1 // arm.cc -- arm target support for gold.
3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
61 template<bool big_endian>
62 class Output_data_plt_arm;
64 template<bool big_endian>
65 class Output_data_plt_arm_short;
67 template<bool big_endian>
68 class Output_data_plt_arm_long;
70 template<bool big_endian>
73 template<bool big_endian>
74 class Arm_input_section;
76 class Arm_exidx_cantunwind;
78 class Arm_exidx_merged_section;
80 class Arm_exidx_fixup;
82 template<bool big_endian>
83 class Arm_output_section;
85 class Arm_exidx_input_section;
87 template<bool big_endian>
90 template<bool big_endian>
91 class Arm_relocate_functions;
93 template<bool big_endian>
94 class Arm_output_data_got;
96 template<bool big_endian>
100 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
102 // Maximum branch offsets for ARM, THUMB and THUMB2.
103 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
104 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
105 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
106 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
107 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
108 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
110 // Thread Control Block size.
111 const size_t ARM_TCB_SIZE = 8;
113 // The arm target class.
115 // This is a very simple port of gold for ARM-EABI. It is intended for
116 // supporting Android only for the time being.
119 // - Implement all static relocation types documented in arm-reloc.def.
120 // - Make PLTs more flexible for different architecture features like
122 // There are probably a lot more.
124 // Ideally we would like to avoid using global variables but this is used
125 // very in many places and sometimes in loops. If we use a function
126 // returning a static instance of Arm_reloc_property_table, it will be very
127 // slow in an threaded environment since the static instance needs to be
128 // locked. The pointer is below initialized in the
129 // Target::do_select_as_default_target() hook so that we do not spend time
130 // building the table if we are not linking ARM objects.
132 // An alternative is to to process the information in arm-reloc.def in
133 // compilation time and generate a representation of it in PODs only. That
134 // way we can avoid initialization when the linker starts.
136 Arm_reloc_property_table* arm_reloc_property_table = NULL;
138 // Instruction template class. This class is similar to the insn_sequence
139 // struct in bfd/elf32-arm.c.
144 // Types of instruction templates.
148 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
149 // templates with class-specific semantics. Currently this is used
150 // only by the Cortex_a8_stub class for handling condition codes in
151 // conditional branches.
152 THUMB16_SPECIAL_TYPE,
158 // Factory methods to create instruction templates in different formats.
160 static const Insn_template
161 thumb16_insn(uint32_t data)
162 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
164 // A Thumb conditional branch, in which the proper condition is inserted
165 // when we build the stub.
166 static const Insn_template
167 thumb16_bcond_insn(uint32_t data)
168 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
170 static const Insn_template
171 thumb32_insn(uint32_t data)
172 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
174 static const Insn_template
175 thumb32_b_insn(uint32_t data, int reloc_addend)
177 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
181 static const Insn_template
182 arm_insn(uint32_t data)
183 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
185 static const Insn_template
186 arm_rel_insn(unsigned data, int reloc_addend)
187 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
189 static const Insn_template
190 data_word(unsigned data, unsigned int r_type, int reloc_addend)
191 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
193 // Accessors. This class is used for read-only objects so no modifiers
198 { return this->data_; }
200 // Return the instruction sequence type of this.
203 { return this->type_; }
205 // Return the ARM relocation type of this.
208 { return this->r_type_; }
212 { return this->reloc_addend_; }
214 // Return size of instruction template in bytes.
218 // Return byte-alignment of instruction template.
223 // We make the constructor private to ensure that only the factory
226 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
227 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
230 // Instruction specific data. This is used to store information like
231 // some of the instruction bits.
233 // Instruction template type.
235 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
236 unsigned int r_type_;
237 // Relocation addend.
238 int32_t reloc_addend_;
241 // Macro for generating code to stub types. One entry per long/short
245 DEF_STUB(long_branch_any_any) \
246 DEF_STUB(long_branch_v4t_arm_thumb) \
247 DEF_STUB(long_branch_thumb_only) \
248 DEF_STUB(long_branch_v4t_thumb_thumb) \
249 DEF_STUB(long_branch_v4t_thumb_arm) \
250 DEF_STUB(short_branch_v4t_thumb_arm) \
251 DEF_STUB(long_branch_any_arm_pic) \
252 DEF_STUB(long_branch_any_thumb_pic) \
253 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
254 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
255 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
256 DEF_STUB(long_branch_thumb_only_pic) \
257 DEF_STUB(a8_veneer_b_cond) \
258 DEF_STUB(a8_veneer_b) \
259 DEF_STUB(a8_veneer_bl) \
260 DEF_STUB(a8_veneer_blx) \
261 DEF_STUB(v4_veneer_bx)
265 #define DEF_STUB(x) arm_stub_##x,
271 // First reloc stub type.
272 arm_stub_reloc_first = arm_stub_long_branch_any_any,
273 // Last reloc stub type.
274 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
276 // First Cortex-A8 stub type.
277 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
278 // Last Cortex-A8 stub type.
279 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
282 arm_stub_type_last = arm_stub_v4_veneer_bx
286 // Stub template class. Templates are meant to be read-only objects.
287 // A stub template for a stub type contains all read-only attributes
288 // common to all stubs of the same type.
293 Stub_template(Stub_type, const Insn_template*, size_t);
301 { return this->type_; }
303 // Return an array of instruction templates.
306 { return this->insns_; }
308 // Return size of template in number of instructions.
311 { return this->insn_count_; }
313 // Return size of template in bytes.
316 { return this->size_; }
318 // Return alignment of the stub template.
321 { return this->alignment_; }
323 // Return whether entry point is in thumb mode.
325 entry_in_thumb_mode() const
326 { return this->entry_in_thumb_mode_; }
328 // Return number of relocations in this template.
331 { return this->relocs_.size(); }
333 // Return index of the I-th instruction with relocation.
335 reloc_insn_index(size_t i) const
337 gold_assert(i < this->relocs_.size());
338 return this->relocs_[i].first;
341 // Return the offset of the I-th instruction with relocation from the
342 // beginning of the stub.
344 reloc_offset(size_t i) const
346 gold_assert(i < this->relocs_.size());
347 return this->relocs_[i].second;
351 // This contains information about an instruction template with a relocation
352 // and its offset from start of stub.
353 typedef std::pair<size_t, section_size_type> Reloc;
355 // A Stub_template may not be copied. We want to share templates as much
357 Stub_template(const Stub_template&);
358 Stub_template& operator=(const Stub_template&);
362 // Points to an array of Insn_templates.
363 const Insn_template* insns_;
364 // Number of Insn_templates in insns_[].
366 // Size of templated instructions in bytes.
368 // Alignment of templated instructions.
370 // Flag to indicate if entry is in thumb mode.
371 bool entry_in_thumb_mode_;
372 // A table of reloc instruction indices and offsets. We can find these by
373 // looking at the instruction templates but we pre-compute and then stash
374 // them here for speed.
375 std::vector<Reloc> relocs_;
379 // A class for code stubs. This is a base class for different type of
380 // stubs used in the ARM target.
386 static const section_offset_type invalid_offset =
387 static_cast<section_offset_type>(-1);
390 Stub(const Stub_template* stub_template)
391 : stub_template_(stub_template), offset_(invalid_offset)
398 // Return the stub template.
400 stub_template() const
401 { return this->stub_template_; }
403 // Return offset of code stub from beginning of its containing stub table.
407 gold_assert(this->offset_ != invalid_offset);
408 return this->offset_;
411 // Set offset of code stub from beginning of its containing stub table.
413 set_offset(section_offset_type offset)
414 { this->offset_ = offset; }
416 // Return the relocation target address of the i-th relocation in the
417 // stub. This must be defined in a child class.
419 reloc_target(size_t i)
420 { return this->do_reloc_target(i); }
422 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
424 write(unsigned char* view, section_size_type view_size, bool big_endian)
425 { this->do_write(view, view_size, big_endian); }
427 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
428 // for the i-th instruction.
430 thumb16_special(size_t i)
431 { return this->do_thumb16_special(i); }
434 // This must be defined in the child class.
436 do_reloc_target(size_t) = 0;
438 // This may be overridden in the child class.
440 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
443 this->do_fixed_endian_write<true>(view, view_size);
445 this->do_fixed_endian_write<false>(view, view_size);
448 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
449 // instruction template.
451 do_thumb16_special(size_t)
452 { gold_unreachable(); }
455 // A template to implement do_write.
456 template<bool big_endian>
458 do_fixed_endian_write(unsigned char*, section_size_type);
461 const Stub_template* stub_template_;
462 // Offset within the section of containing this stub.
463 section_offset_type offset_;
466 // Reloc stub class. These are stubs we use to fix up relocation because
467 // of limited branch ranges.
469 class Reloc_stub : public Stub
472 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
473 // We assume we never jump to this address.
474 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
476 // Return destination address.
478 destination_address() const
480 gold_assert(this->destination_address_ != this->invalid_address);
481 return this->destination_address_;
484 // Set destination address.
486 set_destination_address(Arm_address address)
488 gold_assert(address != this->invalid_address);
489 this->destination_address_ = address;
492 // Reset destination address.
494 reset_destination_address()
495 { this->destination_address_ = this->invalid_address; }
497 // Determine stub type for a branch of a relocation of R_TYPE going
498 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
499 // the branch target is a thumb instruction. TARGET is used for look
500 // up ARM-specific linker settings.
502 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
503 Arm_address branch_target, bool target_is_thumb);
505 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
506 // and an addend. Since we treat global and local symbol differently, we
507 // use a Symbol object for a global symbol and a object-index pair for
512 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
513 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
514 // and R_SYM must not be invalid_index.
515 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
516 unsigned int r_sym, int32_t addend)
517 : stub_type_(stub_type), addend_(addend)
521 this->r_sym_ = Reloc_stub::invalid_index;
522 this->u_.symbol = symbol;
526 gold_assert(relobj != NULL && r_sym != invalid_index);
527 this->r_sym_ = r_sym;
528 this->u_.relobj = relobj;
535 // Accessors: Keys are meant to be read-only object so no modifiers are
541 { return this->stub_type_; }
543 // Return the local symbol index or invalid_index.
546 { return this->r_sym_; }
548 // Return the symbol if there is one.
551 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
553 // Return the relobj if there is one.
556 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
558 // Whether this equals to another key k.
560 eq(const Key& k) const
562 return ((this->stub_type_ == k.stub_type_)
563 && (this->r_sym_ == k.r_sym_)
564 && ((this->r_sym_ != Reloc_stub::invalid_index)
565 ? (this->u_.relobj == k.u_.relobj)
566 : (this->u_.symbol == k.u_.symbol))
567 && (this->addend_ == k.addend_));
570 // Return a hash value.
574 return (this->stub_type_
576 ^ gold::string_hash<char>(
577 (this->r_sym_ != Reloc_stub::invalid_index)
578 ? this->u_.relobj->name().c_str()
579 : this->u_.symbol->name())
583 // Functors for STL associative containers.
587 operator()(const Key& k) const
588 { return k.hash_value(); }
594 operator()(const Key& k1, const Key& k2) const
595 { return k1.eq(k2); }
598 // Name of key. This is mainly for debugging.
600 name() const ATTRIBUTE_UNUSED;
604 Stub_type stub_type_;
605 // If this is a local symbol, this is the index in the defining object.
606 // Otherwise, it is invalid_index for a global symbol.
608 // If r_sym_ is an invalid index, this points to a global symbol.
609 // Otherwise, it points to a relobj. We used the unsized and target
610 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
611 // Arm_relobj, in order to avoid making the stub class a template
612 // as most of the stub machinery is endianness-neutral. However, it
613 // may require a bit of casting done by users of this class.
616 const Symbol* symbol;
617 const Relobj* relobj;
619 // Addend associated with a reloc.
624 // Reloc_stubs are created via a stub factory. So these are protected.
625 Reloc_stub(const Stub_template* stub_template)
626 : Stub(stub_template), destination_address_(invalid_address)
632 friend class Stub_factory;
634 // Return the relocation target address of the i-th relocation in the
637 do_reloc_target(size_t i)
639 // All reloc stub have only one relocation.
641 return this->destination_address_;
645 // Address of destination.
646 Arm_address destination_address_;
649 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
650 // THUMB branch that meets the following conditions:
652 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
653 // branch address is 0xffe.
654 // 2. The branch target address is in the same page as the first word of the
656 // 3. The branch follows a 32-bit instruction which is not a branch.
658 // To do the fix up, we need to store the address of the branch instruction
659 // and its target at least. We also need to store the original branch
660 // instruction bits for the condition code in a conditional branch. The
661 // condition code is used in a special instruction template. We also want
662 // to identify input sections needing Cortex-A8 workaround quickly. We store
663 // extra information about object and section index of the code section
664 // containing a branch being fixed up. The information is used to mark
665 // the code section when we finalize the Cortex-A8 stubs.
668 class Cortex_a8_stub : public Stub
674 // Return the object of the code section containing the branch being fixed
678 { return this->relobj_; }
680 // Return the section index of the code section containing the branch being
684 { return this->shndx_; }
686 // Return the source address of stub. This is the address of the original
687 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
690 source_address() const
691 { return this->source_address_; }
693 // Return the destination address of the stub. This is the branch taken
694 // address of the original branch instruction. LSB is 1 if it is a THUMB
695 // instruction address.
697 destination_address() const
698 { return this->destination_address_; }
700 // Return the instruction being fixed up.
702 original_insn() const
703 { return this->original_insn_; }
706 // Cortex_a8_stubs are created via a stub factory. So these are protected.
707 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
708 unsigned int shndx, Arm_address source_address,
709 Arm_address destination_address, uint32_t original_insn)
710 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
711 source_address_(source_address | 1U),
712 destination_address_(destination_address),
713 original_insn_(original_insn)
716 friend class Stub_factory;
718 // Return the relocation target address of the i-th relocation in the
721 do_reloc_target(size_t i)
723 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
725 // The conditional branch veneer has two relocations.
727 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
731 // All other Cortex-A8 stubs have only one relocation.
733 return this->destination_address_;
737 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
739 do_thumb16_special(size_t);
742 // Object of the code section containing the branch being fixed up.
744 // Section index of the code section containing the branch begin fixed up.
746 // Source address of original branch.
747 Arm_address source_address_;
748 // Destination address of the original branch.
749 Arm_address destination_address_;
750 // Original branch instruction. This is needed for copying the condition
751 // code from a condition branch to its stub.
752 uint32_t original_insn_;
755 // ARMv4 BX Rx branch relocation stub class.
756 class Arm_v4bx_stub : public Stub
762 // Return the associated register.
765 { return this->reg_; }
768 // Arm V4BX stubs are created via a stub factory. So these are protected.
769 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
770 : Stub(stub_template), reg_(reg)
773 friend class Stub_factory;
775 // Return the relocation target address of the i-th relocation in the
778 do_reloc_target(size_t)
779 { gold_unreachable(); }
781 // This may be overridden in the child class.
783 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
786 this->do_fixed_endian_v4bx_write<true>(view, view_size);
788 this->do_fixed_endian_v4bx_write<false>(view, view_size);
792 // A template to implement do_write.
793 template<bool big_endian>
795 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
797 const Insn_template* insns = this->stub_template()->insns();
798 elfcpp::Swap<32, big_endian>::writeval(view,
800 + (this->reg_ << 16)));
801 view += insns[0].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[1].data() + this->reg_));
804 view += insns[1].size();
805 elfcpp::Swap<32, big_endian>::writeval(view,
806 (insns[2].data() + this->reg_));
809 // A register index (r0-r14), which is associated with the stub.
813 // Stub factory class.
818 // Return the unique instance of this class.
819 static const Stub_factory&
822 static Stub_factory singleton;
826 // Make a relocation stub.
828 make_reloc_stub(Stub_type stub_type) const
830 gold_assert(stub_type >= arm_stub_reloc_first
831 && stub_type <= arm_stub_reloc_last);
832 return new Reloc_stub(this->stub_templates_[stub_type]);
835 // Make a Cortex-A8 stub.
837 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
838 Arm_address source, Arm_address destination,
839 uint32_t original_insn) const
841 gold_assert(stub_type >= arm_stub_cortex_a8_first
842 && stub_type <= arm_stub_cortex_a8_last);
843 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
844 source, destination, original_insn);
847 // Make an ARM V4BX relocation stub.
848 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
850 make_arm_v4bx_stub(uint32_t reg) const
852 gold_assert(reg < 0xf);
853 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
858 // Constructor and destructor are protected since we only return a single
859 // instance created in Stub_factory::get_instance().
863 // A Stub_factory may not be copied since it is a singleton.
864 Stub_factory(const Stub_factory&);
865 Stub_factory& operator=(Stub_factory&);
867 // Stub templates. These are initialized in the constructor.
868 const Stub_template* stub_templates_[arm_stub_type_last+1];
871 // A class to hold stubs for the ARM target.
873 template<bool big_endian>
874 class Stub_table : public Output_data
877 Stub_table(Arm_input_section<big_endian>* owner)
878 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
879 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
880 prev_data_size_(0), prev_addralign_(1)
886 // Owner of this stub table.
887 Arm_input_section<big_endian>*
889 { return this->owner_; }
891 // Whether this stub table is empty.
895 return (this->reloc_stubs_.empty()
896 && this->cortex_a8_stubs_.empty()
897 && this->arm_v4bx_stubs_.empty());
900 // Return the current data size.
902 current_data_size() const
903 { return this->current_data_size_for_child(); }
905 // Add a STUB using KEY. The caller is responsible for avoiding addition
906 // if a STUB with the same key has already been added.
908 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
910 const Stub_template* stub_template = stub->stub_template();
911 gold_assert(stub_template->type() == key.stub_type());
912 this->reloc_stubs_[key] = stub;
914 // Assign stub offset early. We can do this because we never remove
915 // reloc stubs and they are in the beginning of the stub table.
916 uint64_t align = stub_template->alignment();
917 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
918 stub->set_offset(this->reloc_stubs_size_);
919 this->reloc_stubs_size_ += stub_template->size();
920 this->reloc_stubs_addralign_ =
921 std::max(this->reloc_stubs_addralign_, align);
924 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
925 // The caller is responsible for avoiding addition if a STUB with the same
926 // address has already been added.
928 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
930 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
931 this->cortex_a8_stubs_.insert(value);
934 // Add an ARM V4BX relocation stub. A register index will be retrieved
937 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
939 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
940 this->arm_v4bx_stubs_[stub->reg()] = stub;
943 // Remove all Cortex-A8 stubs.
945 remove_all_cortex_a8_stubs();
947 // Look up a relocation stub using KEY. Return NULL if there is none.
949 find_reloc_stub(const Reloc_stub::Key& key) const
951 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
952 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
955 // Look up an arm v4bx relocation stub using the register index.
956 // Return NULL if there is none.
958 find_arm_v4bx_stub(const uint32_t reg) const
960 gold_assert(reg < 0xf);
961 return this->arm_v4bx_stubs_[reg];
964 // Relocate stubs in this stub table.
966 relocate_stubs(const Relocate_info<32, big_endian>*,
967 Target_arm<big_endian>*, Output_section*,
968 unsigned char*, Arm_address, section_size_type);
970 // Update data size and alignment at the end of a relaxation pass. Return
971 // true if either data size or alignment is different from that of the
972 // previous relaxation pass.
974 update_data_size_and_addralign();
976 // Finalize stubs. Set the offsets of all stubs and mark input sections
977 // needing the Cortex-A8 workaround.
981 // Apply Cortex-A8 workaround to an address range.
983 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
984 unsigned char*, Arm_address,
988 // Write out section contents.
990 do_write(Output_file*);
992 // Return the required alignment.
995 { return this->prev_addralign_; }
997 // Reset address and file offset.
999 do_reset_address_and_file_offset()
1000 { this->set_current_data_size_for_child(this->prev_data_size_); }
1002 // Set final data size.
1004 set_final_data_size()
1005 { this->set_data_size(this->current_data_size()); }
1008 // Relocate one stub.
1010 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1011 Target_arm<big_endian>*, Output_section*,
1012 unsigned char*, Arm_address, section_size_type);
1014 // Unordered map of relocation stubs.
1016 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1017 Reloc_stub::Key::equal_to>
1020 // List of Cortex-A8 stubs ordered by addresses of branches being
1021 // fixed up in output.
1022 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1023 // List of Arm V4BX relocation stubs ordered by associated registers.
1024 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1026 // Owner of this stub table.
1027 Arm_input_section<big_endian>* owner_;
1028 // The relocation stubs.
1029 Reloc_stub_map reloc_stubs_;
1030 // Size of reloc stubs.
1031 off_t reloc_stubs_size_;
1032 // Maximum address alignment of reloc stubs.
1033 uint64_t reloc_stubs_addralign_;
1034 // The cortex_a8_stubs.
1035 Cortex_a8_stub_list cortex_a8_stubs_;
1036 // The Arm V4BX relocation stubs.
1037 Arm_v4bx_stub_list arm_v4bx_stubs_;
1038 // data size of this in the previous pass.
1039 off_t prev_data_size_;
1040 // address alignment of this in the previous pass.
1041 uint64_t prev_addralign_;
1044 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1045 // we add to the end of an EXIDX input section that goes into the output.
1047 class Arm_exidx_cantunwind : public Output_section_data
1050 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1051 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1054 // Return the object containing the section pointed by this.
1057 { return this->relobj_; }
1059 // Return the section index of the section pointed by this.
1062 { return this->shndx_; }
1066 do_write(Output_file* of)
1068 if (parameters->target().is_big_endian())
1069 this->do_fixed_endian_write<true>(of);
1071 this->do_fixed_endian_write<false>(of);
1074 // Write to a map file.
1076 do_print_to_mapfile(Mapfile* mapfile) const
1077 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1080 // Implement do_write for a given endianness.
1081 template<bool big_endian>
1083 do_fixed_endian_write(Output_file*);
1085 // The object containing the section pointed by this.
1087 // The section index of the section pointed by this.
1088 unsigned int shndx_;
1091 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1092 // Offset map is used to map input section offset within the EXIDX section
1093 // to the output offset from the start of this EXIDX section.
1095 typedef std::map<section_offset_type, section_offset_type>
1096 Arm_exidx_section_offset_map;
1098 // Arm_exidx_merged_section class. This represents an EXIDX input section
1099 // with some of its entries merged.
1101 class Arm_exidx_merged_section : public Output_relaxed_input_section
1104 // Constructor for Arm_exidx_merged_section.
1105 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1106 // SECTION_OFFSET_MAP points to a section offset map describing how
1107 // parts of the input section are mapped to output. DELETED_BYTES is
1108 // the number of bytes deleted from the EXIDX input section.
1109 Arm_exidx_merged_section(
1110 const Arm_exidx_input_section& exidx_input_section,
1111 const Arm_exidx_section_offset_map& section_offset_map,
1112 uint32_t deleted_bytes);
1114 // Build output contents.
1116 build_contents(const unsigned char*, section_size_type);
1118 // Return the original EXIDX input section.
1119 const Arm_exidx_input_section&
1120 exidx_input_section() const
1121 { return this->exidx_input_section_; }
1123 // Return the section offset map.
1124 const Arm_exidx_section_offset_map&
1125 section_offset_map() const
1126 { return this->section_offset_map_; }
1129 // Write merged section into file OF.
1131 do_write(Output_file* of);
1134 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1135 section_offset_type*) const;
1138 // Original EXIDX input section.
1139 const Arm_exidx_input_section& exidx_input_section_;
1140 // Section offset map.
1141 const Arm_exidx_section_offset_map& section_offset_map_;
1142 // Merged section contents. We need to keep build the merged section
1143 // and save it here to avoid accessing the original EXIDX section when
1144 // we cannot lock the sections' object.
1145 unsigned char* section_contents_;
1148 // A class to wrap an ordinary input section containing executable code.
1150 template<bool big_endian>
1151 class Arm_input_section : public Output_relaxed_input_section
1154 Arm_input_section(Relobj* relobj, unsigned int shndx)
1155 : Output_relaxed_input_section(relobj, shndx, 1),
1156 original_addralign_(1), original_size_(0), stub_table_(NULL),
1157 original_contents_(NULL)
1160 ~Arm_input_section()
1161 { delete[] this->original_contents_; }
1167 // Whether this is a stub table owner.
1169 is_stub_table_owner() const
1170 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1172 // Return the stub table.
1173 Stub_table<big_endian>*
1175 { return this->stub_table_; }
1177 // Set the stub_table.
1179 set_stub_table(Stub_table<big_endian>* stub_table)
1180 { this->stub_table_ = stub_table; }
1182 // Downcast a base pointer to an Arm_input_section pointer. This is
1183 // not type-safe but we only use Arm_input_section not the base class.
1184 static Arm_input_section<big_endian>*
1185 as_arm_input_section(Output_relaxed_input_section* poris)
1186 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1188 // Return the original size of the section.
1190 original_size() const
1191 { return this->original_size_; }
1194 // Write data to output file.
1196 do_write(Output_file*);
1198 // Return required alignment of this.
1200 do_addralign() const
1202 if (this->is_stub_table_owner())
1203 return std::max(this->stub_table_->addralign(),
1204 static_cast<uint64_t>(this->original_addralign_));
1206 return this->original_addralign_;
1209 // Finalize data size.
1211 set_final_data_size();
1213 // Reset address and file offset.
1215 do_reset_address_and_file_offset();
1219 do_output_offset(const Relobj* object, unsigned int shndx,
1220 section_offset_type offset,
1221 section_offset_type* poutput) const
1223 if ((object == this->relobj())
1224 && (shndx == this->shndx())
1227 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1237 // Copying is not allowed.
1238 Arm_input_section(const Arm_input_section&);
1239 Arm_input_section& operator=(const Arm_input_section&);
1241 // Address alignment of the original input section.
1242 uint32_t original_addralign_;
1243 // Section size of the original input section.
1244 uint32_t original_size_;
1246 Stub_table<big_endian>* stub_table_;
1247 // Original section contents. We have to make a copy here since the file
1248 // containing the original section may not be locked when we need to access
1250 unsigned char* original_contents_;
1253 // Arm_exidx_fixup class. This is used to define a number of methods
1254 // and keep states for fixing up EXIDX coverage.
1256 class Arm_exidx_fixup
1259 Arm_exidx_fixup(Output_section* exidx_output_section,
1260 bool merge_exidx_entries = true)
1261 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1262 last_inlined_entry_(0), last_input_section_(NULL),
1263 section_offset_map_(NULL), first_output_text_section_(NULL),
1264 merge_exidx_entries_(merge_exidx_entries)
1268 { delete this->section_offset_map_; }
1270 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1271 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1272 // number of bytes to be deleted in output. If parts of the input EXIDX
1273 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1274 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1275 // responsible for releasing it.
1276 template<bool big_endian>
1278 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1279 const unsigned char* section_contents,
1280 section_size_type section_size,
1281 Arm_exidx_section_offset_map** psection_offset_map);
1283 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1284 // input section, if there is not one already.
1286 add_exidx_cantunwind_as_needed();
1288 // Return the output section for the text section which is linked to the
1289 // first exidx input in output.
1291 first_output_text_section() const
1292 { return this->first_output_text_section_; }
1295 // Copying is not allowed.
1296 Arm_exidx_fixup(const Arm_exidx_fixup&);
1297 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1299 // Type of EXIDX unwind entry.
1304 // EXIDX_CANTUNWIND.
1305 UT_EXIDX_CANTUNWIND,
1312 // Process an EXIDX entry. We only care about the second word of the
1313 // entry. Return true if the entry can be deleted.
1315 process_exidx_entry(uint32_t second_word);
1317 // Update the current section offset map during EXIDX section fix-up.
1318 // If there is no map, create one. INPUT_OFFSET is the offset of a
1319 // reference point, DELETED_BYTES is the number of deleted by in the
1320 // section so far. If DELETE_ENTRY is true, the reference point and
1321 // all offsets after the previous reference point are discarded.
1323 update_offset_map(section_offset_type input_offset,
1324 section_size_type deleted_bytes, bool delete_entry);
1326 // EXIDX output section.
1327 Output_section* exidx_output_section_;
1328 // Unwind type of the last EXIDX entry processed.
1329 Unwind_type last_unwind_type_;
1330 // Last seen inlined EXIDX entry.
1331 uint32_t last_inlined_entry_;
1332 // Last processed EXIDX input section.
1333 const Arm_exidx_input_section* last_input_section_;
1334 // Section offset map created in process_exidx_section.
1335 Arm_exidx_section_offset_map* section_offset_map_;
1336 // Output section for the text section which is linked to the first exidx
1338 Output_section* first_output_text_section_;
1340 bool merge_exidx_entries_;
1343 // Arm output section class. This is defined mainly to add a number of
1344 // stub generation methods.
1346 template<bool big_endian>
1347 class Arm_output_section : public Output_section
1350 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1352 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1353 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1354 elfcpp::Elf_Xword flags)
1355 : Output_section(name, type,
1356 (type == elfcpp::SHT_ARM_EXIDX
1357 ? flags | elfcpp::SHF_LINK_ORDER
1360 if (type == elfcpp::SHT_ARM_EXIDX)
1361 this->set_always_keeps_input_sections();
1364 ~Arm_output_section()
1367 // Group input sections for stub generation.
1369 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1371 // Downcast a base pointer to an Arm_output_section pointer. This is
1372 // not type-safe but we only use Arm_output_section not the base class.
1373 static Arm_output_section<big_endian>*
1374 as_arm_output_section(Output_section* os)
1375 { return static_cast<Arm_output_section<big_endian>*>(os); }
1377 // Append all input text sections in this into LIST.
1379 append_text_sections_to_list(Text_section_list* list);
1381 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1382 // is a list of text input sections sorted in ascending order of their
1383 // output addresses.
1385 fix_exidx_coverage(Layout* layout,
1386 const Text_section_list& sorted_text_section,
1387 Symbol_table* symtab,
1388 bool merge_exidx_entries,
1391 // Link an EXIDX section into its corresponding text section.
1393 set_exidx_section_link();
1397 typedef Output_section::Input_section Input_section;
1398 typedef Output_section::Input_section_list Input_section_list;
1400 // Create a stub group.
1401 void create_stub_group(Input_section_list::const_iterator,
1402 Input_section_list::const_iterator,
1403 Input_section_list::const_iterator,
1404 Target_arm<big_endian>*,
1405 std::vector<Output_relaxed_input_section*>*,
1409 // Arm_exidx_input_section class. This represents an EXIDX input section.
1411 class Arm_exidx_input_section
1414 static const section_offset_type invalid_offset =
1415 static_cast<section_offset_type>(-1);
1417 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1418 unsigned int link, uint32_t size,
1419 uint32_t addralign, uint32_t text_size)
1420 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1421 addralign_(addralign), text_size_(text_size), has_errors_(false)
1424 ~Arm_exidx_input_section()
1427 // Accessors: This is a read-only class.
1429 // Return the object containing this EXIDX input section.
1432 { return this->relobj_; }
1434 // Return the section index of this EXIDX input section.
1437 { return this->shndx_; }
1439 // Return the section index of linked text section in the same object.
1442 { return this->link_; }
1444 // Return size of the EXIDX input section.
1447 { return this->size_; }
1449 // Return address alignment of EXIDX input section.
1452 { return this->addralign_; }
1454 // Return size of the associated text input section.
1457 { return this->text_size_; }
1459 // Whether there are any errors in the EXIDX input section.
1462 { return this->has_errors_; }
1464 // Set has-errors flag.
1467 { this->has_errors_ = true; }
1470 // Object containing this.
1472 // Section index of this.
1473 unsigned int shndx_;
1474 // text section linked to this in the same object.
1476 // Size of this. For ARM 32-bit is sufficient.
1478 // Address alignment of this. For ARM 32-bit is sufficient.
1479 uint32_t addralign_;
1480 // Size of associated text section.
1481 uint32_t text_size_;
1482 // Whether this has any errors.
1486 // Arm_relobj class.
1488 template<bool big_endian>
1489 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1492 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1494 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1495 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1496 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1497 stub_tables_(), local_symbol_is_thumb_function_(),
1498 attributes_section_data_(NULL), mapping_symbols_info_(),
1499 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1500 output_local_symbol_count_needs_update_(false),
1501 merge_flags_and_attributes_(true)
1505 { delete this->attributes_section_data_; }
1507 // Return the stub table of the SHNDX-th section if there is one.
1508 Stub_table<big_endian>*
1509 stub_table(unsigned int shndx) const
1511 gold_assert(shndx < this->stub_tables_.size());
1512 return this->stub_tables_[shndx];
1515 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1517 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1519 gold_assert(shndx < this->stub_tables_.size());
1520 this->stub_tables_[shndx] = stub_table;
1523 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1524 // index. This is only valid after do_count_local_symbol is called.
1526 local_symbol_is_thumb_function(unsigned int r_sym) const
1528 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1529 return this->local_symbol_is_thumb_function_[r_sym];
1532 // Scan all relocation sections for stub generation.
1534 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1537 // Convert regular input section with index SHNDX to a relaxed section.
1539 convert_input_section_to_relaxed_section(unsigned shndx)
1541 // The stubs have relocations and we need to process them after writing
1542 // out the stubs. So relocation now must follow section write.
1543 this->set_section_offset(shndx, -1ULL);
1544 this->set_relocs_must_follow_section_writes();
1547 // Downcast a base pointer to an Arm_relobj pointer. This is
1548 // not type-safe but we only use Arm_relobj not the base class.
1549 static Arm_relobj<big_endian>*
1550 as_arm_relobj(Relobj* relobj)
1551 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1553 // Processor-specific flags in ELF file header. This is valid only after
1556 processor_specific_flags() const
1557 { return this->processor_specific_flags_; }
1559 // Attribute section data This is the contents of the .ARM.attribute section
1561 const Attributes_section_data*
1562 attributes_section_data() const
1563 { return this->attributes_section_data_; }
1565 // Mapping symbol location.
1566 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1568 // Functor for STL container.
1569 struct Mapping_symbol_position_less
1572 operator()(const Mapping_symbol_position& p1,
1573 const Mapping_symbol_position& p2) const
1575 return (p1.first < p2.first
1576 || (p1.first == p2.first && p1.second < p2.second));
1580 // We only care about the first character of a mapping symbol, so
1581 // we only store that instead of the whole symbol name.
1582 typedef std::map<Mapping_symbol_position, char,
1583 Mapping_symbol_position_less> Mapping_symbols_info;
1585 // Whether a section contains any Cortex-A8 workaround.
1587 section_has_cortex_a8_workaround(unsigned int shndx) const
1589 return (this->section_has_cortex_a8_workaround_ != NULL
1590 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1593 // Mark a section that has Cortex-A8 workaround.
1595 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1597 if (this->section_has_cortex_a8_workaround_ == NULL)
1598 this->section_has_cortex_a8_workaround_ =
1599 new std::vector<bool>(this->shnum(), false);
1600 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1603 // Return the EXIDX section of an text section with index SHNDX or NULL
1604 // if the text section has no associated EXIDX section.
1605 const Arm_exidx_input_section*
1606 exidx_input_section_by_link(unsigned int shndx) const
1608 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609 return ((p != this->exidx_section_map_.end()
1610 && p->second->link() == shndx)
1615 // Return the EXIDX section with index SHNDX or NULL if there is none.
1616 const Arm_exidx_input_section*
1617 exidx_input_section_by_shndx(unsigned shndx) const
1619 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1620 return ((p != this->exidx_section_map_.end()
1621 && p->second->shndx() == shndx)
1626 // Whether output local symbol count needs updating.
1628 output_local_symbol_count_needs_update() const
1629 { return this->output_local_symbol_count_needs_update_; }
1631 // Set output_local_symbol_count_needs_update flag to be true.
1633 set_output_local_symbol_count_needs_update()
1634 { this->output_local_symbol_count_needs_update_ = true; }
1636 // Update output local symbol count at the end of relaxation.
1638 update_output_local_symbol_count();
1640 // Whether we want to merge processor-specific flags and attributes.
1642 merge_flags_and_attributes() const
1643 { return this->merge_flags_and_attributes_; }
1645 // Export list of EXIDX section indices.
1647 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1650 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1651 p != this->exidx_section_map_.end();
1654 if (p->second->shndx() == p->first)
1655 list->push_back(p->first);
1657 // Sort list to make result independent of implementation of map.
1658 std::sort(list->begin(), list->end());
1662 // Post constructor setup.
1666 // Call parent's setup method.
1667 Sized_relobj_file<32, big_endian>::do_setup();
1669 // Initialize look-up tables.
1670 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1671 this->stub_tables_.swap(empty_stub_table_list);
1674 // Count the local symbols.
1676 do_count_local_symbols(Stringpool_template<char>*,
1677 Stringpool_template<char>*);
1680 do_relocate_sections(
1681 const Symbol_table* symtab, const Layout* layout,
1682 const unsigned char* pshdrs, Output_file* of,
1683 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1685 // Read the symbol information.
1687 do_read_symbols(Read_symbols_data* sd);
1689 // Process relocs for garbage collection.
1691 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1695 // Whether a section needs to be scanned for relocation stubs.
1697 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1698 const Relobj::Output_sections&,
1699 const Symbol_table*, const unsigned char*);
1701 // Whether a section is a scannable text section.
1703 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1704 const Output_section*, const Symbol_table*);
1706 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1708 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1709 unsigned int, Output_section*,
1710 const Symbol_table*);
1712 // Scan a section for the Cortex-A8 erratum.
1714 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1715 unsigned int, Output_section*,
1716 Target_arm<big_endian>*);
1718 // Find the linked text section of an EXIDX section by looking at the
1719 // first relocation of the EXIDX section. PSHDR points to the section
1720 // headers of a relocation section and PSYMS points to the local symbols.
1721 // PSHNDX points to a location storing the text section index if found.
1722 // Return whether we can find the linked section.
1724 find_linked_text_section(const unsigned char* pshdr,
1725 const unsigned char* psyms, unsigned int* pshndx);
1728 // Make a new Arm_exidx_input_section object for EXIDX section with
1729 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1730 // index of the linked text section.
1732 make_exidx_input_section(unsigned int shndx,
1733 const elfcpp::Shdr<32, big_endian>& shdr,
1734 unsigned int text_shndx,
1735 const elfcpp::Shdr<32, big_endian>& text_shdr);
1737 // Return the output address of either a plain input section or a
1738 // relaxed input section. SHNDX is the section index.
1740 simple_input_section_output_address(unsigned int, Output_section*);
1742 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1743 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1746 // List of stub tables.
1747 Stub_table_list stub_tables_;
1748 // Bit vector to tell if a local symbol is a thumb function or not.
1749 // This is only valid after do_count_local_symbol is called.
1750 std::vector<bool> local_symbol_is_thumb_function_;
1751 // processor-specific flags in ELF file header.
1752 elfcpp::Elf_Word processor_specific_flags_;
1753 // Object attributes if there is an .ARM.attributes section or NULL.
1754 Attributes_section_data* attributes_section_data_;
1755 // Mapping symbols information.
1756 Mapping_symbols_info mapping_symbols_info_;
1757 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1758 std::vector<bool>* section_has_cortex_a8_workaround_;
1759 // Map a text section to its associated .ARM.exidx section, if there is one.
1760 Exidx_section_map exidx_section_map_;
1761 // Whether output local symbol count needs updating.
1762 bool output_local_symbol_count_needs_update_;
1763 // Whether we merge processor flags and attributes of this object to
1765 bool merge_flags_and_attributes_;
1768 // Arm_dynobj class.
1770 template<bool big_endian>
1771 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1774 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1775 const elfcpp::Ehdr<32, big_endian>& ehdr)
1776 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1777 processor_specific_flags_(0), attributes_section_data_(NULL)
1781 { delete this->attributes_section_data_; }
1783 // Downcast a base pointer to an Arm_relobj pointer. This is
1784 // not type-safe but we only use Arm_relobj not the base class.
1785 static Arm_dynobj<big_endian>*
1786 as_arm_dynobj(Dynobj* dynobj)
1787 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1789 // Processor-specific flags in ELF file header. This is valid only after
1792 processor_specific_flags() const
1793 { return this->processor_specific_flags_; }
1795 // Attributes section data.
1796 const Attributes_section_data*
1797 attributes_section_data() const
1798 { return this->attributes_section_data_; }
1801 // Read the symbol information.
1803 do_read_symbols(Read_symbols_data* sd);
1806 // processor-specific flags in ELF file header.
1807 elfcpp::Elf_Word processor_specific_flags_;
1808 // Object attributes if there is an .ARM.attributes section or NULL.
1809 Attributes_section_data* attributes_section_data_;
1812 // Functor to read reloc addends during stub generation.
1814 template<int sh_type, bool big_endian>
1815 struct Stub_addend_reader
1817 // Return the addend for a relocation of a particular type. Depending
1818 // on whether this is a REL or RELA relocation, read the addend from a
1819 // view or from a Reloc object.
1820 elfcpp::Elf_types<32>::Elf_Swxword
1822 unsigned int /* r_type */,
1823 const unsigned char* /* view */,
1824 const typename Reloc_types<sh_type,
1825 32, big_endian>::Reloc& /* reloc */) const;
1828 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1830 template<bool big_endian>
1831 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1833 elfcpp::Elf_types<32>::Elf_Swxword
1836 const unsigned char*,
1837 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1840 // Specialized Stub_addend_reader for RELA type relocation sections.
1841 // We currently do not handle RELA type relocation sections but it is trivial
1842 // to implement the addend reader. This is provided for completeness and to
1843 // make it easier to add support for RELA relocation sections in the future.
1845 template<bool big_endian>
1846 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1848 elfcpp::Elf_types<32>::Elf_Swxword
1851 const unsigned char*,
1852 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1853 big_endian>::Reloc& reloc) const
1854 { return reloc.get_r_addend(); }
1857 // Cortex_a8_reloc class. We keep record of relocation that may need
1858 // the Cortex-A8 erratum workaround.
1860 class Cortex_a8_reloc
1863 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1864 Arm_address destination)
1865 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1871 // Accessors: This is a read-only class.
1873 // Return the relocation stub associated with this relocation if there is
1877 { return this->reloc_stub_; }
1879 // Return the relocation type.
1882 { return this->r_type_; }
1884 // Return the destination address of the relocation. LSB stores the THUMB
1888 { return this->destination_; }
1891 // Associated relocation stub if there is one, or NULL.
