1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
61 template<bool big_endian>
62 class Output_data_plt_arm;
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
67 template<bool big_endian>
70 template<bool big_endian>
71 class Arm_input_section;
73 class Arm_exidx_cantunwind;
75 class Arm_exidx_merged_section;
77 class Arm_exidx_fixup;
79 template<bool big_endian>
80 class Arm_output_section;
82 class Arm_exidx_input_section;
84 template<bool big_endian>
87 template<bool big_endian>
88 class Arm_relocate_functions;
90 template<bool big_endian>
91 class Arm_output_data_got;
93 template<bool big_endian>
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
110 // The arm target class.
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
119 // There are probably a lot more.
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
141 // Types of instruction templates.
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
155 // Factory methods to create instruction templates in different formats.
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
190 // Accessors. This class is used for read-only objects so no modifiers
195 { return this->data_; }
197 // Return the instruction sequence type of this.
200 { return this->type_; }
202 // Return the ARM relocation type of this.
205 { return this->r_type_; }
209 { return this->reloc_addend_; }
211 // Return size of instruction template in bytes.
215 // Return byte-alignment of instruction template.
220 // We make the constructor private to ensure that only the factory
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
230 // Instruction template type.
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
238 // Macro for generating code to stub types. One entry per long/short
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
262 #define DEF_STUB(x) arm_stub_##x,
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
279 arm_stub_type_last = arm_stub_v4_veneer_bx
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
290 Stub_template(Stub_type, const Insn_template*, size_t);
298 { return this->type_; }
300 // Return an array of instruction templates.
303 { return this->insns_; }
305 // Return size of template in number of instructions.
308 { return this->insn_count_; }
310 // Return size of template in bytes.
313 { return this->size_; }
315 // Return alignment of the stub template.
318 { return this->alignment_; }
320 // Return whether entry point is in thumb mode.
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
325 // Return number of relocations in this template.
328 { return this->relocs_.size(); }
330 // Return index of the I-th instruction with relocation.
332 reloc_insn_index(size_t i) const
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
341 reloc_offset(size_t i) const
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
352 // A Stub_template may not be copied. We want to share templates as much
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
363 // Size of templated instructions in bytes.
365 // Alignment of templated instructions.
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
395 // Return the stub template.
397 stub_template() const
398 { return this->stub_template_; }
400 // Return offset of code stub from beginning of its containing stub table.
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
408 // Set offset of code stub from beginning of its containing stub table.
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
431 // This must be defined in the child class.
433 do_reloc_target(size_t) = 0;
435 // This may be overridden in the child class.
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
442 this->do_fixed_endian_write<false>(view, view_size);
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
452 // A template to implement do_write.
453 template<bool big_endian>
455 do_fixed_endian_write(unsigned char*, section_size_type);
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
466 class Reloc_stub : public Stub
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
473 // Return destination address.
475 destination_address() const
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
481 // Set destination address.
483 set_destination_address(Arm_address address)
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
489 // Reset destination address.
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
532 // Accessors: Keys are meant to be read-only object so no modifiers are
538 { return this->stub_type_; }
540 // Return the local symbol index or invalid_index.
543 { return this->r_sym_; }
545 // Return the symbol if there is one.
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
550 // Return the relobj if there is one.
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
555 // Whether this equals to another key k.
557 eq(const Key& k) const
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
567 // Return a hash value.
571 return (this->stub_type_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
580 // Functors for STL associative containers.
584 operator()(const Key& k) const
585 { return k.hash_value(); }
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
595 // Name of key. This is mainly for debugging.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
613 const Symbol* symbol;
614 const Relobj* relobj;
616 // Addend associated with a reloc.
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
629 friend class Stub_factory;
631 // Return the relocation target address of the i-th relocation in the
634 do_reloc_target(size_t i)
636 // All reloc stub have only one relocation.
638 return this->destination_address_;
642 // Address of destination.
643 Arm_address destination_address_;
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
653 // 3. The branch follows a 32-bit instruction which is not a branch.
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
665 class Cortex_a8_stub : public Stub
671 // Return the object of the code section containing the branch being fixed
675 { return this->relobj_; }
677 // Return the section index of the code section containing the branch being
681 { return this->shndx_; }
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
687 source_address() const
688 { return this->source_address_; }
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
694 destination_address() const
695 { return this->destination_address_; }
697 // Return the instruction being fixed up.
699 original_insn() const
700 { return this->original_insn_; }
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
713 friend class Stub_factory;
715 // Return the relocation target address of the i-th relocation in the
718 do_reloc_target(size_t i)
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
722 // The conditional branch veneer has two relocations.
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 // All other Cortex-A8 stubs have only one relocation.
730 return this->destination_address_;
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
736 do_thumb16_special(size_t);
739 // Object of the code section containing the branch being fixed up.
741 // Section index of the code section containing the branch begin fixed up.
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
759 // Return the associated register.
762 { return this->reg_; }
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
770 friend class Stub_factory;
772 // Return the relocation target address of the i-th relocation in the
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
778 // This may be overridden in the child class.
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 // A template to implement do_write.
790 template<bool big_endian>
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
806 // A register index (r0-r14), which is associated with the stub.
810 // Stub factory class.
815 // Return the unique instance of this class.
816 static const Stub_factory&
819 static Stub_factory singleton;
823 // Make a relocation stub.
825 make_reloc_stub(Stub_type stub_type) const
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
832 // Make a Cortex-A8 stub.
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
847 make_arm_v4bx_stub(uint32_t reg) const
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
868 // A class to hold stubs for the ARM target.
870 template<bool big_endian>
871 class Stub_table : public Output_data
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
886 { return this->owner_; }
888 // Whether this stub table is empty.
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
897 // Return the current data size.
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
940 // Remove all Cortex-A8 stubs.
942 remove_all_cortex_a8_stubs();
944 // Look up a relocation stub using KEY. Return NULL if there is none.
946 find_reloc_stub(const Reloc_stub::Key& key) const
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
955 find_arm_v4bx_stub(const uint32_t reg) const
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
961 // Relocate stubs in this stub table.
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
971 update_data_size_and_addralign();
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
978 // Apply Cortex-A8 workaround to an address range.
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
985 // Write out section contents.
987 do_write(Output_file*);
989 // Return the required alignment.
992 { return this->prev_addralign_; }
994 // Reset address and file offset.
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
999 // Set final data size.
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1005 // Relocate one stub.
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1011 // Unordered map of relocation stubs.
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1044 class Arm_exidx_cantunwind : public Output_section_data
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1051 // Return the object containing the section pointed by this.
1054 { return this->relobj_; }
1056 // Return the section index of the section pointed by this.
1059 { return this->shndx_; }
1063 do_write(Output_file* of)
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1068 this->do_fixed_endian_write<false>(of);
1071 // Write to a map file.
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1080 do_fixed_endian_write(Output_file*);
1082 // The object containing the section pointed by this.
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1111 // Build output contents.
1113 build_contents(const unsigned char*, section_size_type);
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1126 // Write merged section into file OF.
1128 do_write(Output_file* of);
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1145 // A class to wrap an ordinary input section containing executable code.
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1164 // Whether this is a stub table owner.
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1172 { return this->stub_table_; }
1174 // Set the stub_table.
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1185 // Return the original size of the section.
1187 original_size() const
1188 { return this->original_size_; }
1191 // Write data to output file.
1193 do_write(Output_file*);
1195 // Return required alignment of this.
1197 do_addralign() const
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1203 return this->original_addralign_;
1206 // Finalize data size.
1208 set_final_data_size();
1210 // Reset address and file offset.
1212 do_reset_address_and_file_offset();
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1247 unsigned char* original_contents_;
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1253 class Arm_exidx_fixup
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1265 { delete this->section_offset_map_; }
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1283 add_exidx_cantunwind_as_needed();
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1296 // Type of EXIDX unwind entry.
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1312 process_exidx_entry(uint32_t second_word);
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1335 Output_section* first_output_text_section_;
1337 bool merge_exidx_entries_;
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1361 ~Arm_output_section()
1364 // Group input sections for stub generation.
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1374 // Append all input text sections in this into LIST.
1376 append_text_sections_to_list(Text_section_list* list);
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1388 // Link an EXIDX section into its corresponding text section.
1390 set_exidx_section_link();
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1408 class Arm_exidx_input_section
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1421 ~Arm_exidx_input_section()
1424 // Accessors: This is a read-only class.
1426 // Return the object containing this EXIDX input section.
1429 { return this->relobj_; }
1431 // Return the section index of this EXIDX input section.
1434 { return this->shndx_; }
1436 // Return the section index of linked text section in the same object.
1439 { return this->link_; }
1441 // Return size of the EXIDX input section.
1444 { return this->size_; }
1446 // Return address alignment of EXIDX input section.
1449 { return this->addralign_; }
1451 // Return size of the associated text input section.
1454 { return this->text_size_; }
1456 // Whether there are any errors in the EXIDX input section.
1459 { return this->has_errors_; }
1461 // Set has-errors flag.
1464 { this->has_errors_ = true; }
1467 // Object containing this.
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1473 // Size of this. For ARM 32-bit is sufficient.
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1483 // Arm_relobj class.
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1502 { delete this->attributes_section_data_; }
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1529 // Scan all relocation sections for stub generation.
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1534 // Convert regular input section with index SHNDX to a relaxed section.
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1550 // Processor-specific flags in ELF file header. This is valid only after
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1556 // Attribute section data This is the contents of the .ARM.attribute section
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1582 // Whether a section contains any Cortex-A8 workaround.
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1590 // Mark a section that has Cortex-A8 workaround.
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1623 // Whether output local symbol count needs updating.
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1628 // Set output_local_symbol_count_needs_update flag to be true.
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1633 // Update output local symbol count at the end of relaxation.
1635 update_output_local_symbol_count();
1637 // Whether we want to merge processor-specific flags and attributes.
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1642 // Export list of EXIDX section indices.
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1659 // Post constructor setup.
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1671 // Count the local symbols.
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1682 // Read the symbol information.
1684 do_read_symbols(Read_symbols_data* sd);
1686 // Process relocs for garbage collection.
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692 // Whether a section needs to be scanned for relocation stubs.
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1698 // Whether a section is a scannable text section.
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1709 // Scan a section for the Cortex-A8 erratum.
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1737 simple_input_section_output_address(unsigned int, Output_section*);
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1762 bool merge_flags_and_attributes_;
1765 // Arm_dynobj class.
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1778 { delete this->attributes_section_data_; }
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1786 // Processor-specific flags in ELF file header. This is valid only after
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1798 // Read the symbol information.
1800 do_read_symbols(Read_symbols_data* sd);
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1809 // Functor to read reloc addends during stub generation.
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1830 elfcpp::Elf_types<32>::Elf_Swxword
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1845 elfcpp::Elf_types<32>::Elf_Swxword
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1857 class Cortex_a8_reloc
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1868 // Accessors: This is a read-only class.
1870 // Return the relocation stub associated with this relocation if there is
1874 { return this->reloc_stub_; }
1876 // Return the relocation type.
1879 { return this->r_type_; }
1881 // Return the destination address of the relocation. LSB stores the THUMB
1885 { return this->destination_; }
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1894 Arm_address destination_;
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1942 // Write out the GOT table.
1944 do_write(Output_file*);
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1964 // Return the GOT offset.
1967 { return this->got_offset_; }
1972 { return this->r_type_; }
1974 // Whether the symbol is global or not.
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1979 // For a relocation against a global symbol, the global symbol.
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1995 // For a relocation against a local symbol, the local symbol index.
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2015 // For a global symbol, the symbol itself.
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2131 // Whether we force PCI branch veneers.
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2136 // Set PIC veneer flag.
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2141 // Whether we use THUMB-2 instructions.
2143 using_thumb2() const
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2151 // Whether we use THUMB/THUMB-2 instructions only.
2153 using_thumb_only() const
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2170 may_use_arm_nop() const
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2181 // Whether we have THUMB-2 NOP.W instruction.
2183 may_use_thumb2_nop() const
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2193 // Whether we have v4T interworking instructions available.
2195 may_use_v4t_interworking() const
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2204 // Whether we have v5T interworking instructions available.
2206 may_use_v5t_interworking() const
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2226 gc_process_relocs(Symbol_table* symtab,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2238 // Scan the relocations to look for symbol adjustments.
2240 scan_relocs(Symbol_table* symtab,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2252 // Finalize the sections.
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2256 // Return the value to use for a dynamic symbol which requires special
2259 do_dynsym_value(const Symbol*) const;
2261 // Relocate a section.
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
2270 Arm_address view_address,
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
2274 // Scan the relocs during a relocatable link.
2276 scan_relocatable_relocs(Symbol_table* symtab,
2278 Sized_relobj_file<32, big_endian>* object,
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2289 // Relocate a section during a relocatable link.
2291 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2295 Output_section* output_section,
2296 off_t offset_in_output_section,
2297 const Relocatable_relocs*,
2298 unsigned char* view,
2299 Arm_address view_address,
2300 section_size_type view_size,
2301 unsigned char* reloc_view,
2302 section_size_type reloc_view_size);
2304 // Perform target-specific processing in a relocatable link. This is
2305 // only used if we use the relocation strategy RELOC_SPECIAL.
2307 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2308 unsigned int sh_type,
2309 const unsigned char* preloc_in,
2311 Output_section* output_section,
2312 off_t offset_in_output_section,
2313 unsigned char* view,
2314 typename elfcpp::Elf_types<32>::Elf_Addr
2316 section_size_type view_size,
2317 unsigned char* preloc_out);
2319 // Return whether SYM is defined by the ABI.
2321 do_is_defined_by_abi(const Symbol* sym) const
2322 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2324 // Return whether there is a GOT section.
2326 has_got_section() const
2327 { return this->got_ != NULL; }
2329 // Return the size of the GOT section.
2333 gold_assert(this->got_ != NULL);
2334 return this->got_->data_size();
2337 // Return the number of entries in the GOT.
2339 got_entry_count() const
2341 if (!this->has_got_section())
2343 return this->got_size() / 4;
2346 // Return the number of entries in the PLT.
2348 plt_entry_count() const;
2350 // Return the offset of the first non-reserved PLT entry.
2352 first_plt_entry_offset() const;
2354 // Return the size of each PLT entry.
2356 plt_entry_size() const;
2358 // Map platform-specific reloc types
2360 get_real_reloc_type(unsigned int r_type);
2363 // Methods to support stub-generations.
2366 // Return the stub factory
2368 stub_factory() const
2369 { return this->stub_factory_; }
2371 // Make a new Arm_input_section object.
2372 Arm_input_section<big_endian>*
2373 new_arm_input_section(Relobj*, unsigned int);
2375 // Find the Arm_input_section object corresponding to the SHNDX-th input
2376 // section of RELOBJ.
2377 Arm_input_section<big_endian>*
2378 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2380 // Make a new Stub_table
2381 Stub_table<big_endian>*
2382 new_stub_table(Arm_input_section<big_endian>*);
2384 // Scan a section for stub generation.
2386 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2387 const unsigned char*, size_t, Output_section*,
2388 bool, const unsigned char*, Arm_address,
2393 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2394 Output_section*, unsigned char*, Arm_address,
2397 // Get the default ARM target.
2398 static Target_arm<big_endian>*
2401 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2402 && parameters->target().is_big_endian() == big_endian);
2403 return static_cast<Target_arm<big_endian>*>(
2404 parameters->sized_target<32, big_endian>());
2407 // Whether NAME belongs to a mapping symbol.
2409 is_mapping_symbol_name(const char* name)
2413 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2414 && (name[2] == '\0' || name[2] == '.'));
2417 // Whether we work around the Cortex-A8 erratum.
2419 fix_cortex_a8() const
2420 { return this->fix_cortex_a8_; }
2422 // Whether we merge exidx entries in debuginfo.
2424 merge_exidx_entries() const
2425 { return parameters->options().merge_exidx_entries(); }
2427 // Whether we fix R_ARM_V4BX relocation.
2429 // 1 - replace with MOV instruction (armv4 target)
2430 // 2 - make interworking veneer (>= armv4t targets only)
2431 General_options::Fix_v4bx
2433 { return parameters->options().fix_v4bx(); }
2435 // Scan a span of THUMB code section for Cortex-A8 erratum.
2437 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2438 section_size_type, section_size_type,
2439 const unsigned char*, Arm_address);
2441 // Apply Cortex-A8 workaround to a branch.
2443 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2444 unsigned char*, Arm_address);
2447 // Make the PLT-generator object.
2448 Output_data_plt_arm<big_endian>*
2449 make_data_plt(Layout* layout, Output_data_space* got_plt)
2450 { return this->do_make_data_plt(layout, got_plt); }
2452 // Make an ELF object.
2454 do_make_elf_object(const std::string&, Input_file*, off_t,
2455 const elfcpp::Ehdr<32, big_endian>& ehdr);
2458 do_make_elf_object(const std::string&, Input_file*, off_t,
2459 const elfcpp::Ehdr<32, !big_endian>&)
2460 { gold_unreachable(); }
2463 do_make_elf_object(const std::string&, Input_file*, off_t,
2464 const elfcpp::Ehdr<64, false>&)
2465 { gold_unreachable(); }
2468 do_make_elf_object(const std::string&, Input_file*, off_t,
2469 const elfcpp::Ehdr<64, true>&)
2470 { gold_unreachable(); }
2472 // Make an output section.
2474 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2475 elfcpp::Elf_Xword flags)
2476 { return new Arm_output_section<big_endian>(name, type, flags); }
2479 do_adjust_elf_header(unsigned char* view, int len) const;
2481 // We only need to generate stubs, and hence perform relaxation if we are
2482 // not doing relocatable linking.
2484 do_may_relax() const
2485 { return !parameters->options().relocatable(); }
2488 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2490 // Determine whether an object attribute tag takes an integer, a
2493 do_attribute_arg_type(int tag) const;
2495 // Reorder tags during output.
2497 do_attributes_order(int num) const;
2499 // This is called when the target is selected as the default.
2501 do_select_as_default_target()
2503 // No locking is required since there should only be one default target.
2504 // We cannot have both the big-endian and little-endian ARM targets
2506 gold_assert(arm_reloc_property_table == NULL);
2507 arm_reloc_property_table = new Arm_reloc_property_table();
2510 // Virtual function which is set to return true by a target if
2511 // it can use relocation types to determine if a function's
2512 // pointer is taken.
2514 do_can_check_for_function_pointers() const
2517 // Whether a section called SECTION_NAME may have function pointers to
2518 // sections not eligible for safe ICF folding.
2520 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2522 return (!is_prefix_of(".ARM.exidx", section_name)
2523 && !is_prefix_of(".ARM.extab", section_name)
2524 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2528 do_define_standard_symbols(Symbol_table*, Layout*);
2530 virtual Output_data_plt_arm<big_endian>*
2531 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2533 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2537 // The class which scans relocations.
2542 : issued_non_pic_error_(false)
2546 get_reference_flags(unsigned int r_type);
2549 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2550 Sized_relobj_file<32, big_endian>* object,
2551 unsigned int data_shndx,
2552 Output_section* output_section,
2553 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2554 const elfcpp::Sym<32, big_endian>& lsym);
2557 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2558 Sized_relobj_file<32, big_endian>* object,
2559 unsigned int data_shndx,
2560 Output_section* output_section,
2561 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2565 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2566 Sized_relobj_file<32, big_endian>* ,
2569 const elfcpp::Rel<32, big_endian>& ,
2571 const elfcpp::Sym<32, big_endian>&);
2574 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2575 Sized_relobj_file<32, big_endian>* ,
2578 const elfcpp::Rel<32, big_endian>& ,
2579 unsigned int , Symbol*);
2583 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2584 unsigned int r_type);
2587 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2588 unsigned int r_type, Symbol*);
2591 check_non_pic(Relobj*, unsigned int r_type);
2593 // Almost identical to Symbol::needs_plt_entry except that it also
2594 // handles STT_ARM_TFUNC.
2596 symbol_needs_plt_entry(const Symbol* sym)
2598 // An undefined symbol from an executable does not need a PLT entry.
2599 if (sym->is_undefined() && !parameters->options().shared())
2602 return (!parameters->doing_static_link()
2603 && (sym->type() == elfcpp::STT_FUNC
2604 || sym->type() == elfcpp::STT_ARM_TFUNC)
2605 && (sym->is_from_dynobj()
2606 || sym->is_undefined()
2607 || sym->is_preemptible()));
2611 possible_function_pointer_reloc(unsigned int r_type);
2613 // Whether we have issued an error about a non-PIC compilation.
2614 bool issued_non_pic_error_;
2617 // The class which implements relocation.
2627 // Return whether the static relocation needs to be applied.
2629 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2630 unsigned int r_type,
2632 Output_section* output_section);
2634 // Do a relocation. Return false if the caller should not issue
2635 // any warnings about this relocation.
2637 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2638 Output_section*, size_t relnum,
2639 const elfcpp::Rel<32, big_endian>&,
2640 unsigned int r_type, const Sized_symbol<32>*,
2641 const Symbol_value<32>*,
2642 unsigned char*, Arm_address,
2645 // Return whether we want to pass flag NON_PIC_REF for this
2646 // reloc. This means the relocation type accesses a symbol not via
2649 reloc_is_non_pic(unsigned int r_type)
2653 // These relocation types reference GOT or PLT entries explicitly.
2654 case elfcpp::R_ARM_GOT_BREL:
2655 case elfcpp::R_ARM_GOT_ABS:
2656 case elfcpp::R_ARM_GOT_PREL:
2657 case elfcpp::R_ARM_GOT_BREL12:
2658 case elfcpp::R_ARM_PLT32_ABS:
2659 case elfcpp::R_ARM_TLS_GD32:
2660 case elfcpp::R_ARM_TLS_LDM32:
2661 case elfcpp::R_ARM_TLS_IE32:
2662 case elfcpp::R_ARM_TLS_IE12GP:
2664 // These relocate types may use PLT entries.
2665 case elfcpp::R_ARM_CALL:
2666 case elfcpp::R_ARM_THM_CALL:
2667 case elfcpp::R_ARM_JUMP24:
2668 case elfcpp::R_ARM_THM_JUMP24:
2669 case elfcpp::R_ARM_THM_JUMP19:
2670 case elfcpp::R_ARM_PLT32:
2671 case elfcpp::R_ARM_THM_XPC22:
2672 case elfcpp::R_ARM_PREL31:
2673 case elfcpp::R_ARM_SBREL31:
2682 // Do a TLS relocation.
2683 inline typename Arm_relocate_functions<big_endian>::Status
2684 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2685 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2686 const Sized_symbol<32>*, const Symbol_value<32>*,
2687 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2692 // A class which returns the size required for a relocation type,
2693 // used while scanning relocs during a relocatable link.
2694 class Relocatable_size_for_reloc
2698 get_size_for_reloc(unsigned int, Relobj*);
2701 // Adjust TLS relocation type based on the options and whether this
2702 // is a local symbol.
2703 static tls::Tls_optimization
2704 optimize_tls_reloc(bool is_final, int r_type);
2706 // Get the GOT section, creating it if necessary.
2707 Arm_output_data_got<big_endian>*
2708 got_section(Symbol_table*, Layout*);
2710 // Get the GOT PLT section.
2712 got_plt_section() const
2714 gold_assert(this->got_plt_ != NULL);
2715 return this->got_plt_;
2718 // Create a PLT entry for a global symbol.
2720 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2722 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2724 define_tls_base_symbol(Symbol_table*, Layout*);
2726 // Create a GOT entry for the TLS module index.
2728 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2729 Sized_relobj_file<32, big_endian>* object);
2731 // Get the PLT section.
2732 const Output_data_plt_arm<big_endian>*
2735 gold_assert(this->plt_ != NULL);
2739 // Get the dynamic reloc section, creating it if necessary.
2741 rel_dyn_section(Layout*);
2743 // Get the section to use for TLS_DESC relocations.
2745 rel_tls_desc_section(Layout*) const;
2747 // Return true if the symbol may need a COPY relocation.
2748 // References from an executable object to non-function symbols
2749 // defined in a dynamic object may need a COPY relocation.
2751 may_need_copy_reloc(Symbol* gsym)
2753 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2754 && gsym->may_need_copy_reloc());
2757 // Add a potential copy relocation.
2759 copy_reloc(Symbol_table* symtab, Layout* layout,
2760 Sized_relobj_file<32, big_endian>* object,
2761 unsigned int shndx, Output_section* output_section,
2762 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2764 this->copy_relocs_.copy_reloc(symtab, layout,
2765 symtab->get_sized_symbol<32>(sym),
2766 object, shndx, output_section, reloc,
2767 this->rel_dyn_section(layout));
2770 // Whether two EABI versions are compatible.
2772 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2774 // Merge processor-specific flags from input object and those in the ELF
2775 // header of the output.
2777 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2779 // Get the secondary compatible architecture.
2781 get_secondary_compatible_arch(const Attributes_section_data*);
2783 // Set the secondary compatible architecture.
2785 set_secondary_compatible_arch(Attributes_section_data*, int);
2788 tag_cpu_arch_combine(const char*, int, int*, int, int);
2790 // Helper to print AEABI enum tag value.
2792 aeabi_enum_name(unsigned int);
2794 // Return string value for TAG_CPU_name.
2796 tag_cpu_name_value(unsigned int);
2798 // Merge object attributes from input object and those in the output.
2800 merge_object_attributes(const char*, const Attributes_section_data*);
2802 // Helper to get an AEABI object attribute
2804 get_aeabi_object_attribute(int tag) const
2806 Attributes_section_data* pasd = this->attributes_section_data_;
2807 gold_assert(pasd != NULL);
2808 Object_attribute* attr =
2809 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2810 gold_assert(attr != NULL);
2815 // Methods to support stub-generations.
2818 // Group input sections for stub generation.
2820 group_sections(Layout*, section_size_type, bool, const Task*);
2822 // Scan a relocation for stub generation.
2824 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2825 const Sized_symbol<32>*, unsigned int,
2826 const Symbol_value<32>*,
2827 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2829 // Scan a relocation section for stub.
2830 template<int sh_type>
2832 scan_reloc_section_for_stubs(
2833 const Relocate_info<32, big_endian>* relinfo,
2834 const unsigned char* prelocs,
2836 Output_section* output_section,
2837 bool needs_special_offset_handling,
2838 const unsigned char* view,
2839 elfcpp::Elf_types<32>::Elf_Addr view_address,
2842 // Fix .ARM.exidx section coverage.
2844 fix_exidx_coverage(Layout*, const Input_objects*,
2845 Arm_output_section<big_endian>*, Symbol_table*,
2848 // Functors for STL set.
2849 struct output_section_address_less_than
2852 operator()(const Output_section* s1, const Output_section* s2) const
2853 { return s1->address() < s2->address(); }
2856 // Information about this specific target which we pass to the
2857 // general Target structure.
2858 static const Target::Target_info arm_info;
2860 // The types of GOT entries needed for this platform.
2861 // These values are exposed to the ABI in an incremental link.
2862 // Do not renumber existing values without changing the version
2863 // number of the .gnu_incremental_inputs section.
2866 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2867 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2868 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2869 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2870 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2873 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2875 // Map input section to Arm_input_section.
2876 typedef Unordered_map<Section_id,
2877 Arm_input_section<big_endian>*,
2879 Arm_input_section_map;
2881 // Map output addresses to relocs for Cortex-A8 erratum.
2882 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2883 Cortex_a8_relocs_info;
2886 Arm_output_data_got<big_endian>* got_;
2888 Output_data_plt_arm<big_endian>* plt_;
2889 // The GOT PLT section.
2890 Output_data_space* got_plt_;
2891 // The dynamic reloc section.
2892 Reloc_section* rel_dyn_;
2893 // Relocs saved to avoid a COPY reloc.
2894 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2895 // Space for variables copied with a COPY reloc.
2896 Output_data_space* dynbss_;
2897 // Offset of the GOT entry for the TLS module index.
2898 unsigned int got_mod_index_offset_;
2899 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2900 bool tls_base_symbol_defined_;
2901 // Vector of Stub_tables created.
2902 Stub_table_list stub_tables_;
2904 const Stub_factory &stub_factory_;
2905 // Whether we force PIC branch veneers.
2906 bool should_force_pic_veneer_;
2907 // Map for locating Arm_input_sections.
2908 Arm_input_section_map arm_input_section_map_;
2909 // Attributes section data in output.
2910 Attributes_section_data* attributes_section_data_;
2911 // Whether we want to fix code for Cortex-A8 erratum.
2912 bool fix_cortex_a8_;
2913 // Map addresses to relocs for Cortex-A8 erratum.
2914 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2917 template<bool big_endian>
2918 const Target::Target_info Target_arm<big_endian>::arm_info =
2921 big_endian, // is_big_endian
2922 elfcpp::EM_ARM, // machine_code
2923 false, // has_make_symbol
2924 false, // has_resolve
2925 false, // has_code_fill
2926 true, // is_default_stack_executable
2927 false, // can_icf_inline_merge_sections
2929 "/usr/lib/libc.so.1", // dynamic_linker
2930 0x8000, // default_text_segment_address
2931 0x1000, // abi_pagesize (overridable by -z max-page-size)
2932 0x1000, // common_pagesize (overridable by -z common-page-size)
2933 false, // isolate_execinstr
2935 elfcpp::SHN_UNDEF, // small_common_shndx
2936 elfcpp::SHN_UNDEF, // large_common_shndx
2937 0, // small_common_section_flags
2938 0, // large_common_section_flags
2939 ".ARM.attributes", // attributes_section
2940 "aeabi" // attributes_vendor
2943 // Arm relocate functions class
2946 template<bool big_endian>
2947 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2952 STATUS_OKAY, // No error during relocation.
2953 STATUS_OVERFLOW, // Relocation overflow.
2954 STATUS_BAD_RELOC // Relocation cannot be applied.
2958 typedef Relocate_functions<32, big_endian> Base;
2959 typedef Arm_relocate_functions<big_endian> This;
2961 // Encoding of imm16 argument for movt and movw ARM instructions
2964 // imm16 := imm4 | imm12
2966 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2967 // +-------+---------------+-------+-------+-----------------------+
2968 // | | |imm4 | |imm12 |
2969 // +-------+---------------+-------+-------+-----------------------+
2971 // Extract the relocation addend from VAL based on the ARM
2972 // instruction encoding described above.
2973 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2974 extract_arm_movw_movt_addend(
2975 typename elfcpp::Swap<32, big_endian>::Valtype val)
2977 // According to the Elf ABI for ARM Architecture the immediate
2978 // field is sign-extended to form the addend.
2979 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2982 // Insert X into VAL based on the ARM instruction encoding described
2984 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2985 insert_val_arm_movw_movt(
2986 typename elfcpp::Swap<32, big_endian>::Valtype val,
2987 typename elfcpp::Swap<32, big_endian>::Valtype x)
2991 val |= (x & 0xf000) << 4;
2995 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2998 // imm16 := imm4 | i | imm3 | imm8
3000 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3001 // +---------+-+-----------+-------++-+-----+-------+---------------+
3002 // | |i| |imm4 || |imm3 | |imm8 |
3003 // +---------+-+-----------+-------++-+-----+-------+---------------+
3005 // Extract the relocation addend from VAL based on the Thumb2
3006 // instruction encoding described above.
3007 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3008 extract_thumb_movw_movt_addend(
3009 typename elfcpp::Swap<32, big_endian>::Valtype val)
3011 // According to the Elf ABI for ARM Architecture the immediate
3012 // field is sign-extended to form the addend.
3013 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3014 | ((val >> 15) & 0x0800)
3015 | ((val >> 4) & 0x0700)
3019 // Insert X into VAL based on the Thumb2 instruction encoding
3021 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3022 insert_val_thumb_movw_movt(
3023 typename elfcpp::Swap<32, big_endian>::Valtype val,
3024 typename elfcpp::Swap<32, big_endian>::Valtype x)
3027 val |= (x & 0xf000) << 4;
3028 val |= (x & 0x0800) << 15;
3029 val |= (x & 0x0700) << 4;
3030 val |= (x & 0x00ff);
3034 // Calculate the smallest constant Kn for the specified residual.
3035 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3037 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3043 // Determine the most significant bit in the residual and
3044 // align the resulting value to a 2-bit boundary.
3045 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3047 // The desired shift is now (msb - 6), or zero, whichever
3049 return (((msb - 6) < 0) ? 0 : (msb - 6));
3052 // Calculate the final residual for the specified group index.
3053 // If the passed group index is less than zero, the method will return
3054 // the value of the specified residual without any change.
3055 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3056 static typename elfcpp::Swap<32, big_endian>::Valtype
3057 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3060 for (int n = 0; n <= group; n++)
3062 // Calculate which part of the value to mask.
3063 uint32_t shift = calc_grp_kn(residual);
3064 // Calculate the residual for the next time around.
3065 residual &= ~(residual & (0xff << shift));
3071 // Calculate the value of Gn for the specified group index.
3072 // We return it in the form of an encoded constant-and-rotation.
3073 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3074 static typename elfcpp::Swap<32, big_endian>::Valtype
3075 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3078 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3081 for (int n = 0; n <= group; n++)
3083 // Calculate which part of the value to mask.
3084 shift = calc_grp_kn(residual);
3085 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3086 gn = residual & (0xff << shift);
3087 // Calculate the residual for the next time around.
3090 // Return Gn in the form of an encoded constant-and-rotation.
3091 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3095 // Handle ARM long branches.
3096 static typename This::Status
3097 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3098 unsigned char*, const Sized_symbol<32>*,
3099 const Arm_relobj<big_endian>*, unsigned int,
3100 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3102 // Handle THUMB long branches.
3103 static typename This::Status
3104 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3105 unsigned char*, const Sized_symbol<32>*,
3106 const Arm_relobj<big_endian>*, unsigned int,
3107 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3110 // Return the branch offset of a 32-bit THUMB branch.
3111 static inline int32_t
3112 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3114 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3115 // involving the J1 and J2 bits.
3116 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3117 uint32_t upper = upper_insn & 0x3ffU;
3118 uint32_t lower = lower_insn & 0x7ffU;
3119 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3120 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3121 uint32_t i1 = j1 ^ s ? 0 : 1;
3122 uint32_t i2 = j2 ^ s ? 0 : 1;
3124 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3125 | (upper << 12) | (lower << 1));
3128 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3129 // UPPER_INSN is the original upper instruction of the branch. Caller is
3130 // responsible for overflow checking and BLX offset adjustment.
3131 static inline uint16_t
3132 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3134 uint32_t s = offset < 0 ? 1 : 0;
3135 uint32_t bits = static_cast<uint32_t>(offset);
3136 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3139 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3140 // LOWER_INSN is the original lower instruction of the branch. Caller is
3141 // responsible for overflow checking and BLX offset adjustment.
