group_size, stubs_always_after_branch,
11381 // Relaxation hook. This is where we do stub generation.
11383 template<bool big_endian>
11385 Target_arm<big_endian>::do_relax(
11387 const Input_objects* input_objects,
11388 Symbol_table* symtab,
11392 // No need to generate stubs if this is a relocatable link.
11393 gold_assert(!parameters->options().relocatable());
11395 // If this is the first pass, we need to group input sections into
11397 bool done_exidx_fixup = false;
11398 typedef typename Stub_table_list::iterator Stub_table_iterator;
11401 // Determine the stub group size. The group size is the absolute
11402 // value of the parameter --stub-group-size. If --stub-group-size
11403 // is passed a negative value, we restrict stubs to be always after
11404 // the stubbed branches.
11405 int32_t stub_group_size_param =
11406 parameters->options().stub_group_size();
11407 bool stubs_always_after_branch = stub_group_size_param < 0;
11408 section_size_type stub_group_size = abs(stub_group_size_param);
11410 if (stub_group_size == 1)
11413 // Thumb branch range is +-4MB has to be used as the default
11414 // maximum size (a given section can contain both ARM and Thumb
11415 // code, so the worst case has to be taken into account). If we are
11416 // fixing cortex-a8 errata, the branch range has to be even smaller,
11417 // since wide conditional branch has a range of +-1MB only.
11419 // This value is 48K less than that, which allows for 4096
11420 // 12-byte stubs. If we exceed that, then we will fail to link.
11421 // The user will have to relink with an explicit group size
11423 stub_group_size = 4145152;
11426 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11427 // page as the first half of a 32-bit branch straddling two 4K pages.
11428 // This is a crude way of enforcing that. In addition, long conditional
11429 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11430 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11431 // cortex-A8 stubs from long conditional branches.
11432 if (this->fix_cortex_a8_)
11434 stubs_always_after_branch = true;
11435 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11436 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11439 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11441 // Also fix .ARM.exidx section coverage.
11442 Arm_output_section<big_endian>* exidx_output_section = NULL;
11443 for (Layout::Section_list::const_iterator p =
11444 layout->section_list().begin();
11445 p != layout->section_list().end();
11447 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11449 if (exidx_output_section == NULL)
11450 exidx_output_section =
11451 Arm_output_section<big_endian>::as_arm_output_section(*p);
11453 // We cannot handle this now.
11454 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11455 "non-relocatable link"),
11456 exidx_output_section->name(),
11460 if (exidx_output_section != NULL)
11462 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11464 done_exidx_fixup = true;
11469 // If this is not the first pass, addresses and file offsets have
11470 // been reset at this point, set them here.
11471 for (Stub_table_iterator sp = this->stub_tables_.begin();
11472 sp != this->stub_tables_.end();
11475 Arm_input_section<big_endian>* owner = (*sp)->owner();
11476 off_t off = align_address(owner->original_size(),
11477 (*sp)->addralign());
11478 (*sp)->set_address_and_file_offset(owner->address() + off,
11479 owner->offset() + off);
11483 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11484 // beginning of each relaxation pass, just blow away all the stubs.
11485 // Alternatively, we could selectively remove only the stubs and reloc
11486 // information for code sections that have moved since the last pass.
11487 // That would require more book-keeping.
11488 if (this->fix_cortex_a8_)
11490 // Clear all Cortex-A8 reloc information.
11491 for (typename Cortex_a8_relocs_info::const_iterator p =
11492 this->cortex_a8_relocs_info_.begin();
11493 p != this->cortex_a8_relocs_info_.end();
11496 this->cortex_a8_relocs_info_.clear();
11498 // Remove all Cortex-A8 stubs.
11499 for (Stub_table_iterator sp = this->stub_tables_.begin();
11500 sp != this->stub_tables_.end();
11502 (*sp)->remove_all_cortex_a8_stubs();
11505 // Scan relocs for relocation stubs
11506 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11507 op != input_objects->relobj_end();
11510 Arm_relobj<big_endian>* arm_relobj =
11511 Arm_relobj<big_endian>::as_arm_relobj(*op);
11512 // Lock the object so we can read from it. This is only called
11513 // single-threaded from Layout::finalize, so it is OK to lock.