1892 const Reloc_stub* reloc_stub_;
1894 unsigned int r_type_;
1895 // Destination address of this relocation. LSB is used to distinguish
1897 Arm_address destination_;
1900 // Arm_output_data_got class. We derive this from Output_data_got to add
1901 // extra methods to handle TLS relocations in a static link.
1903 template<bool big_endian>
1904 class Arm_output_data_got : public Output_data_got<32, big_endian>
1907 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1908 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1911 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1912 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1913 // applied in a static link.
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1916 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1918 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1919 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1920 // relocation that needs to be applied in a static link.
1922 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1923 Sized_relobj_file<32, big_endian>* relobj,
1926 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1930 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1931 // The first one is initialized to be 1, which is the module index for
1932 // the main executable and the second one 0. A reloc of the type
1933 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1934 // be applied by gold. GSYM is a global symbol.
1936 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1938 // Same as the above but for a local symbol in OBJECT with INDEX.
1940 add_tls_gd32_with_static_reloc(unsigned int got_type,
1941 Sized_relobj_file<32, big_endian>* object,
1942 unsigned int index);
1945 // Write out the GOT table.
1947 do_write(Output_file*);
1950 // This class represent dynamic relocations that need to be applied by
1951 // gold because we are using TLS relocations in a static link.
1955 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1956 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1957 { this->u_.global.symbol = gsym; }
1959 Static_reloc(unsigned int got_offset, unsigned int r_type,
1960 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1961 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1963 this->u_.local.relobj = relobj;
1964 this->u_.local.index = index;
1967 // Return the GOT offset.
1970 { return this->got_offset_; }
1975 { return this->r_type_; }
1977 // Whether the symbol is global or not.
1979 symbol_is_global() const
1980 { return this->symbol_is_global_; }
1982 // For a relocation against a global symbol, the global symbol.
1986 gold_assert(this->symbol_is_global_);
1987 return this->u_.global.symbol;
1990 // For a relocation against a local symbol, the defining object.
1991 Sized_relobj_file<32, big_endian>*
1994 gold_assert(!this->symbol_is_global_);
1995 return this->u_.local.relobj;
1998 // For a relocation against a local symbol, the local symbol index.
2002 gold_assert(!this->symbol_is_global_);
2003 return this->u_.local.index;
2007 // GOT offset of the entry to which this relocation is applied.
2008 unsigned int got_offset_;
2009 // Type of relocation.
2010 unsigned int r_type_;
2011 // Whether this relocation is against a global symbol.
2012 bool symbol_is_global_;
2013 // A global or local symbol.
2018 // For a global symbol, the symbol itself.
2023 // For a local symbol, the object defining object.
2024 Sized_relobj_file<32, big_endian>* relobj;
2025 // For a local symbol, the symbol index.
2031 // Symbol table of the output object.
2032 Symbol_table* symbol_table_;
2033 // Layout of the output object.
2035 // Static relocs to be applied to the GOT.
2036 std::vector<Static_reloc> static_relocs_;
2039 // The ARM target has many relocation types with odd-sizes or noncontiguous
2040 // bits. The default handling of relocatable relocation cannot process these
2041 // relocations. So we have to extend the default code.
2043 template<bool big_endian, typename Classify_reloc>
2044 class Arm_scan_relocatable_relocs :
2045 public Default_scan_relocatable_relocs<Classify_reloc>
2048 // Return the strategy to use for a local symbol which is a section
2049 // symbol, given the relocation type.
2050 inline Relocatable_relocs::Reloc_strategy
2051 local_section_strategy(unsigned int r_type, Relobj*)
2053 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2054 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2057 if (r_type == elfcpp::R_ARM_TARGET1
2058 || r_type == elfcpp::R_ARM_TARGET2)
2060 const Target_arm<big_endian>* arm_target =
2061 Target_arm<big_endian>::default_target();
2062 r_type = arm_target->get_real_reloc_type(r_type);
2067 // Relocations that write nothing. These exclude R_ARM_TARGET1
2068 // and R_ARM_TARGET2.
2069 case elfcpp::R_ARM_NONE:
2070 case elfcpp::R_ARM_V4BX:
2071 case elfcpp::R_ARM_TLS_GOTDESC:
2072 case elfcpp::R_ARM_TLS_CALL:
2073 case elfcpp::R_ARM_TLS_DESCSEQ:
2074 case elfcpp::R_ARM_THM_TLS_CALL:
2075 case elfcpp::R_ARM_GOTRELAX:
2076 case elfcpp::R_ARM_GNU_VTENTRY:
2077 case elfcpp::R_ARM_GNU_VTINHERIT:
2078 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2079 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2080 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2081 // These should have been converted to something else above.
2082 case elfcpp::R_ARM_TARGET1:
2083 case elfcpp::R_ARM_TARGET2:
2085 // Relocations that write full 32 bits and
2086 // have alignment of 1.
2087 case elfcpp::R_ARM_ABS32:
2088 case elfcpp::R_ARM_REL32:
2089 case elfcpp::R_ARM_SBREL32:
2090 case elfcpp::R_ARM_GOTOFF32:
2091 case elfcpp::R_ARM_BASE_PREL:
2092 case elfcpp::R_ARM_GOT_BREL:
2093 case elfcpp::R_ARM_BASE_ABS:
2094 case elfcpp::R_ARM_ABS32_NOI:
2095 case elfcpp::R_ARM_REL32_NOI:
2096 case elfcpp::R_ARM_PLT32_ABS:
2097 case elfcpp::R_ARM_GOT_ABS:
2098 case elfcpp::R_ARM_GOT_PREL:
2099 case elfcpp::R_ARM_TLS_GD32:
2100 case elfcpp::R_ARM_TLS_LDM32:
2101 case elfcpp::R_ARM_TLS_LDO32:
2102 case elfcpp::R_ARM_TLS_IE32:
2103 case elfcpp::R_ARM_TLS_LE32:
2104 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2106 // For all other static relocations, return RELOC_SPECIAL.
2107 return Relocatable_relocs::RELOC_SPECIAL;
2113 template<bool big_endian>
2114 class Target_arm : public Sized_target<32, big_endian>
2117 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2120 // When were are relocating a stub, we pass this as the relocation number.
2121 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2123 Target_arm(const Target::Target_info* info = &arm_info)
2124 : Sized_target<32, big_endian>(info),
2125 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2126 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2127 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2128 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2129 should_force_pic_veneer_(false),
2130 arm_input_section_map_(), attributes_section_data_(NULL),
2131 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2134 // Whether we force PCI branch veneers.
2136 should_force_pic_veneer() const
2137 { return this->should_force_pic_veneer_; }
2139 // Set PIC veneer flag.
2141 set_should_force_pic_veneer(bool value)
2142 { this->should_force_pic_veneer_ = value; }
2144 // Whether we use THUMB-2 instructions.
2146 using_thumb2() const
2148 Object_attribute* attr =
2149 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2150 int arch = attr->int_value();
2151 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2154 // Whether we use THUMB/THUMB-2 instructions only.
2156 using_thumb_only() const
2158 Object_attribute* attr =
2159 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2161 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2162 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2164 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2165 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2167 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2168 return attr->int_value() == 'M';
2171 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2173 may_use_arm_nop() const
2175 Object_attribute* attr =
2176 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2177 int arch = attr->int_value();
2178 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2179 || arch == elfcpp::TAG_CPU_ARCH_V6K
2180 || arch == elfcpp::TAG_CPU_ARCH_V7
2181 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2184 // Whether we have THUMB-2 NOP.W instruction.
2186 may_use_thumb2_nop() const
2188 Object_attribute* attr =
2189 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2190 int arch = attr->int_value();
2191 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2192 || arch == elfcpp::TAG_CPU_ARCH_V7
2193 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2196 // Whether we have v4T interworking instructions available.
2198 may_use_v4t_interworking() const
2200 Object_attribute* attr =
2201 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2202 int arch = attr->int_value();
2203 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2204 && arch != elfcpp::TAG_CPU_ARCH_V4);
2207 // Whether we have v5T interworking instructions available.
2209 may_use_v5t_interworking() const
2211 Object_attribute* attr =
2212 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2213 int arch = attr->int_value();
2214 if (parameters->options().fix_arm1176())
2215 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2216 || arch == elfcpp::TAG_CPU_ARCH_V7
2217 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2218 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2219 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2221 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2222 && arch != elfcpp::TAG_CPU_ARCH_V4
2223 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2226 // Process the relocations to determine unreferenced sections for
2227 // garbage collection.
2229 gc_process_relocs(Symbol_table* symtab,
2231 Sized_relobj_file<32, big_endian>* object,
2232 unsigned int data_shndx,
2233 unsigned int sh_type,
2234 const unsigned char* prelocs,
2236 Output_section* output_section,
2237 bool needs_special_offset_handling,
2238 size_t local_symbol_count,
2239 const unsigned char* plocal_symbols);
2241 // Scan the relocations to look for symbol adjustments.
2243 scan_relocs(Symbol_table* symtab,
2245 Sized_relobj_file<32, big_endian>* object,
2246 unsigned int data_shndx,
2247 unsigned int sh_type,
2248 const unsigned char* prelocs,
2250 Output_section* output_section,
2251 bool needs_special_offset_handling,
2252 size_t local_symbol_count,
2253 const unsigned char* plocal_symbols);
2255 // Finalize the sections.
2257 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2259 // Return the value to use for a dynamic symbol which requires special
2262 do_dynsym_value(const Symbol*) const;
2264 // Return the plt address for globals. Since we have irelative plt entries,
2265 // address calculation is not as straightforward as plt_address + plt_offset.
2267 do_plt_address_for_global(const Symbol* gsym) const
2268 { return this->plt_section()->address_for_global(gsym); }
2270 // Return the plt address for locals. Since we have irelative plt entries,
2271 // address calculation is not as straightforward as plt_address + plt_offset.
2273 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2274 { return this->plt_section()->address_for_local(relobj, symndx); }
2276 // Relocate a section.
2278 relocate_section(const Relocate_info<32, big_endian>*,
2279 unsigned int sh_type,
2280 const unsigned char* prelocs,
2282 Output_section* output_section,
2283 bool needs_special_offset_handling,
2284 unsigned char* view,
2285 Arm_address view_address,
2286 section_size_type view_size,
2287 const Reloc_symbol_changes*);
2289 // Scan the relocs during a relocatable link.
2291 scan_relocatable_relocs(Symbol_table* symtab,
2293 Sized_relobj_file<32, big_endian>* object,
2294 unsigned int data_shndx,
2295 unsigned int sh_type,
2296 const unsigned char* prelocs,
2298 Output_section* output_section,
2299 bool needs_special_offset_handling,
2300 size_t local_symbol_count,
2301 const unsigned char* plocal_symbols,
2302 Relocatable_relocs*);
2304 // Scan the relocs for --emit-relocs.
2306 emit_relocs_scan(Symbol_table* symtab,
2308 Sized_relobj_file<32, big_endian>* object,
2309 unsigned int data_shndx,
2310 unsigned int sh_type,
2311 const unsigned char* prelocs,
2313 Output_section* output_section,
2314 bool needs_special_offset_handling,
2315 size_t local_symbol_count,
2316 const unsigned char* plocal_syms,
2317 Relocatable_relocs* rr);
2319 // Emit relocations for a section.
2321 relocate_relocs(const Relocate_info<32, big_endian>*,
2322 unsigned int sh_type,
2323 const unsigned char* prelocs,
2325 Output_section* output_section,
2326 typename elfcpp::Elf_types<32>::Elf_Off
2327 offset_in_output_section,
2328 unsigned char* view,
2329 Arm_address view_address,
2330 section_size_type view_size,
2331 unsigned char* reloc_view,
2332 section_size_type reloc_view_size);
2334 // Perform target-specific processing in a relocatable link. This is
2335 // only used if we use the relocation strategy RELOC_SPECIAL.
2337 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2338 unsigned int sh_type,
2339 const unsigned char* preloc_in,
2341 Output_section* output_section,
2342 typename elfcpp::Elf_types<32>::Elf_Off
2343 offset_in_output_section,
2344 unsigned char* view,
2345 typename elfcpp::Elf_types<32>::Elf_Addr
2347 section_size_type view_size,
2348 unsigned char* preloc_out);
2350 // Return whether SYM is defined by the ABI.
2352 do_is_defined_by_abi(const Symbol* sym) const
2353 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2355 // Return whether there is a GOT section.
2357 has_got_section() const
2358 { return this->got_ != NULL; }
2360 // Return the size of the GOT section.
2364 gold_assert(this->got_ != NULL);
2365 return this->got_->data_size();
2368 // Return the number of entries in the GOT.
2370 got_entry_count() const
2372 if (!this->has_got_section())
2374 return this->got_size() / 4;
2377 // Return the number of entries in the PLT.
2379 plt_entry_count() const;
2381 // Return the offset of the first non-reserved PLT entry.
2383 first_plt_entry_offset() const;
2385 // Return the size of each PLT entry.
2387 plt_entry_size() const;
2389 // Get the section to use for IRELATIVE relocations, create it if necessary.
2391 rel_irelative_section(Layout*);
2393 // Map platform-specific reloc types
2395 get_real_reloc_type(unsigned int r_type);
2398 // Methods to support stub-generations.
2401 // Return the stub factory
2403 stub_factory() const
2404 { return this->stub_factory_; }
2406 // Make a new Arm_input_section object.
2407 Arm_input_section<big_endian>*
2408 new_arm_input_section(Relobj*, unsigned int);
2410 // Find the Arm_input_section object corresponding to the SHNDX-th input
2411 // section of RELOBJ.
2412 Arm_input_section<big_endian>*
2413 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2415 // Make a new Stub_table
2416 Stub_table<big_endian>*
2417 new_stub_table(Arm_input_section<big_endian>*);
2419 // Scan a section for stub generation.
2421 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2422 const unsigned char*, size_t, Output_section*,
2423 bool, const unsigned char*, Arm_address,
2428 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2429 Output_section*, unsigned char*, Arm_address,
2432 // Get the default ARM target.
2433 static Target_arm<big_endian>*
2436 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2437 && parameters->target().is_big_endian() == big_endian);
2438 return static_cast<Target_arm<big_endian>*>(
2439 parameters->sized_target<32, big_endian>());
2442 // Whether NAME belongs to a mapping symbol.
2444 is_mapping_symbol_name(const char* name)
2448 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2449 && (name[2] == '\0' || name[2] == '.'));
2452 // Whether we work around the Cortex-A8 erratum.
2454 fix_cortex_a8() const
2455 { return this->fix_cortex_a8_; }
2457 // Whether we merge exidx entries in debuginfo.
2459 merge_exidx_entries() const
2460 { return parameters->options().merge_exidx_entries(); }
2462 // Whether we fix R_ARM_V4BX relocation.
2464 // 1 - replace with MOV instruction (armv4 target)
2465 // 2 - make interworking veneer (>= armv4t targets only)
2466 General_options::Fix_v4bx
2468 { return parameters->options().fix_v4bx(); }
2470 // Scan a span of THUMB code section for Cortex-A8 erratum.
2472 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2473 section_size_type, section_size_type,
2474 const unsigned char*, Arm_address);
2476 // Apply Cortex-A8 workaround to a branch.
2478 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2479 unsigned char*, Arm_address);
2482 // Make the PLT-generator object.
2483 Output_data_plt_arm<big_endian>*
2484 make_data_plt(Layout* layout,
2485 Arm_output_data_got<big_endian>* got,
2486 Output_data_space* got_plt,
2487 Output_data_space* got_irelative)
2488 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2490 // Make an ELF object.
2492 do_make_elf_object(const std::string&, Input_file*, off_t,
2493 const elfcpp::Ehdr<32, big_endian>& ehdr);
2496 do_make_elf_object(const std::string&, Input_file*, off_t,
2497 const elfcpp::Ehdr<32, !big_endian>&)
2498 { gold_unreachable(); }
2501 do_make_elf_object(const std::string&, Input_file*, off_t,
2502 const elfcpp::Ehdr<64, false>&)
2503 { gold_unreachable(); }
2506 do_make_elf_object(const std::string&, Input_file*, off_t,
2507 const elfcpp::Ehdr<64, true>&)
2508 { gold_unreachable(); }
2510 // Make an output section.
2512 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2513 elfcpp::Elf_Xword flags)
2514 { return new Arm_output_section<big_endian>(name, type, flags); }
2517 do_adjust_elf_header(unsigned char* view, int len);
2519 // We only need to generate stubs, and hence perform relaxation if we are
2520 // not doing relocatable linking.
2522 do_may_relax() const
2523 { return !parameters->options().relocatable(); }
2526 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2528 // Determine whether an object attribute tag takes an integer, a
2531 do_attribute_arg_type(int tag) const;
2533 // Reorder tags during output.
2535 do_attributes_order(int num) const;
2537 // This is called when the target is selected as the default.
2539 do_select_as_default_target()
2541 // No locking is required since there should only be one default target.
2542 // We cannot have both the big-endian and little-endian ARM targets
2544 gold_assert(arm_reloc_property_table == NULL);
2545 arm_reloc_property_table = new Arm_reloc_property_table();
2548 // Virtual function which is set to return true by a target if
2549 // it can use relocation types to determine if a function's
2550 // pointer is taken.
2552 do_can_check_for_function_pointers() const
2555 // Whether a section called SECTION_NAME may have function pointers to
2556 // sections not eligible for safe ICF folding.
2558 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2560 return (!is_prefix_of(".ARM.exidx", section_name)
2561 && !is_prefix_of(".ARM.extab", section_name)
2562 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2566 do_define_standard_symbols(Symbol_table*, Layout*);
2568 virtual Output_data_plt_arm<big_endian>*
2569 do_make_data_plt(Layout* layout,
2570 Arm_output_data_got<big_endian>* got,
2571 Output_data_space* got_plt,
2572 Output_data_space* got_irelative)
2574 gold_assert(got_plt != NULL && got_irelative != NULL);
2575 if (parameters->options().long_plt())
2576 return new Output_data_plt_arm_long<big_endian>(
2577 layout, got, got_plt, got_irelative);
2579 return new Output_data_plt_arm_short<big_endian>(
2580 layout, got, got_plt, got_irelative);
2584 // The class which scans relocations.
2589 : issued_non_pic_error_(false)
2593 get_reference_flags(unsigned int r_type);
2596 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2597 Sized_relobj_file<32, big_endian>* object,
2598 unsigned int data_shndx,
2599 Output_section* output_section,
2600 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2601 const elfcpp::Sym<32, big_endian>& lsym,
2605 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2606 Sized_relobj_file<32, big_endian>* object,
2607 unsigned int data_shndx,
2608 Output_section* output_section,
2609 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2613 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2614 Sized_relobj_file<32, big_endian>* ,
2617 const elfcpp::Rel<32, big_endian>& ,
2619 const elfcpp::Sym<32, big_endian>&);
2622 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2623 Sized_relobj_file<32, big_endian>* ,
2626 const elfcpp::Rel<32, big_endian>& ,
2627 unsigned int , Symbol*);
2631 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2632 unsigned int r_type);
2635 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2636 unsigned int r_type, Symbol*);
2639 check_non_pic(Relobj*, unsigned int r_type);
2641 // Almost identical to Symbol::needs_plt_entry except that it also
2642 // handles STT_ARM_TFUNC.
2644 symbol_needs_plt_entry(const Symbol* sym)
2646 // An undefined symbol from an executable does not need a PLT entry.
2647 if (sym->is_undefined() && !parameters->options().shared())
2650 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2653 return (!parameters->doing_static_link()
2654 && (sym->type() == elfcpp::STT_FUNC
2655 || sym->type() == elfcpp::STT_ARM_TFUNC)
2656 && (sym->is_from_dynobj()
2657 || sym->is_undefined()
2658 || sym->is_preemptible()));
2662 possible_function_pointer_reloc(unsigned int r_type);
2664 // Whether a plt entry is needed for ifunc.
2666 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2667 unsigned int r_type);
2669 // Whether we have issued an error about a non-PIC compilation.
2670 bool issued_non_pic_error_;
2673 // The class which implements relocation.
2683 // Return whether the static relocation needs to be applied.
2685 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2686 unsigned int r_type,
2688 Output_section* output_section);
2690 // Do a relocation. Return false if the caller should not issue
2691 // any warnings about this relocation.
2693 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2694 Target_arm*, Output_section*, size_t, const unsigned char*,
2695 const Sized_symbol<32>*, const Symbol_value<32>*,
2696 unsigned char*, Arm_address, section_size_type);
2698 // Return whether we want to pass flag NON_PIC_REF for this
2699 // reloc. This means the relocation type accesses a symbol not via
2702 reloc_is_non_pic(unsigned int r_type)
2706 // These relocation types reference GOT or PLT entries explicitly.
2707 case elfcpp::R_ARM_GOT_BREL:
2708 case elfcpp::R_ARM_GOT_ABS:
2709 case elfcpp::R_ARM_GOT_PREL:
2710 case elfcpp::R_ARM_GOT_BREL12:
2711 case elfcpp::R_ARM_PLT32_ABS:
2712 case elfcpp::R_ARM_TLS_GD32:
2713 case elfcpp::R_ARM_TLS_LDM32:
2714 case elfcpp::R_ARM_TLS_IE32:
2715 case elfcpp::R_ARM_TLS_IE12GP:
2717 // These relocate types may use PLT entries.
2718 case elfcpp::R_ARM_CALL:
2719 case elfcpp::R_ARM_THM_CALL:
2720 case elfcpp::R_ARM_JUMP24:
2721 case elfcpp::R_ARM_THM_JUMP24:
2722 case elfcpp::R_ARM_THM_JUMP19:
2723 case elfcpp::R_ARM_PLT32:
2724 case elfcpp::R_ARM_THM_XPC22:
2725 case elfcpp::R_ARM_PREL31:
2726 case elfcpp::R_ARM_SBREL31:
2735 // Do a TLS relocation.
2736 inline typename Arm_relocate_functions<big_endian>::Status
2737 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2738 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2739 const Sized_symbol<32>*, const Symbol_value<32>*,
2740 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2745 // A class for inquiring about properties of a relocation,
2746 // used while scanning relocs during a relocatable link and
2747 // garbage collection.
2748 class Classify_reloc :
2749 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
2752 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
2755 // Return the explicit addend of the relocation (return 0 for SHT_REL).
2756 static typename elfcpp::Elf_types<32>::Elf_Swxword
2757 get_r_addend(const Reltype*)
2760 // Return the size of the addend of the relocation (only used for SHT_REL).
2762 get_size_for_reloc(unsigned int, Relobj*);
2765 // Adjust TLS relocation type based on the options and whether this
2766 // is a local symbol.
2767 static tls::Tls_optimization
2768 optimize_tls_reloc(bool is_final, int r_type);
2770 // Get the GOT section, creating it if necessary.
2771 Arm_output_data_got<big_endian>*
2772 got_section(Symbol_table*, Layout*);
2774 // Get the GOT PLT section.
2776 got_plt_section() const
2778 gold_assert(this->got_plt_ != NULL);
2779 return this->got_plt_;
2782 // Create the PLT section.
2784 make_plt_section(Symbol_table* symtab, Layout* layout);
2786 // Create a PLT entry for a global symbol.
2788 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2790 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2792 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2793 Sized_relobj_file<32, big_endian>* relobj,
2794 unsigned int local_sym_index);
2796 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2798 define_tls_base_symbol(Symbol_table*, Layout*);
2800 // Create a GOT entry for the TLS module index.
2802 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2803 Sized_relobj_file<32, big_endian>* object);
2805 // Get the PLT section.
2806 const Output_data_plt_arm<big_endian>*
2809 gold_assert(this->plt_ != NULL);
2813 // Get the dynamic reloc section, creating it if necessary.
2815 rel_dyn_section(Layout*);
2817 // Get the section to use for TLS_DESC relocations.
2819 rel_tls_desc_section(Layout*) const;
2821 // Return true if the symbol may need a COPY relocation.
2822 // References from an executable object to non-function symbols
2823 // defined in a dynamic object may need a COPY relocation.
2825 may_need_copy_reloc(Symbol* gsym)
2827 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2828 && gsym->may_need_copy_reloc());
2831 // Add a potential copy relocation.
2833 copy_reloc(Symbol_table* symtab, Layout* layout,
2834 Sized_relobj_file<32, big_endian>* object,
2835 unsigned int shndx, Output_section* output_section,
2836 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2838 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
2839 this->copy_relocs_.copy_reloc(symtab, layout,
2840 symtab->get_sized_symbol<32>(sym),
2841 object, shndx, output_section,
2842 r_type, reloc.get_r_offset(), 0,
2843 this->rel_dyn_section(layout));
2846 // Whether two EABI versions are compatible.
2848 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2850 // Merge processor-specific flags from input object and those in the ELF
2851 // header of the output.
2853 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2855 // Get the secondary compatible architecture.
2857 get_secondary_compatible_arch(const Attributes_section_data*);
2859 // Set the secondary compatible architecture.
2861 set_secondary_compatible_arch(Attributes_section_data*, int);
2864 tag_cpu_arch_combine(const char*, int, int*, int, int);
2866 // Helper to print AEABI enum tag value.
2868 aeabi_enum_name(unsigned int);
2870 // Return string value for TAG_CPU_name.
2872 tag_cpu_name_value(unsigned int);
2874 // Query attributes object to see if integer divide instructions may be
2875 // present in an object.
2877 attributes_accept_div(int arch, int profile,
2878 const Object_attribute* div_attr);
2880 // Query attributes object to see if integer divide instructions are
2881 // forbidden to be in the object. This is not the inverse of
2882 // attributes_accept_div.
2884 attributes_forbid_div(const Object_attribute* div_attr);
2886 // Merge object attributes from input object and those in the output.
2888 merge_object_attributes(const char*, const Attributes_section_data*);
2890 // Helper to get an AEABI object attribute
2892 get_aeabi_object_attribute(int tag) const
2894 Attributes_section_data* pasd = this->attributes_section_data_;
2895 gold_assert(pasd != NULL);
2896 Object_attribute* attr =
2897 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2898 gold_assert(attr != NULL);
2903 // Methods to support stub-generations.
2906 // Group input sections for stub generation.
2908 group_sections(Layout*, section_size_type, bool, const Task*);
2910 // Scan a relocation for stub generation.
2912 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2913 const Sized_symbol<32>*, unsigned int,
2914 const Symbol_value<32>*,
2915 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2917 // Scan a relocation section for stub.
2918 template<int sh_type>
2920 scan_reloc_section_for_stubs(
2921 const Relocate_info<32, big_endian>* relinfo,
2922 const unsigned char* prelocs,
2924 Output_section* output_section,
2925 bool needs_special_offset_handling,
2926 const unsigned char* view,
2927 elfcpp::Elf_types<32>::Elf_Addr view_address,
2930 // Fix .ARM.exidx section coverage.
2932 fix_exidx_coverage(Layout*, const Input_objects*,
2933 Arm_output_section<big_endian>*, Symbol_table*,
2936 // Functors for STL set.
2937 struct output_section_address_less_than
2940 operator()(const Output_section* s1, const Output_section* s2) const
2941 { return s1->address() < s2->address(); }
2944 // Information about this specific target which we pass to the
2945 // general Target structure.
2946 static const Target::Target_info arm_info;
2948 // The types of GOT entries needed for this platform.
2949 // These values are exposed to the ABI in an incremental link.
2950 // Do not renumber existing values without changing the version
2951 // number of the .gnu_incremental_inputs section.
2954 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2955 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2956 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2957 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2958 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2961 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2963 // Map input section to Arm_input_section.
2964 typedef Unordered_map<Section_id,
2965 Arm_input_section<big_endian>*,
2967 Arm_input_section_map;
2969 // Map output addresses to relocs for Cortex-A8 erratum.
2970 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2971 Cortex_a8_relocs_info;
2974 Arm_output_data_got<big_endian>* got_;
2976 Output_data_plt_arm<big_endian>* plt_;
2977 // The GOT PLT section.
2978 Output_data_space* got_plt_;
2979 // The GOT section for IRELATIVE relocations.
2980 Output_data_space* got_irelative_;
2981 // The dynamic reloc section.
2982 Reloc_section* rel_dyn_;
2983 // The section to use for IRELATIVE relocs.
2984 Reloc_section* rel_irelative_;
2985 // Relocs saved to avoid a COPY reloc.
2986 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2987 // Offset of the GOT entry for the TLS module index.
2988 unsigned int got_mod_index_offset_;
2989 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2990 bool tls_base_symbol_defined_;
2991 // Vector of Stub_tables created.
2992 Stub_table_list stub_tables_;
2994 const Stub_factory &stub_factory_;
2995 // Whether we force PIC branch veneers.
2996 bool should_force_pic_veneer_;
2997 // Map for locating Arm_input_sections.
2998 Arm_input_section_map arm_input_section_map_;
2999 // Attributes section data in output.
3000 Attributes_section_data* attributes_section_data_;
3001 // Whether we want to fix code for Cortex-A8 erratum.
3002 bool fix_cortex_a8_;
3003 // Map addresses to relocs for Cortex-A8 erratum.
3004 Cortex_a8_relocs_info cortex_a8_relocs_info_;
3007 template<bool big_endian>
3008 const Target::Target_info Target_arm<big_endian>::arm_info =
3011 big_endian, // is_big_endian
3012 elfcpp::EM_ARM, // machine_code
3013 false, // has_make_symbol
3014 false, // has_resolve
3015 false, // has_code_fill
3016 true, // is_default_stack_executable
3017 false, // can_icf_inline_merge_sections
3019 "/usr/lib/libc.so.1", // dynamic_linker
3020 0x8000, // default_text_segment_address
3021 0x1000, // abi_pagesize (overridable by -z max-page-size)
3022 0x1000, // common_pagesize (overridable by -z common-page-size)
3023 false, // isolate_execinstr
3025 elfcpp::SHN_UNDEF, // small_common_shndx
3026 elfcpp::SHN_UNDEF, // large_common_shndx
3027 0, // small_common_section_flags
3028 0, // large_common_section_flags
3029 ".ARM.attributes", // attributes_section
3030 "aeabi", // attributes_vendor
3031 "_start", // entry_symbol_name
3032 32, // hash_entry_size
3035 // Arm relocate functions class
3038 template<bool big_endian>
3039 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3044 STATUS_OKAY, // No error during relocation.
3045 STATUS_OVERFLOW, // Relocation overflow.
3046 STATUS_BAD_RELOC // Relocation cannot be applied.
3050 typedef Relocate_functions<32, big_endian> Base;
3051 typedef Arm_relocate_functions<big_endian> This;
3053 // Encoding of imm16 argument for movt and movw ARM instructions
3056 // imm16 := imm4 | imm12
3058 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3059 // +-------+---------------+-------+-------+-----------------------+
3060 // | | |imm4 | |imm12 |
3061 // +-------+---------------+-------+-------+-----------------------+
3063 // Extract the relocation addend from VAL based on the ARM
3064 // instruction encoding described above.
3065 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3066 extract_arm_movw_movt_addend(
3067 typename elfcpp::Swap<32, big_endian>::Valtype val)
3069 // According to the Elf ABI for ARM Architecture the immediate
3070 // field is sign-extended to form the addend.
3071 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3074 // Insert X into VAL based on the ARM instruction encoding described
3076 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3077 insert_val_arm_movw_movt(
3078 typename elfcpp::Swap<32, big_endian>::Valtype val,
3079 typename elfcpp::Swap<32, big_endian>::Valtype x)
3083 val |= (x & 0xf000) << 4;
3087 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3090 // imm16 := imm4 | i | imm3 | imm8
3092 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3093 // +---------+-+-----------+-------++-+-----+-------+---------------+
3094 // | |i| |imm4 || |imm3 | |imm8 |
3095 // +---------+-+-----------+-------++-+-----+-------+---------------+
3097 // Extract the relocation addend from VAL based on the Thumb2
3098 // instruction encoding described above.
3099 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3100 extract_thumb_movw_movt_addend(
3101 typename elfcpp::Swap<32, big_endian>::Valtype val)
3103 // According to the Elf ABI for ARM Architecture the immediate
3104 // field is sign-extended to form the addend.
3105 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3106 | ((val >> 15) & 0x0800)
3107 | ((val >> 4) & 0x0700)
3111 // Insert X into VAL based on the Thumb2 instruction encoding
3113 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3114 insert_val_thumb_movw_movt(
3115 typename elfcpp::Swap<32, big_endian>::Valtype val,
3116 typename elfcpp::Swap<32, big_endian>::Valtype x)
3119 val |= (x & 0xf000) << 4;
3120 val |= (x & 0x0800) << 15;
3121 val |= (x & 0x0700) << 4;
3122 val |= (x & 0x00ff);
3126 // Calculate the smallest constant Kn for the specified residual.
3127 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3129 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3135 // Determine the most significant bit in the residual and
3136 // align the resulting value to a 2-bit boundary.
3137 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3139 // The desired shift is now (msb - 6), or zero, whichever
3141 return (((msb - 6) < 0) ? 0 : (msb - 6));
3144 // Calculate the final residual for the specified group index.
3145 // If the passed group index is less than zero, the method will return
3146 // the value of the specified residual without any change.
3147 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3148 static typename elfcpp::Swap<32, big_endian>::Valtype
3149 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3152 for (int n = 0; n <= group; n++)
3154 // Calculate which part of the value to mask.
3155 uint32_t shift = calc_grp_kn(residual);
3156 // Calculate the residual for the next time around.
3157 residual &= ~(residual & (0xff << shift));
3163 // Calculate the value of Gn for the specified group index.
3164 // We return it in the form of an encoded constant-and-rotation.
3165 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3166 static typename elfcpp::Swap<32, big_endian>::Valtype
3167 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3170 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3173 for (int n = 0; n <= group; n++)
3175 // Calculate which part of the value to mask.
3176 shift = calc_grp_kn(residual);
3177 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3178 gn = residual & (0xff << shift);
3179 // Calculate the residual for the next time around.
3182 // Return Gn in the form of an encoded constant-and-rotation.
3183 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3187 // Handle ARM long branches.
3188 static typename This::Status
3189 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3190 unsigned char*, const Sized_symbol<32>*,
3191 const Arm_relobj<big_endian>*, unsigned int,
3192 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3194 // Handle THUMB long branches.
3195 static typename This::Status
3196 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3197 unsigned char*, const Sized_symbol<32>*,
3198 const Arm_relobj<big_endian>*, unsigned int,
3199 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3202 // Return the branch offset of a 32-bit THUMB branch.
3203 static inline int32_t
3204 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3206 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3207 // involving the J1 and J2 bits.
3208 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3209 uint32_t upper = upper_insn & 0x3ffU;
3210 uint32_t lower = lower_insn & 0x7ffU;
3211 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3212 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3213 uint32_t i1 = j1 ^ s ? 0 : 1;
3214 uint32_t i2 = j2 ^ s ? 0 : 1;
3216 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3217 | (upper << 12) | (lower << 1));
3220 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3221 // UPPER_INSN is the original upper instruction of the branch. Caller is
3222 // responsible for overflow checking and BLX offset adjustment.
3223 static inline uint16_t
3224 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3226 uint32_t s = offset < 0 ? 1 : 0;
3227 uint32_t bits = static_cast<uint32_t>(offset);
3228 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3231 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3232 // LOWER_INSN is the original lower instruction of the branch. Caller is
3233 // responsible for overflow checking and BLX offset adjustment.
3234 static inline uint16_t
3235 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3237 uint32_t s = offset < 0 ? 1 : 0;
3238 uint32_t bits = static_cast<uint32_t>(offset);
3239 return ((lower_insn & ~0x2fffU)
3240 | ((((bits >> 23) & 1) ^ !s) << 13)
3241 | ((((bits >> 22) & 1) ^ !s) << 11)
3242 | ((bits >> 1) & 0x7ffU));
3245 // Return the branch offset of a 32-bit THUMB conditional branch.
3246 static inline int32_t
3247 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3249 uint32_t s = (upper_insn & 0x0400U) >> 10;
3250 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3251 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3252 uint32_t lower = (lower_insn & 0x07ffU);
3253 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3255 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3258 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3259 // instruction. UPPER_INSN is the original upper instruction of the branch.
3260 // Caller is responsible for overflow checking.
3261 static inline uint16_t
3262 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3264 uint32_t s = offset < 0 ? 1 : 0;
3265 uint32_t bits = static_cast<uint32_t>(offset);
3266 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3269 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3270 // instruction. LOWER_INSN is the original lower instruction of the branch.
3271 // The caller is responsible for overflow checking.
3272 static inline uint16_t
3273 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3275 uint32_t bits = static_cast<uint32_t>(offset);
3276 uint32_t j2 = (bits & 0x00080000U) >> 19;
3277 uint32_t j1 = (bits & 0x00040000U) >> 18;
3278 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3280 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3283 // R_ARM_ABS8: S + A
3284 static inline typename This::Status
3285 abs8(unsigned char* view,
3286 const Sized_relobj_file<32, big_endian>* object,
3287 const Symbol_value<32>* psymval)
3289 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3290 Valtype* wv = reinterpret_cast<Valtype*>(view);
3291 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3292 int32_t addend = Bits<8>::sign_extend32(val);
3293 Arm_address x = psymval->value(object, addend);
3294 val = Bits<32>::bit_select32(val, x, 0xffU);
3295 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3297 // R_ARM_ABS8 permits signed or unsigned results.
3298 return (Bits<8>::has_signed_unsigned_overflow32(x)
3299 ? This::STATUS_OVERFLOW
3300 : This::STATUS_OKAY);
3303 // R_ARM_THM_ABS5: S + A
3304 static inline typename This::Status
3305 thm_abs5(unsigned char* view,
3306 const Sized_relobj_file<32, big_endian>* object,
3307 const Symbol_value<32>* psymval)
3309 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3310 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3311 Valtype* wv = reinterpret_cast<Valtype*>(view);
3312 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3313 Reltype addend = (val & 0x7e0U) >> 6;
3314 Reltype x = psymval->value(object, addend);
3315 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3316 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3317 return (Bits<5>::has_overflow32(x)
3318 ? This::STATUS_OVERFLOW
3319 : This::STATUS_OKAY);
3322 // R_ARM_ABS12: S + A
3323 static inline typename This::Status
3324 abs12(unsigned char* view,
3325 const Sized_relobj_file<32, big_endian>* object,
3326 const Symbol_value<32>* psymval)
3328 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3329 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3330 Valtype* wv = reinterpret_cast<Valtype*>(view);
3331 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3332 Reltype addend = val & 0x0fffU;
3333 Reltype x = psymval->value(object, addend);
3334 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3335 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3336 return (Bits<12>::has_overflow32(x)
3337 ? This::STATUS_OVERFLOW
3338 : This::STATUS_OKAY);
3341 // R_ARM_ABS16: S + A
3342 static inline typename This::Status
3343 abs16(unsigned char* view,
3344 const Sized_relobj_file<32, big_endian>* object,
3345 const Symbol_value<32>* psymval)
3347 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3348 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3349 int32_t addend = Bits<16>::sign_extend32(val);
3350 Arm_address x = psymval->value(object, addend);
3351 val = Bits<32>::bit_select32(val, x, 0xffffU);
3352 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3354 // R_ARM_ABS16 permits signed or unsigned results.
3355 return (Bits<16>::has_signed_unsigned_overflow32(x)
3356 ? This::STATUS_OVERFLOW
3357 : This::STATUS_OKAY);
3360 // R_ARM_ABS32: (S + A) | T
3361 static inline typename This::Status
3362 abs32(unsigned char* view,
3363 const Sized_relobj_file<32, big_endian>* object,
3364 const Symbol_value<32>* psymval,
3365 Arm_address thumb_bit)
3367 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3368 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3369 Valtype x = psymval->value(object, addend) | thumb_bit;
3370 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3371 return This::STATUS_OKAY;
3374 // R_ARM_REL32: (S + A) | T - P
3375 static inline typename This::Status
3376 rel32(unsigned char* view,
3377 const Sized_relobj_file<32, big_endian>* object,
3378 const Symbol_value<32>* psymval,
3379 Arm_address address,
3380 Arm_address thumb_bit)
3382 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3383 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3384 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3385 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3386 return This::STATUS_OKAY;
3389 // R_ARM_THM_JUMP24: (S + A) | T - P
3390 static typename This::Status
3391 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3392 const Symbol_value<32>* psymval, Arm_address address,
3393 Arm_address thumb_bit);
3395 // R_ARM_THM_JUMP6: S + A – P
3396 static inline typename This::Status
3397 thm_jump6(unsigned char* view,
3398 const Sized_relobj_file<32, big_endian>* object,
3399 const Symbol_value<32>* psymval,
3400 Arm_address address)
3402 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3403 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3404 Valtype* wv = reinterpret_cast<Valtype*>(view);
3405 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3406 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3407 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3408 Reltype x = (psymval->value(object, addend) - address);
3409 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3410 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3411 // CZB does only forward jumps.