3142 static inline uint16_t
3143 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3145 uint32_t s = offset < 0 ? 1 : 0;
3146 uint32_t bits = static_cast<uint32_t>(offset);
3147 return ((lower_insn & ~0x2fffU)
3148 | ((((bits >> 23) & 1) ^ !s) << 13)
3149 | ((((bits >> 22) & 1) ^ !s) << 11)
3150 | ((bits >> 1) & 0x7ffU));
3153 // Return the branch offset of a 32-bit THUMB conditional branch.
3154 static inline int32_t
3155 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3157 uint32_t s = (upper_insn & 0x0400U) >> 10;
3158 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3159 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3160 uint32_t lower = (lower_insn & 0x07ffU);
3161 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3163 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3166 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3167 // instruction. UPPER_INSN is the original upper instruction of the branch.
3168 // Caller is responsible for overflow checking.
3169 static inline uint16_t
3170 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3172 uint32_t s = offset < 0 ? 1 : 0;
3173 uint32_t bits = static_cast<uint32_t>(offset);
3174 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3177 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3178 // instruction. LOWER_INSN is the original lower instruction of the branch.
3179 // The caller is responsible for overflow checking.
3180 static inline uint16_t
3181 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3183 uint32_t bits = static_cast<uint32_t>(offset);
3184 uint32_t j2 = (bits & 0x00080000U) >> 19;
3185 uint32_t j1 = (bits & 0x00040000U) >> 18;
3186 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3188 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3191 // R_ARM_ABS8: S + A
3192 static inline typename This::Status
3193 abs8(unsigned char* view,
3194 const Sized_relobj_file<32, big_endian>* object,
3195 const Symbol_value<32>* psymval)
3197 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3198 Valtype* wv = reinterpret_cast<Valtype*>(view);
3199 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3200 int32_t addend = Bits<8>::sign_extend32(val);
3201 Arm_address x = psymval->value(object, addend);
3202 val = Bits<32>::bit_select32(val, x, 0xffU);
3203 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3205 // R_ARM_ABS8 permits signed or unsigned results.
3206 return (Bits<8>::has_signed_unsigned_overflow32(x)
3207 ? This::STATUS_OVERFLOW
3208 : This::STATUS_OKAY);
3211 // R_ARM_THM_ABS5: S + A
3212 static inline typename This::Status
3213 thm_abs5(unsigned char* view,
3214 const Sized_relobj_file<32, big_endian>* object,
3215 const Symbol_value<32>* psymval)
3217 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3218 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3219 Valtype* wv = reinterpret_cast<Valtype*>(view);
3220 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3221 Reltype addend = (val & 0x7e0U) >> 6;
3222 Reltype x = psymval->value(object, addend);
3223 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3224 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3225 return (Bits<5>::has_overflow32(x)
3226 ? This::STATUS_OVERFLOW
3227 : This::STATUS_OKAY);
3230 // R_ARM_ABS12: S + A
3231 static inline typename This::Status
3232 abs12(unsigned char* view,
3233 const Sized_relobj_file<32, big_endian>* object,
3234 const Symbol_value<32>* psymval)
3236 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3237 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3238 Valtype* wv = reinterpret_cast<Valtype*>(view);
3239 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3240 Reltype addend = val & 0x0fffU;
3241 Reltype x = psymval->value(object, addend);
3242 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3243 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3244 return (Bits<12>::has_overflow32(x)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3249 // R_ARM_ABS16: S + A
3250 static inline typename This::Status
3251 abs16(unsigned char* view,
3252 const Sized_relobj_file<32, big_endian>* object,
3253 const Symbol_value<32>* psymval)
3255 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3256 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3257 int32_t addend = Bits<16>::sign_extend32(val);
3258 Arm_address x = psymval->value(object, addend);
3259 val = Bits<32>::bit_select32(val, x, 0xffffU);
3260 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3262 // R_ARM_ABS16 permits signed or unsigned results.
3263 return (Bits<16>::has_signed_unsigned_overflow32(x)
3264 ? This::STATUS_OVERFLOW
3265 : This::STATUS_OKAY);
3268 // R_ARM_ABS32: (S + A) | T
3269 static inline typename This::Status
3270 abs32(unsigned char* view,
3271 const Sized_relobj_file<32, big_endian>* object,
3272 const Symbol_value<32>* psymval,
3273 Arm_address thumb_bit)
3275 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3276 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3277 Valtype x = psymval->value(object, addend) | thumb_bit;
3278 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3279 return This::STATUS_OKAY;
3282 // R_ARM_REL32: (S + A) | T - P
3283 static inline typename This::Status
3284 rel32(unsigned char* view,
3285 const Sized_relobj_file<32, big_endian>* object,
3286 const Symbol_value<32>* psymval,
3287 Arm_address address,
3288 Arm_address thumb_bit)
3290 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3291 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3292 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3293 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3294 return This::STATUS_OKAY;
3297 // R_ARM_THM_JUMP24: (S + A) | T - P
3298 static typename This::Status
3299 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3300 const Symbol_value<32>* psymval, Arm_address address,
3301 Arm_address thumb_bit);
3303 // R_ARM_THM_JUMP6: S + A – P
3304 static inline typename This::Status
3305 thm_jump6(unsigned char* view,
3306 const Sized_relobj_file<32, big_endian>* object,
3307 const Symbol_value<32>* psymval,
3308 Arm_address address)
3310 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3311 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3312 Valtype* wv = reinterpret_cast<Valtype*>(view);
3313 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3314 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3315 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3316 Reltype x = (psymval->value(object, addend) - address);
3317 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3318 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3319 // CZB does only forward jumps.
3320 return ((x > 0x007e)
3321 ? This::STATUS_OVERFLOW
3322 : This::STATUS_OKAY);
3325 // R_ARM_THM_JUMP8: S + A – P
3326 static inline typename This::Status
3327 thm_jump8(unsigned char* view,
3328 const Sized_relobj_file<32, big_endian>* object,
3329 const Symbol_value<32>* psymval,
3330 Arm_address address)
3332 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3333 Valtype* wv = reinterpret_cast<Valtype*>(view);
3334 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3335 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3336 int32_t x = (psymval->value(object, addend) - address);
3337 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3338 | ((x & 0x01fe) >> 1)));
3339 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3340 return (Bits<9>::has_overflow32(x)
3341 ? This::STATUS_OVERFLOW
3342 : This::STATUS_OKAY);
3345 // R_ARM_THM_JUMP11: S + A – P
3346 static inline typename This::Status
3347 thm_jump11(unsigned char* view,
3348 const Sized_relobj_file<32, big_endian>* object,
3349 const Symbol_value<32>* psymval,
3350 Arm_address address)
3352 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3353 Valtype* wv = reinterpret_cast<Valtype*>(view);
3354 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3355 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3356 int32_t x = (psymval->value(object, addend) - address);
3357 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3358 | ((x & 0x0ffe) >> 1)));
3359 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3360 return (Bits<12>::has_overflow32(x)
3361 ? This::STATUS_OVERFLOW
3362 : This::STATUS_OKAY);
3365 // R_ARM_BASE_PREL: B(S) + A - P
3366 static inline typename This::Status
3367 base_prel(unsigned char* view,
3369 Arm_address address)
3371 Base::rel32(view, origin - address);
3375 // R_ARM_BASE_ABS: B(S) + A
3376 static inline typename This::Status
3377 base_abs(unsigned char* view,
3380 Base::rel32(view, origin);
3384 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3385 static inline typename This::Status
3386 got_brel(unsigned char* view,
3387 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3389 Base::rel32(view, got_offset);
3390 return This::STATUS_OKAY;
3393 // R_ARM_GOT_PREL: GOT(S) + A - P
3394 static inline typename This::Status
3395 got_prel(unsigned char* view,
3396 Arm_address got_entry,
3397 Arm_address address)
3399 Base::rel32(view, got_entry - address);
3400 return This::STATUS_OKAY;
3403 // R_ARM_PREL: (S + A) | T - P
3404 static inline typename This::Status
3405 prel31(unsigned char* view,
3406 const Sized_relobj_file<32, big_endian>* object,
3407 const Symbol_value<32>* psymval,
3408 Arm_address address,
3409 Arm_address thumb_bit)
3411 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3412 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3413 Valtype addend = Bits<31>::sign_extend32(val);
3414 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3415 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3416 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3417 return (Bits<31>::has_overflow32(x)
3418 ? This::STATUS_OVERFLOW
3419 : This::STATUS_OKAY);
3422 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3423 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3424 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3425 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3426 static inline typename This::Status
3427 movw(unsigned char* view,
3428 const Sized_relobj_file<32, big_endian>* object,
3429 const Symbol_value<32>* psymval,
3430 Arm_address relative_address_base,
3431 Arm_address thumb_bit,
3432 bool check_overflow)
3434 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3435 Valtype* wv = reinterpret_cast<Valtype*>(view);
3436 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3437 Valtype addend = This::extract_arm_movw_movt_addend(val);
3438 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3439 - relative_address_base);
3440 val = This::insert_val_arm_movw_movt(val, x);
3441 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3442 return ((check_overflow && Bits<16>::has_overflow32(x))
3443 ? This::STATUS_OVERFLOW
3444 : This::STATUS_OKAY);
3447 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3448 // R_ARM_MOVT_PREL: S + A - P
3449 // R_ARM_MOVT_BREL: S + A - B(S)
3450 static inline typename This::Status
3451 movt(unsigned char* view,
3452 const Sized_relobj_file<32, big_endian>* object,
3453 const Symbol_value<32>* psymval,
3454 Arm_address relative_address_base)
3456 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3457 Valtype* wv = reinterpret_cast<Valtype*>(view);
3458 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3459 Valtype addend = This::extract_arm_movw_movt_addend(val);
3460 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3461 val = This::insert_val_arm_movw_movt(val, x);
3462 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3463 // FIXME: IHI0044D says that we should check for overflow.
3464 return This::STATUS_OKAY;
3467 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3468 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3469 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3470 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3471 static inline typename This::Status
3472 thm_movw(unsigned char* view,
3473 const Sized_relobj_file<32, big_endian>* object,
3474 const Symbol_value<32>* psymval,
3475 Arm_address relative_address_base,
3476 Arm_address thumb_bit,
3477 bool check_overflow)
3479 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3480 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3481 Valtype* wv = reinterpret_cast<Valtype*>(view);
3482 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3483 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3484 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3486 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3487 val = This::insert_val_thumb_movw_movt(val, x);
3488 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3489 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3490 return ((check_overflow && Bits<16>::has_overflow32(x))
3491 ? This::STATUS_OVERFLOW
3492 : This::STATUS_OKAY);
3495 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3496 // R_ARM_THM_MOVT_PREL: S + A - P
3497 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3498 static inline typename This::Status
3499 thm_movt(unsigned char* view,
3500 const Sized_relobj_file<32, big_endian>* object,
3501 const Symbol_value<32>* psymval,
3502 Arm_address relative_address_base)
3504 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3505 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3506 Valtype* wv = reinterpret_cast<Valtype*>(view);
3507 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3508 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3509 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3510 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3511 val = This::insert_val_thumb_movw_movt(val, x);
3512 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3513 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3514 return This::STATUS_OKAY;
3517 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3518 static inline typename This::Status
3519 thm_alu11(unsigned char* view,
3520 const Sized_relobj_file<32, big_endian>* object,
3521 const Symbol_value<32>* psymval,
3522 Arm_address address,
3523 Arm_address thumb_bit)
3525 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3526 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3527 Valtype* wv = reinterpret_cast<Valtype*>(view);
3528 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3529 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3531 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3532 // -----------------------------------------------------------------------
3533 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3534 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3535 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3536 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3537 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3538 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3540 // Determine a sign for the addend.
3541 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3542 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3543 // Thumb2 addend encoding:
3544 // imm12 := i | imm3 | imm8
3545 int32_t addend = (insn & 0xff)
3546 | ((insn & 0x00007000) >> 4)
3547 | ((insn & 0x04000000) >> 15);
3548 // Apply a sign to the added.
3551 int32_t x = (psymval->value(object, addend) | thumb_bit)
3552 - (address & 0xfffffffc);
3553 Reltype val = abs(x);
3554 // Mask out the value and a distinct part of the ADD/SUB opcode
3555 // (bits 7:5 of opword).
3556 insn = (insn & 0xfb0f8f00)
3558 | ((val & 0x700) << 4)
3559 | ((val & 0x800) << 15);
3560 // Set the opcode according to whether the value to go in the
3561 // place is negative.
3565 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3566 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3567 return ((val > 0xfff) ?
3568 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3571 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3572 static inline typename This::Status
3573 thm_pc8(unsigned char* view,
3574 const Sized_relobj_file<32, big_endian>* object,
3575 const Symbol_value<32>* psymval,
3576 Arm_address address)
3578 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3579 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3580 Valtype* wv = reinterpret_cast<Valtype*>(view);
3581 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3582 Reltype addend = ((insn & 0x00ff) << 2);
3583 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3584 Reltype val = abs(x);
3585 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3587 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3588 return ((val > 0x03fc)
3589 ? This::STATUS_OVERFLOW
3590 : This::STATUS_OKAY);
3593 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3594 static inline typename This::Status
3595 thm_pc12(unsigned char* view,
3596 const Sized_relobj_file<32, big_endian>* object,
3597 const Symbol_value<32>* psymval,
3598 Arm_address address)
3600 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3601 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3602 Valtype* wv = reinterpret_cast<Valtype*>(view);
3603 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3604 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3605 // Determine a sign for the addend (positive if the U bit is 1).
3606 const int sign = (insn & 0x00800000) ? 1 : -1;
3607 int32_t addend = (insn & 0xfff);
3608 // Apply a sign to the added.
3611 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3612 Reltype val = abs(x);
3613 // Mask out and apply the value and the U bit.
3614 insn = (insn & 0xff7ff000) | (val & 0xfff);
3615 // Set the U bit according to whether the value to go in the
3616 // place is positive.
3620 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3621 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3622 return ((val > 0xfff) ?
3623 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3627 static inline typename This::Status
3628 v4bx(const Relocate_info<32, big_endian>* relinfo,
3629 unsigned char* view,
3630 const Arm_relobj<big_endian>* object,
3631 const Arm_address address,
3632 const bool is_interworking)
3635 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3636 Valtype* wv = reinterpret_cast<Valtype*>(view);
3637 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3639 // Ensure that we have a BX instruction.
3640 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3641 const uint32_t reg = (val & 0xf);
3642 if (is_interworking && reg != 0xf)
3644 Stub_table<big_endian>* stub_table =
3645 object->stub_table(relinfo->data_shndx);
3646 gold_assert(stub_table != NULL);
3648 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3649 gold_assert(stub != NULL);
3651 int32_t veneer_address =
3652 stub_table->address() + stub->offset() - 8 - address;
3653 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3654 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3655 // Replace with a branch to veneer (B <addr>)
3656 val = (val & 0xf0000000) | 0x0a000000
3657 | ((veneer_address >> 2) & 0x00ffffff);
3661 // Preserve Rm (lowest four bits) and the condition code
3662 // (highest four bits). Other bits encode MOV PC,Rm.
3663 val = (val & 0xf000000f) | 0x01a0f000;
3665 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3666 return This::STATUS_OKAY;
3669 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3670 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3671 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3672 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3673 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3674 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3675 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3676 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3677 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3678 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3679 static inline typename This::Status
3680 arm_grp_alu(unsigned char* view,
3681 const Sized_relobj_file<32, big_endian>* object,
3682 const Symbol_value<32>* psymval,
3684 Arm_address address,
3685 Arm_address thumb_bit,
3686 bool check_overflow)
3688 gold_assert(group >= 0 && group < 3);
3689 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3690 Valtype* wv = reinterpret_cast<Valtype*>(view);
3691 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3693 // ALU group relocations are allowed only for the ADD/SUB instructions.
3694 // (0x00800000 - ADD, 0x00400000 - SUB)
3695 const Valtype opcode = insn & 0x01e00000;
3696 if (opcode != 0x00800000 && opcode != 0x00400000)
3697 return This::STATUS_BAD_RELOC;
3699 // Determine a sign for the addend.
3700 const int sign = (opcode == 0x00800000) ? 1 : -1;
3701 // shifter = rotate_imm * 2
3702 const uint32_t shifter = (insn & 0xf00) >> 7;
3703 // Initial addend value.
3704 int32_t addend = insn & 0xff;
3705 // Rotate addend right by shifter.
3706 addend = (addend >> shifter) | (addend << (32 - shifter));
3707 // Apply a sign to the added.
3710 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3711 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3712 // Check for overflow if required
3714 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3715 return This::STATUS_OVERFLOW;
3717 // Mask out the value and the ADD/SUB part of the opcode; take care
3718 // not to destroy the S bit.
3720 // Set the opcode according to whether the value to go in the
3721 // place is negative.
3722 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3723 // Encode the offset (encoded Gn).
3726 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3727 return This::STATUS_OKAY;
3730 // R_ARM_LDR_PC_G0: S + A - P
3731 // R_ARM_LDR_PC_G1: S + A - P
3732 // R_ARM_LDR_PC_G2: S + A - P
3733 // R_ARM_LDR_SB_G0: S + A - B(S)
3734 // R_ARM_LDR_SB_G1: S + A - B(S)
3735 // R_ARM_LDR_SB_G2: S + A - B(S)
3736 static inline typename This::Status
3737 arm_grp_ldr(unsigned char* view,
3738 const Sized_relobj_file<32, big_endian>* object,
3739 const Symbol_value<32>* psymval,
3741 Arm_address address)
3743 gold_assert(group >= 0 && group < 3);
3744 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3745 Valtype* wv = reinterpret_cast<Valtype*>(view);
3746 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3748 const int sign = (insn & 0x00800000) ? 1 : -1;
3749 int32_t addend = (insn & 0xfff) * sign;
3750 int32_t x = (psymval->value(object, addend) - address);
3751 // Calculate the relevant G(n-1) value to obtain this stage residual.
3753 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3754 if (residual >= 0x1000)
3755 return This::STATUS_OVERFLOW;
3757 // Mask out the value and U bit.
3759 // Set the U bit for non-negative values.
3764 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3765 return This::STATUS_OKAY;
3768 // R_ARM_LDRS_PC_G0: S + A - P
3769 // R_ARM_LDRS_PC_G1: S + A - P
3770 // R_ARM_LDRS_PC_G2: S + A - P
3771 // R_ARM_LDRS_SB_G0: S + A - B(S)
3772 // R_ARM_LDRS_SB_G1: S + A - B(S)
3773 // R_ARM_LDRS_SB_G2: S + A - B(S)
3774 static inline typename This::Status
3775 arm_grp_ldrs(unsigned char* view,
3776 const Sized_relobj_file<32, big_endian>* object,
3777 const Symbol_value<32>* psymval,
3779 Arm_address address)
3781 gold_assert(group >= 0 && group < 3);
3782 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3783 Valtype* wv = reinterpret_cast<Valtype*>(view);
3784 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3786 const int sign = (insn & 0x00800000) ? 1 : -1;
3787 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3788 int32_t x = (psymval->value(object, addend) - address);
3789 // Calculate the relevant G(n-1) value to obtain this stage residual.
3791 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3792 if (residual >= 0x100)
3793 return This::STATUS_OVERFLOW;
3795 // Mask out the value and U bit.
3797 // Set the U bit for non-negative values.
3800 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3802 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3803 return This::STATUS_OKAY;
3806 // R_ARM_LDC_PC_G0: S + A - P
3807 // R_ARM_LDC_PC_G1: S + A - P
3808 // R_ARM_LDC_PC_G2: S + A - P
3809 // R_ARM_LDC_SB_G0: S + A - B(S)
3810 // R_ARM_LDC_SB_G1: S + A - B(S)
3811 // R_ARM_LDC_SB_G2: S + A - B(S)
3812 static inline typename This::Status
3813 arm_grp_ldc(unsigned char* view,
3814 const Sized_relobj_file<32, big_endian>* object,
3815 const Symbol_value<32>* psymval,
3817 Arm_address address)
3819 gold_assert(group >= 0 && group < 3);
3820 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3821 Valtype* wv = reinterpret_cast<Valtype*>(view);
3822 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3824 const int sign = (insn & 0x00800000) ? 1 : -1;
3825 int32_t addend = ((insn & 0xff) << 2) * sign;
3826 int32_t x = (psymval->value(object, addend) - address);
3827 // Calculate the relevant G(n-1) value to obtain this stage residual.
3829 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3830 if ((residual & 0x3) != 0 || residual >= 0x400)
3831 return This::STATUS_OVERFLOW;
3833 // Mask out the value and U bit.
3835 // Set the U bit for non-negative values.
3838 insn |= (residual >> 2);
3840 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3841 return This::STATUS_OKAY;
3845 // Relocate ARM long branches. This handles relocation types
3846 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3847 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3848 // undefined and we do not use PLT in this relocation. In such a case,
3849 // the branch is converted into an NOP.
3851 template<bool big_endian>
3852 typename Arm_relocate_functions<big_endian>::Status
3853 Arm_relocate_functions<big_endian>::arm_branch_common(
3854 unsigned int r_type,
3855 const Relocate_info<32, big_endian>* relinfo,
3856 unsigned char* view,
3857 const Sized_symbol<32>* gsym,
3858 const Arm_relobj<big_endian>* object,
3860 const Symbol_value<32>* psymval,
3861 Arm_address address,
3862 Arm_address thumb_bit,
3863 bool is_weakly_undefined_without_plt)
3865 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3866 Valtype* wv = reinterpret_cast<Valtype*>(view);
3867 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3869 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3870 && ((val & 0x0f000000UL) == 0x0a000000UL);
3871 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3872 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3873 && ((val & 0x0f000000UL) == 0x0b000000UL);
3874 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3875 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3877 // Check that the instruction is valid.
3878 if (r_type == elfcpp::R_ARM_CALL)
3880 if (!insn_is_uncond_bl && !insn_is_blx)
3881 return This::STATUS_BAD_RELOC;
3883 else if (r_type == elfcpp::R_ARM_JUMP24)
3885 if (!insn_is_b && !insn_is_cond_bl)
3886 return This::STATUS_BAD_RELOC;
3888 else if (r_type == elfcpp::R_ARM_PLT32)
3890 if (!insn_is_any_branch)
3891 return This::STATUS_BAD_RELOC;
3893 else if (r_type == elfcpp::R_ARM_XPC25)
3895 // FIXME: AAELF document IH0044C does not say much about it other
3896 // than it being obsolete.
3897 if (!insn_is_any_branch)
3898 return This::STATUS_BAD_RELOC;
3903 // A branch to an undefined weak symbol is turned into a jump to
3904 // the next instruction unless a PLT entry will be created.
3905 // Do the same for local undefined symbols.
3906 // The jump to the next instruction is optimized as a NOP depending
3907 // on the architecture.
3908 const Target_arm<big_endian>* arm_target =
3909 Target_arm<big_endian>::default_target();
3910 if (is_weakly_undefined_without_plt)
3912 gold_assert(!parameters->options().relocatable());
3913 Valtype cond = val & 0xf0000000U;
3914 if (arm_target->may_use_arm_nop())
3915 val = cond | 0x0320f000;
3917 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3918 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3919 return This::STATUS_OKAY;
3922 Valtype addend = Bits<26>::sign_extend32(val << 2);
3923 Valtype branch_target = psymval->value(object, addend);
3924 int32_t branch_offset = branch_target - address;
3926 // We need a stub if the branch offset is too large or if we need
3928 bool may_use_blx = arm_target->may_use_v5t_interworking();
3929 Reloc_stub* stub = NULL;
3931 if (!parameters->options().relocatable()
3932 && (Bits<26>::has_overflow32(branch_offset)
3933 || ((thumb_bit != 0)
3934 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3936 Valtype unadjusted_branch_target = psymval->value(object, 0);
3938 Stub_type stub_type =
3939 Reloc_stub::stub_type_for_reloc(r_type, address,
3940 unadjusted_branch_target,
3942 if (stub_type != arm_stub_none)
3944 Stub_table<big_endian>* stub_table =
3945 object->stub_table(relinfo->data_shndx);
3946 gold_assert(stub_table != NULL);
3948 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3949 stub = stub_table->find_reloc_stub(stub_key);
3950 gold_assert(stub != NULL);
3951 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3952 branch_target = stub_table->address() + stub->offset() + addend;
3953 branch_offset = branch_target - address;
3954 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3958 // At this point, if we still need to switch mode, the instruction
3959 // must either be a BLX or a BL that can be converted to a BLX.
3963 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3964 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3967 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3968 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3969 return (Bits<26>::has_overflow32(branch_offset)
3970 ? This::STATUS_OVERFLOW
3971 : This::STATUS_OKAY);
3974 // Relocate THUMB long branches. This handles relocation types
3975 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3976 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3977 // undefined and we do not use PLT in this relocation. In such a case,
3978 // the branch is converted into an NOP.
3980 template<bool big_endian>
3981 typename Arm_relocate_functions<big_endian>::Status
3982 Arm_relocate_functions<big_endian>::thumb_branch_common(
3983 unsigned int r_type,
3984 const Relocate_info<32, big_endian>* relinfo,
3985 unsigned char* view,
3986 const Sized_symbol<32>* gsym,
3987 const Arm_relobj<big_endian>* object,
3989 const Symbol_value<32>* psymval,
3990 Arm_address address,
3991 Arm_address thumb_bit,
3992 bool is_weakly_undefined_without_plt)
3994 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3995 Valtype* wv = reinterpret_cast<Valtype*>(view);
3996 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3997 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3999 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4001 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4002 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4004 // Check that the instruction is valid.
4005 if (r_type == elfcpp::R_ARM_THM_CALL)
4007 if (!is_bl_insn && !is_blx_insn)
4008 return This::STATUS_BAD_RELOC;
4010 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4012 // This cannot be a BLX.
4014 return This::STATUS_BAD_RELOC;
4016 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4018 // Check for Thumb to Thumb call.
4020 return This::STATUS_BAD_RELOC;
4023 gold_warning(_("%s: Thumb BLX instruction targets "
4024 "thumb function '%s'."),
4025 object->name().c_str(),
4026 (gsym ? gsym->name() : "(local)"));
4027 // Convert BLX to BL.
4028 lower_insn |= 0x1000U;
4034 // A branch to an undefined weak symbol is turned into a jump to
4035 // the next instruction unless a PLT entry will be created.
4036 // The jump to the next instruction is optimized as a NOP.W for
4037 // Thumb-2 enabled architectures.
4038 const Target_arm<big_endian>* arm_target =
4039 Target_arm<big_endian>::default_target();
4040 if (is_weakly_undefined_without_plt)
4042 gold_assert(!parameters->options().relocatable());
4043 if (arm_target->may_use_thumb2_nop())
4045 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4046 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4050 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4051 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4053 return This::STATUS_OKAY;
4056 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4057 Arm_address branch_target = psymval->value(object, addend);
4059 // For BLX, bit 1 of target address comes from bit 1 of base address.
4060 bool may_use_blx = arm_target->may_use_v5t_interworking();
4061 if (thumb_bit == 0 && may_use_blx)
4062 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4064 int32_t branch_offset = branch_target - address;
4066 // We need a stub if the branch offset is too large or if we need
4068 bool thumb2 = arm_target->using_thumb2();
4069 if (!parameters->options().relocatable()
4070 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4071 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4072 || ((thumb_bit == 0)
4073 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4074 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4076 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4078 Stub_type stub_type =
4079 Reloc_stub::stub_type_for_reloc(r_type, address,
4080 unadjusted_branch_target,
4083 if (stub_type != arm_stub_none)
4085 Stub_table<big_endian>* stub_table =
4086 object->stub_table(relinfo->data_shndx);
4087 gold_assert(stub_table != NULL);
4089 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4090 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4091 gold_assert(stub != NULL);
4092 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4093 branch_target = stub_table->address() + stub->offset() + addend;
4094 if (thumb_bit == 0 && may_use_blx)
4095 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4096 branch_offset = branch_target - address;
4100 // At this point, if we still need to switch mode, the instruction
4101 // must either be a BLX or a BL that can be converted to a BLX.
4104 gold_assert(may_use_blx
4105 && (r_type == elfcpp::R_ARM_THM_CALL
4106 || r_type == elfcpp::R_ARM_THM_XPC22));
4107 // Make sure this is a BLX.
4108 lower_insn &= ~0x1000U;
4112 // Make sure this is a BL.
4113 lower_insn |= 0x1000U;
4116 // For a BLX instruction, make sure that the relocation is rounded up
4117 // to a word boundary. This follows the semantics of the instruction
4118 // which specifies that bit 1 of the target address will come from bit
4119 // 1 of the base address.
4120 if ((lower_insn & 0x5000U) == 0x4000U)
4121 gold_assert((branch_offset & 3) == 0);
4123 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4124 // We use the Thumb-2 encoding, which is safe even if dealing with
4125 // a Thumb-1 instruction by virtue of our overflow check above. */
4126 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4127 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4129 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4130 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4132 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4135 ? Bits<25>::has_overflow32(branch_offset)
4136 : Bits<23>::has_overflow32(branch_offset))
4137 ? This::STATUS_OVERFLOW
4138 : This::STATUS_OKAY);
4141 // Relocate THUMB-2 long conditional branches.
4142 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4143 // undefined and we do not use PLT in this relocation. In such a case,
4144 // the branch is converted into an NOP.
4146 template<bool big_endian>
4147 typename Arm_relocate_functions<big_endian>::Status
4148 Arm_relocate_functions<big_endian>::thm_jump19(
4149 unsigned char* view,
4150 const Arm_relobj<big_endian>* object,
4151 const Symbol_value<32>* psymval,
4152 Arm_address address,
4153 Arm_address thumb_bit)
4155 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4156 Valtype* wv = reinterpret_cast<Valtype*>(view);
4157 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4158 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4159 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4161 Arm_address branch_target = psymval->value(object, addend);
4162 int32_t branch_offset = branch_target - address;
4164 // ??? Should handle interworking? GCC might someday try to
4165 // use this for tail calls.
4166 // FIXME: We do support thumb entry to PLT yet.
4169 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4170 return This::STATUS_BAD_RELOC;
4173 // Put RELOCATION back into the insn.
4174 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4175 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4177 // Put the relocated value back in the object file:
4178 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4179 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4181 return (Bits<21>::has_overflow32(branch_offset)
4182 ? This::STATUS_OVERFLOW
4183 : This::STATUS_OKAY);
4186 // Get the GOT section, creating it if necessary.
4188 template<bool big_endian>
4189 Arm_output_data_got<big_endian>*
4190 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4192 if (this->got_ == NULL)
4194 gold_assert(symtab != NULL && layout != NULL);
4196 // When using -z now, we can treat .got as a relro section.
4197 // Without -z now, it is modified after program startup by lazy
4199 bool is_got_relro = parameters->options().now();
4200 Output_section_order got_order = (is_got_relro
4204 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4205 // .got.plt sections in output. The output .got section contains both
4206 // PLT and non-PLT GOT entries.
4207 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4209 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4210 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4211 this->got_, got_order, is_got_relro);
4213 // The old GNU linker creates a .got.plt section. We just
4214 // create another set of data in the .got section. Note that we
4215 // always create a PLT if we create a GOT, although the PLT
4217 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4218 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4219 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4220 this->got_plt_, got_order, is_got_relro);
4222 // The first three entries are reserved.
4223 this->got_plt_->set_current_data_size(3 * 4);
4225 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4226 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4227 Symbol_table::PREDEFINED,
4229 0, 0, elfcpp::STT_OBJECT,
4231 elfcpp::STV_HIDDEN, 0,
4237 // Get the dynamic reloc section, creating it if necessary.
4239 template<bool big_endian>
4240 typename Target_arm<big_endian>::Reloc_section*
4241 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4243 if (this->rel_dyn_ == NULL)
4245 gold_assert(layout != NULL);
4246 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4247 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4248 elfcpp::SHF_ALLOC, this->rel_dyn_,
4249 ORDER_DYNAMIC_RELOCS, false);
4251 return this->rel_dyn_;
4254 // Insn_template methods.
4256 // Return byte size of an instruction template.
4259 Insn_template::size() const
4261 switch (this->type())
4264 case THUMB16_SPECIAL_TYPE:
4275 // Return alignment of an instruction template.
4278 Insn_template::alignment() const
4280 switch (this->type())
4283 case THUMB16_SPECIAL_TYPE:
4294 // Stub_template methods.
4296 Stub_template::Stub_template(
4297 Stub_type type, const Insn_template* insns,
4299 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4300 entry_in_thumb_mode_(false), relocs_()
4304 // Compute byte size and alignment of stub template.
4305 for (size_t i = 0; i < insn_count; i++)
4307 unsigned insn_alignment = insns[i].alignment();
4308 size_t insn_size = insns[i].size();
4309 gold_assert((offset & (insn_alignment - 1)) == 0);
4310 this->alignment_ = std::max(this->alignment_, insn_alignment);
4311 switch (insns[i].type())
4313 case Insn_template::THUMB16_TYPE:
4314 case Insn_template::THUMB16_SPECIAL_TYPE:
4316 this->entry_in_thumb_mode_ = true;
4319 case Insn_template::THUMB32_TYPE:
4320 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4321 this->relocs_.push_back(Reloc(i, offset));
4323 this->entry_in_thumb_mode_ = true;
4326 case Insn_template::ARM_TYPE:
4327 // Handle cases where the target is encoded within the
4329 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4330 this->relocs_.push_back(Reloc(i, offset));
4333 case Insn_template::DATA_TYPE:
4334 // Entry point cannot be data.
4335 gold_assert(i != 0);
4336 this->relocs_.push_back(Reloc(i, offset));
4342 offset += insn_size;
4344 this->size_ = offset;
4349 // Template to implement do_write for a specific target endianness.
4351 template<bool big_endian>
4353 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4355 const Stub_template* stub_template = this->stub_template();
4356 const Insn_template* insns = stub_template->insns();
4358 // FIXME: We do not handle BE8 encoding yet.
4359 unsigned char* pov = view;
4360 for (size_t i = 0; i < stub_template->insn_count(); i++)
4362 switch (insns[i].type())
4364 case Insn_template::THUMB16_TYPE:
4365 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4367 case Insn_template::THUMB16_SPECIAL_TYPE:
4368 elfcpp::Swap<16, big_endian>::writeval(
4370 this->thumb16_special(i));
4372 case Insn_template::THUMB32_TYPE:
4374 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4375 uint32_t lo = insns[i].data() & 0xffff;
4376 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4377 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4380 case Insn_template::ARM_TYPE:
4381 case Insn_template::DATA_TYPE:
4382 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4387 pov += insns[i].size();
4389 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4392 // Reloc_stub::Key methods.
4394 // Dump a Key as a string for debugging.
