Patch for gold internal error while fixing erratum 843419.
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54 #include "nacl.h"
55
56 namespace
57 {
58
59 using namespace gold;
60
61 template<bool big_endian>
62 class Output_data_plt_arm;
63
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
66
67 template<bool big_endian>
68 class Stub_table;
69
70 template<bool big_endian>
71 class Arm_input_section;
72
73 class Arm_exidx_cantunwind;
74
75 class Arm_exidx_merged_section;
76
77 class Arm_exidx_fixup;
78
79 template<bool big_endian>
80 class Arm_output_section;
81
82 class Arm_exidx_input_section;
83
84 template<bool big_endian>
85 class Arm_relobj;
86
87 template<bool big_endian>
88 class Arm_relocate_functions;
89
90 template<bool big_endian>
91 class Arm_output_data_got;
92
93 template<bool big_endian>
94 class Target_arm;
95
96 // For convenience.
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
109
110 // The arm target class.
111 //
112 // This is a very simple port of gold for ARM-EABI.  It is intended for
113 // supporting Android only for the time being.
114 //
115 // TODOs:
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
118 //   Thumb-2 and BE8.
119 // There are probably a lot more.
120
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops.  If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked.  The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
128 //
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only.  That
131 // way we can avoid initialization when the linker starts.
132
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
134
135 // Instruction template class.  This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
137
138 class Insn_template
139 {
140  public:
141   // Types of instruction templates.
142   enum Type
143     {
144       THUMB16_TYPE = 1,
145       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146       // templates with class-specific semantics.  Currently this is used
147       // only by the Cortex_a8_stub class for handling condition codes in
148       // conditional branches.
149       THUMB16_SPECIAL_TYPE,
150       THUMB32_TYPE,
151       ARM_TYPE,
152       DATA_TYPE
153     };
154
155   // Factory methods to create instruction templates in different formats.
156
157   static const Insn_template
158   thumb16_insn(uint32_t data)
159   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161   // A Thumb conditional branch, in which the proper condition is inserted
162   // when we build the stub.
163   static const Insn_template
164   thumb16_bcond_insn(uint32_t data)
165   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
166
167   static const Insn_template
168   thumb32_insn(uint32_t data)
169   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
170
171   static const Insn_template
172   thumb32_b_insn(uint32_t data, int reloc_addend)
173   {
174     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175                          reloc_addend);
176   }
177
178   static const Insn_template
179   arm_insn(uint32_t data)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182   static const Insn_template
183   arm_rel_insn(unsigned data, int reloc_addend)
184   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186   static const Insn_template
187   data_word(unsigned data, unsigned int r_type, int reloc_addend)
188   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
189
190   // Accessors.  This class is used for read-only objects so no modifiers
191   // are provided.
192
193   uint32_t
194   data() const
195   { return this->data_; }
196
197   // Return the instruction sequence type of this.
198   Type
199   type() const
200   { return this->type_; }
201
202   // Return the ARM relocation type of this.
203   unsigned int
204   r_type() const
205   { return this->r_type_; }
206
207   int32_t
208   reloc_addend() const
209   { return this->reloc_addend_; }
210
211   // Return size of instruction template in bytes.
212   size_t
213   size() const;
214
215   // Return byte-alignment of instruction template.
216   unsigned
217   alignment() const;
218
219  private:
220   // We make the constructor private to ensure that only the factory
221   // methods are used.
222   inline
223   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
225   { }
226
227   // Instruction specific data.  This is used to store information like
228   // some of the instruction bits.
229   uint32_t data_;
230   // Instruction template type.
231   Type type_;
232   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233   unsigned int r_type_;
234   // Relocation addend.
235   int32_t reloc_addend_;
236 };
237
238 // Macro for generating code to stub types. One entry per long/short
239 // branch stub
240
241 #define DEF_STUBS \
242   DEF_STUB(long_branch_any_any) \
243   DEF_STUB(long_branch_v4t_arm_thumb) \
244   DEF_STUB(long_branch_thumb_only) \
245   DEF_STUB(long_branch_v4t_thumb_thumb) \
246   DEF_STUB(long_branch_v4t_thumb_arm) \
247   DEF_STUB(short_branch_v4t_thumb_arm) \
248   DEF_STUB(long_branch_any_arm_pic) \
249   DEF_STUB(long_branch_any_thumb_pic) \
250   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253   DEF_STUB(long_branch_thumb_only_pic) \
254   DEF_STUB(a8_veneer_b_cond) \
255   DEF_STUB(a8_veneer_b) \
256   DEF_STUB(a8_veneer_bl) \
257   DEF_STUB(a8_veneer_blx) \
258   DEF_STUB(v4_veneer_bx)
259
260 // Stub types.
261
262 #define DEF_STUB(x) arm_stub_##x,
263 typedef enum
264   {
265     arm_stub_none,
266     DEF_STUBS
267
268     // First reloc stub type.
269     arm_stub_reloc_first = arm_stub_long_branch_any_any,
270     // Last  reloc stub type.
271     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273     // First Cortex-A8 stub type.
274     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275     // Last Cortex-A8 stub type.
276     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
277
278     // Last stub type.
279     arm_stub_type_last = arm_stub_v4_veneer_bx
280   } Stub_type;
281 #undef DEF_STUB
282
283 // Stub template class.  Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
286
287 class Stub_template
288 {
289  public:
290   Stub_template(Stub_type, const Insn_template*, size_t);
291
292   ~Stub_template()
293   { }
294
295   // Return stub type.
296   Stub_type
297   type() const
298   { return this->type_; }
299
300   // Return an array of instruction templates.
301   const Insn_template*
302   insns() const
303   { return this->insns_; }
304
305   // Return size of template in number of instructions.
306   size_t
307   insn_count() const
308   { return this->insn_count_; }
309
310   // Return size of template in bytes.
311   size_t
312   size() const
313   { return this->size_; }
314
315   // Return alignment of the stub template.
316   unsigned
317   alignment() const
318   { return this->alignment_; }
319
320   // Return whether entry point is in thumb mode.
321   bool
322   entry_in_thumb_mode() const
323   { return this->entry_in_thumb_mode_; }
324
325   // Return number of relocations in this template.
326   size_t
327   reloc_count() const
328   { return this->relocs_.size(); }
329
330   // Return index of the I-th instruction with relocation.
331   size_t
332   reloc_insn_index(size_t i) const
333   {
334     gold_assert(i < this->relocs_.size());
335     return this->relocs_[i].first;
336   }
337
338   // Return the offset of the I-th instruction with relocation from the
339   // beginning of the stub.
340   section_size_type
341   reloc_offset(size_t i) const
342   {
343     gold_assert(i < this->relocs_.size());
344     return this->relocs_[i].second;
345   }
346
347  private:
348   // This contains information about an instruction template with a relocation
349   // and its offset from start of stub.
350   typedef std::pair<size_t, section_size_type> Reloc;
351
352   // A Stub_template may not be copied.  We want to share templates as much
353   // as possible.
354   Stub_template(const Stub_template&);
355   Stub_template& operator=(const Stub_template&);
356
357   // Stub type.
358   Stub_type type_;
359   // Points to an array of Insn_templates.
360   const Insn_template* insns_;
361   // Number of Insn_templates in insns_[].
362   size_t insn_count_;
363   // Size of templated instructions in bytes.
364   size_t size_;
365   // Alignment of templated instructions.
366   unsigned alignment_;
367   // Flag to indicate if entry is in thumb mode.
368   bool entry_in_thumb_mode_;
369   // A table of reloc instruction indices and offsets.  We can find these by
370   // looking at the instruction templates but we pre-compute and then stash
371   // them here for speed.
372   std::vector<Reloc> relocs_;
373 };
374
375 //
376 // A class for code stubs.  This is a base class for different type of
377 // stubs used in the ARM target.
378 //
379
380 class Stub
381 {
382  private:
383   static const section_offset_type invalid_offset =
384     static_cast<section_offset_type>(-1);
385
386  public:
387   Stub(const Stub_template* stub_template)
388     : stub_template_(stub_template), offset_(invalid_offset)
389   { }
390
391   virtual
392    ~Stub()
393   { }
394
395   // Return the stub template.
396   const Stub_template*
397   stub_template() const
398   { return this->stub_template_; }
399
400   // Return offset of code stub from beginning of its containing stub table.
401   section_offset_type
402   offset() const
403   {
404     gold_assert(this->offset_ != invalid_offset);
405     return this->offset_;
406   }
407
408   // Set offset of code stub from beginning of its containing stub table.
409   void
410   set_offset(section_offset_type offset)
411   { this->offset_ = offset; }
412
413   // Return the relocation target address of the i-th relocation in the
414   // stub.  This must be defined in a child class.
415   Arm_address
416   reloc_target(size_t i)
417   { return this->do_reloc_target(i); }
418
419   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
420   void
421   write(unsigned char* view, section_size_type view_size, bool big_endian)
422   { this->do_write(view, view_size, big_endian); }
423
424   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425   // for the i-th instruction.
426   uint16_t
427   thumb16_special(size_t i)
428   { return this->do_thumb16_special(i); }
429
430  protected:
431   // This must be defined in the child class.
432   virtual Arm_address
433   do_reloc_target(size_t) = 0;
434
435   // This may be overridden in the child class.
436   virtual void
437   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438   {
439     if (big_endian)
440       this->do_fixed_endian_write<true>(view, view_size);
441     else
442       this->do_fixed_endian_write<false>(view, view_size);
443   }
444
445   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446   // instruction template.
447   virtual uint16_t
448   do_thumb16_special(size_t)
449   { gold_unreachable(); }
450
451  private:
452   // A template to implement do_write.
453   template<bool big_endian>
454   void inline
455   do_fixed_endian_write(unsigned char*, section_size_type);
456
457   // Its template.
458   const Stub_template* stub_template_;
459   // Offset within the section of containing this stub.
460   section_offset_type offset_;
461 };
462
463 // Reloc stub class.  These are stubs we use to fix up relocation because
464 // of limited branch ranges.
465
466 class Reloc_stub : public Stub
467 {
468  public:
469   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470   // We assume we never jump to this address.
471   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473   // Return destination address.
474   Arm_address
475   destination_address() const
476   {
477     gold_assert(this->destination_address_ != this->invalid_address);
478     return this->destination_address_;
479   }
480
481   // Set destination address.
482   void
483   set_destination_address(Arm_address address)
484   {
485     gold_assert(address != this->invalid_address);
486     this->destination_address_ = address;
487   }
488
489   // Reset destination address.
490   void
491   reset_destination_address()
492   { this->destination_address_ = this->invalid_address; }
493
494   // Determine stub type for a branch of a relocation of R_TYPE going
495   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
496   // the branch target is a thumb instruction.  TARGET is used for look
497   // up ARM-specific linker settings.
498   static Stub_type
499   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500                       Arm_address branch_target, bool target_is_thumb);
501
502   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
503   // and an addend.  Since we treat global and local symbol differently, we
504   // use a Symbol object for a global symbol and a object-index pair for
505   // a local symbol.
506   class Key
507   {
508    public:
509     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
511     // and R_SYM must not be invalid_index.
512     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513         unsigned int r_sym, int32_t addend)
514       : stub_type_(stub_type), addend_(addend)
515     {
516       if (symbol != NULL)
517         {
518           this->r_sym_ = Reloc_stub::invalid_index;
519           this->u_.symbol = symbol;
520         }
521       else
522         {
523           gold_assert(relobj != NULL && r_sym != invalid_index);
524           this->r_sym_ = r_sym;
525           this->u_.relobj = relobj;
526         }
527     }
528
529     ~Key()
530     { }
531
532     // Accessors: Keys are meant to be read-only object so no modifiers are
533     // provided.
534
535     // Return stub type.
536     Stub_type
537     stub_type() const
538     { return this->stub_type_; }
539
540     // Return the local symbol index or invalid_index.
541     unsigned int
542     r_sym() const
543     { return this->r_sym_; }
544
545     // Return the symbol if there is one.
546     const Symbol*
547     symbol() const
548     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550     // Return the relobj if there is one.
551     const Relobj*
552     relobj() const
553     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555     // Whether this equals to another key k.
556     bool
557     eq(const Key& k) const
558     {
559       return ((this->stub_type_ == k.stub_type_)
560               && (this->r_sym_ == k.r_sym_)
561               && ((this->r_sym_ != Reloc_stub::invalid_index)
562                   ? (this->u_.relobj == k.u_.relobj)
563                   : (this->u_.symbol == k.u_.symbol))
564               && (this->addend_ == k.addend_));
565     }
566
567     // Return a hash value.
568     size_t
569     hash_value() const
570     {
571       return (this->stub_type_
572               ^ this->r_sym_
573               ^ gold::string_hash<char>(
574                     (this->r_sym_ != Reloc_stub::invalid_index)
575                     ? this->u_.relobj->name().c_str()
576                     : this->u_.symbol->name())
577               ^ this->addend_);
578     }
579
580     // Functors for STL associative containers.
581     struct hash
582     {
583       size_t
584       operator()(const Key& k) const
585       { return k.hash_value(); }
586     };
587
588     struct equal_to
589     {
590       bool
591       operator()(const Key& k1, const Key& k2) const
592       { return k1.eq(k2); }
593     };
594
595     // Name of key.  This is mainly for debugging.
596     std::string
597     name() const;
598
599    private:
600     // Stub type.
601     Stub_type stub_type_;
602     // If this is a local symbol, this is the index in the defining object.
603     // Otherwise, it is invalid_index for a global symbol.
604     unsigned int r_sym_;
605     // If r_sym_ is an invalid index, this points to a global symbol.
606     // Otherwise, it points to a relobj.  We used the unsized and target
607     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608     // Arm_relobj, in order to avoid making the stub class a template
609     // as most of the stub machinery is endianness-neutral.  However, it
610     // may require a bit of casting done by users of this class.
611     union
612     {
613       const Symbol* symbol;
614       const Relobj* relobj;
615     } u_;
616     // Addend associated with a reloc.
617     int32_t addend_;
618   };
619
620  protected:
621   // Reloc_stubs are created via a stub factory.  So these are protected.
622   Reloc_stub(const Stub_template* stub_template)
623     : Stub(stub_template), destination_address_(invalid_address)
624   { }
625
626   ~Reloc_stub()
627   { }
628
629   friend class Stub_factory;
630
631   // Return the relocation target address of the i-th relocation in the
632   // stub.
633   Arm_address
634   do_reloc_target(size_t i)
635   {
636     // All reloc stub have only one relocation.
637     gold_assert(i == 0);
638     return this->destination_address_;
639   }
640
641  private:
642   // Address of destination.
643   Arm_address destination_address_;
644 };
645
646 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
648 //
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 //    branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
652 //    branch.
653 // 3. The branch follows a 32-bit instruction which is not a branch.
654 //
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least.  We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch.  The
658 // condition code is used in a special instruction template.  We also want
659 // to identify input sections needing Cortex-A8 workaround quickly.  We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up.  The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
663 //
664
665 class Cortex_a8_stub : public Stub
666 {
667  public:
668   ~Cortex_a8_stub()
669   { }
670
671   // Return the object of the code section containing the branch being fixed
672   // up.
673   Relobj*
674   relobj() const
675   { return this->relobj_; }
676
677   // Return the section index of the code section containing the branch being
678   // fixed up.
679   unsigned int
680   shndx() const
681   { return this->shndx_; }
682
683   // Return the source address of stub.  This is the address of the original
684   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
685   // instruction.
686   Arm_address
687   source_address() const
688   { return this->source_address_; }
689
690   // Return the destination address of the stub.  This is the branch taken
691   // address of the original branch instruction.  LSB is 1 if it is a THUMB
692   // instruction address.
693   Arm_address
694   destination_address() const
695   { return this->destination_address_; }
696
697   // Return the instruction being fixed up.
698   uint32_t
699   original_insn() const
700   { return this->original_insn_; }
701
702  protected:
703   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
704   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705                  unsigned int shndx, Arm_address source_address,
706                  Arm_address destination_address, uint32_t original_insn)
707     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708       source_address_(source_address | 1U),
709       destination_address_(destination_address),
710       original_insn_(original_insn)
711   { }
712
713   friend class Stub_factory;
714
715   // Return the relocation target address of the i-th relocation in the
716   // stub.
717   Arm_address
718   do_reloc_target(size_t i)
719   {
720     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721       {
722         // The conditional branch veneer has two relocations.
723         gold_assert(i < 2);
724         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725       }
726     else
727       {
728         // All other Cortex-A8 stubs have only one relocation.
729         gold_assert(i == 0);
730         return this->destination_address_;
731       }
732   }
733
734   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735   uint16_t
736   do_thumb16_special(size_t);
737
738  private:
739   // Object of the code section containing the branch being fixed up.
740   Relobj* relobj_;
741   // Section index of the code section containing the branch begin fixed up.
742   unsigned int shndx_;
743   // Source address of original branch.
744   Arm_address source_address_;
745   // Destination address of the original branch.
746   Arm_address destination_address_;
747   // Original branch instruction.  This is needed for copying the condition
748   // code from a condition branch to its stub.
749   uint32_t original_insn_;
750 };
751
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
754 {
755  public:
756   ~Arm_v4bx_stub()
757   { }
758
759   // Return the associated register.
760   uint32_t
761   reg() const
762   { return this->reg_; }
763
764  protected:
765   // Arm V4BX stubs are created via a stub factory.  So these are protected.
766   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767     : Stub(stub_template), reg_(reg)
768   { }
769
770   friend class Stub_factory;
771
772   // Return the relocation target address of the i-th relocation in the
773   // stub.
774   Arm_address
775   do_reloc_target(size_t)
776   { gold_unreachable(); }
777
778   // This may be overridden in the child class.
779   virtual void
780   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781   {
782     if (big_endian)
783       this->do_fixed_endian_v4bx_write<true>(view, view_size);
784     else
785       this->do_fixed_endian_v4bx_write<false>(view, view_size);
786   }
787
788  private:
789   // A template to implement do_write.
790   template<bool big_endian>
791   void inline
792   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793   {
794     const Insn_template* insns = this->stub_template()->insns();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[0].data()
797                                            + (this->reg_ << 16)));
798     view += insns[0].size();
799     elfcpp::Swap<32, big_endian>::writeval(view,
800                                            (insns[1].data() + this->reg_));
801     view += insns[1].size();
802     elfcpp::Swap<32, big_endian>::writeval(view,
803                                            (insns[2].data() + this->reg_));
804   }
805
806   // A register index (r0-r14), which is associated with the stub.
807   uint32_t reg_;
808 };
809
810 // Stub factory class.
811
812 class Stub_factory
813 {
814  public:
815   // Return the unique instance of this class.
816   static const Stub_factory&
817   get_instance()
818   {
819     static Stub_factory singleton;
820     return singleton;
821   }
822
823   // Make a relocation stub.
824   Reloc_stub*
825   make_reloc_stub(Stub_type stub_type) const
826   {
827     gold_assert(stub_type >= arm_stub_reloc_first
828                 && stub_type <= arm_stub_reloc_last);
829     return new Reloc_stub(this->stub_templates_[stub_type]);
830   }
831
832   // Make a Cortex-A8 stub.