3412 return ((x > 0x007e)
3413 ? This::STATUS_OVERFLOW
3414 : This::STATUS_OKAY);
3417 // R_ARM_THM_JUMP8: S + A – P
3418 static inline typename This::Status
3419 thm_jump8(unsigned char* view,
3420 const Sized_relobj_file<32, big_endian>* object,
3421 const Symbol_value<32>* psymval,
3422 Arm_address address)
3424 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3425 Valtype* wv = reinterpret_cast<Valtype*>(view);
3426 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3427 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3428 int32_t x = (psymval->value(object, addend) - address);
3429 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3430 | ((x & 0x01fe) >> 1)));
3431 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3432 return (Bits<9>::has_overflow32(x)
3433 ? This::STATUS_OVERFLOW
3434 : This::STATUS_OKAY);
3437 // R_ARM_THM_JUMP11: S + A – P
3438 static inline typename This::Status
3439 thm_jump11(unsigned char* view,
3440 const Sized_relobj_file<32, big_endian>* object,
3441 const Symbol_value<32>* psymval,
3442 Arm_address address)
3444 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3445 Valtype* wv = reinterpret_cast<Valtype*>(view);
3446 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3447 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3448 int32_t x = (psymval->value(object, addend) - address);
3449 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3450 | ((x & 0x0ffe) >> 1)));
3451 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3452 return (Bits<12>::has_overflow32(x)
3453 ? This::STATUS_OVERFLOW
3454 : This::STATUS_OKAY);
3457 // R_ARM_BASE_PREL: B(S) + A - P
3458 static inline typename This::Status
3459 base_prel(unsigned char* view,
3461 Arm_address address)
3463 Base::rel32(view, origin - address);
3467 // R_ARM_BASE_ABS: B(S) + A
3468 static inline typename This::Status
3469 base_abs(unsigned char* view,
3472 Base::rel32(view, origin);
3476 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3477 static inline typename This::Status
3478 got_brel(unsigned char* view,
3479 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3481 Base::rel32(view, got_offset);
3482 return This::STATUS_OKAY;
3485 // R_ARM_GOT_PREL: GOT(S) + A - P
3486 static inline typename This::Status
3487 got_prel(unsigned char* view,
3488 Arm_address got_entry,
3489 Arm_address address)
3491 Base::rel32(view, got_entry - address);
3492 return This::STATUS_OKAY;
3495 // R_ARM_PREL: (S + A) | T - P
3496 static inline typename This::Status
3497 prel31(unsigned char* view,
3498 const Sized_relobj_file<32, big_endian>* object,
3499 const Symbol_value<32>* psymval,
3500 Arm_address address,
3501 Arm_address thumb_bit)
3503 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3504 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3505 Valtype addend = Bits<31>::sign_extend32(val);
3506 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3507 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3508 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3509 return (Bits<31>::has_overflow32(x)
3510 ? This::STATUS_OVERFLOW
3511 : This::STATUS_OKAY);
3514 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3515 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3516 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3517 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3518 static inline typename This::Status
3519 movw(unsigned char* view,
3520 const Sized_relobj_file<32, big_endian>* object,
3521 const Symbol_value<32>* psymval,
3522 Arm_address relative_address_base,
3523 Arm_address thumb_bit,
3524 bool check_overflow)
3526 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3527 Valtype* wv = reinterpret_cast<Valtype*>(view);
3528 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3529 Valtype addend = This::extract_arm_movw_movt_addend(val);
3530 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3531 - relative_address_base);
3532 val = This::insert_val_arm_movw_movt(val, x);
3533 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3534 return ((check_overflow && Bits<16>::has_overflow32(x))
3535 ? This::STATUS_OVERFLOW
3536 : This::STATUS_OKAY);
3539 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3540 // R_ARM_MOVT_PREL: S + A - P
3541 // R_ARM_MOVT_BREL: S + A - B(S)
3542 static inline typename This::Status
3543 movt(unsigned char* view,
3544 const Sized_relobj_file<32, big_endian>* object,
3545 const Symbol_value<32>* psymval,
3546 Arm_address relative_address_base)
3548 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3549 Valtype* wv = reinterpret_cast<Valtype*>(view);
3550 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3551 Valtype addend = This::extract_arm_movw_movt_addend(val);
3552 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3553 val = This::insert_val_arm_movw_movt(val, x);
3554 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3555 // FIXME: IHI0044D says that we should check for overflow.
3556 return This::STATUS_OKAY;
3559 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3560 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3561 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3562 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3563 static inline typename This::Status
3564 thm_movw(unsigned char* view,
3565 const Sized_relobj_file<32, big_endian>* object,
3566 const Symbol_value<32>* psymval,
3567 Arm_address relative_address_base,
3568 Arm_address thumb_bit,
3569 bool check_overflow)
3571 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3572 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3573 Valtype* wv = reinterpret_cast<Valtype*>(view);
3574 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3575 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3576 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3578 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3579 val = This::insert_val_thumb_movw_movt(val, x);
3580 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3581 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3582 return ((check_overflow && Bits<16>::has_overflow32(x))
3583 ? This::STATUS_OVERFLOW
3584 : This::STATUS_OKAY);
3587 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3588 // R_ARM_THM_MOVT_PREL: S + A - P
3589 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3590 static inline typename This::Status
3591 thm_movt(unsigned char* view,
3592 const Sized_relobj_file<32, big_endian>* object,
3593 const Symbol_value<32>* psymval,
3594 Arm_address relative_address_base)
3596 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3597 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3598 Valtype* wv = reinterpret_cast<Valtype*>(view);
3599 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3600 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3601 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3602 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3603 val = This::insert_val_thumb_movw_movt(val, x);
3604 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3605 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3606 return This::STATUS_OKAY;
3609 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3610 static inline typename This::Status
3611 thm_alu11(unsigned char* view,
3612 const Sized_relobj_file<32, big_endian>* object,
3613 const Symbol_value<32>* psymval,
3614 Arm_address address,
3615 Arm_address thumb_bit)
3617 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3618 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3619 Valtype* wv = reinterpret_cast<Valtype*>(view);
3620 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3621 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3623 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3624 // -----------------------------------------------------------------------
3625 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3626 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3627 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3628 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3629 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3630 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3632 // Determine a sign for the addend.
3633 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3634 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3635 // Thumb2 addend encoding:
3636 // imm12 := i | imm3 | imm8
3637 int32_t addend = (insn & 0xff)
3638 | ((insn & 0x00007000) >> 4)
3639 | ((insn & 0x04000000) >> 15);
3640 // Apply a sign to the added.
3643 int32_t x = (psymval->value(object, addend) | thumb_bit)
3644 - (address & 0xfffffffc);
3645 Reltype val = abs(x);
3646 // Mask out the value and a distinct part of the ADD/SUB opcode
3647 // (bits 7:5 of opword).
3648 insn = (insn & 0xfb0f8f00)
3650 | ((val & 0x700) << 4)
3651 | ((val & 0x800) << 15);
3652 // Set the opcode according to whether the value to go in the
3653 // place is negative.
3657 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3658 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3659 return ((val > 0xfff) ?
3660 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3663 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3664 static inline typename This::Status
3665 thm_pc8(unsigned char* view,
3666 const Sized_relobj_file<32, big_endian>* object,
3667 const Symbol_value<32>* psymval,
3668 Arm_address address)
3670 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3671 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3672 Valtype* wv = reinterpret_cast<Valtype*>(view);
3673 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3674 Reltype addend = ((insn & 0x00ff) << 2);
3675 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3676 Reltype val = abs(x);
3677 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3679 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3680 return ((val > 0x03fc)
3681 ? This::STATUS_OVERFLOW
3682 : This::STATUS_OKAY);
3685 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3686 static inline typename This::Status
3687 thm_pc12(unsigned char* view,
3688 const Sized_relobj_file<32, big_endian>* object,
3689 const Symbol_value<32>* psymval,
3690 Arm_address address)
3692 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3693 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3694 Valtype* wv = reinterpret_cast<Valtype*>(view);
3695 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3696 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3697 // Determine a sign for the addend (positive if the U bit is 1).
3698 const int sign = (insn & 0x00800000) ? 1 : -1;
3699 int32_t addend = (insn & 0xfff);
3700 // Apply a sign to the added.
3703 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3704 Reltype val = abs(x);
3705 // Mask out and apply the value and the U bit.
3706 insn = (insn & 0xff7ff000) | (val & 0xfff);
3707 // Set the U bit according to whether the value to go in the
3708 // place is positive.
3712 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3713 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3714 return ((val > 0xfff) ?
3715 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3719 static inline typename This::Status
3720 v4bx(const Relocate_info<32, big_endian>* relinfo,
3721 unsigned char* view,
3722 const Arm_relobj<big_endian>* object,
3723 const Arm_address address,
3724 const bool is_interworking)
3727 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3728 Valtype* wv = reinterpret_cast<Valtype*>(view);
3729 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3731 // Ensure that we have a BX instruction.
3732 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3733 const uint32_t reg = (val & 0xf);
3734 if (is_interworking && reg != 0xf)
3736 Stub_table<big_endian>* stub_table =
3737 object->stub_table(relinfo->data_shndx);
3738 gold_assert(stub_table != NULL);
3740 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3741 gold_assert(stub != NULL);
3743 int32_t veneer_address =
3744 stub_table->address() + stub->offset() - 8 - address;
3745 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3746 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3747 // Replace with a branch to veneer (B <addr>)
3748 val = (val & 0xf0000000) | 0x0a000000
3749 | ((veneer_address >> 2) & 0x00ffffff);
3753 // Preserve Rm (lowest four bits) and the condition code
3754 // (highest four bits). Other bits encode MOV PC,Rm.
3755 val = (val & 0xf000000f) | 0x01a0f000;
3757 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3758 return This::STATUS_OKAY;
3761 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3762 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3763 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3764 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3765 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3766 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3767 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3768 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3769 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3770 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3771 static inline typename This::Status
3772 arm_grp_alu(unsigned char* view,
3773 const Sized_relobj_file<32, big_endian>* object,
3774 const Symbol_value<32>* psymval,
3776 Arm_address address,
3777 Arm_address thumb_bit,
3778 bool check_overflow)
3780 gold_assert(group >= 0 && group < 3);
3781 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3782 Valtype* wv = reinterpret_cast<Valtype*>(view);
3783 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3785 // ALU group relocations are allowed only for the ADD/SUB instructions.
3786 // (0x00800000 - ADD, 0x00400000 - SUB)
3787 const Valtype opcode = insn & 0x01e00000;
3788 if (opcode != 0x00800000 && opcode != 0x00400000)
3789 return This::STATUS_BAD_RELOC;
3791 // Determine a sign for the addend.
3792 const int sign = (opcode == 0x00800000) ? 1 : -1;
3793 // shifter = rotate_imm * 2
3794 const uint32_t shifter = (insn & 0xf00) >> 7;
3795 // Initial addend value.
3796 int32_t addend = insn & 0xff;
3797 // Rotate addend right by shifter.
3798 addend = (addend >> shifter) | (addend << (32 - shifter));
3799 // Apply a sign to the added.
3802 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3803 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3804 // Check for overflow if required
3806 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3807 return This::STATUS_OVERFLOW;
3809 // Mask out the value and the ADD/SUB part of the opcode; take care
3810 // not to destroy the S bit.
3812 // Set the opcode according to whether the value to go in the
3813 // place is negative.
3814 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3815 // Encode the offset (encoded Gn).
3818 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3819 return This::STATUS_OKAY;
3822 // R_ARM_LDR_PC_G0: S + A - P
3823 // R_ARM_LDR_PC_G1: S + A - P
3824 // R_ARM_LDR_PC_G2: S + A - P
3825 // R_ARM_LDR_SB_G0: S + A - B(S)
3826 // R_ARM_LDR_SB_G1: S + A - B(S)
3827 // R_ARM_LDR_SB_G2: S + A - B(S)
3828 static inline typename This::Status
3829 arm_grp_ldr(unsigned char* view,
3830 const Sized_relobj_file<32, big_endian>* object,
3831 const Symbol_value<32>* psymval,
3833 Arm_address address)
3835 gold_assert(group >= 0 && group < 3);
3836 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3837 Valtype* wv = reinterpret_cast<Valtype*>(view);
3838 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3840 const int sign = (insn & 0x00800000) ? 1 : -1;
3841 int32_t addend = (insn & 0xfff) * sign;
3842 int32_t x = (psymval->value(object, addend) - address);
3843 // Calculate the relevant G(n-1) value to obtain this stage residual.
3845 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3846 if (residual >= 0x1000)
3847 return This::STATUS_OVERFLOW;
3849 // Mask out the value and U bit.
3851 // Set the U bit for non-negative values.
3856 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3857 return This::STATUS_OKAY;
3860 // R_ARM_LDRS_PC_G0: S + A - P
3861 // R_ARM_LDRS_PC_G1: S + A - P
3862 // R_ARM_LDRS_PC_G2: S + A - P
3863 // R_ARM_LDRS_SB_G0: S + A - B(S)
3864 // R_ARM_LDRS_SB_G1: S + A - B(S)
3865 // R_ARM_LDRS_SB_G2: S + A - B(S)
3866 static inline typename This::Status
3867 arm_grp_ldrs(unsigned char* view,
3868 const Sized_relobj_file<32, big_endian>* object,
3869 const Symbol_value<32>* psymval,
3871 Arm_address address)
3873 gold_assert(group >= 0 && group < 3);
3874 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3875 Valtype* wv = reinterpret_cast<Valtype*>(view);
3876 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3878 const int sign = (insn & 0x00800000) ? 1 : -1;
3879 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3880 int32_t x = (psymval->value(object, addend) - address);
3881 // Calculate the relevant G(n-1) value to obtain this stage residual.
3883 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3884 if (residual >= 0x100)
3885 return This::STATUS_OVERFLOW;
3887 // Mask out the value and U bit.
3889 // Set the U bit for non-negative values.
3892 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3894 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3895 return This::STATUS_OKAY;
3898 // R_ARM_LDC_PC_G0: S + A - P
3899 // R_ARM_LDC_PC_G1: S + A - P
3900 // R_ARM_LDC_PC_G2: S + A - P
3901 // R_ARM_LDC_SB_G0: S + A - B(S)
3902 // R_ARM_LDC_SB_G1: S + A - B(S)
3903 // R_ARM_LDC_SB_G2: S + A - B(S)
3904 static inline typename This::Status
3905 arm_grp_ldc(unsigned char* view,
3906 const Sized_relobj_file<32, big_endian>* object,
3907 const Symbol_value<32>* psymval,
3909 Arm_address address)
3911 gold_assert(group >= 0 && group < 3);
3912 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3913 Valtype* wv = reinterpret_cast<Valtype*>(view);
3914 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3916 const int sign = (insn & 0x00800000) ? 1 : -1;
3917 int32_t addend = ((insn & 0xff) << 2) * sign;
3918 int32_t x = (psymval->value(object, addend) - address);
3919 // Calculate the relevant G(n-1) value to obtain this stage residual.
3921 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3922 if ((residual & 0x3) != 0 || residual >= 0x400)
3923 return This::STATUS_OVERFLOW;
3925 // Mask out the value and U bit.
3927 // Set the U bit for non-negative values.
3930 insn |= (residual >> 2);
3932 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3933 return This::STATUS_OKAY;
3937 // Relocate ARM long branches. This handles relocation types
3938 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3939 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3940 // undefined and we do not use PLT in this relocation. In such a case,
3941 // the branch is converted into an NOP.
3943 template<bool big_endian>
3944 typename Arm_relocate_functions<big_endian>::Status
3945 Arm_relocate_functions<big_endian>::arm_branch_common(
3946 unsigned int r_type,
3947 const Relocate_info<32, big_endian>* relinfo,
3948 unsigned char* view,
3949 const Sized_symbol<32>* gsym,
3950 const Arm_relobj<big_endian>* object,
3952 const Symbol_value<32>* psymval,
3953 Arm_address address,
3954 Arm_address thumb_bit,
3955 bool is_weakly_undefined_without_plt)
3957 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3958 Valtype* wv = reinterpret_cast<Valtype*>(view);
3959 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3961 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3962 && ((val & 0x0f000000UL) == 0x0a000000UL);
3963 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3964 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3965 && ((val & 0x0f000000UL) == 0x0b000000UL);
3966 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3967 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3969 // Check that the instruction is valid.
3970 if (r_type == elfcpp::R_ARM_CALL)
3972 if (!insn_is_uncond_bl && !insn_is_blx)
3973 return This::STATUS_BAD_RELOC;
3975 else if (r_type == elfcpp::R_ARM_JUMP24)
3977 if (!insn_is_b && !insn_is_cond_bl)
3978 return This::STATUS_BAD_RELOC;
3980 else if (r_type == elfcpp::R_ARM_PLT32)
3982 if (!insn_is_any_branch)
3983 return This::STATUS_BAD_RELOC;
3985 else if (r_type == elfcpp::R_ARM_XPC25)
3987 // FIXME: AAELF document IH0044C does not say much about it other
3988 // than it being obsolete.
3989 if (!insn_is_any_branch)
3990 return This::STATUS_BAD_RELOC;
3995 // A branch to an undefined weak symbol is turned into a jump to
3996 // the next instruction unless a PLT entry will be created.
3997 // Do the same for local undefined symbols.
3998 // The jump to the next instruction is optimized as a NOP depending
3999 // on the architecture.
4000 const Target_arm<big_endian>* arm_target =
4001 Target_arm<big_endian>::default_target();
4002 if (is_weakly_undefined_without_plt)
4004 gold_assert(!parameters->options().relocatable());
4005 Valtype cond = val & 0xf0000000U;
4006 if (arm_target->may_use_arm_nop())
4007 val = cond | 0x0320f000;
4009 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
4010 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4011 return This::STATUS_OKAY;
4014 Valtype addend = Bits<26>::sign_extend32(val << 2);
4015 Valtype branch_target = psymval->value(object, addend);
4016 int32_t branch_offset = branch_target - address;
4018 // We need a stub if the branch offset is too large or if we need
4020 bool may_use_blx = arm_target->may_use_v5t_interworking();
4021 Reloc_stub* stub = NULL;
4023 if (!parameters->options().relocatable()
4024 && (Bits<26>::has_overflow32(branch_offset)
4025 || ((thumb_bit != 0)
4026 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
4028 Valtype unadjusted_branch_target = psymval->value(object, 0);
4030 Stub_type stub_type =
4031 Reloc_stub::stub_type_for_reloc(r_type, address,
4032 unadjusted_branch_target,
4034 if (stub_type != arm_stub_none)
4036 Stub_table<big_endian>* stub_table =
4037 object->stub_table(relinfo->data_shndx);
4038 gold_assert(stub_table != NULL);
4040 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4041 stub = stub_table->find_reloc_stub(stub_key);
4042 gold_assert(stub != NULL);
4043 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4044 branch_target = stub_table->address() + stub->offset() + addend;
4045 branch_offset = branch_target - address;
4046 gold_assert(!Bits<26>::has_overflow32(branch_offset));
4050 // At this point, if we still need to switch mode, the instruction
4051 // must either be a BLX or a BL that can be converted to a BLX.
4055 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4056 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4059 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4060 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4061 return (Bits<26>::has_overflow32(branch_offset)
4062 ? This::STATUS_OVERFLOW
4063 : This::STATUS_OKAY);
4066 // Relocate THUMB long branches. This handles relocation types
4067 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4068 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4069 // undefined and we do not use PLT in this relocation. In such a case,
4070 // the branch is converted into an NOP.
4072 template<bool big_endian>
4073 typename Arm_relocate_functions<big_endian>::Status
4074 Arm_relocate_functions<big_endian>::thumb_branch_common(
4075 unsigned int r_type,
4076 const Relocate_info<32, big_endian>* relinfo,
4077 unsigned char* view,
4078 const Sized_symbol<32>* gsym,
4079 const Arm_relobj<big_endian>* object,
4081 const Symbol_value<32>* psymval,
4082 Arm_address address,
4083 Arm_address thumb_bit,
4084 bool is_weakly_undefined_without_plt)
4086 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4087 Valtype* wv = reinterpret_cast<Valtype*>(view);
4088 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4089 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4091 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4093 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4094 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4096 // Check that the instruction is valid.
4097 if (r_type == elfcpp::R_ARM_THM_CALL)
4099 if (!is_bl_insn && !is_blx_insn)
4100 return This::STATUS_BAD_RELOC;
4102 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4104 // This cannot be a BLX.
4106 return This::STATUS_BAD_RELOC;
4108 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4110 // Check for Thumb to Thumb call.
4112 return This::STATUS_BAD_RELOC;
4115 gold_warning(_("%s: Thumb BLX instruction targets "
4116 "thumb function '%s'."),
4117 object->name().c_str(),
4118 (gsym ? gsym->name() : "(local)"));
4119 // Convert BLX to BL.
4120 lower_insn |= 0x1000U;
4126 // A branch to an undefined weak symbol is turned into a jump to
4127 // the next instruction unless a PLT entry will be created.
4128 // The jump to the next instruction is optimized as a NOP.W for
4129 // Thumb-2 enabled architectures.
4130 const Target_arm<big_endian>* arm_target =
4131 Target_arm<big_endian>::default_target();
4132 if (is_weakly_undefined_without_plt)
4134 gold_assert(!parameters->options().relocatable());
4135 if (arm_target->may_use_thumb2_nop())
4137 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4138 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4142 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4143 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4145 return This::STATUS_OKAY;
4148 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4149 Arm_address branch_target = psymval->value(object, addend);
4151 // For BLX, bit 1 of target address comes from bit 1 of base address.
4152 bool may_use_blx = arm_target->may_use_v5t_interworking();
4153 if (thumb_bit == 0 && may_use_blx)
4154 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4156 int32_t branch_offset = branch_target - address;
4158 // We need a stub if the branch offset is too large or if we need
4160 bool thumb2 = arm_target->using_thumb2();
4161 if (!parameters->options().relocatable()
4162 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4163 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4164 || ((thumb_bit == 0)
4165 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4166 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4168 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4170 Stub_type stub_type =
4171 Reloc_stub::stub_type_for_reloc(r_type, address,
4172 unadjusted_branch_target,
4175 if (stub_type != arm_stub_none)
4177 Stub_table<big_endian>* stub_table =
4178 object->stub_table(relinfo->data_shndx);
4179 gold_assert(stub_table != NULL);
4181 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4182 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4183 gold_assert(stub != NULL);
4184 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4185 branch_target = stub_table->address() + stub->offset() + addend;
4186 if (thumb_bit == 0 && may_use_blx)
4187 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4188 branch_offset = branch_target - address;
4192 // At this point, if we still need to switch mode, the instruction
4193 // must either be a BLX or a BL that can be converted to a BLX.
4196 gold_assert(may_use_blx
4197 && (r_type == elfcpp::R_ARM_THM_CALL
4198 || r_type == elfcpp::R_ARM_THM_XPC22));
4199 // Make sure this is a BLX.
4200 lower_insn &= ~0x1000U;
4204 // Make sure this is a BL.
4205 lower_insn |= 0x1000U;
4208 // For a BLX instruction, make sure that the relocation is rounded up
4209 // to a word boundary. This follows the semantics of the instruction
4210 // which specifies that bit 1 of the target address will come from bit
4211 // 1 of the base address.
4212 if ((lower_insn & 0x5000U) == 0x4000U)
4213 gold_assert((branch_offset & 3) == 0);
4215 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4216 // We use the Thumb-2 encoding, which is safe even if dealing with
4217 // a Thumb-1 instruction by virtue of our overflow check above. */
4218 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4219 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4221 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4222 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4224 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4227 ? Bits<25>::has_overflow32(branch_offset)
4228 : Bits<23>::has_overflow32(branch_offset))
4229 ? This::STATUS_OVERFLOW
4230 : This::STATUS_OKAY);
4233 // Relocate THUMB-2 long conditional branches.
4234 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4235 // undefined and we do not use PLT in this relocation. In such a case,
4236 // the branch is converted into an NOP.
4238 template<bool big_endian>
4239 typename Arm_relocate_functions<big_endian>::Status
4240 Arm_relocate_functions<big_endian>::thm_jump19(
4241 unsigned char* view,
4242 const Arm_relobj<big_endian>* object,
4243 const Symbol_value<32>* psymval,
4244 Arm_address address,
4245 Arm_address thumb_bit)
4247 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4248 Valtype* wv = reinterpret_cast<Valtype*>(view);
4249 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4250 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4251 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4253 Arm_address branch_target = psymval->value(object, addend);
4254 int32_t branch_offset = branch_target - address;
4256 // ??? Should handle interworking? GCC might someday try to
4257 // use this for tail calls.
4258 // FIXME: We do support thumb entry to PLT yet.
4261 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4262 return This::STATUS_BAD_RELOC;
4265 // Put RELOCATION back into the insn.
4266 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4267 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4269 // Put the relocated value back in the object file:
4270 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4271 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4273 return (Bits<21>::has_overflow32(branch_offset)
4274 ? This::STATUS_OVERFLOW
4275 : This::STATUS_OKAY);
4278 // Get the GOT section, creating it if necessary.
4280 template<bool big_endian>
4281 Arm_output_data_got<big_endian>*
4282 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4284 if (this->got_ == NULL)
4286 gold_assert(symtab != NULL && layout != NULL);
4288 // When using -z now, we can treat .got as a relro section.
4289 // Without -z now, it is modified after program startup by lazy
4291 bool is_got_relro = parameters->options().now();
4292 Output_section_order got_order = (is_got_relro
4296 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4297 // .got.plt sections in output. The output .got section contains both
4298 // PLT and non-PLT GOT entries.
4299 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4301 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4302 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4303 this->got_, got_order, is_got_relro);
4305 // The old GNU linker creates a .got.plt section. We just
4306 // create another set of data in the .got section. Note that we
4307 // always create a PLT if we create a GOT, although the PLT
4309 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4310 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4311 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4312 this->got_plt_, got_order, is_got_relro);
4314 // The first three entries are reserved.
4315 this->got_plt_->set_current_data_size(3 * 4);
4317 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4318 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4319 Symbol_table::PREDEFINED,
4321 0, 0, elfcpp::STT_OBJECT,
4323 elfcpp::STV_HIDDEN, 0,
4326 // If there are any IRELATIVE relocations, they get GOT entries
4327 // in .got.plt after the jump slot entries.
4328 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4329 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4330 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4331 this->got_irelative_,
4332 got_order, is_got_relro);
4338 // Get the dynamic reloc section, creating it if necessary.
4340 template<bool big_endian>
4341 typename Target_arm<big_endian>::Reloc_section*
4342 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4344 if (this->rel_dyn_ == NULL)
4346 gold_assert(layout != NULL);
4347 // Create both relocation sections in the same place, so as to ensure
4348 // their relative order in the output section.
4349 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4350 this->rel_irelative_ = new Reloc_section(false);
4351 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4352 elfcpp::SHF_ALLOC, this->rel_dyn_,
4353 ORDER_DYNAMIC_RELOCS, false);
4354 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4355 elfcpp::SHF_ALLOC, this->rel_irelative_,
4356 ORDER_DYNAMIC_RELOCS, false);
4358 return this->rel_dyn_;
4362 // Get the section to use for IRELATIVE relocs, creating it if necessary. These
4363 // go in .rela.dyn, but only after all other dynamic relocations. They need to
4364 // follow the other dynamic relocations so that they can refer to global
4365 // variables initialized by those relocs.
4367 template<bool big_endian>
4368 typename Target_arm<big_endian>::Reloc_section*
4369 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4371 if (this->rel_irelative_ == NULL)
4373 // Delegate the creation to rel_dyn_section so as to ensure their order in
4374 // the output section.
4375 this->rel_dyn_section(layout);
4376 gold_assert(this->rel_irelative_ != NULL
4377 && (this->rel_dyn_->output_section()
4378 == this->rel_irelative_->output_section()));
4380 return this->rel_irelative_;
4384 // Insn_template methods.
4386 // Return byte size of an instruction template.
4389 Insn_template::size() const
4391 switch (this->type())
4394 case THUMB16_SPECIAL_TYPE:
4405 // Return alignment of an instruction template.
4408 Insn_template::alignment() const
4410 switch (this->type())
4413 case THUMB16_SPECIAL_TYPE:
4424 // Stub_template methods.
4426 Stub_template::Stub_template(
4427 Stub_type type, const Insn_template* insns,
4429 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4430 entry_in_thumb_mode_(false), relocs_()
4434 // Compute byte size and alignment of stub template.
4435 for (size_t i = 0; i < insn_count; i++)
4437 unsigned insn_alignment = insns[i].alignment();
4438 size_t insn_size = insns[i].size();
4439 gold_assert((offset & (insn_alignment - 1)) == 0);
4440 this->alignment_ = std::max(this->alignment_, insn_alignment);
4441 switch (insns[i].type())
4443 case Insn_template::THUMB16_TYPE:
4444 case Insn_template::THUMB16_SPECIAL_TYPE:
4446 this->entry_in_thumb_mode_ = true;
4449 case Insn_template::THUMB32_TYPE:
4450 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4451 this->relocs_.push_back(Reloc(i, offset));
4453 this->entry_in_thumb_mode_ = true;
4456 case Insn_template::ARM_TYPE:
4457 // Handle cases where the target is encoded within the
4459 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4460 this->relocs_.push_back(Reloc(i, offset));
4463 case Insn_template::DATA_TYPE:
4464 // Entry point cannot be data.
4465 gold_assert(i != 0);
4466 this->relocs_.push_back(Reloc(i, offset));
4472 offset += insn_size;
4474 this->size_ = offset;
4479 // Template to implement do_write for a specific target endianness.
4481 template<bool big_endian>
4483 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4485 const Stub_template* stub_template = this->stub_template();
4486 const Insn_template* insns = stub_template->insns();
4488 // FIXME: We do not handle BE8 encoding yet.
4489 unsigned char* pov = view;
4490 for (size_t i = 0; i < stub_template->insn_count(); i++)
4492 switch (insns[i].type())
4494 case Insn_template::THUMB16_TYPE:
4495 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4497 case Insn_template::THUMB16_SPECIAL_TYPE:
4498 elfcpp::Swap<16, big_endian>::writeval(
4500 this->thumb16_special(i));
4502 case Insn_template::THUMB32_TYPE:
4504 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4505 uint32_t lo = insns[i].data() & 0xffff;
4506 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4507 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4510 case Insn_template::ARM_TYPE:
4511 case Insn_template::DATA_TYPE:
4512 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4517 pov += insns[i].size();
4519 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4522 // Reloc_stub::Key methods.
4524 // Dump a Key as a string for debugging.
4527 Reloc_stub::Key::name() const
4529 if (this->r_sym_ == invalid_index)
4531 // Global symbol key name
4532 // <stub-type>:<symbol name>:<addend>.
4533 const std::string sym_name = this->u_.symbol->name();
4534 // We need to print two hex number and two colons. So just add 100 bytes
4535 // to the symbol name size.
4536 size_t len = sym_name.size() + 100;
4537 char* buffer = new char[len];
4538 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4539 sym_name.c_str(), this->addend_);
4540 gold_assert(c > 0 && c < static_cast<int>(len));
4542 return std::string(buffer);
4546 // local symbol key name
4547 // <stub-type>:<object>:<r_sym>:<addend>.
4548 const size_t len = 200;
4550 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4551 this->u_.relobj, this->r_sym_, this->addend_);
4552 gold_assert(c > 0 && c < static_cast<int>(len));
4553 return std::string(buffer);
4557 // Reloc_stub methods.
4559 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4560 // LOCATION to DESTINATION.
4561 // This code is based on the arm_type_of_stub function in
4562 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4566 Reloc_stub::stub_type_for_reloc(
4567 unsigned int r_type,
4568 Arm_address location,
4569 Arm_address destination,
4570 bool target_is_thumb)
4572 Stub_type stub_type = arm_stub_none;
4574 // This is a bit ugly but we want to avoid using a templated class for
4575 // big and little endianities.
4577 bool should_force_pic_veneer = parameters->options().pic_veneer();
4580 if (parameters->target().is_big_endian())
4582 const Target_arm<true>* big_endian_target =
4583 Target_arm<true>::default_target();
4584 may_use_blx = big_endian_target->may_use_v5t_interworking();
4585 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
4586 thumb2 = big_endian_target->using_thumb2();
4587 thumb_only = big_endian_target->using_thumb_only();
4591 const Target_arm<false>* little_endian_target =
4592 Target_arm<false>::default_target();
4593 may_use_blx = little_endian_target->may_use_v5t_interworking();
4594 should_force_pic_veneer |=
4595 little_endian_target->should_force_pic_veneer();
4596 thumb2 = little_endian_target->using_thumb2();
4597 thumb_only = little_endian_target->using_thumb_only();
4600 int64_t branch_offset;
4601 bool output_is_position_independent =
4602 parameters->options().output_is_position_independent();
4603 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4605 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4606 // base address (instruction address + 4).
4607 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4608 destination = Bits<32>::bit_select32(destination, location, 0x2);
4609 branch_offset = static_cast<int64_t>(destination) - location;
4611 // Handle cases where:
4612 // - this call goes too far (different Thumb/Thumb2 max
4614 // - it's a Thumb->Arm call and blx is not available, or it's a
4615 // Thumb->Arm branch (not bl). A stub is needed in this case.
4617 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4618 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4620 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4621 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4622 || ((!target_is_thumb)
4623 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4624 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4626 if (target_is_thumb)
4631 stub_type = (output_is_position_independent
4632 || should_force_pic_veneer)
4635 && (r_type == elfcpp::R_ARM_THM_CALL))
4636 // V5T and above. Stub starts with ARM code, so
4637 // we must be able to switch mode before
4638 // reaching it, which is only possible for 'bl'
4639 // (ie R_ARM_THM_CALL relocation).
4640 ? arm_stub_long_branch_any_thumb_pic
4641 // On V4T, use Thumb code only.
4642 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4646 && (r_type == elfcpp::R_ARM_THM_CALL))
4647 ? arm_stub_long_branch_any_any // V5T and above.
4648 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4652 stub_type = (output_is_position_independent
4653 || should_force_pic_veneer)
4654 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4655 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4662 // FIXME: We should check that the input section is from an
4663 // object that has interwork enabled.
4665 stub_type = (output_is_position_independent
4666 || should_force_pic_veneer)
4669 && (r_type == elfcpp::R_ARM_THM_CALL))
4670 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4671 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4675 && (r_type == elfcpp::R_ARM_THM_CALL))
4676 ? arm_stub_long_branch_any_any // V5T and above.
4677 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4679 // Handle v4t short branches.
4680 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4681 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4682 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4683 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4687 else if (r_type == elfcpp::R_ARM_CALL
4688 || r_type == elfcpp::R_ARM_JUMP24
4689 || r_type == elfcpp::R_ARM_PLT32)
4691 branch_offset = static_cast<int64_t>(destination) - location;
4692 if (target_is_thumb)
4696 // FIXME: We should check that the input section is from an
4697 // object that has interwork enabled.
4699 // We have an extra 2-bytes reach because of
4700 // the mode change (bit 24 (H) of BLX encoding).
4701 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4702 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4703 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4704 || (r_type == elfcpp::R_ARM_JUMP24)
4705 || (r_type == elfcpp::R_ARM_PLT32))
4707 stub_type = (output_is_position_independent
4708 || should_force_pic_veneer)
4711 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4712 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4716 ? arm_stub_long_branch_any_any // V5T and above.
4717 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4723 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4724 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4726 stub_type = (output_is_position_independent
4727 || should_force_pic_veneer)
4728 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4729 : arm_stub_long_branch_any_any; /// non-PIC.
4737 // Cortex_a8_stub methods.
4739 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4740 // I is the position of the instruction template in the stub template.
4743 Cortex_a8_stub::do_thumb16_special(size_t i)
4745 // The only use of this is to copy condition code from a conditional
4746 // branch being worked around to the corresponding conditional branch in
4748 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4750 uint16_t data = this->stub_template()->insns()[i].data();
4751 gold_assert((data & 0xff00U) == 0xd000U);
4752 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4756 // Stub_factory methods.
4758 Stub_factory::Stub_factory()
4760 // The instruction template sequences are declared as static
4761 // objects and initialized first time the constructor runs.
4763 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4764 // to reach the stub if necessary.
4765 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4767 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4768 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4769 // dcd R_ARM_ABS32(X)
4772 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4774 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4776 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4777 Insn_template::arm_insn(0xe12fff1c), // bx ip
4778 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4779 // dcd R_ARM_ABS32(X)
4782 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4783 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4785 Insn_template::thumb16_insn(0xb401), // push {r0}
4786 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4787 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4788 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4789 Insn_template::thumb16_insn(0x4760), // bx ip
4790 Insn_template::thumb16_insn(0xbf00), // nop
4791 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4792 // dcd R_ARM_ABS32(X)
4795 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4797 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4799 Insn_template::thumb16_insn(0x4778), // bx pc
4800 Insn_template::thumb16_insn(0x46c0), // nop
4801 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4802 Insn_template::arm_insn(0xe12fff1c), // bx ip
4803 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4804 // dcd R_ARM_ABS32(X)
4807 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4809 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4811 Insn_template::thumb16_insn(0x4778), // bx pc
4812 Insn_template::thumb16_insn(0x46c0), // nop
4813 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4814 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4815 // dcd R_ARM_ABS32(X)
4818 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4819 // one, when the destination is close enough.
4820 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4822 Insn_template::thumb16_insn(0x4778), // bx pc
4823 Insn_template::thumb16_insn(0x46c0), // nop
4824 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4827 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4828 // blx to reach the stub if necessary.
4829 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4831 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4832 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4833 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4834 // dcd R_ARM_REL32(X-4)
4837 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4838 // blx to reach the stub if necessary. We can not add into pc;
4839 // it is not guaranteed to mode switch (different in ARMv6 and
4841 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4843 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4844 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4845 Insn_template::arm_insn(0xe12fff1c), // bx ip
4846 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4847 // dcd R_ARM_REL32(X)
4850 // V4T ARM -> ARM long branch stub, PIC.
4851 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4853 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4854 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4855 Insn_template::arm_insn(0xe12fff1c), // bx ip
4856 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4857 // dcd R_ARM_REL32(X)
4860 // V4T Thumb -> ARM long branch stub, PIC.
4861 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4863 Insn_template::thumb16_insn(0x4778), // bx pc
4864 Insn_template::thumb16_insn(0x46c0), // nop
4865 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4866 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4867 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4868 // dcd R_ARM_REL32(X)
4871 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4873 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4875 Insn_template::thumb16_insn(0xb401), // push {r0}
4876 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4877 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4878 Insn_template::thumb16_insn(0x4484), // add ip, r0
4879 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4880 Insn_template::thumb16_insn(0x4760), // bx ip
4881 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4882 // dcd R_ARM_REL32(X)
4885 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4887 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4889 Insn_template::thumb16_insn(0x4778), // bx pc
4890 Insn_template::thumb16_insn(0x46c0), // nop
4891 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4892 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4893 Insn_template::arm_insn(0xe12fff1c), // bx ip
4894 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4895 // dcd R_ARM_REL32(X)
4898 // Cortex-A8 erratum-workaround stubs.
4900 // Stub used for conditional branches (which may be beyond +/-1MB away,
4901 // so we can't use a conditional branch to reach this stub).
4908 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4910 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4911 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4912 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4916 // Stub used for b.w and bl.w instructions.
4918 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4920 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4923 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4925 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4928 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4929 // instruction (which switches to ARM mode) to point to this stub. Jump to
4930 // the real destination using an ARM-mode branch.
4931 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4933 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4936 // Stub used to provide an interworking for R_ARM_V4BX relocation
4937 // (bx r[n] instruction).
4938 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4940 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4941 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4942 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4945 // Fill in the stub template look-up table. Stub templates are constructed
4946 // per instance of Stub_factory for fast look-up without locking
4947 // in a thread-enabled environment.
4949 this->stub_templates_[arm_stub_none] =
4950 new Stub_template(arm_stub_none, NULL, 0);
4952 #define DEF_STUB(x) \
4956 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4957 Stub_type type = arm_stub_##x; \
4958 this->stub_templates_[type] = \
4959 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4967 // Stub_table methods.
4969 // Remove all Cortex-A8 stub.
4971 template<bool big_endian>
4973 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4975 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4976 p != this->cortex_a8_stubs_.end();
4979 this->cortex_a8_stubs_.clear();
4982 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4984 template<bool big_endian>
4986 Stub_table<big_endian>::relocate_stub(
4988 const Relocate_info<32, big_endian>* relinfo,
4989 Target_arm<big_endian>* arm_target,
4990 Output_section* output_section,
4991 unsigned char* view,
4992 Arm_address address,
4993 section_size_type view_size)
4995 const Stub_template* stub_template = stub->stub_template();
4996 if (stub_template->reloc_count() != 0)
4998 // Adjust view to cover the stub only.
4999 section_size_type offset = stub->offset();
5000 section_size_type stub_size = stub_template->size();
5001 gold_assert(offset + stub_size <= view_size);
5003 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
5004 address + offset, stub_size);
5008 // Relocate all stubs in this stub table.
5010 template<bool big_endian>
5012 Stub_table<big_endian>::relocate_stubs(
5013 const Relocate_info<32, big_endian>* relinfo,
5014 Target_arm<big_endian>* arm_target,
5015 Output_section* output_section,
5016 unsigned char* view,
5017 Arm_address address,
5018 section_size_type view_size)
5020 // If we are passed a view bigger than the stub table's. we need to
5022 gold_assert(address == this->address()
5024 == static_cast<section_size_type>(this->data_size())));
5026 // Relocate all relocation stubs.
5027 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5028 p != this->reloc_stubs_.end();
5030 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5031 address, view_size);
5033 // Relocate all Cortex-A8 stubs.
5034 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5035 p != this->cortex_a8_stubs_.end();
5037 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5038 address, view_size);
5040 // Relocate all ARM V4BX stubs.
5041 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5042 p != this->arm_v4bx_stubs_.end();
5046 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5047 address, view_size);
5051 // Write out the stubs to file.
5053 template<bool big_endian>
5055 Stub_table<big_endian>::do_write(Output_file* of)
5057 off_t offset = this->offset();
5058 const section_size_type oview_size =
5059 convert_to_section_size_type(this->data_size());
5060 unsigned char* const oview = of->get_output_view(offset, oview_size);
5062 // Write relocation stubs.
5063 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5064 p != this->reloc_stubs_.end();
5067 Reloc_stub* stub = p->second;
5068 Arm_address address = this->address() + stub->offset();
5070 == align_address(address,
5071 stub->stub_template()->alignment()));
5072 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5076 // Write Cortex-A8 stubs.
5077 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5078 p != this->cortex_a8_stubs_.end();
5081 Cortex_a8_stub* stub = p->second;
5082 Arm_address address = this->address() + stub->offset();
5084 == align_address(address,
5085 stub->stub_template()->alignment()));
5086 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5090 // Write ARM V4BX relocation stubs.
5091 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5092 p != this->arm_v4bx_stubs_.end();
5098 Arm_address address = this->address() + (*p)->offset();
5100 == align_address(address,
5101 (*p)->stub_template()->alignment()));
5102 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5106 of->write_output_view(this->offset(), oview_size, oview);
5109 // Update the data size and address alignment of the stub table at the end
5110 // of a relaxation pass. Return true if either the data size or the
5111 // alignment changed in this relaxation pass.
5113 template<bool big_endian>
5115 Stub_table<big_endian>::update_data_size_and_addralign()
5117 // Go over all stubs in table to compute data size and address alignment.