4397 Reloc_stub::Key::name() const
4399 if (this->r_sym_ == invalid_index)
4401 // Global symbol key name
4402 // <stub-type>:<symbol name>:<addend>.
4403 const std::string sym_name = this->u_.symbol->name();
4404 // We need to print two hex number and two colons. So just add 100 bytes
4405 // to the symbol name size.
4406 size_t len = sym_name.size() + 100;
4407 char* buffer = new char[len];
4408 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4409 sym_name.c_str(), this->addend_);
4410 gold_assert(c > 0 && c < static_cast<int>(len));
4412 return std::string(buffer);
4416 // local symbol key name
4417 // <stub-type>:<object>:<r_sym>:<addend>.
4418 const size_t len = 200;
4420 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4421 this->u_.relobj, this->r_sym_, this->addend_);
4422 gold_assert(c > 0 && c < static_cast<int>(len));
4423 return std::string(buffer);
4427 // Reloc_stub methods.
4429 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4430 // LOCATION to DESTINATION.
4431 // This code is based on the arm_type_of_stub function in
4432 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4436 Reloc_stub::stub_type_for_reloc(
4437 unsigned int r_type,
4438 Arm_address location,
4439 Arm_address destination,
4440 bool target_is_thumb)
4442 Stub_type stub_type = arm_stub_none;
4444 // This is a bit ugly but we want to avoid using a templated class for
4445 // big and little endianities.
4447 bool should_force_pic_veneer;
4450 if (parameters->target().is_big_endian())
4452 const Target_arm<true>* big_endian_target =
4453 Target_arm<true>::default_target();
4454 may_use_blx = big_endian_target->may_use_v5t_interworking();
4455 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4456 thumb2 = big_endian_target->using_thumb2();
4457 thumb_only = big_endian_target->using_thumb_only();
4461 const Target_arm<false>* little_endian_target =
4462 Target_arm<false>::default_target();
4463 may_use_blx = little_endian_target->may_use_v5t_interworking();
4464 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4465 thumb2 = little_endian_target->using_thumb2();
4466 thumb_only = little_endian_target->using_thumb_only();
4469 int64_t branch_offset;
4470 bool output_is_position_independent =
4471 parameters->options().output_is_position_independent();
4472 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4474 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4475 // base address (instruction address + 4).
4476 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4477 destination = Bits<32>::bit_select32(destination, location, 0x2);
4478 branch_offset = static_cast<int64_t>(destination) - location;
4480 // Handle cases where:
4481 // - this call goes too far (different Thumb/Thumb2 max
4483 // - it's a Thumb->Arm call and blx is not available, or it's a
4484 // Thumb->Arm branch (not bl). A stub is needed in this case.
4486 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4487 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4489 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4490 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4491 || ((!target_is_thumb)
4492 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4493 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4495 if (target_is_thumb)
4500 stub_type = (output_is_position_independent
4501 || should_force_pic_veneer)
4504 && (r_type == elfcpp::R_ARM_THM_CALL))
4505 // V5T and above. Stub starts with ARM code, so
4506 // we must be able to switch mode before
4507 // reaching it, which is only possible for 'bl'
4508 // (ie R_ARM_THM_CALL relocation).
4509 ? arm_stub_long_branch_any_thumb_pic
4510 // On V4T, use Thumb code only.
4511 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4515 && (r_type == elfcpp::R_ARM_THM_CALL))
4516 ? arm_stub_long_branch_any_any // V5T and above.
4517 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4521 stub_type = (output_is_position_independent
4522 || should_force_pic_veneer)
4523 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4524 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4531 // FIXME: We should check that the input section is from an
4532 // object that has interwork enabled.
4534 stub_type = (output_is_position_independent
4535 || should_force_pic_veneer)
4538 && (r_type == elfcpp::R_ARM_THM_CALL))
4539 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4540 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4544 && (r_type == elfcpp::R_ARM_THM_CALL))
4545 ? arm_stub_long_branch_any_any // V5T and above.
4546 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4548 // Handle v4t short branches.
4549 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4550 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4551 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4552 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4556 else if (r_type == elfcpp::R_ARM_CALL
4557 || r_type == elfcpp::R_ARM_JUMP24
4558 || r_type == elfcpp::R_ARM_PLT32)
4560 branch_offset = static_cast<int64_t>(destination) - location;
4561 if (target_is_thumb)
4565 // FIXME: We should check that the input section is from an
4566 // object that has interwork enabled.
4568 // We have an extra 2-bytes reach because of
4569 // the mode change (bit 24 (H) of BLX encoding).
4570 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4571 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4572 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4573 || (r_type == elfcpp::R_ARM_JUMP24)
4574 || (r_type == elfcpp::R_ARM_PLT32))
4576 stub_type = (output_is_position_independent
4577 || should_force_pic_veneer)
4580 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4581 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4585 ? arm_stub_long_branch_any_any // V5T and above.
4586 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4592 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4593 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4595 stub_type = (output_is_position_independent
4596 || should_force_pic_veneer)
4597 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4598 : arm_stub_long_branch_any_any; /// non-PIC.
4606 // Cortex_a8_stub methods.
4608 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4609 // I is the position of the instruction template in the stub template.
4612 Cortex_a8_stub::do_thumb16_special(size_t i)
4614 // The only use of this is to copy condition code from a conditional
4615 // branch being worked around to the corresponding conditional branch in
4617 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4619 uint16_t data = this->stub_template()->insns()[i].data();
4620 gold_assert((data & 0xff00U) == 0xd000U);
4621 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4625 // Stub_factory methods.
4627 Stub_factory::Stub_factory()
4629 // The instruction template sequences are declared as static
4630 // objects and initialized first time the constructor runs.
4632 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4633 // to reach the stub if necessary.
4634 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4636 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4637 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4638 // dcd R_ARM_ABS32(X)
4641 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4643 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4645 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4646 Insn_template::arm_insn(0xe12fff1c), // bx ip
4647 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4648 // dcd R_ARM_ABS32(X)
4651 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4652 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4654 Insn_template::thumb16_insn(0xb401), // push {r0}
4655 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4656 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4657 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4658 Insn_template::thumb16_insn(0x4760), // bx ip
4659 Insn_template::thumb16_insn(0xbf00), // nop
4660 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4661 // dcd R_ARM_ABS32(X)
4664 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4666 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4668 Insn_template::thumb16_insn(0x4778), // bx pc
4669 Insn_template::thumb16_insn(0x46c0), // nop
4670 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4671 Insn_template::arm_insn(0xe12fff1c), // bx ip
4672 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4673 // dcd R_ARM_ABS32(X)
4676 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4678 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4680 Insn_template::thumb16_insn(0x4778), // bx pc
4681 Insn_template::thumb16_insn(0x46c0), // nop
4682 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4683 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4684 // dcd R_ARM_ABS32(X)
4687 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4688 // one, when the destination is close enough.
4689 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4691 Insn_template::thumb16_insn(0x4778), // bx pc
4692 Insn_template::thumb16_insn(0x46c0), // nop
4693 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4696 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4697 // blx to reach the stub if necessary.
4698 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4700 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4701 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4702 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4703 // dcd R_ARM_REL32(X-4)
4706 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4707 // blx to reach the stub if necessary. We can not add into pc;
4708 // it is not guaranteed to mode switch (different in ARMv6 and
4710 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4712 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4713 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4714 Insn_template::arm_insn(0xe12fff1c), // bx ip
4715 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4716 // dcd R_ARM_REL32(X)
4719 // V4T ARM -> ARM long branch stub, PIC.
4720 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4722 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4723 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4724 Insn_template::arm_insn(0xe12fff1c), // bx ip
4725 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4726 // dcd R_ARM_REL32(X)
4729 // V4T Thumb -> ARM long branch stub, PIC.
4730 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4732 Insn_template::thumb16_insn(0x4778), // bx pc
4733 Insn_template::thumb16_insn(0x46c0), // nop
4734 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4735 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4736 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4737 // dcd R_ARM_REL32(X)
4740 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4742 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4744 Insn_template::thumb16_insn(0xb401), // push {r0}
4745 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4746 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4747 Insn_template::thumb16_insn(0x4484), // add ip, r0
4748 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4749 Insn_template::thumb16_insn(0x4760), // bx ip
4750 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4751 // dcd R_ARM_REL32(X)
4754 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4756 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4758 Insn_template::thumb16_insn(0x4778), // bx pc
4759 Insn_template::thumb16_insn(0x46c0), // nop
4760 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4761 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4762 Insn_template::arm_insn(0xe12fff1c), // bx ip
4763 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4764 // dcd R_ARM_REL32(X)
4767 // Cortex-A8 erratum-workaround stubs.
4769 // Stub used for conditional branches (which may be beyond +/-1MB away,
4770 // so we can't use a conditional branch to reach this stub).
4777 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4779 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4780 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4781 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4785 // Stub used for b.w and bl.w instructions.
4787 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4789 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4792 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4794 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4797 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4798 // instruction (which switches to ARM mode) to point to this stub. Jump to
4799 // the real destination using an ARM-mode branch.
4800 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4802 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4805 // Stub used to provide an interworking for R_ARM_V4BX relocation
4806 // (bx r[n] instruction).
4807 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4809 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4810 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4811 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4814 // Fill in the stub template look-up table. Stub templates are constructed
4815 // per instance of Stub_factory for fast look-up without locking
4816 // in a thread-enabled environment.
4818 this->stub_templates_[arm_stub_none] =
4819 new Stub_template(arm_stub_none, NULL, 0);
4821 #define DEF_STUB(x) \
4825 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4826 Stub_type type = arm_stub_##x; \
4827 this->stub_templates_[type] = \
4828 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4836 // Stub_table methods.
4838 // Remove all Cortex-A8 stub.
4840 template<bool big_endian>
4842 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4844 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4845 p != this->cortex_a8_stubs_.end();
4848 this->cortex_a8_stubs_.clear();
4851 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4853 template<bool big_endian>
4855 Stub_table<big_endian>::relocate_stub(
4857 const Relocate_info<32, big_endian>* relinfo,
4858 Target_arm<big_endian>* arm_target,
4859 Output_section* output_section,
4860 unsigned char* view,
4861 Arm_address address,
4862 section_size_type view_size)
4864 const Stub_template* stub_template = stub->stub_template();
4865 if (stub_template->reloc_count() != 0)
4867 // Adjust view to cover the stub only.
4868 section_size_type offset = stub->offset();
4869 section_size_type stub_size = stub_template->size();
4870 gold_assert(offset + stub_size <= view_size);
4872 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4873 address + offset, stub_size);
4877 // Relocate all stubs in this stub table.
4879 template<bool big_endian>
4881 Stub_table<big_endian>::relocate_stubs(
4882 const Relocate_info<32, big_endian>* relinfo,
4883 Target_arm<big_endian>* arm_target,
4884 Output_section* output_section,
4885 unsigned char* view,
4886 Arm_address address,
4887 section_size_type view_size)
4889 // If we are passed a view bigger than the stub table's. we need to
4891 gold_assert(address == this->address()
4893 == static_cast<section_size_type>(this->data_size())));
4895 // Relocate all relocation stubs.
4896 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4897 p != this->reloc_stubs_.end();
4899 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4900 address, view_size);
4902 // Relocate all Cortex-A8 stubs.
4903 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4904 p != this->cortex_a8_stubs_.end();
4906 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4907 address, view_size);
4909 // Relocate all ARM V4BX stubs.
4910 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4911 p != this->arm_v4bx_stubs_.end();
4915 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4916 address, view_size);
4920 // Write out the stubs to file.
4922 template<bool big_endian>
4924 Stub_table<big_endian>::do_write(Output_file* of)
4926 off_t offset = this->offset();
4927 const section_size_type oview_size =
4928 convert_to_section_size_type(this->data_size());
4929 unsigned char* const oview = of->get_output_view(offset, oview_size);
4931 // Write relocation stubs.
4932 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4933 p != this->reloc_stubs_.end();
4936 Reloc_stub* stub = p->second;
4937 Arm_address address = this->address() + stub->offset();
4939 == align_address(address,
4940 stub->stub_template()->alignment()));
4941 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4945 // Write Cortex-A8 stubs.
4946 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4947 p != this->cortex_a8_stubs_.end();
4950 Cortex_a8_stub* stub = p->second;
4951 Arm_address address = this->address() + stub->offset();
4953 == align_address(address,
4954 stub->stub_template()->alignment()));
4955 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4959 // Write ARM V4BX relocation stubs.
4960 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4961 p != this->arm_v4bx_stubs_.end();
4967 Arm_address address = this->address() + (*p)->offset();
4969 == align_address(address,
4970 (*p)->stub_template()->alignment()));
4971 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4975 of->write_output_view(this->offset(), oview_size, oview);
4978 // Update the data size and address alignment of the stub table at the end
4979 // of a relaxation pass. Return true if either the data size or the
4980 // alignment changed in this relaxation pass.
4982 template<bool big_endian>
4984 Stub_table<big_endian>::update_data_size_and_addralign()
4986 // Go over all stubs in table to compute data size and address alignment.
4987 off_t size = this->reloc_stubs_size_;
4988 unsigned addralign = this->reloc_stubs_addralign_;
4990 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4991 p != this->cortex_a8_stubs_.end();
4994 const Stub_template* stub_template = p->second->stub_template();
4995 addralign = std::max(addralign, stub_template->alignment());
4996 size = (align_address(size, stub_template->alignment())
4997 + stub_template->size());
5000 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5001 p != this->arm_v4bx_stubs_.end();
5007 const Stub_template* stub_template = (*p)->stub_template();
5008 addralign = std::max(addralign, stub_template->alignment());
5009 size = (align_address(size, stub_template->alignment())
5010 + stub_template->size());
5013 // Check if either data size or alignment changed in this pass.
5014 // Update prev_data_size_ and prev_addralign_. These will be used
5015 // as the current data size and address alignment for the next pass.
5016 bool changed = size != this->prev_data_size_;
5017 this->prev_data_size_ = size;
5019 if (addralign != this->prev_addralign_)
5021 this->prev_addralign_ = addralign;
5026 // Finalize the stubs. This sets the offsets of the stubs within the stub
5027 // table. It also marks all input sections needing Cortex-A8 workaround.
5029 template<bool big_endian>
5031 Stub_table<big_endian>::finalize_stubs()
5033 off_t off = this->reloc_stubs_size_;
5034 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5035 p != this->cortex_a8_stubs_.end();
5038 Cortex_a8_stub* stub = p->second;
5039 const Stub_template* stub_template = stub->stub_template();
5040 uint64_t stub_addralign = stub_template->alignment();
5041 off = align_address(off, stub_addralign);
5042 stub->set_offset(off);
5043 off += stub_template->size();
5045 // Mark input section so that we can determine later if a code section
5046 // needs the Cortex-A8 workaround quickly.
5047 Arm_relobj<big_endian>* arm_relobj =
5048 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5049 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5052 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5053 p != this->arm_v4bx_stubs_.end();
5059 const Stub_template* stub_template = (*p)->stub_template();
5060 uint64_t stub_addralign = stub_template->alignment();
5061 off = align_address(off, stub_addralign);
5062 (*p)->set_offset(off);
5063 off += stub_template->size();
5066 gold_assert(off <= this->prev_data_size_);
5069 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5070 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5071 // of the address range seen by the linker.
5073 template<bool big_endian>
5075 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5076 Target_arm<big_endian>* arm_target,
5077 unsigned char* view,
5078 Arm_address view_address,
5079 section_size_type view_size)
5081 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5082 for (Cortex_a8_stub_list::const_iterator p =
5083 this->cortex_a8_stubs_.lower_bound(view_address);
5084 ((p != this->cortex_a8_stubs_.end())
5085 && (p->first < (view_address + view_size)));
5088 // We do not store the THUMB bit in the LSB of either the branch address
5089 // or the stub offset. There is no need to strip the LSB.
5090 Arm_address branch_address = p->first;
5091 const Cortex_a8_stub* stub = p->second;
5092 Arm_address stub_address = this->address() + stub->offset();
5094 // Offset of the branch instruction relative to this view.
5095 section_size_type offset =
5096 convert_to_section_size_type(branch_address - view_address);
5097 gold_assert((offset + 4) <= view_size);
5099 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5100 view + offset, branch_address);
5104 // Arm_input_section methods.
5106 // Initialize an Arm_input_section.
5108 template<bool big_endian>
5110 Arm_input_section<big_endian>::init()
5112 Relobj* relobj = this->relobj();
5113 unsigned int shndx = this->shndx();
5115 // We have to cache original size, alignment and contents to avoid locking
5116 // the original file.
5117 this->original_addralign_ =
5118 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5120 // This is not efficient but we expect only a small number of relaxed
5121 // input sections for stubs.
5122 section_size_type section_size;
5123 const unsigned char* section_contents =
5124 relobj->section_contents(shndx, §ion_size, false);
5125 this->original_size_ =
5126 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5128 gold_assert(this->original_contents_ == NULL);
5129 this->original_contents_ = new unsigned char[section_size];
5130 memcpy(this->original_contents_, section_contents, section_size);
5132 // We want to make this look like the original input section after
5133 // output sections are finalized.
5134 Output_section* os = relobj->output_section(shndx);
5135 off_t offset = relobj->output_section_offset(shndx);
5136 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5137 this->set_address(os->address() + offset);
5138 this->set_file_offset(os->offset() + offset);
5140 this->set_current_data_size(this->original_size_);
5141 this->finalize_data_size();
5144 template<bool big_endian>
5146 Arm_input_section<big_endian>::do_write(Output_file* of)
5148 // We have to write out the original section content.
5149 gold_assert(this->original_contents_ != NULL);
5150 of->write(this->offset(), this->original_contents_,
5151 this->original_size_);
5153 // If this owns a stub table and it is not empty, write it.
5154 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5155 this->stub_table_->write(of);
5158 // Finalize data size.
5160 template<bool big_endian>
5162 Arm_input_section<big_endian>::set_final_data_size()
5164 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5166 if (this->is_stub_table_owner())
5168 this->stub_table_->finalize_data_size();
5169 off = align_address(off, this->stub_table_->addralign());
5170 off += this->stub_table_->data_size();
5172 this->set_data_size(off);
5175 // Reset address and file offset.
5177 template<bool big_endian>
5179 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5181 // Size of the original input section contents.
5182 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5184 // If this is a stub table owner, account for the stub table size.
5185 if (this->is_stub_table_owner())
5187 Stub_table<big_endian>* stub_table = this->stub_table_;
5189 // Reset the stub table's address and file offset. The
5190 // current data size for child will be updated after that.
5191 stub_table_->reset_address_and_file_offset();
5192 off = align_address(off, stub_table_->addralign());
5193 off += stub_table->current_data_size();
5196 this->set_current_data_size(off);
5199 // Arm_exidx_cantunwind methods.
5201 // Write this to Output file OF for a fixed endianness.
5203 template<bool big_endian>
5205 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5207 off_t offset = this->offset();
5208 const section_size_type oview_size = 8;
5209 unsigned char* const oview = of->get_output_view(offset, oview_size);
5211 Output_section* os = this->relobj_->output_section(this->shndx_);
5212 gold_assert(os != NULL);
5214 Arm_relobj<big_endian>* arm_relobj =
5215 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5216 Arm_address output_offset =
5217 arm_relobj->get_output_section_offset(this->shndx_);
5218 Arm_address section_start;
5219 section_size_type section_size;
5221 // Find out the end of the text section referred by this.
5222 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5224 section_start = os->address() + output_offset;
5225 const Arm_exidx_input_section* exidx_input_section =
5226 arm_relobj->exidx_input_section_by_link(this->shndx_);
5227 gold_assert(exidx_input_section != NULL);
5229 convert_to_section_size_type(exidx_input_section->text_size());
5233 // Currently this only happens for a relaxed section.
5234 const Output_relaxed_input_section* poris =
5235 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5236 gold_assert(poris != NULL);
5237 section_start = poris->address();
5238 section_size = convert_to_section_size_type(poris->data_size());
5241 // We always append this to the end of an EXIDX section.
5242 Arm_address output_address = section_start + section_size;
5244 // Write out the entry. The first word either points to the beginning
5245 // or after the end of a text section. The second word is the special
5246 // EXIDX_CANTUNWIND value.
5247 uint32_t prel31_offset = output_address - this->address();
5248 if (Bits<31>::has_overflow32(offset))
5249 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5250 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5251 prel31_offset & 0x7fffffffU);
5252 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5253 elfcpp::EXIDX_CANTUNWIND);
5255 of->write_output_view(this->offset(), oview_size, oview);
5258 // Arm_exidx_merged_section methods.
5260 // Constructor for Arm_exidx_merged_section.
5261 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5262 // SECTION_OFFSET_MAP points to a section offset map describing how
5263 // parts of the input section are mapped to output. DELETED_BYTES is
5264 // the number of bytes deleted from the EXIDX input section.
5266 Arm_exidx_merged_section::Arm_exidx_merged_section(
5267 const Arm_exidx_input_section& exidx_input_section,
5268 const Arm_exidx_section_offset_map& section_offset_map,
5269 uint32_t deleted_bytes)
5270 : Output_relaxed_input_section(exidx_input_section.relobj(),
5271 exidx_input_section.shndx(),
5272 exidx_input_section.addralign()),
5273 exidx_input_section_(exidx_input_section),
5274 section_offset_map_(section_offset_map)
5276 // If we retain or discard the whole EXIDX input section, we would
5278 gold_assert(deleted_bytes != 0
5279 && deleted_bytes != this->exidx_input_section_.size());
5281 // Fix size here so that we do not need to implement set_final_data_size.
5282 uint32_t size = exidx_input_section.size() - deleted_bytes;
5283 this->set_data_size(size);
5284 this->fix_data_size();
5286 // Allocate buffer for section contents and build contents.
5287 this->section_contents_ = new unsigned char[size];
5290 // Build the contents of a merged EXIDX output section.
5293 Arm_exidx_merged_section::build_contents(
5294 const unsigned char* original_contents,
5295 section_size_type original_size)
5297 // Go over spans of input offsets and write only those that are not
5299 section_offset_type in_start = 0;
5300 section_offset_type out_start = 0;
5301 section_offset_type in_max =
5302 convert_types<section_offset_type>(original_size);
5303 section_offset_type out_max =
5304 convert_types<section_offset_type>(this->data_size());
5305 for (Arm_exidx_section_offset_map::const_iterator p =
5306 this->section_offset_map_.begin();
5307 p != this->section_offset_map_.end();
5310 section_offset_type in_end = p->first;
5311 gold_assert(in_end >= in_start);
5312 section_offset_type out_end = p->second;
5313 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5316 size_t out_chunk_size =
5317 convert_types<size_t>(out_end - out_start + 1);
5319 gold_assert(out_chunk_size == in_chunk_size
5320 && in_end < in_max && out_end < out_max);
5322 memcpy(this->section_contents_ + out_start,
5323 original_contents + in_start,
5325 out_start += out_chunk_size;
5327 in_start += in_chunk_size;
5331 // Given an input OBJECT, an input section index SHNDX within that
5332 // object, and an OFFSET relative to the start of that input
5333 // section, return whether or not the corresponding offset within
5334 // the output section is known. If this function returns true, it
5335 // sets *POUTPUT to the output offset. The value -1 indicates that
5336 // this input offset is being discarded.
5339 Arm_exidx_merged_section::do_output_offset(
5340 const Relobj* relobj,
5342 section_offset_type offset,
5343 section_offset_type* poutput) const
5345 // We only handle offsets for the original EXIDX input section.
5346 if (relobj != this->exidx_input_section_.relobj()
5347 || shndx != this->exidx_input_section_.shndx())
5350 section_offset_type section_size =
5351 convert_types<section_offset_type>(this->exidx_input_section_.size());
5352 if (offset < 0 || offset >= section_size)
5353 // Input offset is out of valid range.
5357 // We need to look up the section offset map to determine the output
5358 // offset. Find the reference point in map that is first offset
5359 // bigger than or equal to this offset.
5360 Arm_exidx_section_offset_map::const_iterator p =
5361 this->section_offset_map_.lower_bound(offset);
5363 // The section offset maps are build such that this should not happen if
5364 // input offset is in the valid range.
5365 gold_assert(p != this->section_offset_map_.end());
5367 // We need to check if this is dropped.
5368 section_offset_type ref = p->first;
5369 section_offset_type mapped_ref = p->second;
5371 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5372 // Offset is present in output.
5373 *poutput = mapped_ref + (offset - ref);
5375 // Offset is discarded owing to EXIDX entry merging.
5382 // Write this to output file OF.
5385 Arm_exidx_merged_section::do_write(Output_file* of)
5387 off_t offset = this->offset();
5388 const section_size_type oview_size = this->data_size();
5389 unsigned char* const oview = of->get_output_view(offset, oview_size);
5391 Output_section* os = this->relobj()->output_section(this->shndx());
5392 gold_assert(os != NULL);
5394 memcpy(oview, this->section_contents_, oview_size);
5395 of->write_output_view(this->offset(), oview_size, oview);
5398 // Arm_exidx_fixup methods.
5400 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5401 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5402 // points to the end of the last seen EXIDX section.
5405 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5407 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5408 && this->last_input_section_ != NULL)
5410 Relobj* relobj = this->last_input_section_->relobj();
5411 unsigned int text_shndx = this->last_input_section_->link();
5412 Arm_exidx_cantunwind* cantunwind =
5413 new Arm_exidx_cantunwind(relobj, text_shndx);
5414 this->exidx_output_section_->add_output_section_data(cantunwind);
5415 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5419 // Process an EXIDX section entry in input. Return whether this entry
5420 // can be deleted in the output. SECOND_WORD in the second word of the
5424 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5427 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5429 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5430 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5431 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5433 else if ((second_word & 0x80000000) != 0)
5435 // Inlined unwinding data. Merge if equal to previous.
5436 delete_entry = (merge_exidx_entries_
5437 && this->last_unwind_type_ == UT_INLINED_ENTRY
5438 && this->last_inlined_entry_ == second_word);
5439 this->last_unwind_type_ = UT_INLINED_ENTRY;
5440 this->last_inlined_entry_ = second_word;
5444 // Normal table entry. In theory we could merge these too,
5445 // but duplicate entries are likely to be much less common.
5446 delete_entry = false;
5447 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5449 return delete_entry;
5452 // Update the current section offset map during EXIDX section fix-up.
5453 // If there is no map, create one. INPUT_OFFSET is the offset of a
5454 // reference point, DELETED_BYTES is the number of deleted by in the
5455 // section so far. If DELETE_ENTRY is true, the reference point and
5456 // all offsets after the previous reference point are discarded.
5459 Arm_exidx_fixup::update_offset_map(
5460 section_offset_type input_offset,
5461 section_size_type deleted_bytes,
5464 if (this->section_offset_map_ == NULL)
5465 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5466 section_offset_type output_offset;
5468 output_offset = Arm_exidx_input_section::invalid_offset;
5470 output_offset = input_offset - deleted_bytes;
5471 (*this->section_offset_map_)[input_offset] = output_offset;
5474 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5475 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5476 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5477 // If some entries are merged, also store a pointer to a newly created
5478 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5479 // owns the map and is responsible for releasing it after use.
5481 template<bool big_endian>
5483 Arm_exidx_fixup::process_exidx_section(
5484 const Arm_exidx_input_section* exidx_input_section,
5485 const unsigned char* section_contents,
5486 section_size_type section_size,
5487 Arm_exidx_section_offset_map** psection_offset_map)
5489 Relobj* relobj = exidx_input_section->relobj();
5490 unsigned shndx = exidx_input_section->shndx();
5492 if ((section_size % 8) != 0)
5494 // Something is wrong with this section. Better not touch it.
5495 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5496 relobj->name().c_str(), shndx);
5497 this->last_input_section_ = exidx_input_section;
5498 this->last_unwind_type_ = UT_NONE;
5502 uint32_t deleted_bytes = 0;
5503 bool prev_delete_entry = false;
5504 gold_assert(this->section_offset_map_ == NULL);
5506 for (section_size_type i = 0; i < section_size; i += 8)
5508 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5510 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5511 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5513 bool delete_entry = this->process_exidx_entry(second_word);
5515 // Entry deletion causes changes in output offsets. We use a std::map
5516 // to record these. And entry (x, y) means input offset x
5517 // is mapped to output offset y. If y is invalid_offset, then x is
5518 // dropped in the output. Because of the way std::map::lower_bound
5519 // works, we record the last offset in a region w.r.t to keeping or
5520 // dropping. If there is no entry (x0, y0) for an input offset x0,
5521 // the output offset y0 of it is determined by the output offset y1 of
5522 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5523 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5525 if (delete_entry != prev_delete_entry && i != 0)
5526 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5528 // Update total deleted bytes for this entry.
5532 prev_delete_entry = delete_entry;
5535 // If section offset map is not NULL, make an entry for the end of
5537 if (this->section_offset_map_ != NULL)
5538 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5540 *psection_offset_map = this->section_offset_map_;
5541 this->section_offset_map_ = NULL;
5542 this->last_input_section_ = exidx_input_section;
5544 // Set the first output text section so that we can link the EXIDX output
5545 // section to it. Ignore any EXIDX input section that is completely merged.
5546 if (this->first_output_text_section_ == NULL
5547 && deleted_bytes != section_size)
5549 unsigned int link = exidx_input_section->link();
5550 Output_section* os = relobj->output_section(link);
5551 gold_assert(os != NULL);
5552 this->first_output_text_section_ = os;
5555 return deleted_bytes;
5558 // Arm_output_section methods.
5560 // Create a stub group for input sections from BEGIN to END. OWNER
5561 // points to the input section to be the owner a new stub table.
5563 template<bool big_endian>
5565 Arm_output_section<big_endian>::create_stub_group(
5566 Input_section_list::const_iterator begin,
5567 Input_section_list::const_iterator end,
5568 Input_section_list::const_iterator owner,
5569 Target_arm<big_endian>* target,
5570 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5573 // We use a different kind of relaxed section in an EXIDX section.
5574 // The static casting from Output_relaxed_input_section to
5575 // Arm_input_section is invalid in an EXIDX section. We are okay
5576 // because we should not be calling this for an EXIDX section.
5577 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5579 // Currently we convert ordinary input sections into relaxed sections only
5580 // at this point but we may want to support creating relaxed input section
5581 // very early. So we check here to see if owner is already a relaxed
5584 Arm_input_section<big_endian>* arm_input_section;
5585 if (owner->is_relaxed_input_section())
5588 Arm_input_section<big_endian>::as_arm_input_section(
5589 owner->relaxed_input_section());
5593 gold_assert(owner->is_input_section());
5594 // Create a new relaxed input section. We need to lock the original
5596 Task_lock_obj<Object> tl(task, owner->relobj());
5598 target->new_arm_input_section(owner->relobj(), owner->shndx());
5599 new_relaxed_sections->push_back(arm_input_section);
5602 // Create a stub table.
5603 Stub_table<big_endian>* stub_table =
5604 target->new_stub_table(arm_input_section);
5606 arm_input_section->set_stub_table(stub_table);
5608 Input_section_list::const_iterator p = begin;
5609 Input_section_list::const_iterator prev_p;
5611 // Look for input sections or relaxed input sections in [begin ... end].
5614 if (p->is_input_section() || p->is_relaxed_input_section())
5616 // The stub table information for input sections live
5617 // in their objects.
5618 Arm_relobj<big_endian>* arm_relobj =
5619 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5620 arm_relobj->set_stub_table(p->shndx(), stub_table);
5624 while (prev_p != end);
5627 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5628 // of stub groups. We grow a stub group by adding input section until the
5629 // size is just below GROUP_SIZE. The last input section will be converted
5630 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5631 // input section after the stub table, effectively double the group size.
5633 // This is similar to the group_sections() function in elf32-arm.c but is
5634 // implemented differently.
5636 template<bool big_endian>
5638 Arm_output_section<big_endian>::group_sections(
5639 section_size_type group_size,
5640 bool stubs_always_after_branch,
5641 Target_arm<big_endian>* target,
5644 // We only care about sections containing code.
5645 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5648 // States for grouping.
5651 // No group is being built.
5653 // A group is being built but the stub table is not found yet.
5654 // We keep group a stub group until the size is just under GROUP_SIZE.
5655 // The last input section in the group will be used as the stub table.
5656 FINDING_STUB_SECTION,
5657 // A group is being built and we have already found a stub table.
5658 // We enter this state to grow a stub group by adding input section
5659 // after the stub table. This effectively doubles the group size.
5663 // Any newly created relaxed sections are stored here.
5664 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5666 State state = NO_GROUP;
5667 section_size_type off = 0;
5668 section_size_type group_begin_offset = 0;
5669 section_size_type group_end_offset = 0;
5670 section_size_type stub_table_end_offset = 0;
5671 Input_section_list::const_iterator group_begin =
5672 this->input_sections().end();
5673 Input_section_list::const_iterator stub_table =
5674 this->input_sections().end();
5675 Input_section_list::const_iterator group_end = this->input_sections().end();
5676 for (Input_section_list::const_iterator p = this->input_sections().begin();
5677 p != this->input_sections().end();
5680 section_size_type section_begin_offset =
5681 align_address(off, p->addralign());
5682 section_size_type section_end_offset =
5683 section_begin_offset + p->data_size();
5685 // Check to see if we should group the previously seen sections.
5691 case FINDING_STUB_SECTION:
5692 // Adding this section makes the group larger than GROUP_SIZE.
5693 if (section_end_offset - group_begin_offset >= group_size)
5695 if (stubs_always_after_branch)
5697 gold_assert(group_end != this->input_sections().end());
5698 this->create_stub_group(group_begin, group_end, group_end,
5699 target, &new_relaxed_sections,
5705 // But wait, there's more! Input sections up to
5706 // stub_group_size bytes after the stub table can be
5707 // handled by it too.
5708 state = HAS_STUB_SECTION;
5709 stub_table = group_end;
5710 stub_table_end_offset = group_end_offset;
5715 case HAS_STUB_SECTION:
5716 // Adding this section makes the post stub-section group larger
5718 if (section_end_offset - stub_table_end_offset >= group_size)
5720 gold_assert(group_end != this->input_sections().end());
5721 this->create_stub_group(group_begin, group_end, stub_table,
5722 target, &new_relaxed_sections, task);
5731 // If we see an input section and currently there is no group, start
5732 // a new one. Skip any empty sections. We look at the data size
5733 // instead of calling p->relobj()->section_size() to avoid locking.
5734 if ((p->is_input_section() || p->is_relaxed_input_section())
5735 && (p->data_size() != 0))
5737 if (state == NO_GROUP)
5739 state = FINDING_STUB_SECTION;
5741 group_begin_offset = section_begin_offset;
5744 // Keep track of the last input section seen.