11514 Task_lock_obj<Object> tl(task, arm_relobj);
11515 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11518 // Check all stub tables to see if any of them have their data sizes
11519 // or addresses alignments changed. These are the only things that
11521 bool any_stub_table_changed = false;
11522 Unordered_set<const Output_section*> sections_needing_adjustment;
11523 for (Stub_table_iterator sp = this->stub_tables_.begin();
11524 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11527 if ((*sp)->update_data_size_and_addralign())
11529 // Update data size of stub table owner.
11530 Arm_input_section<big_endian>* owner = (*sp)->owner();
11531 uint64_t address = owner->address();
11532 off_t offset = owner->offset();
11533 owner->reset_address_and_file_offset();
11534 owner->set_address_and_file_offset(address, offset);
11536 sections_needing_adjustment.insert(owner->output_section());
11537 any_stub_table_changed = true;
11541 // Output_section_data::output_section() returns a const pointer but we
11542 // need to update output sections, so we record all output sections needing
11543 // update above and scan the sections here to find out what sections need
11545 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11546 p != layout->section_list().end();
11549 if (sections_needing_adjustment.find(*p)
11550 != sections_needing_adjustment.end())
11551 (*p)->set_section_offsets_need_adjustment();
11554 // Stop relaxation if no EXIDX fix-up and no stub table change.
11555 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11557 // Finalize the stubs in the last relaxation pass.
11558 if (!continue_relaxation)
11560 for (Stub_table_iterator sp = this->stub_tables_.begin();
11561 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11563 (*sp)->finalize_stubs();
11565 // Update output local symbol counts of objects if necessary.
11566 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11567 op != input_objects->relobj_end();
11570 Arm_relobj<big_endian>* arm_relobj =
11571 Arm_relobj<big_endian>::as_arm_relobj(*op);
11573 // Update output local symbol counts. We need to discard local
11574 // symbols defined in parts of input sections that are discarded by
11576 if (arm_relobj->output_local_symbol_count_needs_update())
11578 // We need to lock the object's file to update it.
11579 Task_lock_obj<Object> tl(task, arm_relobj);
11580 arm_relobj->update_output_local_symbol_count();
11585 return continue_relaxation;
11588 // Relocate a stub.
11590 template<bool big_endian>
11592 Target_arm<big_endian>::relocate_stub(
11594 const Relocate_info<32, big_endian>* relinfo,
11595 Output_section* output_section,
11596 unsigned char* view,
11597 Arm_address address,
11598 section_size_type view_size)
11601 const Stub_template* stub_template = stub->stub_template();
11602 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11604 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11605 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11607 unsigned int r_type = insn->r_type();
11608 section_size_type reloc_offset = stub_template->reloc_offset(i);
11609 section_size_type reloc_size = insn->size();
11610 gold_assert(reloc_offset + reloc_size <= view_size);
11612 // This is the address of the stub destination.
11613 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11614 Symbol_value<32> symval;
11615 symval.set_output_value(target);
11617 // Synthesize a fake reloc just in case. We don't have a symbol so
11619 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11620 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11621 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11622 reloc_write.put_r_offset(reloc_offset);
11623 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11624 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11626 relocate.relocate(relinfo, this, output_section,
11627 this->fake_relnum_for_stubs, rel, r_type,
11628 NULL, &symval, view + reloc_offset,
11629 address + reloc_offset, reloc_size);
11633 // Determine whether an object attribute tag takes an integer, a
11636 template<bool big_endian>
11638 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11640 if (tag == Object_attribute::Tag_compatibility)
11641 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11642 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11643 else if (tag == elfcpp::Tag_nodefaults)
11644 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11645 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11646 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11647 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11649 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11651 return ((tag & 1) != 0
11652 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11653 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11656 // Reorder attributes.
11658 // The ABI defines that Tag_conformance should be emitted first, and that
11659 // Tag_nodefaults should be second (if either is defined). This sets those
11660 // two positions, and bumps up the position of all the remaining tags to
11663 template<bool big_endian>
11665 Target_arm<big_endian>::do_attributes_order(int num) const
11667 // Reorder the known object attributes in output. We want to move
11668 // Tag_conformance to position 4 and Tag_conformance to position 5
11669 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11671 return elfcpp::Tag_conformance;
11673 return elfcpp::Tag_nodefaults;
11674 if ((num - 2) < elfcpp::Tag_nodefaults)
11676 if ((num - 1) < elfcpp::Tag_conformance)
11681 // Scan a span of THUMB code for Cortex-A8 erratum.