5118 off_t size = this->reloc_stubs_size_;
5119 unsigned addralign = this->reloc_stubs_addralign_;
5121 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5122 p != this->cortex_a8_stubs_.end();
5125 const Stub_template* stub_template = p->second->stub_template();
5126 addralign = std::max(addralign, stub_template->alignment());
5127 size = (align_address(size, stub_template->alignment())
5128 + stub_template->size());
5131 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5132 p != this->arm_v4bx_stubs_.end();
5138 const Stub_template* stub_template = (*p)->stub_template();
5139 addralign = std::max(addralign, stub_template->alignment());
5140 size = (align_address(size, stub_template->alignment())
5141 + stub_template->size());
5144 // Check if either data size or alignment changed in this pass.
5145 // Update prev_data_size_ and prev_addralign_. These will be used
5146 // as the current data size and address alignment for the next pass.
5147 bool changed = size != this->prev_data_size_;
5148 this->prev_data_size_ = size;
5150 if (addralign != this->prev_addralign_)
5152 this->prev_addralign_ = addralign;
5157 // Finalize the stubs. This sets the offsets of the stubs within the stub
5158 // table. It also marks all input sections needing Cortex-A8 workaround.
5160 template<bool big_endian>
5162 Stub_table<big_endian>::finalize_stubs()
5164 off_t off = this->reloc_stubs_size_;
5165 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5166 p != this->cortex_a8_stubs_.end();
5169 Cortex_a8_stub* stub = p->second;
5170 const Stub_template* stub_template = stub->stub_template();
5171 uint64_t stub_addralign = stub_template->alignment();
5172 off = align_address(off, stub_addralign);
5173 stub->set_offset(off);
5174 off += stub_template->size();
5176 // Mark input section so that we can determine later if a code section
5177 // needs the Cortex-A8 workaround quickly.
5178 Arm_relobj<big_endian>* arm_relobj =
5179 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5180 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5183 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5184 p != this->arm_v4bx_stubs_.end();
5190 const Stub_template* stub_template = (*p)->stub_template();
5191 uint64_t stub_addralign = stub_template->alignment();
5192 off = align_address(off, stub_addralign);
5193 (*p)->set_offset(off);
5194 off += stub_template->size();
5197 gold_assert(off <= this->prev_data_size_);
5200 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5201 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5202 // of the address range seen by the linker.
5204 template<bool big_endian>
5206 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5207 Target_arm<big_endian>* arm_target,
5208 unsigned char* view,
5209 Arm_address view_address,
5210 section_size_type view_size)
5212 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5213 for (Cortex_a8_stub_list::const_iterator p =
5214 this->cortex_a8_stubs_.lower_bound(view_address);
5215 ((p != this->cortex_a8_stubs_.end())
5216 && (p->first < (view_address + view_size)));
5219 // We do not store the THUMB bit in the LSB of either the branch address
5220 // or the stub offset. There is no need to strip the LSB.
5221 Arm_address branch_address = p->first;
5222 const Cortex_a8_stub* stub = p->second;
5223 Arm_address stub_address = this->address() + stub->offset();
5225 // Offset of the branch instruction relative to this view.
5226 section_size_type offset =
5227 convert_to_section_size_type(branch_address - view_address);
5228 gold_assert((offset + 4) <= view_size);
5230 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5231 view + offset, branch_address);
5235 // Arm_input_section methods.
5237 // Initialize an Arm_input_section.
5239 template<bool big_endian>
5241 Arm_input_section<big_endian>::init()
5243 Relobj* relobj = this->relobj();
5244 unsigned int shndx = this->shndx();
5246 // We have to cache original size, alignment and contents to avoid locking
5247 // the original file.
5248 this->original_addralign_ =
5249 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5251 // This is not efficient but we expect only a small number of relaxed
5252 // input sections for stubs.
5253 section_size_type section_size;
5254 const unsigned char* section_contents =
5255 relobj->section_contents(shndx, §ion_size, false);
5256 this->original_size_ =
5257 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5259 gold_assert(this->original_contents_ == NULL);
5260 this->original_contents_ = new unsigned char[section_size];
5261 memcpy(this->original_contents_, section_contents, section_size);
5263 // We want to make this look like the original input section after
5264 // output sections are finalized.
5265 Output_section* os = relobj->output_section(shndx);
5266 off_t offset = relobj->output_section_offset(shndx);
5267 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5268 this->set_address(os->address() + offset);
5269 this->set_file_offset(os->offset() + offset);
5271 this->set_current_data_size(this->original_size_);
5272 this->finalize_data_size();
5275 template<bool big_endian>
5277 Arm_input_section<big_endian>::do_write(Output_file* of)
5279 // We have to write out the original section content.
5280 gold_assert(this->original_contents_ != NULL);
5281 of->write(this->offset(), this->original_contents_,
5282 this->original_size_);
5284 // If this owns a stub table and it is not empty, write it.
5285 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5286 this->stub_table_->write(of);
5289 // Finalize data size.
5291 template<bool big_endian>
5293 Arm_input_section<big_endian>::set_final_data_size()
5295 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5297 if (this->is_stub_table_owner())
5299 this->stub_table_->finalize_data_size();
5300 off = align_address(off, this->stub_table_->addralign());
5301 off += this->stub_table_->data_size();
5303 this->set_data_size(off);
5306 // Reset address and file offset.
5308 template<bool big_endian>
5310 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5312 // Size of the original input section contents.
5313 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5315 // If this is a stub table owner, account for the stub table size.
5316 if (this->is_stub_table_owner())
5318 Stub_table<big_endian>* stub_table = this->stub_table_;
5320 // Reset the stub table's address and file offset. The
5321 // current data size for child will be updated after that.
5322 stub_table_->reset_address_and_file_offset();
5323 off = align_address(off, stub_table_->addralign());
5324 off += stub_table->current_data_size();
5327 this->set_current_data_size(off);
5330 // Arm_exidx_cantunwind methods.
5332 // Write this to Output file OF for a fixed endianness.
5334 template<bool big_endian>
5336 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5338 off_t offset = this->offset();
5339 const section_size_type oview_size = 8;
5340 unsigned char* const oview = of->get_output_view(offset, oview_size);
5342 Output_section* os = this->relobj_->output_section(this->shndx_);
5343 gold_assert(os != NULL);
5345 Arm_relobj<big_endian>* arm_relobj =
5346 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5347 Arm_address output_offset =
5348 arm_relobj->get_output_section_offset(this->shndx_);
5349 Arm_address section_start;
5350 section_size_type section_size;
5352 // Find out the end of the text section referred by this.
5353 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5355 section_start = os->address() + output_offset;
5356 const Arm_exidx_input_section* exidx_input_section =
5357 arm_relobj->exidx_input_section_by_link(this->shndx_);
5358 gold_assert(exidx_input_section != NULL);
5360 convert_to_section_size_type(exidx_input_section->text_size());
5364 // Currently this only happens for a relaxed section.
5365 const Output_relaxed_input_section* poris =
5366 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5367 gold_assert(poris != NULL);
5368 section_start = poris->address();
5369 section_size = convert_to_section_size_type(poris->data_size());
5372 // We always append this to the end of an EXIDX section.
5373 Arm_address output_address = section_start + section_size;
5375 // Write out the entry. The first word either points to the beginning
5376 // or after the end of a text section. The second word is the special
5377 // EXIDX_CANTUNWIND value.
5378 uint32_t prel31_offset = output_address - this->address();
5379 if (Bits<31>::has_overflow32(offset))
5380 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5381 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5382 prel31_offset & 0x7fffffffU);
5383 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5384 elfcpp::EXIDX_CANTUNWIND);
5386 of->write_output_view(this->offset(), oview_size, oview);
5389 // Arm_exidx_merged_section methods.
5391 // Constructor for Arm_exidx_merged_section.
5392 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5393 // SECTION_OFFSET_MAP points to a section offset map describing how
5394 // parts of the input section are mapped to output. DELETED_BYTES is
5395 // the number of bytes deleted from the EXIDX input section.
5397 Arm_exidx_merged_section::Arm_exidx_merged_section(
5398 const Arm_exidx_input_section& exidx_input_section,
5399 const Arm_exidx_section_offset_map& section_offset_map,
5400 uint32_t deleted_bytes)
5401 : Output_relaxed_input_section(exidx_input_section.relobj(),
5402 exidx_input_section.shndx(),
5403 exidx_input_section.addralign()),
5404 exidx_input_section_(exidx_input_section),
5405 section_offset_map_(section_offset_map)
5407 // If we retain or discard the whole EXIDX input section, we would
5409 gold_assert(deleted_bytes != 0
5410 && deleted_bytes != this->exidx_input_section_.size());
5412 // Fix size here so that we do not need to implement set_final_data_size.
5413 uint32_t size = exidx_input_section.size() - deleted_bytes;
5414 this->set_data_size(size);
5415 this->fix_data_size();
5417 // Allocate buffer for section contents and build contents.
5418 this->section_contents_ = new unsigned char[size];
5421 // Build the contents of a merged EXIDX output section.
5424 Arm_exidx_merged_section::build_contents(
5425 const unsigned char* original_contents,
5426 section_size_type original_size)
5428 // Go over spans of input offsets and write only those that are not
5430 section_offset_type in_start = 0;
5431 section_offset_type out_start = 0;
5432 section_offset_type in_max =
5433 convert_types<section_offset_type>(original_size);
5434 section_offset_type out_max =
5435 convert_types<section_offset_type>(this->data_size());
5436 for (Arm_exidx_section_offset_map::const_iterator p =
5437 this->section_offset_map_.begin();
5438 p != this->section_offset_map_.end();
5441 section_offset_type in_end = p->first;
5442 gold_assert(in_end >= in_start);
5443 section_offset_type out_end = p->second;
5444 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5447 size_t out_chunk_size =
5448 convert_types<size_t>(out_end - out_start + 1);
5450 gold_assert(out_chunk_size == in_chunk_size
5451 && in_end < in_max && out_end < out_max);
5453 memcpy(this->section_contents_ + out_start,
5454 original_contents + in_start,
5456 out_start += out_chunk_size;
5458 in_start += in_chunk_size;
5462 // Given an input OBJECT, an input section index SHNDX within that
5463 // object, and an OFFSET relative to the start of that input
5464 // section, return whether or not the corresponding offset within
5465 // the output section is known. If this function returns true, it
5466 // sets *POUTPUT to the output offset. The value -1 indicates that
5467 // this input offset is being discarded.
5470 Arm_exidx_merged_section::do_output_offset(
5471 const Relobj* relobj,
5473 section_offset_type offset,
5474 section_offset_type* poutput) const
5476 // We only handle offsets for the original EXIDX input section.
5477 if (relobj != this->exidx_input_section_.relobj()
5478 || shndx != this->exidx_input_section_.shndx())
5481 section_offset_type section_size =
5482 convert_types<section_offset_type>(this->exidx_input_section_.size());
5483 if (offset < 0 || offset >= section_size)
5484 // Input offset is out of valid range.
5488 // We need to look up the section offset map to determine the output
5489 // offset. Find the reference point in map that is first offset
5490 // bigger than or equal to this offset.
5491 Arm_exidx_section_offset_map::const_iterator p =
5492 this->section_offset_map_.lower_bound(offset);
5494 // The section offset maps are build such that this should not happen if
5495 // input offset is in the valid range.
5496 gold_assert(p != this->section_offset_map_.end());
5498 // We need to check if this is dropped.
5499 section_offset_type ref = p->first;
5500 section_offset_type mapped_ref = p->second;
5502 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5503 // Offset is present in output.
5504 *poutput = mapped_ref + (offset - ref);
5506 // Offset is discarded owing to EXIDX entry merging.
5513 // Write this to output file OF.
5516 Arm_exidx_merged_section::do_write(Output_file* of)
5518 off_t offset = this->offset();
5519 const section_size_type oview_size = this->data_size();
5520 unsigned char* const oview = of->get_output_view(offset, oview_size);
5522 Output_section* os = this->relobj()->output_section(this->shndx());
5523 gold_assert(os != NULL);
5525 memcpy(oview, this->section_contents_, oview_size);
5526 of->write_output_view(this->offset(), oview_size, oview);
5529 // Arm_exidx_fixup methods.
5531 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5532 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5533 // points to the end of the last seen EXIDX section.
5536 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5538 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5539 && this->last_input_section_ != NULL)
5541 Relobj* relobj = this->last_input_section_->relobj();
5542 unsigned int text_shndx = this->last_input_section_->link();
5543 Arm_exidx_cantunwind* cantunwind =
5544 new Arm_exidx_cantunwind(relobj, text_shndx);
5545 this->exidx_output_section_->add_output_section_data(cantunwind);
5546 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5550 // Process an EXIDX section entry in input. Return whether this entry
5551 // can be deleted in the output. SECOND_WORD in the second word of the
5555 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5558 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5560 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5561 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5562 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5564 else if ((second_word & 0x80000000) != 0)
5566 // Inlined unwinding data. Merge if equal to previous.
5567 delete_entry = (merge_exidx_entries_
5568 && this->last_unwind_type_ == UT_INLINED_ENTRY
5569 && this->last_inlined_entry_ == second_word);
5570 this->last_unwind_type_ = UT_INLINED_ENTRY;
5571 this->last_inlined_entry_ = second_word;
5575 // Normal table entry. In theory we could merge these too,
5576 // but duplicate entries are likely to be much less common.
5577 delete_entry = false;
5578 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5580 return delete_entry;
5583 // Update the current section offset map during EXIDX section fix-up.
5584 // If there is no map, create one. INPUT_OFFSET is the offset of a
5585 // reference point, DELETED_BYTES is the number of deleted by in the
5586 // section so far. If DELETE_ENTRY is true, the reference point and
5587 // all offsets after the previous reference point are discarded.
5590 Arm_exidx_fixup::update_offset_map(
5591 section_offset_type input_offset,
5592 section_size_type deleted_bytes,
5595 if (this->section_offset_map_ == NULL)
5596 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5597 section_offset_type output_offset;
5599 output_offset = Arm_exidx_input_section::invalid_offset;
5601 output_offset = input_offset - deleted_bytes;
5602 (*this->section_offset_map_)[input_offset] = output_offset;
5605 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5606 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5607 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5608 // If some entries are merged, also store a pointer to a newly created
5609 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5610 // owns the map and is responsible for releasing it after use.
5612 template<bool big_endian>
5614 Arm_exidx_fixup::process_exidx_section(
5615 const Arm_exidx_input_section* exidx_input_section,
5616 const unsigned char* section_contents,
5617 section_size_type section_size,
5618 Arm_exidx_section_offset_map** psection_offset_map)
5620 Relobj* relobj = exidx_input_section->relobj();
5621 unsigned shndx = exidx_input_section->shndx();
5623 if ((section_size % 8) != 0)
5625 // Something is wrong with this section. Better not touch it.
5626 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5627 relobj->name().c_str(), shndx);
5628 this->last_input_section_ = exidx_input_section;
5629 this->last_unwind_type_ = UT_NONE;
5633 uint32_t deleted_bytes = 0;
5634 bool prev_delete_entry = false;
5635 gold_assert(this->section_offset_map_ == NULL);
5637 for (section_size_type i = 0; i < section_size; i += 8)
5639 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5641 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5642 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5644 bool delete_entry = this->process_exidx_entry(second_word);
5646 // Entry deletion causes changes in output offsets. We use a std::map
5647 // to record these. And entry (x, y) means input offset x
5648 // is mapped to output offset y. If y is invalid_offset, then x is
5649 // dropped in the output. Because of the way std::map::lower_bound
5650 // works, we record the last offset in a region w.r.t to keeping or
5651 // dropping. If there is no entry (x0, y0) for an input offset x0,
5652 // the output offset y0 of it is determined by the output offset y1 of
5653 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5654 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5656 if (delete_entry != prev_delete_entry && i != 0)
5657 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5659 // Update total deleted bytes for this entry.
5663 prev_delete_entry = delete_entry;
5666 // If section offset map is not NULL, make an entry for the end of
5668 if (this->section_offset_map_ != NULL)
5669 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5671 *psection_offset_map = this->section_offset_map_;
5672 this->section_offset_map_ = NULL;
5673 this->last_input_section_ = exidx_input_section;
5675 // Set the first output text section so that we can link the EXIDX output
5676 // section to it. Ignore any EXIDX input section that is completely merged.
5677 if (this->first_output_text_section_ == NULL
5678 && deleted_bytes != section_size)
5680 unsigned int link = exidx_input_section->link();
5681 Output_section* os = relobj->output_section(link);
5682 gold_assert(os != NULL);
5683 this->first_output_text_section_ = os;
5686 return deleted_bytes;
5689 // Arm_output_section methods.
5691 // Create a stub group for input sections from BEGIN to END. OWNER
5692 // points to the input section to be the owner a new stub table.
5694 template<bool big_endian>
5696 Arm_output_section<big_endian>::create_stub_group(
5697 Input_section_list::const_iterator begin,
5698 Input_section_list::const_iterator end,
5699 Input_section_list::const_iterator owner,
5700 Target_arm<big_endian>* target,
5701 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5704 // We use a different kind of relaxed section in an EXIDX section.
5705 // The static casting from Output_relaxed_input_section to
5706 // Arm_input_section is invalid in an EXIDX section. We are okay
5707 // because we should not be calling this for an EXIDX section.
5708 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5710 // Currently we convert ordinary input sections into relaxed sections only
5711 // at this point but we may want to support creating relaxed input section
5712 // very early. So we check here to see if owner is already a relaxed
5715 Arm_input_section<big_endian>* arm_input_section;
5716 if (owner->is_relaxed_input_section())
5719 Arm_input_section<big_endian>::as_arm_input_section(
5720 owner->relaxed_input_section());
5724 gold_assert(owner->is_input_section());
5725 // Create a new relaxed input section. We need to lock the original
5727 Task_lock_obj<Object> tl(task, owner->relobj());
5729 target->new_arm_input_section(owner->relobj(), owner->shndx());
5730 new_relaxed_sections->push_back(arm_input_section);
5733 // Create a stub table.
5734 Stub_table<big_endian>* stub_table =
5735 target->new_stub_table(arm_input_section);
5737 arm_input_section->set_stub_table(stub_table);
5739 Input_section_list::const_iterator p = begin;
5740 Input_section_list::const_iterator prev_p;
5742 // Look for input sections or relaxed input sections in [begin ... end].
5745 if (p->is_input_section() || p->is_relaxed_input_section())
5747 // The stub table information for input sections live
5748 // in their objects.
5749 Arm_relobj<big_endian>* arm_relobj =
5750 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5751 arm_relobj->set_stub_table(p->shndx(), stub_table);
5755 while (prev_p != end);
5758 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5759 // of stub groups. We grow a stub group by adding input section until the
5760 // size is just below GROUP_SIZE. The last input section will be converted
5761 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5762 // input section after the stub table, effectively double the group size.
5764 // This is similar to the group_sections() function in elf32-arm.c but is
5765 // implemented differently.
5767 template<bool big_endian>
5769 Arm_output_section<big_endian>::group_sections(
5770 section_size_type group_size,
5771 bool stubs_always_after_branch,
5772 Target_arm<big_endian>* target,
5775 // States for grouping.
5778 // No group is being built.
5780 // A group is being built but the stub table is not found yet.
5781 // We keep group a stub group until the size is just under GROUP_SIZE.
5782 // The last input section in the group will be used as the stub table.
5783 FINDING_STUB_SECTION,
5784 // A group is being built and we have already found a stub table.
5785 // We enter this state to grow a stub group by adding input section
5786 // after the stub table. This effectively doubles the group size.
5790 // Any newly created relaxed sections are stored here.
5791 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5793 State state = NO_GROUP;
5794 section_size_type off = 0;
5795 section_size_type group_begin_offset = 0;
5796 section_size_type group_end_offset = 0;
5797 section_size_type stub_table_end_offset = 0;
5798 Input_section_list::const_iterator group_begin =
5799 this->input_sections().end();
5800 Input_section_list::const_iterator stub_table =
5801 this->input_sections().end();
5802 Input_section_list::const_iterator group_end = this->input_sections().end();
5803 for (Input_section_list::const_iterator p = this->input_sections().begin();
5804 p != this->input_sections().end();
5807 section_size_type section_begin_offset =
5808 align_address(off, p->addralign());
5809 section_size_type section_end_offset =
5810 section_begin_offset + p->data_size();
5812 // Check to see if we should group the previously seen sections.
5818 case FINDING_STUB_SECTION:
5819 // Adding this section makes the group larger than GROUP_SIZE.
5820 if (section_end_offset - group_begin_offset >= group_size)
5822 if (stubs_always_after_branch)
5824 gold_assert(group_end != this->input_sections().end());
5825 this->create_stub_group(group_begin, group_end, group_end,
5826 target, &new_relaxed_sections,
5832 // But wait, there's more! Input sections up to
5833 // stub_group_size bytes after the stub table can be
5834 // handled by it too.
5835 state = HAS_STUB_SECTION;
5836 stub_table = group_end;
5837 stub_table_end_offset = group_end_offset;
5842 case HAS_STUB_SECTION:
5843 // Adding this section makes the post stub-section group larger
5845 if (section_end_offset - stub_table_end_offset >= group_size)
5847 gold_assert(group_end != this->input_sections().end());
5848 this->create_stub_group(group_begin, group_end, stub_table,
5849 target, &new_relaxed_sections, task);
5858 // If we see an input section and currently there is no group, start
5859 // a new one. Skip any empty sections. We look at the data size
5860 // instead of calling p->relobj()->section_size() to avoid locking.
5861 if ((p->is_input_section() || p->is_relaxed_input_section())
5862 && (p->data_size() != 0))
5864 if (state == NO_GROUP)
5866 state = FINDING_STUB_SECTION;
5868 group_begin_offset = section_begin_offset;
5871 // Keep track of the last input section seen.
5873 group_end_offset = section_end_offset;
5876 off = section_end_offset;
5879 // Create a stub group for any ungrouped sections.
5880 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5882 gold_assert(group_end != this->input_sections().end());
5883 this->create_stub_group(group_begin, group_end,
5884 (state == FINDING_STUB_SECTION
5887 target, &new_relaxed_sections, task);
5890 // Convert input section into relaxed input section in a batch.
5891 if (!new_relaxed_sections.empty())
5892 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5894 // Update the section offsets
5895 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5897 Arm_relobj<big_endian>* arm_relobj =
5898 Arm_relobj<big_endian>::as_arm_relobj(
5899 new_relaxed_sections[i]->relobj());
5900 unsigned int shndx = new_relaxed_sections[i]->shndx();
5901 // Tell Arm_relobj that this input section is converted.
5902 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5906 // Append non empty text sections in this to LIST in ascending
5907 // order of their position in this.
5909 template<bool big_endian>
5911 Arm_output_section<big_endian>::append_text_sections_to_list(
5912 Text_section_list* list)
5914 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5916 for (Input_section_list::const_iterator p = this->input_sections().begin();
5917 p != this->input_sections().end();
5920 // We only care about plain or relaxed input sections. We also
5921 // ignore any merged sections.
5922 if (p->is_input_section() || p->is_relaxed_input_section())
5923 list->push_back(Text_section_list::value_type(p->relobj(),
5928 template<bool big_endian>
5930 Arm_output_section<big_endian>::fix_exidx_coverage(
5932 const Text_section_list& sorted_text_sections,
5933 Symbol_table* symtab,
5934 bool merge_exidx_entries,
5937 // We should only do this for the EXIDX output section.
5938 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5940 // We don't want the relaxation loop to undo these changes, so we discard
5941 // the current saved states and take another one after the fix-up.
5942 this->discard_states();
5944 // Remove all input sections.
5945 uint64_t address = this->address();
5946 typedef std::list<Output_section::Input_section> Input_section_list;
5947 Input_section_list input_sections;
5948 this->reset_address_and_file_offset();
5949 this->get_input_sections(address, std::string(""), &input_sections);
5951 if (!this->input_sections().empty())
5952 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5954 // Go through all the known input sections and record them.
5955 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5956 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5957 Section_id_hash> Text_to_exidx_map;
5958 Text_to_exidx_map text_to_exidx_map;
5959 for (Input_section_list::const_iterator p = input_sections.begin();
5960 p != input_sections.end();
5963 // This should never happen. At this point, we should only see
5964 // plain EXIDX input sections.
5965 gold_assert(!p->is_relaxed_input_section());
5966 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5969 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5971 // Go over the sorted text sections.
5972 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5973 Section_id_set processed_input_sections;
5974 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5975 p != sorted_text_sections.end();
5978 Relobj* relobj = p->first;
5979 unsigned int shndx = p->second;
5981 Arm_relobj<big_endian>* arm_relobj =
5982 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5983 const Arm_exidx_input_section* exidx_input_section =
5984 arm_relobj->exidx_input_section_by_link(shndx);
5986 // If this text section has no EXIDX section or if the EXIDX section
5987 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5988 // of the last seen EXIDX section.
5989 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5991 exidx_fixup.add_exidx_cantunwind_as_needed();
5995 Relobj* exidx_relobj = exidx_input_section->relobj();
5996 unsigned int exidx_shndx = exidx_input_section->shndx();
5997 Section_id sid(exidx_relobj, exidx_shndx);
5998 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5999 if (iter == text_to_exidx_map.end())
6001 // This is odd. We have not seen this EXIDX input section before.
6002 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
6003 // issue a warning instead. We assume the user knows what he
6004 // or she is doing. Otherwise, this is an error.
6005 if (layout->script_options()->saw_sections_clause())
6006 gold_warning(_("unwinding may not work because EXIDX input section"
6007 " %u of %s is not in EXIDX output section"),
6008 exidx_shndx, exidx_relobj->name().c_str());
6010 gold_error(_("unwinding may not work because EXIDX input section"
6011 " %u of %s is not in EXIDX output section"),
6012 exidx_shndx, exidx_relobj->name().c_str());
6014 exidx_fixup.add_exidx_cantunwind_as_needed();
6018 // We need to access the contents of the EXIDX section, lock the
6020 Task_lock_obj<Object> tl(task, exidx_relobj);
6021 section_size_type exidx_size;
6022 const unsigned char* exidx_contents =
6023 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
6025 // Fix up coverage and append input section to output data list.
6026 Arm_exidx_section_offset_map* section_offset_map = NULL;
6027 uint32_t deleted_bytes =
6028 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
6031 §ion_offset_map);
6033 if (deleted_bytes == exidx_input_section->size())
6035 // The whole EXIDX section got merged. Remove it from output.
6036 gold_assert(section_offset_map == NULL);
6037 exidx_relobj->set_output_section(exidx_shndx, NULL);
6039 // All local symbols defined in this input section will be dropped.
6040 // We need to adjust output local symbol count.
6041 arm_relobj->set_output_local_symbol_count_needs_update();
6043 else if (deleted_bytes > 0)
6045 // Some entries are merged. We need to convert this EXIDX input
6046 // section into a relaxed section.
6047 gold_assert(section_offset_map != NULL);
6049 Arm_exidx_merged_section* merged_section =
6050 new Arm_exidx_merged_section(*exidx_input_section,
6051 *section_offset_map, deleted_bytes);
6052 merged_section->build_contents(exidx_contents, exidx_size);
6054 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6055 this->add_relaxed_input_section(layout, merged_section, secname);
6056 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6058 // All local symbols defined in discarded portions of this input
6059 // section will be dropped. We need to adjust output local symbol
6061 arm_relobj->set_output_local_symbol_count_needs_update();
6065 // Just add back the EXIDX input section.
6066 gold_assert(section_offset_map == NULL);
6067 const Output_section::Input_section* pis = iter->second;
6068 gold_assert(pis->is_input_section());
6069 this->add_script_input_section(*pis);
6072 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6075 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6076 exidx_fixup.add_exidx_cantunwind_as_needed();
6078 // Remove any known EXIDX input sections that are not processed.
6079 for (Input_section_list::const_iterator p = input_sections.begin();
6080 p != input_sections.end();
6083 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6084 == processed_input_sections.end())
6086 // We discard a known EXIDX section because its linked
6087 // text section has been folded by ICF. We also discard an
6088 // EXIDX section with error, the output does not matter in this
6089 // case. We do this to avoid triggering asserts.
6090 Arm_relobj<big_endian>* arm_relobj =
6091 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6092 const Arm_exidx_input_section* exidx_input_section =
6093 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6094 gold_assert(exidx_input_section != NULL);
6095 if (!exidx_input_section->has_errors())
6097 unsigned int text_shndx = exidx_input_section->link();
6098 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6101 // Remove this from link. We also need to recount the
6103 p->relobj()->set_output_section(p->shndx(), NULL);
6104 arm_relobj->set_output_local_symbol_count_needs_update();
6108 // Link exidx output section to the first seen output section and
6109 // set correct entry size.
6110 this->set_link_section(exidx_fixup.first_output_text_section());
6111 this->set_entsize(8);
6113 // Make changes permanent.
6114 this->save_states();
6115 this->set_section_offsets_need_adjustment();
6118 // Link EXIDX output sections to text output sections.
6120 template<bool big_endian>
6122 Arm_output_section<big_endian>::set_exidx_section_link()
6124 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6125 if (!this->input_sections().empty())
6127 Input_section_list::const_iterator p = this->input_sections().begin();
6128 Arm_relobj<big_endian>* arm_relobj =
6129 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6130 unsigned exidx_shndx = p->shndx();
6131 const Arm_exidx_input_section* exidx_input_section =
6132 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6133 gold_assert(exidx_input_section != NULL);
6134 unsigned int text_shndx = exidx_input_section->link();
6135 Output_section* os = arm_relobj->output_section(text_shndx);
6136 this->set_link_section(os);
6140 // Arm_relobj methods.
6142 // Determine if an input section is scannable for stub processing. SHDR is
6143 // the header of the section and SHNDX is the section index. OS is the output
6144 // section for the input section and SYMTAB is the global symbol table used to
6145 // look up ICF information.
6147 template<bool big_endian>
6149 Arm_relobj<big_endian>::section_is_scannable(
6150 const elfcpp::Shdr<32, big_endian>& shdr,
6152 const Output_section* os,
6153 const Symbol_table* symtab)
6155 // Skip any empty sections, unallocated sections or sections whose
6156 // type are not SHT_PROGBITS.
6157 if (shdr.get_sh_size() == 0
6158 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6159 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6162 // Skip any discarded or ICF'ed sections.
6163 if (os == NULL || symtab->is_section_folded(this, shndx))
6166 // If this requires special offset handling, check to see if it is
6167 // a relaxed section. If this is not, then it is a merged section that
6168 // we cannot handle.
6169 if (this->is_output_section_offset_invalid(shndx))
6171 const Output_relaxed_input_section* poris =
6172 os->find_relaxed_input_section(this, shndx);
6180 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6181 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6183 template<bool big_endian>
6185 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6186 const elfcpp::Shdr<32, big_endian>& shdr,
6187 const Relobj::Output_sections& out_sections,
6188 const Symbol_table* symtab,
6189 const unsigned char* pshdrs)
6191 unsigned int sh_type = shdr.get_sh_type();
6192 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6195 // Ignore empty section.
6196 off_t sh_size = shdr.get_sh_size();
6200 // Ignore reloc section with unexpected symbol table. The
6201 // error will be reported in the final link.
6202 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6205 unsigned int reloc_size;
6206 if (sh_type == elfcpp::SHT_REL)
6207 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6209 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6211 // Ignore reloc section with unexpected entsize or uneven size.
6212 // The error will be reported in the final link.
6213 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6216 // Ignore reloc section with bad info. This error will be
6217 // reported in the final link.
6218 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6219 if (index >= this->shnum())
6222 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6223 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6224 return this->section_is_scannable(text_shdr, index,
6225 out_sections[index], symtab);
6228 // Return the output address of either a plain input section or a relaxed
6229 // input section. SHNDX is the section index. We define and use this
6230 // instead of calling Output_section::output_address because that is slow
6231 // for large output.
6233 template<bool big_endian>
6235 Arm_relobj<big_endian>::simple_input_section_output_address(
6239 if (this->is_output_section_offset_invalid(shndx))
6241 const Output_relaxed_input_section* poris =
6242 os->find_relaxed_input_section(this, shndx);
6243 // We do not handle merged sections here.
6244 gold_assert(poris != NULL);
6245 return poris->address();
6248 return os->address() + this->get_output_section_offset(shndx);
6251 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6252 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6254 template<bool big_endian>
6256 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6257 const elfcpp::Shdr<32, big_endian>& shdr,
6260 const Symbol_table* symtab)
6262 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6265 // If the section does not cross any 4K-boundaries, it does not need to
6267 Arm_address address = this->simple_input_section_output_address(shndx, os);
6268 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6274 // Scan a section for Cortex-A8 workaround.
6276 template<bool big_endian>
6278 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6279 const elfcpp::Shdr<32, big_endian>& shdr,
6282 Target_arm<big_endian>* arm_target)
6284 // Look for the first mapping symbol in this section. It should be
6286 Mapping_symbol_position section_start(shndx, 0);
6287 typename Mapping_symbols_info::const_iterator p =
6288 this->mapping_symbols_info_.lower_bound(section_start);
6290 // There are no mapping symbols for this section. Treat it as a data-only
6292 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6295 Arm_address output_address =
6296 this->simple_input_section_output_address(shndx, os);
6298 // Get the section contents.
6299 section_size_type input_view_size = 0;
6300 const unsigned char* input_view =
6301 this->section_contents(shndx, &input_view_size, false);
6303 // We need to go through the mapping symbols to determine what to
6304 // scan. There are two reasons. First, we should look at THUMB code and
6305 // THUMB code only. Second, we only want to look at the 4K-page boundary
6306 // to speed up the scanning.
6308 while (p != this->mapping_symbols_info_.end()
6309 && p->first.first == shndx)
6311 typename Mapping_symbols_info::const_iterator next =
6312 this->mapping_symbols_info_.upper_bound(p->first);
6314 // Only scan part of a section with THUMB code.
6315 if (p->second == 't')
6317 // Determine the end of this range.
6318 section_size_type span_start =
6319 convert_to_section_size_type(p->first.second);
6320 section_size_type span_end;
6321 if (next != this->mapping_symbols_info_.end()
6322 && next->first.first == shndx)
6323 span_end = convert_to_section_size_type(next->first.second);
6325 span_end = convert_to_section_size_type(shdr.get_sh_size());
6327 if (((span_start + output_address) & ~0xfffUL)
6328 != ((span_end + output_address - 1) & ~0xfffUL))
6330 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6331 span_start, span_end,
6341 // Scan relocations for stub generation.
6343 template<bool big_endian>
6345 Arm_relobj<big_endian>::scan_sections_for_stubs(
6346 Target_arm<big_endian>* arm_target,
6347 const Symbol_table* symtab,
6348 const Layout* layout)
6350 unsigned int shnum = this->shnum();
6351 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6353 // Read the section headers.
6354 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6358 // To speed up processing, we set up hash tables for fast lookup of
6359 // input offsets to output addresses.
6360 this->initialize_input_to_output_maps();
6362 const Relobj::Output_sections& out_sections(this->output_sections());
6364 Relocate_info<32, big_endian> relinfo;
6365 relinfo.symtab = symtab;
6366 relinfo.layout = layout;
6367 relinfo.object = this;
6369 // Do relocation stubs scanning.
6370 const unsigned char* p = pshdrs + shdr_size;
6371 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6373 const elfcpp::Shdr<32, big_endian> shdr(p);
6374 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6377 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6378 Arm_address output_offset = this->get_output_section_offset(index);
6379 Arm_address output_address;
6380 if (output_offset != invalid_address)
6381 output_address = out_sections[index]->address() + output_offset;
6384 // Currently this only happens for a relaxed section.
6385 const Output_relaxed_input_section* poris =
6386 out_sections[index]->find_relaxed_input_section(this, index);
6387 gold_assert(poris != NULL);
6388 output_address = poris->address();
6391 // Get the relocations.
6392 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6396 // Get the section contents. This does work for the case in which
6397 // we modify the contents of an input section. We need to pass the
6398 // output view under such circumstances.
6399 section_size_type input_view_size = 0;
6400 const unsigned char* input_view =
6401 this->section_contents(index, &input_view_size, false);
6403 relinfo.reloc_shndx = i;
6404 relinfo.data_shndx = index;
6405 unsigned int sh_type = shdr.get_sh_type();
6406 unsigned int reloc_size;
6407 if (sh_type == elfcpp::SHT_REL)
6408 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6410 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6412 Output_section* os = out_sections[index];
6413 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6414 shdr.get_sh_size() / reloc_size,
6416 output_offset == invalid_address,
6417 input_view, output_address,
6422 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6423 // after its relocation section, if there is one, is processed for
6424 // relocation stubs. Merging this loop with the one above would have been
6425 // complicated since we would have had to make sure that relocation stub
6426 // scanning is done first.
6427 if (arm_target->fix_cortex_a8())
6429 const unsigned char* p = pshdrs + shdr_size;
6430 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6432 const elfcpp::Shdr<32, big_endian> shdr(p);
6433 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6436 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6441 // After we've done the relocations, we release the hash tables,
6442 // since we no longer need them.
6443 this->free_input_to_output_maps();
6446 // Count the local symbols. The ARM backend needs to know if a symbol
6447 // is a THUMB function or not. For global symbols, it is easy because
6448 // the Symbol object keeps the ELF symbol type. For local symbol it is
6449 // harder because we cannot access this information. So we override the
6450 // do_count_local_symbol in parent and scan local symbols to mark
6451 // THUMB functions. This is not the most efficient way but I do not want to
6452 // slow down other ports by calling a per symbol target hook inside
6453 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6455 template<bool big_endian>
6457 Arm_relobj<big_endian>::do_count_local_symbols(
6458 Stringpool_template<char>* pool,
6459 Stringpool_template<char>* dynpool)
6461 // We need to fix-up the values of any local symbols whose type are
6464 // Ask parent to count the local symbols.
6465 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6466 const unsigned int loccount = this->local_symbol_count();
6470 // Initialize the thumb function bit-vector.
6471 std::vector<bool> empty_vector(loccount, false);
6472 this->local_symbol_is_thumb_function_.swap(empty_vector);
6474 // Read the symbol table section header.
6475 const unsigned int symtab_shndx = this->symtab_shndx();
6476 elfcpp::Shdr<32, big_endian>
6477 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6478 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6480 // Read the local symbols.
6481 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6482 gold_assert(loccount == symtabshdr.get_sh_info());
6483 off_t locsize = loccount * sym_size;
6484 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6485 locsize, true, true);
6487 // For mapping symbol processing, we need to read the symbol names.
6488 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6489 if (strtab_shndx >= this->shnum())
6491 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6495 elfcpp::Shdr<32, big_endian>
6496 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6497 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6499 this->error(_("symbol table name section has wrong type: %u"),
6500 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6503 const char* pnames =
6504 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6505 strtabshdr.get_sh_size(),
6508 // Loop over the local symbols and mark any local symbols pointing
6509 // to THUMB functions.
6511 // Skip the first dummy symbol.
6513 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6514 this->local_values();
6515 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6517 elfcpp::Sym<32, big_endian> sym(psyms);
6518 elfcpp::STT st_type = sym.get_st_type();
6519 Symbol_value<32>& lv((*plocal_values)[i]);
6520 Arm_address input_value = lv.input_value();
6522 // Check to see if this is a mapping symbol.
6523 const char* sym_name = pnames + sym.get_st_name();
6524 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6527 unsigned int input_shndx =
6528 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6529 gold_assert(is_ordinary);
6531 // Strip of LSB in case this is a THUMB symbol.
6532 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6533 this->mapping_symbols_info_[msp] = sym_name[1];
6536 if (st_type == elfcpp::STT_ARM_TFUNC
6537 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6539 // This is a THUMB function. Mark this and canonicalize the
6540 // symbol value by setting LSB.
6541 this->local_symbol_is_thumb_function_[i] = true;
6542 if ((input_value & 1) == 0)
6543 lv.set_input_value(input_value | 1);
6548 // Relocate sections.
6549 template<bool big_endian>
6551 Arm_relobj<big_endian>::do_relocate_sections(
6552 const Symbol_table* symtab,
6553 const Layout* layout,
6554 const unsigned char* pshdrs,
6556 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6558 // Call parent to relocate sections.
6559 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6560 pshdrs, of, pviews);
6562 // We do not generate stubs if doing a relocatable link.
6563 if (parameters->options().relocatable())
6566 // Relocate stub tables.
6567 unsigned int shnum = this->shnum();
6569 Target_arm<big_endian>* arm_target =
6570 Target_arm<big_endian>::default_target();
6572 Relocate_info<32, big_endian> relinfo;
6573 relinfo.symtab = symtab;
6574 relinfo.layout = layout;
6575 relinfo.object = this;
6577 for (unsigned int i = 1; i < shnum; ++i)
6579 Arm_input_section<big_endian>* arm_input_section =
6580 arm_target->find_arm_input_section(this, i);
6582 if (arm_input_section != NULL
6583 && arm_input_section->is_stub_table_owner()
6584 && !arm_input_section->stub_table()->empty())
6586 // We cannot discard a section if it owns a stub table.
6587 Output_section* os = this->output_section(i);
6588 gold_assert(os != NULL);
6590 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6591 relinfo.reloc_shdr = NULL;
6592 relinfo.data_shndx = i;
6593 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6595 gold_assert((*pviews)[i].view != NULL);
6597 // We are passed the output section view. Adjust it to cover the
6599 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6600 gold_assert((stub_table->address() >= (*pviews)[i].address)
6601 && ((stub_table->address() + stub_table->data_size())
6602 <= (*pviews)[i].address + (*pviews)[i].view_size));
6604 off_t offset = stub_table->address() - (*pviews)[i].address;
6605 unsigned char* view = (*pviews)[i].view + offset;
6606 Arm_address address = stub_table->address();
6607 section_size_type view_size = stub_table->data_size();
6609 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6613 // Apply Cortex A8 workaround if applicable.
6614 if (this->section_has_cortex_a8_workaround(i))
6616 unsigned char* view = (*pviews)[i].view;
6617 Arm_address view_address = (*pviews)[i].address;
6618 section_size_type view_size = (*pviews)[i].view_size;
6619 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6621 // Adjust view to cover section.
6622 Output_section* os = this->output_section(i);
6623 gold_assert(os != NULL);
6624 Arm_address section_address =
6625 this->simple_input_section_output_address(i, os);
6626 uint64_t section_size = this->section_size(i);
6628 gold_assert(section_address >= view_address
6629 && ((section_address + section_size)
6630 <= (view_address + view_size)));
6632 unsigned char* section_view = view + (section_address - view_address);
6634 // Apply the Cortex-A8 workaround to the output address range
6635 // corresponding to this input section.