5746 group_end_offset = section_end_offset;
5749 off = section_end_offset;
5752 // Create a stub group for any ungrouped sections.
5753 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5755 gold_assert(group_end != this->input_sections().end());
5756 this->create_stub_group(group_begin, group_end,
5757 (state == FINDING_STUB_SECTION
5760 target, &new_relaxed_sections, task);
5763 // Convert input section into relaxed input section in a batch.
5764 if (!new_relaxed_sections.empty())
5765 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5767 // Update the section offsets
5768 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5770 Arm_relobj<big_endian>* arm_relobj =
5771 Arm_relobj<big_endian>::as_arm_relobj(
5772 new_relaxed_sections[i]->relobj());
5773 unsigned int shndx = new_relaxed_sections[i]->shndx();
5774 // Tell Arm_relobj that this input section is converted.
5775 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5779 // Append non empty text sections in this to LIST in ascending
5780 // order of their position in this.
5782 template<bool big_endian>
5784 Arm_output_section<big_endian>::append_text_sections_to_list(
5785 Text_section_list* list)
5787 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5789 for (Input_section_list::const_iterator p = this->input_sections().begin();
5790 p != this->input_sections().end();
5793 // We only care about plain or relaxed input sections. We also
5794 // ignore any merged sections.
5795 if (p->is_input_section() || p->is_relaxed_input_section())
5796 list->push_back(Text_section_list::value_type(p->relobj(),
5801 template<bool big_endian>
5803 Arm_output_section<big_endian>::fix_exidx_coverage(
5805 const Text_section_list& sorted_text_sections,
5806 Symbol_table* symtab,
5807 bool merge_exidx_entries,
5810 // We should only do this for the EXIDX output section.
5811 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5813 // We don't want the relaxation loop to undo these changes, so we discard
5814 // the current saved states and take another one after the fix-up.
5815 this->discard_states();
5817 // Remove all input sections.
5818 uint64_t address = this->address();
5819 typedef std::list<Output_section::Input_section> Input_section_list;
5820 Input_section_list input_sections;
5821 this->reset_address_and_file_offset();
5822 this->get_input_sections(address, std::string(""), &input_sections);
5824 if (!this->input_sections().empty())
5825 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5827 // Go through all the known input sections and record them.
5828 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5829 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5830 Section_id_hash> Text_to_exidx_map;
5831 Text_to_exidx_map text_to_exidx_map;
5832 for (Input_section_list::const_iterator p = input_sections.begin();
5833 p != input_sections.end();
5836 // This should never happen. At this point, we should only see
5837 // plain EXIDX input sections.
5838 gold_assert(!p->is_relaxed_input_section());
5839 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5842 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5844 // Go over the sorted text sections.
5845 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5846 Section_id_set processed_input_sections;
5847 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5848 p != sorted_text_sections.end();
5851 Relobj* relobj = p->first;
5852 unsigned int shndx = p->second;
5854 Arm_relobj<big_endian>* arm_relobj =
5855 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5856 const Arm_exidx_input_section* exidx_input_section =
5857 arm_relobj->exidx_input_section_by_link(shndx);
5859 // If this text section has no EXIDX section or if the EXIDX section
5860 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5861 // of the last seen EXIDX section.
5862 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5864 exidx_fixup.add_exidx_cantunwind_as_needed();
5868 Relobj* exidx_relobj = exidx_input_section->relobj();
5869 unsigned int exidx_shndx = exidx_input_section->shndx();
5870 Section_id sid(exidx_relobj, exidx_shndx);
5871 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5872 if (iter == text_to_exidx_map.end())
5874 // This is odd. We have not seen this EXIDX input section before.
5875 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5876 // issue a warning instead. We assume the user knows what he
5877 // or she is doing. Otherwise, this is an error.
5878 if (layout->script_options()->saw_sections_clause())
5879 gold_warning(_("unwinding may not work because EXIDX input section"
5880 " %u of %s is not in EXIDX output section"),
5881 exidx_shndx, exidx_relobj->name().c_str());
5883 gold_error(_("unwinding may not work because EXIDX input section"
5884 " %u of %s is not in EXIDX output section"),
5885 exidx_shndx, exidx_relobj->name().c_str());
5887 exidx_fixup.add_exidx_cantunwind_as_needed();
5891 // We need to access the contents of the EXIDX section, lock the
5893 Task_lock_obj<Object> tl(task, exidx_relobj);
5894 section_size_type exidx_size;
5895 const unsigned char* exidx_contents =
5896 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5898 // Fix up coverage and append input section to output data list.
5899 Arm_exidx_section_offset_map* section_offset_map = NULL;
5900 uint32_t deleted_bytes =
5901 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5904 §ion_offset_map);
5906 if (deleted_bytes == exidx_input_section->size())
5908 // The whole EXIDX section got merged. Remove it from output.
5909 gold_assert(section_offset_map == NULL);
5910 exidx_relobj->set_output_section(exidx_shndx, NULL);
5912 // All local symbols defined in this input section will be dropped.
5913 // We need to adjust output local symbol count.
5914 arm_relobj->set_output_local_symbol_count_needs_update();
5916 else if (deleted_bytes > 0)
5918 // Some entries are merged. We need to convert this EXIDX input
5919 // section into a relaxed section.
5920 gold_assert(section_offset_map != NULL);
5922 Arm_exidx_merged_section* merged_section =
5923 new Arm_exidx_merged_section(*exidx_input_section,
5924 *section_offset_map, deleted_bytes);
5925 merged_section->build_contents(exidx_contents, exidx_size);
5927 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5928 this->add_relaxed_input_section(layout, merged_section, secname);
5929 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5931 // All local symbols defined in discarded portions of this input
5932 // section will be dropped. We need to adjust output local symbol
5934 arm_relobj->set_output_local_symbol_count_needs_update();
5938 // Just add back the EXIDX input section.
5939 gold_assert(section_offset_map == NULL);
5940 const Output_section::Input_section* pis = iter->second;
5941 gold_assert(pis->is_input_section());
5942 this->add_script_input_section(*pis);
5945 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5948 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5949 exidx_fixup.add_exidx_cantunwind_as_needed();
5951 // Remove any known EXIDX input sections that are not processed.
5952 for (Input_section_list::const_iterator p = input_sections.begin();
5953 p != input_sections.end();
5956 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5957 == processed_input_sections.end())
5959 // We discard a known EXIDX section because its linked
5960 // text section has been folded by ICF. We also discard an
5961 // EXIDX section with error, the output does not matter in this
5962 // case. We do this to avoid triggering asserts.
5963 Arm_relobj<big_endian>* arm_relobj =
5964 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5965 const Arm_exidx_input_section* exidx_input_section =
5966 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5967 gold_assert(exidx_input_section != NULL);
5968 if (!exidx_input_section->has_errors())
5970 unsigned int text_shndx = exidx_input_section->link();
5971 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5974 // Remove this from link. We also need to recount the
5976 p->relobj()->set_output_section(p->shndx(), NULL);
5977 arm_relobj->set_output_local_symbol_count_needs_update();
5981 // Link exidx output section to the first seen output section and
5982 // set correct entry size.
5983 this->set_link_section(exidx_fixup.first_output_text_section());
5984 this->set_entsize(8);
5986 // Make changes permanent.
5987 this->save_states();
5988 this->set_section_offsets_need_adjustment();
5991 // Link EXIDX output sections to text output sections.
5993 template<bool big_endian>
5995 Arm_output_section<big_endian>::set_exidx_section_link()
5997 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5998 if (!this->input_sections().empty())
6000 Input_section_list::const_iterator p = this->input_sections().begin();
6001 Arm_relobj<big_endian>* arm_relobj =
6002 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6003 unsigned exidx_shndx = p->shndx();
6004 const Arm_exidx_input_section* exidx_input_section =
6005 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6006 gold_assert(exidx_input_section != NULL);
6007 unsigned int text_shndx = exidx_input_section->link();
6008 Output_section* os = arm_relobj->output_section(text_shndx);
6009 this->set_link_section(os);
6013 // Arm_relobj methods.
6015 // Determine if an input section is scannable for stub processing. SHDR is
6016 // the header of the section and SHNDX is the section index. OS is the output
6017 // section for the input section and SYMTAB is the global symbol table used to
6018 // look up ICF information.
6020 template<bool big_endian>
6022 Arm_relobj<big_endian>::section_is_scannable(
6023 const elfcpp::Shdr<32, big_endian>& shdr,
6025 const Output_section* os,
6026 const Symbol_table* symtab)
6028 // Skip any empty sections, unallocated sections or sections whose
6029 // type are not SHT_PROGBITS.
6030 if (shdr.get_sh_size() == 0
6031 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6032 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6035 // Skip any discarded or ICF'ed sections.
6036 if (os == NULL || symtab->is_section_folded(this, shndx))
6039 // If this requires special offset handling, check to see if it is
6040 // a relaxed section. If this is not, then it is a merged section that
6041 // we cannot handle.
6042 if (this->is_output_section_offset_invalid(shndx))
6044 const Output_relaxed_input_section* poris =
6045 os->find_relaxed_input_section(this, shndx);
6053 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6054 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6056 template<bool big_endian>
6058 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6059 const elfcpp::Shdr<32, big_endian>& shdr,
6060 const Relobj::Output_sections& out_sections,
6061 const Symbol_table* symtab,
6062 const unsigned char* pshdrs)
6064 unsigned int sh_type = shdr.get_sh_type();
6065 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6068 // Ignore empty section.
6069 off_t sh_size = shdr.get_sh_size();
6073 // Ignore reloc section with unexpected symbol table. The
6074 // error will be reported in the final link.
6075 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6078 unsigned int reloc_size;
6079 if (sh_type == elfcpp::SHT_REL)
6080 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6082 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6084 // Ignore reloc section with unexpected entsize or uneven size.
6085 // The error will be reported in the final link.
6086 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6089 // Ignore reloc section with bad info. This error will be
6090 // reported in the final link.
6091 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6092 if (index >= this->shnum())
6095 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6096 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6097 return this->section_is_scannable(text_shdr, index,
6098 out_sections[index], symtab);
6101 // Return the output address of either a plain input section or a relaxed
6102 // input section. SHNDX is the section index. We define and use this
6103 // instead of calling Output_section::output_address because that is slow
6104 // for large output.
6106 template<bool big_endian>
6108 Arm_relobj<big_endian>::simple_input_section_output_address(
6112 if (this->is_output_section_offset_invalid(shndx))
6114 const Output_relaxed_input_section* poris =
6115 os->find_relaxed_input_section(this, shndx);
6116 // We do not handle merged sections here.
6117 gold_assert(poris != NULL);
6118 return poris->address();
6121 return os->address() + this->get_output_section_offset(shndx);
6124 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6125 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6127 template<bool big_endian>
6129 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6130 const elfcpp::Shdr<32, big_endian>& shdr,
6133 const Symbol_table* symtab)
6135 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6138 // If the section does not cross any 4K-boundaries, it does not need to
6140 Arm_address address = this->simple_input_section_output_address(shndx, os);
6141 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6147 // Scan a section for Cortex-A8 workaround.
6149 template<bool big_endian>
6151 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6152 const elfcpp::Shdr<32, big_endian>& shdr,
6155 Target_arm<big_endian>* arm_target)
6157 // Look for the first mapping symbol in this section. It should be
6159 Mapping_symbol_position section_start(shndx, 0);
6160 typename Mapping_symbols_info::const_iterator p =
6161 this->mapping_symbols_info_.lower_bound(section_start);
6163 // There are no mapping symbols for this section. Treat it as a data-only
6164 // section. Issue a warning if section is marked as containing
6166 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6168 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6169 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6170 "erratum because it has no mapping symbols."),
6171 shndx, this->name().c_str());
6175 Arm_address output_address =
6176 this->simple_input_section_output_address(shndx, os);
6178 // Get the section contents.
6179 section_size_type input_view_size = 0;
6180 const unsigned char* input_view =
6181 this->section_contents(shndx, &input_view_size, false);
6183 // We need to go through the mapping symbols to determine what to
6184 // scan. There are two reasons. First, we should look at THUMB code and
6185 // THUMB code only. Second, we only want to look at the 4K-page boundary
6186 // to speed up the scanning.
6188 while (p != this->mapping_symbols_info_.end()
6189 && p->first.first == shndx)
6191 typename Mapping_symbols_info::const_iterator next =
6192 this->mapping_symbols_info_.upper_bound(p->first);
6194 // Only scan part of a section with THUMB code.
6195 if (p->second == 't')
6197 // Determine the end of this range.
6198 section_size_type span_start =
6199 convert_to_section_size_type(p->first.second);
6200 section_size_type span_end;
6201 if (next != this->mapping_symbols_info_.end()
6202 && next->first.first == shndx)
6203 span_end = convert_to_section_size_type(next->first.second);
6205 span_end = convert_to_section_size_type(shdr.get_sh_size());
6207 if (((span_start + output_address) & ~0xfffUL)
6208 != ((span_end + output_address - 1) & ~0xfffUL))
6210 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6211 span_start, span_end,
6221 // Scan relocations for stub generation.
6223 template<bool big_endian>
6225 Arm_relobj<big_endian>::scan_sections_for_stubs(
6226 Target_arm<big_endian>* arm_target,
6227 const Symbol_table* symtab,
6228 const Layout* layout)
6230 unsigned int shnum = this->shnum();
6231 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6233 // Read the section headers.
6234 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6238 // To speed up processing, we set up hash tables for fast lookup of
6239 // input offsets to output addresses.
6240 this->initialize_input_to_output_maps();
6242 const Relobj::Output_sections& out_sections(this->output_sections());
6244 Relocate_info<32, big_endian> relinfo;
6245 relinfo.symtab = symtab;
6246 relinfo.layout = layout;
6247 relinfo.object = this;
6249 // Do relocation stubs scanning.
6250 const unsigned char* p = pshdrs + shdr_size;
6251 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6253 const elfcpp::Shdr<32, big_endian> shdr(p);
6254 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6257 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6258 Arm_address output_offset = this->get_output_section_offset(index);
6259 Arm_address output_address;
6260 if (output_offset != invalid_address)
6261 output_address = out_sections[index]->address() + output_offset;
6264 // Currently this only happens for a relaxed section.
6265 const Output_relaxed_input_section* poris =
6266 out_sections[index]->find_relaxed_input_section(this, index);
6267 gold_assert(poris != NULL);
6268 output_address = poris->address();
6271 // Get the relocations.
6272 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6276 // Get the section contents. This does work for the case in which
6277 // we modify the contents of an input section. We need to pass the
6278 // output view under such circumstances.
6279 section_size_type input_view_size = 0;
6280 const unsigned char* input_view =
6281 this->section_contents(index, &input_view_size, false);
6283 relinfo.reloc_shndx = i;
6284 relinfo.data_shndx = index;
6285 unsigned int sh_type = shdr.get_sh_type();
6286 unsigned int reloc_size;
6287 if (sh_type == elfcpp::SHT_REL)
6288 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6290 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6292 Output_section* os = out_sections[index];
6293 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6294 shdr.get_sh_size() / reloc_size,
6296 output_offset == invalid_address,
6297 input_view, output_address,
6302 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6303 // after its relocation section, if there is one, is processed for
6304 // relocation stubs. Merging this loop with the one above would have been
6305 // complicated since we would have had to make sure that relocation stub
6306 // scanning is done first.
6307 if (arm_target->fix_cortex_a8())
6309 const unsigned char* p = pshdrs + shdr_size;
6310 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6312 const elfcpp::Shdr<32, big_endian> shdr(p);
6313 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6316 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6321 // After we've done the relocations, we release the hash tables,
6322 // since we no longer need them.
6323 this->free_input_to_output_maps();
6326 // Count the local symbols. The ARM backend needs to know if a symbol
6327 // is a THUMB function or not. For global symbols, it is easy because
6328 // the Symbol object keeps the ELF symbol type. For local symbol it is
6329 // harder because we cannot access this information. So we override the
6330 // do_count_local_symbol in parent and scan local symbols to mark
6331 // THUMB functions. This is not the most efficient way but I do not want to
6332 // slow down other ports by calling a per symbol target hook inside
6333 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6335 template<bool big_endian>
6337 Arm_relobj<big_endian>::do_count_local_symbols(
6338 Stringpool_template<char>* pool,
6339 Stringpool_template<char>* dynpool)
6341 // We need to fix-up the values of any local symbols whose type are
6344 // Ask parent to count the local symbols.
6345 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6346 const unsigned int loccount = this->local_symbol_count();
6350 // Initialize the thumb function bit-vector.
6351 std::vector<bool> empty_vector(loccount, false);
6352 this->local_symbol_is_thumb_function_.swap(empty_vector);
6354 // Read the symbol table section header.
6355 const unsigned int symtab_shndx = this->symtab_shndx();
6356 elfcpp::Shdr<32, big_endian>
6357 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6358 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6360 // Read the local symbols.
6361 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6362 gold_assert(loccount == symtabshdr.get_sh_info());
6363 off_t locsize = loccount * sym_size;
6364 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6365 locsize, true, true);
6367 // For mapping symbol processing, we need to read the symbol names.
6368 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6369 if (strtab_shndx >= this->shnum())
6371 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6375 elfcpp::Shdr<32, big_endian>
6376 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6377 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6379 this->error(_("symbol table name section has wrong type: %u"),
6380 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6383 const char* pnames =
6384 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6385 strtabshdr.get_sh_size(),
6388 // Loop over the local symbols and mark any local symbols pointing
6389 // to THUMB functions.
6391 // Skip the first dummy symbol.
6393 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6394 this->local_values();
6395 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6397 elfcpp::Sym<32, big_endian> sym(psyms);
6398 elfcpp::STT st_type = sym.get_st_type();
6399 Symbol_value<32>& lv((*plocal_values)[i]);
6400 Arm_address input_value = lv.input_value();
6402 // Check to see if this is a mapping symbol.
6403 const char* sym_name = pnames + sym.get_st_name();
6404 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6407 unsigned int input_shndx =
6408 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6409 gold_assert(is_ordinary);
6411 // Strip of LSB in case this is a THUMB symbol.
6412 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6413 this->mapping_symbols_info_[msp] = sym_name[1];
6416 if (st_type == elfcpp::STT_ARM_TFUNC
6417 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6419 // This is a THUMB function. Mark this and canonicalize the
6420 // symbol value by setting LSB.
6421 this->local_symbol_is_thumb_function_[i] = true;
6422 if ((input_value & 1) == 0)
6423 lv.set_input_value(input_value | 1);
6428 // Relocate sections.
6429 template<bool big_endian>
6431 Arm_relobj<big_endian>::do_relocate_sections(
6432 const Symbol_table* symtab,
6433 const Layout* layout,
6434 const unsigned char* pshdrs,
6436 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6438 // Call parent to relocate sections.
6439 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6440 pshdrs, of, pviews);
6442 // We do not generate stubs if doing a relocatable link.
6443 if (parameters->options().relocatable())
6446 // Relocate stub tables.
6447 unsigned int shnum = this->shnum();
6449 Target_arm<big_endian>* arm_target =
6450 Target_arm<big_endian>::default_target();
6452 Relocate_info<32, big_endian> relinfo;
6453 relinfo.symtab = symtab;
6454 relinfo.layout = layout;
6455 relinfo.object = this;
6457 for (unsigned int i = 1; i < shnum; ++i)
6459 Arm_input_section<big_endian>* arm_input_section =
6460 arm_target->find_arm_input_section(this, i);
6462 if (arm_input_section != NULL
6463 && arm_input_section->is_stub_table_owner()
6464 && !arm_input_section->stub_table()->empty())
6466 // We cannot discard a section if it owns a stub table.
6467 Output_section* os = this->output_section(i);
6468 gold_assert(os != NULL);
6470 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6471 relinfo.reloc_shdr = NULL;
6472 relinfo.data_shndx = i;
6473 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6475 gold_assert((*pviews)[i].view != NULL);
6477 // We are passed the output section view. Adjust it to cover the
6479 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6480 gold_assert((stub_table->address() >= (*pviews)[i].address)
6481 && ((stub_table->address() + stub_table->data_size())
6482 <= (*pviews)[i].address + (*pviews)[i].view_size));
6484 off_t offset = stub_table->address() - (*pviews)[i].address;
6485 unsigned char* view = (*pviews)[i].view + offset;
6486 Arm_address address = stub_table->address();
6487 section_size_type view_size = stub_table->data_size();
6489 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6493 // Apply Cortex A8 workaround if applicable.
6494 if (this->section_has_cortex_a8_workaround(i))
6496 unsigned char* view = (*pviews)[i].view;
6497 Arm_address view_address = (*pviews)[i].address;
6498 section_size_type view_size = (*pviews)[i].view_size;
6499 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6501 // Adjust view to cover section.
6502 Output_section* os = this->output_section(i);
6503 gold_assert(os != NULL);
6504 Arm_address section_address =
6505 this->simple_input_section_output_address(i, os);
6506 uint64_t section_size = this->section_size(i);
6508 gold_assert(section_address >= view_address
6509 && ((section_address + section_size)
6510 <= (view_address + view_size)));
6512 unsigned char* section_view = view + (section_address - view_address);
6514 // Apply the Cortex-A8 workaround to the output address range
6515 // corresponding to this input section.
6516 stub_table->apply_cortex_a8_workaround_to_address_range(
6525 // Find the linked text section of an EXIDX section by looking at the first
6526 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6527 // must be linked to its associated code section via the sh_link field of
6528 // its section header. However, some tools are broken and the link is not
6529 // always set. LD just drops such an EXIDX section silently, causing the
6530 // associated code not unwindabled. Here we try a little bit harder to
6531 // discover the linked code section.
6533 // PSHDR points to the section header of a relocation section of an EXIDX
6534 // section. If we can find a linked text section, return true and
6535 // store the text section index in the location PSHNDX. Otherwise
6538 template<bool big_endian>
6540 Arm_relobj<big_endian>::find_linked_text_section(
6541 const unsigned char* pshdr,
6542 const unsigned char* psyms,
6543 unsigned int* pshndx)
6545 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6547 // If there is no relocation, we cannot find the linked text section.
6549 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6550 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6552 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6553 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6555 // Get the relocations.
6556 const unsigned char* prelocs =
6557 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6559 // Find the REL31 relocation for the first word of the first EXIDX entry.
6560 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6562 Arm_address r_offset;
6563 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6564 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6566 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6567 r_info = reloc.get_r_info();
6568 r_offset = reloc.get_r_offset();
6572 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6573 r_info = reloc.get_r_info();
6574 r_offset = reloc.get_r_offset();
6577 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6578 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6581 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6583 || r_sym >= this->local_symbol_count()
6587 // This is the relocation for the first word of the first EXIDX entry.
6588 // We expect to see a local section symbol.
6589 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6590 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6591 if (sym.get_st_type() == elfcpp::STT_SECTION)
6595 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6596 gold_assert(is_ordinary);
6606 // Make an EXIDX input section object for an EXIDX section whose index is
6607 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6608 // is the section index of the linked text section.
6610 template<bool big_endian>
6612 Arm_relobj<big_endian>::make_exidx_input_section(
6614 const elfcpp::Shdr<32, big_endian>& shdr,
6615 unsigned int text_shndx,
6616 const elfcpp::Shdr<32, big_endian>& text_shdr)
6618 // Create an Arm_exidx_input_section object for this EXIDX section.
6619 Arm_exidx_input_section* exidx_input_section =
6620 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6621 shdr.get_sh_addralign(),
6622 text_shdr.get_sh_size());
6624 gold_assert(this->exidx_section_map_[shndx] == NULL);
6625 this->exidx_section_map_[shndx] = exidx_input_section;
6627 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6629 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6630 this->section_name(shndx).c_str(), shndx, text_shndx,
6631 this->name().c_str());
6632 exidx_input_section->set_has_errors();
6634 else if (this->exidx_section_map_[text_shndx] != NULL)
6636 unsigned other_exidx_shndx =
6637 this->exidx_section_map_[text_shndx]->shndx();
6638 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6640 this->section_name(shndx).c_str(), shndx,
6641 this->section_name(other_exidx_shndx).c_str(),
6642 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6643 text_shndx, this->name().c_str());
6644 exidx_input_section->set_has_errors();
6647 this->exidx_section_map_[text_shndx] = exidx_input_section;
6649 // Check section flags of text section.
6650 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6652 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6654 this->section_name(shndx).c_str(), shndx,
6655 this->section_name(text_shndx).c_str(), text_shndx,
6656 this->name().c_str());
6657 exidx_input_section->set_has_errors();
6659 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6660 // I would like to make this an error but currently ld just ignores
6662 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6664 this->section_name(shndx).c_str(), shndx,
6665 this->section_name(text_shndx).c_str(), text_shndx,
6666 this->name().c_str());
6669 // Read the symbol information.
6671 template<bool big_endian>
6673 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6675 // Call parent class to read symbol information.
6676 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6678 // If this input file is a binary file, it has no processor
6679 // specific flags and attributes section.
6680 Input_file::Format format = this->input_file()->format();
6681 if (format != Input_file::FORMAT_ELF)
6683 gold_assert(format == Input_file::FORMAT_BINARY);
6684 this->merge_flags_and_attributes_ = false;
6688 // Read processor-specific flags in ELF file header.
6689 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6690 elfcpp::Elf_sizes<32>::ehdr_size,
6692 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6693 this->processor_specific_flags_ = ehdr.get_e_flags();
6695 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6697 std::vector<unsigned int> deferred_exidx_sections;
6698 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6699 const unsigned char* pshdrs = sd->section_headers->data();
6700 const unsigned char* ps = pshdrs + shdr_size;
6701 bool must_merge_flags_and_attributes = false;
6702 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6704 elfcpp::Shdr<32, big_endian> shdr(ps);
6706 // Sometimes an object has no contents except the section name string
6707 // table and an empty symbol table with the undefined symbol. We
6708 // don't want to merge processor-specific flags from such an object.
6709 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6711 // Symbol table is not empty.
6712 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6713 elfcpp::Elf_sizes<32>::sym_size;
6714 if (shdr.get_sh_size() > sym_size)
6715 must_merge_flags_and_attributes = true;
6717 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6718 // If this is neither an empty symbol table nor a string table,
6720 must_merge_flags_and_attributes = true;
6722 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6724 gold_assert(this->attributes_section_data_ == NULL);
6725 section_offset_type section_offset = shdr.get_sh_offset();
6726 section_size_type section_size =
6727 convert_to_section_size_type(shdr.get_sh_size());
6728 const unsigned char* view =
6729 this->get_view(section_offset, section_size, true, false);
6730 this->attributes_section_data_ =
6731 new Attributes_section_data(view, section_size);
6733 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6735 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6736 if (text_shndx == elfcpp::SHN_UNDEF)
6737 deferred_exidx_sections.push_back(i);
6740 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6741 + text_shndx * shdr_size);
6742 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6744 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6745 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6746 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6747 this->section_name(i).c_str(), this->name().c_str());
6752 if (!must_merge_flags_and_attributes)
6754 gold_assert(deferred_exidx_sections.empty());
6755 this->merge_flags_and_attributes_ = false;
6759 // Some tools are broken and they do not set the link of EXIDX sections.
6760 // We look at the first relocation to figure out the linked sections.
6761 if (!deferred_exidx_sections.empty())
6763 // We need to go over the section headers again to find the mapping
6764 // from sections being relocated to their relocation sections. This is
6765 // a bit inefficient as we could do that in the loop above. However,
6766 // we do not expect any deferred EXIDX sections normally. So we do not
6767 // want to slow down the most common path.
6768 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6769 Reloc_map reloc_map;
6770 ps = pshdrs + shdr_size;
6771 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6773 elfcpp::Shdr<32, big_endian> shdr(ps);
6774 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6775 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6777 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6778 if (info_shndx >= this->shnum())
6779 gold_error(_("relocation section %u has invalid info %u"),
6781 Reloc_map::value_type value(info_shndx, i);
6782 std::pair<Reloc_map::iterator, bool> result =
6783 reloc_map.insert(value);
6785 gold_error(_("section %u has multiple relocation sections "
6787 info_shndx, i, reloc_map[info_shndx]);
6791 // Read the symbol table section header.
6792 const unsigned int symtab_shndx = this->symtab_shndx();
6793 elfcpp::Shdr<32, big_endian>
6794 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6795 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6797 // Read the local symbols.
6798 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6799 const unsigned int loccount = this->local_symbol_count();
6800 gold_assert(loccount == symtabshdr.get_sh_info());
6801 off_t locsize = loccount * sym_size;
6802 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6803 locsize, true, true);
6805 // Process the deferred EXIDX sections.
6806 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6808 unsigned int shndx = deferred_exidx_sections[i];
6809 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6810 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6811 Reloc_map::const_iterator it = reloc_map.find(shndx);
6812 if (it != reloc_map.end())
6813 find_linked_text_section(pshdrs + it->second * shdr_size,
6814 psyms, &text_shndx);
6815 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6816 + text_shndx * shdr_size);
6817 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6822 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6823 // sections for unwinding. These sections are referenced implicitly by
6824 // text sections linked in the section headers. If we ignore these implicit
6825 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6826 // will be garbage-collected incorrectly. Hence we override the same function
6827 // in the base class to handle these implicit references.
6829 template<bool big_endian>
6831 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6833 Read_relocs_data* rd)
6835 // First, call base class method to process relocations in this object.
6836 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6838 // If --gc-sections is not specified, there is nothing more to do.
6839 // This happens when --icf is used but --gc-sections is not.
6840 if (!parameters->options().gc_sections())
6843 unsigned int shnum = this->shnum();
6844 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6845 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6849 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6850 // to these from the linked text sections.
6851 const unsigned char* ps = pshdrs + shdr_size;
6852 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6854 elfcpp::Shdr<32, big_endian> shdr(ps);
6855 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6857 // Found an .ARM.exidx section, add it to the set of reachable
6858 // sections from its linked text section.
6859 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6860 symtab->gc()->add_reference(this, text_shndx, this, i);
6865 // Update output local symbol count. Owing to EXIDX entry merging, some local
6866 // symbols will be removed in output. Adjust output local symbol count
6867 // accordingly. We can only changed the static output local symbol count. It
6868 // is too late to change the dynamic symbols.
6870 template<bool big_endian>
6872 Arm_relobj<big_endian>::update_output_local_symbol_count()
6874 // Caller should check that this needs updating. We want caller checking
6875 // because output_local_symbol_count_needs_update() is most likely inlined.
6876 gold_assert(this->output_local_symbol_count_needs_update_);
6878 gold_assert(this->symtab_shndx() != -1U);
6879 if (this->symtab_shndx() == 0)
6881 // This object has no symbols. Weird but legal.
6885 // Read the symbol table section header.
6886 const unsigned int symtab_shndx = this->symtab_shndx();
6887 elfcpp::Shdr<32, big_endian>
6888 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6889 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6891 // Read the local symbols.
6892 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6893 const unsigned int loccount = this->local_symbol_count();
6894 gold_assert(loccount == symtabshdr.get_sh_info());
6895 off_t locsize = loccount * sym_size;
6896 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6897 locsize, true, true);
6899 // Loop over the local symbols.
6901 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6903 const Output_sections& out_sections(this->output_sections());
6904 unsigned int shnum = this->shnum();
6905 unsigned int count = 0;
6906 // Skip the first, dummy, symbol.
6908 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6910 elfcpp::Sym<32, big_endian> sym(psyms);
6912 Symbol_value<32>& lv((*this->local_values())[i]);
6914 // This local symbol was already discarded by do_count_local_symbols.
6915 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6919 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6924 Output_section* os = out_sections[shndx];
6926 // This local symbol no longer has an output section. Discard it.
6929 lv.set_no_output_symtab_entry();
6933 // Currently we only discard parts of EXIDX input sections.
6934 // We explicitly check for a merged EXIDX input section to avoid
6935 // calling Output_section_data::output_offset unless necessary.
6936 if ((this->get_output_section_offset(shndx) == invalid_address)
6937 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6939 section_offset_type output_offset =
6940 os->output_offset(this, shndx, lv.input_value());
6941 if (output_offset == -1)
6943 // This symbol is defined in a part of an EXIDX input section
6944 // that is discarded due to entry merging.
6945 lv.set_no_output_symtab_entry();
6954 this->set_output_local_symbol_count(count);
6955 this->output_local_symbol_count_needs_update_ = false;
6958 // Arm_dynobj methods.
6960 // Read the symbol information.
6962 template<bool big_endian>
6964 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6966 // Call parent class to read symbol information.
6967 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6969 // Read processor-specific flags in ELF file header.
6970 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6971 elfcpp::Elf_sizes<32>::ehdr_size,
6973 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6974 this->processor_specific_flags_ = ehdr.get_e_flags();
6976 // Read the attributes section if there is one.
6977 // We read from the end because gas seems to put it near the end of
6978 // the section headers.
6979 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6980 const unsigned char* ps =
6981 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6982 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6984 elfcpp::Shdr<32, big_endian> shdr(ps);
6985 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6987 section_offset_type section_offset = shdr.get_sh_offset();
6988 section_size_type section_size =
6989 convert_to_section_size_type(shdr.get_sh_size());
6990 const unsigned char* view =
6991 this->get_view(section_offset, section_size, true, false);
6992 this->attributes_section_data_ =
6993 new Attributes_section_data(view, section_size);
6999 // Stub_addend_reader methods.
7001 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7003 template<bool big_endian>
7004 elfcpp::Elf_types<32>::Elf_Swxword
7005 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7006 unsigned int r_type,
7007 const unsigned char* view,
7008 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7010 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7014 case elfcpp::R_ARM_CALL:
7015 case elfcpp::R_ARM_JUMP24:
7016 case elfcpp::R_ARM_PLT32:
7018 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7019 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7020 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7021 return Bits<26>::sign_extend32(val << 2);
7024 case elfcpp::R_ARM_THM_CALL:
7025 case elfcpp::R_ARM_THM_JUMP24:
7026 case elfcpp::R_ARM_THM_XPC22:
7028 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7029 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7030 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7031 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7032 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7035 case elfcpp::R_ARM_THM_JUMP19:
7037 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7038 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7039 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7040 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7041 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7049 // Arm_output_data_got methods.
7051 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7052 // The first one is initialized to be 1, which is the module index for
7053 // the main executable and the second one 0. A reloc of the type
7054 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7055 // be applied by gold. GSYM is a global symbol.
7057 template<bool big_endian>
7059 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7060 unsigned int got_type,
7063 if (gsym->has_got_offset(got_type))
7066 // We are doing a static link. Just mark it as belong to module 1,
7068 unsigned int got_offset = this->add_constant(1);
7069 gsym->set_got_offset(got_type, got_offset);
7070 got_offset = this->add_constant(0);
7071 this->static_relocs_.push_back(Static_reloc(got_offset,
7072 elfcpp::R_ARM_TLS_DTPOFF32,
7076 // Same as the above but for a local symbol.