833   Cortex_a8_stub*
834   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835                       Arm_address source, Arm_address destination,
836                       uint32_t original_insn) const
837   {
838     gold_assert(stub_type >= arm_stub_cortex_a8_first
839                 && stub_type <= arm_stub_cortex_a8_last);
840     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841                               source, destination, original_insn);
842   }
843
844   // Make an ARM V4BX relocation stub.
845   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846   Arm_v4bx_stub*
847   make_arm_v4bx_stub(uint32_t reg) const
848   {
849     gold_assert(reg < 0xf);
850     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851                              reg);
852   }
853
854  private:
855   // Constructor and destructor are protected since we only return a single
856   // instance created in Stub_factory::get_instance().
857
858   Stub_factory();
859
860   // A Stub_factory may not be copied since it is a singleton.
861   Stub_factory(const Stub_factory&);
862   Stub_factory& operator=(Stub_factory&);
863
864   // Stub templates.  These are initialized in the constructor.
865   const Stub_template* stub_templates_[arm_stub_type_last+1];
866 };
867
868 // A class to hold stubs for the ARM target.
869
870 template<bool big_endian>
871 class Stub_table : public Output_data
872 {
873  public:
874   Stub_table(Arm_input_section<big_endian>* owner)
875     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877       prev_data_size_(0), prev_addralign_(1)
878   { }
879
880   ~Stub_table()
881   { }
882
883   // Owner of this stub table.
884   Arm_input_section<big_endian>*
885   owner() const
886   { return this->owner_; }
887
888   // Whether this stub table is empty.
889   bool
890   empty() const
891   {
892     return (this->reloc_stubs_.empty()
893             && this->cortex_a8_stubs_.empty()
894             && this->arm_v4bx_stubs_.empty());
895   }
896
897   // Return the current data size.
898   off_t
899   current_data_size() const
900   { return this->current_data_size_for_child(); }
901
902   // Add a STUB using KEY.  The caller is responsible for avoiding addition
903   // if a STUB with the same key has already been added.
904   void
905   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906   {
907     const Stub_template* stub_template = stub->stub_template();
908     gold_assert(stub_template->type() == key.stub_type());
909     this->reloc_stubs_[key] = stub;
910
911     // Assign stub offset early.  We can do this because we never remove
912     // reloc stubs and they are in the beginning of the stub table.
913     uint64_t align = stub_template->alignment();
914     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915     stub->set_offset(this->reloc_stubs_size_);
916     this->reloc_stubs_size_ += stub_template->size();
917     this->reloc_stubs_addralign_ =
918       std::max(this->reloc_stubs_addralign_, align);
919   }
920
921   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922   // The caller is responsible for avoiding addition if a STUB with the same
923   // address has already been added.
924   void
925   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926   {
927     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928     this->cortex_a8_stubs_.insert(value);
929   }
930
931   // Add an ARM V4BX relocation stub. A register index will be retrieved
932   // from the stub.
933   void
934   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935   {
936     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937     this->arm_v4bx_stubs_[stub->reg()] = stub;
938   }
939
940   // Remove all Cortex-A8 stubs.
941   void
942   remove_all_cortex_a8_stubs();
943
944   // Look up a relocation stub using KEY.  Return NULL if there is none.
945   Reloc_stub*
946   find_reloc_stub(const Reloc_stub::Key& key) const
947   {
948     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950   }
951
952   // Look up an arm v4bx relocation stub using the register index.
953   // Return NULL if there is none.
954   Arm_v4bx_stub*
955   find_arm_v4bx_stub(const uint32_t reg) const
956   {
957     gold_assert(reg < 0xf);
958     return this->arm_v4bx_stubs_[reg];
959   }
960
961   // Relocate stubs in this stub table.
962   void
963   relocate_stubs(const Relocate_info<32, big_endian>*,
964                  Target_arm<big_endian>*, Output_section*,
965                  unsigned char*, Arm_address, section_size_type);
966
967   // Update data size and alignment at the end of a relaxation pass.  Return
968   // true if either data size or alignment is different from that of the
969   // previous relaxation pass.
970   bool
971   update_data_size_and_addralign();
972
973   // Finalize stubs.  Set the offsets of all stubs and mark input sections
974   // needing the Cortex-A8 workaround.
975   void
976   finalize_stubs();
977
978   // Apply Cortex-A8 workaround to an address range.
979   void
980   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981                                               unsigned char*, Arm_address,
982                                               section_size_type);
983
984  protected:
985   // Write out section contents.
986   void
987   do_write(Output_file*);
988
989   // Return the required alignment.
990   uint64_t
991   do_addralign() const
992   { return this->prev_addralign_; }
993
994   // Reset address and file offset.
995   void
996   do_reset_address_and_file_offset()
997   { this->set_current_data_size_for_child(this->prev_data_size_); }
998
999   // Set final data size.
1000   void
1001   set_final_data_size()
1002   { this->set_data_size(this->current_data_size()); }
1003
1004  private:
1005   // Relocate one stub.
1006   void
1007   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008                 Target_arm<big_endian>*, Output_section*,
1009                 unsigned char*, Arm_address, section_size_type);
1010
1011   // Unordered map of relocation stubs.
1012   typedef
1013     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014                   Reloc_stub::Key::equal_to>
1015     Reloc_stub_map;
1016
1017   // List of Cortex-A8 stubs ordered by addresses of branches being
1018   // fixed up in output.
1019   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020   // List of Arm V4BX relocation stubs ordered by associated registers.
1021   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1022
1023   // Owner of this stub table.
1024   Arm_input_section<big_endian>* owner_;
1025   // The relocation stubs.
1026   Reloc_stub_map reloc_stubs_;
1027   // Size of reloc stubs.
1028   off_t reloc_stubs_size_;
1029   // Maximum address alignment of reloc stubs.
1030   uint64_t reloc_stubs_addralign_;
1031   // The cortex_a8_stubs.
1032   Cortex_a8_stub_list cortex_a8_stubs_;
1033   // The Arm V4BX relocation stubs.
1034   Arm_v4bx_stub_list arm_v4bx_stubs_;
1035   // data size of this in the previous pass.
1036   off_t prev_data_size_;
1037   // address alignment of this in the previous pass.
1038   uint64_t prev_addralign_;
1039 };
1040
1041 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1043
1044 class Arm_exidx_cantunwind : public Output_section_data
1045 {
1046  public:
1047   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049   { }
1050
1051   // Return the object containing the section pointed by this.
1052   Relobj*
1053   relobj() const
1054   { return this->relobj_; }
1055
1056   // Return the section index of the section pointed by this.
1057   unsigned int
1058   shndx() const
1059   { return this->shndx_; }
1060
1061  protected:
1062   void
1063   do_write(Output_file* of)
1064   {
1065     if (parameters->target().is_big_endian())
1066       this->do_fixed_endian_write<true>(of);
1067     else
1068       this->do_fixed_endian_write<false>(of);
1069   }
1070
1071   // Write to a map file.
1072   void
1073   do_print_to_mapfile(Mapfile* mapfile) const
1074   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
1076  private:
1077   // Implement do_write for a given endianness.
1078   template<bool big_endian>
1079   void inline
1080   do_fixed_endian_write(Output_file*);
1081
1082   // The object containing the section pointed by this.
1083   Relobj* relobj_;
1084   // The section index of the section pointed by this.
1085   unsigned int shndx_;
1086 };
1087
1088 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1091
1092 typedef std::map<section_offset_type, section_offset_type>
1093         Arm_exidx_section_offset_map;
1094
1095 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1096 // with some of its entries merged.
1097
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1099 {
1100  public:
1101   // Constructor for Arm_exidx_merged_section.
1102   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103   // SECTION_OFFSET_MAP points to a section offset map describing how
1104   // parts of the input section are mapped to output.  DELETED_BYTES is
1105   // the number of bytes deleted from the EXIDX input section.
1106   Arm_exidx_merged_section(
1107       const Arm_exidx_input_section& exidx_input_section,
1108       const Arm_exidx_section_offset_map& section_offset_map,
1109       uint32_t deleted_bytes);
1110
1111   // Build output contents.
1112   void
1113   build_contents(const unsigned char*, section_size_type);
1114
1115   // Return the original EXIDX input section.
1116   const Arm_exidx_input_section&
1117   exidx_input_section() const
1118   { return this->exidx_input_section_; }
1119
1120   // Return the section offset map.
1121   const Arm_exidx_section_offset_map&
1122   section_offset_map() const
1123   { return this->section_offset_map_; }
1124
1125  protected:
1126   // Write merged section into file OF.
1127   void
1128   do_write(Output_file* of);
1129
1130   bool
1131   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132                   section_offset_type*) const;
1133
1134  private:
1135   // Original EXIDX input section.
1136   const Arm_exidx_input_section& exidx_input_section_;
1137   // Section offset map.
1138   const Arm_exidx_section_offset_map& section_offset_map_;
1139   // Merged section contents.  We need to keep build the merged section
1140   // and save it here to avoid accessing the original EXIDX section when
1141   // we cannot lock the sections' object.
1142   unsigned char* section_contents_;
1143 };
1144
1145 // A class to wrap an ordinary input section containing executable code.
1146
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1149 {
1150  public:
1151   Arm_input_section(Relobj* relobj, unsigned int shndx)
1152     : Output_relaxed_input_section(relobj, shndx, 1),
1153       original_addralign_(1), original_size_(0), stub_table_(NULL),
1154       original_contents_(NULL)
1155   { }
1156
1157   ~Arm_input_section()
1158   { delete[] this->original_contents_; }
1159
1160   // Initialize.
1161   void
1162   init();
1163
1164   // Whether this is a stub table owner.
1165   bool
1166   is_stub_table_owner() const
1167   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169   // Return the stub table.
1170   Stub_table<big_endian>*
1171   stub_table() const
1172   { return this->stub_table_; }
1173
1174   // Set the stub_table.
1175   void
1176   set_stub_table(Stub_table<big_endian>* stub_table)
1177   { this->stub_table_ = stub_table; }
1178
1179   // Downcast a base pointer to an Arm_input_section pointer.  This is
1180   // not type-safe but we only use Arm_input_section not the base class.
1181   static Arm_input_section<big_endian>*
1182   as_arm_input_section(Output_relaxed_input_section* poris)
1183   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
1185   // Return the original size of the section.
1186   uint32_t
1187   original_size() const
1188   { return this->original_size_; }
1189
1190  protected:
1191   // Write data to output file.
1192   void
1193   do_write(Output_file*);
1194
1195   // Return required alignment of this.
1196   uint64_t
1197   do_addralign() const
1198   {
1199     if (this->is_stub_table_owner())
1200       return std::max(this->stub_table_->addralign(),
1201                       static_cast<uint64_t>(this->original_addralign_));
1202     else
1203       return this->original_addralign_;
1204   }
1205
1206   // Finalize data size.
1207   void
1208   set_final_data_size();
1209
1210   // Reset address and file offset.
1211   void
1212   do_reset_address_and_file_offset();
1213
1214   // Output offset.
1215   bool
1216   do_output_offset(const Relobj* object, unsigned int shndx,
1217                    section_offset_type offset,
1218                    section_offset_type* poutput) const
1219   {
1220     if ((object == this->relobj())
1221         && (shndx == this->shndx())
1222         && (offset >= 0)
1223         && (offset <=
1224             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1225       {
1226         *poutput = offset;
1227         return true;
1228       }
1229     else
1230       return false;
1231   }
1232
1233  private:
1234   // Copying is not allowed.
1235   Arm_input_section(const Arm_input_section&);
1236   Arm_input_section& operator=(const Arm_input_section&);
1237
1238   // Address alignment of the original input section.
1239   uint32_t original_addralign_;
1240   // Section size of the original input section.
1241   uint32_t original_size_;
1242   // Stub table.
1243   Stub_table<big_endian>* stub_table_;
1244   // Original section contents.  We have to make a copy here since the file
1245   // containing the original section may not be locked when we need to access
1246   // the contents.
1247   unsigned char* original_contents_;
1248 };
1249
1250 // Arm_exidx_fixup class.  This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1252
1253 class Arm_exidx_fixup
1254 {
1255  public:
1256   Arm_exidx_fixup(Output_section* exidx_output_section,
1257                   bool merge_exidx_entries = true)
1258     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259       last_inlined_entry_(0), last_input_section_(NULL),
1260       section_offset_map_(NULL), first_output_text_section_(NULL),
1261       merge_exidx_entries_(merge_exidx_entries)
1262   { }
1263
1264   ~Arm_exidx_fixup()
1265   { delete this->section_offset_map_; }
1266
1267   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1268   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269   // number of bytes to be deleted in output.  If parts of the input EXIDX
1270   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1272   // responsible for releasing it.
1273   template<bool big_endian>
1274   uint32_t
1275   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276                         const unsigned char* section_contents,
1277                         section_size_type section_size,
1278                         Arm_exidx_section_offset_map** psection_offset_map);
1279
1280   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281   // input section, if there is not one already.
1282   void
1283   add_exidx_cantunwind_as_needed();
1284
1285   // Return the output section for the text section which is linked to the
1286   // first exidx input in output.
1287   Output_section*
1288   first_output_text_section() const
1289   { return this->first_output_text_section_; }
1290
1291  private:
1292   // Copying is not allowed.
1293   Arm_exidx_fixup(const Arm_exidx_fixup&);
1294   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296   // Type of EXIDX unwind entry.
1297   enum Unwind_type
1298   {
1299     // No type.
1300     UT_NONE,
1301     // EXIDX_CANTUNWIND.
1302     UT_EXIDX_CANTUNWIND,
1303     // Inlined entry.
1304     UT_INLINED_ENTRY,
1305     // Normal entry.
1306     UT_NORMAL_ENTRY,
1307   };
1308
1309   // Process an EXIDX entry.  We only care about the second word of the
1310   // entry.  Return true if the entry can be deleted.
1311   bool
1312   process_exidx_entry(uint32_t second_word);
1313
1314   // Update the current section offset map during EXIDX section fix-up.
1315   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1316   // reference point, DELETED_BYTES is the number of deleted by in the
1317   // section so far.  If DELETE_ENTRY is true, the reference point and
1318   // all offsets after the previous reference point are discarded.
1319   void
1320   update_offset_map(section_offset_type input_offset,
1321                     section_size_type deleted_bytes, bool delete_entry);
1322
1323   // EXIDX output section.
1324   Output_section* exidx_output_section_;
1325   // Unwind type of the last EXIDX entry processed.
1326   Unwind_type last_unwind_type_;
1327   // Last seen inlined EXIDX entry.
1328   uint32_t last_inlined_entry_;
1329   // Last processed EXIDX input section.
1330   const Arm_exidx_input_section* last_input_section_;
1331   // Section offset map created in process_exidx_section.
1332   Arm_exidx_section_offset_map* section_offset_map_;
1333   // Output section for the text section which is linked to the first exidx
1334   // input in output.
1335   Output_section* first_output_text_section_;
1336
1337   bool merge_exidx_entries_;
1338 };
1339
1340 // Arm output section class.  This is defined mainly to add a number of
1341 // stub generation methods.
1342
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1345 {
1346  public:
1347   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
1349   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351                      elfcpp::Elf_Xword flags)
1352     : Output_section(name, type,
1353                      (type == elfcpp::SHT_ARM_EXIDX
1354                       ? flags | elfcpp::SHF_LINK_ORDER
1355                       : flags))
1356   {
1357     if (type == elfcpp::SHT_ARM_EXIDX)
1358       this->set_always_keeps_input_sections();
1359   }
1360
1361   ~Arm_output_section()
1362   { }
1363
1364   // Group input sections for stub generation.
1365   void
1366   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1367
1368   // Downcast a base pointer to an Arm_output_section pointer.  This is
1369   // not type-safe but we only use Arm_output_section not the base class.
1370   static Arm_output_section<big_endian>*
1371   as_arm_output_section(Output_section* os)
1372   { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
1374   // Append all input text sections in this into LIST.
1375   void
1376   append_text_sections_to_list(Text_section_list* list);
1377
1378   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1379   // is a list of text input sections sorted in ascending order of their
1380   // output addresses.
1381   void
1382   fix_exidx_coverage(Layout* layout,
1383                      const Text_section_list& sorted_text_section,
1384                      Symbol_table* symtab,
1385                      bool merge_exidx_entries,
1386                      const Task* task);
1387
1388   // Link an EXIDX section into its corresponding text section.
1389   void
1390   set_exidx_section_link();
1391
1392  private:
1393   // For convenience.
1394   typedef Output_section::Input_section Input_section;
1395   typedef Output_section::Input_section_list Input_section_list;
1396
1397   // Create a stub group.
1398   void create_stub_group(Input_section_list::const_iterator,
1399                          Input_section_list::const_iterator,
1400                          Input_section_list::const_iterator,
1401                          Target_arm<big_endian>*,
1402                          std::vector<Output_relaxed_input_section*>*,
1403                          const Task* task);
1404 };
1405
1406 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1407
1408 class Arm_exidx_input_section
1409 {
1410  public:
1411   static const section_offset_type invalid_offset =
1412     static_cast<section_offset_type>(-1);
1413
1414   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415                           unsigned int link, uint32_t size,
1416                           uint32_t addralign, uint32_t text_size)
1417     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418       addralign_(addralign), text_size_(text_size), has_errors_(false)
1419   { }
1420
1421   ~Arm_exidx_input_section()
1422   { }
1423
1424   // Accessors:  This is a read-only class.
1425
1426   // Return the object containing this EXIDX input section.
1427   Relobj*
1428   relobj() const
1429   { return this->relobj_; }
1430
1431   // Return the section index of this EXIDX input section.
1432   unsigned int
1433   shndx() const
1434   { return this->shndx_; }
1435
1436   // Return the section index of linked text section in the same object.
1437   unsigned int
1438   link() const
1439   { return this->link_; }
1440
1441   // Return size of the EXIDX input section.
1442   uint32_t
1443   size() const
1444   { return this->size_; }
1445
1446   // Return address alignment of EXIDX input section.
1447   uint32_t
1448   addralign() const
1449   { return this->addralign_; }
1450
1451   // Return size of the associated text input section.
1452   uint32_t
1453   text_size() const
1454   { return this->text_size_; }
1455
1456   // Whether there are any errors in the EXIDX input section.
1457   bool
1458   has_errors() const
1459   { return this->has_errors_; }
1460
1461   // Set has-errors flag.
1462   void
1463   set_has_errors()
1464   { this->has_errors_ = true; }
1465
1466  private:
1467   // Object containing this.
1468   Relobj* relobj_;
1469   // Section index of this.
1470   unsigned int shndx_;
1471   // text section linked to this in the same object.
1472   unsigned int link_;
1473   // Size of this.  For ARM 32-bit is sufficient.
1474   uint32_t size_;
1475   // Address alignment of this.  For ARM 32-bit is sufficient.
1476   uint32_t addralign_;
1477   // Size of associated text section.
1478   uint32_t text_size_;
1479   // Whether this has any errors.
1480   bool has_errors_;
1481 };
1482
1483 // Arm_relobj class.
1484
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1487 {
1488  public:
1489   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
1491   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494       stub_tables_(), local_symbol_is_thumb_function_(),
1495       attributes_section_data_(NULL), mapping_symbols_info_(),
1496       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497       output_local_symbol_count_needs_update_(false),
1498       merge_flags_and_attributes_(true)
1499   { }
1500
1501   ~Arm_relobj()
1502   { delete this->attributes_section_data_; }
1503
1504   // Return the stub table of the SHNDX-th section if there is one.