6636 stub_table->apply_cortex_a8_workaround_to_address_range(
6645 // Find the linked text section of an EXIDX section by looking at the first
6646 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6647 // must be linked to its associated code section via the sh_link field of
6648 // its section header. However, some tools are broken and the link is not
6649 // always set. LD just drops such an EXIDX section silently, causing the
6650 // associated code not unwindabled. Here we try a little bit harder to
6651 // discover the linked code section.
6653 // PSHDR points to the section header of a relocation section of an EXIDX
6654 // section. If we can find a linked text section, return true and
6655 // store the text section index in the location PSHNDX. Otherwise
6658 template<bool big_endian>
6660 Arm_relobj<big_endian>::find_linked_text_section(
6661 const unsigned char* pshdr,
6662 const unsigned char* psyms,
6663 unsigned int* pshndx)
6665 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6667 // If there is no relocation, we cannot find the linked text section.
6669 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6670 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6672 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6673 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6675 // Get the relocations.
6676 const unsigned char* prelocs =
6677 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6679 // Find the REL31 relocation for the first word of the first EXIDX entry.
6680 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6682 Arm_address r_offset;
6683 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6684 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6686 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6687 r_info = reloc.get_r_info();
6688 r_offset = reloc.get_r_offset();
6692 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6693 r_info = reloc.get_r_info();
6694 r_offset = reloc.get_r_offset();
6697 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6698 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6701 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6703 || r_sym >= this->local_symbol_count()
6707 // This is the relocation for the first word of the first EXIDX entry.
6708 // We expect to see a local section symbol.
6709 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6710 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6711 if (sym.get_st_type() == elfcpp::STT_SECTION)
6715 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6716 gold_assert(is_ordinary);
6726 // Make an EXIDX input section object for an EXIDX section whose index is
6727 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6728 // is the section index of the linked text section.
6730 template<bool big_endian>
6732 Arm_relobj<big_endian>::make_exidx_input_section(
6734 const elfcpp::Shdr<32, big_endian>& shdr,
6735 unsigned int text_shndx,
6736 const elfcpp::Shdr<32, big_endian>& text_shdr)
6738 // Create an Arm_exidx_input_section object for this EXIDX section.
6739 Arm_exidx_input_section* exidx_input_section =
6740 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6741 shdr.get_sh_addralign(),
6742 text_shdr.get_sh_size());
6744 gold_assert(this->exidx_section_map_[shndx] == NULL);
6745 this->exidx_section_map_[shndx] = exidx_input_section;
6747 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6749 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6750 this->section_name(shndx).c_str(), shndx, text_shndx,
6751 this->name().c_str());
6752 exidx_input_section->set_has_errors();
6754 else if (this->exidx_section_map_[text_shndx] != NULL)
6756 unsigned other_exidx_shndx =
6757 this->exidx_section_map_[text_shndx]->shndx();
6758 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6760 this->section_name(shndx).c_str(), shndx,
6761 this->section_name(other_exidx_shndx).c_str(),
6762 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6763 text_shndx, this->name().c_str());
6764 exidx_input_section->set_has_errors();
6767 this->exidx_section_map_[text_shndx] = exidx_input_section;
6769 // Check section flags of text section.
6770 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6772 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6774 this->section_name(shndx).c_str(), shndx,
6775 this->section_name(text_shndx).c_str(), text_shndx,
6776 this->name().c_str());
6777 exidx_input_section->set_has_errors();
6779 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6780 // I would like to make this an error but currently ld just ignores
6782 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6784 this->section_name(shndx).c_str(), shndx,
6785 this->section_name(text_shndx).c_str(), text_shndx,
6786 this->name().c_str());
6789 // Read the symbol information.
6791 template<bool big_endian>
6793 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6795 // Call parent class to read symbol information.
6796 this->base_read_symbols(sd);
6798 // If this input file is a binary file, it has no processor
6799 // specific flags and attributes section.
6800 Input_file::Format format = this->input_file()->format();
6801 if (format != Input_file::FORMAT_ELF)
6803 gold_assert(format == Input_file::FORMAT_BINARY);
6804 this->merge_flags_and_attributes_ = false;
6808 // Read processor-specific flags in ELF file header.
6809 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6810 elfcpp::Elf_sizes<32>::ehdr_size,
6812 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6813 this->processor_specific_flags_ = ehdr.get_e_flags();
6815 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6817 std::vector<unsigned int> deferred_exidx_sections;
6818 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6819 const unsigned char* pshdrs = sd->section_headers->data();
6820 const unsigned char* ps = pshdrs + shdr_size;
6821 bool must_merge_flags_and_attributes = false;
6822 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6824 elfcpp::Shdr<32, big_endian> shdr(ps);
6826 // Sometimes an object has no contents except the section name string
6827 // table and an empty symbol table with the undefined symbol. We
6828 // don't want to merge processor-specific flags from such an object.
6829 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6831 // Symbol table is not empty.
6832 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6833 elfcpp::Elf_sizes<32>::sym_size;
6834 if (shdr.get_sh_size() > sym_size)
6835 must_merge_flags_and_attributes = true;
6837 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6838 // If this is neither an empty symbol table nor a string table,
6840 must_merge_flags_and_attributes = true;
6842 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6844 gold_assert(this->attributes_section_data_ == NULL);
6845 section_offset_type section_offset = shdr.get_sh_offset();
6846 section_size_type section_size =
6847 convert_to_section_size_type(shdr.get_sh_size());
6848 const unsigned char* view =
6849 this->get_view(section_offset, section_size, true, false);
6850 this->attributes_section_data_ =
6851 new Attributes_section_data(view, section_size);
6853 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6855 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6856 if (text_shndx == elfcpp::SHN_UNDEF)
6857 deferred_exidx_sections.push_back(i);
6860 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6861 + text_shndx * shdr_size);
6862 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6864 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6865 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6866 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6867 this->section_name(i).c_str(), this->name().c_str());
6872 if (!must_merge_flags_and_attributes)
6874 gold_assert(deferred_exidx_sections.empty());
6875 this->merge_flags_and_attributes_ = false;
6879 // Some tools are broken and they do not set the link of EXIDX sections.
6880 // We look at the first relocation to figure out the linked sections.
6881 if (!deferred_exidx_sections.empty())
6883 // We need to go over the section headers again to find the mapping
6884 // from sections being relocated to their relocation sections. This is
6885 // a bit inefficient as we could do that in the loop above. However,
6886 // we do not expect any deferred EXIDX sections normally. So we do not
6887 // want to slow down the most common path.
6888 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6889 Reloc_map reloc_map;
6890 ps = pshdrs + shdr_size;
6891 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6893 elfcpp::Shdr<32, big_endian> shdr(ps);
6894 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6895 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6897 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6898 if (info_shndx >= this->shnum())
6899 gold_error(_("relocation section %u has invalid info %u"),
6901 Reloc_map::value_type value(info_shndx, i);
6902 std::pair<Reloc_map::iterator, bool> result =
6903 reloc_map.insert(value);
6905 gold_error(_("section %u has multiple relocation sections "
6907 info_shndx, i, reloc_map[info_shndx]);
6911 // Read the symbol table section header.
6912 const unsigned int symtab_shndx = this->symtab_shndx();
6913 elfcpp::Shdr<32, big_endian>
6914 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6915 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6917 // Read the local symbols.
6918 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6919 const unsigned int loccount = this->local_symbol_count();
6920 gold_assert(loccount == symtabshdr.get_sh_info());
6921 off_t locsize = loccount * sym_size;
6922 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6923 locsize, true, true);
6925 // Process the deferred EXIDX sections.
6926 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6928 unsigned int shndx = deferred_exidx_sections[i];
6929 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6930 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6931 Reloc_map::const_iterator it = reloc_map.find(shndx);
6932 if (it != reloc_map.end())
6933 find_linked_text_section(pshdrs + it->second * shdr_size,
6934 psyms, &text_shndx);
6935 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6936 + text_shndx * shdr_size);
6937 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6942 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6943 // sections for unwinding. These sections are referenced implicitly by
6944 // text sections linked in the section headers. If we ignore these implicit
6945 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6946 // will be garbage-collected incorrectly. Hence we override the same function
6947 // in the base class to handle these implicit references.
6949 template<bool big_endian>
6951 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6953 Read_relocs_data* rd)
6955 // First, call base class method to process relocations in this object.
6956 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6958 // If --gc-sections is not specified, there is nothing more to do.
6959 // This happens when --icf is used but --gc-sections is not.
6960 if (!parameters->options().gc_sections())
6963 unsigned int shnum = this->shnum();
6964 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6965 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6969 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6970 // to these from the linked text sections.
6971 const unsigned char* ps = pshdrs + shdr_size;
6972 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6974 elfcpp::Shdr<32, big_endian> shdr(ps);
6975 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6977 // Found an .ARM.exidx section, add it to the set of reachable
6978 // sections from its linked text section.
6979 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6980 symtab->gc()->add_reference(this, text_shndx, this, i);
6985 // Update output local symbol count. Owing to EXIDX entry merging, some local
6986 // symbols will be removed in output. Adjust output local symbol count
6987 // accordingly. We can only changed the static output local symbol count. It
6988 // is too late to change the dynamic symbols.
6990 template<bool big_endian>
6992 Arm_relobj<big_endian>::update_output_local_symbol_count()
6994 // Caller should check that this needs updating. We want caller checking
6995 // because output_local_symbol_count_needs_update() is most likely inlined.
6996 gold_assert(this->output_local_symbol_count_needs_update_);
6998 gold_assert(this->symtab_shndx() != -1U);
6999 if (this->symtab_shndx() == 0)
7001 // This object has no symbols. Weird but legal.
7005 // Read the symbol table section header.
7006 const unsigned int symtab_shndx = this->symtab_shndx();
7007 elfcpp::Shdr<32, big_endian>
7008 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
7009 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
7011 // Read the local symbols.
7012 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
7013 const unsigned int loccount = this->local_symbol_count();
7014 gold_assert(loccount == symtabshdr.get_sh_info());
7015 off_t locsize = loccount * sym_size;
7016 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
7017 locsize, true, true);
7019 // Loop over the local symbols.
7021 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
7023 const Output_sections& out_sections(this->output_sections());
7024 unsigned int shnum = this->shnum();
7025 unsigned int count = 0;
7026 // Skip the first, dummy, symbol.
7028 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7030 elfcpp::Sym<32, big_endian> sym(psyms);
7032 Symbol_value<32>& lv((*this->local_values())[i]);
7034 // This local symbol was already discarded by do_count_local_symbols.
7035 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7039 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7044 Output_section* os = out_sections[shndx];
7046 // This local symbol no longer has an output section. Discard it.
7049 lv.set_no_output_symtab_entry();
7053 // Currently we only discard parts of EXIDX input sections.
7054 // We explicitly check for a merged EXIDX input section to avoid
7055 // calling Output_section_data::output_offset unless necessary.
7056 if ((this->get_output_section_offset(shndx) == invalid_address)
7057 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7059 section_offset_type output_offset =
7060 os->output_offset(this, shndx, lv.input_value());
7061 if (output_offset == -1)
7063 // This symbol is defined in a part of an EXIDX input section
7064 // that is discarded due to entry merging.
7065 lv.set_no_output_symtab_entry();
7074 this->set_output_local_symbol_count(count);
7075 this->output_local_symbol_count_needs_update_ = false;
7078 // Arm_dynobj methods.
7080 // Read the symbol information.
7082 template<bool big_endian>
7084 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7086 // Call parent class to read symbol information.
7087 this->base_read_symbols(sd);
7089 // Read processor-specific flags in ELF file header.
7090 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7091 elfcpp::Elf_sizes<32>::ehdr_size,
7093 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7094 this->processor_specific_flags_ = ehdr.get_e_flags();
7096 // Read the attributes section if there is one.
7097 // We read from the end because gas seems to put it near the end of
7098 // the section headers.
7099 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7100 const unsigned char* ps =
7101 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7102 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7104 elfcpp::Shdr<32, big_endian> shdr(ps);
7105 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7107 section_offset_type section_offset = shdr.get_sh_offset();
7108 section_size_type section_size =
7109 convert_to_section_size_type(shdr.get_sh_size());
7110 const unsigned char* view =
7111 this->get_view(section_offset, section_size, true, false);
7112 this->attributes_section_data_ =
7113 new Attributes_section_data(view, section_size);
7119 // Stub_addend_reader methods.
7121 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7123 template<bool big_endian>
7124 elfcpp::Elf_types<32>::Elf_Swxword
7125 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7126 unsigned int r_type,
7127 const unsigned char* view,
7128 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7130 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7134 case elfcpp::R_ARM_CALL:
7135 case elfcpp::R_ARM_JUMP24:
7136 case elfcpp::R_ARM_PLT32:
7138 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7139 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7140 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7141 return Bits<26>::sign_extend32(val << 2);
7144 case elfcpp::R_ARM_THM_CALL:
7145 case elfcpp::R_ARM_THM_JUMP24:
7146 case elfcpp::R_ARM_THM_XPC22:
7148 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7149 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7150 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7151 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7152 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7155 case elfcpp::R_ARM_THM_JUMP19:
7157 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7158 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7159 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7160 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7161 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7169 // Arm_output_data_got methods.
7171 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7172 // The first one is initialized to be 1, which is the module index for
7173 // the main executable and the second one 0. A reloc of the type
7174 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7175 // be applied by gold. GSYM is a global symbol.
7177 template<bool big_endian>
7179 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7180 unsigned int got_type,
7183 if (gsym->has_got_offset(got_type))
7186 // We are doing a static link. Just mark it as belong to module 1,
7188 unsigned int got_offset = this->add_constant(1);
7189 gsym->set_got_offset(got_type, got_offset);
7190 got_offset = this->add_constant(0);
7191 this->static_relocs_.push_back(Static_reloc(got_offset,
7192 elfcpp::R_ARM_TLS_DTPOFF32,
7196 // Same as the above but for a local symbol.
7198 template<bool big_endian>
7200 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7201 unsigned int got_type,
7202 Sized_relobj_file<32, big_endian>* object,
7205 if (object->local_has_got_offset(index, got_type))
7208 // We are doing a static link. Just mark it as belong to module 1,
7210 unsigned int got_offset = this->add_constant(1);
7211 object->set_local_got_offset(index, got_type, got_offset);
7212 got_offset = this->add_constant(0);
7213 this->static_relocs_.push_back(Static_reloc(got_offset,
7214 elfcpp::R_ARM_TLS_DTPOFF32,
7218 template<bool big_endian>
7220 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7222 // Call parent to write out GOT.
7223 Output_data_got<32, big_endian>::do_write(of);
7225 // We are done if there is no fix up.
7226 if (this->static_relocs_.empty())
7229 gold_assert(parameters->doing_static_link());
7231 const off_t offset = this->offset();
7232 const section_size_type oview_size =
7233 convert_to_section_size_type(this->data_size());
7234 unsigned char* const oview = of->get_output_view(offset, oview_size);
7236 Output_segment* tls_segment = this->layout_->tls_segment();
7237 gold_assert(tls_segment != NULL);
7239 // The thread pointer $tp points to the TCB, which is followed by the
7240 // TLS. So we need to adjust $tp relative addressing by this amount.
7241 Arm_address aligned_tcb_size =
7242 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7244 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7246 Static_reloc& reloc(this->static_relocs_[i]);
7249 if (!reloc.symbol_is_global())
7251 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7252 const Symbol_value<32>* psymval =
7253 reloc.relobj()->local_symbol(reloc.index());
7255 // We are doing static linking. Issue an error and skip this
7256 // relocation if the symbol is undefined or in a discarded_section.
7258 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7259 if ((shndx == elfcpp::SHN_UNDEF)
7261 && shndx != elfcpp::SHN_UNDEF
7262 && !object->is_section_included(shndx)
7263 && !this->symbol_table_->is_section_folded(object, shndx)))
7265 gold_error(_("undefined or discarded local symbol %u from "
7266 " object %s in GOT"),
7267 reloc.index(), reloc.relobj()->name().c_str());
7271 value = psymval->value(object, 0);
7275 const Symbol* gsym = reloc.symbol();
7276 gold_assert(gsym != NULL);
7277 if (gsym->is_forwarder())
7278 gsym = this->symbol_table_->resolve_forwards(gsym);
7280 // We are doing static linking. Issue an error and skip this
7281 // relocation if the symbol is undefined or in a discarded_section
7282 // unless it is a weakly_undefined symbol.
7283 if ((gsym->is_defined_in_discarded_section()
7284 || gsym->is_undefined())
7285 && !gsym->is_weak_undefined())
7287 gold_error(_("undefined or discarded symbol %s in GOT"),
7292 if (!gsym->is_weak_undefined())
7294 const Sized_symbol<32>* sym =
7295 static_cast<const Sized_symbol<32>*>(gsym);
7296 value = sym->value();
7302 unsigned got_offset = reloc.got_offset();
7303 gold_assert(got_offset < oview_size);
7305 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7306 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7308 switch (reloc.r_type())
7310 case elfcpp::R_ARM_TLS_DTPOFF32:
7313 case elfcpp::R_ARM_TLS_TPOFF32:
7314 x = value + aligned_tcb_size;
7319 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7322 of->write_output_view(offset, oview_size, oview);
7325 // A class to handle the PLT data.
7326 // This is an abstract base class that handles most of the linker details
7327 // but does not know the actual contents of PLT entries. The derived
7328 // classes below fill in those details.
7330 template<bool big_endian>
7331 class Output_data_plt_arm : public Output_section_data
7334 // Unlike aarch64, which records symbol value in "addend" field of relocations
7335 // and could be done at the same time an IRelative reloc is created for the
7336 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7337 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7338 // to keep necessary symbol information for later use in do_write. We usually
7339 // have only a very limited number of ifuncs, so the extra data required here
7342 struct IRelative_data
7344 IRelative_data(Sized_symbol<32>* sized_symbol)
7345 : symbol_is_global_(true)
7347 u_.global = sized_symbol;
7350 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7352 : symbol_is_global_(false)
7354 u_.local.relobj = relobj;
7355 u_.local.index = index;
7360 Sized_symbol<32>* global;
7364 Sized_relobj_file<32, big_endian>* relobj;
7369 bool symbol_is_global_;
7372 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7375 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7376 Arm_output_data_got<big_endian>* got,
7377 Output_data_space* got_plt,
7378 Output_data_space* got_irelative);
7380 // Add an entry to the PLT.
7382 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7384 // Add the relocation for a plt entry.
7386 add_relocation(Symbol_table* symtab, Layout* layout,
7387 Symbol* gsym, unsigned int got_offset);
7389 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7391 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7392 Sized_relobj_file<32, big_endian>* relobj,
7393 unsigned int local_sym_index);
7395 // Return the .rel.plt section data.
7396 const Reloc_section*
7398 { return this->rel_; }
7400 // Return the PLT relocation container for IRELATIVE.
7402 rel_irelative(Symbol_table*, Layout*);
7404 // Return the number of PLT entries.
7407 { return this->count_ + this->irelative_count_; }
7409 // Return the offset of the first non-reserved PLT entry.
7411 first_plt_entry_offset() const
7412 { return this->do_first_plt_entry_offset(); }
7414 // Return the size of a PLT entry.
7416 get_plt_entry_size() const
7417 { return this->do_get_plt_entry_size(); }
7419 // Return the PLT address for globals.
7421 address_for_global(const Symbol*) const;
7423 // Return the PLT address for locals.
7425 address_for_local(const Relobj*, unsigned int symndx) const;
7428 // Fill in the first PLT entry.
7430 fill_first_plt_entry(unsigned char* pov,
7431 Arm_address got_address,
7432 Arm_address plt_address)
7433 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7436 fill_plt_entry(unsigned char* pov,
7437 Arm_address got_address,
7438 Arm_address plt_address,
7439 unsigned int got_offset,
7440 unsigned int plt_offset)
7441 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7443 virtual unsigned int
7444 do_first_plt_entry_offset() const = 0;
7446 virtual unsigned int
7447 do_get_plt_entry_size() const = 0;
7450 do_fill_first_plt_entry(unsigned char* pov,
7451 Arm_address got_address,
7452 Arm_address plt_address) = 0;
7455 do_fill_plt_entry(unsigned char* pov,
7456 Arm_address got_address,
7457 Arm_address plt_address,
7458 unsigned int got_offset,
7459 unsigned int plt_offset) = 0;
7462 do_adjust_output_section(Output_section* os);
7464 // Write to a map file.
7466 do_print_to_mapfile(Mapfile* mapfile) const
7467 { mapfile->print_output_data(this, _("** PLT")); }
7470 // Set the final size.
7472 set_final_data_size()
7474 this->set_data_size(this->first_plt_entry_offset()
7475 + ((this->count_ + this->irelative_count_)
7476 * this->get_plt_entry_size()));
7479 // Write out the PLT data.
7481 do_write(Output_file*);
7483 // Record irelative symbol data.
7484 void insert_irelative_data(const IRelative_data& idata)
7485 { irelative_data_vec_.push_back(idata); }
7487 // The reloc section.
7488 Reloc_section* rel_;
7489 // The IRELATIVE relocs, if necessary. These must follow the
7490 // regular PLT relocations.
7491 Reloc_section* irelative_rel_;
7492 // The .got section.
7493 Arm_output_data_got<big_endian>* got_;
7494 // The .got.plt section.
7495 Output_data_space* got_plt_;
7496 // The part of the .got.plt section used for IRELATIVE relocs.
7497 Output_data_space* got_irelative_;
7498 // The number of PLT entries.
7499 unsigned int count_;
7500 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7501 // follow the regular PLT entries.
7502 unsigned int irelative_count_;
7503 // Vector for irelative data.
7504 typedef std::vector<IRelative_data> IRelative_data_vec;
7505 IRelative_data_vec irelative_data_vec_;
7508 // Create the PLT section. The ordinary .got section is an argument,
7509 // since we need to refer to the start. We also create our own .got
7510 // section just for PLT entries.
7512 template<bool big_endian>
7513 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7514 Layout* layout, uint64_t addralign,
7515 Arm_output_data_got<big_endian>* got,
7516 Output_data_space* got_plt,
7517 Output_data_space* got_irelative)
7518 : Output_section_data(addralign), irelative_rel_(NULL),
7519 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7520 count_(0), irelative_count_(0)
7522 this->rel_ = new Reloc_section(false);
7523 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7524 elfcpp::SHF_ALLOC, this->rel_,
7525 ORDER_DYNAMIC_PLT_RELOCS, false);
7528 template<bool big_endian>
7530 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7535 // Add an entry to the PLT.
7537 template<bool big_endian>
7539 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7543 gold_assert(!gsym->has_plt_offset());
7545 unsigned int* entry_count;
7546 Output_section_data_build* got;
7548 // We have 2 different types of plt entry here, normal and ifunc.
7550 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7551 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7553 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7554 // second 12, third 24 ... etc.
7556 // IFunc plt entries *always* come after *normal* plt entries.
7558 // Notice, when computing the plt address of a certain symbol, "plt_address +
7559 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7560 // target->plt_address_for_local() instead.
7562 int begin_offset = 0;
7563 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7564 && gsym->can_use_relative_reloc(false))
7566 entry_count = &this->irelative_count_;
7567 got = this->got_irelative_;
7568 // For irelative plt entries, offset is relative to the end of normal plt
7569 // entries, so it starts from 0.
7571 // Record symbol information.
7572 this->insert_irelative_data(
7573 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7577 entry_count = &this->count_;
7578 got = this->got_plt_;
7579 // Note that for normal plt entries, when setting the PLT offset we skip
7580 // the initial reserved PLT entry.
7581 begin_offset = this->first_plt_entry_offset();
7584 gsym->set_plt_offset(begin_offset
7585 + (*entry_count) * this->get_plt_entry_size());
7589 section_offset_type got_offset = got->current_data_size();
7591 // Every PLT entry needs a GOT entry which points back to the PLT
7592 // entry (this will be changed by the dynamic linker, normally
7593 // lazily when the function is called).
7594 got->set_current_data_size(got_offset + 4);
7596 // Every PLT entry needs a reloc.
7597 this->add_relocation(symtab, layout, gsym, got_offset);
7599 // Note that we don't need to save the symbol. The contents of the
7600 // PLT are independent of which symbols are used. The symbols only
7601 // appear in the relocations.
7604 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7607 template<bool big_endian>
7609 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7610 Symbol_table* symtab,
7612 Sized_relobj_file<32, big_endian>* relobj,
7613 unsigned int local_sym_index)
7615 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7617 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7618 // no longer correct. Use target->plt_address_for_local() instead.
7619 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7620 ++this->irelative_count_;
7622 section_offset_type got_offset = this->got_irelative_->current_data_size();
7624 // Every PLT entry needs a GOT entry which points back to the PLT
7626 this->got_irelative_->set_current_data_size(got_offset + 4);
7629 // Every PLT entry needs a reloc.
7630 Reloc_section* rel = this->rel_irelative(symtab, layout);
7631 rel->add_symbolless_local_addend(relobj, local_sym_index,
7632 elfcpp::R_ARM_IRELATIVE,
7633 this->got_irelative_, got_offset);
7638 // Add the relocation for a PLT entry.
7640 template<bool big_endian>
7642 Output_data_plt_arm<big_endian>::add_relocation(
7643 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7645 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7646 && gsym->can_use_relative_reloc(false))
7648 Reloc_section* rel = this->rel_irelative(symtab, layout);
7649 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7650 this->got_irelative_, got_offset);
7654 gsym->set_needs_dynsym_entry();
7655 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7661 // Create the irelative relocation data.
7663 template<bool big_endian>
7664 typename Output_data_plt_arm<big_endian>::Reloc_section*
7665 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7668 if (this->irelative_rel_ == NULL)
7670 // Since irelative relocations goes into 'rel.dyn', we delegate the
7671 // creation of irelative_rel_ to where rel_dyn section gets created.
7672 Target_arm<big_endian>* arm_target =
7673 Target_arm<big_endian>::default_target();
7674 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7676 // Make sure we have a place for the TLSDESC relocations, in
7677 // case we see any later on.
7678 // this->rel_tlsdesc(layout);
7679 if (parameters->doing_static_link())
7681 // A statically linked executable will only have a .rel.plt section to
7682 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7683 // will use these symbols to locate the IRELATIVE relocs at program
7685 symtab->define_in_output_data("__rel_iplt_start", NULL,
7686 Symbol_table::PREDEFINED,
7687 this->irelative_rel_, 0, 0,
7688 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7689 elfcpp::STV_HIDDEN, 0, false, true);
7690 symtab->define_in_output_data("__rel_iplt_end", NULL,
7691 Symbol_table::PREDEFINED,
7692 this->irelative_rel_, 0, 0,
7693 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7694 elfcpp::STV_HIDDEN, 0, true, true);
7697 return this->irelative_rel_;
7701 // Return the PLT address for a global symbol.
7703 template<bool big_endian>
7705 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7707 uint64_t begin_offset = 0;
7708 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7709 && gsym->can_use_relative_reloc(false))
7711 begin_offset = (this->first_plt_entry_offset() +
7712 this->count_ * this->get_plt_entry_size());
7714 return this->address() + begin_offset + gsym->plt_offset();
7718 // Return the PLT address for a local symbol. These are always
7719 // IRELATIVE relocs.
7721 template<bool big_endian>
7723 Output_data_plt_arm<big_endian>::address_for_local(
7724 const Relobj* object,
7725 unsigned int r_sym) const
7727 return (this->address()
7728 + this->first_plt_entry_offset()
7729 + this->count_ * this->get_plt_entry_size()
7730 + object->local_plt_offset(r_sym));
7734 template<bool big_endian>
7735 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7738 Output_data_plt_arm_standard(Layout* layout,
7739 Arm_output_data_got<big_endian>* got,
7740 Output_data_space* got_plt,
7741 Output_data_space* got_irelative)
7742 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7746 // Return the offset of the first non-reserved PLT entry.
7747 virtual unsigned int
7748 do_first_plt_entry_offset() const
7749 { return sizeof(first_plt_entry); }
7752 do_fill_first_plt_entry(unsigned char* pov,
7753 Arm_address got_address,
7754 Arm_address plt_address);
7757 // Template for the first PLT entry.
7758 static const uint32_t first_plt_entry[5];
7762 // FIXME: This is not very flexible. Right now this has only been tested
7763 // on armv5te. If we are to support additional architecture features like
7764 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7766 // The first entry in the PLT.
7767 template<bool big_endian>
7768 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7770 0xe52de004, // str lr, [sp, #-4]!
7771 0xe59fe004, // ldr lr, [pc, #4]
7772 0xe08fe00e, // add lr, pc, lr
7773 0xe5bef008, // ldr pc, [lr, #8]!
7774 0x00000000, // &GOT[0] - .
7777 template<bool big_endian>
7779 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7781 Arm_address got_address,
7782 Arm_address plt_address)
7784 // Write first PLT entry. All but the last word are constants.
7785 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7786 / sizeof(first_plt_entry[0]));
7787 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7788 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7789 // Last word in first PLT entry is &GOT[0] - .
7790 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7791 got_address - (plt_address + 16));
7794 // Subsequent entries in the PLT.
7795 // This class generates short (12-byte) entries, for displacements up to 2^28.
7797 template<bool big_endian>
7798 class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
7801 Output_data_plt_arm_short(Layout* layout,
7802 Arm_output_data_got<big_endian>* got,
7803 Output_data_space* got_plt,
7804 Output_data_space* got_irelative)
7805 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7809 // Return the size of a PLT entry.
7810 virtual unsigned int
7811 do_get_plt_entry_size() const
7812 { return sizeof(plt_entry); }
7815 do_fill_plt_entry(unsigned char* pov,
7816 Arm_address got_address,
7817 Arm_address plt_address,
7818 unsigned int got_offset,
7819 unsigned int plt_offset);
7822 // Template for subsequent PLT entries.
7823 static const uint32_t plt_entry[3];
7826 template<bool big_endian>
7827 const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
7829 0xe28fc600, // add ip, pc, #0xNN00000
7830 0xe28cca00, // add ip, ip, #0xNN000
7831 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7834 template<bool big_endian>
7836 Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
7838 Arm_address got_address,
7839 Arm_address plt_address,
7840 unsigned int got_offset,
7841 unsigned int plt_offset)
7843 int32_t offset = ((got_address + got_offset)
7844 - (plt_address + plt_offset + 8));
7845 if (offset < 0 || offset > 0x0fffffff)
7846 gold_error(_("PLT offset too large, try linking with --long-plt"));
7848 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7849 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7850 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7851 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7852 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7853 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7856 // This class generates long (16-byte) entries, for arbitrary displacements.
7858 template<bool big_endian>
7859 class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
7862 Output_data_plt_arm_long(Layout* layout,
7863 Arm_output_data_got<big_endian>* got,
7864 Output_data_space* got_plt,
7865 Output_data_space* got_irelative)
7866 : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
7870 // Return the size of a PLT entry.
7871 virtual unsigned int
7872 do_get_plt_entry_size() const
7873 { return sizeof(plt_entry); }
7876 do_fill_plt_entry(unsigned char* pov,
7877 Arm_address got_address,
7878 Arm_address plt_address,
7879 unsigned int got_offset,
7880 unsigned int plt_offset);
7883 // Template for subsequent PLT entries.
7884 static const uint32_t plt_entry[4];
7887 template<bool big_endian>
7888 const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
7890 0xe28fc200, // add ip, pc, #0xN0000000
7891 0xe28cc600, // add ip, ip, #0xNN00000
7892 0xe28cca00, // add ip, ip, #0xNN000
7893 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7896 template<bool big_endian>
7898 Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
7900 Arm_address got_address,
7901 Arm_address plt_address,
7902 unsigned int got_offset,
7903 unsigned int plt_offset)
7905 int32_t offset = ((got_address + got_offset)
7906 - (plt_address + plt_offset + 8));
7908 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
7909 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7910 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
7911 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7912 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
7913 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7914 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
7915 elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
7918 // Write out the PLT. This uses the hand-coded instructions above,
7919 // and adjusts them as needed. This is all specified by the arm ELF
7920 // Processor Supplement.
7922 template<bool big_endian>
7924 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7926 const off_t offset = this->offset();
7927 const section_size_type oview_size =
7928 convert_to_section_size_type(this->data_size());
7929 unsigned char* const oview = of->get_output_view(offset, oview_size);
7931 const off_t got_file_offset = this->got_plt_->offset();
7932 gold_assert(got_file_offset + this->got_plt_->data_size()
7933 == this->got_irelative_->offset());
7934 const section_size_type got_size =
7935 convert_to_section_size_type(this->got_plt_->data_size()
7936 + this->got_irelative_->data_size());
7937 unsigned char* const got_view = of->get_output_view(got_file_offset,
7939 unsigned char* pov = oview;
7941 Arm_address plt_address = this->address();
7942 Arm_address got_address = this->got_plt_->address();
7944 // Write first PLT entry.
7945 this->fill_first_plt_entry(pov, got_address, plt_address);
7946 pov += this->first_plt_entry_offset();
7948 unsigned char* got_pov = got_view;
7950 memset(got_pov, 0, 12);
7953 unsigned int plt_offset = this->first_plt_entry_offset();
7954 unsigned int got_offset = 12;
7955 const unsigned int count = this->count_ + this->irelative_count_;
7956 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
7957 for (unsigned int i = 0;
7960 pov += this->get_plt_entry_size(),
7962 plt_offset += this->get_plt_entry_size(),
7965 // Set and adjust the PLT entry itself.
7966 this->fill_plt_entry(pov, got_address, plt_address,
7967 got_offset, plt_offset);
7970 if (i < this->count_)
7972 // For non-irelative got entries, the value is the beginning of plt.
7973 value = plt_address;
7977 // For irelative got entries, the value is the (global/local) symbol
7979 const IRelative_data& idata =
7980 this->irelative_data_vec_[i - this->count_];
7981 if (idata.symbol_is_global_)
7983 // Set the entry in the GOT for irelative symbols. The content is
7984 // the address of the ifunc, not the address of plt start.
7985 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7986 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7987 value = sized_symbol->value();
7991 value = idata.u_.local.relobj->local_symbol_value(
7992 idata.u_.local.index, 0);
7995 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
7998 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7999 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
8001 of->write_output_view(offset, oview_size, oview);
8002 of->write_output_view(got_file_offset, got_size, got_view);
8006 // Create a PLT entry for a global symbol.
8008 template<bool big_endian>
8010 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
8013 if (gsym->has_plt_offset())
8016 if (this->plt_ == NULL)
8017 this->make_plt_section(symtab, layout);
8019 this->plt_->add_entry(symtab, layout, gsym);
8023 // Create the PLT section.
8024 template<bool big_endian>
8026 Target_arm<big_endian>::make_plt_section(
8027 Symbol_table* symtab, Layout* layout)
8029 if (this->plt_ == NULL)
8031 // Create the GOT section first.
8032 this->got_section(symtab, layout);
8034 // GOT for irelatives is create along with got.plt.
8035 gold_assert(this->got_ != NULL
8036 && this->got_plt_ != NULL
8037 && this->got_irelative_ != NULL);
8038 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
8039 this->got_irelative_);
8041 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8043 | elfcpp::SHF_EXECINSTR),
8044 this->plt_, ORDER_PLT, false);
8045 symtab->define_in_output_data("$a", NULL,
8046 Symbol_table::PREDEFINED,
8048 0, 0, elfcpp::STT_NOTYPE,
8050 elfcpp::STV_DEFAULT, 0,
8056 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
8058 template<bool big_endian>
8060 Target_arm<big_endian>::make_local_ifunc_plt_entry(
8061 Symbol_table* symtab, Layout* layout,
8062 Sized_relobj_file<32, big_endian>* relobj,
8063 unsigned int local_sym_index)
8065 if (relobj->local_has_plt_offset(local_sym_index))
8067 if (this->plt_ == NULL)
8068 this->make_plt_section(symtab, layout);
8069 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
8072 relobj->set_local_plt_offset(local_sym_index, plt_offset);
8076 // Return the number of entries in the PLT.
8078 template<bool big_endian>
8080 Target_arm<big_endian>::plt_entry_count() const
8082 if (this->plt_ == NULL)
8084 return this->plt_->entry_count();
8087 // Return the offset of the first non-reserved PLT entry.
8089 template<bool big_endian>
8091 Target_arm<big_endian>::first_plt_entry_offset() const
8093 return this->plt_->first_plt_entry_offset();
8096 // Return the size of each PLT entry.
8098 template<bool big_endian>
8100 Target_arm<big_endian>::plt_entry_size() const
8102 return this->plt_->get_plt_entry_size();
8105 // Get the section to use for TLS_DESC relocations.
8107 template<bool big_endian>
8108 typename Target_arm<big_endian>::Reloc_section*
8109 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8111 return this->plt_section()->rel_tls_desc(layout);
8114 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8116 template<bool big_endian>
8118 Target_arm<big_endian>::define_tls_base_symbol(
8119 Symbol_table* symtab,
8122 if (this->tls_base_symbol_defined_)
8125 Output_segment* tls_segment = layout->tls_segment();
8126 if (tls_segment != NULL)
8128 bool is_exec = parameters->options().output_is_executable();
8129 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8130 Symbol_table::PREDEFINED,
8134 elfcpp::STV_HIDDEN, 0,
8136 ? Symbol::SEGMENT_END
8137 : Symbol::SEGMENT_START),
8140 this->tls_base_symbol_defined_ = true;
8143 // Create a GOT entry for the TLS module index.
8145 template<bool big_endian>
8147 Target_arm<big_endian>::got_mod_index_entry(
8148 Symbol_table* symtab,
8150 Sized_relobj_file<32, big_endian>* object)
8152 if (this->got_mod_index_offset_ == -1U)
8154 gold_assert(symtab != NULL && layout != NULL && object != NULL);
8155 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8156 unsigned int got_offset;
8157 if (!parameters->doing_static_link())
8159 got_offset = got->add_constant(0);
8160 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8161 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8166 // We are doing a static link. Just mark it as belong to module 1,
8168 got_offset = got->add_constant(1);
8171 got->add_constant(0);
8172 this->got_mod_index_offset_ = got_offset;
8174 return this->got_mod_index_offset_;
8177 // Optimize the TLS relocation type based on what we know about the
8178 // symbol. IS_FINAL is true if the final address of this symbol is
8179 // known at link time.
8181 template<bool big_endian>
8182 tls::Tls_optimization
8183 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8185 // FIXME: Currently we do not do any TLS optimization.
8186 return tls::TLSOPT_NONE;
8189 // Get the Reference_flags for a particular relocation.
8191 template<bool big_endian>
8193 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8197 case elfcpp::R_ARM_NONE:
8198 case elfcpp::R_ARM_V4BX:
8199 case elfcpp::R_ARM_GNU_VTENTRY:
8200 case elfcpp::R_ARM_GNU_VTINHERIT:
8201 // No symbol reference.
8204 case elfcpp::R_ARM_ABS32:
8205 case elfcpp::R_ARM_ABS16:
8206 case elfcpp::R_ARM_ABS12:
8207 case elfcpp::R_ARM_THM_ABS5:
8208 case elfcpp::R_ARM_ABS8:
8209 case elfcpp::R_ARM_BASE_ABS:
8210 case elfcpp::R_ARM_MOVW_ABS_NC:
8211 case elfcpp::R_ARM_MOVT_ABS:
8212 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8213 case elfcpp::R_ARM_THM_MOVT_ABS:
8214 case elfcpp::R_ARM_ABS32_NOI:
8215 return Symbol::ABSOLUTE_REF;
8217 case elfcpp::R_ARM_REL32:
8218 case elfcpp::R_ARM_LDR_PC_G0:
8219 case elfcpp::R_ARM_SBREL32:
8220 case elfcpp::R_ARM_THM_PC8:
8221 case elfcpp::R_ARM_BASE_PREL:
8222 case elfcpp::R_ARM_MOVW_PREL_NC:
8223 case elfcpp::R_ARM_MOVT_PREL:
8224 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8225 case elfcpp::R_ARM_THM_MOVT_PREL:
8226 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8227 case elfcpp::R_ARM_THM_PC12:
8228 case elfcpp::R_ARM_REL32_NOI:
8229 case elfcpp::R_ARM_ALU_PC_G0_NC:
8230 case elfcpp::R_ARM_ALU_PC_G0:
8231 case elfcpp::R_ARM_ALU_PC_G1_NC:
8232 case elfcpp::R_ARM_ALU_PC_G1:
8233 case elfcpp::R_ARM_ALU_PC_G2:
8234 case elfcpp::R_ARM_LDR_PC_G1:
8235 case elfcpp::R_ARM_LDR_PC_G2:
8236 case elfcpp::R_ARM_LDRS_PC_G0:
8237 case elfcpp::R_ARM_LDRS_PC_G1:
8238 case elfcpp::R_ARM_LDRS_PC_G2:
8239 case elfcpp::R_ARM_LDC_PC_G0:
8240 case elfcpp::R_ARM_LDC_PC_G1:
8241 case elfcpp::R_ARM_LDC_PC_G2:
8242 case elfcpp::R_ARM_ALU_SB_G0_NC:
8243 case elfcpp::R_ARM_ALU_SB_G0:
8244 case elfcpp::R_ARM_ALU_SB_G1_NC:
8245 case elfcpp::R_ARM_ALU_SB_G1:
8246 case elfcpp::R_ARM_ALU_SB_G2:
8247 case elfcpp::R_ARM_LDR_SB_G0:
8248 case elfcpp::R_ARM_LDR_SB_G1:
8249 case elfcpp::R_ARM_LDR_SB_G2:
8250 case elfcpp::R_ARM_LDRS_SB_G0:
8251 case elfcpp::R_ARM_LDRS_SB_G1:
8252 case elfcpp::R_ARM_LDRS_SB_G2:
8253 case elfcpp::R_ARM_LDC_SB_G0:
8254 case elfcpp::R_ARM_LDC_SB_G1:
8255 case elfcpp::R_ARM_LDC_SB_G2:
8256 case elfcpp::R_ARM_MOVW_BREL_NC:
8257 case elfcpp::R_ARM_MOVT_BREL:
8258 case elfcpp::R_ARM_MOVW_BREL:
8259 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8260 case elfcpp::R_ARM_THM_MOVT_BREL:
8261 case elfcpp::R_ARM_THM_MOVW_BREL:
8262 case elfcpp::R_ARM_GOTOFF32:
8263 case elfcpp::R_ARM_GOTOFF12:
8264 case elfcpp::R_ARM_SBREL31:
8265 return Symbol::RELATIVE_REF;
8267 case elfcpp::R_ARM_PLT32:
8268 case elfcpp::R_ARM_CALL:
8269 case elfcpp::R_ARM_JUMP24:
8270 case elfcpp::R_ARM_THM_CALL:
8271 case elfcpp::R_ARM_THM_JUMP24:
8272 case elfcpp::R_ARM_THM_JUMP19:
8273 case elfcpp::R_ARM_THM_JUMP6:
8274 case elfcpp::R_ARM_THM_JUMP11:
8275 case elfcpp::R_ARM_THM_JUMP8:
8276 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8277 // in unwind tables. It may point to functions via PLTs.