11683 template<bool big_endian>
11685 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11686 Arm_relobj<big_endian>* arm_relobj,
11687 unsigned int shndx,
11688 section_size_type span_start,
11689 section_size_type span_end,
11690 const unsigned char* view,
11691 Arm_address address)
11693 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11695 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11696 // The branch target is in the same 4KB region as the
11697 // first half of the branch.
11698 // The instruction before the branch is a 32-bit
11699 // length non-branch instruction.
11700 section_size_type i = span_start;
11701 bool last_was_32bit = false;
11702 bool last_was_branch = false;
11703 while (i < span_end)
11705 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11706 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11707 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11708 bool is_blx = false, is_b = false;
11709 bool is_bl = false, is_bcc = false;
11711 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11714 // Load the rest of the insn (in manual-friendly order).
11715 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11717 // Encoding T4: B<c>.W.
11718 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11719 // Encoding T1: BL<c>.W.
11720 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11721 // Encoding T2: BLX<c>.W.
11722 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11723 // Encoding T3: B<c>.W (not permitted in IT block).
11724 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11725 && (insn & 0x07f00000U) != 0x03800000U);
11728 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11730 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11731 // page boundary and it follows 32-bit non-branch instruction,
11732 // we need to work around.
11733 if (is_32bit_branch
11734 && ((address + i) & 0xfffU) == 0xffeU
11736 && !last_was_branch)
11738 // Check to see if there is a relocation stub for this branch.
11739 bool force_target_arm = false;
11740 bool force_target_thumb = false;
11741 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11742 Cortex_a8_relocs_info::const_iterator p =
11743 this->cortex_a8_relocs_info_.find(address + i);
11745 if (p != this->cortex_a8_relocs_info_.end())
11747 cortex_a8_reloc = p->second;
11748 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11750 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11751 && !target_is_thumb)
11752 force_target_arm = true;
11753 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11754 && target_is_thumb)
11755 force_target_thumb = true;
11759 Stub_type stub_type = arm_stub_none;
11761 // Check if we have an offending branch instruction.
11762 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11763 uint16_t lower_insn = insn & 0xffffU;
11764 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11766 if (cortex_a8_reloc != NULL
11767 && cortex_a8_reloc->reloc_stub() != NULL)
11768 // We've already made a stub for this instruction, e.g.
11769 // it's a long branch or a Thumb->ARM stub. Assume that
11770 // stub will suffice to work around the A8 erratum (see
11771 // setting of always_after_branch above).
11775 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11777 stub_type = arm_stub_a8_veneer_b_cond;
11779 else if (is_b || is_bl || is_blx)
11781 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11786 stub_type = (is_blx
11787 ? arm_stub_a8_veneer_blx
11789 ? arm_stub_a8_veneer_bl
11790 : arm_stub_a8_veneer_b));
11793 if (stub_type != arm_stub_none)
11795 Arm_address pc_for_insn = address + i + 4;
11797 // The original instruction is a BL, but the target is
11798 // an ARM instruction. If we were not making a stub,
11799 // the BL would have been converted to a BLX. Use the
11800 // BLX stub instead in that case.
11801 if (this->may_use_blx() && force_target_arm
11802 && stub_type == arm_stub_a8_veneer_bl)
11804 stub_type = arm_stub_a8_veneer_blx;
11808 // Conversely, if the original instruction was
11809 // BLX but the target is Thumb mode, use the BL stub.
11810 else if (force_target_thumb
11811 && stub_type == arm_stub_a8_veneer_blx)
11813 stub_type = arm_stub_a8_veneer_bl;
11821 // If we found a relocation, use the proper destination,
11822 // not the offset in the (unrelocated) instruction.
11823 // Note this is always done if we switched the stub type above.
11824 if (cortex_a8_reloc != NULL)
11825 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11827 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11829 // Add a new stub if destination address in in the same page.