1505   Stub_table<big_endian>*
1506   stub_table(unsigned int shndx) const
1507   {
1508     gold_assert(shndx < this->stub_tables_.size());
1509     return this->stub_tables_[shndx];
1510   }
1511
1512   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513   void
1514   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1515   {
1516     gold_assert(shndx < this->stub_tables_.size());
1517     this->stub_tables_[shndx] = stub_table;
1518   }
1519
1520   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1521   // index.  This is only valid after do_count_local_symbol is called.
1522   bool
1523   local_symbol_is_thumb_function(unsigned int r_sym) const
1524   {
1525     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526     return this->local_symbol_is_thumb_function_[r_sym];
1527   }
1528
1529   // Scan all relocation sections for stub generation.
1530   void
1531   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532                           const Layout*);
1533
1534   // Convert regular input section with index SHNDX to a relaxed section.
1535   void
1536   convert_input_section_to_relaxed_section(unsigned shndx)
1537   {
1538     // The stubs have relocations and we need to process them after writing
1539     // out the stubs.  So relocation now must follow section write.
1540     this->set_section_offset(shndx, -1ULL);
1541     this->set_relocs_must_follow_section_writes();
1542   }
1543
1544   // Downcast a base pointer to an Arm_relobj pointer.  This is
1545   // not type-safe but we only use Arm_relobj not the base class.
1546   static Arm_relobj<big_endian>*
1547   as_arm_relobj(Relobj* relobj)
1548   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1549
1550   // Processor-specific flags in ELF file header.  This is valid only after
1551   // reading symbols.
1552   elfcpp::Elf_Word
1553   processor_specific_flags() const
1554   { return this->processor_specific_flags_; }
1555
1556   // Attribute section data  This is the contents of the .ARM.attribute section
1557   // if there is one.
1558   const Attributes_section_data*
1559   attributes_section_data() const
1560   { return this->attributes_section_data_; }
1561
1562   // Mapping symbol location.
1563   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565   // Functor for STL container.
1566   struct Mapping_symbol_position_less
1567   {
1568     bool
1569     operator()(const Mapping_symbol_position& p1,
1570                const Mapping_symbol_position& p2) const
1571     {
1572       return (p1.first < p2.first
1573               || (p1.first == p2.first && p1.second < p2.second));
1574     }
1575   };
1576
1577   // We only care about the first character of a mapping symbol, so
1578   // we only store that instead of the whole symbol name.
1579   typedef std::map<Mapping_symbol_position, char,
1580                    Mapping_symbol_position_less> Mapping_symbols_info;
1581
1582   // Whether a section contains any Cortex-A8 workaround.
1583   bool
1584   section_has_cortex_a8_workaround(unsigned int shndx) const
1585   {
1586     return (this->section_has_cortex_a8_workaround_ != NULL
1587             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588   }
1589
1590   // Mark a section that has Cortex-A8 workaround.
1591   void
1592   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593   {
1594     if (this->section_has_cortex_a8_workaround_ == NULL)
1595       this->section_has_cortex_a8_workaround_ =
1596         new std::vector<bool>(this->shnum(), false);
1597     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598   }
1599
1600   // Return the EXIDX section of an text section with index SHNDX or NULL
1601   // if the text section has no associated EXIDX section.
1602   const Arm_exidx_input_section*
1603   exidx_input_section_by_link(unsigned int shndx) const
1604   {
1605     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606     return ((p != this->exidx_section_map_.end()
1607              && p->second->link() == shndx)
1608             ? p->second
1609             : NULL);
1610   }
1611
1612   // Return the EXIDX section with index SHNDX or NULL if there is none.
1613   const Arm_exidx_input_section*
1614   exidx_input_section_by_shndx(unsigned shndx) const
1615   {
1616     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617     return ((p != this->exidx_section_map_.end()
1618              && p->second->shndx() == shndx)
1619             ? p->second
1620             : NULL);
1621   }
1622
1623   // Whether output local symbol count needs updating.
1624   bool
1625   output_local_symbol_count_needs_update() const
1626   { return this->output_local_symbol_count_needs_update_; }
1627
1628   // Set output_local_symbol_count_needs_update flag to be true.
1629   void
1630   set_output_local_symbol_count_needs_update()
1631   { this->output_local_symbol_count_needs_update_ = true; }
1632
1633   // Update output local symbol count at the end of relaxation.
1634   void
1635   update_output_local_symbol_count();
1636
1637   // Whether we want to merge processor-specific flags and attributes.
1638   bool
1639   merge_flags_and_attributes() const
1640   { return this->merge_flags_and_attributes_; }
1641
1642   // Export list of EXIDX section indices.
1643   void
1644   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645   {
1646     list->clear();
1647     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648          p != this->exidx_section_map_.end();
1649          ++p)
1650       {
1651         if (p->second->shndx() == p->first)
1652           list->push_back(p->first);
1653       }
1654     // Sort list to make result independent of implementation of map.
1655     std::sort(list->begin(), list->end());
1656   }
1657
1658  protected:
1659   // Post constructor setup.
1660   void
1661   do_setup()
1662   {
1663     // Call parent's setup method.
1664     Sized_relobj_file<32, big_endian>::do_setup();
1665
1666     // Initialize look-up tables.
1667     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668     this->stub_tables_.swap(empty_stub_table_list);
1669   }
1670
1671   // Count the local symbols.
1672   void
1673   do_count_local_symbols(Stringpool_template<char>*,
1674                          Stringpool_template<char>*);
1675
1676   void
1677   do_relocate_sections(
1678       const Symbol_table* symtab, const Layout* layout,
1679       const unsigned char* pshdrs, Output_file* of,
1680       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1681
1682   // Read the symbol information.
1683   void
1684   do_read_symbols(Read_symbols_data* sd);
1685
1686   // Process relocs for garbage collection.
1687   void
1688   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
1690  private:
1691
1692   // Whether a section needs to be scanned for relocation stubs.
1693   bool
1694   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695                                     const Relobj::Output_sections&,
1696                                     const Symbol_table*, const unsigned char*);
1697
1698   // Whether a section is a scannable text section.
1699   bool
1700   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701                        const Output_section*, const Symbol_table*);
1702
1703   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704   bool
1705   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706                                         unsigned int, Output_section*,
1707                                         const Symbol_table*);
1708
1709   // Scan a section for the Cortex-A8 erratum.
1710   void
1711   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712                                      unsigned int, Output_section*,
1713                                      Target_arm<big_endian>*);
1714
1715   // Find the linked text section of an EXIDX section by looking at the
1716   // first relocation of the EXIDX section.  PSHDR points to the section
1717   // headers of a relocation section and PSYMS points to the local symbols.
1718   // PSHNDX points to a location storing the text section index if found.
1719   // Return whether we can find the linked section.
1720   bool
1721   find_linked_text_section(const unsigned char* pshdr,
1722                            const unsigned char* psyms, unsigned int* pshndx);
1723
1724   //
1725   // Make a new Arm_exidx_input_section object for EXIDX section with
1726   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1727   // index of the linked text section.
1728   void
1729   make_exidx_input_section(unsigned int shndx,
1730                            const elfcpp::Shdr<32, big_endian>& shdr,
1731                            unsigned int text_shndx,
1732                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1733
1734   // Return the output address of either a plain input section or a
1735   // relaxed input section.  SHNDX is the section index.
1736   Arm_address
1737   simple_input_section_output_address(unsigned int, Output_section*);
1738
1739   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741     Exidx_section_map;
1742
1743   // List of stub tables.
1744   Stub_table_list stub_tables_;
1745   // Bit vector to tell if a local symbol is a thumb function or not.
1746   // This is only valid after do_count_local_symbol is called.
1747   std::vector<bool> local_symbol_is_thumb_function_;
1748   // processor-specific flags in ELF file header.
1749   elfcpp::Elf_Word processor_specific_flags_;
1750   // Object attributes if there is an .ARM.attributes section or NULL.
1751   Attributes_section_data* attributes_section_data_;
1752   // Mapping symbols information.
1753   Mapping_symbols_info mapping_symbols_info_;
1754   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755   std::vector<bool>* section_has_cortex_a8_workaround_;
1756   // Map a text section to its associated .ARM.exidx section, if there is one.
1757   Exidx_section_map exidx_section_map_;
1758   // Whether output local symbol count needs updating.
1759   bool output_local_symbol_count_needs_update_;
1760   // Whether we merge processor flags and attributes of this object to
1761   // output.
1762   bool merge_flags_and_attributes_;
1763 };
1764
1765 // Arm_dynobj class.
1766
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769 {
1770  public:
1771   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772              const elfcpp::Ehdr<32, big_endian>& ehdr)
1773     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774       processor_specific_flags_(0), attributes_section_data_(NULL)
1775   { }
1776
1777   ~Arm_dynobj()
1778   { delete this->attributes_section_data_; }
1779
1780   // Downcast a base pointer to an Arm_relobj pointer.  This is
1781   // not type-safe but we only use Arm_relobj not the base class.
1782   static Arm_dynobj<big_endian>*
1783   as_arm_dynobj(Dynobj* dynobj)
1784   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786   // Processor-specific flags in ELF file header.  This is valid only after
1787   // reading symbols.
1788   elfcpp::Elf_Word
1789   processor_specific_flags() const
1790   { return this->processor_specific_flags_; }
1791
1792   // Attributes section data.
1793   const Attributes_section_data*
1794   attributes_section_data() const
1795   { return this->attributes_section_data_; }
1796
1797  protected:
1798   // Read the symbol information.
1799   void
1800   do_read_symbols(Read_symbols_data* sd);
1801
1802  private:
1803   // processor-specific flags in ELF file header.
1804   elfcpp::Elf_Word processor_specific_flags_;
1805   // Object attributes if there is an .ARM.attributes section or NULL.
1806   Attributes_section_data* attributes_section_data_;
1807 };
1808
1809 // Functor to read reloc addends during stub generation.
1810
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1813 {
1814   // Return the addend for a relocation of a particular type.  Depending
1815   // on whether this is a REL or RELA relocation, read the addend from a
1816   // view or from a Reloc object.
1817   elfcpp::Elf_types<32>::Elf_Swxword
1818   operator()(
1819     unsigned int /* r_type */,
1820     const unsigned char* /* view */,
1821     const typename Reloc_types<sh_type,
1822                                32, big_endian>::Reloc& /* reloc */) const;
1823 };
1824
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829 {
1830   elfcpp::Elf_types<32>::Elf_Swxword
1831   operator()(
1832     unsigned int,
1833     const unsigned char*,
1834     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835 };
1836
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader.  This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1841
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844 {
1845   elfcpp::Elf_types<32>::Elf_Swxword
1846   operator()(
1847     unsigned int,
1848     const unsigned char*,
1849     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850                                big_endian>::Reloc& reloc) const
1851   { return reloc.get_r_addend(); }
1852 };
1853
1854 // Cortex_a8_reloc class.  We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1856
1857 class Cortex_a8_reloc
1858 {
1859  public:
1860   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861                   Arm_address destination)
1862     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863   { }
1864
1865   ~Cortex_a8_reloc()
1866   { }
1867
1868   // Accessors:  This is a read-only class.
1869
1870   // Return the relocation stub associated with this relocation if there is
1871   // one.
1872   const Reloc_stub*
1873   reloc_stub() const
1874   { return this->reloc_stub_; }
1875
1876   // Return the relocation type.
1877   unsigned int
1878   r_type() const
1879   { return this->r_type_; }
1880
1881   // Return the destination address of the relocation.  LSB stores the THUMB
1882   // bit.
1883   Arm_address
1884   destination() const
1885   { return this->destination_; }
1886
1887  private:
1888   // Associated relocation stub if there is one, or NULL.
1889   const Reloc_stub* reloc_stub_;
1890   // Relocation type.
1891   unsigned int r_type_;
1892   // Destination address of this relocation.  LSB is used to distinguish
1893   // ARM/THUMB mode.
1894   Arm_address destination_;
1895 };
1896
1897 // Arm_output_data_got class.  We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1899
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1902 {
1903  public:
1904   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906   { }
1907
1908   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1909   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910   // applied in a static link.
1911   void
1912   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1916   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1917   // relocation that needs to be applied in a static link.
1918   void
1919   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920                    Sized_relobj_file<32, big_endian>* relobj,
1921                    unsigned int index)
1922   {
1923     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924                                                 index));
1925   }
1926
1927   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1928   // The first one is initialized to be 1, which is the module index for
1929   // the main executable and the second one 0.  A reloc of the type
1930   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931   // be applied by gold.  GSYM is a global symbol.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935   // Same as the above but for a local symbol in OBJECT with INDEX.
1936   void
1937   add_tls_gd32_with_static_reloc(unsigned int got_type,
1938                                  Sized_relobj_file<32, big_endian>* object,
1939                                  unsigned int index);
1940
1941  protected:
1942   // Write out the GOT table.
1943   void
1944   do_write(Output_file*);
1945
1946  private:
1947   // This class represent dynamic relocations that need to be applied by
1948   // gold because we are using TLS relocations in a static link.
1949   class Static_reloc
1950   {
1951    public:
1952     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954     { this->u_.global.symbol = gsym; }
1955
1956     Static_reloc(unsigned int got_offset, unsigned int r_type,
1957           Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959     {
1960       this->u_.local.relobj = relobj;
1961       this->u_.local.index = index;
1962     }
1963
1964     // Return the GOT offset.
1965     unsigned int
1966     got_offset() const
1967     { return this->got_offset_; }
1968
1969     // Relocation type.
1970     unsigned int
1971     r_type() const
1972     { return this->r_type_; }
1973
1974     // Whether the symbol is global or not.
1975     bool
1976     symbol_is_global() const
1977     { return this->symbol_is_global_; }
1978
1979     // For a relocation against a global symbol, the global symbol.
1980     Symbol*
1981     symbol() const
1982     {
1983       gold_assert(this->symbol_is_global_);
1984       return this->u_.global.symbol;
1985     }
1986
1987     // For a relocation against a local symbol, the defining object.
1988     Sized_relobj_file<32, big_endian>*
1989     relobj() const
1990     {
1991       gold_assert(!this->symbol_is_global_);
1992       return this->u_.local.relobj;
1993     }
1994
1995     // For a relocation against a local symbol, the local symbol index.
1996     unsigned int
1997     index() const
1998     {
1999       gold_assert(!this->symbol_is_global_);
2000       return this->u_.local.index;
2001     }
2002
2003    private:
2004     // GOT offset of the entry to which this relocation is applied.
2005     unsigned int got_offset_;
2006     // Type of relocation.
2007     unsigned int r_type_;
2008     // Whether this relocation is against a global symbol.
2009     bool symbol_is_global_;
2010     // A global or local symbol.
2011     union
2012     {
2013       struct
2014       {
2015         // For a global symbol, the symbol itself.
2016         Symbol* symbol;
2017       } global;
2018       struct
2019       {
2020         // For a local symbol, the object defining object.
2021         Sized_relobj_file<32, big_endian>* relobj;
2022         // For a local symbol, the symbol index.
2023         unsigned int index;
2024       } local;
2025     } u_;
2026   };
2027
2028   // Symbol table of the output object.
2029   Symbol_table* symbol_table_;
2030   // Layout of the output object.
2031   Layout* layout_;
2032   // Static relocs to be applied to the GOT.
2033   std::vector<Static_reloc> static_relocs_;
2034 };
2035
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits.  The default handling of relocatable relocation cannot process these
2038 // relocations.  So we have to extend the default code.
2039
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043 {
2044  public:
2045   // Return the strategy to use for a local symbol which is a section
2046   // symbol, given the relocation type.
2047   inline Relocatable_relocs::Reloc_strategy
2048   local_section_strategy(unsigned int r_type, Relobj*)
2049   {
2050     if (sh_type == elfcpp::SHT_RELA)
2051       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052     else
2053       {
2054         if (r_type == elfcpp::R_ARM_TARGET1
2055             || r_type == elfcpp::R_ARM_TARGET2)
2056           {
2057             const Target_arm<big_endian>* arm_target =
2058               Target_arm<big_endian>::default_target();
2059             r_type = arm_target->get_real_reloc_type(r_type);
2060           }
2061
2062         switch(r_type)
2063           {
2064           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2065           // and R_ARM_TARGET2.
2066           case elfcpp::R_ARM_NONE:
2067           case elfcpp::R_ARM_V4BX:
2068           case elfcpp::R_ARM_TLS_GOTDESC:
2069           case elfcpp::R_ARM_TLS_CALL:
2070           case elfcpp::R_ARM_TLS_DESCSEQ:
2071           case elfcpp::R_ARM_THM_TLS_CALL:
2072           case elfcpp::R_ARM_GOTRELAX:
2073           case elfcpp::R_ARM_GNU_VTENTRY:
2074           case elfcpp::R_ARM_GNU_VTINHERIT:
2075           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078           // These should have been converted to something else above.
2079           case elfcpp::R_ARM_TARGET1:
2080           case elfcpp::R_ARM_TARGET2:
2081             gold_unreachable();
2082           // Relocations that write full 32 bits and
2083           // have alignment of 1.
2084           case elfcpp::R_ARM_ABS32:
2085           case elfcpp::R_ARM_REL32:
2086           case elfcpp::R_ARM_SBREL32:
2087           case elfcpp::R_ARM_GOTOFF32:
2088           case elfcpp::R_ARM_BASE_PREL:
2089           case elfcpp::R_ARM_GOT_BREL:
2090           case elfcpp::R_ARM_BASE_ABS:
2091           case elfcpp::R_ARM_ABS32_NOI:
2092           case elfcpp::R_ARM_REL32_NOI:
2093           case elfcpp::R_ARM_PLT32_ABS:
2094           case elfcpp::R_ARM_GOT_ABS:
2095           case elfcpp::R_ARM_GOT_PREL:
2096           case elfcpp::R_ARM_TLS_GD32:
2097           case elfcpp::R_ARM_TLS_LDM32:
2098           case elfcpp::R_ARM_TLS_LDO32:
2099           case elfcpp::R_ARM_TLS_IE32:
2100           case elfcpp::R_ARM_TLS_LE32:
2101             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2102           default:
2103             // For all other static relocations, return RELOC_SPECIAL.
2104             return Relocatable_relocs::RELOC_SPECIAL;
2105           }
2106       }
2107   }
2108 };
2109
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2112 {
2113  public:
2114   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115     Reloc_section;
2116
2117   // When were are relocating a stub, we pass this as the relocation number.
2118   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2120   Target_arm(const Target::Target_info* info = &arm_info)
2121     : Sized_target<32, big_endian>(info),
2122       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123       rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
2124       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126       should_force_pic_veneer_(false),
2127       arm_input_section_map_(), attributes_section_data_(NULL),
2128       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2129   { }
2130
2131   // Whether we force PCI branch veneers.
2132   bool
2133   should_force_pic_veneer() const
2134   { return this->should_force_pic_veneer_; }
2135
2136   // Set PIC veneer flag.
2137   void
2138   set_should_force_pic_veneer(bool value)
2139   { this->should_force_pic_veneer_ = value; }
2140
2141   // Whether we use THUMB-2 instructions.