8278 // So we treat it like call/jump relocations above.
8279 case elfcpp::R_ARM_PREL31:
8280 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8282 case elfcpp::R_ARM_GOT_BREL:
8283 case elfcpp::R_ARM_GOT_ABS:
8284 case elfcpp::R_ARM_GOT_PREL:
8286 return Symbol::ABSOLUTE_REF;
8288 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8289 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8290 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8291 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8292 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8293 return Symbol::TLS_REF;
8295 case elfcpp::R_ARM_TARGET1:
8296 case elfcpp::R_ARM_TARGET2:
8297 case elfcpp::R_ARM_COPY:
8298 case elfcpp::R_ARM_GLOB_DAT:
8299 case elfcpp::R_ARM_JUMP_SLOT:
8300 case elfcpp::R_ARM_RELATIVE:
8301 case elfcpp::R_ARM_PC24:
8302 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8303 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8304 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8306 // Not expected. We will give an error later.
8311 // Report an unsupported relocation against a local symbol.
8313 template<bool big_endian>
8315 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8316 Sized_relobj_file<32, big_endian>* object,
8317 unsigned int r_type)
8319 gold_error(_("%s: unsupported reloc %u against local symbol"),
8320 object->name().c_str(), r_type);
8323 // We are about to emit a dynamic relocation of type R_TYPE. If the
8324 // dynamic linker does not support it, issue an error. The GNU linker
8325 // only issues a non-PIC error for an allocated read-only section.
8326 // Here we know the section is allocated, but we don't know that it is
8327 // read-only. But we check for all the relocation types which the
8328 // glibc dynamic linker supports, so it seems appropriate to issue an
8329 // error even if the section is not read-only.
8331 template<bool big_endian>
8333 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8334 unsigned int r_type)
8338 // These are the relocation types supported by glibc for ARM.
8339 case elfcpp::R_ARM_RELATIVE:
8340 case elfcpp::R_ARM_COPY:
8341 case elfcpp::R_ARM_GLOB_DAT:
8342 case elfcpp::R_ARM_JUMP_SLOT:
8343 case elfcpp::R_ARM_ABS32:
8344 case elfcpp::R_ARM_ABS32_NOI:
8345 case elfcpp::R_ARM_IRELATIVE:
8346 case elfcpp::R_ARM_PC24:
8347 // FIXME: The following 3 types are not supported by Android's dynamic
8349 case elfcpp::R_ARM_TLS_DTPMOD32:
8350 case elfcpp::R_ARM_TLS_DTPOFF32:
8351 case elfcpp::R_ARM_TLS_TPOFF32:
8356 // This prevents us from issuing more than one error per reloc
8357 // section. But we can still wind up issuing more than one
8358 // error per object file.
8359 if (this->issued_non_pic_error_)
8361 const Arm_reloc_property* reloc_property =
8362 arm_reloc_property_table->get_reloc_property(r_type);
8363 gold_assert(reloc_property != NULL);
8364 object->error(_("requires unsupported dynamic reloc %s; "
8365 "recompile with -fPIC"),
8366 reloc_property->name().c_str());
8367 this->issued_non_pic_error_ = true;
8371 case elfcpp::R_ARM_NONE:
8377 // Return whether we need to make a PLT entry for a relocation of the
8378 // given type against a STT_GNU_IFUNC symbol.
8380 template<bool big_endian>
8382 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8383 Sized_relobj_file<32, big_endian>* object,
8384 unsigned int r_type)
8386 int flags = Scan::get_reference_flags(r_type);
8387 if (flags & Symbol::TLS_REF)
8389 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8390 object->name().c_str(), r_type);
8397 // Scan a relocation for a local symbol.
8398 // FIXME: This only handles a subset of relocation types used by Android
8399 // on ARM v5te devices.
8401 template<bool big_endian>
8403 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8406 Sized_relobj_file<32, big_endian>* object,
8407 unsigned int data_shndx,
8408 Output_section* output_section,
8409 const elfcpp::Rel<32, big_endian>& reloc,
8410 unsigned int r_type,
8411 const elfcpp::Sym<32, big_endian>& lsym,
8417 r_type = get_real_reloc_type(r_type);
8419 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8420 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8421 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8423 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8424 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8429 case elfcpp::R_ARM_NONE:
8430 case elfcpp::R_ARM_V4BX:
8431 case elfcpp::R_ARM_GNU_VTENTRY:
8432 case elfcpp::R_ARM_GNU_VTINHERIT:
8435 case elfcpp::R_ARM_ABS32:
8436 case elfcpp::R_ARM_ABS32_NOI:
8437 // If building a shared library (or a position-independent
8438 // executable), we need to create a dynamic relocation for
8439 // this location. The relocation applied at link time will
8440 // apply the link-time value, so we flag the location with
8441 // an R_ARM_RELATIVE relocation so the dynamic loader can
8442 // relocate it easily.
8443 if (parameters->options().output_is_position_independent())
8445 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8446 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8447 // If we are to add more other reloc types than R_ARM_ABS32,
8448 // we need to add check_non_pic(object, r_type) here.
8449 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8450 output_section, data_shndx,
8451 reloc.get_r_offset(), is_ifunc);
8455 case elfcpp::R_ARM_ABS16:
8456 case elfcpp::R_ARM_ABS12:
8457 case elfcpp::R_ARM_THM_ABS5:
8458 case elfcpp::R_ARM_ABS8:
8459 case elfcpp::R_ARM_BASE_ABS:
8460 case elfcpp::R_ARM_MOVW_ABS_NC:
8461 case elfcpp::R_ARM_MOVT_ABS:
8462 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8463 case elfcpp::R_ARM_THM_MOVT_ABS:
8464 // If building a shared library (or a position-independent
8465 // executable), we need to create a dynamic relocation for
8466 // this location. Because the addend needs to remain in the
8467 // data section, we need to be careful not to apply this
8468 // relocation statically.
8469 if (parameters->options().output_is_position_independent())
8471 check_non_pic(object, r_type);
8472 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8473 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8474 if (lsym.get_st_type() != elfcpp::STT_SECTION)
8475 rel_dyn->add_local(object, r_sym, r_type, output_section,
8476 data_shndx, reloc.get_r_offset());
8479 gold_assert(lsym.get_st_value() == 0);
8480 unsigned int shndx = lsym.get_st_shndx();
8482 shndx = object->adjust_sym_shndx(r_sym, shndx,
8485 object->error(_("section symbol %u has bad shndx %u"),
8488 rel_dyn->add_local_section(object, shndx,
8489 r_type, output_section,
8490 data_shndx, reloc.get_r_offset());
8495 case elfcpp::R_ARM_REL32:
8496 case elfcpp::R_ARM_LDR_PC_G0:
8497 case elfcpp::R_ARM_SBREL32:
8498 case elfcpp::R_ARM_THM_CALL:
8499 case elfcpp::R_ARM_THM_PC8:
8500 case elfcpp::R_ARM_BASE_PREL:
8501 case elfcpp::R_ARM_PLT32:
8502 case elfcpp::R_ARM_CALL:
8503 case elfcpp::R_ARM_JUMP24:
8504 case elfcpp::R_ARM_THM_JUMP24:
8505 case elfcpp::R_ARM_SBREL31:
8506 case elfcpp::R_ARM_PREL31:
8507 case elfcpp::R_ARM_MOVW_PREL_NC:
8508 case elfcpp::R_ARM_MOVT_PREL:
8509 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8510 case elfcpp::R_ARM_THM_MOVT_PREL:
8511 case elfcpp::R_ARM_THM_JUMP19:
8512 case elfcpp::R_ARM_THM_JUMP6:
8513 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8514 case elfcpp::R_ARM_THM_PC12:
8515 case elfcpp::R_ARM_REL32_NOI:
8516 case elfcpp::R_ARM_ALU_PC_G0_NC:
8517 case elfcpp::R_ARM_ALU_PC_G0:
8518 case elfcpp::R_ARM_ALU_PC_G1_NC:
8519 case elfcpp::R_ARM_ALU_PC_G1:
8520 case elfcpp::R_ARM_ALU_PC_G2:
8521 case elfcpp::R_ARM_LDR_PC_G1:
8522 case elfcpp::R_ARM_LDR_PC_G2:
8523 case elfcpp::R_ARM_LDRS_PC_G0:
8524 case elfcpp::R_ARM_LDRS_PC_G1:
8525 case elfcpp::R_ARM_LDRS_PC_G2:
8526 case elfcpp::R_ARM_LDC_PC_G0:
8527 case elfcpp::R_ARM_LDC_PC_G1:
8528 case elfcpp::R_ARM_LDC_PC_G2:
8529 case elfcpp::R_ARM_ALU_SB_G0_NC:
8530 case elfcpp::R_ARM_ALU_SB_G0:
8531 case elfcpp::R_ARM_ALU_SB_G1_NC:
8532 case elfcpp::R_ARM_ALU_SB_G1:
8533 case elfcpp::R_ARM_ALU_SB_G2:
8534 case elfcpp::R_ARM_LDR_SB_G0:
8535 case elfcpp::R_ARM_LDR_SB_G1:
8536 case elfcpp::R_ARM_LDR_SB_G2:
8537 case elfcpp::R_ARM_LDRS_SB_G0:
8538 case elfcpp::R_ARM_LDRS_SB_G1:
8539 case elfcpp::R_ARM_LDRS_SB_G2:
8540 case elfcpp::R_ARM_LDC_SB_G0:
8541 case elfcpp::R_ARM_LDC_SB_G1:
8542 case elfcpp::R_ARM_LDC_SB_G2:
8543 case elfcpp::R_ARM_MOVW_BREL_NC:
8544 case elfcpp::R_ARM_MOVT_BREL:
8545 case elfcpp::R_ARM_MOVW_BREL:
8546 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8547 case elfcpp::R_ARM_THM_MOVT_BREL:
8548 case elfcpp::R_ARM_THM_MOVW_BREL:
8549 case elfcpp::R_ARM_THM_JUMP11:
8550 case elfcpp::R_ARM_THM_JUMP8:
8551 // We don't need to do anything for a relative addressing relocation
8552 // against a local symbol if it does not reference the GOT.
8555 case elfcpp::R_ARM_GOTOFF32:
8556 case elfcpp::R_ARM_GOTOFF12:
8557 // We need a GOT section:
8558 target->got_section(symtab, layout);
8561 case elfcpp::R_ARM_GOT_BREL:
8562 case elfcpp::R_ARM_GOT_PREL:
8564 // The symbol requires a GOT entry.
8565 Arm_output_data_got<big_endian>* got =
8566 target->got_section(symtab, layout);
8567 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8568 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8570 // If we are generating a shared object, we need to add a
8571 // dynamic RELATIVE relocation for this symbol's GOT entry.
8572 if (parameters->options().output_is_position_independent())
8574 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8575 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8576 rel_dyn->add_local_relative(
8577 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8578 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8584 case elfcpp::R_ARM_TARGET1:
8585 case elfcpp::R_ARM_TARGET2:
8586 // This should have been mapped to another type already.
8588 case elfcpp::R_ARM_COPY:
8589 case elfcpp::R_ARM_GLOB_DAT:
8590 case elfcpp::R_ARM_JUMP_SLOT:
8591 case elfcpp::R_ARM_RELATIVE:
8592 // These are relocations which should only be seen by the
8593 // dynamic linker, and should never be seen here.
8594 gold_error(_("%s: unexpected reloc %u in object file"),
8595 object->name().c_str(), r_type);
8599 // These are initial TLS relocs, which are expected when
8601 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8602 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8603 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8604 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8605 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8607 bool output_is_shared = parameters->options().shared();
8608 const tls::Tls_optimization optimized_type
8609 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8613 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8614 if (optimized_type == tls::TLSOPT_NONE)
8616 // Create a pair of GOT entries for the module index and
8617 // dtv-relative offset.
8618 Arm_output_data_got<big_endian>* got
8619 = target->got_section(symtab, layout);
8620 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8621 unsigned int shndx = lsym.get_st_shndx();
8623 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8626 object->error(_("local symbol %u has bad shndx %u"),
8631 if (!parameters->doing_static_link())
8632 got->add_local_pair_with_rel(object, r_sym, shndx,
8634 target->rel_dyn_section(layout),
8635 elfcpp::R_ARM_TLS_DTPMOD32);
8637 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8641 // FIXME: TLS optimization not supported yet.
8645 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8646 if (optimized_type == tls::TLSOPT_NONE)
8648 // Create a GOT entry for the module index.
8649 target->got_mod_index_entry(symtab, layout, object);
8652 // FIXME: TLS optimization not supported yet.
8656 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8659 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8660 layout->set_has_static_tls();
8661 if (optimized_type == tls::TLSOPT_NONE)
8663 // Create a GOT entry for the tp-relative offset.
8664 Arm_output_data_got<big_endian>* got
8665 = target->got_section(symtab, layout);
8666 unsigned int r_sym =
8667 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8668 if (!parameters->doing_static_link())
8669 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8670 target->rel_dyn_section(layout),
8671 elfcpp::R_ARM_TLS_TPOFF32);
8672 else if (!object->local_has_got_offset(r_sym,
8673 GOT_TYPE_TLS_OFFSET))
8675 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8676 unsigned int got_offset =
8677 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8678 got->add_static_reloc(got_offset,
8679 elfcpp::R_ARM_TLS_TPOFF32, object,
8684 // FIXME: TLS optimization not supported yet.
8688 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8689 layout->set_has_static_tls();
8690 if (output_is_shared)
8692 // We need to create a dynamic relocation.
8693 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8694 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8695 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8696 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8697 output_section, data_shndx,
8698 reloc.get_r_offset());
8708 case elfcpp::R_ARM_PC24:
8709 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8710 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8711 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8713 unsupported_reloc_local(object, r_type);
8718 // Report an unsupported relocation against a global symbol.
8720 template<bool big_endian>
8722 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8723 Sized_relobj_file<32, big_endian>* object,
8724 unsigned int r_type,
8727 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8728 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8731 template<bool big_endian>
8733 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8734 unsigned int r_type)
8738 case elfcpp::R_ARM_PC24:
8739 case elfcpp::R_ARM_THM_CALL:
8740 case elfcpp::R_ARM_PLT32:
8741 case elfcpp::R_ARM_CALL:
8742 case elfcpp::R_ARM_JUMP24:
8743 case elfcpp::R_ARM_THM_JUMP24:
8744 case elfcpp::R_ARM_SBREL31:
8745 case elfcpp::R_ARM_PREL31:
8746 case elfcpp::R_ARM_THM_JUMP19:
8747 case elfcpp::R_ARM_THM_JUMP6:
8748 case elfcpp::R_ARM_THM_JUMP11:
8749 case elfcpp::R_ARM_THM_JUMP8:
8750 // All the relocations above are branches except SBREL31 and PREL31.
8754 // Be conservative and assume this is a function pointer.
8759 template<bool big_endian>
8761 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8764 Target_arm<big_endian>* target,
8765 Sized_relobj_file<32, big_endian>*,
8768 const elfcpp::Rel<32, big_endian>&,
8769 unsigned int r_type,
8770 const elfcpp::Sym<32, big_endian>&)
8772 r_type = target->get_real_reloc_type(r_type);
8773 return possible_function_pointer_reloc(r_type);
8776 template<bool big_endian>
8778 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8781 Target_arm<big_endian>* target,
8782 Sized_relobj_file<32, big_endian>*,
8785 const elfcpp::Rel<32, big_endian>&,
8786 unsigned int r_type,
8789 // GOT is not a function.
8790 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8793 r_type = target->get_real_reloc_type(r_type);
8794 return possible_function_pointer_reloc(r_type);
8797 // Scan a relocation for a global symbol.
8799 template<bool big_endian>
8801 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8804 Sized_relobj_file<32, big_endian>* object,
8805 unsigned int data_shndx,
8806 Output_section* output_section,
8807 const elfcpp::Rel<32, big_endian>& reloc,
8808 unsigned int r_type,
8811 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8812 // section. We check here to avoid creating a dynamic reloc against
8813 // _GLOBAL_OFFSET_TABLE_.
8814 if (!target->has_got_section()
8815 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8816 target->got_section(symtab, layout);
8818 // A STT_GNU_IFUNC symbol may require a PLT entry.
8819 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8820 && this->reloc_needs_plt_for_ifunc(object, r_type))
8821 target->make_plt_entry(symtab, layout, gsym);
8823 r_type = get_real_reloc_type(r_type);
8826 case elfcpp::R_ARM_NONE:
8827 case elfcpp::R_ARM_V4BX:
8828 case elfcpp::R_ARM_GNU_VTENTRY:
8829 case elfcpp::R_ARM_GNU_VTINHERIT:
8832 case elfcpp::R_ARM_ABS32:
8833 case elfcpp::R_ARM_ABS16:
8834 case elfcpp::R_ARM_ABS12:
8835 case elfcpp::R_ARM_THM_ABS5:
8836 case elfcpp::R_ARM_ABS8:
8837 case elfcpp::R_ARM_BASE_ABS:
8838 case elfcpp::R_ARM_MOVW_ABS_NC:
8839 case elfcpp::R_ARM_MOVT_ABS:
8840 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8841 case elfcpp::R_ARM_THM_MOVT_ABS:
8842 case elfcpp::R_ARM_ABS32_NOI:
8843 // Absolute addressing relocations.
8845 // Make a PLT entry if necessary.
8846 if (this->symbol_needs_plt_entry(gsym))
8848 target->make_plt_entry(symtab, layout, gsym);
8849 // Since this is not a PC-relative relocation, we may be
8850 // taking the address of a function. In that case we need to
8851 // set the entry in the dynamic symbol table to the address of
8853 if (gsym->is_from_dynobj() && !parameters->options().shared())
8854 gsym->set_needs_dynsym_value();
8856 // Make a dynamic relocation if necessary.
8857 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8859 if (!parameters->options().output_is_position_independent()
8860 && gsym->may_need_copy_reloc())
8862 target->copy_reloc(symtab, layout, object,
8863 data_shndx, output_section, gsym, reloc);
8865 else if ((r_type == elfcpp::R_ARM_ABS32
8866 || r_type == elfcpp::R_ARM_ABS32_NOI)
8867 && gsym->type() == elfcpp::STT_GNU_IFUNC
8868 && gsym->can_use_relative_reloc(false)
8869 && !gsym->is_from_dynobj()
8870 && !gsym->is_undefined()
8871 && !gsym->is_preemptible())
8873 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8874 // symbol. This makes a function address in a PIE executable
8875 // match the address in a shared library that it links against.
8876 Reloc_section* rel_irelative =
8877 target->rel_irelative_section(layout);
8878 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8879 rel_irelative->add_symbolless_global_addend(
8880 gsym, r_type, output_section, object,
8881 data_shndx, reloc.get_r_offset());
8883 else if ((r_type == elfcpp::R_ARM_ABS32
8884 || r_type == elfcpp::R_ARM_ABS32_NOI)
8885 && gsym->can_use_relative_reloc(false))
8887 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8888 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8889 output_section, object,
8890 data_shndx, reloc.get_r_offset());
8894 check_non_pic(object, r_type);
8895 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8896 rel_dyn->add_global(gsym, r_type, output_section, object,
8897 data_shndx, reloc.get_r_offset());
8903 case elfcpp::R_ARM_GOTOFF32:
8904 case elfcpp::R_ARM_GOTOFF12:
8905 // We need a GOT section.
8906 target->got_section(symtab, layout);
8909 case elfcpp::R_ARM_REL32:
8910 case elfcpp::R_ARM_LDR_PC_G0:
8911 case elfcpp::R_ARM_SBREL32:
8912 case elfcpp::R_ARM_THM_PC8:
8913 case elfcpp::R_ARM_BASE_PREL:
8914 case elfcpp::R_ARM_MOVW_PREL_NC:
8915 case elfcpp::R_ARM_MOVT_PREL:
8916 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8917 case elfcpp::R_ARM_THM_MOVT_PREL:
8918 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8919 case elfcpp::R_ARM_THM_PC12:
8920 case elfcpp::R_ARM_REL32_NOI:
8921 case elfcpp::R_ARM_ALU_PC_G0_NC:
8922 case elfcpp::R_ARM_ALU_PC_G0:
8923 case elfcpp::R_ARM_ALU_PC_G1_NC:
8924 case elfcpp::R_ARM_ALU_PC_G1:
8925 case elfcpp::R_ARM_ALU_PC_G2:
8926 case elfcpp::R_ARM_LDR_PC_G1:
8927 case elfcpp::R_ARM_LDR_PC_G2:
8928 case elfcpp::R_ARM_LDRS_PC_G0:
8929 case elfcpp::R_ARM_LDRS_PC_G1:
8930 case elfcpp::R_ARM_LDRS_PC_G2:
8931 case elfcpp::R_ARM_LDC_PC_G0:
8932 case elfcpp::R_ARM_LDC_PC_G1:
8933 case elfcpp::R_ARM_LDC_PC_G2:
8934 case elfcpp::R_ARM_ALU_SB_G0_NC:
8935 case elfcpp::R_ARM_ALU_SB_G0:
8936 case elfcpp::R_ARM_ALU_SB_G1_NC:
8937 case elfcpp::R_ARM_ALU_SB_G1:
8938 case elfcpp::R_ARM_ALU_SB_G2:
8939 case elfcpp::R_ARM_LDR_SB_G0:
8940 case elfcpp::R_ARM_LDR_SB_G1:
8941 case elfcpp::R_ARM_LDR_SB_G2:
8942 case elfcpp::R_ARM_LDRS_SB_G0:
8943 case elfcpp::R_ARM_LDRS_SB_G1:
8944 case elfcpp::R_ARM_LDRS_SB_G2:
8945 case elfcpp::R_ARM_LDC_SB_G0:
8946 case elfcpp::R_ARM_LDC_SB_G1:
8947 case elfcpp::R_ARM_LDC_SB_G2:
8948 case elfcpp::R_ARM_MOVW_BREL_NC:
8949 case elfcpp::R_ARM_MOVT_BREL:
8950 case elfcpp::R_ARM_MOVW_BREL:
8951 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8952 case elfcpp::R_ARM_THM_MOVT_BREL:
8953 case elfcpp::R_ARM_THM_MOVW_BREL:
8954 // Relative addressing relocations.
8956 // Make a dynamic relocation if necessary.
8957 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8959 if (parameters->options().output_is_executable()
8960 && target->may_need_copy_reloc(gsym))
8962 target->copy_reloc(symtab, layout, object,
8963 data_shndx, output_section, gsym, reloc);
8967 check_non_pic(object, r_type);
8968 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8969 rel_dyn->add_global(gsym, r_type, output_section, object,
8970 data_shndx, reloc.get_r_offset());
8976 case elfcpp::R_ARM_THM_CALL:
8977 case elfcpp::R_ARM_PLT32:
8978 case elfcpp::R_ARM_CALL:
8979 case elfcpp::R_ARM_JUMP24:
8980 case elfcpp::R_ARM_THM_JUMP24:
8981 case elfcpp::R_ARM_SBREL31:
8982 case elfcpp::R_ARM_PREL31:
8983 case elfcpp::R_ARM_THM_JUMP19:
8984 case elfcpp::R_ARM_THM_JUMP6:
8985 case elfcpp::R_ARM_THM_JUMP11:
8986 case elfcpp::R_ARM_THM_JUMP8:
8987 // All the relocation above are branches except for the PREL31 ones.
8988 // A PREL31 relocation can point to a personality function in a shared
8989 // library. In that case we want to use a PLT because we want to
8990 // call the personality routine and the dynamic linkers we care about
8991 // do not support dynamic PREL31 relocations. An REL31 relocation may
8992 // point to a function whose unwinding behaviour is being described but
8993 // we will not mistakenly generate a PLT for that because we should use
8994 // a local section symbol.
8996 // If the symbol is fully resolved, this is just a relative
8997 // local reloc. Otherwise we need a PLT entry.
8998 if (gsym->final_value_is_known())
9000 // If building a shared library, we can also skip the PLT entry
9001 // if the symbol is defined in the output file and is protected
9003 if (gsym->is_defined()
9004 && !gsym->is_from_dynobj()
9005 && !gsym->is_preemptible())
9007 target->make_plt_entry(symtab, layout, gsym);
9010 case elfcpp::R_ARM_GOT_BREL:
9011 case elfcpp::R_ARM_GOT_ABS:
9012 case elfcpp::R_ARM_GOT_PREL:
9014 // The symbol requires a GOT entry.
9015 Arm_output_data_got<big_endian>* got =
9016 target->got_section(symtab, layout);
9017 if (gsym->final_value_is_known())
9019 // For a STT_GNU_IFUNC symbol we want the PLT address.
9020 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
9021 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9023 got->add_global(gsym, GOT_TYPE_STANDARD);
9027 // If this symbol is not fully resolved, we need to add a
9028 // GOT entry with a dynamic relocation.
9029 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9030 if (gsym->is_from_dynobj()
9031 || gsym->is_undefined()
9032 || gsym->is_preemptible()
9033 || (gsym->visibility() == elfcpp::STV_PROTECTED
9034 && parameters->options().shared())
9035 || (gsym->type() == elfcpp::STT_GNU_IFUNC
9036 && parameters->options().output_is_position_independent()))
9037 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
9038 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
9041 // For a STT_GNU_IFUNC symbol we want to write the PLT
9042 // offset into the GOT, so that function pointer
9043 // comparisons work correctly.
9045 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
9046 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
9049 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
9050 // Tell the dynamic linker to use the PLT address
9051 // when resolving relocations.
9052 if (gsym->is_from_dynobj()
9053 && !parameters->options().shared())
9054 gsym->set_needs_dynsym_value();
9057 rel_dyn->add_global_relative(
9058 gsym, elfcpp::R_ARM_RELATIVE, got,
9059 gsym->got_offset(GOT_TYPE_STANDARD));
9065 case elfcpp::R_ARM_TARGET1:
9066 case elfcpp::R_ARM_TARGET2:
9067 // These should have been mapped to other types already.
9069 case elfcpp::R_ARM_COPY:
9070 case elfcpp::R_ARM_GLOB_DAT:
9071 case elfcpp::R_ARM_JUMP_SLOT:
9072 case elfcpp::R_ARM_RELATIVE:
9073 // These are relocations which should only be seen by the
9074 // dynamic linker, and should never be seen here.
9075 gold_error(_("%s: unexpected reloc %u in object file"),
9076 object->name().c_str(), r_type);
9079 // These are initial tls relocs, which are expected when
9081 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9082 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9083 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9084 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9085 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9087 const bool is_final = gsym->final_value_is_known();
9088 const tls::Tls_optimization optimized_type
9089 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9092 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9093 if (optimized_type == tls::TLSOPT_NONE)
9095 // Create a pair of GOT entries for the module index and
9096 // dtv-relative offset.
9097 Arm_output_data_got<big_endian>* got
9098 = target->got_section(symtab, layout);
9099 if (!parameters->doing_static_link())
9100 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
9101 target->rel_dyn_section(layout),
9102 elfcpp::R_ARM_TLS_DTPMOD32,
9103 elfcpp::R_ARM_TLS_DTPOFF32);
9105 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
9108 // FIXME: TLS optimization not supported yet.
9112 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9113 if (optimized_type == tls::TLSOPT_NONE)
9115 // Create a GOT entry for the module index.
9116 target->got_mod_index_entry(symtab, layout, object);
9119 // FIXME: TLS optimization not supported yet.
9123 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9126 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9127 layout->set_has_static_tls();
9128 if (optimized_type == tls::TLSOPT_NONE)
9130 // Create a GOT entry for the tp-relative offset.
9131 Arm_output_data_got<big_endian>* got
9132 = target->got_section(symtab, layout);
9133 if (!parameters->doing_static_link())
9134 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9135 target->rel_dyn_section(layout),
9136 elfcpp::R_ARM_TLS_TPOFF32);
9137 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9139 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9140 unsigned int got_offset =
9141 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9142 got->add_static_reloc(got_offset,
9143 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9147 // FIXME: TLS optimization not supported yet.
9151 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9152 layout->set_has_static_tls();
9153 if (parameters->options().shared())
9155 // We need to create a dynamic relocation.
9156 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9157 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9158 output_section, object,
9159 data_shndx, reloc.get_r_offset());
9169 case elfcpp::R_ARM_PC24:
9170 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9171 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9172 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9174 unsupported_reloc_global(object, r_type, gsym);
9179 // Process relocations for gc.
9181 template<bool big_endian>
9183 Target_arm<big_endian>::gc_process_relocs(
9184 Symbol_table* symtab,
9186 Sized_relobj_file<32, big_endian>* object,
9187 unsigned int data_shndx,
9189 const unsigned char* prelocs,
9191 Output_section* output_section,
9192 bool needs_special_offset_handling,
9193 size_t local_symbol_count,
9194 const unsigned char* plocal_symbols)
9196 typedef Target_arm<big_endian> Arm;
9197 typedef typename Target_arm<big_endian>::Scan Scan;
9199 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
9208 needs_special_offset_handling,
9213 // Scan relocations for a section.
9215 template<bool big_endian>
9217 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9219 Sized_relobj_file<32, big_endian>* object,
9220 unsigned int data_shndx,
9221 unsigned int sh_type,
9222 const unsigned char* prelocs,
9224 Output_section* output_section,
9225 bool needs_special_offset_handling,
9226 size_t local_symbol_count,
9227 const unsigned char* plocal_symbols)
9229 if (sh_type == elfcpp::SHT_RELA)
9231 gold_error(_("%s: unsupported RELA reloc section"),
9232 object->name().c_str());
9236 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
9245 needs_special_offset_handling,
9250 // Finalize the sections.
9252 template<bool big_endian>
9254 Target_arm<big_endian>::do_finalize_sections(
9256 const Input_objects* input_objects,
9259 bool merged_any_attributes = false;
9260 // Merge processor-specific flags.
9261 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9262 p != input_objects->relobj_end();
9265 Arm_relobj<big_endian>* arm_relobj =
9266 Arm_relobj<big_endian>::as_arm_relobj(*p);
9267 if (arm_relobj->merge_flags_and_attributes())
9269 this->merge_processor_specific_flags(
9271 arm_relobj->processor_specific_flags());
9272 this->merge_object_attributes(arm_relobj->name().c_str(),
9273 arm_relobj->attributes_section_data());
9274 merged_any_attributes = true;
9278 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9279 p != input_objects->dynobj_end();
9282 Arm_dynobj<big_endian>* arm_dynobj =
9283 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9284 this->merge_processor_specific_flags(
9286 arm_dynobj->processor_specific_flags());
9287 this->merge_object_attributes(arm_dynobj->name().c_str(),
9288 arm_dynobj->attributes_section_data());
9289 merged_any_attributes = true;
9292 // Create an empty uninitialized attribute section if we still don't have it
9293 // at this moment. This happens if there is no attributes sections in all
9295 if (this->attributes_section_data_ == NULL)
9296 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9298 const Object_attribute* cpu_arch_attr =
9299 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9300 // Check if we need to use Cortex-A8 workaround.
9301 if (parameters->options().user_set_fix_cortex_a8())
9302 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9305 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9306 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9308 const Object_attribute* cpu_arch_profile_attr =
9309 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9310 this->fix_cortex_a8_ =
9311 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9312 && (cpu_arch_profile_attr->int_value() == 'A'
9313 || cpu_arch_profile_attr->int_value() == 0));
9316 // Check if we can use V4BX interworking.
9317 // The V4BX interworking stub contains BX instruction,
9318 // which is not specified for some profiles.
9319 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9320 && !this->may_use_v4t_interworking())
9321 gold_error(_("unable to provide V4BX reloc interworking fix up; "
9322 "the target profile does not support BX instruction"));
9324 // Fill in some more dynamic tags.
9325 const Reloc_section* rel_plt = (this->plt_ == NULL
9327 : this->plt_->rel_plt());
9328 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9329 this->rel_dyn_, true, false);
9331 // Emit any relocs we saved in an attempt to avoid generating COPY
9333 if (this->copy_relocs_.any_saved_relocs())
9334 this->copy_relocs_.emit(this->rel_dyn_section(layout));
9336 // Handle the .ARM.exidx section.
9337 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9339 if (!parameters->options().relocatable())
9341 if (exidx_section != NULL
9342 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9344 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9345 // the .ARM.exidx section.
9346 if (!layout->script_options()->saw_phdrs_clause())
9348 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9351 Output_segment* exidx_segment =
9352 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9353 exidx_segment->add_output_section_to_nonload(exidx_section,
9359 // Create an .ARM.attributes section if we have merged any attributes
9361 if (merged_any_attributes)
9363 Output_attributes_section_data* attributes_section =
9364 new Output_attributes_section_data(*this->attributes_section_data_);
9365 layout->add_output_section_data(".ARM.attributes",
9366 elfcpp::SHT_ARM_ATTRIBUTES, 0,
9367 attributes_section, ORDER_INVALID,
9371 // Fix up links in section EXIDX headers.
9372 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9373 p != layout->section_list().end();
9375 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9377 Arm_output_section<big_endian>* os =
9378 Arm_output_section<big_endian>::as_arm_output_section(*p);
9379 os->set_exidx_section_link();
9383 // Return whether a direct absolute static relocation needs to be applied.
9384 // In cases where Scan::local() or Scan::global() has created
9385 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9386 // of the relocation is carried in the data, and we must not
9387 // apply the static relocation.
9389 template<bool big_endian>
9391 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9392 const Sized_symbol<32>* gsym,
9393 unsigned int r_type,
9395 Output_section* output_section)
9397 // If the output section is not allocated, then we didn't call
9398 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9400 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9403 int ref_flags = Scan::get_reference_flags(r_type);
9405 // For local symbols, we will have created a non-RELATIVE dynamic
9406 // relocation only if (a) the output is position independent,
9407 // (b) the relocation is absolute (not pc- or segment-relative), and
9408 // (c) the relocation is not 32 bits wide.
9410 return !(parameters->options().output_is_position_independent()
9411 && (ref_flags & Symbol::ABSOLUTE_REF)
9414 // For global symbols, we use the same helper routines used in the
9415 // scan pass. If we did not create a dynamic relocation, or if we
9416 // created a RELATIVE dynamic relocation, we should apply the static
9418 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9419 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9420 && gsym->can_use_relative_reloc(ref_flags
9421 & Symbol::FUNCTION_CALL);
9422 return !has_dyn || is_rel;
9425 // Perform a relocation.
9427 template<bool big_endian>
9429 Target_arm<big_endian>::Relocate::relocate(
9430 const Relocate_info<32, big_endian>* relinfo,
9433 Output_section* output_section,
9435 const unsigned char* preloc,
9436 const Sized_symbol<32>* gsym,
9437 const Symbol_value<32>* psymval,
9438 unsigned char* view,
9439 Arm_address address,
9440 section_size_type view_size)
9445 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9447 const elfcpp::Rel<32, big_endian> rel(preloc);
9448 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
9449 r_type = get_real_reloc_type(r_type);
9450 const Arm_reloc_property* reloc_property =
9451 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9452 if (reloc_property == NULL)
9454 std::string reloc_name =
9455 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9456 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9457 _("cannot relocate %s in object file"),
9458 reloc_name.c_str());
9462 const Arm_relobj<big_endian>* object =
9463 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9465 // If the final branch target of a relocation is THUMB instruction, this
9466 // is 1. Otherwise it is 0.
9467 Arm_address thumb_bit = 0;
9468 Symbol_value<32> symval;
9469 bool is_weakly_undefined_without_plt = false;
9470 bool have_got_offset = false;
9471 unsigned int got_offset = 0;
9473 // If the relocation uses the GOT entry of a symbol instead of the symbol
9474 // itself, we don't care about whether the symbol is defined or what kind
9476 if (reloc_property->uses_got_entry())
9478 // Get the GOT offset.
9479 // The GOT pointer points to the end of the GOT section.
9480 // We need to subtract the size of the GOT section to get
9481 // the actual offset to use in the relocation.
9482 // TODO: We should move GOT offset computing code in TLS relocations
9486 case elfcpp::R_ARM_GOT_BREL:
9487 case elfcpp::R_ARM_GOT_PREL:
9490 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9491 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9492 - target->got_size());
9496 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9497 gold_assert(object->local_has_got_offset(r_sym,
9498 GOT_TYPE_STANDARD));
9499 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9500 - target->got_size());
9502 have_got_offset = true;
9509 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9513 // This is a global symbol. Determine if we use PLT and if the
9514 // final target is THUMB.
9515 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9517 // This uses a PLT, change the symbol value.
9518 symval.set_output_value(target->plt_address_for_global(gsym));
9521 else if (gsym->is_weak_undefined())
9523 // This is a weakly undefined symbol and we do not use PLT
9524 // for this relocation. A branch targeting this symbol will
9525 // be converted into an NOP.
9526 is_weakly_undefined_without_plt = true;
9528 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9530 // This relocation uses the symbol value but the symbol is
9531 // undefined. Exit early and have the caller reporting an
9537 // Set thumb bit if symbol:
9538 // -Has type STT_ARM_TFUNC or
9539 // -Has type STT_FUNC, is defined and with LSB in value set.
9541 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9542 || (gsym->type() == elfcpp::STT_FUNC
9543 && !gsym->is_undefined()
9544 && ((psymval->value(object, 0) & 1) != 0)))
9551 // This is a local symbol. Determine if the final target is THUMB.
9552 // We saved this information when all the local symbols were read.
9553 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9554 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9555 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9557 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9559 symval.set_output_value(
9560 target->plt_address_for_local(object, r_sym));
9567 // This is a fake relocation synthesized for a stub. It does not have
9568 // a real symbol. We just look at the LSB of the symbol value to
9569 // determine if the target is THUMB or not.
9570 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9573 // Strip LSB if this points to a THUMB target.
9575 && reloc_property->uses_thumb_bit()
9576 && ((psymval->value(object, 0) & 1) != 0))
9578 Arm_address stripped_value =
9579 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9580 symval.set_output_value(stripped_value);
9584 // To look up relocation stubs, we need to pass the symbol table index of
9586 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9588 // Get the addressing origin of the output segment defining the
9589 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9590 Arm_address sym_origin = 0;
9591 if (reloc_property->uses_symbol_base())
9593 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9594 // R_ARM_BASE_ABS with the NULL symbol will give the
9595 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9596 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9597 sym_origin = target->got_plt_section()->address();
9598 else if (gsym == NULL)
9600 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9601 sym_origin = gsym->output_segment()->vaddr();
9602 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9603 sym_origin = gsym->output_data()->address();
9605 // TODO: Assumes the segment base to be zero for the global symbols
9606 // till the proper support for the segment-base-relative addressing
9607 // will be implemented. This is consistent with GNU ld.
9610 // For relative addressing relocation, find out the relative address base.
9611 Arm_address relative_address_base = 0;
9612 switch(reloc_property->relative_address_base())
9614 case Arm_reloc_property::RAB_NONE:
9615 // Relocations with relative address bases RAB_TLS and RAB_tp are
9616 // handled by relocate_tls. So we do not need to do anything here.
9617 case Arm_reloc_property::RAB_TLS:
9618 case Arm_reloc_property::RAB_tp:
9620 case Arm_reloc_property::RAB_B_S:
9621 relative_address_base = sym_origin;
9623 case Arm_reloc_property::RAB_GOT_ORG:
9624 relative_address_base = target->got_plt_section()->address();
9626 case Arm_reloc_property::RAB_P:
9627 relative_address_base = address;
9629 case Arm_reloc_property::RAB_Pa:
9630 relative_address_base = address & 0xfffffffcU;
9636 typename Arm_relocate_functions::Status reloc_status =
9637 Arm_relocate_functions::STATUS_OKAY;
9638 bool check_overflow = reloc_property->checks_overflow();
9641 case elfcpp::R_ARM_NONE:
9644 case elfcpp::R_ARM_ABS8:
9645 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9646 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9649 case elfcpp::R_ARM_ABS12:
9650 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9651 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9654 case elfcpp::R_ARM_ABS16:
9655 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9656 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9659 case elfcpp::R_ARM_ABS32:
9660 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9661 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9665 case elfcpp::R_ARM_ABS32_NOI:
9666 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9667 // No thumb bit for this relocation: (S + A)
9668 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9672 case elfcpp::R_ARM_MOVW_ABS_NC:
9673 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9674 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9679 case elfcpp::R_ARM_MOVT_ABS:
9680 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9681 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9684 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9685 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9686 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9687 0, thumb_bit, false);
9690 case elfcpp::R_ARM_THM_MOVT_ABS:
9691 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9692 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9696 case elfcpp::R_ARM_MOVW_PREL_NC:
9697 case elfcpp::R_ARM_MOVW_BREL_NC:
9698 case elfcpp::R_ARM_MOVW_BREL:
9700 Arm_relocate_functions::movw(view, object, psymval,
9701 relative_address_base, thumb_bit,
9705 case elfcpp::R_ARM_MOVT_PREL:
9706 case elfcpp::R_ARM_MOVT_BREL:
9708 Arm_relocate_functions::movt(view, object, psymval,
9709 relative_address_base);
9712 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9713 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9714 case elfcpp::R_ARM_THM_MOVW_BREL:
9716 Arm_relocate_functions::thm_movw(view, object, psymval,
9717 relative_address_base,
9718 thumb_bit, check_overflow);
9721 case elfcpp::R_ARM_THM_MOVT_PREL:
9722 case elfcpp::R_ARM_THM_MOVT_BREL:
9724 Arm_relocate_functions::thm_movt(view, object, psymval,
9725 relative_address_base);
9728 case elfcpp::R_ARM_REL32:
9729 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9730 address, thumb_bit);
9733 case elfcpp::R_ARM_THM_ABS5:
9734 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9735 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9738 // Thumb long branches.