7078 template<bool big_endian>
7080 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7081 unsigned int got_type,
7082 Sized_relobj_file<32, big_endian>* object,
7085 if (object->local_has_got_offset(index, got_type))
7088 // We are doing a static link. Just mark it as belong to module 1,
7090 unsigned int got_offset = this->add_constant(1);
7091 object->set_local_got_offset(index, got_type, got_offset);
7092 got_offset = this->add_constant(0);
7093 this->static_relocs_.push_back(Static_reloc(got_offset,
7094 elfcpp::R_ARM_TLS_DTPOFF32,
7098 template<bool big_endian>
7100 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7102 // Call parent to write out GOT.
7103 Output_data_got<32, big_endian>::do_write(of);
7105 // We are done if there is no fix up.
7106 if (this->static_relocs_.empty())
7109 gold_assert(parameters->doing_static_link());
7111 const off_t offset = this->offset();
7112 const section_size_type oview_size =
7113 convert_to_section_size_type(this->data_size());
7114 unsigned char* const oview = of->get_output_view(offset, oview_size);
7116 Output_segment* tls_segment = this->layout_->tls_segment();
7117 gold_assert(tls_segment != NULL);
7119 // The thread pointer $tp points to the TCB, which is followed by the
7120 // TLS. So we need to adjust $tp relative addressing by this amount.
7121 Arm_address aligned_tcb_size =
7122 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7124 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7126 Static_reloc& reloc(this->static_relocs_[i]);
7129 if (!reloc.symbol_is_global())
7131 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7132 const Symbol_value<32>* psymval =
7133 reloc.relobj()->local_symbol(reloc.index());
7135 // We are doing static linking. Issue an error and skip this
7136 // relocation if the symbol is undefined or in a discarded_section.
7138 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7139 if ((shndx == elfcpp::SHN_UNDEF)
7141 && shndx != elfcpp::SHN_UNDEF
7142 && !object->is_section_included(shndx)
7143 && !this->symbol_table_->is_section_folded(object, shndx)))
7145 gold_error(_("undefined or discarded local symbol %u from "
7146 " object %s in GOT"),
7147 reloc.index(), reloc.relobj()->name().c_str());
7151 value = psymval->value(object, 0);
7155 const Symbol* gsym = reloc.symbol();
7156 gold_assert(gsym != NULL);
7157 if (gsym->is_forwarder())
7158 gsym = this->symbol_table_->resolve_forwards(gsym);
7160 // We are doing static linking. Issue an error and skip this
7161 // relocation if the symbol is undefined or in a discarded_section
7162 // unless it is a weakly_undefined symbol.
7163 if ((gsym->is_defined_in_discarded_section()
7164 || gsym->is_undefined())
7165 && !gsym->is_weak_undefined())
7167 gold_error(_("undefined or discarded symbol %s in GOT"),
7172 if (!gsym->is_weak_undefined())
7174 const Sized_symbol<32>* sym =
7175 static_cast<const Sized_symbol<32>*>(gsym);
7176 value = sym->value();
7182 unsigned got_offset = reloc.got_offset();
7183 gold_assert(got_offset < oview_size);
7185 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7186 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7188 switch (reloc.r_type())
7190 case elfcpp::R_ARM_TLS_DTPOFF32:
7193 case elfcpp::R_ARM_TLS_TPOFF32:
7194 x = value + aligned_tcb_size;
7199 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7202 of->write_output_view(offset, oview_size, oview);
7205 // A class to handle the PLT data.
7206 // This is an abstract base class that handles most of the linker details
7207 // but does not know the actual contents of PLT entries. The derived
7208 // classes below fill in those details.
7210 template<bool big_endian>
7211 class Output_data_plt_arm : public Output_section_data
7214 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7217 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7219 // Add an entry to the PLT.
7221 add_entry(Symbol* gsym);
7223 // Return the .rel.plt section data.
7224 const Reloc_section*
7226 { return this->rel_; }
7228 // Return the number of PLT entries.
7231 { return this->count_; }
7233 // Return the offset of the first non-reserved PLT entry.
7235 first_plt_entry_offset() const
7236 { return this->do_first_plt_entry_offset(); }
7238 // Return the size of a PLT entry.
7240 get_plt_entry_size() const
7241 { return this->do_get_plt_entry_size(); }
7244 // Fill in the first PLT entry.
7246 fill_first_plt_entry(unsigned char* pov,
7247 Arm_address got_address,
7248 Arm_address plt_address)
7249 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7252 fill_plt_entry(unsigned char* pov,
7253 Arm_address got_address,
7254 Arm_address plt_address,
7255 unsigned int got_offset,
7256 unsigned int plt_offset)
7257 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7259 virtual unsigned int
7260 do_first_plt_entry_offset() const = 0;
7262 virtual unsigned int
7263 do_get_plt_entry_size() const = 0;
7266 do_fill_first_plt_entry(unsigned char* pov,
7267 Arm_address got_address,
7268 Arm_address plt_address) = 0;
7271 do_fill_plt_entry(unsigned char* pov,
7272 Arm_address got_address,
7273 Arm_address plt_address,
7274 unsigned int got_offset,
7275 unsigned int plt_offset) = 0;
7278 do_adjust_output_section(Output_section* os);
7280 // Write to a map file.
7282 do_print_to_mapfile(Mapfile* mapfile) const
7283 { mapfile->print_output_data(this, _("** PLT")); }
7286 // Set the final size.
7288 set_final_data_size()
7290 this->set_data_size(this->first_plt_entry_offset()
7291 + this->count_ * this->get_plt_entry_size());
7294 // Write out the PLT data.
7296 do_write(Output_file*);
7298 // The reloc section.
7299 Reloc_section* rel_;
7300 // The .got.plt section.
7301 Output_data_space* got_plt_;
7302 // The number of PLT entries.
7303 unsigned int count_;
7306 // Create the PLT section. The ordinary .got section is an argument,
7307 // since we need to refer to the start. We also create our own .got
7308 // section just for PLT entries.
7310 template<bool big_endian>
7311 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7313 Output_data_space* got_plt)
7314 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7316 this->rel_ = new Reloc_section(false);
7317 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7318 elfcpp::SHF_ALLOC, this->rel_,
7319 ORDER_DYNAMIC_PLT_RELOCS, false);
7322 template<bool big_endian>
7324 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7329 // Add an entry to the PLT.
7331 template<bool big_endian>
7333 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7335 gold_assert(!gsym->has_plt_offset());
7337 // Note that when setting the PLT offset we skip the initial
7338 // reserved PLT entry.
7339 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7340 + this->first_plt_entry_offset());
7344 section_offset_type got_offset = this->got_plt_->current_data_size();
7346 // Every PLT entry needs a GOT entry which points back to the PLT
7347 // entry (this will be changed by the dynamic linker, normally
7348 // lazily when the function is called).
7349 this->got_plt_->set_current_data_size(got_offset + 4);
7351 // Every PLT entry needs a reloc.
7352 gsym->set_needs_dynsym_entry();
7353 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7356 // Note that we don't need to save the symbol. The contents of the
7357 // PLT are independent of which symbols are used. The symbols only
7358 // appear in the relocations.
7361 template<bool big_endian>
7362 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7365 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7366 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7370 // Return the offset of the first non-reserved PLT entry.
7371 virtual unsigned int
7372 do_first_plt_entry_offset() const
7373 { return sizeof(first_plt_entry); }
7375 // Return the size of a PLT entry.
7376 virtual unsigned int
7377 do_get_plt_entry_size() const
7378 { return sizeof(plt_entry); }
7381 do_fill_first_plt_entry(unsigned char* pov,
7382 Arm_address got_address,
7383 Arm_address plt_address);
7386 do_fill_plt_entry(unsigned char* pov,
7387 Arm_address got_address,
7388 Arm_address plt_address,
7389 unsigned int got_offset,
7390 unsigned int plt_offset);
7393 // Template for the first PLT entry.
7394 static const uint32_t first_plt_entry[5];
7396 // Template for subsequent PLT entries.
7397 static const uint32_t plt_entry[3];
7401 // FIXME: This is not very flexible. Right now this has only been tested
7402 // on armv5te. If we are to support additional architecture features like
7403 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7405 // The first entry in the PLT.
7406 template<bool big_endian>
7407 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7409 0xe52de004, // str lr, [sp, #-4]!
7410 0xe59fe004, // ldr lr, [pc, #4]
7411 0xe08fe00e, // add lr, pc, lr
7412 0xe5bef008, // ldr pc, [lr, #8]!
7413 0x00000000, // &GOT[0] - .
7416 template<bool big_endian>
7418 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7420 Arm_address got_address,
7421 Arm_address plt_address)
7423 // Write first PLT entry. All but the last word are constants.
7424 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7425 / sizeof(plt_entry[0]));
7426 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7427 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7428 // Last word in first PLT entry is &GOT[0] - .
7429 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7430 got_address - (plt_address + 16));
7433 // Subsequent entries in the PLT.
7435 template<bool big_endian>
7436 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7438 0xe28fc600, // add ip, pc, #0xNN00000
7439 0xe28cca00, // add ip, ip, #0xNN000
7440 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7443 template<bool big_endian>
7445 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7447 Arm_address got_address,
7448 Arm_address plt_address,
7449 unsigned int got_offset,
7450 unsigned int plt_offset)
7452 int32_t offset = ((got_address + got_offset)
7453 - (plt_address + plt_offset + 8));
7455 gold_assert(offset >= 0 && offset < 0x0fffffff);
7456 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7457 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7458 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7459 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7460 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7461 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7464 // Write out the PLT. This uses the hand-coded instructions above,
7465 // and adjusts them as needed. This is all specified by the arm ELF
7466 // Processor Supplement.
7468 template<bool big_endian>
7470 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7472 const off_t offset = this->offset();
7473 const section_size_type oview_size =
7474 convert_to_section_size_type(this->data_size());
7475 unsigned char* const oview = of->get_output_view(offset, oview_size);
7477 const off_t got_file_offset = this->got_plt_->offset();
7478 const section_size_type got_size =
7479 convert_to_section_size_type(this->got_plt_->data_size());
7480 unsigned char* const got_view = of->get_output_view(got_file_offset,
7482 unsigned char* pov = oview;
7484 Arm_address plt_address = this->address();
7485 Arm_address got_address = this->got_plt_->address();
7487 // Write first PLT entry.
7488 this->fill_first_plt_entry(pov, got_address, plt_address);
7489 pov += this->first_plt_entry_offset();
7491 unsigned char* got_pov = got_view;
7493 memset(got_pov, 0, 12);
7496 unsigned int plt_offset = this->first_plt_entry_offset();
7497 unsigned int got_offset = 12;
7498 const unsigned int count = this->count_;
7499 for (unsigned int i = 0;
7502 pov += this->get_plt_entry_size(),
7504 plt_offset += this->get_plt_entry_size(),
7507 // Set and adjust the PLT entry itself.
7508 this->fill_plt_entry(pov, got_address, plt_address,
7509 got_offset, plt_offset);
7511 // Set the entry in the GOT.
7512 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7515 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7516 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7518 of->write_output_view(offset, oview_size, oview);
7519 of->write_output_view(got_file_offset, got_size, got_view);
7522 // Create a PLT entry for a global symbol.
7524 template<bool big_endian>
7526 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7529 if (gsym->has_plt_offset())
7532 if (this->plt_ == NULL)
7534 // Create the GOT sections first.
7535 this->got_section(symtab, layout);
7537 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7539 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7541 | elfcpp::SHF_EXECINSTR),
7542 this->plt_, ORDER_PLT, false);
7544 this->plt_->add_entry(gsym);
7547 // Return the number of entries in the PLT.
7549 template<bool big_endian>
7551 Target_arm<big_endian>::plt_entry_count() const
7553 if (this->plt_ == NULL)
7555 return this->plt_->entry_count();
7558 // Return the offset of the first non-reserved PLT entry.
7560 template<bool big_endian>
7562 Target_arm<big_endian>::first_plt_entry_offset() const
7564 return this->plt_->first_plt_entry_offset();
7567 // Return the size of each PLT entry.
7569 template<bool big_endian>
7571 Target_arm<big_endian>::plt_entry_size() const
7573 return this->plt_->get_plt_entry_size();
7576 // Get the section to use for TLS_DESC relocations.
7578 template<bool big_endian>
7579 typename Target_arm<big_endian>::Reloc_section*
7580 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7582 return this->plt_section()->rel_tls_desc(layout);
7585 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7587 template<bool big_endian>
7589 Target_arm<big_endian>::define_tls_base_symbol(
7590 Symbol_table* symtab,
7593 if (this->tls_base_symbol_defined_)
7596 Output_segment* tls_segment = layout->tls_segment();
7597 if (tls_segment != NULL)
7599 bool is_exec = parameters->options().output_is_executable();
7600 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7601 Symbol_table::PREDEFINED,
7605 elfcpp::STV_HIDDEN, 0,
7607 ? Symbol::SEGMENT_END
7608 : Symbol::SEGMENT_START),
7611 this->tls_base_symbol_defined_ = true;
7614 // Create a GOT entry for the TLS module index.
7616 template<bool big_endian>
7618 Target_arm<big_endian>::got_mod_index_entry(
7619 Symbol_table* symtab,
7621 Sized_relobj_file<32, big_endian>* object)
7623 if (this->got_mod_index_offset_ == -1U)
7625 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7626 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7627 unsigned int got_offset;
7628 if (!parameters->doing_static_link())
7630 got_offset = got->add_constant(0);
7631 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7632 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7637 // We are doing a static link. Just mark it as belong to module 1,
7639 got_offset = got->add_constant(1);
7642 got->add_constant(0);
7643 this->got_mod_index_offset_ = got_offset;
7645 return this->got_mod_index_offset_;
7648 // Optimize the TLS relocation type based on what we know about the
7649 // symbol. IS_FINAL is true if the final address of this symbol is
7650 // known at link time.
7652 template<bool big_endian>
7653 tls::Tls_optimization
7654 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7656 // FIXME: Currently we do not do any TLS optimization.
7657 return tls::TLSOPT_NONE;
7660 // Get the Reference_flags for a particular relocation.
7662 template<bool big_endian>
7664 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7668 case elfcpp::R_ARM_NONE:
7669 case elfcpp::R_ARM_V4BX:
7670 case elfcpp::R_ARM_GNU_VTENTRY:
7671 case elfcpp::R_ARM_GNU_VTINHERIT:
7672 // No symbol reference.
7675 case elfcpp::R_ARM_ABS32:
7676 case elfcpp::R_ARM_ABS16:
7677 case elfcpp::R_ARM_ABS12:
7678 case elfcpp::R_ARM_THM_ABS5:
7679 case elfcpp::R_ARM_ABS8:
7680 case elfcpp::R_ARM_BASE_ABS:
7681 case elfcpp::R_ARM_MOVW_ABS_NC:
7682 case elfcpp::R_ARM_MOVT_ABS:
7683 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7684 case elfcpp::R_ARM_THM_MOVT_ABS:
7685 case elfcpp::R_ARM_ABS32_NOI:
7686 return Symbol::ABSOLUTE_REF;
7688 case elfcpp::R_ARM_REL32:
7689 case elfcpp::R_ARM_LDR_PC_G0:
7690 case elfcpp::R_ARM_SBREL32:
7691 case elfcpp::R_ARM_THM_PC8:
7692 case elfcpp::R_ARM_BASE_PREL:
7693 case elfcpp::R_ARM_MOVW_PREL_NC:
7694 case elfcpp::R_ARM_MOVT_PREL:
7695 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7696 case elfcpp::R_ARM_THM_MOVT_PREL:
7697 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7698 case elfcpp::R_ARM_THM_PC12:
7699 case elfcpp::R_ARM_REL32_NOI:
7700 case elfcpp::R_ARM_ALU_PC_G0_NC:
7701 case elfcpp::R_ARM_ALU_PC_G0:
7702 case elfcpp::R_ARM_ALU_PC_G1_NC:
7703 case elfcpp::R_ARM_ALU_PC_G1:
7704 case elfcpp::R_ARM_ALU_PC_G2:
7705 case elfcpp::R_ARM_LDR_PC_G1:
7706 case elfcpp::R_ARM_LDR_PC_G2:
7707 case elfcpp::R_ARM_LDRS_PC_G0:
7708 case elfcpp::R_ARM_LDRS_PC_G1:
7709 case elfcpp::R_ARM_LDRS_PC_G2:
7710 case elfcpp::R_ARM_LDC_PC_G0:
7711 case elfcpp::R_ARM_LDC_PC_G1:
7712 case elfcpp::R_ARM_LDC_PC_G2:
7713 case elfcpp::R_ARM_ALU_SB_G0_NC:
7714 case elfcpp::R_ARM_ALU_SB_G0:
7715 case elfcpp::R_ARM_ALU_SB_G1_NC:
7716 case elfcpp::R_ARM_ALU_SB_G1:
7717 case elfcpp::R_ARM_ALU_SB_G2:
7718 case elfcpp::R_ARM_LDR_SB_G0:
7719 case elfcpp::R_ARM_LDR_SB_G1:
7720 case elfcpp::R_ARM_LDR_SB_G2:
7721 case elfcpp::R_ARM_LDRS_SB_G0:
7722 case elfcpp::R_ARM_LDRS_SB_G1:
7723 case elfcpp::R_ARM_LDRS_SB_G2:
7724 case elfcpp::R_ARM_LDC_SB_G0:
7725 case elfcpp::R_ARM_LDC_SB_G1:
7726 case elfcpp::R_ARM_LDC_SB_G2:
7727 case elfcpp::R_ARM_MOVW_BREL_NC:
7728 case elfcpp::R_ARM_MOVT_BREL:
7729 case elfcpp::R_ARM_MOVW_BREL:
7730 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7731 case elfcpp::R_ARM_THM_MOVT_BREL:
7732 case elfcpp::R_ARM_THM_MOVW_BREL:
7733 case elfcpp::R_ARM_GOTOFF32:
7734 case elfcpp::R_ARM_GOTOFF12:
7735 case elfcpp::R_ARM_SBREL31:
7736 return Symbol::RELATIVE_REF;
7738 case elfcpp::R_ARM_PLT32:
7739 case elfcpp::R_ARM_CALL:
7740 case elfcpp::R_ARM_JUMP24:
7741 case elfcpp::R_ARM_THM_CALL:
7742 case elfcpp::R_ARM_THM_JUMP24:
7743 case elfcpp::R_ARM_THM_JUMP19:
7744 case elfcpp::R_ARM_THM_JUMP6:
7745 case elfcpp::R_ARM_THM_JUMP11:
7746 case elfcpp::R_ARM_THM_JUMP8:
7747 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7748 // in unwind tables. It may point to functions via PLTs.
7749 // So we treat it like call/jump relocations above.
7750 case elfcpp::R_ARM_PREL31:
7751 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7753 case elfcpp::R_ARM_GOT_BREL:
7754 case elfcpp::R_ARM_GOT_ABS:
7755 case elfcpp::R_ARM_GOT_PREL:
7757 return Symbol::ABSOLUTE_REF;
7759 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7760 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7761 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7762 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7763 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7764 return Symbol::TLS_REF;
7766 case elfcpp::R_ARM_TARGET1:
7767 case elfcpp::R_ARM_TARGET2:
7768 case elfcpp::R_ARM_COPY:
7769 case elfcpp::R_ARM_GLOB_DAT:
7770 case elfcpp::R_ARM_JUMP_SLOT:
7771 case elfcpp::R_ARM_RELATIVE:
7772 case elfcpp::R_ARM_PC24:
7773 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7774 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7775 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7777 // Not expected. We will give an error later.
7782 // Report an unsupported relocation against a local symbol.
7784 template<bool big_endian>
7786 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7787 Sized_relobj_file<32, big_endian>* object,
7788 unsigned int r_type)
7790 gold_error(_("%s: unsupported reloc %u against local symbol"),
7791 object->name().c_str(), r_type);
7794 // We are about to emit a dynamic relocation of type R_TYPE. If the
7795 // dynamic linker does not support it, issue an error. The GNU linker
7796 // only issues a non-PIC error for an allocated read-only section.
7797 // Here we know the section is allocated, but we don't know that it is
7798 // read-only. But we check for all the relocation types which the
7799 // glibc dynamic linker supports, so it seems appropriate to issue an
7800 // error even if the section is not read-only.
7802 template<bool big_endian>
7804 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7805 unsigned int r_type)
7809 // These are the relocation types supported by glibc for ARM.
7810 case elfcpp::R_ARM_RELATIVE:
7811 case elfcpp::R_ARM_COPY:
7812 case elfcpp::R_ARM_GLOB_DAT:
7813 case elfcpp::R_ARM_JUMP_SLOT:
7814 case elfcpp::R_ARM_ABS32:
7815 case elfcpp::R_ARM_ABS32_NOI:
7816 case elfcpp::R_ARM_PC24:
7817 // FIXME: The following 3 types are not supported by Android's dynamic
7819 case elfcpp::R_ARM_TLS_DTPMOD32:
7820 case elfcpp::R_ARM_TLS_DTPOFF32:
7821 case elfcpp::R_ARM_TLS_TPOFF32:
7826 // This prevents us from issuing more than one error per reloc
7827 // section. But we can still wind up issuing more than one
7828 // error per object file.
7829 if (this->issued_non_pic_error_)
7831 const Arm_reloc_property* reloc_property =
7832 arm_reloc_property_table->get_reloc_property(r_type);
7833 gold_assert(reloc_property != NULL);
7834 object->error(_("requires unsupported dynamic reloc %s; "
7835 "recompile with -fPIC"),
7836 reloc_property->name().c_str());
7837 this->issued_non_pic_error_ = true;
7841 case elfcpp::R_ARM_NONE:
7846 // Scan a relocation for a local symbol.
7847 // FIXME: This only handles a subset of relocation types used by Android
7848 // on ARM v5te devices.
7850 template<bool big_endian>
7852 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7855 Sized_relobj_file<32, big_endian>* object,
7856 unsigned int data_shndx,
7857 Output_section* output_section,
7858 const elfcpp::Rel<32, big_endian>& reloc,
7859 unsigned int r_type,
7860 const elfcpp::Sym<32, big_endian>& lsym)
7862 r_type = get_real_reloc_type(r_type);
7865 case elfcpp::R_ARM_NONE:
7866 case elfcpp::R_ARM_V4BX:
7867 case elfcpp::R_ARM_GNU_VTENTRY:
7868 case elfcpp::R_ARM_GNU_VTINHERIT:
7871 case elfcpp::R_ARM_ABS32:
7872 case elfcpp::R_ARM_ABS32_NOI:
7873 // If building a shared library (or a position-independent
7874 // executable), we need to create a dynamic relocation for
7875 // this location. The relocation applied at link time will
7876 // apply the link-time value, so we flag the location with
7877 // an R_ARM_RELATIVE relocation so the dynamic loader can
7878 // relocate it easily.
7879 if (parameters->options().output_is_position_independent())
7881 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7882 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7883 // If we are to add more other reloc types than R_ARM_ABS32,
7884 // we need to add check_non_pic(object, r_type) here.
7885 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7886 output_section, data_shndx,
7887 reloc.get_r_offset());
7891 case elfcpp::R_ARM_ABS16:
7892 case elfcpp::R_ARM_ABS12:
7893 case elfcpp::R_ARM_THM_ABS5:
7894 case elfcpp::R_ARM_ABS8:
7895 case elfcpp::R_ARM_BASE_ABS:
7896 case elfcpp::R_ARM_MOVW_ABS_NC:
7897 case elfcpp::R_ARM_MOVT_ABS:
7898 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7899 case elfcpp::R_ARM_THM_MOVT_ABS:
7900 // If building a shared library (or a position-independent
7901 // executable), we need to create a dynamic relocation for
7902 // this location. Because the addend needs to remain in the
7903 // data section, we need to be careful not to apply this
7904 // relocation statically.
7905 if (parameters->options().output_is_position_independent())
7907 check_non_pic(object, r_type);
7908 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7909 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7910 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7911 rel_dyn->add_local(object, r_sym, r_type, output_section,
7912 data_shndx, reloc.get_r_offset());
7915 gold_assert(lsym.get_st_value() == 0);
7916 unsigned int shndx = lsym.get_st_shndx();
7918 shndx = object->adjust_sym_shndx(r_sym, shndx,
7921 object->error(_("section symbol %u has bad shndx %u"),
7924 rel_dyn->add_local_section(object, shndx,
7925 r_type, output_section,
7926 data_shndx, reloc.get_r_offset());
7931 case elfcpp::R_ARM_REL32:
7932 case elfcpp::R_ARM_LDR_PC_G0:
7933 case elfcpp::R_ARM_SBREL32:
7934 case elfcpp::R_ARM_THM_CALL:
7935 case elfcpp::R_ARM_THM_PC8:
7936 case elfcpp::R_ARM_BASE_PREL:
7937 case elfcpp::R_ARM_PLT32:
7938 case elfcpp::R_ARM_CALL:
7939 case elfcpp::R_ARM_JUMP24:
7940 case elfcpp::R_ARM_THM_JUMP24:
7941 case elfcpp::R_ARM_SBREL31:
7942 case elfcpp::R_ARM_PREL31:
7943 case elfcpp::R_ARM_MOVW_PREL_NC:
7944 case elfcpp::R_ARM_MOVT_PREL:
7945 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7946 case elfcpp::R_ARM_THM_MOVT_PREL:
7947 case elfcpp::R_ARM_THM_JUMP19:
7948 case elfcpp::R_ARM_THM_JUMP6:
7949 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7950 case elfcpp::R_ARM_THM_PC12:
7951 case elfcpp::R_ARM_REL32_NOI:
7952 case elfcpp::R_ARM_ALU_PC_G0_NC:
7953 case elfcpp::R_ARM_ALU_PC_G0:
7954 case elfcpp::R_ARM_ALU_PC_G1_NC:
7955 case elfcpp::R_ARM_ALU_PC_G1:
7956 case elfcpp::R_ARM_ALU_PC_G2:
7957 case elfcpp::R_ARM_LDR_PC_G1:
7958 case elfcpp::R_ARM_LDR_PC_G2:
7959 case elfcpp::R_ARM_LDRS_PC_G0:
7960 case elfcpp::R_ARM_LDRS_PC_G1:
7961 case elfcpp::R_ARM_LDRS_PC_G2:
7962 case elfcpp::R_ARM_LDC_PC_G0:
7963 case elfcpp::R_ARM_LDC_PC_G1:
7964 case elfcpp::R_ARM_LDC_PC_G2:
7965 case elfcpp::R_ARM_ALU_SB_G0_NC:
7966 case elfcpp::R_ARM_ALU_SB_G0:
7967 case elfcpp::R_ARM_ALU_SB_G1_NC:
7968 case elfcpp::R_ARM_ALU_SB_G1:
7969 case elfcpp::R_ARM_ALU_SB_G2:
7970 case elfcpp::R_ARM_LDR_SB_G0:
7971 case elfcpp::R_ARM_LDR_SB_G1:
7972 case elfcpp::R_ARM_LDR_SB_G2:
7973 case elfcpp::R_ARM_LDRS_SB_G0:
7974 case elfcpp::R_ARM_LDRS_SB_G1:
7975 case elfcpp::R_ARM_LDRS_SB_G2:
7976 case elfcpp::R_ARM_LDC_SB_G0:
7977 case elfcpp::R_ARM_LDC_SB_G1:
7978 case elfcpp::R_ARM_LDC_SB_G2:
7979 case elfcpp::R_ARM_MOVW_BREL_NC:
7980 case elfcpp::R_ARM_MOVT_BREL:
7981 case elfcpp::R_ARM_MOVW_BREL:
7982 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7983 case elfcpp::R_ARM_THM_MOVT_BREL:
7984 case elfcpp::R_ARM_THM_MOVW_BREL:
7985 case elfcpp::R_ARM_THM_JUMP11:
7986 case elfcpp::R_ARM_THM_JUMP8:
7987 // We don't need to do anything for a relative addressing relocation
7988 // against a local symbol if it does not reference the GOT.
7991 case elfcpp::R_ARM_GOTOFF32:
7992 case elfcpp::R_ARM_GOTOFF12:
7993 // We need a GOT section:
7994 target->got_section(symtab, layout);
7997 case elfcpp::R_ARM_GOT_BREL:
7998 case elfcpp::R_ARM_GOT_PREL:
8000 // The symbol requires a GOT entry.
8001 Arm_output_data_got<big_endian>* got =
8002 target->got_section(symtab, layout);
8003 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8004 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8006 // If we are generating a shared object, we need to add a
8007 // dynamic RELATIVE relocation for this symbol's GOT entry.
8008 if (parameters->options().output_is_position_independent())
8010 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8011 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8012 rel_dyn->add_local_relative(
8013 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8014 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8020 case elfcpp::R_ARM_TARGET1:
8021 case elfcpp::R_ARM_TARGET2:
8022 // This should have been mapped to another type already.
8024 case elfcpp::R_ARM_COPY:
8025 case elfcpp::R_ARM_GLOB_DAT:
8026 case elfcpp::R_ARM_JUMP_SLOT:
8027 case elfcpp::R_ARM_RELATIVE:
8028 // These are relocations which should only be seen by the
8029 // dynamic linker, and should never be seen here.
8030 gold_error(_("%s: unexpected reloc %u in object file"),
8031 object->name().c_str(), r_type);
8035 // These are initial TLS relocs, which are expected when
8037 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8038 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8039 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8040 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8041 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8043 bool output_is_shared = parameters->options().shared();
8044 const tls::Tls_optimization optimized_type
8045 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8049 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8050 if (optimized_type == tls::TLSOPT_NONE)
8052 // Create a pair of GOT entries for the module index and
8053 // dtv-relative offset.
8054 Arm_output_data_got<big_endian>* got
8055 = target->got_section(symtab, layout);
8056 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8057 unsigned int shndx = lsym.get_st_shndx();
8059 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8062 object->error(_("local symbol %u has bad shndx %u"),
8067 if (!parameters->doing_static_link())
8068 got->add_local_pair_with_rel(object, r_sym, shndx,
8070 target->rel_dyn_section(layout),
8071 elfcpp::R_ARM_TLS_DTPMOD32, 0);
8073 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8077 // FIXME: TLS optimization not supported yet.
8081 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8082 if (optimized_type == tls::TLSOPT_NONE)
8084 // Create a GOT entry for the module index.
8085 target->got_mod_index_entry(symtab, layout, object);
8088 // FIXME: TLS optimization not supported yet.
8092 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8095 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8096 layout->set_has_static_tls();
8097 if (optimized_type == tls::TLSOPT_NONE)
8099 // Create a GOT entry for the tp-relative offset.
8100 Arm_output_data_got<big_endian>* got
8101 = target->got_section(symtab, layout);
8102 unsigned int r_sym =
8103 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8104 if (!parameters->doing_static_link())
8105 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8106 target->rel_dyn_section(layout),
8107 elfcpp::R_ARM_TLS_TPOFF32);
8108 else if (!object->local_has_got_offset(r_sym,
8109 GOT_TYPE_TLS_OFFSET))
8111 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8112 unsigned int got_offset =
8113 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8114 got->add_static_reloc(got_offset,
8115 elfcpp::R_ARM_TLS_TPOFF32, object,
8120 // FIXME: TLS optimization not supported yet.
8124 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8125 layout->set_has_static_tls();
8126 if (output_is_shared)
8128 // We need to create a dynamic relocation.
8129 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8130 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8131 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8132 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8133 output_section, data_shndx,
8134 reloc.get_r_offset());
8144 case elfcpp::R_ARM_PC24:
8145 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8146 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8147 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8149 unsupported_reloc_local(object, r_type);
8154 // Report an unsupported relocation against a global symbol.
8156 template<bool big_endian>
8158 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8159 Sized_relobj_file<32, big_endian>* object,
8160 unsigned int r_type,
8163 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8164 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8167 template<bool big_endian>
8169 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8170 unsigned int r_type)
8174 case elfcpp::R_ARM_PC24:
8175 case elfcpp::R_ARM_THM_CALL:
8176 case elfcpp::R_ARM_PLT32:
8177 case elfcpp::R_ARM_CALL:
8178 case elfcpp::R_ARM_JUMP24:
8179 case elfcpp::R_ARM_THM_JUMP24:
8180 case elfcpp::R_ARM_SBREL31:
8181 case elfcpp::R_ARM_PREL31:
8182 case elfcpp::R_ARM_THM_JUMP19:
8183 case elfcpp::R_ARM_THM_JUMP6:
8184 case elfcpp::R_ARM_THM_JUMP11:
8185 case elfcpp::R_ARM_THM_JUMP8:
8186 // All the relocations above are branches except SBREL31 and PREL31.
8190 // Be conservative and assume this is a function pointer.
8195 template<bool big_endian>
8197 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8200 Target_arm<big_endian>* target,
8201 Sized_relobj_file<32, big_endian>*,
8204 const elfcpp::Rel<32, big_endian>&,
8205 unsigned int r_type,
8206 const elfcpp::Sym<32, big_endian>&)
8208 r_type = target->get_real_reloc_type(r_type);
8209 return possible_function_pointer_reloc(r_type);
8212 template<bool big_endian>
8214 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8217 Target_arm<big_endian>* target,
8218 Sized_relobj_file<32, big_endian>*,
8221 const elfcpp::Rel<32, big_endian>&,
8222 unsigned int r_type,
8225 // GOT is not a function.
8226 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8229 r_type = target->get_real_reloc_type(r_type);
8230 return possible_function_pointer_reloc(r_type);
8233 // Scan a relocation for a global symbol.
8235 template<bool big_endian>
8237 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8240 Sized_relobj_file<32, big_endian>* object,
8241 unsigned int data_shndx,
8242 Output_section* output_section,
8243 const elfcpp::Rel<32, big_endian>& reloc,
8244 unsigned int r_type,
8247 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8248 // section. We check here to avoid creating a dynamic reloc against
8249 // _GLOBAL_OFFSET_TABLE_.
8250 if (!target->has_got_section()
8251 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8252 target->got_section(symtab, layout);
8254 r_type = get_real_reloc_type(r_type);
8257 case elfcpp::R_ARM_NONE:
8258 case elfcpp::R_ARM_V4BX:
8259 case elfcpp::R_ARM_GNU_VTENTRY:
8260 case elfcpp::R_ARM_GNU_VTINHERIT:
8263 case elfcpp::R_ARM_ABS32:
8264 case elfcpp::R_ARM_ABS16:
8265 case elfcpp::R_ARM_ABS12:
8266 case elfcpp::R_ARM_THM_ABS5:
8267 case elfcpp::R_ARM_ABS8:
8268 case elfcpp::R_ARM_BASE_ABS:
8269 case elfcpp::R_ARM_MOVW_ABS_NC:
8270 case elfcpp::R_ARM_MOVT_ABS:
8271 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8272 case elfcpp::R_ARM_THM_MOVT_ABS:
8273 case elfcpp::R_ARM_ABS32_NOI:
8274 // Absolute addressing relocations.