2142   bool
2143   using_thumb2() const
2144   {
2145     Object_attribute* attr =
2146       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147     int arch = attr->int_value();
2148     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2149   }
2150
2151   // Whether we use THUMB/THUMB-2 instructions only.
2152   bool
2153   using_thumb_only() const
2154   {
2155     Object_attribute* attr =
2156       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2157
2158     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160       return true;
2161     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163       return false;
2164     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165     return attr->int_value() == 'M';
2166   }
2167
2168   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2169   bool
2170   may_use_arm_nop() const
2171   {
2172     Object_attribute* attr =
2173       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174     int arch = attr->int_value();
2175     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176             || arch == elfcpp::TAG_CPU_ARCH_V6K
2177             || arch == elfcpp::TAG_CPU_ARCH_V7
2178             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2179   }
2180
2181   // Whether we have THUMB-2 NOP.W instruction.
2182   bool
2183   may_use_thumb2_nop() const
2184   {
2185     Object_attribute* attr =
2186       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187     int arch = attr->int_value();
2188     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189             || arch == elfcpp::TAG_CPU_ARCH_V7
2190             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2191   }
2192
2193   // Whether we have v4T interworking instructions available.
2194   bool
2195   may_use_v4t_interworking() const
2196   {
2197     Object_attribute* attr =
2198       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199     int arch = attr->int_value();
2200     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201             && arch != elfcpp::TAG_CPU_ARCH_V4);
2202   }
2203
2204   // Whether we have v5T interworking instructions available.
2205   bool
2206   may_use_v5t_interworking() const
2207   {
2208     Object_attribute* attr =
2209       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210     int arch = attr->int_value();
2211     if (parameters->options().fix_arm1176())
2212       return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213               || arch == elfcpp::TAG_CPU_ARCH_V7
2214               || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215               || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216               || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217     else
2218       return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219               && arch != elfcpp::TAG_CPU_ARCH_V4
2220               && arch != elfcpp::TAG_CPU_ARCH_V4T);
2221   }
2222
2223   // Process the relocations to determine unreferenced sections for
2224   // garbage collection.
2225   void
2226   gc_process_relocs(Symbol_table* symtab,
2227                     Layout* layout,
2228                     Sized_relobj_file<32, big_endian>* object,
2229                     unsigned int data_shndx,
2230                     unsigned int sh_type,
2231                     const unsigned char* prelocs,
2232                     size_t reloc_count,
2233                     Output_section* output_section,
2234                     bool needs_special_offset_handling,
2235                     size_t local_symbol_count,
2236                     const unsigned char* plocal_symbols);
2237
2238   // Scan the relocations to look for symbol adjustments.
2239   void
2240   scan_relocs(Symbol_table* symtab,
2241               Layout* layout,
2242               Sized_relobj_file<32, big_endian>* object,
2243               unsigned int data_shndx,
2244               unsigned int sh_type,
2245               const unsigned char* prelocs,
2246               size_t reloc_count,
2247               Output_section* output_section,
2248               bool needs_special_offset_handling,
2249               size_t local_symbol_count,
2250               const unsigned char* plocal_symbols);
2251
2252   // Finalize the sections.
2253   void
2254   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2255
2256   // Return the value to use for a dynamic symbol which requires special
2257   // treatment.
2258   uint64_t
2259   do_dynsym_value(const Symbol*) const;
2260
2261   // Return the plt address for globals. Since we have irelative plt entries,
2262   // address calculation is not as straightforward as plt_address + plt_offset.
2263   uint64_t
2264   do_plt_address_for_global(const Symbol* gsym) const
2265   { return this->plt_section()->address_for_global(gsym); }
2266
2267   // Return the plt address for locals. Since we have irelative plt entries,
2268   // address calculation is not as straightforward as plt_address + plt_offset.
2269   uint64_t
2270   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271   { return this->plt_section()->address_for_local(relobj, symndx); }
2272
2273   // Relocate a section.
2274   void
2275   relocate_section(const Relocate_info<32, big_endian>*,
2276                    unsigned int sh_type,
2277                    const unsigned char* prelocs,
2278                    size_t reloc_count,
2279                    Output_section* output_section,
2280                    bool needs_special_offset_handling,
2281                    unsigned char* view,
2282                    Arm_address view_address,
2283                    section_size_type view_size,
2284                    const Reloc_symbol_changes*);
2285
2286   // Scan the relocs during a relocatable link.
2287   void
2288   scan_relocatable_relocs(Symbol_table* symtab,
2289                           Layout* layout,
2290                           Sized_relobj_file<32, big_endian>* object,
2291                           unsigned int data_shndx,
2292                           unsigned int sh_type,
2293                           const unsigned char* prelocs,
2294                           size_t reloc_count,
2295                           Output_section* output_section,
2296                           bool needs_special_offset_handling,
2297                           size_t local_symbol_count,
2298                           const unsigned char* plocal_symbols,
2299                           Relocatable_relocs*);
2300
2301   // Emit relocations for a section.
2302   void
2303   relocate_relocs(const Relocate_info<32, big_endian>*,
2304                   unsigned int sh_type,
2305                   const unsigned char* prelocs,
2306                   size_t reloc_count,
2307                   Output_section* output_section,
2308                   typename elfcpp::Elf_types<32>::Elf_Off
2309                     offset_in_output_section,
2310                   const Relocatable_relocs*,
2311                   unsigned char* view,
2312                   Arm_address view_address,
2313                   section_size_type view_size,
2314                   unsigned char* reloc_view,
2315                   section_size_type reloc_view_size);
2316
2317   // Perform target-specific processing in a relocatable link.  This is
2318   // only used if we use the relocation strategy RELOC_SPECIAL.
2319   void
2320   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2321                                unsigned int sh_type,
2322                                const unsigned char* preloc_in,
2323                                size_t relnum,
2324                                Output_section* output_section,
2325                                typename elfcpp::Elf_types<32>::Elf_Off
2326                                  offset_in_output_section,
2327                                unsigned char* view,
2328                                typename elfcpp::Elf_types<32>::Elf_Addr
2329                                  view_address,
2330                                section_size_type view_size,
2331                                unsigned char* preloc_out);
2332
2333   // Return whether SYM is defined by the ABI.
2334   bool
2335   do_is_defined_by_abi(const Symbol* sym) const
2336   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337
2338   // Return whether there is a GOT section.
2339   bool
2340   has_got_section() const
2341   { return this->got_ != NULL; }
2342
2343   // Return the size of the GOT section.
2344   section_size_type
2345   got_size() const
2346   {
2347     gold_assert(this->got_ != NULL);
2348     return this->got_->data_size();
2349   }
2350
2351   // Return the number of entries in the GOT.
2352   unsigned int
2353   got_entry_count() const
2354   {
2355     if (!this->has_got_section())
2356       return 0;
2357     return this->got_size() / 4;
2358   }
2359
2360   // Return the number of entries in the PLT.
2361   unsigned int
2362   plt_entry_count() const;
2363
2364   // Return the offset of the first non-reserved PLT entry.
2365   unsigned int
2366   first_plt_entry_offset() const;
2367
2368   // Return the size of each PLT entry.
2369   unsigned int
2370   plt_entry_size() const;
2371
2372   // Get the section to use for IRELATIVE relocations, create it if necessary.
2373   Reloc_section*
2374   rel_irelative_section(Layout*);
2375
2376   // Map platform-specific reloc types
2377   static unsigned int
2378   get_real_reloc_type(unsigned int r_type);
2379
2380   //
2381   // Methods to support stub-generations.
2382   //
2383
2384   // Return the stub factory
2385   const Stub_factory&
2386   stub_factory() const
2387   { return this->stub_factory_; }
2388
2389   // Make a new Arm_input_section object.
2390   Arm_input_section<big_endian>*
2391   new_arm_input_section(Relobj*, unsigned int);
2392
2393   // Find the Arm_input_section object corresponding to the SHNDX-th input
2394   // section of RELOBJ.
2395   Arm_input_section<big_endian>*
2396   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2397
2398   // Make a new Stub_table
2399   Stub_table<big_endian>*
2400   new_stub_table(Arm_input_section<big_endian>*);
2401
2402   // Scan a section for stub generation.
2403   void
2404   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2405                          const unsigned char*, size_t, Output_section*,
2406                          bool, const unsigned char*, Arm_address,
2407                          section_size_type);
2408
2409   // Relocate a stub.
2410   void
2411   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2412                 Output_section*, unsigned char*, Arm_address,
2413                 section_size_type);
2414
2415   // Get the default ARM target.
2416   static Target_arm<big_endian>*
2417   default_target()
2418   {
2419     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2420                 && parameters->target().is_big_endian() == big_endian);
2421     return static_cast<Target_arm<big_endian>*>(
2422              parameters->sized_target<32, big_endian>());
2423   }
2424
2425   // Whether NAME belongs to a mapping symbol.
2426   static bool
2427   is_mapping_symbol_name(const char* name)
2428   {
2429     return (name
2430             && name[0] == '$'
2431             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2432             && (name[2] == '\0' || name[2] == '.'));
2433   }
2434
2435   // Whether we work around the Cortex-A8 erratum.
2436   bool
2437   fix_cortex_a8() const
2438   { return this->fix_cortex_a8_; }
2439
2440   // Whether we merge exidx entries in debuginfo.
2441   bool
2442   merge_exidx_entries() const
2443   { return parameters->options().merge_exidx_entries(); }
2444
2445   // Whether we fix R_ARM_V4BX relocation.
2446   // 0 - do not fix
2447   // 1 - replace with MOV instruction (armv4 target)
2448   // 2 - make interworking veneer (>= armv4t targets only)
2449   General_options::Fix_v4bx
2450   fix_v4bx() const
2451   { return parameters->options().fix_v4bx(); }
2452
2453   // Scan a span of THUMB code section for Cortex-A8 erratum.
2454   void
2455   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2456                                   section_size_type, section_size_type,
2457                                   const unsigned char*, Arm_address);
2458
2459   // Apply Cortex-A8 workaround to a branch.
2460   void
2461   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2462                              unsigned char*, Arm_address);
2463
2464  protected:
2465   // Make the PLT-generator object.
2466   Output_data_plt_arm<big_endian>*
2467   make_data_plt(Layout* layout,
2468                 Arm_output_data_got<big_endian>* got,
2469                 Output_data_space* got_plt,
2470                 Output_data_space* got_irelative)
2471   { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2472
2473   // Make an ELF object.
2474   Object*
2475   do_make_elf_object(const std::string&, Input_file*, off_t,
2476                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2477
2478   Object*
2479   do_make_elf_object(const std::string&, Input_file*, off_t,
2480                      const elfcpp::Ehdr<32, !big_endian>&)
2481   { gold_unreachable(); }
2482
2483   Object*
2484   do_make_elf_object(const std::string&, Input_file*, off_t,
2485                       const elfcpp::Ehdr<64, false>&)
2486   { gold_unreachable(); }
2487
2488   Object*
2489   do_make_elf_object(const std::string&, Input_file*, off_t,
2490                      const elfcpp::Ehdr<64, true>&)
2491   { gold_unreachable(); }
2492
2493   // Make an output section.
2494   Output_section*
2495   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2496                          elfcpp::Elf_Xword flags)
2497   { return new Arm_output_section<big_endian>(name, type, flags); }
2498
2499   void
2500   do_adjust_elf_header(unsigned char* view, int len);
2501
2502   // We only need to generate stubs, and hence perform relaxation if we are
2503   // not doing relocatable linking.
2504   bool
2505   do_may_relax() const
2506   { return !parameters->options().relocatable(); }
2507
2508   bool
2509   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2510
2511   // Determine whether an object attribute tag takes an integer, a
2512   // string or both.
2513   int
2514   do_attribute_arg_type(int tag) const;
2515
2516   // Reorder tags during output.
2517   int
2518   do_attributes_order(int num) const;
2519
2520   // This is called when the target is selected as the default.
2521   void
2522   do_select_as_default_target()
2523   {
2524     // No locking is required since there should only be one default target.
2525     // We cannot have both the big-endian and little-endian ARM targets
2526     // as the default.
2527     gold_assert(arm_reloc_property_table == NULL);
2528     arm_reloc_property_table = new Arm_reloc_property_table();
2529   }
2530
2531   // Virtual function which is set to return true by a target if
2532   // it can use relocation types to determine if a function's
2533   // pointer is taken.
2534   virtual bool
2535   do_can_check_for_function_pointers() const
2536   { return true; }
2537
2538   // Whether a section called SECTION_NAME may have function pointers to
2539   // sections not eligible for safe ICF folding.
2540   virtual bool
2541   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542   {
2543     return (!is_prefix_of(".ARM.exidx", section_name)
2544             && !is_prefix_of(".ARM.extab", section_name)
2545             && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2546   }
2547
2548   virtual void
2549   do_define_standard_symbols(Symbol_table*, Layout*);
2550
2551   virtual Output_data_plt_arm<big_endian>*
2552   do_make_data_plt(Layout* layout,
2553                    Arm_output_data_got<big_endian>* got,
2554                    Output_data_space* got_plt,
2555                    Output_data_space* got_irelative)
2556   {
2557     gold_assert(got_plt != NULL && got_irelative != NULL);
2558     return new Output_data_plt_arm_standard<big_endian>(
2559         layout, got, got_plt, got_irelative);
2560   }
2561
2562  private:
2563   // The class which scans relocations.
2564   class Scan
2565   {
2566    public:
2567     Scan()
2568       : issued_non_pic_error_(false)
2569     { }
2570
2571     static inline int
2572     get_reference_flags(unsigned int r_type);
2573
2574     inline void
2575     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2576           Sized_relobj_file<32, big_endian>* object,
2577           unsigned int data_shndx,
2578           Output_section* output_section,
2579           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2580           const elfcpp::Sym<32, big_endian>& lsym,
2581           bool is_discarded);
2582
2583     inline void
2584     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2585            Sized_relobj_file<32, big_endian>* object,
2586            unsigned int data_shndx,
2587            Output_section* output_section,
2588            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2589            Symbol* gsym);
2590
2591     inline bool
2592     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2593                                         Sized_relobj_file<32, big_endian>* ,
2594                                         unsigned int ,
2595                                         Output_section* ,
2596                                         const elfcpp::Rel<32, big_endian>& ,
2597                                         unsigned int ,
2598                                         const elfcpp::Sym<32, big_endian>&);
2599
2600     inline bool
2601     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2602                                          Sized_relobj_file<32, big_endian>* ,
2603                                          unsigned int ,
2604                                          Output_section* ,
2605                                          const elfcpp::Rel<32, big_endian>& ,
2606                                          unsigned int , Symbol*);
2607
2608    private:
2609     static void
2610     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2611                             unsigned int r_type);
2612
2613     static void
2614     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2615                              unsigned int r_type, Symbol*);
2616
2617     void
2618     check_non_pic(Relobj*, unsigned int r_type);
2619
2620     // Almost identical to Symbol::needs_plt_entry except that it also
2621     // handles STT_ARM_TFUNC.
2622     static bool
2623     symbol_needs_plt_entry(const Symbol* sym)
2624     {
2625       // An undefined symbol from an executable does not need a PLT entry.
2626       if (sym->is_undefined() && !parameters->options().shared())
2627         return false;
2628
2629       if (sym->type() == elfcpp::STT_GNU_IFUNC)
2630         return true;
2631
2632       return (!parameters->doing_static_link()
2633               && (sym->type() == elfcpp::STT_FUNC
2634                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2635               && (sym->is_from_dynobj()
2636                   || sym->is_undefined()
2637                   || sym->is_preemptible()));
2638     }
2639
2640     inline bool
2641     possible_function_pointer_reloc(unsigned int r_type);
2642
2643     // Whether a plt entry is needed for ifunc.
2644     bool
2645     reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2646                               unsigned int r_type);
2647
2648     // Whether we have issued an error about a non-PIC compilation.
2649     bool issued_non_pic_error_;
2650   };
2651
2652   // The class which implements relocation.
2653   class Relocate
2654   {
2655    public:
2656     Relocate()
2657     { }
2658
2659     ~Relocate()
2660     { }
2661
2662     // Return whether the static relocation needs to be applied.
2663     inline bool
2664     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2665                               unsigned int r_type,
2666                               bool is_32bit,
2667                               Output_section* output_section);
2668
2669     // Do a relocation.  Return false if the caller should not issue
2670     // any warnings about this relocation.
2671     inline bool
2672     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2673              Output_section*,  size_t relnum,
2674              const elfcpp::Rel<32, big_endian>&,
2675              unsigned int r_type, const Sized_symbol<32>*,
2676              const Symbol_value<32>*,
2677              unsigned char*, Arm_address,
2678              section_size_type);
2679
2680     // Return whether we want to pass flag NON_PIC_REF for this
2681     // reloc.  This means the relocation type accesses a symbol not via
2682     // GOT or PLT.
2683     static inline bool
2684     reloc_is_non_pic(unsigned int r_type)
2685     {
2686       switch (r_type)
2687         {
2688         // These relocation types reference GOT or PLT entries explicitly.
2689         case elfcpp::R_ARM_GOT_BREL:
2690         case elfcpp::R_ARM_GOT_ABS:
2691         case elfcpp::R_ARM_GOT_PREL:
2692         case elfcpp::R_ARM_GOT_BREL12:
2693         case elfcpp::R_ARM_PLT32_ABS:
2694         case elfcpp::R_ARM_TLS_GD32:
2695         case elfcpp::R_ARM_TLS_LDM32:
2696         case elfcpp::R_ARM_TLS_IE32:
2697         case elfcpp::R_ARM_TLS_IE12GP:
2698
2699         // These relocate types may use PLT entries.
2700         case elfcpp::R_ARM_CALL:
2701         case elfcpp::R_ARM_THM_CALL:
2702         case elfcpp::R_ARM_JUMP24:
2703         case elfcpp::R_ARM_THM_JUMP24:
2704         case elfcpp::R_ARM_THM_JUMP19:
2705         case elfcpp::R_ARM_PLT32:
2706         case elfcpp::R_ARM_THM_XPC22:
2707         case elfcpp::R_ARM_PREL31:
2708         case elfcpp::R_ARM_SBREL31:
2709           return false;
2710
2711         default:
2712           return true;
2713         }
2714     }
2715
2716    private:
2717     // Do a TLS relocation.
2718     inline typename Arm_relocate_functions<big_endian>::Status
2719     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2720                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2721                  const Sized_symbol<32>*, const Symbol_value<32>*,
2722                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723                  section_size_type);
2724
2725   };
2726
2727   // A class which returns the size required for a relocation type,
2728   // used while scanning relocs during a relocatable link.
2729   class Relocatable_size_for_reloc
2730   {
2731    public:
2732     unsigned int
2733     get_size_for_reloc(unsigned int, Relobj*);
2734   };
2735
2736   // Adjust TLS relocation type based on the options and whether this
2737   // is a local symbol.
2738   static tls::Tls_optimization
2739   optimize_tls_reloc(bool is_final, int r_type);
2740
2741   // Get the GOT section, creating it if necessary.
2742   Arm_output_data_got<big_endian>*
2743   got_section(Symbol_table*, Layout*);
2744
2745   // Get the GOT PLT section.
2746   Output_data_space*
2747   got_plt_section() const
2748   {
2749     gold_assert(this->got_plt_ != NULL);
2750     return this->got_plt_;
2751   }
2752
2753   // Create the PLT section.