9739 case elfcpp::R_ARM_THM_CALL:
9740 case elfcpp::R_ARM_THM_XPC22:
9741 case elfcpp::R_ARM_THM_JUMP24:
9743 Arm_relocate_functions::thumb_branch_common(
9744 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9745 thumb_bit, is_weakly_undefined_without_plt);
9748 case elfcpp::R_ARM_GOTOFF32:
9750 Arm_address got_origin;
9751 got_origin = target->got_plt_section()->address();
9752 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9753 got_origin, thumb_bit);
9757 case elfcpp::R_ARM_BASE_PREL:
9758 gold_assert(gsym != NULL);
9760 Arm_relocate_functions::base_prel(view, sym_origin, address);
9763 case elfcpp::R_ARM_BASE_ABS:
9764 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9765 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9768 case elfcpp::R_ARM_GOT_BREL:
9769 gold_assert(have_got_offset);
9770 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9773 case elfcpp::R_ARM_GOT_PREL:
9774 gold_assert(have_got_offset);
9775 // Get the address origin for GOT PLT, which is allocated right
9776 // after the GOT section, to calculate an absolute address of
9777 // the symbol GOT entry (got_origin + got_offset).
9778 Arm_address got_origin;
9779 got_origin = target->got_plt_section()->address();
9780 reloc_status = Arm_relocate_functions::got_prel(view,
9781 got_origin + got_offset,
9785 case elfcpp::R_ARM_PLT32:
9786 case elfcpp::R_ARM_CALL:
9787 case elfcpp::R_ARM_JUMP24:
9788 case elfcpp::R_ARM_XPC25:
9789 gold_assert(gsym == NULL
9790 || gsym->has_plt_offset()
9791 || gsym->final_value_is_known()
9792 || (gsym->is_defined()
9793 && !gsym->is_from_dynobj()
9794 && !gsym->is_preemptible()));
9796 Arm_relocate_functions::arm_branch_common(
9797 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9798 thumb_bit, is_weakly_undefined_without_plt);
9801 case elfcpp::R_ARM_THM_JUMP19:
9803 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9807 case elfcpp::R_ARM_THM_JUMP6:
9809 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9812 case elfcpp::R_ARM_THM_JUMP8:
9814 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9817 case elfcpp::R_ARM_THM_JUMP11:
9819 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9822 case elfcpp::R_ARM_PREL31:
9823 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9824 address, thumb_bit);
9827 case elfcpp::R_ARM_V4BX:
9828 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9830 const bool is_v4bx_interworking =
9831 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9833 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9834 is_v4bx_interworking);
9838 case elfcpp::R_ARM_THM_PC8:
9840 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9843 case elfcpp::R_ARM_THM_PC12:
9845 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9848 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9850 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9854 case elfcpp::R_ARM_ALU_PC_G0_NC:
9855 case elfcpp::R_ARM_ALU_PC_G0:
9856 case elfcpp::R_ARM_ALU_PC_G1_NC:
9857 case elfcpp::R_ARM_ALU_PC_G1:
9858 case elfcpp::R_ARM_ALU_PC_G2:
9859 case elfcpp::R_ARM_ALU_SB_G0_NC:
9860 case elfcpp::R_ARM_ALU_SB_G0:
9861 case elfcpp::R_ARM_ALU_SB_G1_NC:
9862 case elfcpp::R_ARM_ALU_SB_G1:
9863 case elfcpp::R_ARM_ALU_SB_G2:
9865 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9866 reloc_property->group_index(),
9867 relative_address_base,
9868 thumb_bit, check_overflow);
9871 case elfcpp::R_ARM_LDR_PC_G0:
9872 case elfcpp::R_ARM_LDR_PC_G1:
9873 case elfcpp::R_ARM_LDR_PC_G2:
9874 case elfcpp::R_ARM_LDR_SB_G0:
9875 case elfcpp::R_ARM_LDR_SB_G1:
9876 case elfcpp::R_ARM_LDR_SB_G2:
9878 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9879 reloc_property->group_index(),
9880 relative_address_base);
9883 case elfcpp::R_ARM_LDRS_PC_G0:
9884 case elfcpp::R_ARM_LDRS_PC_G1:
9885 case elfcpp::R_ARM_LDRS_PC_G2:
9886 case elfcpp::R_ARM_LDRS_SB_G0:
9887 case elfcpp::R_ARM_LDRS_SB_G1:
9888 case elfcpp::R_ARM_LDRS_SB_G2:
9890 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9891 reloc_property->group_index(),
9892 relative_address_base);
9895 case elfcpp::R_ARM_LDC_PC_G0:
9896 case elfcpp::R_ARM_LDC_PC_G1:
9897 case elfcpp::R_ARM_LDC_PC_G2:
9898 case elfcpp::R_ARM_LDC_SB_G0:
9899 case elfcpp::R_ARM_LDC_SB_G1:
9900 case elfcpp::R_ARM_LDC_SB_G2:
9902 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9903 reloc_property->group_index(),
9904 relative_address_base);
9907 // These are initial tls relocs, which are expected when
9909 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9910 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9911 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9912 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9913 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9915 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9916 view, address, view_size);
9919 // The known and unknown unsupported and/or deprecated relocations.
9920 case elfcpp::R_ARM_PC24:
9921 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9922 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9923 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9925 // Just silently leave the method. We should get an appropriate error
9926 // message in the scan methods.
9930 // Report any errors.
9931 switch (reloc_status)
9933 case Arm_relocate_functions::STATUS_OKAY:
9935 case Arm_relocate_functions::STATUS_OVERFLOW:
9936 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9937 _("relocation overflow in %s"),
9938 reloc_property->name().c_str());
9940 case Arm_relocate_functions::STATUS_BAD_RELOC:
9941 gold_error_at_location(
9945 _("unexpected opcode while processing relocation %s"),
9946 reloc_property->name().c_str());
9955 // Perform a TLS relocation.
9957 template<bool big_endian>
9958 inline typename Arm_relocate_functions<big_endian>::Status
9959 Target_arm<big_endian>::Relocate::relocate_tls(
9960 const Relocate_info<32, big_endian>* relinfo,
9961 Target_arm<big_endian>* target,
9963 const elfcpp::Rel<32, big_endian>& rel,
9964 unsigned int r_type,
9965 const Sized_symbol<32>* gsym,
9966 const Symbol_value<32>* psymval,
9967 unsigned char* view,
9968 elfcpp::Elf_types<32>::Elf_Addr address,
9969 section_size_type /*view_size*/ )
9971 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9972 typedef Relocate_functions<32, big_endian> RelocFuncs;
9973 Output_segment* tls_segment = relinfo->layout->tls_segment();
9975 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9977 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9979 const bool is_final = (gsym == NULL
9980 ? !parameters->options().shared()
9981 : gsym->final_value_is_known());
9982 const tls::Tls_optimization optimized_type
9983 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9986 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9988 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9989 unsigned int got_offset;
9992 gold_assert(gsym->has_got_offset(got_type));
9993 got_offset = gsym->got_offset(got_type) - target->got_size();
9997 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9998 gold_assert(object->local_has_got_offset(r_sym, got_type));
9999 got_offset = (object->local_got_offset(r_sym, got_type)
10000 - target->got_size());
10002 if (optimized_type == tls::TLSOPT_NONE)
10004 Arm_address got_entry =
10005 target->got_plt_section()->address() + got_offset;
10007 // Relocate the field with the PC relative offset of the pair of
10009 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10010 return ArmRelocFuncs::STATUS_OKAY;
10015 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
10016 if (optimized_type == tls::TLSOPT_NONE)
10018 // Relocate the field with the offset of the GOT entry for
10019 // the module index.
10020 unsigned int got_offset;
10021 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
10022 - target->got_size());
10023 Arm_address got_entry =
10024 target->got_plt_section()->address() + got_offset;
10026 // Relocate the field with the PC relative offset of the pair of
10028 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10029 return ArmRelocFuncs::STATUS_OKAY;
10033 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
10034 RelocFuncs::rel32_unaligned(view, value);
10035 return ArmRelocFuncs::STATUS_OKAY;
10037 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
10038 if (optimized_type == tls::TLSOPT_NONE)
10040 // Relocate the field with the offset of the GOT entry for
10041 // the tp-relative offset of the symbol.
10042 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
10043 unsigned int got_offset;
10046 gold_assert(gsym->has_got_offset(got_type));
10047 got_offset = gsym->got_offset(got_type);
10051 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
10052 gold_assert(object->local_has_got_offset(r_sym, got_type));
10053 got_offset = object->local_got_offset(r_sym, got_type);
10056 // All GOT offsets are relative to the end of the GOT.
10057 got_offset -= target->got_size();
10059 Arm_address got_entry =
10060 target->got_plt_section()->address() + got_offset;
10062 // Relocate the field with the PC relative offset of the GOT entry.
10063 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
10064 return ArmRelocFuncs::STATUS_OKAY;
10068 case elfcpp::R_ARM_TLS_LE32: // Local-exec
10069 // If we're creating a shared library, a dynamic relocation will
10070 // have been created for this location, so do not apply it now.
10071 if (!parameters->options().shared())
10073 gold_assert(tls_segment != NULL);
10075 // $tp points to the TCB, which is followed by the TLS, so we
10076 // need to add TCB size to the offset.
10077 Arm_address aligned_tcb_size =
10078 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
10079 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
10082 return ArmRelocFuncs::STATUS_OKAY;
10085 gold_unreachable();
10088 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
10089 _("unsupported reloc %u"),
10091 return ArmRelocFuncs::STATUS_BAD_RELOC;
10094 // Relocate section data.
10096 template<bool big_endian>
10098 Target_arm<big_endian>::relocate_section(
10099 const Relocate_info<32, big_endian>* relinfo,
10100 unsigned int sh_type,
10101 const unsigned char* prelocs,
10102 size_t reloc_count,
10103 Output_section* output_section,
10104 bool needs_special_offset_handling,
10105 unsigned char* view,
10106 Arm_address address,
10107 section_size_type view_size,
10108 const Reloc_symbol_changes* reloc_symbol_changes)
10110 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10111 gold_assert(sh_type == elfcpp::SHT_REL);
10113 // See if we are relocating a relaxed input section. If so, the view
10114 // covers the whole output section and we need to adjust accordingly.
10115 if (needs_special_offset_handling)
10117 const Output_relaxed_input_section* poris =
10118 output_section->find_relaxed_input_section(relinfo->object,
10119 relinfo->data_shndx);
10122 Arm_address section_address = poris->address();
10123 section_size_type section_size = poris->data_size();
10125 gold_assert((section_address >= address)
10126 && ((section_address + section_size)
10127 <= (address + view_size)));
10129 off_t offset = section_address - address;
10132 view_size = section_size;
10136 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
10137 gold::Default_comdat_behavior, Classify_reloc>(
10143 needs_special_offset_handling,
10147 reloc_symbol_changes);
10150 // Return the size of a relocation while scanning during a relocatable
10153 template<bool big_endian>
10155 Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
10156 unsigned int r_type,
10159 r_type = get_real_reloc_type(r_type);
10160 const Arm_reloc_property* arp =
10161 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10163 return arp->size();
10166 std::string reloc_name =
10167 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10168 gold_error(_("%s: unexpected %s in object file"),
10169 object->name().c_str(), reloc_name.c_str());
10174 // Scan the relocs during a relocatable link.
10176 template<bool big_endian>
10178 Target_arm<big_endian>::scan_relocatable_relocs(
10179 Symbol_table* symtab,
10181 Sized_relobj_file<32, big_endian>* object,
10182 unsigned int data_shndx,
10183 unsigned int sh_type,
10184 const unsigned char* prelocs,
10185 size_t reloc_count,
10186 Output_section* output_section,
10187 bool needs_special_offset_handling,
10188 size_t local_symbol_count,
10189 const unsigned char* plocal_symbols,
10190 Relocatable_relocs* rr)
10192 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
10193 Scan_relocatable_relocs;
10195 gold_assert(sh_type == elfcpp::SHT_REL);
10197 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
10205 needs_special_offset_handling,
10206 local_symbol_count,
10211 // Scan the relocs for --emit-relocs.
10213 template<bool big_endian>
10215 Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
10217 Sized_relobj_file<32, big_endian>* object,
10218 unsigned int data_shndx,
10219 unsigned int sh_type,
10220 const unsigned char* prelocs,
10221 size_t reloc_count,
10222 Output_section* output_section,
10223 bool needs_special_offset_handling,
10224 size_t local_symbol_count,
10225 const unsigned char* plocal_syms,
10226 Relocatable_relocs* rr)
10228 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
10230 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10231 Emit_relocs_strategy;
10233 gold_assert(sh_type == elfcpp::SHT_REL);
10235 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
10243 needs_special_offset_handling,
10244 local_symbol_count,
10249 // Emit relocations for a section.
10251 template<bool big_endian>
10253 Target_arm<big_endian>::relocate_relocs(
10254 const Relocate_info<32, big_endian>* relinfo,
10255 unsigned int sh_type,
10256 const unsigned char* prelocs,
10257 size_t reloc_count,
10258 Output_section* output_section,
10259 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10260 unsigned char* view,
10261 Arm_address view_address,
10262 section_size_type view_size,
10263 unsigned char* reloc_view,
10264 section_size_type reloc_view_size)
10266 gold_assert(sh_type == elfcpp::SHT_REL);
10268 gold::relocate_relocs<32, big_endian, Classify_reloc>(
10273 offset_in_output_section,
10281 // Perform target-specific processing in a relocatable link. This is
10282 // only used if we use the relocation strategy RELOC_SPECIAL.
10284 template<bool big_endian>
10286 Target_arm<big_endian>::relocate_special_relocatable(
10287 const Relocate_info<32, big_endian>* relinfo,
10288 unsigned int sh_type,
10289 const unsigned char* preloc_in,
10291 Output_section* output_section,
10292 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10293 unsigned char* view,
10294 elfcpp::Elf_types<32>::Elf_Addr view_address,
10296 unsigned char* preloc_out)
10298 // We can only handle REL type relocation sections.
10299 gold_assert(sh_type == elfcpp::SHT_REL);
10301 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10302 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10304 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10306 const Arm_relobj<big_endian>* object =
10307 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10308 const unsigned int local_count = object->local_symbol_count();
10310 Reltype reloc(preloc_in);
10311 Reltype_write reloc_write(preloc_out);
10313 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10314 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10315 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10317 const Arm_reloc_property* arp =
10318 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10319 gold_assert(arp != NULL);
10321 // Get the new symbol index.
10322 // We only use RELOC_SPECIAL strategy in local relocations.
10323 gold_assert(r_sym < local_count);
10325 // We are adjusting a section symbol. We need to find
10326 // the symbol table index of the section symbol for
10327 // the output section corresponding to input section
10328 // in which this symbol is defined.
10330 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10331 gold_assert(is_ordinary);
10332 Output_section* os = object->output_section(shndx);
10333 gold_assert(os != NULL);
10334 gold_assert(os->needs_symtab_index());
10335 unsigned int new_symndx = os->symtab_index();
10337 // Get the new offset--the location in the output section where
10338 // this relocation should be applied.
10340 Arm_address offset = reloc.get_r_offset();
10341 Arm_address new_offset;
10342 if (offset_in_output_section != invalid_address)
10343 new_offset = offset + offset_in_output_section;
10346 section_offset_type sot_offset =
10347 convert_types<section_offset_type, Arm_address>(offset);
10348 section_offset_type new_sot_offset =
10349 output_section->output_offset(object, relinfo->data_shndx,
10351 gold_assert(new_sot_offset != -1);
10352 new_offset = new_sot_offset;
10355 // In an object file, r_offset is an offset within the section.
10356 // In an executable or dynamic object, generated by
10357 // --emit-relocs, r_offset is an absolute address.
10358 if (!parameters->options().relocatable())
10360 new_offset += view_address;
10361 if (offset_in_output_section != invalid_address)
10362 new_offset -= offset_in_output_section;
10365 reloc_write.put_r_offset(new_offset);
10366 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10368 // Handle the reloc addend.
10369 // The relocation uses a section symbol in the input file.
10370 // We are adjusting it to use a section symbol in the output
10371 // file. The input section symbol refers to some address in
10372 // the input section. We need the relocation in the output
10373 // file to refer to that same address. This adjustment to
10374 // the addend is the same calculation we use for a simple
10375 // absolute relocation for the input section symbol.
10377 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10379 // Handle THUMB bit.
10380 Symbol_value<32> symval;
10381 Arm_address thumb_bit =
10382 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10384 && arp->uses_thumb_bit()
10385 && ((psymval->value(object, 0) & 1) != 0))
10387 Arm_address stripped_value =
10388 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10389 symval.set_output_value(stripped_value);
10393 unsigned char* paddend = view + offset;
10394 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10395 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10398 case elfcpp::R_ARM_ABS8:
10399 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10403 case elfcpp::R_ARM_ABS12:
10404 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10408 case elfcpp::R_ARM_ABS16:
10409 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10413 case elfcpp::R_ARM_THM_ABS5:
10414 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10419 case elfcpp::R_ARM_MOVW_ABS_NC:
10420 case elfcpp::R_ARM_MOVW_PREL_NC:
10421 case elfcpp::R_ARM_MOVW_BREL_NC:
10422 case elfcpp::R_ARM_MOVW_BREL:
10423 reloc_status = Arm_relocate_functions<big_endian>::movw(
10424 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10427 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10428 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10429 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10430 case elfcpp::R_ARM_THM_MOVW_BREL:
10431 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10432 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10435 case elfcpp::R_ARM_THM_CALL:
10436 case elfcpp::R_ARM_THM_XPC22:
10437 case elfcpp::R_ARM_THM_JUMP24:
10439 Arm_relocate_functions<big_endian>::thumb_branch_common(
10440 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10444 case elfcpp::R_ARM_PLT32:
10445 case elfcpp::R_ARM_CALL:
10446 case elfcpp::R_ARM_JUMP24:
10447 case elfcpp::R_ARM_XPC25:
10449 Arm_relocate_functions<big_endian>::arm_branch_common(
10450 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10454 case elfcpp::R_ARM_THM_JUMP19:
10456 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10457 psymval, 0, thumb_bit);
10460 case elfcpp::R_ARM_THM_JUMP6:
10462 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10466 case elfcpp::R_ARM_THM_JUMP8:
10468 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10472 case elfcpp::R_ARM_THM_JUMP11:
10474 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10478 case elfcpp::R_ARM_PREL31:
10480 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10484 case elfcpp::R_ARM_THM_PC8:
10486 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10490 case elfcpp::R_ARM_THM_PC12:
10492 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10496 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10498 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10502 // These relocation truncate relocation results so we cannot handle them
10503 // in a relocatable link.
10504 case elfcpp::R_ARM_MOVT_ABS:
10505 case elfcpp::R_ARM_THM_MOVT_ABS:
10506 case elfcpp::R_ARM_MOVT_PREL:
10507 case elfcpp::R_ARM_MOVT_BREL:
10508 case elfcpp::R_ARM_THM_MOVT_PREL:
10509 case elfcpp::R_ARM_THM_MOVT_BREL:
10510 case elfcpp::R_ARM_ALU_PC_G0_NC:
10511 case elfcpp::R_ARM_ALU_PC_G0:
10512 case elfcpp::R_ARM_ALU_PC_G1_NC:
10513 case elfcpp::R_ARM_ALU_PC_G1:
10514 case elfcpp::R_ARM_ALU_PC_G2:
10515 case elfcpp::R_ARM_ALU_SB_G0_NC:
10516 case elfcpp::R_ARM_ALU_SB_G0:
10517 case elfcpp::R_ARM_ALU_SB_G1_NC:
10518 case elfcpp::R_ARM_ALU_SB_G1:
10519 case elfcpp::R_ARM_ALU_SB_G2:
10520 case elfcpp::R_ARM_LDR_PC_G0:
10521 case elfcpp::R_ARM_LDR_PC_G1:
10522 case elfcpp::R_ARM_LDR_PC_G2:
10523 case elfcpp::R_ARM_LDR_SB_G0:
10524 case elfcpp::R_ARM_LDR_SB_G1:
10525 case elfcpp::R_ARM_LDR_SB_G2:
10526 case elfcpp::R_ARM_LDRS_PC_G0:
10527 case elfcpp::R_ARM_LDRS_PC_G1:
10528 case elfcpp::R_ARM_LDRS_PC_G2:
10529 case elfcpp::R_ARM_LDRS_SB_G0:
10530 case elfcpp::R_ARM_LDRS_SB_G1:
10531 case elfcpp::R_ARM_LDRS_SB_G2:
10532 case elfcpp::R_ARM_LDC_PC_G0:
10533 case elfcpp::R_ARM_LDC_PC_G1:
10534 case elfcpp::R_ARM_LDC_PC_G2:
10535 case elfcpp::R_ARM_LDC_SB_G0:
10536 case elfcpp::R_ARM_LDC_SB_G1:
10537 case elfcpp::R_ARM_LDC_SB_G2:
10538 gold_error(_("cannot handle %s in a relocatable link"),
10539 arp->name().c_str());
10543 gold_unreachable();
10546 // Report any errors.
10547 switch (reloc_status)
10549 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10551 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10552 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10553 _("relocation overflow in %s"),
10554 arp->name().c_str());
10556 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10557 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10558 _("unexpected opcode while processing relocation %s"),
10559 arp->name().c_str());
10562 gold_unreachable();
10566 // Return the value to use for a dynamic symbol which requires special
10567 // treatment. This is how we support equality comparisons of function
10568 // pointers across shared library boundaries, as described in the
10569 // processor specific ABI supplement.
10571 template<bool big_endian>
10573 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10575 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10576 return this->plt_address_for_global(gsym);
10579 // Map platform-specific relocs to real relocs
10581 template<bool big_endian>
10583 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10587 case elfcpp::R_ARM_TARGET1:
10588 // This is either R_ARM_ABS32 or R_ARM_REL32;
10589 return elfcpp::R_ARM_ABS32;
10591 case elfcpp::R_ARM_TARGET2:
10592 // This can be any reloc type but usually is R_ARM_GOT_PREL
10593 return elfcpp::R_ARM_GOT_PREL;
10600 // Whether if two EABI versions V1 and V2 are compatible.
10602 template<bool big_endian>
10604 Target_arm<big_endian>::are_eabi_versions_compatible(
10605 elfcpp::Elf_Word v1,
10606 elfcpp::Elf_Word v2)
10608 // v4 and v5 are the same spec before and after it was released,
10609 // so allow mixing them.
10610 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10611 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10612 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10618 // Combine FLAGS from an input object called NAME and the processor-specific
10619 // flags in the ELF header of the output. Much of this is adapted from the
10620 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10621 // in bfd/elf32-arm.c.
10623 template<bool big_endian>
10625 Target_arm<big_endian>::merge_processor_specific_flags(
10626 const std::string& name,
10627 elfcpp::Elf_Word flags)
10629 if (this->are_processor_specific_flags_set())
10631 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10633 // Nothing to merge if flags equal to those in output.
10634 if (flags == out_flags)
10637 // Complain about various flag mismatches.
10638 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10639 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10640 if (!this->are_eabi_versions_compatible(version1, version2)
10641 && parameters->options().warn_mismatch())
10642 gold_error(_("Source object %s has EABI version %d but output has "
10643 "EABI version %d."),
10645 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10646 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10650 // If the input is the default architecture and had the default
10651 // flags then do not bother setting the flags for the output
10652 // architecture, instead allow future merges to do this. If no
10653 // future merges ever set these flags then they will retain their
10654 // uninitialised values, which surprise surprise, correspond
10655 // to the default values.
10659 // This is the first time, just copy the flags.
10660 // We only copy the EABI version for now.
10661 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10665 // Adjust ELF file header.
10666 template<bool big_endian>
10668 Target_arm<big_endian>::do_adjust_elf_header(
10669 unsigned char* view,
10672 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10674 elfcpp::Ehdr<32, big_endian> ehdr(view);
10675 elfcpp::Elf_Word flags = this->processor_specific_flags();
10676 unsigned char e_ident[elfcpp::EI_NIDENT];
10677 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10679 if (elfcpp::arm_eabi_version(flags)
10680 == elfcpp::EF_ARM_EABI_UNKNOWN)
10681 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10683 e_ident[elfcpp::EI_OSABI] = 0;
10684 e_ident[elfcpp::EI_ABIVERSION] = 0;
10686 // FIXME: Do EF_ARM_BE8 adjustment.
10688 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10690 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10692 elfcpp::Elf_Half type = ehdr.get_e_type();
10693 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10695 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10696 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10697 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10699 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10700 this->set_processor_specific_flags(flags);
10703 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10704 oehdr.put_e_ident(e_ident);
10705 oehdr.put_e_flags(this->processor_specific_flags());
10708 // do_make_elf_object to override the same function in the base class.
10709 // We need to use a target-specific sub-class of
10710 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10711 // Hence we need to have our own ELF object creation.
10713 template<bool big_endian>
10715 Target_arm<big_endian>::do_make_elf_object(
10716 const std::string& name,
10717 Input_file* input_file,
10718 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10720 int et = ehdr.get_e_type();
10721 // ET_EXEC files are valid input for --just-symbols/-R,
10722 // and we treat them as relocatable objects.
10723 if (et == elfcpp::ET_REL
10724 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10726 Arm_relobj<big_endian>* obj =
10727 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10731 else if (et == elfcpp::ET_DYN)
10733 Sized_dynobj<32, big_endian>* obj =
10734 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10740 gold_error(_("%s: unsupported ELF file type %d"),
10746 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10747 // Returns -1 if no architecture could be read.
10748 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10750 template<bool big_endian>
10752 Target_arm<big_endian>::get_secondary_compatible_arch(
10753 const Attributes_section_data* pasd)
10755 const Object_attribute* known_attributes =
10756 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10758 // Note: the tag and its argument below are uleb128 values, though
10759 // currently-defined values fit in one byte for each.
10760 const std::string& sv =
10761 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10763 && sv.data()[0] == elfcpp::Tag_CPU_arch
10764 && (sv.data()[1] & 128) != 128)
10765 return sv.data()[1];
10767 // This tag is "safely ignorable", so don't complain if it looks funny.
10771 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10772 // The tag is removed if ARCH is -1.
10773 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10775 template<bool big_endian>
10777 Target_arm<big_endian>::set_secondary_compatible_arch(
10778 Attributes_section_data* pasd,
10781 Object_attribute* known_attributes =
10782 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10786 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10790 // Note: the tag and its argument below are uleb128 values, though
10791 // currently-defined values fit in one byte for each.
10793 sv[0] = elfcpp::Tag_CPU_arch;
10794 gold_assert(arch != 0);
10798 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10801 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10803 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10805 template<bool big_endian>
10807 Target_arm<big_endian>::tag_cpu_arch_combine(
10810 int* secondary_compat_out,
10812 int secondary_compat)
10814 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10815 static const int v6t2[] =
10817 T(V6T2), // PRE_V4.
10827 static const int v6k[] =
10840 static const int v7[] =
10854 static const int v6_m[] =
10869 static const int v6s_m[] =
10885 static const int v7e_m[] =
10892 T(V7E_M), // V5TEJ.
10899 T(V7E_M), // V6S_M.
10902 static const int v8[] =
10920 static const int v4t_plus_v6_m[] =
10927 T(V5TEJ), // V5TEJ.
10934 T(V6S_M), // V6S_M.
10935 T(V7E_M), // V7E_M.
10937 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10939 static const int* comb[] =
10948 // Pseudo-architecture.
10952 // Check we've not got a higher architecture than we know about.
10954 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10956 gold_error(_("%s: unknown CPU architecture"), name);
10960 // Override old tag if we have a Tag_also_compatible_with on the output.
10962 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10963 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10964 oldtag = T(V4T_PLUS_V6_M);
10966 // And override the new tag if we have a Tag_also_compatible_with on the
10969 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10970 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10971 newtag = T(V4T_PLUS_V6_M);
10973 // Architectures before V6KZ add features monotonically.
10974 int tagh = std::max(oldtag, newtag);
10975 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10978 int tagl = std::min(oldtag, newtag);
10979 int result = comb[tagh - T(V6T2)][tagl];
10981 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10982 // as the canonical version.
10983 if (result == T(V4T_PLUS_V6_M))
10986 *secondary_compat_out = T(V6_M);
10989 *secondary_compat_out = -1;
10993 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10994 name, oldtag, newtag);
11002 // Helper to print AEABI enum tag value.
11004 template<bool big_endian>
11006 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
11008 static const char* aeabi_enum_names[] =
11009 { "", "variable-size", "32-bit", "" };
11010 const size_t aeabi_enum_names_size =
11011 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
11013 if (value < aeabi_enum_names_size)
11014 return std::string(aeabi_enum_names[value]);
11018 sprintf(buffer, "<unknown value %u>", value);
11019 return std::string(buffer);
11023 // Return the string value to store in TAG_CPU_name.
11025 template<bool big_endian>
11027 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
11029 static const char* name_table[] = {
11030 // These aren't real CPU names, but we can't guess
11031 // that from the architecture version alone.
11048 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
11050 if (value < name_table_size)
11051 return std::string(name_table[value]);
11055 sprintf(buffer, "<unknown CPU value %u>", value);
11056 return std::string(buffer);
11060 // Query attributes object to see if integer divide instructions may be
11061 // present in an object.
11063 template<bool big_endian>
11065 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
11066 const Object_attribute* div_attr)
11068 switch (div_attr->int_value())
11071 // Integer divide allowed if instruction contained in
11073 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11075 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
11081 // Integer divide explicitly prohibited.
11085 // Unrecognised case - treat as allowing divide everywhere.
11087 // Integer divide allowed in ARM state.
11092 // Query attributes object to see if integer divide instructions are
11093 // forbidden to be in the object. This is not the inverse of
11094 // attributes_accept_div.
11096 template<bool big_endian>
11098 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
11100 return div_attr->int_value() == 1;
11103 // Merge object attributes from input file called NAME with those of the
11104 // output. The input object attributes are in the object pointed by PASD.
11106 template<bool big_endian>
11108 Target_arm<big_endian>::merge_object_attributes(
11110 const Attributes_section_data* pasd)
11112 // Return if there is no attributes section data.
11116 // If output has no object attributes, just copy.
11117 const int vendor = Object_attribute::OBJ_ATTR_PROC;
11118 if (this->attributes_section_data_ == NULL)
11120 this->attributes_section_data_ = new Attributes_section_data(*pasd);
11121 Object_attribute* out_attr =
11122 this->attributes_section_data_->known_attributes(vendor);
11124 // We do not output objects with Tag_MPextension_use_legacy - we move
11125 // the attribute's value to Tag_MPextension_use. */
11126 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
11128 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
11129 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
11130 != out_attr[elfcpp::Tag_MPextension_use].int_value())
11132 gold_error(_("%s has both the current and legacy "
11133 "Tag_MPextension_use attributes"),
11137 out_attr[elfcpp::Tag_MPextension_use] =
11138 out_attr[elfcpp::Tag_MPextension_use_legacy];
11139 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11140 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11146 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11147 Object_attribute* out_attr =
11148 this->attributes_section_data_->known_attributes(vendor);
11150 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11151 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11152 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11154 // Ignore mismatches if the object doesn't use floating point. */
11155 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11156 == elfcpp::AEABI_FP_number_model_none
11157 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11158 != elfcpp::AEABI_FP_number_model_none
11159 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11160 == elfcpp::AEABI_VFP_args_compatible))
11161 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11162 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11163 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11164 != elfcpp::AEABI_FP_number_model_none
11165 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11166 != elfcpp::AEABI_VFP_args_compatible
11167 && parameters->options().warn_mismatch())
11168 gold_error(_("%s uses VFP register arguments, output does not"),
11172 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11174 // Merge this attribute with existing attributes.
11177 case elfcpp::Tag_CPU_raw_name:
11178 case elfcpp::Tag_CPU_name:
11179 // These are merged after Tag_CPU_arch.
11182 case elfcpp::Tag_ABI_optimization_goals:
11183 case elfcpp::Tag_ABI_FP_optimization_goals:
11184 // Use the first value seen.
11187 case elfcpp::Tag_CPU_arch:
11189 unsigned int saved_out_attr = out_attr->int_value();
11190 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11191 int secondary_compat =
11192 this->get_secondary_compatible_arch(pasd);
11193 int secondary_compat_out =
11194 this->get_secondary_compatible_arch(
11195 this->attributes_section_data_);
11196 out_attr[i].set_int_value(
11197 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11198 &secondary_compat_out,
11199 in_attr[i].int_value(),
11200 secondary_compat));
11201 this->set_secondary_compatible_arch(this->attributes_section_data_,
11202 secondary_compat_out);
11204 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11205 if (out_attr[i].int_value() == saved_out_attr)
11206 ; // Leave the names alone.
11207 else if (out_attr[i].int_value() == in_attr[i].int_value())
11209 // The output architecture has been changed to match the
11210 // input architecture. Use the input names.
11211 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11212 in_attr[elfcpp::Tag_CPU_name].string_value());
11213 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11214 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11218 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11219 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11222 // If we still don't have a value for Tag_CPU_name,
11223 // make one up now. Tag_CPU_raw_name remains blank.
11224 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11226 const std::string cpu_name =
11227 this->tag_cpu_name_value(out_attr[i].int_value());
11228 // FIXME: If we see an unknown CPU, this will be set
11229 // to "<unknown CPU n>", where n is the attribute value.
11230 // This is different from BFD, which leaves the name alone.
11231 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11236 case elfcpp::Tag_ARM_ISA_use:
11237 case elfcpp::Tag_THUMB_ISA_use:
11238 case elfcpp::Tag_WMMX_arch:
11239 case elfcpp::Tag_Advanced_SIMD_arch:
11240 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11241 case elfcpp::Tag_ABI_FP_rounding:
11242 case elfcpp::Tag_ABI_FP_exceptions:
11243 case elfcpp::Tag_ABI_FP_user_exceptions:
11244 case elfcpp::Tag_ABI_FP_number_model:
11245 case elfcpp::Tag_VFP_HP_extension:
11246 case elfcpp::Tag_CPU_unaligned_access:
11247 case elfcpp::Tag_T2EE_use:
11248 case elfcpp::Tag_Virtualization_use:
11249 case elfcpp::Tag_MPextension_use:
11250 // Use the largest value specified.
11251 if (in_attr[i].int_value() > out_attr[i].int_value())
11252 out_attr[i].set_int_value(in_attr[i].int_value());
11255 case elfcpp::Tag_ABI_align8_preserved:
11256 case elfcpp::Tag_ABI_PCS_RO_data:
11257 // Use the smallest value specified.
11258 if (in_attr[i].int_value() < out_attr[i].int_value())
11259 out_attr[i].set_int_value(in_attr[i].int_value());
11262 case elfcpp::Tag_ABI_align8_needed:
11263 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11264 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11265 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11268 // This error message should be enabled once all non-conforming
11269 // binaries in the toolchain have had the attributes set
11271 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11275 case elfcpp::Tag_ABI_FP_denormal:
11276 case elfcpp::Tag_ABI_PCS_GOT_use:
11278 // These tags have 0 = don't care, 1 = strong requirement,
11279 // 2 = weak requirement.
11280 static const int order_021[3] = {0, 2, 1};
11282 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11283 // value if greater than 2 (for future-proofing).
11284 if ((in_attr[i].int_value() > 2
11285 && in_attr[i].int_value() > out_attr[i].int_value())
11286 || (in_attr[i].int_value() <= 2
11287 && out_attr[i].int_value() <= 2
11288 && (order_021[in_attr[i].int_value()]
11289 > order_021[out_attr[i].int_value()])))
11290 out_attr[i].set_int_value(in_attr[i].int_value());
11294 case elfcpp::Tag_CPU_arch_profile:
11295 if (out_attr[i].int_value() != in_attr[i].int_value())
11297 // 0 will merge with anything.
11298 // 'A' and 'S' merge to 'A'.
11299 // 'R' and 'S' merge to 'R'.
11300 // 'M' and 'A|R|S' is an error.
11301 if (out_attr[i].int_value() == 0
11302 || (out_attr[i].int_value() == 'S'
11303 && (in_attr[i].int_value() == 'A'
11304 || in_attr[i].int_value() == 'R')))
11305 out_attr[i].set_int_value(in_attr[i].int_value());
11306 else if (in_attr[i].int_value() == 0
11307 || (in_attr[i].int_value() == 'S'
11308 && (out_attr[i].int_value() == 'A'
11309 || out_attr[i].int_value() == 'R')))
11311 else if (parameters->options().warn_mismatch())
11314 (_("conflicting architecture profiles %c/%c"),
11315 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11316 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11320 case elfcpp::Tag_VFP_arch:
11322 static const struct
11326 } vfp_versions[7] =
11337 // Values greater than 6 aren't defined, so just pick the
11339 if (in_attr[i].int_value() > 6
11340 && in_attr[i].int_value() > out_attr[i].int_value())
11342 *out_attr = *in_attr;
11345 // The output uses the superset of input features
11346 // (ISA version) and registers.
11347 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11348 vfp_versions[out_attr[i].int_value()].ver);
11349 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11350 vfp_versions[out_attr[i].int_value()].regs);
11351 // This assumes all possible supersets are also a valid
11354 for (newval = 6; newval > 0; newval--)
11356 if (regs == vfp_versions[newval].regs
11357 && ver == vfp_versions[newval].ver)
11360 out_attr[i].set_int_value(newval);
11363 case elfcpp::Tag_PCS_config:
11364 if (out_attr[i].int_value() == 0)
11365 out_attr[i].set_int_value(in_attr[i].int_value());
11366 else if (in_attr[i].int_value() != 0
11367 && out_attr[i].int_value() != 0
11368 && parameters->options().warn_mismatch())
11370 // It's sometimes ok to mix different configs, so this is only
11372 gold_warning(_("%s: conflicting platform configuration"), name);
11375 case elfcpp::Tag_ABI_PCS_R9_use:
11376 if (in_attr[i].int_value() != out_attr[i].int_value()
11377 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11378 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11379 && parameters->options().warn_mismatch())
11381 gold_error(_("%s: conflicting use of R9"), name);
11383 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11384 out_attr[i].set_int_value(in_attr[i].int_value());
11386 case elfcpp::Tag_ABI_PCS_RW_data:
11387 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11388 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11389 != elfcpp::AEABI_R9_SB)
11390 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11391 != elfcpp::AEABI_R9_unused)
11392 && parameters->options().warn_mismatch())
11394 gold_error(_("%s: SB relative addressing conflicts with use "
11398 // Use the smallest value specified.
11399 if (in_attr[i].int_value() < out_attr[i].int_value())
11400 out_attr[i].set_int_value(in_attr[i].int_value());
11402 case elfcpp::Tag_ABI_PCS_wchar_t:
11403 if (out_attr[i].int_value()
11404 && in_attr[i].int_value()
11405 && out_attr[i].int_value() != in_attr[i].int_value()
11406 && parameters->options().warn_mismatch()
11407 && parameters->options().wchar_size_warning())
11409 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11410 "use %u-byte wchar_t; use of wchar_t values "
11411 "across objects may fail"),
11412 name, in_attr[i].int_value(),
11413 out_attr[i].int_value());
11415 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11416 out_attr[i].set_int_value(in_attr[i].int_value());
11418 case elfcpp::Tag_ABI_enum_size:
11419 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11421 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11422 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11424 // The existing object is compatible with anything.
11425 // Use whatever requirements the new object has.
11426 out_attr[i].set_int_value(in_attr[i].int_value());
11428 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11429 && out_attr[i].int_value() != in_attr[i].int_value()
11430 && parameters->options().warn_mismatch()
11431 && parameters->options().enum_size_warning())
11433 unsigned int in_value = in_attr[i].int_value();
11434 unsigned int out_value = out_attr[i].int_value();
11435 gold_warning(_("%s uses %s enums yet the output is to use "
11436 "%s enums; use of enum values across objects "
11439 this->aeabi_enum_name(in_value).c_str(),
11440 this->aeabi_enum_name(out_value).c_str());
11444 case elfcpp::Tag_ABI_VFP_args:
11447 case elfcpp::Tag_ABI_WMMX_args:
11448 if (in_attr[i].int_value() != out_attr[i].int_value()
11449 && parameters->options().warn_mismatch())
11451 gold_error(_("%s uses iWMMXt register arguments, output does "
11456 case Object_attribute::Tag_compatibility:
11457 // Merged in target-independent code.
11459 case elfcpp::Tag_ABI_HardFP_use:
11460 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11461 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11462 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11463 out_attr[i].set_int_value(3);
11464 else if (in_attr[i].int_value() > out_attr[i].int_value())
11465 out_attr[i].set_int_value(in_attr[i].int_value());
11467 case elfcpp::Tag_ABI_FP_16bit_format:
11468 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11470 if (in_attr[i].int_value() != out_attr[i].int_value()
11471 && parameters->options().warn_mismatch())
11472 gold_error(_("fp16 format mismatch between %s and output"),
11475 if (in_attr[i].int_value() != 0)
11476 out_attr[i].set_int_value(in_attr[i].int_value());
11479 case elfcpp::Tag_DIV_use:
11481 // A value of zero on input means that the divide
11482 // instruction may be used if available in the base
11483 // architecture as specified via Tag_CPU_arch and
11484 // Tag_CPU_arch_profile. A value of 1 means that the user
11485 // did not want divide instructions. A value of 2
11486 // explicitly means that divide instructions were allowed
11487 // in ARM and Thumb state.
11489 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11491 int profile = this->
11492 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11494 if (in_attr[i].int_value() == out_attr[i].int_value())
11498 else if (attributes_forbid_div(&in_attr[i])
11499 && !attributes_accept_div(arch, profile, &out_attr[i]))
11500 out_attr[i].set_int_value(1);
11501 else if (attributes_forbid_div(&out_attr[i])
11502 && attributes_accept_div(arch, profile, &in_attr[i]))
11503 out_attr[i].set_int_value(in_attr[i].int_value());
11504 else if (in_attr[i].int_value() == 2)
11505 out_attr[i].set_int_value(in_attr[i].int_value());
11509 case elfcpp::Tag_MPextension_use_legacy:
11510 // We don't output objects with Tag_MPextension_use_legacy - we
11511 // move the value to Tag_MPextension_use.