8276 // Make a PLT entry if necessary.
8277 if (this->symbol_needs_plt_entry(gsym))
8279 target->make_plt_entry(symtab, layout, gsym);
8280 // Since this is not a PC-relative relocation, we may be
8281 // taking the address of a function. In that case we need to
8282 // set the entry in the dynamic symbol table to the address of
8284 if (gsym->is_from_dynobj() && !parameters->options().shared())
8285 gsym->set_needs_dynsym_value();
8287 // Make a dynamic relocation if necessary.
8288 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8290 if (gsym->may_need_copy_reloc())
8292 target->copy_reloc(symtab, layout, object,
8293 data_shndx, output_section, gsym, reloc);
8295 else if ((r_type == elfcpp::R_ARM_ABS32
8296 || r_type == elfcpp::R_ARM_ABS32_NOI)
8297 && gsym->can_use_relative_reloc(false))
8299 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8300 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8301 output_section, object,
8302 data_shndx, reloc.get_r_offset());
8306 check_non_pic(object, r_type);
8307 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8308 rel_dyn->add_global(gsym, r_type, output_section, object,
8309 data_shndx, reloc.get_r_offset());
8315 case elfcpp::R_ARM_GOTOFF32:
8316 case elfcpp::R_ARM_GOTOFF12:
8317 // We need a GOT section.
8318 target->got_section(symtab, layout);
8321 case elfcpp::R_ARM_REL32:
8322 case elfcpp::R_ARM_LDR_PC_G0:
8323 case elfcpp::R_ARM_SBREL32:
8324 case elfcpp::R_ARM_THM_PC8:
8325 case elfcpp::R_ARM_BASE_PREL:
8326 case elfcpp::R_ARM_MOVW_PREL_NC:
8327 case elfcpp::R_ARM_MOVT_PREL:
8328 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8329 case elfcpp::R_ARM_THM_MOVT_PREL:
8330 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8331 case elfcpp::R_ARM_THM_PC12:
8332 case elfcpp::R_ARM_REL32_NOI:
8333 case elfcpp::R_ARM_ALU_PC_G0_NC:
8334 case elfcpp::R_ARM_ALU_PC_G0:
8335 case elfcpp::R_ARM_ALU_PC_G1_NC:
8336 case elfcpp::R_ARM_ALU_PC_G1:
8337 case elfcpp::R_ARM_ALU_PC_G2:
8338 case elfcpp::R_ARM_LDR_PC_G1:
8339 case elfcpp::R_ARM_LDR_PC_G2:
8340 case elfcpp::R_ARM_LDRS_PC_G0:
8341 case elfcpp::R_ARM_LDRS_PC_G1:
8342 case elfcpp::R_ARM_LDRS_PC_G2:
8343 case elfcpp::R_ARM_LDC_PC_G0:
8344 case elfcpp::R_ARM_LDC_PC_G1:
8345 case elfcpp::R_ARM_LDC_PC_G2:
8346 case elfcpp::R_ARM_ALU_SB_G0_NC:
8347 case elfcpp::R_ARM_ALU_SB_G0:
8348 case elfcpp::R_ARM_ALU_SB_G1_NC:
8349 case elfcpp::R_ARM_ALU_SB_G1:
8350 case elfcpp::R_ARM_ALU_SB_G2:
8351 case elfcpp::R_ARM_LDR_SB_G0:
8352 case elfcpp::R_ARM_LDR_SB_G1:
8353 case elfcpp::R_ARM_LDR_SB_G2:
8354 case elfcpp::R_ARM_LDRS_SB_G0:
8355 case elfcpp::R_ARM_LDRS_SB_G1:
8356 case elfcpp::R_ARM_LDRS_SB_G2:
8357 case elfcpp::R_ARM_LDC_SB_G0:
8358 case elfcpp::R_ARM_LDC_SB_G1:
8359 case elfcpp::R_ARM_LDC_SB_G2:
8360 case elfcpp::R_ARM_MOVW_BREL_NC:
8361 case elfcpp::R_ARM_MOVT_BREL:
8362 case elfcpp::R_ARM_MOVW_BREL:
8363 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8364 case elfcpp::R_ARM_THM_MOVT_BREL:
8365 case elfcpp::R_ARM_THM_MOVW_BREL:
8366 // Relative addressing relocations.
8368 // Make a dynamic relocation if necessary.
8369 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8371 if (target->may_need_copy_reloc(gsym))
8373 target->copy_reloc(symtab, layout, object,
8374 data_shndx, output_section, gsym, reloc);
8378 check_non_pic(object, r_type);
8379 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8380 rel_dyn->add_global(gsym, r_type, output_section, object,
8381 data_shndx, reloc.get_r_offset());
8387 case elfcpp::R_ARM_THM_CALL:
8388 case elfcpp::R_ARM_PLT32:
8389 case elfcpp::R_ARM_CALL:
8390 case elfcpp::R_ARM_JUMP24:
8391 case elfcpp::R_ARM_THM_JUMP24:
8392 case elfcpp::R_ARM_SBREL31:
8393 case elfcpp::R_ARM_PREL31:
8394 case elfcpp::R_ARM_THM_JUMP19:
8395 case elfcpp::R_ARM_THM_JUMP6:
8396 case elfcpp::R_ARM_THM_JUMP11:
8397 case elfcpp::R_ARM_THM_JUMP8:
8398 // All the relocation above are branches except for the PREL31 ones.
8399 // A PREL31 relocation can point to a personality function in a shared
8400 // library. In that case we want to use a PLT because we want to
8401 // call the personality routine and the dynamic linkers we care about
8402 // do not support dynamic PREL31 relocations. An REL31 relocation may
8403 // point to a function whose unwinding behaviour is being described but
8404 // we will not mistakenly generate a PLT for that because we should use
8405 // a local section symbol.
8407 // If the symbol is fully resolved, this is just a relative
8408 // local reloc. Otherwise we need a PLT entry.
8409 if (gsym->final_value_is_known())
8411 // If building a shared library, we can also skip the PLT entry
8412 // if the symbol is defined in the output file and is protected
8414 if (gsym->is_defined()
8415 && !gsym->is_from_dynobj()
8416 && !gsym->is_preemptible())
8418 target->make_plt_entry(symtab, layout, gsym);
8421 case elfcpp::R_ARM_GOT_BREL:
8422 case elfcpp::R_ARM_GOT_ABS:
8423 case elfcpp::R_ARM_GOT_PREL:
8425 // The symbol requires a GOT entry.
8426 Arm_output_data_got<big_endian>* got =
8427 target->got_section(symtab, layout);
8428 if (gsym->final_value_is_known())
8429 got->add_global(gsym, GOT_TYPE_STANDARD);
8432 // If this symbol is not fully resolved, we need to add a
8433 // GOT entry with a dynamic relocation.
8434 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8435 if (gsym->is_from_dynobj()
8436 || gsym->is_undefined()
8437 || gsym->is_preemptible()
8438 || (gsym->visibility() == elfcpp::STV_PROTECTED
8439 && parameters->options().shared()))
8440 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8441 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8444 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8445 rel_dyn->add_global_relative(
8446 gsym, elfcpp::R_ARM_RELATIVE, got,
8447 gsym->got_offset(GOT_TYPE_STANDARD));
8453 case elfcpp::R_ARM_TARGET1:
8454 case elfcpp::R_ARM_TARGET2:
8455 // These should have been mapped to other types already.
8457 case elfcpp::R_ARM_COPY:
8458 case elfcpp::R_ARM_GLOB_DAT:
8459 case elfcpp::R_ARM_JUMP_SLOT:
8460 case elfcpp::R_ARM_RELATIVE:
8461 // These are relocations which should only be seen by the
8462 // dynamic linker, and should never be seen here.
8463 gold_error(_("%s: unexpected reloc %u in object file"),
8464 object->name().c_str(), r_type);
8467 // These are initial tls relocs, which are expected when
8469 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8470 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8471 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8472 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8473 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8475 const bool is_final = gsym->final_value_is_known();
8476 const tls::Tls_optimization optimized_type
8477 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8480 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8481 if (optimized_type == tls::TLSOPT_NONE)
8483 // Create a pair of GOT entries for the module index and
8484 // dtv-relative offset.
8485 Arm_output_data_got<big_endian>* got
8486 = target->got_section(symtab, layout);
8487 if (!parameters->doing_static_link())
8488 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8489 target->rel_dyn_section(layout),
8490 elfcpp::R_ARM_TLS_DTPMOD32,
8491 elfcpp::R_ARM_TLS_DTPOFF32);
8493 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8496 // FIXME: TLS optimization not supported yet.
8500 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8501 if (optimized_type == tls::TLSOPT_NONE)
8503 // Create a GOT entry for the module index.
8504 target->got_mod_index_entry(symtab, layout, object);
8507 // FIXME: TLS optimization not supported yet.
8511 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8514 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8515 layout->set_has_static_tls();
8516 if (optimized_type == tls::TLSOPT_NONE)
8518 // Create a GOT entry for the tp-relative offset.
8519 Arm_output_data_got<big_endian>* got
8520 = target->got_section(symtab, layout);
8521 if (!parameters->doing_static_link())
8522 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8523 target->rel_dyn_section(layout),
8524 elfcpp::R_ARM_TLS_TPOFF32);
8525 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8527 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8528 unsigned int got_offset =
8529 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8530 got->add_static_reloc(got_offset,
8531 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8535 // FIXME: TLS optimization not supported yet.
8539 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8540 layout->set_has_static_tls();
8541 if (parameters->options().shared())
8543 // We need to create a dynamic relocation.
8544 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8545 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8546 output_section, object,
8547 data_shndx, reloc.get_r_offset());
8557 case elfcpp::R_ARM_PC24:
8558 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8559 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8560 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8562 unsupported_reloc_global(object, r_type, gsym);
8567 // Process relocations for gc.
8569 template<bool big_endian>
8571 Target_arm<big_endian>::gc_process_relocs(
8572 Symbol_table* symtab,
8574 Sized_relobj_file<32, big_endian>* object,
8575 unsigned int data_shndx,
8577 const unsigned char* prelocs,
8579 Output_section* output_section,
8580 bool needs_special_offset_handling,
8581 size_t local_symbol_count,
8582 const unsigned char* plocal_symbols)
8584 typedef Target_arm<big_endian> Arm;
8585 typedef typename Target_arm<big_endian>::Scan Scan;
8587 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8588 typename Target_arm::Relocatable_size_for_reloc>(
8597 needs_special_offset_handling,
8602 // Scan relocations for a section.
8604 template<bool big_endian>
8606 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8608 Sized_relobj_file<32, big_endian>* object,
8609 unsigned int data_shndx,
8610 unsigned int sh_type,
8611 const unsigned char* prelocs,
8613 Output_section* output_section,
8614 bool needs_special_offset_handling,
8615 size_t local_symbol_count,
8616 const unsigned char* plocal_symbols)
8618 typedef typename Target_arm<big_endian>::Scan Scan;
8619 if (sh_type == elfcpp::SHT_RELA)
8621 gold_error(_("%s: unsupported RELA reloc section"),
8622 object->name().c_str());
8626 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8635 needs_special_offset_handling,
8640 // Finalize the sections.
8642 template<bool big_endian>
8644 Target_arm<big_endian>::do_finalize_sections(
8646 const Input_objects* input_objects,
8649 bool merged_any_attributes = false;
8650 // Merge processor-specific flags.
8651 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8652 p != input_objects->relobj_end();
8655 Arm_relobj<big_endian>* arm_relobj =
8656 Arm_relobj<big_endian>::as_arm_relobj(*p);
8657 if (arm_relobj->merge_flags_and_attributes())
8659 this->merge_processor_specific_flags(
8661 arm_relobj->processor_specific_flags());
8662 this->merge_object_attributes(arm_relobj->name().c_str(),
8663 arm_relobj->attributes_section_data());
8664 merged_any_attributes = true;
8668 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8669 p != input_objects->dynobj_end();
8672 Arm_dynobj<big_endian>* arm_dynobj =
8673 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8674 this->merge_processor_specific_flags(
8676 arm_dynobj->processor_specific_flags());
8677 this->merge_object_attributes(arm_dynobj->name().c_str(),
8678 arm_dynobj->attributes_section_data());
8679 merged_any_attributes = true;
8682 // Create an empty uninitialized attribute section if we still don't have it
8683 // at this moment. This happens if there is no attributes sections in all
8685 if (this->attributes_section_data_ == NULL)
8686 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8688 const Object_attribute* cpu_arch_attr =
8689 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8690 // Check if we need to use Cortex-A8 workaround.
8691 if (parameters->options().user_set_fix_cortex_a8())
8692 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8695 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8696 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8698 const Object_attribute* cpu_arch_profile_attr =
8699 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8700 this->fix_cortex_a8_ =
8701 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8702 && (cpu_arch_profile_attr->int_value() == 'A'
8703 || cpu_arch_profile_attr->int_value() == 0));
8706 // Check if we can use V4BX interworking.
8707 // The V4BX interworking stub contains BX instruction,
8708 // which is not specified for some profiles.
8709 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8710 && !this->may_use_v4t_interworking())
8711 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8712 "the target profile does not support BX instruction"));
8714 // Fill in some more dynamic tags.
8715 const Reloc_section* rel_plt = (this->plt_ == NULL
8717 : this->plt_->rel_plt());
8718 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8719 this->rel_dyn_, true, false);
8721 // Emit any relocs we saved in an attempt to avoid generating COPY
8723 if (this->copy_relocs_.any_saved_relocs())
8724 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8726 // Handle the .ARM.exidx section.
8727 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8729 if (!parameters->options().relocatable())
8731 if (exidx_section != NULL
8732 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8734 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8735 // the .ARM.exidx section.
8736 if (!layout->script_options()->saw_phdrs_clause())
8738 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8741 Output_segment* exidx_segment =
8742 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8743 exidx_segment->add_output_section_to_nonload(exidx_section,
8749 // Create an .ARM.attributes section if we have merged any attributes
8751 if (merged_any_attributes)
8753 Output_attributes_section_data* attributes_section =
8754 new Output_attributes_section_data(*this->attributes_section_data_);
8755 layout->add_output_section_data(".ARM.attributes",
8756 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8757 attributes_section, ORDER_INVALID,
8761 // Fix up links in section EXIDX headers.
8762 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8763 p != layout->section_list().end();
8765 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8767 Arm_output_section<big_endian>* os =
8768 Arm_output_section<big_endian>::as_arm_output_section(*p);
8769 os->set_exidx_section_link();
8773 // Return whether a direct absolute static relocation needs to be applied.
8774 // In cases where Scan::local() or Scan::global() has created
8775 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8776 // of the relocation is carried in the data, and we must not
8777 // apply the static relocation.
8779 template<bool big_endian>
8781 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8782 const Sized_symbol<32>* gsym,
8783 unsigned int r_type,
8785 Output_section* output_section)
8787 // If the output section is not allocated, then we didn't call
8788 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8790 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8793 int ref_flags = Scan::get_reference_flags(r_type);
8795 // For local symbols, we will have created a non-RELATIVE dynamic
8796 // relocation only if (a) the output is position independent,
8797 // (b) the relocation is absolute (not pc- or segment-relative), and
8798 // (c) the relocation is not 32 bits wide.
8800 return !(parameters->options().output_is_position_independent()
8801 && (ref_flags & Symbol::ABSOLUTE_REF)
8804 // For global symbols, we use the same helper routines used in the
8805 // scan pass. If we did not create a dynamic relocation, or if we
8806 // created a RELATIVE dynamic relocation, we should apply the static
8808 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8809 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8810 && gsym->can_use_relative_reloc(ref_flags
8811 & Symbol::FUNCTION_CALL);
8812 return !has_dyn || is_rel;
8815 // Perform a relocation.
8817 template<bool big_endian>
8819 Target_arm<big_endian>::Relocate::relocate(
8820 const Relocate_info<32, big_endian>* relinfo,
8822 Output_section* output_section,
8824 const elfcpp::Rel<32, big_endian>& rel,
8825 unsigned int r_type,
8826 const Sized_symbol<32>* gsym,
8827 const Symbol_value<32>* psymval,
8828 unsigned char* view,
8829 Arm_address address,
8830 section_size_type view_size)
8832 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8834 r_type = get_real_reloc_type(r_type);
8835 const Arm_reloc_property* reloc_property =
8836 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8837 if (reloc_property == NULL)
8839 std::string reloc_name =
8840 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8841 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8842 _("cannot relocate %s in object file"),
8843 reloc_name.c_str());
8847 const Arm_relobj<big_endian>* object =
8848 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8850 // If the final branch target of a relocation is THUMB instruction, this
8851 // is 1. Otherwise it is 0.
8852 Arm_address thumb_bit = 0;
8853 Symbol_value<32> symval;
8854 bool is_weakly_undefined_without_plt = false;
8855 bool have_got_offset = false;
8856 unsigned int got_offset = 0;
8858 // If the relocation uses the GOT entry of a symbol instead of the symbol
8859 // itself, we don't care about whether the symbol is defined or what kind
8861 if (reloc_property->uses_got_entry())
8863 // Get the GOT offset.
8864 // The GOT pointer points to the end of the GOT section.
8865 // We need to subtract the size of the GOT section to get
8866 // the actual offset to use in the relocation.
8867 // TODO: We should move GOT offset computing code in TLS relocations
8871 case elfcpp::R_ARM_GOT_BREL:
8872 case elfcpp::R_ARM_GOT_PREL:
8875 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8876 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8877 - target->got_size());
8881 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8882 gold_assert(object->local_has_got_offset(r_sym,
8883 GOT_TYPE_STANDARD));
8884 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8885 - target->got_size());
8887 have_got_offset = true;
8894 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8898 // This is a global symbol. Determine if we use PLT and if the
8899 // final target is THUMB.
8900 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8902 // This uses a PLT, change the symbol value.
8903 symval.set_output_value(target->plt_section()->address()
8904 + gsym->plt_offset());
8907 else if (gsym->is_weak_undefined())
8909 // This is a weakly undefined symbol and we do not use PLT
8910 // for this relocation. A branch targeting this symbol will
8911 // be converted into an NOP.
8912 is_weakly_undefined_without_plt = true;
8914 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8916 // This relocation uses the symbol value but the symbol is
8917 // undefined. Exit early and have the caller reporting an
8923 // Set thumb bit if symbol:
8924 // -Has type STT_ARM_TFUNC or
8925 // -Has type STT_FUNC, is defined and with LSB in value set.
8927 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8928 || (gsym->type() == elfcpp::STT_FUNC
8929 && !gsym->is_undefined()
8930 && ((psymval->value(object, 0) & 1) != 0)))
8937 // This is a local symbol. Determine if the final target is THUMB.
8938 // We saved this information when all the local symbols were read.
8939 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8940 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8941 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8946 // This is a fake relocation synthesized for a stub. It does not have
8947 // a real symbol. We just look at the LSB of the symbol value to
8948 // determine if the target is THUMB or not.
8949 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8952 // Strip LSB if this points to a THUMB target.
8954 && reloc_property->uses_thumb_bit()
8955 && ((psymval->value(object, 0) & 1) != 0))
8957 Arm_address stripped_value =
8958 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8959 symval.set_output_value(stripped_value);
8963 // To look up relocation stubs, we need to pass the symbol table index of
8965 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8967 // Get the addressing origin of the output segment defining the
8968 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8969 Arm_address sym_origin = 0;
8970 if (reloc_property->uses_symbol_base())
8972 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8973 // R_ARM_BASE_ABS with the NULL symbol will give the
8974 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8975 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8976 sym_origin = target->got_plt_section()->address();
8977 else if (gsym == NULL)
8979 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8980 sym_origin = gsym->output_segment()->vaddr();
8981 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8982 sym_origin = gsym->output_data()->address();
8984 // TODO: Assumes the segment base to be zero for the global symbols
8985 // till the proper support for the segment-base-relative addressing
8986 // will be implemented. This is consistent with GNU ld.
8989 // For relative addressing relocation, find out the relative address base.
8990 Arm_address relative_address_base = 0;
8991 switch(reloc_property->relative_address_base())
8993 case Arm_reloc_property::RAB_NONE:
8994 // Relocations with relative address bases RAB_TLS and RAB_tp are
8995 // handled by relocate_tls. So we do not need to do anything here.
8996 case Arm_reloc_property::RAB_TLS:
8997 case Arm_reloc_property::RAB_tp:
8999 case Arm_reloc_property::RAB_B_S:
9000 relative_address_base = sym_origin;
9002 case Arm_reloc_property::RAB_GOT_ORG:
9003 relative_address_base = target->got_plt_section()->address();
9005 case Arm_reloc_property::RAB_P:
9006 relative_address_base = address;
9008 case Arm_reloc_property::RAB_Pa:
9009 relative_address_base = address & 0xfffffffcU;
9015 typename Arm_relocate_functions::Status reloc_status =
9016 Arm_relocate_functions::STATUS_OKAY;
9017 bool check_overflow = reloc_property->checks_overflow();
9020 case elfcpp::R_ARM_NONE:
9023 case elfcpp::R_ARM_ABS8:
9024 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9025 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9028 case elfcpp::R_ARM_ABS12:
9029 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9030 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9033 case elfcpp::R_ARM_ABS16:
9034 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9035 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9038 case elfcpp::R_ARM_ABS32:
9039 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9040 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9044 case elfcpp::R_ARM_ABS32_NOI:
9045 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9046 // No thumb bit for this relocation: (S + A)
9047 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9051 case elfcpp::R_ARM_MOVW_ABS_NC:
9052 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9053 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9058 case elfcpp::R_ARM_MOVT_ABS:
9059 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9060 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9063 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9064 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9065 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9066 0, thumb_bit, false);
9069 case elfcpp::R_ARM_THM_MOVT_ABS:
9070 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9071 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9075 case elfcpp::R_ARM_MOVW_PREL_NC:
9076 case elfcpp::R_ARM_MOVW_BREL_NC:
9077 case elfcpp::R_ARM_MOVW_BREL:
9079 Arm_relocate_functions::movw(view, object, psymval,
9080 relative_address_base, thumb_bit,
9084 case elfcpp::R_ARM_MOVT_PREL:
9085 case elfcpp::R_ARM_MOVT_BREL:
9087 Arm_relocate_functions::movt(view, object, psymval,
9088 relative_address_base);
9091 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9092 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9093 case elfcpp::R_ARM_THM_MOVW_BREL:
9095 Arm_relocate_functions::thm_movw(view, object, psymval,
9096 relative_address_base,
9097 thumb_bit, check_overflow);
9100 case elfcpp::R_ARM_THM_MOVT_PREL:
9101 case elfcpp::R_ARM_THM_MOVT_BREL:
9103 Arm_relocate_functions::thm_movt(view, object, psymval,
9104 relative_address_base);
9107 case elfcpp::R_ARM_REL32:
9108 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9109 address, thumb_bit);
9112 case elfcpp::R_ARM_THM_ABS5:
9113 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9114 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9117 // Thumb long branches.
9118 case elfcpp::R_ARM_THM_CALL:
9119 case elfcpp::R_ARM_THM_XPC22:
9120 case elfcpp::R_ARM_THM_JUMP24:
9122 Arm_relocate_functions::thumb_branch_common(
9123 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9124 thumb_bit, is_weakly_undefined_without_plt);
9127 case elfcpp::R_ARM_GOTOFF32:
9129 Arm_address got_origin;
9130 got_origin = target->got_plt_section()->address();
9131 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9132 got_origin, thumb_bit);
9136 case elfcpp::R_ARM_BASE_PREL:
9137 gold_assert(gsym != NULL);
9139 Arm_relocate_functions::base_prel(view, sym_origin, address);
9142 case elfcpp::R_ARM_BASE_ABS:
9143 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9144 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9147 case elfcpp::R_ARM_GOT_BREL:
9148 gold_assert(have_got_offset);
9149 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9152 case elfcpp::R_ARM_GOT_PREL:
9153 gold_assert(have_got_offset);
9154 // Get the address origin for GOT PLT, which is allocated right
9155 // after the GOT section, to calculate an absolute address of
9156 // the symbol GOT entry (got_origin + got_offset).
9157 Arm_address got_origin;
9158 got_origin = target->got_plt_section()->address();
9159 reloc_status = Arm_relocate_functions::got_prel(view,
9160 got_origin + got_offset,
9164 case elfcpp::R_ARM_PLT32:
9165 case elfcpp::R_ARM_CALL:
9166 case elfcpp::R_ARM_JUMP24:
9167 case elfcpp::R_ARM_XPC25:
9168 gold_assert(gsym == NULL
9169 || gsym->has_plt_offset()
9170 || gsym->final_value_is_known()
9171 || (gsym->is_defined()
9172 && !gsym->is_from_dynobj()
9173 && !gsym->is_preemptible()));
9175 Arm_relocate_functions::arm_branch_common(
9176 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9177 thumb_bit, is_weakly_undefined_without_plt);
9180 case elfcpp::R_ARM_THM_JUMP19:
9182 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9186 case elfcpp::R_ARM_THM_JUMP6:
9188 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9191 case elfcpp::R_ARM_THM_JUMP8:
9193 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9196 case elfcpp::R_ARM_THM_JUMP11:
9198 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9201 case elfcpp::R_ARM_PREL31:
9202 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9203 address, thumb_bit);
9206 case elfcpp::R_ARM_V4BX:
9207 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9209 const bool is_v4bx_interworking =
9210 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9212 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9213 is_v4bx_interworking);
9217 case elfcpp::R_ARM_THM_PC8:
9219 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9222 case elfcpp::R_ARM_THM_PC12:
9224 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9227 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9229 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9233 case elfcpp::R_ARM_ALU_PC_G0_NC:
9234 case elfcpp::R_ARM_ALU_PC_G0:
9235 case elfcpp::R_ARM_ALU_PC_G1_NC:
9236 case elfcpp::R_ARM_ALU_PC_G1:
9237 case elfcpp::R_ARM_ALU_PC_G2:
9238 case elfcpp::R_ARM_ALU_SB_G0_NC:
9239 case elfcpp::R_ARM_ALU_SB_G0:
9240 case elfcpp::R_ARM_ALU_SB_G1_NC:
9241 case elfcpp::R_ARM_ALU_SB_G1:
9242 case elfcpp::R_ARM_ALU_SB_G2:
9244 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9245 reloc_property->group_index(),
9246 relative_address_base,
9247 thumb_bit, check_overflow);
9250 case elfcpp::R_ARM_LDR_PC_G0:
9251 case elfcpp::R_ARM_LDR_PC_G1:
9252 case elfcpp::R_ARM_LDR_PC_G2:
9253 case elfcpp::R_ARM_LDR_SB_G0:
9254 case elfcpp::R_ARM_LDR_SB_G1:
9255 case elfcpp::R_ARM_LDR_SB_G2:
9257 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9258 reloc_property->group_index(),
9259 relative_address_base);
9262 case elfcpp::R_ARM_LDRS_PC_G0:
9263 case elfcpp::R_ARM_LDRS_PC_G1:
9264 case elfcpp::R_ARM_LDRS_PC_G2:
9265 case elfcpp::R_ARM_LDRS_SB_G0:
9266 case elfcpp::R_ARM_LDRS_SB_G1:
9267 case elfcpp::R_ARM_LDRS_SB_G2:
9269 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9270 reloc_property->group_index(),
9271 relative_address_base);
9274 case elfcpp::R_ARM_LDC_PC_G0:
9275 case elfcpp::R_ARM_LDC_PC_G1:
9276 case elfcpp::R_ARM_LDC_PC_G2:
9277 case elfcpp::R_ARM_LDC_SB_G0:
9278 case elfcpp::R_ARM_LDC_SB_G1:
9279 case elfcpp::R_ARM_LDC_SB_G2:
9281 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9282 reloc_property->group_index(),
9283 relative_address_base);
9286 // These are initial tls relocs, which are expected when
9288 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9289 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9290 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9291 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9292 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9294 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9295 view, address, view_size);
9298 // The known and unknown unsupported and/or deprecated relocations.
9299 case elfcpp::R_ARM_PC24:
9300 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9301 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9302 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9304 // Just silently leave the method. We should get an appropriate error
9305 // message in the scan methods.
9309 // Report any errors.
9310 switch (reloc_status)
9312 case Arm_relocate_functions::STATUS_OKAY:
9314 case Arm_relocate_functions::STATUS_OVERFLOW:
9315 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9316 _("relocation overflow in %s"),
9317 reloc_property->name().c_str());
9319 case Arm_relocate_functions::STATUS_BAD_RELOC:
9320 gold_error_at_location(
9324 _("unexpected opcode while processing relocation %s"),
9325 reloc_property->name().c_str());
9334 // Perform a TLS relocation.
9336 template<bool big_endian>
9337 inline typename Arm_relocate_functions<big_endian>::Status
9338 Target_arm<big_endian>::Relocate::relocate_tls(
9339 const Relocate_info<32, big_endian>* relinfo,
9340 Target_arm<big_endian>* target,
9342 const elfcpp::Rel<32, big_endian>& rel,
9343 unsigned int r_type,
9344 const Sized_symbol<32>* gsym,
9345 const Symbol_value<32>* psymval,
9346 unsigned char* view,
9347 elfcpp::Elf_types<32>::Elf_Addr address,
9348 section_size_type /*view_size*/ )
9350 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9351 typedef Relocate_functions<32, big_endian> RelocFuncs;
9352 Output_segment* tls_segment = relinfo->layout->tls_segment();
9354 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9356 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9358 const bool is_final = (gsym == NULL
9359 ? !parameters->options().shared()
9360 : gsym->final_value_is_known());
9361 const tls::Tls_optimization optimized_type
9362 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9365 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9367 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9368 unsigned int got_offset;
9371 gold_assert(gsym->has_got_offset(got_type));
9372 got_offset = gsym->got_offset(got_type) - target->got_size();
9376 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9377 gold_assert(object->local_has_got_offset(r_sym, got_type));
9378 got_offset = (object->local_got_offset(r_sym, got_type)
9379 - target->got_size());
9381 if (optimized_type == tls::TLSOPT_NONE)
9383 Arm_address got_entry =
9384 target->got_plt_section()->address() + got_offset;
9386 // Relocate the field with the PC relative offset of the pair of
9388 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9389 return ArmRelocFuncs::STATUS_OKAY;
9394 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9395 if (optimized_type == tls::TLSOPT_NONE)
9397 // Relocate the field with the offset of the GOT entry for
9398 // the module index.
9399 unsigned int got_offset;
9400 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9401 - target->got_size());
9402 Arm_address got_entry =
9403 target->got_plt_section()->address() + got_offset;
9405 // Relocate the field with the PC relative offset of the pair of
9407 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9408 return ArmRelocFuncs::STATUS_OKAY;
9412 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9413 RelocFuncs::rel32_unaligned(view, value);
9414 return ArmRelocFuncs::STATUS_OKAY;
9416 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9417 if (optimized_type == tls::TLSOPT_NONE)
9419 // Relocate the field with the offset of the GOT entry for
9420 // the tp-relative offset of the symbol.
9421 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9422 unsigned int got_offset;
9425 gold_assert(gsym->has_got_offset(got_type));
9426 got_offset = gsym->got_offset(got_type);
9430 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9431 gold_assert(object->local_has_got_offset(r_sym, got_type));
9432 got_offset = object->local_got_offset(r_sym, got_type);
9435 // All GOT offsets are relative to the end of the GOT.
9436 got_offset -= target->got_size();
9438 Arm_address got_entry =
9439 target->got_plt_section()->address() + got_offset;
9441 // Relocate the field with the PC relative offset of the GOT entry.
9442 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9443 return ArmRelocFuncs::STATUS_OKAY;
9447 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9448 // If we're creating a shared library, a dynamic relocation will
9449 // have been created for this location, so do not apply it now.
9450 if (!parameters->options().shared())
9452 gold_assert(tls_segment != NULL);
9454 // $tp points to the TCB, which is followed by the TLS, so we
9455 // need to add TCB size to the offset.
9456 Arm_address aligned_tcb_size =
9457 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9458 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9461 return ArmRelocFuncs::STATUS_OKAY;
9467 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9468 _("unsupported reloc %u"),
9470 return ArmRelocFuncs::STATUS_BAD_RELOC;
9473 // Relocate section data.
9475 template<bool big_endian>
9477 Target_arm<big_endian>::relocate_section(
9478 const Relocate_info<32, big_endian>* relinfo,
9479 unsigned int sh_type,
9480 const unsigned char* prelocs,
9482 Output_section* output_section,
9483 bool needs_special_offset_handling,
9484 unsigned char* view,
9485 Arm_address address,
9486 section_size_type view_size,
9487 const Reloc_symbol_changes* reloc_symbol_changes)
9489 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9490 gold_assert(sh_type == elfcpp::SHT_REL);
9492 // See if we are relocating a relaxed input section. If so, the view
9493 // covers the whole output section and we need to adjust accordingly.
9494 if (needs_special_offset_handling)
9496 const Output_relaxed_input_section* poris =
9497 output_section->find_relaxed_input_section(relinfo->object,
9498 relinfo->data_shndx);
9501 Arm_address section_address = poris->address();
9502 section_size_type section_size = poris->data_size();
9504 gold_assert((section_address >= address)
9505 && ((section_address + section_size)
9506 <= (address + view_size)));
9508 off_t offset = section_address - address;
9511 view_size = section_size;
9515 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9522 needs_special_offset_handling,
9526 reloc_symbol_changes);
9529 // Return the size of a relocation while scanning during a relocatable
9532 template<bool big_endian>
9534 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9535 unsigned int r_type,
9538 r_type = get_real_reloc_type(r_type);
9539 const Arm_reloc_property* arp =
9540 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9545 std::string reloc_name =
9546 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9547 gold_error(_("%s: unexpected %s in object file"),
9548 object->name().c_str(), reloc_name.c_str());
9553 // Scan the relocs during a relocatable link.
9555 template<bool big_endian>
9557 Target_arm<big_endian>::scan_relocatable_relocs(
9558 Symbol_table* symtab,
9560 Sized_relobj_file<32, big_endian>* object,
9561 unsigned int data_shndx,
9562 unsigned int sh_type,
9563 const unsigned char* prelocs,
9565 Output_section* output_section,
9566 bool needs_special_offset_handling,
9567 size_t local_symbol_count,
9568 const unsigned char* plocal_symbols,
9569 Relocatable_relocs* rr)
9571 gold_assert(sh_type == elfcpp::SHT_REL);
9573 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9574 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9576 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9577 Scan_relocatable_relocs>(
9585 needs_special_offset_handling,
9591 // Relocate a section during a relocatable link.