2754   void
2755   make_plt_section(Symbol_table* symtab, Layout* layout);
2756
2757   // Create a PLT entry for a global symbol.
2758   void
2759   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2760
2761   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2762   void
2763   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2764                              Sized_relobj_file<32, big_endian>* relobj,
2765                              unsigned int local_sym_index);
2766
2767   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2768   void
2769   define_tls_base_symbol(Symbol_table*, Layout*);
2770
2771   // Create a GOT entry for the TLS module index.
2772   unsigned int
2773   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2774                       Sized_relobj_file<32, big_endian>* object);
2775
2776   // Get the PLT section.
2777   const Output_data_plt_arm<big_endian>*
2778   plt_section() const
2779   {
2780     gold_assert(this->plt_ != NULL);
2781     return this->plt_;
2782   }
2783
2784   // Get the dynamic reloc section, creating it if necessary.
2785   Reloc_section*
2786   rel_dyn_section(Layout*);
2787
2788   // Get the section to use for TLS_DESC relocations.
2789   Reloc_section*
2790   rel_tls_desc_section(Layout*) const;
2791
2792   // Return true if the symbol may need a COPY relocation.
2793   // References from an executable object to non-function symbols
2794   // defined in a dynamic object may need a COPY relocation.
2795   bool
2796   may_need_copy_reloc(Symbol* gsym)
2797   {
2798     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2799             && gsym->may_need_copy_reloc());
2800   }
2801
2802   // Add a potential copy relocation.
2803   void
2804   copy_reloc(Symbol_table* symtab, Layout* layout,
2805              Sized_relobj_file<32, big_endian>* object,
2806              unsigned int shndx, Output_section* output_section,
2807              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2808   {
2809     this->copy_relocs_.copy_reloc(symtab, layout,
2810                                   symtab->get_sized_symbol<32>(sym),
2811                                   object, shndx, output_section, reloc,
2812                                   this->rel_dyn_section(layout));
2813   }
2814
2815   // Whether two EABI versions are compatible.
2816   static bool
2817   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2818
2819   // Merge processor-specific flags from input object and those in the ELF
2820   // header of the output.
2821   void
2822   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2823
2824   // Get the secondary compatible architecture.
2825   static int
2826   get_secondary_compatible_arch(const Attributes_section_data*);
2827
2828   // Set the secondary compatible architecture.
2829   static void
2830   set_secondary_compatible_arch(Attributes_section_data*, int);
2831
2832   static int
2833   tag_cpu_arch_combine(const char*, int, int*, int, int);
2834
2835   // Helper to print AEABI enum tag value.
2836   static std::string
2837   aeabi_enum_name(unsigned int);
2838
2839   // Return string value for TAG_CPU_name.
2840   static std::string
2841   tag_cpu_name_value(unsigned int);
2842
2843   // Query attributes object to see if integer divide instructions may be
2844   // present in an object.
2845   static bool
2846   attributes_accept_div(int arch, int profile,
2847                         const Object_attribute* div_attr);
2848
2849   // Query attributes object to see if integer divide instructions are
2850   // forbidden to be in the object.  This is not the inverse of
2851   // attributes_accept_div.
2852   static bool
2853   attributes_forbid_div(const Object_attribute* div_attr);
2854
2855   // Merge object attributes from input object and those in the output.
2856   void
2857   merge_object_attributes(const char*, const Attributes_section_data*);
2858
2859   // Helper to get an AEABI object attribute
2860   Object_attribute*
2861   get_aeabi_object_attribute(int tag) const
2862   {
2863     Attributes_section_data* pasd = this->attributes_section_data_;
2864     gold_assert(pasd != NULL);
2865     Object_attribute* attr =
2866       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2867     gold_assert(attr != NULL);
2868     return attr;
2869   }
2870
2871   //
2872   // Methods to support stub-generations.
2873   //
2874
2875   // Group input sections for stub generation.
2876   void
2877   group_sections(Layout*, section_size_type, bool, const Task*);
2878
2879   // Scan a relocation for stub generation.
2880   void
2881   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2882                       const Sized_symbol<32>*, unsigned int,
2883                       const Symbol_value<32>*,
2884                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2885
2886   // Scan a relocation section for stub.
2887   template<int sh_type>
2888   void
2889   scan_reloc_section_for_stubs(
2890       const Relocate_info<32, big_endian>* relinfo,
2891       const unsigned char* prelocs,
2892       size_t reloc_count,
2893       Output_section* output_section,
2894       bool needs_special_offset_handling,
2895       const unsigned char* view,
2896       elfcpp::Elf_types<32>::Elf_Addr view_address,
2897       section_size_type);
2898
2899   // Fix .ARM.exidx section coverage.
2900   void
2901   fix_exidx_coverage(Layout*, const Input_objects*,
2902                      Arm_output_section<big_endian>*, Symbol_table*,
2903                      const Task*);
2904
2905   // Functors for STL set.
2906   struct output_section_address_less_than
2907   {
2908     bool
2909     operator()(const Output_section* s1, const Output_section* s2) const
2910     { return s1->address() < s2->address(); }
2911   };
2912
2913   // Information about this specific target which we pass to the
2914   // general Target structure.
2915   static const Target::Target_info arm_info;
2916
2917   // The types of GOT entries needed for this platform.
2918   // These values are exposed to the ABI in an incremental link.
2919   // Do not renumber existing values without changing the version
2920   // number of the .gnu_incremental_inputs section.
2921   enum Got_type
2922   {
2923     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2924     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2925     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2926     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2927     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2928   };
2929
2930   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2931
2932   // Map input section to Arm_input_section.
2933   typedef Unordered_map<Section_id,
2934                         Arm_input_section<big_endian>*,
2935                         Section_id_hash>
2936           Arm_input_section_map;
2937
2938   // Map output addresses to relocs for Cortex-A8 erratum.
2939   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2940           Cortex_a8_relocs_info;
2941
2942   // The GOT section.
2943   Arm_output_data_got<big_endian>* got_;
2944   // The PLT section.
2945   Output_data_plt_arm<big_endian>* plt_;
2946   // The GOT PLT section.
2947   Output_data_space* got_plt_;
2948   // The GOT section for IRELATIVE relocations.
2949   Output_data_space* got_irelative_;
2950   // The dynamic reloc section.
2951   Reloc_section* rel_dyn_;
2952   // The section to use for IRELATIVE relocs.
2953   Reloc_section* rel_irelative_;
2954   // Relocs saved to avoid a COPY reloc.
2955   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2956   // Offset of the GOT entry for the TLS module index.
2957   unsigned int got_mod_index_offset_;
2958   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2959   bool tls_base_symbol_defined_;
2960   // Vector of Stub_tables created.
2961   Stub_table_list stub_tables_;
2962   // Stub factory.
2963   const Stub_factory &stub_factory_;
2964   // Whether we force PIC branch veneers.
2965   bool should_force_pic_veneer_;
2966   // Map for locating Arm_input_sections.
2967   Arm_input_section_map arm_input_section_map_;
2968   // Attributes section data in output.
2969   Attributes_section_data* attributes_section_data_;
2970   // Whether we want to fix code for Cortex-A8 erratum.
2971   bool fix_cortex_a8_;
2972   // Map addresses to relocs for Cortex-A8 erratum.
2973   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2974 };
2975
2976 template<bool big_endian>
2977 const Target::Target_info Target_arm<big_endian>::arm_info =
2978 {
2979   32,                   // size
2980   big_endian,           // is_big_endian
2981   elfcpp::EM_ARM,       // machine_code
2982   false,                // has_make_symbol
2983   false,                // has_resolve
2984   false,                // has_code_fill
2985   true,                 // is_default_stack_executable
2986   false,                // can_icf_inline_merge_sections
2987   '\0',                 // wrap_char
2988   "/usr/lib/libc.so.1", // dynamic_linker
2989   0x8000,               // default_text_segment_address
2990   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2991   0x1000,               // common_pagesize (overridable by -z common-page-size)
2992   false,                // isolate_execinstr
2993   0,                    // rosegment_gap
2994   elfcpp::SHN_UNDEF,    // small_common_shndx
2995   elfcpp::SHN_UNDEF,    // large_common_shndx
2996   0,                    // small_common_section_flags
2997   0,                    // large_common_section_flags
2998   ".ARM.attributes",    // attributes_section
2999   "aeabi",              // attributes_vendor
3000   "_start"              // entry_symbol_name
3001 };
3002
3003 // Arm relocate functions class
3004 //
3005
3006 template<bool big_endian>
3007 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3008 {
3009  public:
3010   typedef enum
3011   {
3012     STATUS_OKAY,        // No error during relocation.
3013     STATUS_OVERFLOW,    // Relocation overflow.
3014     STATUS_BAD_RELOC    // Relocation cannot be applied.
3015   } Status;
3016
3017  private:
3018   typedef Relocate_functions<32, big_endian> Base;
3019   typedef Arm_relocate_functions<big_endian> This;
3020
3021   // Encoding of imm16 argument for movt and movw ARM instructions
3022   // from ARM ARM:
3023   //
3024   //     imm16 := imm4 | imm12
3025   //
3026   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3027   // +-------+---------------+-------+-------+-----------------------+
3028   // |       |               |imm4   |       |imm12                  |
3029   // +-------+---------------+-------+-------+-----------------------+
3030
3031   // Extract the relocation addend from VAL based on the ARM
3032   // instruction encoding described above.
3033   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3034   extract_arm_movw_movt_addend(
3035       typename elfcpp::Swap<32, big_endian>::Valtype val)
3036   {
3037     // According to the Elf ABI for ARM Architecture the immediate
3038     // field is sign-extended to form the addend.
3039     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
3040   }
3041
3042   // Insert X into VAL based on the ARM instruction encoding described
3043   // above.
3044   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3045   insert_val_arm_movw_movt(
3046       typename elfcpp::Swap<32, big_endian>::Valtype val,
3047       typename elfcpp::Swap<32, big_endian>::Valtype x)
3048   {
3049     val &= 0xfff0f000;
3050     val |= x & 0x0fff;
3051     val |= (x & 0xf000) << 4;
3052     return val;
3053   }
3054
3055   // Encoding of imm16 argument for movt and movw Thumb2 instructions
3056   // from ARM ARM:
3057   //
3058   //     imm16 := imm4 | i | imm3 | imm8
3059   //
3060   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0
3061   // +---------+-+-----------+-------++-+-----+-------+---------------+
3062   // |         |i|           |imm4   || |imm3 |       |imm8           |
3063   // +---------+-+-----------+-------++-+-----+-------+---------------+
3064
3065   // Extract the relocation addend from VAL based on the Thumb2
3066   // instruction encoding described above.
3067   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3068   extract_thumb_movw_movt_addend(
3069       typename elfcpp::Swap<32, big_endian>::Valtype val)
3070   {
3071     // According to the Elf ABI for ARM Architecture the immediate
3072     // field is sign-extended to form the addend.
3073     return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3074                                    | ((val >> 15) & 0x0800)
3075                                    | ((val >> 4) & 0x0700)
3076                                    | (val & 0x00ff));
3077   }
3078
3079   // Insert X into VAL based on the Thumb2 instruction encoding
3080   // described above.
3081   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3082   insert_val_thumb_movw_movt(
3083       typename elfcpp::Swap<32, big_endian>::Valtype val,
3084       typename elfcpp::Swap<32, big_endian>::Valtype x)
3085   {
3086     val &= 0xfbf08f00;
3087     val |= (x & 0xf000) << 4;
3088     val |= (x & 0x0800) << 15;
3089     val |= (x & 0x0700) << 4;
3090     val |= (x & 0x00ff);
3091     return val;
3092   }
3093
3094   // Calculate the smallest constant Kn for the specified residual.
3095   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3096   static uint32_t
3097   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3098   {
3099     int32_t msb;
3100
3101     if (residual == 0)
3102       return 0;
3103     // Determine the most significant bit in the residual and
3104     // align the resulting value to a 2-bit boundary.
3105     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3106       ;
3107     // The desired shift is now (msb - 6), or zero, whichever
3108     // is the greater.
3109     return (((msb - 6) < 0) ? 0 : (msb - 6));
3110   }
3111
3112   // Calculate the final residual for the specified group index.
3113   // If the passed group index is less than zero, the method will return
3114   // the value of the specified residual without any change.
3115   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3116   static typename elfcpp::Swap<32, big_endian>::Valtype
3117   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3118                     const int group)
3119   {
3120     for (int n = 0; n <= group; n++)
3121       {
3122         // Calculate which part of the value to mask.
3123         uint32_t shift = calc_grp_kn(residual);
3124         // Calculate the residual for the next time around.
3125         residual &= ~(residual & (0xff << shift));
3126       }
3127
3128     return residual;
3129   }
3130
3131   // Calculate the value of Gn for the specified group index.
3132   // We return it in the form of an encoded constant-and-rotation.
3133   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3134   static typename elfcpp::Swap<32, big_endian>::Valtype
3135   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3136               const int group)
3137   {
3138     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3139     uint32_t shift = 0;
3140
3141     for (int n = 0; n <= group; n++)
3142       {
3143         // Calculate which part of the value to mask.
3144         shift = calc_grp_kn(residual);
3145         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3146         gn = residual & (0xff << shift);
3147         // Calculate the residual for the next time around.
3148         residual &= ~gn;
3149       }
3150     // Return Gn in the form of an encoded constant-and-rotation.
3151     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3152   }
3153
3154  public:
3155   // Handle ARM long branches.
3156   static typename This::Status
3157   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3158                     unsigned char*, const Sized_symbol<32>*,
3159                     const Arm_relobj<big_endian>*, unsigned int,
3160                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3161
3162   // Handle THUMB long branches.
3163   static typename This::Status
3164   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3165                       unsigned char*, const Sized_symbol<32>*,
3166                       const Arm_relobj<big_endian>*, unsigned int,
3167                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3168
3169
3170   // Return the branch offset of a 32-bit THUMB branch.
3171   static inline int32_t
3172   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3173   {
3174     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3175     // involving the J1 and J2 bits.
3176     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3177     uint32_t upper = upper_insn & 0x3ffU;
3178     uint32_t lower = lower_insn & 0x7ffU;
3179     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3180     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3181     uint32_t i1 = j1 ^ s ? 0 : 1;
3182     uint32_t i2 = j2 ^ s ? 0 : 1;
3183
3184     return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3185                                    | (upper << 12) | (lower << 1));
3186   }
3187
3188   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3189   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3190   // responsible for overflow checking and BLX offset adjustment.
3191   static inline uint16_t
3192   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3193   {
3194     uint32_t s = offset < 0 ? 1 : 0;
3195     uint32_t bits = static_cast<uint32_t>(offset);
3196     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3197   }
3198
3199   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3200   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3201   // responsible for overflow checking and BLX offset adjustment.
3202   static inline uint16_t
3203   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3204   {
3205     uint32_t s = offset < 0 ? 1 : 0;
3206     uint32_t bits = static_cast<uint32_t>(offset);
3207     return ((lower_insn & ~0x2fffU)
3208             | ((((bits >> 23) & 1) ^ !s) << 13)
3209             | ((((bits >> 22) & 1) ^ !s) << 11)
3210             | ((bits >> 1) & 0x7ffU));
3211   }
3212
3213   // Return the branch offset of a 32-bit THUMB conditional branch.
3214   static inline int32_t
3215   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3216   {
3217     uint32_t s = (upper_insn & 0x0400U) >> 10;
3218     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3219     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3220     uint32_t lower = (lower_insn & 0x07ffU);
3221     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3222
3223     return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3224   }
3225
3226   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3227   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3228   // Caller is responsible for overflow checking.
3229   static inline uint16_t
3230   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3231   {
3232     uint32_t s = offset < 0 ? 1 : 0;
3233     uint32_t bits = static_cast<uint32_t>(offset);
3234     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3235   }
3236
3237   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3238   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3239   // The caller is responsible for overflow checking.
3240   static inline uint16_t
3241   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3242   {
3243     uint32_t bits = static_cast<uint32_t>(offset);
3244     uint32_t j2 = (bits & 0x00080000U) >> 19;
3245     uint32_t j1 = (bits & 0x00040000U) >> 18;
3246     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3247
3248     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3249   }
3250
3251   // R_ARM_ABS8: S + A
3252   static inline typename This::Status
3253   abs8(unsigned char* view,
3254        const Sized_relobj_file<32, big_endian>* object,
3255        const Symbol_value<32>* psymval)
3256   {
3257     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3258     Valtype* wv = reinterpret_cast<Valtype*>(view);
3259     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3260     int32_t addend = Bits<8>::sign_extend32(val);
3261     Arm_address x = psymval->value(object, addend);
3262     val = Bits<32>::bit_select32(val, x, 0xffU);
3263     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3264
3265     // R_ARM_ABS8 permits signed or unsigned results.
3266     return (Bits<8>::has_signed_unsigned_overflow32(x)
3267             ? This::STATUS_OVERFLOW
3268             : This::STATUS_OKAY);
3269   }
3270
3271   // R_ARM_THM_ABS5: S + A
3272   static inline typename This::Status
3273   thm_abs5(unsigned char* view,
3274        const Sized_relobj_file<32, big_endian>* object,
3275        const Symbol_value<32>* psymval)
3276   {
3277     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3278     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3279     Valtype* wv = reinterpret_cast<Valtype*>(view);
3280     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3281     Reltype addend = (val & 0x7e0U) >> 6;
3282     Reltype x = psymval->value(object, addend);
3283     val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3284     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3285     return (Bits<5>::has_overflow32(x)
3286             ? This::STATUS_OVERFLOW
3287             : This::STATUS_OKAY);
3288   }
3289
3290   // R_ARM_ABS12: S + A
3291   static inline typename This::Status
3292   abs12(unsigned char* view,
3293         const Sized_relobj_file<32, big_endian>* object,
3294         const Symbol_value<32>* psymval)
3295   {
3296     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3297     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3298     Valtype* wv = reinterpret_cast<Valtype*>(view);
3299     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3300     Reltype addend = val & 0x0fffU;
3301     Reltype x = psymval->value(object, addend);
3302     val = Bits<32>::bit_select32(val, x, 0x0fffU);
3303     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3304     return (Bits<12>::has_overflow32(x)
3305             ? This::STATUS_OVERFLOW
3306             : This::STATUS_OKAY);
3307   }
3308
3309   // R_ARM_ABS16: S + A
3310   static inline typename This::Status
3311   abs16(unsigned char* view,
3312         const Sized_relobj_file<32, big_endian>* object,
3313         const Symbol_value<32>* psymval)
3314   {
3315     typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3316     Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3317     int32_t addend = Bits<16>::sign_extend32(val);
3318     Arm_address x = psymval->value(object, addend);
3319     val = Bits<32>::bit_select32(val, x, 0xffffU);
3320     elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3321
3322     // R_ARM_ABS16 permits signed or unsigned results.