11512 if (in_attr[i].int_value() != 0
11513 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11515 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11516 != in_attr[i].int_value())
11518 gold_error(_("%s has has both the current and legacy "
11519 "Tag_MPextension_use attributes"),
11524 if (in_attr[i].int_value()
11525 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11526 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11530 case elfcpp::Tag_nodefaults:
11531 // This tag is set if it exists, but the value is unused (and is
11532 // typically zero). We don't actually need to do anything here -
11533 // the merge happens automatically when the type flags are merged
11536 case elfcpp::Tag_also_compatible_with:
11537 // Already done in Tag_CPU_arch.
11539 case elfcpp::Tag_conformance:
11540 // Keep the attribute if it matches. Throw it away otherwise.
11541 // No attribute means no claim to conform.
11542 if (in_attr[i].string_value() != out_attr[i].string_value())
11543 out_attr[i].set_string_value("");
11548 const char* err_object = NULL;
11550 // The "known_obj_attributes" table does contain some undefined
11551 // attributes. Ensure that there are unused.
11552 if (out_attr[i].int_value() != 0
11553 || out_attr[i].string_value() != "")
11554 err_object = "output";
11555 else if (in_attr[i].int_value() != 0
11556 || in_attr[i].string_value() != "")
11559 if (err_object != NULL
11560 && parameters->options().warn_mismatch())
11562 // Attribute numbers >=64 (mod 128) can be safely ignored.
11563 if ((i & 127) < 64)
11564 gold_error(_("%s: unknown mandatory EABI object attribute "
11568 gold_warning(_("%s: unknown EABI object attribute %d"),
11572 // Only pass on attributes that match in both inputs.
11573 if (!in_attr[i].matches(out_attr[i]))
11575 out_attr[i].set_int_value(0);
11576 out_attr[i].set_string_value("");
11581 // If out_attr was copied from in_attr then it won't have a type yet.
11582 if (in_attr[i].type() && !out_attr[i].type())
11583 out_attr[i].set_type(in_attr[i].type());
11586 // Merge Tag_compatibility attributes and any common GNU ones.
11587 this->attributes_section_data_->merge(name, pasd);
11589 // Check for any attributes not known on ARM.
11590 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11591 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11592 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11593 Other_attributes* out_other_attributes =
11594 this->attributes_section_data_->other_attributes(vendor);
11595 Other_attributes::iterator out_iter = out_other_attributes->begin();
11597 while (in_iter != in_other_attributes->end()
11598 || out_iter != out_other_attributes->end())
11600 const char* err_object = NULL;
11603 // The tags for each list are in numerical order.
11604 // If the tags are equal, then merge.
11605 if (out_iter != out_other_attributes->end()
11606 && (in_iter == in_other_attributes->end()
11607 || in_iter->first > out_iter->first))
11609 // This attribute only exists in output. We can't merge, and we
11610 // don't know what the tag means, so delete it.
11611 err_object = "output";
11612 err_tag = out_iter->first;
11613 int saved_tag = out_iter->first;
11614 delete out_iter->second;
11615 out_other_attributes->erase(out_iter);
11616 out_iter = out_other_attributes->upper_bound(saved_tag);
11618 else if (in_iter != in_other_attributes->end()
11619 && (out_iter != out_other_attributes->end()
11620 || in_iter->first < out_iter->first))
11622 // This attribute only exists in input. We can't merge, and we
11623 // don't know what the tag means, so ignore it.
11625 err_tag = in_iter->first;
11628 else // The tags are equal.
11630 // As present, all attributes in the list are unknown, and
11631 // therefore can't be merged meaningfully.
11632 err_object = "output";
11633 err_tag = out_iter->first;
11635 // Only pass on attributes that match in both inputs.
11636 if (!in_iter->second->matches(*(out_iter->second)))
11638 // No match. Delete the attribute.
11639 int saved_tag = out_iter->first;
11640 delete out_iter->second;
11641 out_other_attributes->erase(out_iter);
11642 out_iter = out_other_attributes->upper_bound(saved_tag);
11646 // Matched. Keep the attribute and move to the next.
11652 if (err_object && parameters->options().warn_mismatch())
11654 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11655 if ((err_tag & 127) < 64)
11657 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11658 err_object, err_tag);
11662 gold_warning(_("%s: unknown EABI object attribute %d"),
11663 err_object, err_tag);
11669 // Stub-generation methods for Target_arm.
11671 // Make a new Arm_input_section object.
11673 template<bool big_endian>
11674 Arm_input_section<big_endian>*
11675 Target_arm<big_endian>::new_arm_input_section(
11677 unsigned int shndx)
11679 Section_id sid(relobj, shndx);
11681 Arm_input_section<big_endian>* arm_input_section =
11682 new Arm_input_section<big_endian>(relobj, shndx);
11683 arm_input_section->init();
11685 // Register new Arm_input_section in map for look-up.
11686 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11687 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11689 // Make sure that it we have not created another Arm_input_section
11690 // for this input section already.
11691 gold_assert(ins.second);
11693 return arm_input_section;
11696 // Find the Arm_input_section object corresponding to the SHNDX-th input
11697 // section of RELOBJ.
11699 template<bool big_endian>
11700 Arm_input_section<big_endian>*
11701 Target_arm<big_endian>::find_arm_input_section(
11703 unsigned int shndx) const
11705 Section_id sid(relobj, shndx);
11706 typename Arm_input_section_map::const_iterator p =
11707 this->arm_input_section_map_.find(sid);
11708 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11711 // Make a new stub table.
11713 template<bool big_endian>
11714 Stub_table<big_endian>*
11715 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11717 Stub_table<big_endian>* stub_table =
11718 new Stub_table<big_endian>(owner);
11719 this->stub_tables_.push_back(stub_table);
11721 stub_table->set_address(owner->address() + owner->data_size());
11722 stub_table->set_file_offset(owner->offset() + owner->data_size());
11723 stub_table->finalize_data_size();
11728 // Scan a relocation for stub generation.
11730 template<bool big_endian>
11732 Target_arm<big_endian>::scan_reloc_for_stub(
11733 const Relocate_info<32, big_endian>* relinfo,
11734 unsigned int r_type,
11735 const Sized_symbol<32>* gsym,
11736 unsigned int r_sym,
11737 const Symbol_value<32>* psymval,
11738 elfcpp::Elf_types<32>::Elf_Swxword addend,
11739 Arm_address address)
11741 const Arm_relobj<big_endian>* arm_relobj =
11742 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11744 bool target_is_thumb;
11745 Symbol_value<32> symval;
11748 // This is a global symbol. Determine if we use PLT and if the
11749 // final target is THUMB.
11750 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11752 // This uses a PLT, change the symbol value.
11753 symval.set_output_value(this->plt_address_for_global(gsym));
11755 target_is_thumb = false;
11757 else if (gsym->is_undefined())
11758 // There is no need to generate a stub symbol is undefined.
11763 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11764 || (gsym->type() == elfcpp::STT_FUNC
11765 && !gsym->is_undefined()
11766 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11771 // This is a local symbol. Determine if the final target is THUMB.
11772 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11775 // Strip LSB if this points to a THUMB target.
11776 const Arm_reloc_property* reloc_property =
11777 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11778 gold_assert(reloc_property != NULL);
11779 if (target_is_thumb
11780 && reloc_property->uses_thumb_bit()
11781 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11783 Arm_address stripped_value =
11784 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11785 symval.set_output_value(stripped_value);
11789 // Get the symbol value.
11790 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11792 // Owing to pipelining, the PC relative branches below actually skip
11793 // two instructions when the branch offset is 0.
11794 Arm_address destination;
11797 case elfcpp::R_ARM_CALL:
11798 case elfcpp::R_ARM_JUMP24:
11799 case elfcpp::R_ARM_PLT32:
11801 destination = value + addend + 8;
11803 case elfcpp::R_ARM_THM_CALL:
11804 case elfcpp::R_ARM_THM_XPC22:
11805 case elfcpp::R_ARM_THM_JUMP24:
11806 case elfcpp::R_ARM_THM_JUMP19:
11808 destination = value + addend + 4;
11811 gold_unreachable();
11814 Reloc_stub* stub = NULL;
11815 Stub_type stub_type =
11816 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11818 if (stub_type != arm_stub_none)
11820 // Try looking up an existing stub from a stub table.
11821 Stub_table<big_endian>* stub_table =
11822 arm_relobj->stub_table(relinfo->data_shndx);
11823 gold_assert(stub_table != NULL);
11825 // Locate stub by destination.
11826 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11828 // Create a stub if there is not one already
11829 stub = stub_table->find_reloc_stub(stub_key);
11832 // create a new stub and add it to stub table.
11833 stub = this->stub_factory().make_reloc_stub(stub_type);
11834 stub_table->add_reloc_stub(stub, stub_key);
11837 // Record the destination address.
11838 stub->set_destination_address(destination
11839 | (target_is_thumb ? 1 : 0));
11842 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11843 if (this->fix_cortex_a8_
11844 && (r_type == elfcpp::R_ARM_THM_JUMP24
11845 || r_type == elfcpp::R_ARM_THM_JUMP19
11846 || r_type == elfcpp::R_ARM_THM_CALL
11847 || r_type == elfcpp::R_ARM_THM_XPC22)
11848 && (address & 0xfffU) == 0xffeU)
11850 // Found a candidate. Note we haven't checked the destination is
11851 // within 4K here: if we do so (and don't create a record) we can't
11852 // tell that a branch should have been relocated when scanning later.
11853 this->cortex_a8_relocs_info_[address] =
11854 new Cortex_a8_reloc(stub, r_type,
11855 destination | (target_is_thumb ? 1 : 0));
11859 // This function scans a relocation sections for stub generation.
11860 // The template parameter Relocate must be a class type which provides
11861 // a single function, relocate(), which implements the machine
11862 // specific part of a relocation.
11864 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11865 // SHT_REL or SHT_RELA.
11867 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11868 // of relocs. OUTPUT_SECTION is the output section.
11869 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11870 // mapped to output offsets.
11872 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11873 // VIEW_SIZE is the size. These refer to the input section, unless
11874 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11875 // the output section.
11877 template<bool big_endian>
11878 template<int sh_type>
11880 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11881 const Relocate_info<32, big_endian>* relinfo,
11882 const unsigned char* prelocs,
11883 size_t reloc_count,
11884 Output_section* output_section,
11885 bool needs_special_offset_handling,
11886 const unsigned char* view,
11887 elfcpp::Elf_types<32>::Elf_Addr view_address,
11890 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11891 const int reloc_size =
11892 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11894 Arm_relobj<big_endian>* arm_object =
11895 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11896 unsigned int local_count = arm_object->local_symbol_count();
11898 gold::Default_comdat_behavior default_comdat_behavior;
11899 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11901 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11903 Reltype reloc(prelocs);
11905 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11906 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11907 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11909 r_type = this->get_real_reloc_type(r_type);
11911 // Only a few relocation types need stubs.
11912 if ((r_type != elfcpp::R_ARM_CALL)
11913 && (r_type != elfcpp::R_ARM_JUMP24)
11914 && (r_type != elfcpp::R_ARM_PLT32)
11915 && (r_type != elfcpp::R_ARM_THM_CALL)
11916 && (r_type != elfcpp::R_ARM_THM_XPC22)
11917 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11918 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11919 && (r_type != elfcpp::R_ARM_V4BX))
11922 section_offset_type offset =
11923 convert_to_section_size_type(reloc.get_r_offset());
11925 if (needs_special_offset_handling)
11927 offset = output_section->output_offset(relinfo->object,
11928 relinfo->data_shndx,
11934 // Create a v4bx stub if --fix-v4bx-interworking is used.
11935 if (r_type == elfcpp::R_ARM_V4BX)
11937 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11939 // Get the BX instruction.
11940 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11941 const Valtype* wv =
11942 reinterpret_cast<const Valtype*>(view + offset);
11943 elfcpp::Elf_types<32>::Elf_Swxword insn =
11944 elfcpp::Swap<32, big_endian>::readval(wv);
11945 const uint32_t reg = (insn & 0xf);
11949 // Try looking up an existing stub from a stub table.
11950 Stub_table<big_endian>* stub_table =
11951 arm_object->stub_table(relinfo->data_shndx);
11952 gold_assert(stub_table != NULL);
11954 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11956 // create a new stub and add it to stub table.
11957 Arm_v4bx_stub* stub =
11958 this->stub_factory().make_arm_v4bx_stub(reg);
11959 gold_assert(stub != NULL);
11960 stub_table->add_arm_v4bx_stub(stub);
11968 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11969 elfcpp::Elf_types<32>::Elf_Swxword addend =
11970 stub_addend_reader(r_type, view + offset, reloc);
11972 const Sized_symbol<32>* sym;
11974 Symbol_value<32> symval;
11975 const Symbol_value<32> *psymval;
11976 bool is_defined_in_discarded_section;
11977 unsigned int shndx;
11978 if (r_sym < local_count)
11981 psymval = arm_object->local_symbol(r_sym);
11983 // If the local symbol belongs to a section we are discarding,
11984 // and that section is a debug section, try to find the
11985 // corresponding kept section and map this symbol to its
11986 // counterpart in the kept section. The symbol must not
11987 // correspond to a section we are folding.
11989 shndx = psymval->input_shndx(&is_ordinary);
11990 is_defined_in_discarded_section =
11992 && shndx != elfcpp::SHN_UNDEF
11993 && !arm_object->is_section_included(shndx)
11994 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11996 // We need to compute the would-be final value of this local
11998 if (!is_defined_in_discarded_section)
12000 typedef Sized_relobj_file<32, big_endian> ObjType;
12001 typename ObjType::Compute_final_local_value_status status =
12002 arm_object->compute_final_local_value(r_sym, psymval, &symval,
12004 if (status == ObjType::CFLV_OK)
12006 // Currently we cannot handle a branch to a target in
12007 // a merged section. If this is the case, issue an error
12008 // and also free the merge symbol value.
12009 if (!symval.has_output_value())
12011 const std::string& section_name =
12012 arm_object->section_name(shndx);
12013 arm_object->error(_("cannot handle branch to local %u "
12014 "in a merged section %s"),
12015 r_sym, section_name.c_str());
12021 // We cannot determine the final value.
12028 const Symbol* gsym;
12029 gsym = arm_object->global_symbol(r_sym);
12030 gold_assert(gsym != NULL);
12031 if (gsym->is_forwarder())
12032 gsym = relinfo->symtab->resolve_forwards(gsym);
12034 sym = static_cast<const Sized_symbol<32>*>(gsym);
12035 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
12036 symval.set_output_symtab_index(sym->symtab_index());
12038 symval.set_no_output_symtab_entry();
12040 // We need to compute the would-be final value of this global
12042 const Symbol_table* symtab = relinfo->symtab;
12043 const Sized_symbol<32>* sized_symbol =
12044 symtab->get_sized_symbol<32>(gsym);
12045 Symbol_table::Compute_final_value_status status;
12046 Arm_address value =
12047 symtab->compute_final_value<32>(sized_symbol, &status);
12049 // Skip this if the symbol has not output section.
12050 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
12052 symval.set_output_value(value);
12054 if (gsym->type() == elfcpp::STT_TLS)
12055 symval.set_is_tls_symbol();
12056 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
12057 symval.set_is_ifunc_symbol();
12060 is_defined_in_discarded_section =
12061 (gsym->is_defined_in_discarded_section()
12062 && gsym->is_undefined());
12066 Symbol_value<32> symval2;
12067 if (is_defined_in_discarded_section)
12069 if (comdat_behavior == CB_UNDETERMINED)
12071 std::string name = arm_object->section_name(relinfo->data_shndx);
12072 comdat_behavior = default_comdat_behavior.get(name.c_str());
12074 if (comdat_behavior == CB_PRETEND)
12076 // FIXME: This case does not work for global symbols.
12077 // We have no place to store the original section index.
12078 // Fortunately this does not matter for comdat sections,
12079 // only for sections explicitly discarded by a linker
12082 typename elfcpp::Elf_types<32>::Elf_Addr value =
12083 arm_object->map_to_kept_section(shndx, &found);
12085 symval2.set_output_value(value + psymval->input_value());
12087 symval2.set_output_value(0);
12091 if (comdat_behavior == CB_WARNING)
12092 gold_warning_at_location(relinfo, i, offset,
12093 _("relocation refers to discarded "
12095 symval2.set_output_value(0);
12097 symval2.set_no_output_symtab_entry();
12098 psymval = &symval2;
12101 // If symbol is a section symbol, we don't know the actual type of
12102 // destination. Give up.
12103 if (psymval->is_section_symbol())
12106 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
12107 addend, view_address + offset);
12111 // Scan an input section for stub generation.
12113 template<bool big_endian>
12115 Target_arm<big_endian>::scan_section_for_stubs(
12116 const Relocate_info<32, big_endian>* relinfo,
12117 unsigned int sh_type,
12118 const unsigned char* prelocs,
12119 size_t reloc_count,
12120 Output_section* output_section,
12121 bool needs_special_offset_handling,
12122 const unsigned char* view,
12123 Arm_address view_address,
12124 section_size_type view_size)
12126 if (sh_type == elfcpp::SHT_REL)
12127 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
12132 needs_special_offset_handling,
12136 else if (sh_type == elfcpp::SHT_RELA)
12137 // We do not support RELA type relocations yet. This is provided for
12139 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12144 needs_special_offset_handling,
12149 gold_unreachable();
12152 // Group input sections for stub generation.
12154 // We group input sections in an output section so that the total size,
12155 // including any padding space due to alignment is smaller than GROUP_SIZE
12156 // unless the only input section in group is bigger than GROUP_SIZE already.
12157 // Then an ARM stub table is created to follow the last input section
12158 // in group. For each group an ARM stub table is created an is placed
12159 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
12160 // extend the group after the stub table.
12162 template<bool big_endian>
12164 Target_arm<big_endian>::group_sections(
12166 section_size_type group_size,
12167 bool stubs_always_after_branch,
12170 // Group input sections and insert stub table
12171 Layout::Section_list section_list;
12172 layout->get_executable_sections(§ion_list);
12173 for (Layout::Section_list::const_iterator p = section_list.begin();
12174 p != section_list.end();
12177 Arm_output_section<big_endian>* output_section =
12178 Arm_output_section<big_endian>::as_arm_output_section(*p);
12179 output_section->group_sections(group_size, stubs_always_after_branch,
12184 // Relaxation hook. This is where we do stub generation.
12186 template<bool big_endian>
12188 Target_arm<big_endian>::do_relax(
12190 const Input_objects* input_objects,
12191 Symbol_table* symtab,
12195 // No need to generate stubs if this is a relocatable link.
12196 gold_assert(!parameters->options().relocatable());
12198 // If this is the first pass, we need to group input sections into
12200 bool done_exidx_fixup = false;
12201 typedef typename Stub_table_list::iterator Stub_table_iterator;
12204 // Determine the stub group size. The group size is the absolute
12205 // value of the parameter --stub-group-size. If --stub-group-size
12206 // is passed a negative value, we restrict stubs to be always after
12207 // the stubbed branches.
12208 int32_t stub_group_size_param =
12209 parameters->options().stub_group_size();
12210 bool stubs_always_after_branch = stub_group_size_param < 0;
12211 section_size_type stub_group_size = abs(stub_group_size_param);
12213 if (stub_group_size == 1)
12216 // Thumb branch range is +-4MB has to be used as the default
12217 // maximum size (a given section can contain both ARM and Thumb
12218 // code, so the worst case has to be taken into account). If we are
12219 // fixing cortex-a8 errata, the branch range has to be even smaller,
12220 // since wide conditional branch has a range of +-1MB only.
12222 // This value is 48K less than that, which allows for 4096
12223 // 12-byte stubs. If we exceed that, then we will fail to link.
12224 // The user will have to relink with an explicit group size
12226 stub_group_size = 4145152;
12229 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12230 // page as the first half of a 32-bit branch straddling two 4K pages.
12231 // This is a crude way of enforcing that. In addition, long conditional
12232 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12233 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12234 // cortex-A8 stubs from long conditional branches.
12235 if (this->fix_cortex_a8_)
12237 stubs_always_after_branch = true;
12238 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12239 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12242 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12244 // Also fix .ARM.exidx section coverage.
12245 Arm_output_section<big_endian>* exidx_output_section = NULL;
12246 for (Layout::Section_list::const_iterator p =
12247 layout->section_list().begin();
12248 p != layout->section_list().end();
12250 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12252 if (exidx_output_section == NULL)
12253 exidx_output_section =
12254 Arm_output_section<big_endian>::as_arm_output_section(*p);
12256 // We cannot handle this now.
12257 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12258 "non-relocatable link"),
12259 exidx_output_section->name(),
12263 if (exidx_output_section != NULL)
12265 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12267 done_exidx_fixup = true;
12272 // If this is not the first pass, addresses and file offsets have
12273 // been reset at this point, set them here.
12274 for (Stub_table_iterator sp = this->stub_tables_.begin();
12275 sp != this->stub_tables_.end();
12278 Arm_input_section<big_endian>* owner = (*sp)->owner();
12279 off_t off = align_address(owner->original_size(),
12280 (*sp)->addralign());
12281 (*sp)->set_address_and_file_offset(owner->address() + off,
12282 owner->offset() + off);
12286 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12287 // beginning of each relaxation pass, just blow away all the stubs.
12288 // Alternatively, we could selectively remove only the stubs and reloc
12289 // information for code sections that have moved since the last pass.
12290 // That would require more book-keeping.
12291 if (this->fix_cortex_a8_)
12293 // Clear all Cortex-A8 reloc information.
12294 for (typename Cortex_a8_relocs_info::const_iterator p =
12295 this->cortex_a8_relocs_info_.begin();
12296 p != this->cortex_a8_relocs_info_.end();
12299 this->cortex_a8_relocs_info_.clear();
12301 // Remove all Cortex-A8 stubs.
12302 for (Stub_table_iterator sp = this->stub_tables_.begin();
12303 sp != this->stub_tables_.end();
12305 (*sp)->remove_all_cortex_a8_stubs();
12308 // Scan relocs for relocation stubs
12309 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12310 op != input_objects->relobj_end();
12313 Arm_relobj<big_endian>* arm_relobj =
12314 Arm_relobj<big_endian>::as_arm_relobj(*op);
12315 // Lock the object so we can read from it. This is only called
12316 // single-threaded from Layout::finalize, so it is OK to lock.
12317 Task_lock_obj<Object> tl(task, arm_relobj);
12318 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12321 // Check all stub tables to see if any of them have their data sizes
12322 // or addresses alignments changed. These are the only things that
12324 bool any_stub_table_changed = false;
12325 Unordered_set<const Output_section*> sections_needing_adjustment;
12326 for (Stub_table_iterator sp = this->stub_tables_.begin();
12327 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12330 if ((*sp)->update_data_size_and_addralign())
12332 // Update data size of stub table owner.
12333 Arm_input_section<big_endian>* owner = (*sp)->owner();
12334 uint64_t address = owner->address();
12335 off_t offset = owner->offset();
12336 owner->reset_address_and_file_offset();
12337 owner->set_address_and_file_offset(address, offset);
12339 sections_needing_adjustment.insert(owner->output_section());
12340 any_stub_table_changed = true;
12344 // Output_section_data::output_section() returns a const pointer but we
12345 // need to update output sections, so we record all output sections needing
12346 // update above and scan the sections here to find out what sections need
12348 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12349 p != layout->section_list().end();
12352 if (sections_needing_adjustment.find(*p)
12353 != sections_needing_adjustment.end())
12354 (*p)->set_section_offsets_need_adjustment();
12357 // Stop relaxation if no EXIDX fix-up and no stub table change.
12358 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12360 // Finalize the stubs in the last relaxation pass.
12361 if (!continue_relaxation)
12363 for (Stub_table_iterator sp = this->stub_tables_.begin();
12364 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12366 (*sp)->finalize_stubs();
12368 // Update output local symbol counts of objects if necessary.
12369 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12370 op != input_objects->relobj_end();
12373 Arm_relobj<big_endian>* arm_relobj =
12374 Arm_relobj<big_endian>::as_arm_relobj(*op);
12376 // Update output local symbol counts. We need to discard local
12377 // symbols defined in parts of input sections that are discarded by
12379 if (arm_relobj->output_local_symbol_count_needs_update())
12381 // We need to lock the object's file to update it.
12382 Task_lock_obj<Object> tl(task, arm_relobj);
12383 arm_relobj->update_output_local_symbol_count();
12388 return continue_relaxation;
12391 // Relocate a stub.
12393 template<bool big_endian>
12395 Target_arm<big_endian>::relocate_stub(
12397 const Relocate_info<32, big_endian>* relinfo,
12398 Output_section* output_section,
12399 unsigned char* view,
12400 Arm_address address,
12401 section_size_type view_size)
12404 const Stub_template* stub_template = stub->stub_template();
12405 for (size_t i = 0; i < stub_template->reloc_count(); i++)
12407 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12408 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12410 unsigned int r_type = insn->r_type();
12411 section_size_type reloc_offset = stub_template->reloc_offset(i);
12412 section_size_type reloc_size = insn->size();
12413 gold_assert(reloc_offset + reloc_size <= view_size);
12415 // This is the address of the stub destination.
12416 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12417 Symbol_value<32> symval;
12418 symval.set_output_value(target);
12420 // Synthesize a fake reloc just in case. We don't have a symbol so
12422 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12423 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12424 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12425 reloc_write.put_r_offset(reloc_offset);
12426 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12428 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12429 this->fake_relnum_for_stubs, reloc_buffer,
12430 NULL, &symval, view + reloc_offset,
12431 address + reloc_offset, reloc_size);
12435 // Determine whether an object attribute tag takes an integer, a
12438 template<bool big_endian>
12440 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12442 if (tag == Object_attribute::Tag_compatibility)
12443 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12444 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12445 else if (tag == elfcpp::Tag_nodefaults)
12446 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12447 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12448 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12449 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12451 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12453 return ((tag & 1) != 0
12454 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12455 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12458 // Reorder attributes.
12460 // The ABI defines that Tag_conformance should be emitted first, and that
12461 // Tag_nodefaults should be second (if either is defined). This sets those
12462 // two positions, and bumps up the position of all the remaining tags to
12465 template<bool big_endian>
12467 Target_arm<big_endian>::do_attributes_order(int num) const
12469 // Reorder the known object attributes in output. We want to move
12470 // Tag_conformance to position 4 and Tag_conformance to position 5
12471 // and shift everything between 4 .. Tag_conformance - 1 to make room.
12473 return elfcpp::Tag_conformance;
12475 return elfcpp::Tag_nodefaults;
12476 if ((num - 2) < elfcpp::Tag_nodefaults)
12478 if ((num - 1) < elfcpp::Tag_conformance)
12483 // Scan a span of THUMB code for Cortex-A8 erratum.
12485 template<bool big_endian>
12487 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12488 Arm_relobj<big_endian>* arm_relobj,
12489 unsigned int shndx,
12490 section_size_type span_start,
12491 section_size_type span_end,
12492 const unsigned char* view,
12493 Arm_address address)
12495 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12497 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12498 // The branch target is in the same 4KB region as the
12499 // first half of the branch.
12500 // The instruction before the branch is a 32-bit
12501 // length non-branch instruction.
12502 section_size_type i = span_start;
12503 bool last_was_32bit = false;
12504 bool last_was_branch = false;
12505 while (i < span_end)
12507 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12508 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12509 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12510 bool is_blx = false, is_b = false;
12511 bool is_bl = false, is_bcc = false;
12513 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12516 // Load the rest of the insn (in manual-friendly order).
12517 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12519 // Encoding T4: B<c>.W.
12520 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12521 // Encoding T1: BL<c>.W.
12522 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12523 // Encoding T2: BLX<c>.W.
12524 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12525 // Encoding T3: B<c>.W (not permitted in IT block).
12526 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12527 && (insn & 0x07f00000U) != 0x03800000U);
12530 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12532 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12533 // page boundary and it follows 32-bit non-branch instruction,
12534 // we need to work around.
12535 if (is_32bit_branch
12536 && ((address + i) & 0xfffU) == 0xffeU
12538 && !last_was_branch)
12540 // Check to see if there is a relocation stub for this branch.
12541 bool force_target_arm = false;
12542 bool force_target_thumb = false;
12543 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12544 Cortex_a8_relocs_info::const_iterator p =
12545 this->cortex_a8_relocs_info_.find(address + i);
12547 if (p != this->cortex_a8_relocs_info_.end())
12549 cortex_a8_reloc = p->second;
12550 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12552 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12553 && !target_is_thumb)
12554 force_target_arm = true;
12555 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12556 && target_is_thumb)
12557 force_target_thumb = true;
12561 Stub_type stub_type = arm_stub_none;
12563 // Check if we have an offending branch instruction.
12564 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12565 uint16_t lower_insn = insn & 0xffffU;
12566 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12568 if (cortex_a8_reloc != NULL
12569 && cortex_a8_reloc->reloc_stub() != NULL)
12570 // We've already made a stub for this instruction, e.g.
12571 // it's a long branch or a Thumb->ARM stub. Assume that
12572 // stub will suffice to work around the A8 erratum (see
12573 // setting of always_after_branch above).
12577 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12579 stub_type = arm_stub_a8_veneer_b_cond;
12581 else if (is_b || is_bl || is_blx)
12583 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12588 stub_type = (is_blx
12589 ? arm_stub_a8_veneer_blx
12591 ? arm_stub_a8_veneer_bl
12592 : arm_stub_a8_veneer_b));
12595 if (stub_type != arm_stub_none)
12597 Arm_address pc_for_insn = address + i + 4;
12599 // The original instruction is a BL, but the target is
12600 // an ARM instruction. If we were not making a stub,
12601 // the BL would have been converted to a BLX. Use the
12602 // BLX stub instead in that case.
12603 if (this->may_use_v5t_interworking() && force_target_arm
12604 && stub_type == arm_stub_a8_veneer_bl)
12606 stub_type = arm_stub_a8_veneer_blx;
12610 // Conversely, if the original instruction was
12611 // BLX but the target is Thumb mode, use the BL stub.
12612 else if (force_target_thumb
12613 && stub_type == arm_stub_a8_veneer_blx)
12615 stub_type = arm_stub_a8_veneer_bl;
12623 // If we found a relocation, use the proper destination,
12624 // not the offset in the (unrelocated) instruction.
12625 // Note this is always done if we switched the stub type above.
12626 if (cortex_a8_reloc != NULL)
12627 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12629 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12631 // Add a new stub if destination address in in the same page.
12632 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12634 Cortex_a8_stub* stub =
12635 this->stub_factory_.make_cortex_a8_stub(stub_type,
12639 Stub_table<big_endian>* stub_table =
12640 arm_relobj->stub_table(shndx);
12641 gold_assert(stub_table != NULL);
12642 stub_table->add_cortex_a8_stub(address + i, stub);
12647 i += insn_32bit ? 4 : 2;
12648 last_was_32bit = insn_32bit;
12649 last_was_branch = is_32bit_branch;
12653 // Apply the Cortex-A8 workaround.
12655 template<bool big_endian>
12657 Target_arm<big_endian>::apply_cortex_a8_workaround(
12658 const Cortex_a8_stub* stub,
12659 Arm_address stub_address,
12660 unsigned char* insn_view,
12661 Arm_address insn_address)
12663 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12664 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12665 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12666 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12667 off_t branch_offset = stub_address - (insn_address + 4);
12669 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12670 switch (stub->stub_template()->type())
12672 case arm_stub_a8_veneer_b_cond:
12673 // For a conditional branch, we re-write it to be an unconditional
12674 // branch to the stub. We use the THUMB-2 encoding here.
12675 upper_insn = 0xf000U;
12676 lower_insn = 0xb800U;
12678 case arm_stub_a8_veneer_b:
12679 case arm_stub_a8_veneer_bl:
12680 case arm_stub_a8_veneer_blx:
12681 if ((lower_insn & 0x5000U) == 0x4000U)
12682 // For a BLX instruction, make sure that the relocation is
12683 // rounded up to a word boundary. This follows the semantics of
12684 // the instruction which specifies that bit 1 of the target
12685 // address will come from bit 1 of the base address.
12686 branch_offset = (branch_offset + 2) & ~3;
12688 // Put BRANCH_OFFSET back into the insn.
12689 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12690 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12691 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12695 gold_unreachable();
12698 // Put the relocated value back in the object file:
12699 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12700 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12703 // Target selector for ARM. Note this is never instantiated directly.
12704 // It's only used in Target_selector_arm_nacl, below.
12706 template<bool big_endian>
12707 class Target_selector_arm : public Target_selector
12710 Target_selector_arm()
12711 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12712 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12713 (big_endian ? "armelfb" : "armelf"))
12717 do_instantiate_target()
12718 { return new Target_arm<big_endian>(); }
12721 // Fix .ARM.exidx section coverage.
12723 template<bool big_endian>
12725 Target_arm<big_endian>::fix_exidx_coverage(
12727 const Input_objects* input_objects,
12728 Arm_output_section<big_endian>* exidx_section,
12729 Symbol_table* symtab,
12732 // We need to look at all the input sections in output in ascending
12733 // order of of output address. We do that by building a sorted list
12734 // of output sections by addresses. Then we looks at the output sections
12735 // in order. The input sections in an output section are already sorted
12736 // by addresses within the output section.
12738 typedef std::set<Output_section*, output_section_address_less_than>
12739 Sorted_output_section_list;
12740 Sorted_output_section_list sorted_output_sections;
12742 // Find out all the output sections of input sections pointed by
12743 // EXIDX input sections.
12744 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12745 p != input_objects->relobj_end();
12748 Arm_relobj<big_endian>* arm_relobj =
12749 Arm_relobj<big_endian>::as_arm_relobj(*p);
12750 std::vector<unsigned int> shndx_list;
12751 arm_relobj->get_exidx_shndx_list(&shndx_list);
12752 for (size_t i = 0; i < shndx_list.size(); ++i)
12754 const Arm_exidx_input_section* exidx_input_section =
12755 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12756 gold_assert(exidx_input_section != NULL);
12757 if (!exidx_input_section->has_errors())
12759 unsigned int text_shndx = exidx_input_section->link();
12760 Output_section* os = arm_relobj->output_section(text_shndx);
12761 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12762 sorted_output_sections.insert(os);
12767 // Go over the output sections in ascending order of output addresses.
12768 typedef typename Arm_output_section<big_endian>::Text_section_list
12770 Text_section_list sorted_text_sections;
12771 for (typename Sorted_output_section_list::iterator p =
12772 sorted_output_sections.begin();
12773 p != sorted_output_sections.end();
12776 Arm_output_section<big_endian>* arm_output_section =
12777 Arm_output_section<big_endian>::as_arm_output_section(*p);
12778 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12781 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12782 merge_exidx_entries(), task);
12785 template<bool big_endian>
12787 Target_arm<big_endian>::do_define_standard_symbols(
12788 Symbol_table* symtab,
12791 // Handle the .ARM.exidx section.
12792 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12794 if (exidx_section != NULL)
12796 // Create __exidx_start and __exidx_end symbols.
12797 symtab->define_in_output_data("__exidx_start",
12799 Symbol_table::PREDEFINED,
12803 elfcpp::STT_NOTYPE,
12804 elfcpp::STB_GLOBAL,
12805 elfcpp::STV_HIDDEN,
12807 false, // offset_is_from_end
12808 true); // only_if_ref
12810 symtab->define_in_output_data("__exidx_end",
12812 Symbol_table::PREDEFINED,
12816 elfcpp::STT_NOTYPE,
12817 elfcpp::STB_GLOBAL,
12818 elfcpp::STV_HIDDEN,
12820 true, // offset_is_from_end
12821 true); // only_if_ref
12825 // Define __exidx_start and __exidx_end even when .ARM.exidx
12826 // section is missing to match ld's behaviour.
12827 symtab->define_as_constant("__exidx_start", NULL,
12828 Symbol_table::PREDEFINED,
12829 0, 0, elfcpp::STT_OBJECT,
12830 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12832 symtab->define_as_constant("__exidx_end", NULL,
12833 Symbol_table::PREDEFINED,
12834 0, 0, elfcpp::STT_OBJECT,
12835 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12840 // NaCl variant. It uses different PLT contents.
12842 template<bool big_endian>
12843 class Output_data_plt_arm_nacl;
12845 template<bool big_endian>
12846 class Target_arm_nacl : public Target_arm<big_endian>
12850 : Target_arm<big_endian>(&arm_nacl_info)
12854 virtual Output_data_plt_arm<big_endian>*
12857 Arm_output_data_got<big_endian>* got,
12858 Output_data_space* got_plt,
12859 Output_data_space* got_irelative)
12860 { return new Output_data_plt_arm_nacl<big_endian>(
12861 layout, got, got_plt, got_irelative); }
12864 static const Target::Target_info arm_nacl_info;
12867 template<bool big_endian>
12868 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12871 big_endian, // is_big_endian
12872 elfcpp::EM_ARM, // machine_code
12873 false, // has_make_symbol
12874 false, // has_resolve
12875 false, // has_code_fill
12876 true, // is_default_stack_executable
12877 false, // can_icf_inline_merge_sections
12879 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12880 0x20000, // default_text_segment_address
12881 0x10000, // abi_pagesize (overridable by -z max-page-size)
12882 0x10000, // common_pagesize (overridable by -z common-page-size)
12883 true, // isolate_execinstr
12884 0x10000000, // rosegment_gap
12885 elfcpp::SHN_UNDEF, // small_common_shndx
12886 elfcpp::SHN_UNDEF, // large_common_shndx
12887 0, // small_common_section_flags
12888 0, // large_common_section_flags
12889 ".ARM.attributes", // attributes_section
12890 "aeabi", // attributes_vendor
12891 "_start", // entry_symbol_name
12892 32, // hash_entry_size
12895 template<bool big_endian>
12896 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12899 Output_data_plt_arm_nacl(
12901 Arm_output_data_got<big_endian>* got,
12902 Output_data_space* got_plt,
12903 Output_data_space* got_irelative)
12904 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
12908 // Return the offset of the first non-reserved PLT entry.
12909 virtual unsigned int
12910 do_first_plt_entry_offset() const
12911 { return sizeof(first_plt_entry); }
12913 // Return the size of a PLT entry.
12914 virtual unsigned int
12915 do_get_plt_entry_size() const
12916 { return sizeof(plt_entry); }
12919 do_fill_first_plt_entry(unsigned char* pov,
12920 Arm_address got_address,
12921 Arm_address plt_address);
12924 do_fill_plt_entry(unsigned char* pov,
12925 Arm_address got_address,
12926 Arm_address plt_address,
12927 unsigned int got_offset,
12928 unsigned int plt_offset);
12931 inline uint32_t arm_movw_immediate(uint32_t value)
12933 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12936 inline uint32_t arm_movt_immediate(uint32_t value)
12938 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12941 // Template for the first PLT entry.
12942 static const uint32_t first_plt_entry[16];
12944 // Template for subsequent PLT entries.
12945 static const uint32_t plt_entry[4];
12948 // The first entry in the PLT.
12949 template<bool big_endian>
12950 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12953 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12954 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12955 0xe08cc00f, // add ip, ip, pc
12956 0xe52dc008, // str ip, [sp, #-8]!
12958 0xe3ccc103, // bic ip, ip, #0xc0000000
12959 0xe59cc000, // ldr ip, [ip]
12960 0xe3ccc13f, // bic ip, ip, #0xc000000f
12961 0xe12fff1c, // bx ip
12967 0xe50dc004, // str ip, [sp, #-4]
12969 0xe3ccc103, // bic ip, ip, #0xc0000000
12970 0xe59cc000, // ldr ip, [ip]
12971 0xe3ccc13f, // bic ip, ip, #0xc000000f
12972 0xe12fff1c, // bx ip
12975 template<bool big_endian>
12977 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12978 unsigned char* pov,
12979 Arm_address got_address,
12980 Arm_address plt_address)
12982 // Write first PLT entry. All but first two words are constants.
12983 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12984 / sizeof(first_plt_entry[0]));
12986 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12988 elfcpp::Swap<32, big_endian>::writeval
12989 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12990 elfcpp::Swap<32, big_endian>::writeval
12991 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12993 for (size_t i = 2; i < num_first_plt_words; ++i)
12994 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12997 // Subsequent entries in the PLT.
12999 template<bool big_endian>
13000 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
13002 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
13003 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
13004 0xe08cc00f, // add ip, ip, pc
13005 0xea000000, // b .Lplt_tail
13008 template<bool big_endian>
13010 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
13011 unsigned char* pov,
13012 Arm_address got_address,
13013 Arm_address plt_address,
13014 unsigned int got_offset,
13015 unsigned int plt_offset)
13017 // Calculate the displacement between the PLT slot and the
13018 // common tail that's part of the special initial PLT slot.
13019 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
13020 - (plt_address + plt_offset
13021 + sizeof(plt_entry) + sizeof(uint32_t)));
13022 gold_assert((tail_displacement & 3) == 0);
13023 tail_displacement >>= 2;
13025 gold_assert ((tail_displacement & 0xff000000) == 0
13026 || (-tail_displacement & 0xff000000) == 0);
13028 // Calculate the displacement between the PLT slot and the entry
13029 // in the GOT. The offset accounts for the value produced by
13030 // adding to pc in the penultimate instruction of the PLT stub.
13031 const int32_t got_displacement = (got_address + got_offset
13032 - (plt_address + sizeof(plt_entry)));
13034 elfcpp::Swap<32, big_endian>::writeval
13035 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
13036 elfcpp::Swap<32, big_endian>::writeval
13037 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
13038 elfcpp::Swap<32, big_endian>::writeval
13039 (pov + 8, plt_entry[2]);
13040 elfcpp::Swap<32, big_endian>::writeval
13041 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
13044 // Target selectors.
13046 template<bool big_endian>
13047 class Target_selector_arm_nacl
13048 : public Target_selector_nacl<Target_selector_arm<big_endian>,
13049 Target_arm_nacl<big_endian> >
13052 Target_selector_arm_nacl()
13053 : Target_selector_nacl<Target_selector_arm<big_endian>,
13054 Target_arm_nacl<big_endian> >(
13056 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
13057 big_endian ? "armelfb_nacl" : "armelf_nacl")
13061 Target_selector_arm_nacl<false> target_selector_arm;
13062 Target_selector_arm_nacl<true> target_selector_armbe;
13064 } // End anonymous namespace.