9593 template<bool big_endian>
9595 Target_arm<big_endian>::relocate_for_relocatable(
9596 const Relocate_info<32, big_endian>* relinfo,
9597 unsigned int sh_type,
9598 const unsigned char* prelocs,
9600 Output_section* output_section,
9601 off_t offset_in_output_section,
9602 const Relocatable_relocs* rr,
9603 unsigned char* view,
9604 Arm_address view_address,
9605 section_size_type view_size,
9606 unsigned char* reloc_view,
9607 section_size_type reloc_view_size)
9609 gold_assert(sh_type == elfcpp::SHT_REL);
9611 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9616 offset_in_output_section,
9625 // Perform target-specific processing in a relocatable link. This is
9626 // only used if we use the relocation strategy RELOC_SPECIAL.
9628 template<bool big_endian>
9630 Target_arm<big_endian>::relocate_special_relocatable(
9631 const Relocate_info<32, big_endian>* relinfo,
9632 unsigned int sh_type,
9633 const unsigned char* preloc_in,
9635 Output_section* output_section,
9636 off_t offset_in_output_section,
9637 unsigned char* view,
9638 elfcpp::Elf_types<32>::Elf_Addr view_address,
9640 unsigned char* preloc_out)
9642 // We can only handle REL type relocation sections.
9643 gold_assert(sh_type == elfcpp::SHT_REL);
9645 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9646 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9648 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9650 const Arm_relobj<big_endian>* object =
9651 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9652 const unsigned int local_count = object->local_symbol_count();
9654 Reltype reloc(preloc_in);
9655 Reltype_write reloc_write(preloc_out);
9657 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9658 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9659 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9661 const Arm_reloc_property* arp =
9662 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9663 gold_assert(arp != NULL);
9665 // Get the new symbol index.
9666 // We only use RELOC_SPECIAL strategy in local relocations.
9667 gold_assert(r_sym < local_count);
9669 // We are adjusting a section symbol. We need to find
9670 // the symbol table index of the section symbol for
9671 // the output section corresponding to input section
9672 // in which this symbol is defined.
9674 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9675 gold_assert(is_ordinary);
9676 Output_section* os = object->output_section(shndx);
9677 gold_assert(os != NULL);
9678 gold_assert(os->needs_symtab_index());
9679 unsigned int new_symndx = os->symtab_index();
9681 // Get the new offset--the location in the output section where
9682 // this relocation should be applied.
9684 Arm_address offset = reloc.get_r_offset();
9685 Arm_address new_offset;
9686 if (offset_in_output_section != invalid_address)
9687 new_offset = offset + offset_in_output_section;
9690 section_offset_type sot_offset =
9691 convert_types<section_offset_type, Arm_address>(offset);
9692 section_offset_type new_sot_offset =
9693 output_section->output_offset(object, relinfo->data_shndx,
9695 gold_assert(new_sot_offset != -1);
9696 new_offset = new_sot_offset;
9699 // In an object file, r_offset is an offset within the section.
9700 // In an executable or dynamic object, generated by
9701 // --emit-relocs, r_offset is an absolute address.
9702 if (!parameters->options().relocatable())
9704 new_offset += view_address;
9705 if (offset_in_output_section != invalid_address)
9706 new_offset -= offset_in_output_section;
9709 reloc_write.put_r_offset(new_offset);
9710 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9712 // Handle the reloc addend.
9713 // The relocation uses a section symbol in the input file.
9714 // We are adjusting it to use a section symbol in the output
9715 // file. The input section symbol refers to some address in
9716 // the input section. We need the relocation in the output
9717 // file to refer to that same address. This adjustment to
9718 // the addend is the same calculation we use for a simple
9719 // absolute relocation for the input section symbol.
9721 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9723 // Handle THUMB bit.
9724 Symbol_value<32> symval;
9725 Arm_address thumb_bit =
9726 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9728 && arp->uses_thumb_bit()
9729 && ((psymval->value(object, 0) & 1) != 0))
9731 Arm_address stripped_value =
9732 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9733 symval.set_output_value(stripped_value);
9737 unsigned char* paddend = view + offset;
9738 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9739 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9742 case elfcpp::R_ARM_ABS8:
9743 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9747 case elfcpp::R_ARM_ABS12:
9748 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9752 case elfcpp::R_ARM_ABS16:
9753 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9757 case elfcpp::R_ARM_THM_ABS5:
9758 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9763 case elfcpp::R_ARM_MOVW_ABS_NC:
9764 case elfcpp::R_ARM_MOVW_PREL_NC:
9765 case elfcpp::R_ARM_MOVW_BREL_NC:
9766 case elfcpp::R_ARM_MOVW_BREL:
9767 reloc_status = Arm_relocate_functions<big_endian>::movw(
9768 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9771 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9772 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9773 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9774 case elfcpp::R_ARM_THM_MOVW_BREL:
9775 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9776 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9779 case elfcpp::R_ARM_THM_CALL:
9780 case elfcpp::R_ARM_THM_XPC22:
9781 case elfcpp::R_ARM_THM_JUMP24:
9783 Arm_relocate_functions<big_endian>::thumb_branch_common(
9784 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9788 case elfcpp::R_ARM_PLT32:
9789 case elfcpp::R_ARM_CALL:
9790 case elfcpp::R_ARM_JUMP24:
9791 case elfcpp::R_ARM_XPC25:
9793 Arm_relocate_functions<big_endian>::arm_branch_common(
9794 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9798 case elfcpp::R_ARM_THM_JUMP19:
9800 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9801 psymval, 0, thumb_bit);
9804 case elfcpp::R_ARM_THM_JUMP6:
9806 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9810 case elfcpp::R_ARM_THM_JUMP8:
9812 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9816 case elfcpp::R_ARM_THM_JUMP11:
9818 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9822 case elfcpp::R_ARM_PREL31:
9824 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9828 case elfcpp::R_ARM_THM_PC8:
9830 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9834 case elfcpp::R_ARM_THM_PC12:
9836 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9840 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9842 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9846 // These relocation truncate relocation results so we cannot handle them
9847 // in a relocatable link.
9848 case elfcpp::R_ARM_MOVT_ABS:
9849 case elfcpp::R_ARM_THM_MOVT_ABS:
9850 case elfcpp::R_ARM_MOVT_PREL:
9851 case elfcpp::R_ARM_MOVT_BREL:
9852 case elfcpp::R_ARM_THM_MOVT_PREL:
9853 case elfcpp::R_ARM_THM_MOVT_BREL:
9854 case elfcpp::R_ARM_ALU_PC_G0_NC:
9855 case elfcpp::R_ARM_ALU_PC_G0:
9856 case elfcpp::R_ARM_ALU_PC_G1_NC:
9857 case elfcpp::R_ARM_ALU_PC_G1:
9858 case elfcpp::R_ARM_ALU_PC_G2:
9859 case elfcpp::R_ARM_ALU_SB_G0_NC:
9860 case elfcpp::R_ARM_ALU_SB_G0:
9861 case elfcpp::R_ARM_ALU_SB_G1_NC:
9862 case elfcpp::R_ARM_ALU_SB_G1:
9863 case elfcpp::R_ARM_ALU_SB_G2:
9864 case elfcpp::R_ARM_LDR_PC_G0:
9865 case elfcpp::R_ARM_LDR_PC_G1:
9866 case elfcpp::R_ARM_LDR_PC_G2:
9867 case elfcpp::R_ARM_LDR_SB_G0:
9868 case elfcpp::R_ARM_LDR_SB_G1:
9869 case elfcpp::R_ARM_LDR_SB_G2:
9870 case elfcpp::R_ARM_LDRS_PC_G0:
9871 case elfcpp::R_ARM_LDRS_PC_G1:
9872 case elfcpp::R_ARM_LDRS_PC_G2:
9873 case elfcpp::R_ARM_LDRS_SB_G0:
9874 case elfcpp::R_ARM_LDRS_SB_G1:
9875 case elfcpp::R_ARM_LDRS_SB_G2:
9876 case elfcpp::R_ARM_LDC_PC_G0:
9877 case elfcpp::R_ARM_LDC_PC_G1:
9878 case elfcpp::R_ARM_LDC_PC_G2:
9879 case elfcpp::R_ARM_LDC_SB_G0:
9880 case elfcpp::R_ARM_LDC_SB_G1:
9881 case elfcpp::R_ARM_LDC_SB_G2:
9882 gold_error(_("cannot handle %s in a relocatable link"),
9883 arp->name().c_str());
9890 // Report any errors.
9891 switch (reloc_status)
9893 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9895 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9896 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9897 _("relocation overflow in %s"),
9898 arp->name().c_str());
9900 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9901 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9902 _("unexpected opcode while processing relocation %s"),
9903 arp->name().c_str());
9910 // Return the value to use for a dynamic symbol which requires special
9911 // treatment. This is how we support equality comparisons of function
9912 // pointers across shared library boundaries, as described in the
9913 // processor specific ABI supplement.
9915 template<bool big_endian>
9917 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9919 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9920 return this->plt_section()->address() + gsym->plt_offset();
9923 // Map platform-specific relocs to real relocs
9925 template<bool big_endian>
9927 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9931 case elfcpp::R_ARM_TARGET1:
9932 // This is either R_ARM_ABS32 or R_ARM_REL32;
9933 return elfcpp::R_ARM_ABS32;
9935 case elfcpp::R_ARM_TARGET2:
9936 // This can be any reloc type but usually is R_ARM_GOT_PREL
9937 return elfcpp::R_ARM_GOT_PREL;
9944 // Whether if two EABI versions V1 and V2 are compatible.
9946 template<bool big_endian>
9948 Target_arm<big_endian>::are_eabi_versions_compatible(
9949 elfcpp::Elf_Word v1,
9950 elfcpp::Elf_Word v2)
9952 // v4 and v5 are the same spec before and after it was released,
9953 // so allow mixing them.
9954 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9955 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9956 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9962 // Combine FLAGS from an input object called NAME and the processor-specific
9963 // flags in the ELF header of the output. Much of this is adapted from the
9964 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9965 // in bfd/elf32-arm.c.
9967 template<bool big_endian>
9969 Target_arm<big_endian>::merge_processor_specific_flags(
9970 const std::string& name,
9971 elfcpp::Elf_Word flags)
9973 if (this->are_processor_specific_flags_set())
9975 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9977 // Nothing to merge if flags equal to those in output.
9978 if (flags == out_flags)
9981 // Complain about various flag mismatches.
9982 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9983 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9984 if (!this->are_eabi_versions_compatible(version1, version2)
9985 && parameters->options().warn_mismatch())
9986 gold_error(_("Source object %s has EABI version %d but output has "
9987 "EABI version %d."),
9989 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9990 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9994 // If the input is the default architecture and had the default
9995 // flags then do not bother setting the flags for the output
9996 // architecture, instead allow future merges to do this. If no
9997 // future merges ever set these flags then they will retain their
9998 // uninitialised values, which surprise surprise, correspond
9999 // to the default values.
10003 // This is the first time, just copy the flags.
10004 // We only copy the EABI version for now.
10005 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10009 // Adjust ELF file header.
10010 template<bool big_endian>
10012 Target_arm<big_endian>::do_adjust_elf_header(
10013 unsigned char* view,
10016 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10018 elfcpp::Ehdr<32, big_endian> ehdr(view);
10019 unsigned char e_ident[elfcpp::EI_NIDENT];
10020 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10022 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
10023 == elfcpp::EF_ARM_EABI_UNKNOWN)
10024 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10026 e_ident[elfcpp::EI_OSABI] = 0;
10027 e_ident[elfcpp::EI_ABIVERSION] = 0;
10029 // FIXME: Do EF_ARM_BE8 adjustment.
10031 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10032 oehdr.put_e_ident(e_ident);
10035 // do_make_elf_object to override the same function in the base class.
10036 // We need to use a target-specific sub-class of
10037 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10038 // Hence we need to have our own ELF object creation.
10040 template<bool big_endian>
10042 Target_arm<big_endian>::do_make_elf_object(
10043 const std::string& name,
10044 Input_file* input_file,
10045 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10047 int et = ehdr.get_e_type();
10048 // ET_EXEC files are valid input for --just-symbols/-R,
10049 // and we treat them as relocatable objects.
10050 if (et == elfcpp::ET_REL
10051 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10053 Arm_relobj<big_endian>* obj =
10054 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10058 else if (et == elfcpp::ET_DYN)
10060 Sized_dynobj<32, big_endian>* obj =
10061 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10067 gold_error(_("%s: unsupported ELF file type %d"),
10073 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10074 // Returns -1 if no architecture could be read.
10075 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10077 template<bool big_endian>
10079 Target_arm<big_endian>::get_secondary_compatible_arch(
10080 const Attributes_section_data* pasd)
10082 const Object_attribute* known_attributes =
10083 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10085 // Note: the tag and its argument below are uleb128 values, though
10086 // currently-defined values fit in one byte for each.
10087 const std::string& sv =
10088 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10090 && sv.data()[0] == elfcpp::Tag_CPU_arch
10091 && (sv.data()[1] & 128) != 128)
10092 return sv.data()[1];
10094 // This tag is "safely ignorable", so don't complain if it looks funny.
10098 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10099 // The tag is removed if ARCH is -1.
10100 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10102 template<bool big_endian>
10104 Target_arm<big_endian>::set_secondary_compatible_arch(
10105 Attributes_section_data* pasd,
10108 Object_attribute* known_attributes =
10109 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10113 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10117 // Note: the tag and its argument below are uleb128 values, though
10118 // currently-defined values fit in one byte for each.
10120 sv[0] = elfcpp::Tag_CPU_arch;
10121 gold_assert(arch != 0);
10125 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10128 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10130 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10132 template<bool big_endian>
10134 Target_arm<big_endian>::tag_cpu_arch_combine(
10137 int* secondary_compat_out,
10139 int secondary_compat)
10141 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10142 static const int v6t2[] =
10144 T(V6T2), // PRE_V4.
10154 static const int v6k[] =
10167 static const int v7[] =
10181 static const int v6_m[] =
10196 static const int v6s_m[] =
10212 static const int v7e_m[] =
10219 T(V7E_M), // V5TEJ.
10226 T(V7E_M), // V6S_M.
10229 static const int v4t_plus_v6_m[] =
10236 T(V5TEJ), // V5TEJ.
10243 T(V6S_M), // V6S_M.
10244 T(V7E_M), // V7E_M.
10245 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10247 static const int* comb[] =
10255 // Pseudo-architecture.
10259 // Check we've not got a higher architecture than we know about.
10261 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10263 gold_error(_("%s: unknown CPU architecture"), name);
10267 // Override old tag if we have a Tag_also_compatible_with on the output.
10269 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10270 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10271 oldtag = T(V4T_PLUS_V6_M);
10273 // And override the new tag if we have a Tag_also_compatible_with on the
10276 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10277 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10278 newtag = T(V4T_PLUS_V6_M);
10280 // Architectures before V6KZ add features monotonically.
10281 int tagh = std::max(oldtag, newtag);
10282 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10285 int tagl = std::min(oldtag, newtag);
10286 int result = comb[tagh - T(V6T2)][tagl];
10288 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10289 // as the canonical version.
10290 if (result == T(V4T_PLUS_V6_M))
10293 *secondary_compat_out = T(V6_M);
10296 *secondary_compat_out = -1;
10300 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10301 name, oldtag, newtag);
10309 // Helper to print AEABI enum tag value.
10311 template<bool big_endian>
10313 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10315 static const char* aeabi_enum_names[] =
10316 { "", "variable-size", "32-bit", "" };
10317 const size_t aeabi_enum_names_size =
10318 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10320 if (value < aeabi_enum_names_size)
10321 return std::string(aeabi_enum_names[value]);
10325 sprintf(buffer, "<unknown value %u>", value);
10326 return std::string(buffer);
10330 // Return the string value to store in TAG_CPU_name.
10332 template<bool big_endian>
10334 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10336 static const char* name_table[] = {
10337 // These aren't real CPU names, but we can't guess
10338 // that from the architecture version alone.
10354 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10356 if (value < name_table_size)
10357 return std::string(name_table[value]);
10361 sprintf(buffer, "<unknown CPU value %u>", value);
10362 return std::string(buffer);
10366 // Merge object attributes from input file called NAME with those of the
10367 // output. The input object attributes are in the object pointed by PASD.
10369 template<bool big_endian>
10371 Target_arm<big_endian>::merge_object_attributes(
10373 const Attributes_section_data* pasd)
10375 // Return if there is no attributes section data.
10379 // If output has no object attributes, just copy.
10380 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10381 if (this->attributes_section_data_ == NULL)
10383 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10384 Object_attribute* out_attr =
10385 this->attributes_section_data_->known_attributes(vendor);
10387 // We do not output objects with Tag_MPextension_use_legacy - we move
10388 // the attribute's value to Tag_MPextension_use. */
10389 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10391 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10392 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10393 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10395 gold_error(_("%s has both the current and legacy "
10396 "Tag_MPextension_use attributes"),
10400 out_attr[elfcpp::Tag_MPextension_use] =
10401 out_attr[elfcpp::Tag_MPextension_use_legacy];
10402 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10403 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10409 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10410 Object_attribute* out_attr =
10411 this->attributes_section_data_->known_attributes(vendor);
10413 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10414 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10415 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10417 // Ignore mismatches if the object doesn't use floating point. */
10418 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10419 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10420 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10421 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10422 && parameters->options().warn_mismatch())
10423 gold_error(_("%s uses VFP register arguments, output does not"),
10427 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10429 // Merge this attribute with existing attributes.
10432 case elfcpp::Tag_CPU_raw_name:
10433 case elfcpp::Tag_CPU_name:
10434 // These are merged after Tag_CPU_arch.
10437 case elfcpp::Tag_ABI_optimization_goals:
10438 case elfcpp::Tag_ABI_FP_optimization_goals:
10439 // Use the first value seen.
10442 case elfcpp::Tag_CPU_arch:
10444 unsigned int saved_out_attr = out_attr->int_value();
10445 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10446 int secondary_compat =
10447 this->get_secondary_compatible_arch(pasd);
10448 int secondary_compat_out =
10449 this->get_secondary_compatible_arch(
10450 this->attributes_section_data_);
10451 out_attr[i].set_int_value(
10452 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10453 &secondary_compat_out,
10454 in_attr[i].int_value(),
10455 secondary_compat));
10456 this->set_secondary_compatible_arch(this->attributes_section_data_,
10457 secondary_compat_out);
10459 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10460 if (out_attr[i].int_value() == saved_out_attr)
10461 ; // Leave the names alone.
10462 else if (out_attr[i].int_value() == in_attr[i].int_value())
10464 // The output architecture has been changed to match the
10465 // input architecture. Use the input names.
10466 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10467 in_attr[elfcpp::Tag_CPU_name].string_value());
10468 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10469 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10473 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10474 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10477 // If we still don't have a value for Tag_CPU_name,
10478 // make one up now. Tag_CPU_raw_name remains blank.
10479 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10481 const std::string cpu_name =
10482 this->tag_cpu_name_value(out_attr[i].int_value());
10483 // FIXME: If we see an unknown CPU, this will be set
10484 // to "<unknown CPU n>", where n is the attribute value.
10485 // This is different from BFD, which leaves the name alone.
10486 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10491 case elfcpp::Tag_ARM_ISA_use:
10492 case elfcpp::Tag_THUMB_ISA_use:
10493 case elfcpp::Tag_WMMX_arch:
10494 case elfcpp::Tag_Advanced_SIMD_arch:
10495 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10496 case elfcpp::Tag_ABI_FP_rounding:
10497 case elfcpp::Tag_ABI_FP_exceptions:
10498 case elfcpp::Tag_ABI_FP_user_exceptions:
10499 case elfcpp::Tag_ABI_FP_number_model:
10500 case elfcpp::Tag_VFP_HP_extension:
10501 case elfcpp::Tag_CPU_unaligned_access:
10502 case elfcpp::Tag_T2EE_use:
10503 case elfcpp::Tag_Virtualization_use:
10504 case elfcpp::Tag_MPextension_use:
10505 // Use the largest value specified.
10506 if (in_attr[i].int_value() > out_attr[i].int_value())
10507 out_attr[i].set_int_value(in_attr[i].int_value());
10510 case elfcpp::Tag_ABI_align8_preserved:
10511 case elfcpp::Tag_ABI_PCS_RO_data:
10512 // Use the smallest value specified.
10513 if (in_attr[i].int_value() < out_attr[i].int_value())
10514 out_attr[i].set_int_value(in_attr[i].int_value());
10517 case elfcpp::Tag_ABI_align8_needed:
10518 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10519 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10520 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10523 // This error message should be enabled once all non-conforming
10524 // binaries in the toolchain have had the attributes set
10526 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10530 case elfcpp::Tag_ABI_FP_denormal:
10531 case elfcpp::Tag_ABI_PCS_GOT_use:
10533 // These tags have 0 = don't care, 1 = strong requirement,
10534 // 2 = weak requirement.
10535 static const int order_021[3] = {0, 2, 1};
10537 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10538 // value if greater than 2 (for future-proofing).
10539 if ((in_attr[i].int_value() > 2
10540 && in_attr[i].int_value() > out_attr[i].int_value())
10541 || (in_attr[i].int_value() <= 2
10542 && out_attr[i].int_value() <= 2
10543 && (order_021[in_attr[i].int_value()]
10544 > order_021[out_attr[i].int_value()])))
10545 out_attr[i].set_int_value(in_attr[i].int_value());
10549 case elfcpp::Tag_CPU_arch_profile:
10550 if (out_attr[i].int_value() != in_attr[i].int_value())
10552 // 0 will merge with anything.
10553 // 'A' and 'S' merge to 'A'.
10554 // 'R' and 'S' merge to 'R'.
10555 // 'M' and 'A|R|S' is an error.
10556 if (out_attr[i].int_value() == 0
10557 || (out_attr[i].int_value() == 'S'
10558 && (in_attr[i].int_value() == 'A'
10559 || in_attr[i].int_value() == 'R')))
10560 out_attr[i].set_int_value(in_attr[i].int_value());
10561 else if (in_attr[i].int_value() == 0
10562 || (in_attr[i].int_value() == 'S'
10563 && (out_attr[i].int_value() == 'A'
10564 || out_attr[i].int_value() == 'R')))
10566 else if (parameters->options().warn_mismatch())
10569 (_("conflicting architecture profiles %c/%c"),
10570 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10571 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10575 case elfcpp::Tag_VFP_arch:
10577 static const struct
10581 } vfp_versions[7] =
10592 // Values greater than 6 aren't defined, so just pick the
10594 if (in_attr[i].int_value() > 6
10595 && in_attr[i].int_value() > out_attr[i].int_value())
10597 *out_attr = *in_attr;
10600 // The output uses the superset of input features
10601 // (ISA version) and registers.
10602 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10603 vfp_versions[out_attr[i].int_value()].ver);
10604 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10605 vfp_versions[out_attr[i].int_value()].regs);
10606 // This assumes all possible supersets are also a valid
10609 for (newval = 6; newval > 0; newval--)
10611 if (regs == vfp_versions[newval].regs
10612 && ver == vfp_versions[newval].ver)
10615 out_attr[i].set_int_value(newval);
10618 case elfcpp::Tag_PCS_config:
10619 if (out_attr[i].int_value() == 0)
10620 out_attr[i].set_int_value(in_attr[i].int_value());
10621 else if (in_attr[i].int_value() != 0
10622 && out_attr[i].int_value() != 0
10623 && parameters->options().warn_mismatch())
10625 // It's sometimes ok to mix different configs, so this is only
10627 gold_warning(_("%s: conflicting platform configuration"), name);
10630 case elfcpp::Tag_ABI_PCS_R9_use:
10631 if (in_attr[i].int_value() != out_attr[i].int_value()
10632 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10633 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10634 && parameters->options().warn_mismatch())
10636 gold_error(_("%s: conflicting use of R9"), name);
10638 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10639 out_attr[i].set_int_value(in_attr[i].int_value());
10641 case elfcpp::Tag_ABI_PCS_RW_data:
10642 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10643 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10644 != elfcpp::AEABI_R9_SB)
10645 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10646 != elfcpp::AEABI_R9_unused)
10647 && parameters->options().warn_mismatch())
10649 gold_error(_("%s: SB relative addressing conflicts with use "
10653 // Use the smallest value specified.
10654 if (in_attr[i].int_value() < out_attr[i].int_value())
10655 out_attr[i].set_int_value(in_attr[i].int_value());
10657 case elfcpp::Tag_ABI_PCS_wchar_t:
10658 if (out_attr[i].int_value()
10659 && in_attr[i].int_value()
10660 && out_attr[i].int_value() != in_attr[i].int_value()
10661 && parameters->options().warn_mismatch()
10662 && parameters->options().wchar_size_warning())
10664 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10665 "use %u-byte wchar_t; use of wchar_t values "
10666 "across objects may fail"),
10667 name, in_attr[i].int_value(),
10668 out_attr[i].int_value());
10670 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10671 out_attr[i].set_int_value(in_attr[i].int_value());
10673 case elfcpp::Tag_ABI_enum_size:
10674 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10676 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10677 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10679 // The existing object is compatible with anything.
10680 // Use whatever requirements the new object has.
10681 out_attr[i].set_int_value(in_attr[i].int_value());
10683 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10684 && out_attr[i].int_value() != in_attr[i].int_value()
10685 && parameters->options().warn_mismatch()
10686 && parameters->options().enum_size_warning())
10688 unsigned int in_value = in_attr[i].int_value();
10689 unsigned int out_value = out_attr[i].int_value();
10690 gold_warning(_("%s uses %s enums yet the output is to use "
10691 "%s enums; use of enum values across objects "
10694 this->aeabi_enum_name(in_value).c_str(),
10695 this->aeabi_enum_name(out_value).c_str());
10699 case elfcpp::Tag_ABI_VFP_args:
10702 case elfcpp::Tag_ABI_WMMX_args:
10703 if (in_attr[i].int_value() != out_attr[i].int_value()
10704 && parameters->options().warn_mismatch())
10706 gold_error(_("%s uses iWMMXt register arguments, output does "
10711 case Object_attribute::Tag_compatibility:
10712 // Merged in target-independent code.
10714 case elfcpp::Tag_ABI_HardFP_use:
10715 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10716 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10717 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10718 out_attr[i].set_int_value(3);
10719 else if (in_attr[i].int_value() > out_attr[i].int_value())
10720 out_attr[i].set_int_value(in_attr[i].int_value());
10722 case elfcpp::Tag_ABI_FP_16bit_format:
10723 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10725 if (in_attr[i].int_value() != out_attr[i].int_value()
10726 && parameters->options().warn_mismatch())
10727 gold_error(_("fp16 format mismatch between %s and output"),
10730 if (in_attr[i].int_value() != 0)
10731 out_attr[i].set_int_value(in_attr[i].int_value());
10734 case elfcpp::Tag_DIV_use:
10735 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10736 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10737 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10738 // CPU. We will merge as follows: If the input attribute's value
10739 // is one then the output attribute's value remains unchanged. If
10740 // the input attribute's value is zero or two then if the output
10741 // attribute's value is one the output value is set to the input
10742 // value, otherwise the output value must be the same as the
10744 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10746 if (in_attr[i].int_value() != out_attr[i].int_value())
10748 gold_error(_("DIV usage mismatch between %s and output"),
10753 if (in_attr[i].int_value() != 1)
10754 out_attr[i].set_int_value(in_attr[i].int_value());
10758 case elfcpp::Tag_MPextension_use_legacy:
10759 // We don't output objects with Tag_MPextension_use_legacy - we
10760 // move the value to Tag_MPextension_use.
10761 if (in_attr[i].int_value() != 0
10762 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10764 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10765 != in_attr[i].int_value())
10767 gold_error(_("%s has has both the current and legacy "
10768 "Tag_MPextension_use attributes"),
10773 if (in_attr[i].int_value()
10774 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10775 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10779 case elfcpp::Tag_nodefaults:
10780 // This tag is set if it exists, but the value is unused (and is
10781 // typically zero). We don't actually need to do anything here -
10782 // the merge happens automatically when the type flags are merged
10785 case elfcpp::Tag_also_compatible_with:
10786 // Already done in Tag_CPU_arch.
10788 case elfcpp::Tag_conformance:
10789 // Keep the attribute if it matches. Throw it away otherwise.
10790 // No attribute means no claim to conform.
10791 if (in_attr[i].string_value() != out_attr[i].string_value())
10792 out_attr[i].set_string_value("");
10797 const char* err_object = NULL;
10799 // The "known_obj_attributes" table does contain some undefined
10800 // attributes. Ensure that there are unused.
10801 if (out_attr[i].int_value() != 0
10802 || out_attr[i].string_value() != "")
10803 err_object = "output";
10804 else if (in_attr[i].int_value() != 0
10805 || in_attr[i].string_value() != "")
10808 if (err_object != NULL
10809 && parameters->options().warn_mismatch())
10811 // Attribute numbers >=64 (mod 128) can be safely ignored.
10812 if ((i & 127) < 64)
10813 gold_error(_("%s: unknown mandatory EABI object attribute "
10817 gold_warning(_("%s: unknown EABI object attribute %d"),
10821 // Only pass on attributes that match in both inputs.
10822 if (!in_attr[i].matches(out_attr[i]))
10824 out_attr[i].set_int_value(0);
10825 out_attr[i].set_string_value("");
10830 // If out_attr was copied from in_attr then it won't have a type yet.
10831 if (in_attr[i].type() && !out_attr[i].type())
10832 out_attr[i].set_type(in_attr[i].type());
10835 // Merge Tag_compatibility attributes and any common GNU ones.
10836 this->attributes_section_data_->merge(name, pasd);
10838 // Check for any attributes not known on ARM.
10839 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10840 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10841 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10842 Other_attributes* out_other_attributes =
10843 this->attributes_section_data_->other_attributes(vendor);
10844 Other_attributes::iterator out_iter = out_other_attributes->begin();
10846 while (in_iter != in_other_attributes->end()
10847 || out_iter != out_other_attributes->end())
10849 const char* err_object = NULL;
10852 // The tags for each list are in numerical order.
10853 // If the tags are equal, then merge.
10854 if (out_iter != out_other_attributes->end()
10855 && (in_iter == in_other_attributes->end()
10856 || in_iter->first > out_iter->first))
10858 // This attribute only exists in output. We can't merge, and we
10859 // don't know what the tag means, so delete it.
10860 err_object = "output";
10861 err_tag = out_iter->first;
10862 int saved_tag = out_iter->first;
10863 delete out_iter->second;
10864 out_other_attributes->erase(out_iter);
10865 out_iter = out_other_attributes->upper_bound(saved_tag);
10867 else if (in_iter != in_other_attributes->end()
10868 && (out_iter != out_other_attributes->end()
10869 || in_iter->first < out_iter->first))
10871 // This attribute only exists in input. We can't merge, and we
10872 // don't know what the tag means, so ignore it.
10874 err_tag = in_iter->first;
10877 else // The tags are equal.
10879 // As present, all attributes in the list are unknown, and
10880 // therefore can't be merged meaningfully.
10881 err_object = "output";
10882 err_tag = out_iter->first;
10884 // Only pass on attributes that match in both inputs.
10885 if (!in_iter->second->matches(*(out_iter->second)))
10887 // No match. Delete the attribute.
10888 int saved_tag = out_iter->first;
10889 delete out_iter->second;
10890 out_other_attributes->erase(out_iter);
10891 out_iter = out_other_attributes->upper_bound(saved_tag);
10895 // Matched. Keep the attribute and move to the next.
10901 if (err_object && parameters->options().warn_mismatch())
10903 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10904 if ((err_tag & 127) < 64)
10906 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10907 err_object, err_tag);
10911 gold_warning(_("%s: unknown EABI object attribute %d"),
10912 err_object, err_tag);
10918 // Stub-generation methods for Target_arm.
10920 // Make a new Arm_input_section object.
10922 template<bool big_endian>
10923 Arm_input_section<big_endian>*
10924 Target_arm<big_endian>::new_arm_input_section(
10926 unsigned int shndx)
10928 Section_id sid(relobj, shndx);
10930 Arm_input_section<big_endian>* arm_input_section =
10931 new Arm_input_section<big_endian>(relobj, shndx);
10932 arm_input_section->init();
10934 // Register new Arm_input_section in map for look-up.
10935 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10936 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10938 // Make sure that it we have not created another Arm_input_section
10939 // for this input section already.
10940 gold_assert(ins.second);
10942 return arm_input_section;
10945 // Find the Arm_input_section object corresponding to the SHNDX-th input
10946 // section of RELOBJ.
10948 template<bool big_endian>
10949 Arm_input_section<big_endian>*
10950 Target_arm<big_endian>::find_arm_input_section(
10952 unsigned int shndx) const
10954 Section_id sid(relobj, shndx);
10955 typename Arm_input_section_map::const_iterator p =
10956 this->arm_input_section_map_.find(sid);
10957 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10960 // Make a new stub table.
10962 template<bool big_endian>
10963 Stub_table<big_endian>*
10964 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10966 Stub_table<big_endian>* stub_table =
10967 new Stub_table<big_endian>(owner);
10968 this->stub_tables_.push_back(stub_table);
10970 stub_table->set_address(owner->address() + owner->data_size());
10971 stub_table->set_file_offset(owner->offset() + owner->data_size());
10972 stub_table->finalize_data_size();
10977 // Scan a relocation for stub generation.
10979 template<bool big_endian>
10981 Target_arm<big_endian>::scan_reloc_for_stub(
10982 const Relocate_info<32, big_endian>* relinfo,
10983 unsigned int r_type,
10984 const Sized_symbol<32>* gsym,
10985 unsigned int r_sym,
10986 const Symbol_value<32>* psymval,
10987 elfcpp::Elf_types<32>::Elf_Swxword addend,
10988 Arm_address address)
10990 const Arm_relobj<big_endian>* arm_relobj =
10991 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10993 bool target_is_thumb;
10994 Symbol_value<32> symval;
10997 // This is a global symbol. Determine if we use PLT and if the
10998 // final target is THUMB.
10999 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11001 // This uses a PLT, change the symbol value.
11002 symval.set_output_value(this->plt_section()->address()
11003 + gsym->plt_offset());
11005 target_is_thumb = false;
11007 else if (gsym->is_undefined())
11008 // There is no need to generate a stub symbol is undefined.
11013 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11014 || (gsym->type() == elfcpp::STT_FUNC
11015 && !gsym->is_undefined()
11016 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11021 // This is a local symbol. Determine if the final target is THUMB.
11022 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11025 // Strip LSB if this points to a THUMB target.