3323     return (Bits<16>::has_signed_unsigned_overflow32(x)
3324             ? This::STATUS_OVERFLOW
3325             : This::STATUS_OKAY);
3326   }
3327
3328   // R_ARM_ABS32: (S + A) | T
3329   static inline typename This::Status
3330   abs32(unsigned char* view,
3331         const Sized_relobj_file<32, big_endian>* object,
3332         const Symbol_value<32>* psymval,
3333         Arm_address thumb_bit)
3334   {
3335     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3336     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3337     Valtype x = psymval->value(object, addend) | thumb_bit;
3338     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3339     return This::STATUS_OKAY;
3340   }
3341
3342   // R_ARM_REL32: (S + A) | T - P
3343   static inline typename This::Status
3344   rel32(unsigned char* view,
3345         const Sized_relobj_file<32, big_endian>* object,
3346         const Symbol_value<32>* psymval,
3347         Arm_address address,
3348         Arm_address thumb_bit)
3349   {
3350     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3351     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3352     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3353     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3354     return This::STATUS_OKAY;
3355   }
3356
3357   // R_ARM_THM_JUMP24: (S + A) | T - P
3358   static typename This::Status
3359   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3360              const Symbol_value<32>* psymval, Arm_address address,
3361              Arm_address thumb_bit);
3362
3363   // R_ARM_THM_JUMP6: S + A â€“ P
3364   static inline typename This::Status
3365   thm_jump6(unsigned char* view,
3366             const Sized_relobj_file<32, big_endian>* object,
3367             const Symbol_value<32>* psymval,
3368             Arm_address address)
3369   {
3370     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3371     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3372     Valtype* wv = reinterpret_cast<Valtype*>(view);
3373     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3374     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3375     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3376     Reltype x = (psymval->value(object, addend) - address);
3377     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3378     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3379     // CZB does only forward jumps.
3380     return ((x > 0x007e)
3381             ? This::STATUS_OVERFLOW
3382             : This::STATUS_OKAY);
3383   }
3384
3385   // R_ARM_THM_JUMP8: S + A â€“ P
3386   static inline typename This::Status
3387   thm_jump8(unsigned char* view,
3388             const Sized_relobj_file<32, big_endian>* object,
3389             const Symbol_value<32>* psymval,
3390             Arm_address address)
3391   {
3392     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3393     Valtype* wv = reinterpret_cast<Valtype*>(view);
3394     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3395     int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3396     int32_t x = (psymval->value(object, addend) - address);
3397     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3398                                                 | ((x & 0x01fe) >> 1)));
3399     // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3400     return (Bits<9>::has_overflow32(x)
3401             ? This::STATUS_OVERFLOW
3402             : This::STATUS_OKAY);
3403   }
3404
3405   // R_ARM_THM_JUMP11: S + A â€“ P
3406   static inline typename This::Status
3407   thm_jump11(unsigned char* view,
3408             const Sized_relobj_file<32, big_endian>* object,
3409             const Symbol_value<32>* psymval,
3410             Arm_address address)
3411   {
3412     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3413     Valtype* wv = reinterpret_cast<Valtype*>(view);
3414     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3415     int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3416     int32_t x = (psymval->value(object, addend) - address);
3417     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3418                                                 | ((x & 0x0ffe) >> 1)));
3419     // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3420     return (Bits<12>::has_overflow32(x)
3421             ? This::STATUS_OVERFLOW
3422             : This::STATUS_OKAY);
3423   }
3424
3425   // R_ARM_BASE_PREL: B(S) + A - P
3426   static inline typename This::Status
3427   base_prel(unsigned char* view,
3428             Arm_address origin,
3429             Arm_address address)
3430   {
3431     Base::rel32(view, origin - address);
3432     return STATUS_OKAY;
3433   }
3434
3435   // R_ARM_BASE_ABS: B(S) + A
3436   static inline typename This::Status
3437   base_abs(unsigned char* view,
3438            Arm_address origin)
3439   {
3440     Base::rel32(view, origin);
3441     return STATUS_OKAY;
3442   }
3443
3444   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3445   static inline typename This::Status
3446   got_brel(unsigned char* view,
3447            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3448   {
3449     Base::rel32(view, got_offset);
3450     return This::STATUS_OKAY;
3451   }
3452
3453   // R_ARM_GOT_PREL: GOT(S) + A - P
3454   static inline typename This::Status
3455   got_prel(unsigned char* view,
3456            Arm_address got_entry,
3457            Arm_address address)
3458   {
3459     Base::rel32(view, got_entry - address);
3460     return This::STATUS_OKAY;
3461   }
3462
3463   // R_ARM_PREL: (S + A) | T - P
3464   static inline typename This::Status
3465   prel31(unsigned char* view,
3466          const Sized_relobj_file<32, big_endian>* object,
3467          const Symbol_value<32>* psymval,
3468          Arm_address address,
3469          Arm_address thumb_bit)
3470   {
3471     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3472     Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3473     Valtype addend = Bits<31>::sign_extend32(val);
3474     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3475     val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3476     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3477     return (Bits<31>::has_overflow32(x)
3478             ? This::STATUS_OVERFLOW
3479             : This::STATUS_OKAY);
3480   }
3481
3482   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3483   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3484   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3485   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3486   static inline typename This::Status
3487   movw(unsigned char* view,
3488        const Sized_relobj_file<32, big_endian>* object,
3489        const Symbol_value<32>* psymval,
3490        Arm_address relative_address_base,
3491        Arm_address thumb_bit,
3492        bool check_overflow)
3493   {
3494     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3495     Valtype* wv = reinterpret_cast<Valtype*>(view);
3496     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3497     Valtype addend = This::extract_arm_movw_movt_addend(val);
3498     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3499                  - relative_address_base);
3500     val = This::insert_val_arm_movw_movt(val, x);
3501     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3502     return ((check_overflow && Bits<16>::has_overflow32(x))
3503             ? This::STATUS_OVERFLOW
3504             : This::STATUS_OKAY);
3505   }
3506
3507   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3508   // R_ARM_MOVT_PREL: S + A - P
3509   // R_ARM_MOVT_BREL: S + A - B(S)
3510   static inline typename This::Status
3511   movt(unsigned char* view,
3512        const Sized_relobj_file<32, big_endian>* object,
3513        const Symbol_value<32>* psymval,
3514        Arm_address relative_address_base)
3515   {
3516     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3517     Valtype* wv = reinterpret_cast<Valtype*>(view);
3518     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3519     Valtype addend = This::extract_arm_movw_movt_addend(val);
3520     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3521     val = This::insert_val_arm_movw_movt(val, x);
3522     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3523     // FIXME: IHI0044D says that we should check for overflow.
3524     return This::STATUS_OKAY;
3525   }
3526
3527   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3528   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3529   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3530   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3531   static inline typename This::Status
3532   thm_movw(unsigned char* view,
3533            const Sized_relobj_file<32, big_endian>* object,
3534            const Symbol_value<32>* psymval,
3535            Arm_address relative_address_base,
3536            Arm_address thumb_bit,
3537            bool check_overflow)
3538   {
3539     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3540     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3541     Valtype* wv = reinterpret_cast<Valtype*>(view);
3542     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3543                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3544     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3545     Reltype x =
3546       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3547     val = This::insert_val_thumb_movw_movt(val, x);
3548     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3549     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3550     return ((check_overflow && Bits<16>::has_overflow32(x))
3551             ? This::STATUS_OVERFLOW
3552             : This::STATUS_OKAY);
3553   }
3554
3555   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3556   // R_ARM_THM_MOVT_PREL: S + A - P
3557   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3558   static inline typename This::Status
3559   thm_movt(unsigned char* view,
3560            const Sized_relobj_file<32, big_endian>* object,
3561            const Symbol_value<32>* psymval,
3562            Arm_address relative_address_base)
3563   {
3564     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3565     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3566     Valtype* wv = reinterpret_cast<Valtype*>(view);
3567     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3568                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3569     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3570     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3571     val = This::insert_val_thumb_movw_movt(val, x);
3572     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3573     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3574     return This::STATUS_OKAY;
3575   }
3576
3577   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3578   static inline typename This::Status
3579   thm_alu11(unsigned char* view,
3580             const Sized_relobj_file<32, big_endian>* object,
3581             const Symbol_value<32>* psymval,
3582             Arm_address address,
3583             Arm_address thumb_bit)
3584   {
3585     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3586     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3587     Valtype* wv = reinterpret_cast<Valtype*>(view);
3588     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3589                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3590
3591     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3592     // -----------------------------------------------------------------------
3593     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3594     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3595     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3596     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3597     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3598     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3599
3600     // Determine a sign for the addend.
3601     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3602                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3603     // Thumb2 addend encoding:
3604     // imm12 := i | imm3 | imm8
3605     int32_t addend = (insn & 0xff)
3606                      | ((insn & 0x00007000) >> 4)
3607                      | ((insn & 0x04000000) >> 15);
3608     // Apply a sign to the added.
3609     addend *= sign;
3610
3611     int32_t x = (psymval->value(object, addend) | thumb_bit)
3612                 - (address & 0xfffffffc);
3613     Reltype val = abs(x);
3614     // Mask out the value and a distinct part of the ADD/SUB opcode
3615     // (bits 7:5 of opword).
3616     insn = (insn & 0xfb0f8f00)
3617            | (val & 0xff)
3618            | ((val & 0x700) << 4)
3619            | ((val & 0x800) << 15);
3620     // Set the opcode according to whether the value to go in the
3621     // place is negative.
3622     if (x < 0)
3623       insn |= 0x00a00000;
3624
3625     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3626     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3627     return ((val > 0xfff) ?
3628             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3629   }
3630
3631   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3632   static inline typename This::Status
3633   thm_pc8(unsigned char* view,
3634           const Sized_relobj_file<32, big_endian>* object,
3635           const Symbol_value<32>* psymval,
3636           Arm_address address)
3637   {
3638     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3639     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3640     Valtype* wv = reinterpret_cast<Valtype*>(view);
3641     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3642     Reltype addend = ((insn & 0x00ff) << 2);
3643     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3644     Reltype val = abs(x);
3645     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3646
3647     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3648     return ((val > 0x03fc)
3649             ? This::STATUS_OVERFLOW
3650             : This::STATUS_OKAY);
3651   }
3652
3653   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3654   static inline typename This::Status
3655   thm_pc12(unsigned char* view,
3656            const Sized_relobj_file<32, big_endian>* object,
3657            const Symbol_value<32>* psymval,
3658            Arm_address address)
3659   {
3660     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3661     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3662     Valtype* wv = reinterpret_cast<Valtype*>(view);
3663     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3664                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3665     // Determine a sign for the addend (positive if the U bit is 1).
3666     const int sign = (insn & 0x00800000) ? 1 : -1;
3667     int32_t addend = (insn & 0xfff);
3668     // Apply a sign to the added.
3669     addend *= sign;
3670
3671     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3672     Reltype val = abs(x);
3673     // Mask out and apply the value and the U bit.
3674     insn = (insn & 0xff7ff000) | (val & 0xfff);
3675     // Set the U bit according to whether the value to go in the
3676     // place is positive.
3677     if (x >= 0)
3678       insn |= 0x00800000;
3679
3680     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3681     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3682     return ((val > 0xfff) ?
3683             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3684   }
3685
3686   // R_ARM_V4BX
3687   static inline typename This::Status
3688   v4bx(const Relocate_info<32, big_endian>* relinfo,
3689        unsigned char* view,
3690        const Arm_relobj<big_endian>* object,
3691        const Arm_address address,
3692        const bool is_interworking)
3693   {
3694
3695     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3696     Valtype* wv = reinterpret_cast<Valtype*>(view);
3697     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3698
3699     // Ensure that we have a BX instruction.
3700     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3701     const uint32_t reg = (val & 0xf);
3702     if (is_interworking && reg != 0xf)
3703       {
3704         Stub_table<big_endian>* stub_table =
3705             object->stub_table(relinfo->data_shndx);
3706         gold_assert(stub_table != NULL);
3707
3708         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3709         gold_assert(stub != NULL);
3710
3711         int32_t veneer_address =
3712             stub_table->address() + stub->offset() - 8 - address;
3713         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3714                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3715         // Replace with a branch to veneer (B <addr>)
3716         val = (val & 0xf0000000) | 0x0a000000
3717               | ((veneer_address >> 2) & 0x00ffffff);
3718       }
3719     else
3720       {
3721         // Preserve Rm (lowest four bits) and the condition code
3722         // (highest four bits). Other bits encode MOV PC,Rm.
3723         val = (val & 0xf000000f) | 0x01a0f000;
3724       }
3725     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3726     return This::STATUS_OKAY;
3727   }
3728
3729   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3730   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3731   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3732   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3733   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3734   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3735   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3736   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3737   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3738   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3739   static inline typename This::Status
3740   arm_grp_alu(unsigned char* view,
3741         const Sized_relobj_file<32, big_endian>* object,
3742         const Symbol_value<32>* psymval,
3743         const int group,
3744         Arm_address address,
3745         Arm_address thumb_bit,
3746         bool check_overflow)
3747   {
3748     gold_assert(group >= 0 && group < 3);
3749     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3750     Valtype* wv = reinterpret_cast<Valtype*>(view);
3751     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3752
3753     // ALU group relocations are allowed only for the ADD/SUB instructions.
3754     // (0x00800000 - ADD, 0x00400000 - SUB)
3755     const Valtype opcode = insn & 0x01e00000;
3756     if (opcode != 0x00800000 && opcode != 0x00400000)
3757       return This::STATUS_BAD_RELOC;
3758
3759     // Determine a sign for the addend.
3760     const int sign = (opcode == 0x00800000) ? 1 : -1;
3761     // shifter = rotate_imm * 2
3762     const uint32_t shifter = (insn & 0xf00) >> 7;
3763     // Initial addend value.
3764     int32_t addend = insn & 0xff;
3765     // Rotate addend right by shifter.
3766     addend = (addend >> shifter) | (addend << (32 - shifter));
3767     // Apply a sign to the added.
3768     addend *= sign;
3769
3770     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3771     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3772     // Check for overflow if required
3773     if (check_overflow
3774         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3775       return This::STATUS_OVERFLOW;
3776
3777     // Mask out the value and the ADD/SUB part of the opcode; take care
3778     // not to destroy the S bit.
3779     insn &= 0xff1ff000;
3780     // Set the opcode according to whether the value to go in the
3781     // place is negative.
3782     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3783     // Encode the offset (encoded Gn).
3784     insn |= gn;
3785
3786     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3787     return This::STATUS_OKAY;
3788   }
3789
3790   // R_ARM_LDR_PC_G0: S + A - P
3791   // R_ARM_LDR_PC_G1: S + A - P
3792   // R_ARM_LDR_PC_G2: S + A - P
3793   // R_ARM_LDR_SB_G0: S + A - B(S)
3794   // R_ARM_LDR_SB_G1: S + A - B(S)
3795   // R_ARM_LDR_SB_G2: S + A - B(S)
3796   static inline typename This::Status
3797   arm_grp_ldr(unsigned char* view,
3798         const Sized_relobj_file<32, big_endian>* object,
3799         const Symbol_value<32>* psymval,
3800         const int group,
3801         Arm_address address)
3802   {
3803     gold_assert(group >= 0 && group < 3);
3804     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3805     Valtype* wv = reinterpret_cast<Valtype*>(view);
3806     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3807
3808     const int sign = (insn & 0x00800000) ? 1 : -1;
3809     int32_t addend = (insn & 0xfff) * sign;
3810     int32_t x = (psymval->value(object, addend) - address);
3811     // Calculate the relevant G(n-1) value to obtain this stage residual.
3812     Valtype residual =
3813         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3814     if (residual >= 0x1000)
3815       return This::STATUS_OVERFLOW;
3816
3817     // Mask out the value and U bit.
3818     insn &= 0xff7ff000;
3819     // Set the U bit for non-negative values.
3820     if (x >= 0)
3821       insn |= 0x00800000;
3822     insn |= residual;
3823
3824     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3825     return This::STATUS_OKAY;
3826   }
3827
3828   // R_ARM_LDRS_PC_G0: S + A - P
3829   // R_ARM_LDRS_PC_G1: S + A - P
3830   // R_ARM_LDRS_PC_G2: S + A - P
3831   // R_ARM_LDRS_SB_G0: S + A - B(S)
3832   // R_ARM_LDRS_SB_G1: S + A - B(S)
3833   // R_ARM_LDRS_SB_G2: S + A - B(S)
3834   static inline typename This::Status
3835   arm_grp_ldrs(unsigned char* view,
3836         const Sized_relobj_file<32, big_endian>* object,
3837         const Symbol_value<32>* psymval,
3838         const int group,
3839         Arm_address address)
3840   {
3841     gold_assert(group >= 0 && group < 3);
3842     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3843     Valtype* wv = reinterpret_cast<Valtype*>(view);
3844     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3845
3846     const int sign = (insn & 0x00800000) ? 1 : -1;
3847     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3848     int32_t x = (psymval->value(object, addend) - address);
3849     // Calculate the relevant G(n-1) value to obtain this stage residual.
3850     Valtype residual =
3851         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3852    if (residual >= 0x100)
3853       return This::STATUS_OVERFLOW;
3854
3855     // Mask out the value and U bit.
3856     insn &= 0xff7ff0f0;
3857     // Set the U bit for non-negative values.
3858     if (x >= 0)
3859       insn |= 0x00800000;
3860     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3861
3862     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3863     return This::STATUS_OKAY;
3864   }
3865
3866   // R_ARM_LDC_PC_G0: S + A - P
3867   // R_ARM_LDC_PC_G1: S + A - P
3868   // R_ARM_LDC_PC_G2: S + A - P
3869   // R_ARM_LDC_SB_G0: S + A - B(S)
3870   // R_ARM_LDC_SB_G1: S + A - B(S)
3871   // R_ARM_LDC_SB_G2: S + A - B(S)
3872   static inline typename This::Status
3873   arm_grp_ldc(unsigned char* view,
3874       const Sized_relobj_file<32, big_endian>* object,
3875       const Symbol_value<32>* psymval,
3876       const int group,
3877       Arm_address address)
3878   {
3879     gold_assert(group >= 0 && group < 3);
3880     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3881     Valtype* wv = reinterpret_cast<Valtype*>(view);
3882     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3883
3884     const int sign = (insn & 0x00800000) ? 1 : -1;
3885     int32_t addend = ((insn & 0xff) << 2) * sign;
3886     int32_t x = (psymval->value(object, addend) - address);
3887     // Calculate the relevant G(n-1) value to obtain this stage residual.
3888     Valtype residual =
3889       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3890     if ((residual & 0x3) != 0 || residual >= 0x400)
3891       return This::STATUS_OVERFLOW;
3892
3893     // Mask out the value and U bit.
3894     insn &= 0xff7fff00;
3895     // Set the U bit for non-negative values.
3896     if (x >= 0)
3897       insn |= 0x00800000;
3898     insn |= (residual >> 2);
3899
3900     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3901     return This::STATUS_OKAY;
3902   }
3903 };
3904
3905 // Relocate ARM long branches.  This handles relocation types
3906 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3907 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3908 // undefined and we do not use PLT in this relocation.  In such a case,
3909 // the branch is converted into an NOP.
3910
3911 template<bool big_endian>
3912 typename Arm_relocate_functions<big_endian>::Status
3913 Arm_relocate_functions<big_endian>::arm_branch_common(
3914     unsigned int r_type,
3915     const Relocate_info<32, big_endian>* relinfo,
3916     unsigned char* view,
3917     const Sized_symbol<32>* gsym,
3918     const Arm_relobj<big_endian>* object,
3919     unsigned int r_sym,
3920     const Symbol_value<32>* psymval,
3921     Arm_address address,
3922     Arm_address thumb_bit,
3923     bool is_weakly_undefined_without_plt)
3924 {
3925   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3926   Valtype* wv = reinterpret_cast<Valtype*>(view);
3927   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3928
3929   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3930                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3931   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3932   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3933                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3934   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3935   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3936
3937   // Check that the instruction is valid.