11830 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11832 Cortex_a8_stub* stub =
11833 this->stub_factory_.make_cortex_a8_stub(stub_type,
11837 Stub_table<big_endian>* stub_table =
11838 arm_relobj->stub_table(shndx);
11839 gold_assert(stub_table != NULL);
11840 stub_table->add_cortex_a8_stub(address + i, stub);
11845 i += insn_32bit ? 4 : 2;
11846 last_was_32bit = insn_32bit;
11847 last_was_branch = is_32bit_branch;
11851 // Apply the Cortex-A8 workaround.
11853 template<bool big_endian>
11855 Target_arm<big_endian>::apply_cortex_a8_workaround(
11856 const Cortex_a8_stub* stub,
11857 Arm_address stub_address,
11858 unsigned char* insn_view,
11859 Arm_address insn_address)
11861 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11862 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11863 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11864 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11865 off_t branch_offset = stub_address - (insn_address + 4);
11867 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11868 switch (stub->stub_template()->type())
11870 case arm_stub_a8_veneer_b_cond:
11871 // For a conditional branch, we re-write it to be an unconditional
11872 // branch to the stub. We use the THUMB-2 encoding here.
11873 upper_insn = 0xf000U;
11874 lower_insn = 0xb800U;
11876 case arm_stub_a8_veneer_b:
11877 case arm_stub_a8_veneer_bl:
11878 case arm_stub_a8_veneer_blx:
11879 if ((lower_insn & 0x5000U) == 0x4000U)
11880 // For a BLX instruction, make sure that the relocation is
11881 // rounded up to a word boundary. This follows the semantics of
11882 // the instruction which specifies that bit 1 of the target
11883 // address will come from bit 1 of the base address.
11884 branch_offset = (branch_offset + 2) & ~3;
11886 // Put BRANCH_OFFSET back into the insn.
11887 gold_assert(!utils::has_overflow<25>(branch_offset));
11888 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11889 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11893 gold_unreachable();
11896 // Put the relocated value back in the object file:
11897 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11898 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11901 template<bool big_endian>
11902 class Target_selector_arm : public Target_selector
11905 Target_selector_arm()
11906 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11907 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11908 (big_endian ? "armelfb" : "armelf"))
11912 do_instantiate_target()
11913 { return new Target_arm<big_endian>(); }
11916 // Fix .ARM.exidx section coverage.
11918 template<bool big_endian>
11920 Target_arm<big_endian>::fix_exidx_coverage(
11922 const Input_objects* input_objects,
11923 Arm_output_section<big_endian>* exidx_section,
11924 Symbol_table* symtab,
11927 // We need to look at all the input sections in output in ascending
11928 // order of of output address. We do that by building a sorted list
11929 // of output sections by addresses. Then we looks at the output sections
11930 // in order. The input sections in an output section are already sorted
11931 // by addresses within the output section.
11933 typedef std::set<Output_section*, output_section_address_less_than>
11934 Sorted_output_section_list;
11935 Sorted_output_section_list sorted_output_sections;
11937 // Find out all the output sections of input sections pointed by
11938 // EXIDX input sections.
11939 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11940 p != input_objects->relobj_end();
11943 Arm_relobj<big_endian>* arm_relobj =
11944 Arm_relobj<big_endian>::as_arm_relobj(*p);
11945 std::vector<unsigned int> shndx_list;
11946 arm_relobj->get_exidx_shndx_list(&shndx_list);
11947 for (size_t i = 0; i < shndx_list.size(); ++i)
11949 const Arm_exidx_input_section* exidx_input_section =
11950 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11951 gold_assert(exidx_input_section != NULL);
11952 if (!exidx_input_section->has_errors())
11954 unsigned int text_shndx = exidx_input_section->link();
11955 Output_section* os = arm_relobj->output_section(text_shndx);
11956 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11957 sorted_output_sections.insert(os);
11962 // Go over the output sections in ascending order of output addresses.
11963 typedef typename Arm_output_section<big_endian>::Text_section_list
11965 Text_section_list sorted_text_sections;
11966 for (typename Sorted_output_section_list::iterator p =
11967 sorted_output_sections.begin();
11968 p != sorted_output_sections.end();
11971 Arm_output_section<big_endian>* arm_output_section =
11972 Arm_output_section<big_endian>::as_arm_output_section(*p);
11973 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11976 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11977 merge_exidx_entries(), task);
11980 Target_selector_arm<false> target_selector_arm;
11981 Target_selector_arm<true> target_selector_armbe;
11983 } // End anonymous namespace.