11026 const Arm_reloc_property* reloc_property =
11027 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11028 gold_assert(reloc_property != NULL);
11029 if (target_is_thumb
11030 && reloc_property->uses_thumb_bit()
11031 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11033 Arm_address stripped_value =
11034 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11035 symval.set_output_value(stripped_value);
11039 // Get the symbol value.
11040 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11042 // Owing to pipelining, the PC relative branches below actually skip
11043 // two instructions when the branch offset is 0.
11044 Arm_address destination;
11047 case elfcpp::R_ARM_CALL:
11048 case elfcpp::R_ARM_JUMP24:
11049 case elfcpp::R_ARM_PLT32:
11051 destination = value + addend + 8;
11053 case elfcpp::R_ARM_THM_CALL:
11054 case elfcpp::R_ARM_THM_XPC22:
11055 case elfcpp::R_ARM_THM_JUMP24:
11056 case elfcpp::R_ARM_THM_JUMP19:
11058 destination = value + addend + 4;
11061 gold_unreachable();
11064 Reloc_stub* stub = NULL;
11065 Stub_type stub_type =
11066 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11068 if (stub_type != arm_stub_none)
11070 // Try looking up an existing stub from a stub table.
11071 Stub_table<big_endian>* stub_table =
11072 arm_relobj->stub_table(relinfo->data_shndx);
11073 gold_assert(stub_table != NULL);
11075 // Locate stub by destination.
11076 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11078 // Create a stub if there is not one already
11079 stub = stub_table->find_reloc_stub(stub_key);
11082 // create a new stub and add it to stub table.
11083 stub = this->stub_factory().make_reloc_stub(stub_type);
11084 stub_table->add_reloc_stub(stub, stub_key);
11087 // Record the destination address.
11088 stub->set_destination_address(destination
11089 | (target_is_thumb ? 1 : 0));
11092 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11093 if (this->fix_cortex_a8_
11094 && (r_type == elfcpp::R_ARM_THM_JUMP24
11095 || r_type == elfcpp::R_ARM_THM_JUMP19
11096 || r_type == elfcpp::R_ARM_THM_CALL
11097 || r_type == elfcpp::R_ARM_THM_XPC22)
11098 && (address & 0xfffU) == 0xffeU)
11100 // Found a candidate. Note we haven't checked the destination is
11101 // within 4K here: if we do so (and don't create a record) we can't
11102 // tell that a branch should have been relocated when scanning later.
11103 this->cortex_a8_relocs_info_[address] =
11104 new Cortex_a8_reloc(stub, r_type,
11105 destination | (target_is_thumb ? 1 : 0));
11109 // This function scans a relocation sections for stub generation.
11110 // The template parameter Relocate must be a class type which provides
11111 // a single function, relocate(), which implements the machine
11112 // specific part of a relocation.
11114 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11115 // SHT_REL or SHT_RELA.
11117 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11118 // of relocs. OUTPUT_SECTION is the output section.
11119 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11120 // mapped to output offsets.
11122 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11123 // VIEW_SIZE is the size. These refer to the input section, unless
11124 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11125 // the output section.
11127 template<bool big_endian>
11128 template<int sh_type>
11130 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11131 const Relocate_info<32, big_endian>* relinfo,
11132 const unsigned char* prelocs,
11133 size_t reloc_count,
11134 Output_section* output_section,
11135 bool needs_special_offset_handling,
11136 const unsigned char* view,
11137 elfcpp::Elf_types<32>::Elf_Addr view_address,
11140 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11141 const int reloc_size =
11142 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11144 Arm_relobj<big_endian>* arm_object =
11145 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11146 unsigned int local_count = arm_object->local_symbol_count();
11148 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11150 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11152 Reltype reloc(prelocs);
11154 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11155 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11156 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11158 r_type = this->get_real_reloc_type(r_type);
11160 // Only a few relocation types need stubs.
11161 if ((r_type != elfcpp::R_ARM_CALL)
11162 && (r_type != elfcpp::R_ARM_JUMP24)
11163 && (r_type != elfcpp::R_ARM_PLT32)
11164 && (r_type != elfcpp::R_ARM_THM_CALL)
11165 && (r_type != elfcpp::R_ARM_THM_XPC22)
11166 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11167 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11168 && (r_type != elfcpp::R_ARM_V4BX))
11171 section_offset_type offset =
11172 convert_to_section_size_type(reloc.get_r_offset());
11174 if (needs_special_offset_handling)
11176 offset = output_section->output_offset(relinfo->object,
11177 relinfo->data_shndx,
11183 // Create a v4bx stub if --fix-v4bx-interworking is used.
11184 if (r_type == elfcpp::R_ARM_V4BX)
11186 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11188 // Get the BX instruction.
11189 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11190 const Valtype* wv =
11191 reinterpret_cast<const Valtype*>(view + offset);
11192 elfcpp::Elf_types<32>::Elf_Swxword insn =
11193 elfcpp::Swap<32, big_endian>::readval(wv);
11194 const uint32_t reg = (insn & 0xf);
11198 // Try looking up an existing stub from a stub table.
11199 Stub_table<big_endian>* stub_table =
11200 arm_object->stub_table(relinfo->data_shndx);
11201 gold_assert(stub_table != NULL);
11203 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11205 // create a new stub and add it to stub table.
11206 Arm_v4bx_stub* stub =
11207 this->stub_factory().make_arm_v4bx_stub(reg);
11208 gold_assert(stub != NULL);
11209 stub_table->add_arm_v4bx_stub(stub);
11217 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11218 elfcpp::Elf_types<32>::Elf_Swxword addend =
11219 stub_addend_reader(r_type, view + offset, reloc);
11221 const Sized_symbol<32>* sym;
11223 Symbol_value<32> symval;
11224 const Symbol_value<32> *psymval;
11225 bool is_defined_in_discarded_section;
11226 unsigned int shndx;
11227 if (r_sym < local_count)
11230 psymval = arm_object->local_symbol(r_sym);
11232 // If the local symbol belongs to a section we are discarding,
11233 // and that section is a debug section, try to find the
11234 // corresponding kept section and map this symbol to its
11235 // counterpart in the kept section. The symbol must not
11236 // correspond to a section we are folding.
11238 shndx = psymval->input_shndx(&is_ordinary);
11239 is_defined_in_discarded_section =
11241 && shndx != elfcpp::SHN_UNDEF
11242 && !arm_object->is_section_included(shndx)
11243 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11245 // We need to compute the would-be final value of this local
11247 if (!is_defined_in_discarded_section)
11249 typedef Sized_relobj_file<32, big_endian> ObjType;
11250 typename ObjType::Compute_final_local_value_status status =
11251 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11253 if (status == ObjType::CFLV_OK)
11255 // Currently we cannot handle a branch to a target in
11256 // a merged section. If this is the case, issue an error
11257 // and also free the merge symbol value.
11258 if (!symval.has_output_value())
11260 const std::string& section_name =
11261 arm_object->section_name(shndx);
11262 arm_object->error(_("cannot handle branch to local %u "
11263 "in a merged section %s"),
11264 r_sym, section_name.c_str());
11270 // We cannot determine the final value.
11277 const Symbol* gsym;
11278 gsym = arm_object->global_symbol(r_sym);
11279 gold_assert(gsym != NULL);
11280 if (gsym->is_forwarder())
11281 gsym = relinfo->symtab->resolve_forwards(gsym);
11283 sym = static_cast<const Sized_symbol<32>*>(gsym);
11284 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11285 symval.set_output_symtab_index(sym->symtab_index());
11287 symval.set_no_output_symtab_entry();
11289 // We need to compute the would-be final value of this global
11291 const Symbol_table* symtab = relinfo->symtab;
11292 const Sized_symbol<32>* sized_symbol =
11293 symtab->get_sized_symbol<32>(gsym);
11294 Symbol_table::Compute_final_value_status status;
11295 Arm_address value =
11296 symtab->compute_final_value<32>(sized_symbol, &status);
11298 // Skip this if the symbol has not output section.
11299 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11301 symval.set_output_value(value);
11303 if (gsym->type() == elfcpp::STT_TLS)
11304 symval.set_is_tls_symbol();
11305 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11306 symval.set_is_ifunc_symbol();
11309 is_defined_in_discarded_section =
11310 (gsym->is_defined_in_discarded_section()
11311 && gsym->is_undefined());
11315 Symbol_value<32> symval2;
11316 if (is_defined_in_discarded_section)
11318 if (comdat_behavior == CB_UNDETERMINED)
11320 std::string name = arm_object->section_name(relinfo->data_shndx);
11321 comdat_behavior = get_comdat_behavior(name.c_str());
11323 if (comdat_behavior == CB_PRETEND)
11325 // FIXME: This case does not work for global symbols.
11326 // We have no place to store the original section index.
11327 // Fortunately this does not matter for comdat sections,
11328 // only for sections explicitly discarded by a linker
11331 typename elfcpp::Elf_types<32>::Elf_Addr value =
11332 arm_object->map_to_kept_section(shndx, &found);
11334 symval2.set_output_value(value + psymval->input_value());
11336 symval2.set_output_value(0);
11340 if (comdat_behavior == CB_WARNING)
11341 gold_warning_at_location(relinfo, i, offset,
11342 _("relocation refers to discarded "
11344 symval2.set_output_value(0);
11346 symval2.set_no_output_symtab_entry();
11347 psymval = &symval2;
11350 // If symbol is a section symbol, we don't know the actual type of
11351 // destination. Give up.
11352 if (psymval->is_section_symbol())
11355 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11356 addend, view_address + offset);
11360 // Scan an input section for stub generation.
11362 template<bool big_endian>
11364 Target_arm<big_endian>::scan_section_for_stubs(
11365 const Relocate_info<32, big_endian>* relinfo,
11366 unsigned int sh_type,
11367 const unsigned char* prelocs,
11368 size_t reloc_count,
11369 Output_section* output_section,
11370 bool needs_special_offset_handling,
11371 const unsigned char* view,
11372 Arm_address view_address,
11373 section_size_type view_size)
11375 if (sh_type == elfcpp::SHT_REL)
11376 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11381 needs_special_offset_handling,
11385 else if (sh_type == elfcpp::SHT_RELA)
11386 // We do not support RELA type relocations yet. This is provided for
11388 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11393 needs_special_offset_handling,
11398 gold_unreachable();
11401 // Group input sections for stub generation.
11403 // We group input sections in an output section so that the total size,
11404 // including any padding space due to alignment is smaller than GROUP_SIZE
11405 // unless the only input section in group is bigger than GROUP_SIZE already.
11406 // Then an ARM stub table is created to follow the last input section
11407 // in group. For each group an ARM stub table is created an is placed
11408 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11409 // extend the group after the stub table.
11411 template<bool big_endian>
11413 Target_arm<big_endian>::group_sections(
11415 section_size_type group_size,
11416 bool stubs_always_after_branch,
11419 // Group input sections and insert stub table
11420 Layout::Section_list section_list;
11421 layout->get_allocated_sections(§ion_list);
11422 for (Layout::Section_list::const_iterator p = section_list.begin();
11423 p != section_list.end();
11426 Arm_output_section<big_endian>* output_section =
11427 Arm_output_section<big_endian>::as_arm_output_section(*p);
11428 output_section->group_sections(group_size, stubs_always_after_branch,
11433 // Relaxation hook. This is where we do stub generation.
11435 template<bool big_endian>
11437 Target_arm<big_endian>::do_relax(
11439 const Input_objects* input_objects,
11440 Symbol_table* symtab,
11444 // No need to generate stubs if this is a relocatable link.
11445 gold_assert(!parameters->options().relocatable());
11447 // If this is the first pass, we need to group input sections into
11449 bool done_exidx_fixup = false;
11450 typedef typename Stub_table_list::iterator Stub_table_iterator;
11453 // Determine the stub group size. The group size is the absolute
11454 // value of the parameter --stub-group-size. If --stub-group-size
11455 // is passed a negative value, we restrict stubs to be always after
11456 // the stubbed branches.
11457 int32_t stub_group_size_param =
11458 parameters->options().stub_group_size();
11459 bool stubs_always_after_branch = stub_group_size_param < 0;
11460 section_size_type stub_group_size = abs(stub_group_size_param);
11462 if (stub_group_size == 1)
11465 // Thumb branch range is +-4MB has to be used as the default
11466 // maximum size (a given section can contain both ARM and Thumb
11467 // code, so the worst case has to be taken into account). If we are
11468 // fixing cortex-a8 errata, the branch range has to be even smaller,
11469 // since wide conditional branch has a range of +-1MB only.
11471 // This value is 48K less than that, which allows for 4096
11472 // 12-byte stubs. If we exceed that, then we will fail to link.
11473 // The user will have to relink with an explicit group size
11475 stub_group_size = 4145152;
11478 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11479 // page as the first half of a 32-bit branch straddling two 4K pages.
11480 // This is a crude way of enforcing that. In addition, long conditional
11481 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11482 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11483 // cortex-A8 stubs from long conditional branches.
11484 if (this->fix_cortex_a8_)
11486 stubs_always_after_branch = true;
11487 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11488 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11491 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11493 // Also fix .ARM.exidx section coverage.
11494 Arm_output_section<big_endian>* exidx_output_section = NULL;
11495 for (Layout::Section_list::const_iterator p =
11496 layout->section_list().begin();
11497 p != layout->section_list().end();
11499 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11501 if (exidx_output_section == NULL)
11502 exidx_output_section =
11503 Arm_output_section<big_endian>::as_arm_output_section(*p);
11505 // We cannot handle this now.
11506 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11507 "non-relocatable link"),
11508 exidx_output_section->name(),
11512 if (exidx_output_section != NULL)
11514 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11516 done_exidx_fixup = true;
11521 // If this is not the first pass, addresses and file offsets have
11522 // been reset at this point, set them here.
11523 for (Stub_table_iterator sp = this->stub_tables_.begin();
11524 sp != this->stub_tables_.end();
11527 Arm_input_section<big_endian>* owner = (*sp)->owner();
11528 off_t off = align_address(owner->original_size(),
11529 (*sp)->addralign());
11530 (*sp)->set_address_and_file_offset(owner->address() + off,
11531 owner->offset() + off);
11535 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11536 // beginning of each relaxation pass, just blow away all the stubs.
11537 // Alternatively, we could selectively remove only the stubs and reloc
11538 // information for code sections that have moved since the last pass.
11539 // That would require more book-keeping.
11540 if (this->fix_cortex_a8_)
11542 // Clear all Cortex-A8 reloc information.
11543 for (typename Cortex_a8_relocs_info::const_iterator p =
11544 this->cortex_a8_relocs_info_.begin();
11545 p != this->cortex_a8_relocs_info_.end();
11548 this->cortex_a8_relocs_info_.clear();
11550 // Remove all Cortex-A8 stubs.
11551 for (Stub_table_iterator sp = this->stub_tables_.begin();
11552 sp != this->stub_tables_.end();
11554 (*sp)->remove_all_cortex_a8_stubs();
11557 // Scan relocs for relocation stubs
11558 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11559 op != input_objects->relobj_end();
11562 Arm_relobj<big_endian>* arm_relobj =
11563 Arm_relobj<big_endian>::as_arm_relobj(*op);
11564 // Lock the object so we can read from it. This is only called
11565 // single-threaded from Layout::finalize, so it is OK to lock.
11566 Task_lock_obj<Object> tl(task, arm_relobj);
11567 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11570 // Check all stub tables to see if any of them have their data sizes
11571 // or addresses alignments changed. These are the only things that
11573 bool any_stub_table_changed = false;
11574 Unordered_set<const Output_section*> sections_needing_adjustment;
11575 for (Stub_table_iterator sp = this->stub_tables_.begin();
11576 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11579 if ((*sp)->update_data_size_and_addralign())
11581 // Update data size of stub table owner.
11582 Arm_input_section<big_endian>* owner = (*sp)->owner();
11583 uint64_t address = owner->address();
11584 off_t offset = owner->offset();
11585 owner->reset_address_and_file_offset();
11586 owner->set_address_and_file_offset(address, offset);
11588 sections_needing_adjustment.insert(owner->output_section());
11589 any_stub_table_changed = true;
11593 // Output_section_data::output_section() returns a const pointer but we
11594 // need to update output sections, so we record all output sections needing
11595 // update above and scan the sections here to find out what sections need
11597 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11598 p != layout->section_list().end();
11601 if (sections_needing_adjustment.find(*p)
11602 != sections_needing_adjustment.end())
11603 (*p)->set_section_offsets_need_adjustment();
11606 // Stop relaxation if no EXIDX fix-up and no stub table change.
11607 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11609 // Finalize the stubs in the last relaxation pass.
11610 if (!continue_relaxation)
11612 for (Stub_table_iterator sp = this->stub_tables_.begin();
11613 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11615 (*sp)->finalize_stubs();
11617 // Update output local symbol counts of objects if necessary.
11618 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11619 op != input_objects->relobj_end();
11622 Arm_relobj<big_endian>* arm_relobj =
11623 Arm_relobj<big_endian>::as_arm_relobj(*op);
11625 // Update output local symbol counts. We need to discard local
11626 // symbols defined in parts of input sections that are discarded by
11628 if (arm_relobj->output_local_symbol_count_needs_update())
11630 // We need to lock the object's file to update it.
11631 Task_lock_obj<Object> tl(task, arm_relobj);
11632 arm_relobj->update_output_local_symbol_count();
11637 return continue_relaxation;
11640 // Relocate a stub.
11642 template<bool big_endian>
11644 Target_arm<big_endian>::relocate_stub(
11646 const Relocate_info<32, big_endian>* relinfo,
11647 Output_section* output_section,
11648 unsigned char* view,
11649 Arm_address address,
11650 section_size_type view_size)
11653 const Stub_template* stub_template = stub->stub_template();
11654 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11656 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11657 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11659 unsigned int r_type = insn->r_type();
11660 section_size_type reloc_offset = stub_template->reloc_offset(i);
11661 section_size_type reloc_size = insn->size();
11662 gold_assert(reloc_offset + reloc_size <= view_size);
11664 // This is the address of the stub destination.
11665 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11666 Symbol_value<32> symval;
11667 symval.set_output_value(target);
11669 // Synthesize a fake reloc just in case. We don't have a symbol so
11671 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11672 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11673 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11674 reloc_write.put_r_offset(reloc_offset);
11675 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11676 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11678 relocate.relocate(relinfo, this, output_section,
11679 this->fake_relnum_for_stubs, rel, r_type,
11680 NULL, &symval, view + reloc_offset,
11681 address + reloc_offset, reloc_size);
11685 // Determine whether an object attribute tag takes an integer, a
11688 template<bool big_endian>
11690 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11692 if (tag == Object_attribute::Tag_compatibility)
11693 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11694 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11695 else if (tag == elfcpp::Tag_nodefaults)
11696 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11697 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11698 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11699 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11701 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11703 return ((tag & 1) != 0
11704 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11705 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11708 // Reorder attributes.
11710 // The ABI defines that Tag_conformance should be emitted first, and that
11711 // Tag_nodefaults should be second (if either is defined). This sets those
11712 // two positions, and bumps up the position of all the remaining tags to
11715 template<bool big_endian>
11717 Target_arm<big_endian>::do_attributes_order(int num) const
11719 // Reorder the known object attributes in output. We want to move
11720 // Tag_conformance to position 4 and Tag_conformance to position 5
11721 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11723 return elfcpp::Tag_conformance;
11725 return elfcpp::Tag_nodefaults;
11726 if ((num - 2) < elfcpp::Tag_nodefaults)
11728 if ((num - 1) < elfcpp::Tag_conformance)
11733 // Scan a span of THUMB code for Cortex-A8 erratum.
11735 template<bool big_endian>
11737 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11738 Arm_relobj<big_endian>* arm_relobj,
11739 unsigned int shndx,
11740 section_size_type span_start,
11741 section_size_type span_end,
11742 const unsigned char* view,
11743 Arm_address address)
11745 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11747 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11748 // The branch target is in the same 4KB region as the
11749 // first half of the branch.
11750 // The instruction before the branch is a 32-bit
11751 // length non-branch instruction.
11752 section_size_type i = span_start;
11753 bool last_was_32bit = false;
11754 bool last_was_branch = false;
11755 while (i < span_end)
11757 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11758 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11759 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11760 bool is_blx = false, is_b = false;
11761 bool is_bl = false, is_bcc = false;
11763 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11766 // Load the rest of the insn (in manual-friendly order).
11767 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11769 // Encoding T4: B<c>.W.
11770 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11771 // Encoding T1: BL<c>.W.
11772 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11773 // Encoding T2: BLX<c>.W.
11774 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11775 // Encoding T3: B<c>.W (not permitted in IT block).
11776 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11777 && (insn & 0x07f00000U) != 0x03800000U);
11780 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11782 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11783 // page boundary and it follows 32-bit non-branch instruction,
11784 // we need to work around.
11785 if (is_32bit_branch
11786 && ((address + i) & 0xfffU) == 0xffeU
11788 && !last_was_branch)
11790 // Check to see if there is a relocation stub for this branch.
11791 bool force_target_arm = false;
11792 bool force_target_thumb = false;
11793 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11794 Cortex_a8_relocs_info::const_iterator p =
11795 this->cortex_a8_relocs_info_.find(address + i);
11797 if (p != this->cortex_a8_relocs_info_.end())
11799 cortex_a8_reloc = p->second;
11800 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11802 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11803 && !target_is_thumb)
11804 force_target_arm = true;
11805 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11806 && target_is_thumb)
11807 force_target_thumb = true;
11811 Stub_type stub_type = arm_stub_none;
11813 // Check if we have an offending branch instruction.
11814 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11815 uint16_t lower_insn = insn & 0xffffU;
11816 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11818 if (cortex_a8_reloc != NULL
11819 && cortex_a8_reloc->reloc_stub() != NULL)
11820 // We've already made a stub for this instruction, e.g.
11821 // it's a long branch or a Thumb->ARM stub. Assume that
11822 // stub will suffice to work around the A8 erratum (see
11823 // setting of always_after_branch above).
11827 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11829 stub_type = arm_stub_a8_veneer_b_cond;
11831 else if (is_b || is_bl || is_blx)
11833 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11838 stub_type = (is_blx
11839 ? arm_stub_a8_veneer_blx
11841 ? arm_stub_a8_veneer_bl
11842 : arm_stub_a8_veneer_b));
11845 if (stub_type != arm_stub_none)
11847 Arm_address pc_for_insn = address + i + 4;
11849 // The original instruction is a BL, but the target is
11850 // an ARM instruction. If we were not making a stub,
11851 // the BL would have been converted to a BLX. Use the
11852 // BLX stub instead in that case.
11853 if (this->may_use_v5t_interworking() && force_target_arm
11854 && stub_type == arm_stub_a8_veneer_bl)
11856 stub_type = arm_stub_a8_veneer_blx;
11860 // Conversely, if the original instruction was
11861 // BLX but the target is Thumb mode, use the BL stub.
11862 else if (force_target_thumb
11863 && stub_type == arm_stub_a8_veneer_blx)
11865 stub_type = arm_stub_a8_veneer_bl;
11873 // If we found a relocation, use the proper destination,
11874 // not the offset in the (unrelocated) instruction.
11875 // Note this is always done if we switched the stub type above.
11876 if (cortex_a8_reloc != NULL)
11877 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11879 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11881 // Add a new stub if destination address in in the same page.
11882 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11884 Cortex_a8_stub* stub =
11885 this->stub_factory_.make_cortex_a8_stub(stub_type,
11889 Stub_table<big_endian>* stub_table =
11890 arm_relobj->stub_table(shndx);
11891 gold_assert(stub_table != NULL);
11892 stub_table->add_cortex_a8_stub(address + i, stub);
11897 i += insn_32bit ? 4 : 2;
11898 last_was_32bit = insn_32bit;
11899 last_was_branch = is_32bit_branch;
11903 // Apply the Cortex-A8 workaround.
11905 template<bool big_endian>
11907 Target_arm<big_endian>::apply_cortex_a8_workaround(
11908 const Cortex_a8_stub* stub,
11909 Arm_address stub_address,
11910 unsigned char* insn_view,
11911 Arm_address insn_address)
11913 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11914 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11915 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11916 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11917 off_t branch_offset = stub_address - (insn_address + 4);
11919 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11920 switch (stub->stub_template()->type())
11922 case arm_stub_a8_veneer_b_cond:
11923 // For a conditional branch, we re-write it to be an unconditional
11924 // branch to the stub. We use the THUMB-2 encoding here.
11925 upper_insn = 0xf000U;
11926 lower_insn = 0xb800U;
11928 case arm_stub_a8_veneer_b:
11929 case arm_stub_a8_veneer_bl:
11930 case arm_stub_a8_veneer_blx:
11931 if ((lower_insn & 0x5000U) == 0x4000U)
11932 // For a BLX instruction, make sure that the relocation is
11933 // rounded up to a word boundary. This follows the semantics of
11934 // the instruction which specifies that bit 1 of the target
11935 // address will come from bit 1 of the base address.
11936 branch_offset = (branch_offset + 2) & ~3;
11938 // Put BRANCH_OFFSET back into the insn.
11939 gold_assert(!Bits<25>::has_overflow32(branch_offset));
11940 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11941 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11945 gold_unreachable();
11948 // Put the relocated value back in the object file:
11949 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11950 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11953 // Target selector for ARM. Note this is never instantiated directly.
11954 // It's only used in Target_selector_arm_nacl, below.
11956 template<bool big_endian>
11957 class Target_selector_arm : public Target_selector
11960 Target_selector_arm()
11961 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11962 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11963 (big_endian ? "armelfb" : "armelf"))
11967 do_instantiate_target()
11968 { return new Target_arm<big_endian>(); }
11971 // Fix .ARM.exidx section coverage.
11973 template<bool big_endian>
11975 Target_arm<big_endian>::fix_exidx_coverage(
11977 const Input_objects* input_objects,
11978 Arm_output_section<big_endian>* exidx_section,
11979 Symbol_table* symtab,
11982 // We need to look at all the input sections in output in ascending
11983 // order of of output address. We do that by building a sorted list
11984 // of output sections by addresses. Then we looks at the output sections
11985 // in order. The input sections in an output section are already sorted
11986 // by addresses within the output section.
11988 typedef std::set<Output_section*, output_section_address_less_than>
11989 Sorted_output_section_list;
11990 Sorted_output_section_list sorted_output_sections;
11992 // Find out all the output sections of input sections pointed by
11993 // EXIDX input sections.
11994 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11995 p != input_objects->relobj_end();
11998 Arm_relobj<big_endian>* arm_relobj =
11999 Arm_relobj<big_endian>::as_arm_relobj(*p);
12000 std::vector<unsigned int> shndx_list;
12001 arm_relobj->get_exidx_shndx_list(&shndx_list);
12002 for (size_t i = 0; i < shndx_list.size(); ++i)
12004 const Arm_exidx_input_section* exidx_input_section =
12005 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12006 gold_assert(exidx_input_section != NULL);
12007 if (!exidx_input_section->has_errors())
12009 unsigned int text_shndx = exidx_input_section->link();
12010 Output_section* os = arm_relobj->output_section(text_shndx);
12011 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12012 sorted_output_sections.insert(os);
12017 // Go over the output sections in ascending order of output addresses.
12018 typedef typename Arm_output_section<big_endian>::Text_section_list
12020 Text_section_list sorted_text_sections;
12021 for (typename Sorted_output_section_list::iterator p =
12022 sorted_output_sections.begin();
12023 p != sorted_output_sections.end();
12026 Arm_output_section<big_endian>* arm_output_section =
12027 Arm_output_section<big_endian>::as_arm_output_section(*p);
12028 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12031 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12032 merge_exidx_entries(), task);
12035 template<bool big_endian>
12037 Target_arm<big_endian>::do_define_standard_symbols(
12038 Symbol_table* symtab,
12041 // Handle the .ARM.exidx section.
12042 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12044 if (exidx_section != NULL)
12046 // Create __exidx_start and __exidx_end symbols.
12047 symtab->define_in_output_data("__exidx_start",
12049 Symbol_table::PREDEFINED,
12053 elfcpp::STT_NOTYPE,
12054 elfcpp::STB_GLOBAL,
12055 elfcpp::STV_HIDDEN,
12057 false, // offset_is_from_end
12058 true); // only_if_ref
12060 symtab->define_in_output_data("__exidx_end",
12062 Symbol_table::PREDEFINED,
12066 elfcpp::STT_NOTYPE,
12067 elfcpp::STB_GLOBAL,
12068 elfcpp::STV_HIDDEN,
12070 true, // offset_is_from_end
12071 true); // only_if_ref
12075 // Define __exidx_start and __exidx_end even when .ARM.exidx
12076 // section is missing to match ld's behaviour.
12077 symtab->define_as_constant("__exidx_start", NULL,
12078 Symbol_table::PREDEFINED,
12079 0, 0, elfcpp::STT_OBJECT,
12080 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12082 symtab->define_as_constant("__exidx_end", NULL,
12083 Symbol_table::PREDEFINED,
12084 0, 0, elfcpp::STT_OBJECT,
12085 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12090 // NaCl variant. It uses different PLT contents.
12092 template<bool big_endian>
12093 class Output_data_plt_arm_nacl;
12095 template<bool big_endian>
12096 class Target_arm_nacl : public Target_arm<big_endian>
12100 : Target_arm<big_endian>(&arm_nacl_info)
12104 virtual Output_data_plt_arm<big_endian>*
12105 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12106 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12109 static const Target::Target_info arm_nacl_info;
12112 template<bool big_endian>
12113 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12116 big_endian, // is_big_endian
12117 elfcpp::EM_ARM, // machine_code
12118 false, // has_make_symbol
12119 false, // has_resolve
12120 false, // has_code_fill
12121 true, // is_default_stack_executable
12122 false, // can_icf_inline_merge_sections
12124 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12125 0x20000, // default_text_segment_address
12126 0x10000, // abi_pagesize (overridable by -z max-page-size)
12127 0x10000, // common_pagesize (overridable by -z common-page-size)
12128 true, // isolate_execinstr
12129 0x10000000, // rosegment_gap
12130 elfcpp::SHN_UNDEF, // small_common_shndx
12131 elfcpp::SHN_UNDEF, // large_common_shndx
12132 0, // small_common_section_flags
12133 0, // large_common_section_flags
12134 ".ARM.attributes", // attributes_section
12135 "aeabi" // attributes_vendor
12138 template<bool big_endian>
12139 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12142 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12143 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12147 // Return the offset of the first non-reserved PLT entry.
12148 virtual unsigned int
12149 do_first_plt_entry_offset() const
12150 { return sizeof(first_plt_entry); }
12152 // Return the size of a PLT entry.
12153 virtual unsigned int
12154 do_get_plt_entry_size() const
12155 { return sizeof(plt_entry); }
12158 do_fill_first_plt_entry(unsigned char* pov,
12159 Arm_address got_address,
12160 Arm_address plt_address);
12163 do_fill_plt_entry(unsigned char* pov,
12164 Arm_address got_address,
12165 Arm_address plt_address,
12166 unsigned int got_offset,
12167 unsigned int plt_offset);
12170 inline uint32_t arm_movw_immediate(uint32_t value)
12172 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12175 inline uint32_t arm_movt_immediate(uint32_t value)
12177 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12180 // Template for the first PLT entry.
12181 static const uint32_t first_plt_entry[16];
12183 // Template for subsequent PLT entries.
12184 static const uint32_t plt_entry[4];
12187 // The first entry in the PLT.
12188 template<bool big_endian>
12189 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12192 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12193 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12194 0xe08cc00f, // add ip, ip, pc
12195 0xe52dc008, // str ip, [sp, #-8]!
12197 0xe7dfcf1f, // bfc ip, #30, #2
12198 0xe59cc000, // ldr ip, [ip]
12199 0xe3ccc13f, // bic ip, ip, #0xc000000f
12200 0xe12fff1c, // bx ip
12206 0xe50dc004, // str ip, [sp, #-4]
12208 0xe7dfcf1f, // bfc ip, #30, #2
12209 0xe59cc000, // ldr ip, [ip]
12210 0xe3ccc13f, // bic ip, ip, #0xc000000f
12211 0xe12fff1c, // bx ip
12214 template<bool big_endian>
12216 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12217 unsigned char* pov,
12218 Arm_address got_address,
12219 Arm_address plt_address)
12221 // Write first PLT entry. All but first two words are constants.
12222 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12223 / sizeof(first_plt_entry[0]));
12225 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12227 elfcpp::Swap<32, big_endian>::writeval
12228 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12229 elfcpp::Swap<32, big_endian>::writeval
12230 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12232 for (size_t i = 2; i < num_first_plt_words; ++i)
12233 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12236 // Subsequent entries in the PLT.
12238 template<bool big_endian>
12239 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12241 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12242 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12243 0xe08cc00f, // add ip, ip, pc
12244 0xea000000, // b .Lplt_tail
12247 template<bool big_endian>
12249 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12250 unsigned char* pov,
12251 Arm_address got_address,
12252 Arm_address plt_address,
12253 unsigned int got_offset,
12254 unsigned int plt_offset)
12256 // Calculate the displacement between the PLT slot and the
12257 // common tail that's part of the special initial PLT slot.
12258 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12259 - (plt_address + plt_offset
12260 + sizeof(plt_entry) + sizeof(uint32_t)));
12261 gold_assert((tail_displacement & 3) == 0);
12262 tail_displacement >>= 2;
12264 gold_assert ((tail_displacement & 0xff000000) == 0
12265 || (-tail_displacement & 0xff000000) == 0);
12267 // Calculate the displacement between the PLT slot and the entry
12268 // in the GOT. The offset accounts for the value produced by
12269 // adding to pc in the penultimate instruction of the PLT stub.
12270 const int32_t got_displacement = (got_address + got_offset
12271 - (plt_address + sizeof(plt_entry)));
12273 elfcpp::Swap<32, big_endian>::writeval
12274 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12275 elfcpp::Swap<32, big_endian>::writeval
12276 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12277 elfcpp::Swap<32, big_endian>::writeval
12278 (pov + 8, plt_entry[2]);
12279 elfcpp::Swap<32, big_endian>::writeval
12280 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12283 // Target selectors.
12285 template<bool big_endian>
12286 class Target_selector_arm_nacl
12287 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12288 Target_arm_nacl<big_endian> >
12291 Target_selector_arm_nacl()
12292 : Target_selector_nacl<Target_selector_arm<big_endian>,
12293 Target_arm_nacl<big_endian> >(
12295 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12296 big_endian ? "armelfb_nacl" : "armelf_nacl")
12300 Target_selector_arm_nacl<false> target_selector_arm;
12301 Target_selector_arm_nacl<true> target_selector_armbe;
12303 } // End anonymous namespace.