3938   if (r_type == elfcpp::R_ARM_CALL)
3939     {
3940       if (!insn_is_uncond_bl && !insn_is_blx)
3941         return This::STATUS_BAD_RELOC;
3942     }
3943   else if (r_type == elfcpp::R_ARM_JUMP24)
3944     {
3945       if (!insn_is_b && !insn_is_cond_bl)
3946         return This::STATUS_BAD_RELOC;
3947     }
3948   else if (r_type == elfcpp::R_ARM_PLT32)
3949     {
3950       if (!insn_is_any_branch)
3951         return This::STATUS_BAD_RELOC;
3952     }
3953   else if (r_type == elfcpp::R_ARM_XPC25)
3954     {
3955       // FIXME: AAELF document IH0044C does not say much about it other
3956       // than it being obsolete.
3957       if (!insn_is_any_branch)
3958         return This::STATUS_BAD_RELOC;
3959     }
3960   else
3961     gold_unreachable();
3962
3963   // A branch to an undefined weak symbol is turned into a jump to
3964   // the next instruction unless a PLT entry will be created.
3965   // Do the same for local undefined symbols.
3966   // The jump to the next instruction is optimized as a NOP depending
3967   // on the architecture.
3968   const Target_arm<big_endian>* arm_target =
3969     Target_arm<big_endian>::default_target();
3970   if (is_weakly_undefined_without_plt)
3971     {
3972       gold_assert(!parameters->options().relocatable());
3973       Valtype cond = val & 0xf0000000U;
3974       if (arm_target->may_use_arm_nop())
3975         val = cond | 0x0320f000;
3976       else
3977         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3978       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3979       return This::STATUS_OKAY;
3980     }
3981
3982   Valtype addend = Bits<26>::sign_extend32(val << 2);
3983   Valtype branch_target = psymval->value(object, addend);
3984   int32_t branch_offset = branch_target - address;
3985
3986   // We need a stub if the branch offset is too large or if we need
3987   // to switch mode.
3988   bool may_use_blx = arm_target->may_use_v5t_interworking();
3989   Reloc_stub* stub = NULL;
3990
3991   if (!parameters->options().relocatable()
3992       && (Bits<26>::has_overflow32(branch_offset)
3993           || ((thumb_bit != 0)
3994               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3995     {
3996       Valtype unadjusted_branch_target = psymval->value(object, 0);
3997
3998       Stub_type stub_type =
3999         Reloc_stub::stub_type_for_reloc(r_type, address,
4000                                         unadjusted_branch_target,
4001                                         (thumb_bit != 0));
4002       if (stub_type != arm_stub_none)
4003         {
4004           Stub_table<big_endian>* stub_table =
4005             object->stub_table(relinfo->data_shndx);
4006           gold_assert(stub_table != NULL);
4007
4008           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4009           stub = stub_table->find_reloc_stub(stub_key);
4010           gold_assert(stub != NULL);
4011           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4012           branch_target = stub_table->address() + stub->offset() + addend;
4013           branch_offset = branch_target - address;
4014           gold_assert(!Bits<26>::has_overflow32(branch_offset));
4015         }
4016     }
4017
4018   // At this point, if we still need to switch mode, the instruction
4019   // must either be a BLX or a BL that can be converted to a BLX.
4020   if (thumb_bit != 0)
4021     {
4022       // Turn BL to BLX.
4023       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4024       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4025     }
4026
4027   val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
4028   elfcpp::Swap<32, big_endian>::writeval(wv, val);
4029   return (Bits<26>::has_overflow32(branch_offset)
4030           ? This::STATUS_OVERFLOW
4031           : This::STATUS_OKAY);
4032 }
4033
4034 // Relocate THUMB long branches.  This handles relocation types
4035 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4036 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4037 // undefined and we do not use PLT in this relocation.  In such a case,
4038 // the branch is converted into an NOP.
4039
4040 template<bool big_endian>
4041 typename Arm_relocate_functions<big_endian>::Status
4042 Arm_relocate_functions<big_endian>::thumb_branch_common(
4043     unsigned int r_type,
4044     const Relocate_info<32, big_endian>* relinfo,
4045     unsigned char* view,
4046     const Sized_symbol<32>* gsym,
4047     const Arm_relobj<big_endian>* object,
4048     unsigned int r_sym,
4049     const Symbol_value<32>* psymval,
4050     Arm_address address,
4051     Arm_address thumb_bit,
4052     bool is_weakly_undefined_without_plt)
4053 {
4054   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4055   Valtype* wv = reinterpret_cast<Valtype*>(view);
4056   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4057   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4058
4059   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4060   // into account.
4061   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4062   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4063
4064   // Check that the instruction is valid.
4065   if (r_type == elfcpp::R_ARM_THM_CALL)
4066     {
4067       if (!is_bl_insn && !is_blx_insn)
4068         return This::STATUS_BAD_RELOC;
4069     }
4070   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4071     {
4072       // This cannot be a BLX.
4073       if (!is_bl_insn)
4074         return This::STATUS_BAD_RELOC;
4075     }
4076   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4077     {
4078       // Check for Thumb to Thumb call.
4079       if (!is_blx_insn)
4080         return This::STATUS_BAD_RELOC;
4081       if (thumb_bit != 0)
4082         {
4083           gold_warning(_("%s: Thumb BLX instruction targets "
4084                          "thumb function '%s'."),
4085                          object->name().c_str(),
4086                          (gsym ? gsym->name() : "(local)"));
4087           // Convert BLX to BL.
4088           lower_insn |= 0x1000U;
4089         }
4090     }
4091   else
4092     gold_unreachable();
4093
4094   // A branch to an undefined weak symbol is turned into a jump to
4095   // the next instruction unless a PLT entry will be created.
4096   // The jump to the next instruction is optimized as a NOP.W for
4097   // Thumb-2 enabled architectures.
4098   const Target_arm<big_endian>* arm_target =
4099     Target_arm<big_endian>::default_target();
4100   if (is_weakly_undefined_without_plt)
4101     {
4102       gold_assert(!parameters->options().relocatable());
4103       if (arm_target->may_use_thumb2_nop())
4104         {
4105           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4106           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4107         }
4108       else
4109         {
4110           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4111           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4112         }
4113       return This::STATUS_OKAY;
4114     }
4115
4116   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4117   Arm_address branch_target = psymval->value(object, addend);
4118
4119   // For BLX, bit 1 of target address comes from bit 1 of base address.
4120   bool may_use_blx = arm_target->may_use_v5t_interworking();
4121   if (thumb_bit == 0 && may_use_blx)
4122     branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4123
4124   int32_t branch_offset = branch_target - address;
4125
4126   // We need a stub if the branch offset is too large or if we need
4127   // to switch mode.
4128   bool thumb2 = arm_target->using_thumb2();
4129   if (!parameters->options().relocatable()
4130       && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4131           || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4132           || ((thumb_bit == 0)
4133               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4134                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4135     {
4136       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4137
4138       Stub_type stub_type =
4139         Reloc_stub::stub_type_for_reloc(r_type, address,
4140                                         unadjusted_branch_target,
4141                                         (thumb_bit != 0));
4142
4143       if (stub_type != arm_stub_none)
4144         {
4145           Stub_table<big_endian>* stub_table =
4146             object->stub_table(relinfo->data_shndx);
4147           gold_assert(stub_table != NULL);
4148
4149           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4150           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4151           gold_assert(stub != NULL);
4152           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4153           branch_target = stub_table->address() + stub->offset() + addend;
4154           if (thumb_bit == 0 && may_use_blx)
4155             branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4156           branch_offset = branch_target - address;
4157         }
4158     }
4159
4160   // At this point, if we still need to switch mode, the instruction
4161   // must either be a BLX or a BL that can be converted to a BLX.
4162   if (thumb_bit == 0)
4163     {
4164       gold_assert(may_use_blx
4165                   && (r_type == elfcpp::R_ARM_THM_CALL
4166                       || r_type == elfcpp::R_ARM_THM_XPC22));
4167       // Make sure this is a BLX.
4168       lower_insn &= ~0x1000U;
4169     }
4170   else
4171     {
4172       // Make sure this is a BL.
4173       lower_insn |= 0x1000U;
4174     }
4175
4176   // For a BLX instruction, make sure that the relocation is rounded up
4177   // to a word boundary.  This follows the semantics of the instruction
4178   // which specifies that bit 1 of the target address will come from bit
4179   // 1 of the base address.
4180   if ((lower_insn & 0x5000U) == 0x4000U)
4181     gold_assert((branch_offset & 3) == 0);
4182
4183   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4184   // We use the Thumb-2 encoding, which is safe even if dealing with
4185   // a Thumb-1 instruction by virtue of our overflow check above.  */
4186   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4187   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4188
4189   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4190   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4191
4192   gold_assert(!Bits<25>::has_overflow32(branch_offset));
4193
4194   return ((thumb2
4195            ? Bits<25>::has_overflow32(branch_offset)
4196            : Bits<23>::has_overflow32(branch_offset))
4197           ? This::STATUS_OVERFLOW
4198           : This::STATUS_OKAY);
4199 }
4200
4201 // Relocate THUMB-2 long conditional branches.
4202 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4203 // undefined and we do not use PLT in this relocation.  In such a case,
4204 // the branch is converted into an NOP.
4205
4206 template<bool big_endian>
4207 typename Arm_relocate_functions<big_endian>::Status
4208 Arm_relocate_functions<big_endian>::thm_jump19(
4209     unsigned char* view,
4210     const Arm_relobj<big_endian>* object,
4211     const Symbol_value<32>* psymval,
4212     Arm_address address,
4213     Arm_address thumb_bit)
4214 {
4215   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4216   Valtype* wv = reinterpret_cast<Valtype*>(view);
4217   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4218   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4219   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4220
4221   Arm_address branch_target = psymval->value(object, addend);
4222   int32_t branch_offset = branch_target - address;
4223
4224   // ??? Should handle interworking?  GCC might someday try to
4225   // use this for tail calls.
4226   // FIXME: We do support thumb entry to PLT yet.
4227   if (thumb_bit == 0)
4228     {
4229       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4230       return This::STATUS_BAD_RELOC;
4231     }
4232
4233   // Put RELOCATION back into the insn.
4234   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4235   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4236
4237   // Put the relocated value back in the object file:
4238   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4239   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4240
4241   return (Bits<21>::has_overflow32(branch_offset)
4242           ? This::STATUS_OVERFLOW
4243           : This::STATUS_OKAY);
4244 }
4245
4246 // Get the GOT section, creating it if necessary.
4247
4248 template<bool big_endian>
4249 Arm_output_data_got<big_endian>*
4250 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4251 {
4252   if (this->got_ == NULL)
4253     {
4254       gold_assert(symtab != NULL && layout != NULL);
4255
4256       // When using -z now, we can treat .got as a relro section.
4257       // Without -z now, it is modified after program startup by lazy
4258       // PLT relocations.
4259       bool is_got_relro = parameters->options().now();
4260       Output_section_order got_order = (is_got_relro
4261                                         ? ORDER_RELRO_LAST
4262                                         : ORDER_DATA);
4263
4264       // Unlike some targets (.e.g x86), ARM does not use separate .got and
4265       // .got.plt sections in output.  The output .got section contains both
4266       // PLT and non-PLT GOT entries.
4267       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4268
4269       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4270                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4271                                       this->got_, got_order, is_got_relro);
4272
4273       // The old GNU linker creates a .got.plt section.  We just
4274       // create another set of data in the .got section.  Note that we
4275       // always create a PLT if we create a GOT, although the PLT
4276       // might be empty.
4277       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4278       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4279                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4280                                       this->got_plt_, got_order, is_got_relro);
4281
4282       // The first three entries are reserved.
4283       this->got_plt_->set_current_data_size(3 * 4);
4284
4285       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4286       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4287                                     Symbol_table::PREDEFINED,
4288                                     this->got_plt_,
4289                                     0, 0, elfcpp::STT_OBJECT,
4290                                     elfcpp::STB_LOCAL,
4291                                     elfcpp::STV_HIDDEN, 0,
4292                                     false, false);
4293
4294       // If there are any IRELATIVE relocations, they get GOT entries
4295       // in .got.plt after the jump slot entries.
4296       this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4297       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4298                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4299                                       this->got_irelative_,
4300                                       got_order, is_got_relro);
4301
4302     }
4303   return this->got_;
4304 }
4305
4306 // Get the dynamic reloc section, creating it if necessary.
4307
4308 template<bool big_endian>
4309 typename Target_arm<big_endian>::Reloc_section*
4310 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4311 {
4312   if (this->rel_dyn_ == NULL)
4313     {
4314       gold_assert(layout != NULL);
4315       // Create both relocation sections in the same place, so as to ensure
4316       // their relative order in the output section.
4317       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4318       this->rel_irelative_ = new Reloc_section(false);
4319       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4320                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4321                                       ORDER_DYNAMIC_RELOCS, false);
4322       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4323                                       elfcpp::SHF_ALLOC, this->rel_irelative_,
4324                                       ORDER_DYNAMIC_RELOCS, false);
4325     }
4326   return this->rel_dyn_;
4327 }
4328
4329
4330 // Get the section to use for IRELATIVE relocs, creating it if necessary.  These
4331 // go in .rela.dyn, but only after all other dynamic relocations.  They need to
4332 // follow the other dynamic relocations so that they can refer to global
4333 // variables initialized by those relocs.
4334
4335 template<bool big_endian>
4336 typename Target_arm<big_endian>::Reloc_section*
4337 Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4338 {
4339   if (this->rel_irelative_ == NULL)
4340     {
4341       // Delegate the creation to rel_dyn_section so as to ensure their order in
4342       // the output section.
4343       this->rel_dyn_section(layout);
4344       gold_assert(this->rel_irelative_ != NULL
4345                   && (this->rel_dyn_->output_section()
4346                       == this->rel_irelative_->output_section()));
4347     }
4348   return this->rel_irelative_;
4349 }
4350
4351
4352 // Insn_template methods.
4353
4354 // Return byte size of an instruction template.
4355
4356 size_t
4357 Insn_template::size() const
4358 {
4359   switch (this->type())
4360     {
4361     case THUMB16_TYPE:
4362     case THUMB16_SPECIAL_TYPE:
4363       return 2;
4364     case ARM_TYPE:
4365     case THUMB32_TYPE:
4366     case DATA_TYPE:
4367       return 4;
4368     default:
4369       gold_unreachable();
4370     }
4371 }
4372
4373 // Return alignment of an instruction template.
4374
4375 unsigned
4376 Insn_template::alignment() const
4377 {
4378   switch (this->type())
4379     {
4380     case THUMB16_TYPE:
4381     case THUMB16_SPECIAL_TYPE:
4382     case THUMB32_TYPE:
4383       return 2;
4384     case ARM_TYPE:
4385     case DATA_TYPE:
4386       return 4;
4387     default:
4388       gold_unreachable();
4389     }
4390 }
4391
4392 // Stub_template methods.
4393
4394 Stub_template::Stub_template(
4395     Stub_type type, const Insn_template* insns,
4396      size_t insn_count)
4397   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4398     entry_in_thumb_mode_(false), relocs_()
4399 {
4400   off_t offset = 0;
4401
4402   // Compute byte size and alignment of stub template.
4403   for (size_t i = 0; i < insn_count; i++)
4404     {
4405       unsigned insn_alignment = insns[i].alignment();
4406       size_t insn_size = insns[i].size();
4407       gold_assert((offset & (insn_alignment - 1)) == 0);
4408       this->alignment_ = std::max(this->alignment_, insn_alignment);
4409       switch (insns[i].type())
4410         {
4411         case Insn_template::THUMB16_TYPE:
4412         case Insn_template::THUMB16_SPECIAL_TYPE:
4413           if (i == 0)
4414             this->entry_in_thumb_mode_ = true;
4415           break;
4416
4417         case Insn_template::THUMB32_TYPE:
4418           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4419             this->relocs_.push_back(Reloc(i, offset));
4420           if (i == 0)
4421             this->entry_in_thumb_mode_ = true;
4422           break;
4423
4424         case Insn_template::ARM_TYPE:
4425           // Handle cases where the target is encoded within the
4426           // instruction.
4427           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4428             this->relocs_.push_back(Reloc(i, offset));
4429           break;
4430
4431         case Insn_template::DATA_TYPE:
4432           // Entry point cannot be data.
4433           gold_assert(i != 0);
4434           this->relocs_.push_back(Reloc(i, offset));
4435           break;
4436
4437         default:
4438           gold_unreachable();
4439         }
4440       offset += insn_size;
4441     }
4442   this->size_ = offset;
4443 }
4444
4445 // Stub methods.
4446
4447 // Template to implement do_write for a specific target endianness.
4448
4449 template<bool big_endian>
4450 void inline
4451 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4452 {
4453   const Stub_template* stub_template = this->stub_template();
4454   const Insn_template* insns = stub_template->insns();
4455
4456   // FIXME:  We do not handle BE8 encoding yet.
4457   unsigned char* pov = view;
4458   for (size_t i = 0; i < stub_template->insn_count(); i++)
4459     {
4460       switch (insns[i].type())
4461         {
4462         case Insn_template::THUMB16_TYPE:
4463           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4464           break;
4465         case Insn_template::THUMB16_SPECIAL_TYPE:
4466           elfcpp::Swap<16, big_endian>::writeval(
4467               pov,
4468               this->thumb16_special(i));
4469           break;
4470         case Insn_template::THUMB32_TYPE:
4471           {
4472             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4473             uint32_t lo = insns[i].data() & 0xffff;
4474             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4475             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4476           }
4477           break;
4478         case Insn_template::ARM_TYPE:
4479         case Insn_template::DATA_TYPE:
4480           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4481           break;
4482         default:
4483           gold_unreachable();
4484         }
4485       pov += insns[i].size();
4486     }
4487   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4488 }
4489
4490 // Reloc_stub::Key methods.
4491
4492 // Dump a Key as a string for debugging.
4493
4494 std::string
4495 Reloc_stub::Key::name() const
4496 {
4497   if (this->r_sym_ == invalid_index)
4498     {
4499       // Global symbol key name
4500       // <stub-type>:<symbol name>:<addend>.
4501       const std::string sym_name = this->u_.symbol->name();
4502       // We need to print two hex number and two colons.  So just add 100 bytes
4503       // to the symbol name size.
4504       size_t len = sym_name.size() + 100;
4505       char* buffer = new char[len];
4506       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4507                        sym_name.c_str(), this->addend_);
4508       gold_assert(c > 0 && c < static_cast<int>(len));
4509       delete[] buffer;
4510       return std::string(buffer);
4511     }
4512   else
4513     {
4514       // local symbol key name
4515       // <stub-type>:<object>:<r_sym>:<addend>.
4516       const size_t len = 200;
4517       char buffer[len];
4518       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4519                        this->u_.relobj, this->r_sym_, this->addend_);
4520       gold_assert(c > 0 && c < static_cast<int>(len));
4521       return std::string(buffer);
4522     }
4523 }
4524
4525 // Reloc_stub methods.
4526
4527 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4528 // LOCATION to DESTINATION.
4529 // This code is based on the arm_type_of_stub function in
4530 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4531 // class simple.
4532
4533 Stub_type
4534 Reloc_stub::stub_type_for_reloc(
4535    unsigned int r_type,
4536    Arm_address location,
4537    Arm_address destination,
4538    bool target_is_thumb)
4539 {
4540   Stub_type stub_type = arm_stub_none;
4541
4542   // This is a bit ugly but we want to avoid using a templated class for
4543   // big and little endianities.
4544   bool may_use_blx;
4545   bool should_force_pic_veneer;
4546   bool thumb2;
4547   bool thumb_only;
4548   if (parameters->target().is_big_endian())
4549     {
4550       const Target_arm<true>* big_endian_target =
4551         Target_arm<true>::default_target();
4552       may_use_blx = big_endian_target->may_use_v5t_interworking();
4553       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4554       thumb2 = big_endian_target->using_thumb2();
4555       thumb_only = big_endian_target->using_thumb_only();
4556     }
4557   else
4558     {
4559       const Target_arm<false>* little_endian_target =
4560         Target_arm<false>::default_target();
4561       may_use_blx = little_endian_target->may_use_v5t_interworking();
4562       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4563       thumb2 = little_endian_target->using_thumb2();
4564       thumb_only = little_endian_target->using_thumb_only();
4565     }
4566
4567   int64_t branch_offset;
4568   bool output_is_position_independent =
4569       parameters->options().output_is_position_independent();
4570   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4571     {
4572       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4573       // base address (instruction address + 4).
4574       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4575         destination = Bits<32>::bit_select32(destination, location, 0x2);
4576       branch_offset = static_cast<int64_t>(destination) - location;
4577
4578       // Handle cases where:
4579       // - this call goes too far (different Thumb/Thumb2 max
4580       //   distance)
4581       // - it's a Thumb->Arm call and blx is not available, or it's a
4582       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4583       if ((!thumb2
4584             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4585                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4586           || (thumb2
4587               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4588                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4589           || ((!target_is_thumb)
4590               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4591                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4592         {
4593           if (target_is_thumb)
4594             {
4595               // Thumb to thumb.
4596               if (!thumb_only)
4597                 {
4598                   stub_type = (output_is_position_independent
4599                                || should_force_pic_veneer)
4600                     // PIC stubs.
4601                     ? ((may_use_blx
4602                         && (r_type == elfcpp::R_ARM_THM_CALL))
4603                        // V5T and above. Stub starts with ARM code, so
4604                        // we must be able to switch mode before
4605                        // reaching it, which is only possible for 'bl'
4606                        // (ie R_ARM_THM_CALL relocation).
4607                        ? arm_stub_long_branch_any_thumb_pic
4608                        // On V4T, use Thumb code only.
4609                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4610
4611                     // non-PIC stubs.
4612                     : ((may_use_blx
4613                         && (r_type == elfcpp::R_ARM_THM_CALL))
4614                        ? arm_stub_long_branch_any_any // V5T and above.
4615                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4616                 }
4617               else
4618                 {
4619                   stub_type = (output_is_position_independent
4620                                || should_force_pic_veneer)
4621                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4622                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4623                 }
4624             }
4625           else
4626             {
4627               // Thumb to arm.
4628
4629               // FIXME: We should check that the input section is from an
4630               // object that has interwork enabled.
4631
4632               stub_type = (output_is_position_independent
4633                            || should_force_pic_veneer)
4634                 // PIC stubs.
4635                 ? ((may_use_blx
4636                     && (r_type == elfcpp::R_ARM_THM_CALL))
4637                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4638                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4639
4640                 // non-PIC stubs.
4641                 : ((may_use_blx
4642                     && (r_type == elfcpp::R_ARM_THM_CALL))
4643                    ? arm_stub_long_branch_any_any       // V5T and above.
4644                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4645
4646               // Handle v4t short branches.
4647               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4648                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4649                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4650                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4651             }
4652         }
4653     }
4654   else if (r_type == elfcpp::R_ARM_CALL
4655            || r_type == elfcpp::R_ARM_JUMP24
4656            || r_type == elfcpp::R_ARM_PLT32)
4657     {
4658       branch_offset = static_cast<int64_t>(destination) - location;
4659       if (target_is_thumb)
4660         {
4661           // Arm to thumb.
4662
4663           // FIXME: We should check that the input section is from an
4664           // object that has interwork enabled.
4665
4666           // We have an extra 2-bytes reach because of
4667           // the mode change (bit 24 (H) of BLX encoding).
4668           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4669               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4670               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4671               || (r_type == elfcpp::R_ARM_JUMP24)
4672               || (r_type == elfcpp::R_ARM_PLT32))
4673             {
4674               stub_type = (output_is_position_independent
4675                            || should_force_pic_veneer)
4676                 // PIC stubs.
4677                 ? (may_use_blx
4678                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4679                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4680
4681                 // non-PIC stubs.
4682                 : (may_use_blx
4683                    ? arm_stub_long_branch_any_any       // V5T and above.
4684                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4685             }
4686         }
4687       else
4688         {
4689           // Arm to arm.
4690           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4691               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4692             {
4693               stub_type = (output_is_position_independent
4694                            || should_force_pic_veneer)
4695                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4696                 : arm_stub_long_branch_any_any;         /// non-PIC.
4697             }
4698         }
4699     }
4700
4701   return stub_type;
4702 }
4703
4704 // Cortex_a8_stub methods.
4705
4706 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4707 // I is the position of the instruction template in the stub template.
4708
4709 uint16_t
4710 Cortex_a8_stub::do_thumb16_special(size_t i)
4711 {
4712   // The only use of this is to copy condition code from a conditional
4713   // branch being worked around to the corresponding conditional branch in
4714   // to the stub.
4715   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4716               && i == 0);
4717   uint16_t data = this->stub_template()->insns()[i].data();
4718   gold_assert((data & 0xff00U) == 0xd000U);
4719   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4720   return data;
4721 }
4722
4723 // Stub_factory methods.
4724
4725 Stub_factory::Stub_factory()
4726 {
4727   // The instruction template sequences are declared as static
4728   // objects and initialized first time the constructor runs.
4729
4730   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4731   // to reach the stub if necessary.
4732   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4733     {
4734       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4735       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4736                                                 // dcd   R_ARM_ABS32(X)
4737     };
4738
4739   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4740   // available.
4741   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4742     {
4743       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4744       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4745       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4746                                                 // dcd   R_ARM_ABS32(X)
4747     };
4748
4749   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4750   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4751     {
4752       Insn_template::thumb16_insn(0xb401),      // push {r0}
4753       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4754       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4755       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4756       Insn_template::thumb16_insn(0x4760),      // bx   ip
4757       Insn_template::thumb16_insn(0xbf00),      // nop
4758       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4759                                                 // dcd  R_ARM_ABS32(X)
4760     };
4761
4762   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4763   // allowed.
4764   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4765     {
4766       Insn_template::thumb16_insn(0x4778),      // bx   pc
4767       Insn_template::thumb16_insn(0x46c0),      // nop
4768       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4769       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4770       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4771                                                 // dcd  R_ARM_ABS32(X)
4772     };
4773
4774   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4775   // available.
4776   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4777     {
4778       Insn_template::thumb16_insn(0x4778),      // bx   pc
4779       Insn_template::thumb16_insn(0x46c0),      // nop
4780       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4781       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4782                                                 // dcd   R_ARM_ABS32(X)
4783     };
4784
4785   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4786   // one, when the destination is close enough.
4787   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4788     {
4789       Insn_template::thumb16_insn(0x4778),              // bx   pc
4790       Insn_template::thumb16_insn(0x46c0),              // nop
4791       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4792     };
4793
4794   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4795   // blx to reach the stub if necessary.
4796   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4797     {
4798       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4799       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4800       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4801                                                 // dcd   R_ARM_REL32(X-4)
4802     };
4803
4804   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4805   // blx to reach the stub if necessary.  We can not add into pc;
4806   // it is not guaranteed to mode switch (different in ARMv6 and
4807   // ARMv7).
4808   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4809     {
4810       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4811       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4812       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4813       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4814                                                 // dcd   R_ARM_REL32(X)
4815     };
4816
4817   // V4T ARM -> ARM long branch stub, PIC.
4818   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4819     {
4820       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4821       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4822       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4823       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4824                                                 // dcd   R_ARM_REL32(X)
4825     };
4826
4827   // V4T Thumb -> ARM long branch stub, PIC.
4828   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4829     {
4830       Insn_template::thumb16_insn(0x4778),      // bx   pc
4831       Insn_template::thumb16_insn(0x46c0),      // nop
4832       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4833       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4834       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4835                                                 // dcd  R_ARM_REL32(X)
4836     };
4837
4838   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4839   // architectures.
4840   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4841     {
4842       Insn_template::thumb16_insn(0xb401),      // push {r0}
4843       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4844       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4845       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4846       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4847       Insn_template::thumb16_insn(0x4760),      // bx   ip
4848       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4849                                                 // dcd  R_ARM_REL32(X)
4850     };
4851
4852   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4853   // allowed.
4854   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4855     {
4856       Insn_template::thumb16_insn(0x4778),      // bx   pc
4857       Insn_template::thumb16_insn(0x46c0),      // nop
4858       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4859       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4860       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4861       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4862                                                 // dcd  R_ARM_REL32(X)
4863     };
4864
4865   // Cortex-A8 erratum-workaround stubs.
4866
4867   // Stub used for conditional branches (which may be beyond +/-1MB away,
4868   // so we can't use a conditional branch to reach this stub).
4869
4870   // original code:
4871   //
4872   //    b<cond> X
4873   // after:
4874   //
4875   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4876     {
4877       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4878       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4879       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4880                                                         //      b.w X
4881     };
4882
4883   // Stub used for b.w and bl.w instructions.
4884
4885   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4886     {
4887       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4888     };
4889
4890   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4891     {
4892       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4893     };
4894
4895   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4896   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4897   // the real destination using an ARM-mode branch.
4898   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4899     {
4900       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4901     };
4902
4903   // Stub used to provide an interworking for R_ARM_V4BX relocation
4904   // (bx r[n] instruction).
4905   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4906     {
4907       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4908       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4909       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4910     };
4911
4912   // Fill in the stub template look-up table.  Stub templates are constructed
4913   // per instance of Stub_factory for fast look-up without locking
4914   // in a thread-enabled environment.
4915
4916   this->stub_templates_[arm_stub_none] =
4917     new Stub_template(arm_stub_none, NULL, 0);
4918
4919 #define DEF_STUB(x)     \
4920   do \
4921     { \
4922       size_t array_size \
4923         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4924       Stub_type type = arm_stub_##x; \
4925       this->stub_templates_[type] = \
4926         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4927     } \
4928   while (0);
4929
4930   DEF_STUBS
4931 #undef DEF_STUB
4932 }
4933
4934 // Stub_table methods.
4935
4936 // Remove all Cortex-A8 stub.
4937
4938 template<bool big_endian>
4939 void
4940 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4941 {
4942   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4943        p != this->cortex_a8_stubs_.end();
4944        ++p)
4945     delete p->second;
4946   this->cortex_a8_stubs_.clear();
4947 }
4948
4949 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4950
4951 template<bool big_endian>
4952 void
4953 Stub_table<big_endian>::relocate_stub(
4954     Stub* stub,
4955     const Relocate_info<32, big_endian>* relinfo,
4956     Target_arm<big_endian>* arm_target,
4957     Output_section* output_section,
4958     unsigned char* view,
4959     Arm_address address,
4960     section_size_type view_size)
4961 {
4962   const Stub_template* stub_template = stub->stub_template();
4963   if (stub_template->reloc_count() != 0)
4964     {
4965       // Adjust view to cover the stub only.
4966       section_size_type offset = stub->offset();
4967       section_size_type stub_size = stub_template->size();
4968       gold_assert(offset + stub_size <= view_size);
4969
4970       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4971                                 address + offset, stub_size);
4972     }
4973 }
4974
4975 // Relocate all stubs in this stub table.
4976
4977 template<bool big_endian>
4978 void
4979 Stub_table<big_endian>::relocate_stubs(
4980     const Relocate_info<32, big_endian>* relinfo,
4981     Target_arm<big_endian>* arm_target,
4982     Output_section* output_section,
4983     unsigned char* view,
4984     Arm_address address,
4985     section_size_type view_size)
4986 {
4987   // If we are passed a view bigger than the stub table's.  we need to
4988   // adjust the view.
4989   gold_assert(address == this->address()
4990               && (view_size
4991                   == static_cast<section_size_type>(this->data_size())));
4992
4993   // Relocate all relocation stubs.
4994   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4995       p != this->reloc_stubs_.end();
4996       ++p)
4997     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4998                         address, view_size);
4999
5000   // Relocate all Cortex-A8 stubs.
5001   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5002        p != this->cortex_a8_stubs_.end();
5003        ++p)
5004     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5005                         address, view_size);
5006
5007   // Relocate all ARM V4BX stubs.
5008   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5009        p != this->arm_v4bx_stubs_.end();
5010        ++p)
5011     {
5012       if (*p != NULL)
5013         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5014                             address, view_size);
5015     }
5016 }
5017
5018 // Write out the stubs to file.
5019
5020 template<bool big_endian>
5021 void
5022 Stub_table<big_endian>::do_write(Output_file* of)
5023 {
5024   off_t offset = this->offset();
5025   const section_size_type oview_size =
5026     convert_to_section_size_type(this->data_size());
5027   unsigned char* const oview = of->get_output_view(offset, oview_size);
5028
5029   // Write relocation stubs.
5030   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5031       p != this->reloc_stubs_.end();
5032       ++p)
5033     {
5034       Reloc_stub* stub = p->second;
5035       Arm_address address = this->address() + stub->offset();
5036       gold_assert(address
5037                   == align_address(address,
5038                                    stub->stub_template()->alignment()));
5039       stub->write(oview + stub->offset(), stub->stub_template()->size(),
5040                   big_endian);
5041     }
5042
5043   // Write Cortex-A8 stubs.
5044   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045        p != this->cortex_a8_stubs_.end();
5046        ++p)
5047     {
5048       Cortex_a8_stub* stub = p->second;
5049       Arm_address address = this->address() + stub->offset();
5050       gold_assert(address
5051                   == align_address(address,
5052                                    stub->stub_template()->alignment()));
5053       stub->write(oview + stub->offset(), stub->stub_template()->size(),
5054                   big_endian);
5055     }
5056
5057   // Write ARM V4BX relocation stubs.
5058   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5059        p != this->arm_v4bx_stubs_.end();
5060        ++p)
5061     {
5062       if (*p == NULL)
5063         continue;
5064
5065       Arm_address address = this->address() + (*p)->offset();
5066       gold_assert(address
5067                   == align_address(address,
5068                                    (*p)->stub_template()->alignment()));
5069       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5070                   big_endian);
5071     }
5072
5073   of->write_output_view(this->offset(), oview_size, oview);
5074 }
5075
5076 // Update the data size and address alignment of the stub table at the end
5077 // of a relaxation pass.   Return true if either the data size or the
5078 // alignment changed in this relaxation pass.
5079
5080 template<bool big_endian>
5081 bool
5082 Stub_table<big_endian>::update_data_size_and_addralign()
5083 {
5084   // Go over all stubs in table to compute data size and address alignment.
5085   off_t size = this->reloc_stubs_size_;
5086   unsigned addralign = this->reloc_stubs_addralign_;
5087
5088   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5089        p != this->cortex_a8_stubs_.end();
5090        ++p)
5091     {
5092       const Stub_template* stub_template = p->second->stub_template();
5093       addralign = std::max(addralign, stub_template->alignment());
5094       size = (align_address(size, stub_template->alignment())
5095               + stub_template->size());
5096     }
5097
5098   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5099        p != this->arm_v4bx_stubs_.end();
5100        ++p)
5101     {
5102       if (*p == NULL)
5103         continue;
5104
5105       const Stub_template* stub_template = (*p)->stub_template();
5106       addralign = std::max(addralign, stub_template->alignment());
5107       size = (align_address(size, stub_template->alignment())
5108               + stub_template->size());
5109     }
5110
5111   // Check if either data size or alignment changed in this pass.
5112   // Update prev_data_size_ and prev_addralign_.  These will be used
5113   // as the current data size and address alignment for the next pass.
5114   bool changed = size != this->prev_data_size_;
5115   this->prev_data_size_ = size;
5116
5117   if (addralign != this->prev_addralign_)
5118     changed = true;
5119   this->prev_addralign_ = addralign;
5120
5121   return changed;
5122 }
5123
5124 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5125 // table.  It also marks all input sections needing Cortex-A8 workaround.
5126
5127 template<bool big_endian>
5128 void
5129 Stub_table<big_endian>::finalize_stubs()
5130 {
5131   off_t off = this->reloc_stubs_size_;
5132   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5133        p != this->cortex_a8_stubs_.end();
5134        ++p)
5135     {
5136       Cortex_a8_stub* stub = p->second;
5137       const Stub_template* stub_template = stub->stub_template();
5138       uint64_t stub_addralign = stub_template->alignment();
5139       off = align_address(off, stub_addralign);
5140       stub->set_offset(off);
5141       off += stub_template->size();
5142
5143       // Mark input section so that we can determine later if a code section
5144       // needs the Cortex-A8 workaround quickly.
5145       Arm_relobj<big_endian>* arm_relobj =
5146         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5147       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5148     }
5149
5150   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5151       p != this->arm_v4bx_stubs_.end();
5152       ++p)
5153     {
5154       if (*p == NULL)
5155         continue;
5156
5157       const Stub_template* stub_template = (*p)->stub_template();
5158       uint64_t stub_addralign = stub_template->alignment();
5159       off = align_address(off, stub_addralign);
5160       (*p)->set_offset(off);
5161       off += stub_template->size();
5162     }
5163
5164   gold_assert(off <= this->prev_data_size_);
5165 }
5166
5167 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5168 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5169 // of the address range seen by the linker.
5170
5171 template<bool big_endian>
5172 void
5173 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5174     Target_arm<big_endian>* arm_target,
5175     unsigned char* view,
5176     Arm_address view_address,
5177     section_size_type view_size)
5178 {
5179   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5180   for (Cortex_a8_stub_list::const_iterator p =
5181          this->cortex_a8_stubs_.lower_bound(view_address);
5182        ((p != this->cortex_a8_stubs_.end())
5183         && (p->first < (view_address + view_size)));
5184        ++p)
5185     {
5186       // We do not store the THUMB bit in the LSB of either the branch address
5187       // or the stub offset.  There is no need to strip the LSB.
5188       Arm_address branch_address = p->first;
5189       const Cortex_a8_stub* stub = p->second;
5190       Arm_address stub_address = this->address() + stub->offset();
5191
5192       // Offset of the branch instruction relative to this view.
5193       section_size_type offset =
5194         convert_to_section_size_type(branch_address - view_address);
5195       gold_assert((offset + 4) <= view_size);
5196
5197       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5198                                              view + offset, branch_address);
5199     }
5200 }
5201
5202 // Arm_input_section methods.
5203
5204 // Initialize an Arm_input_section.
5205
5206 template<bool big_endian>
5207 void
5208 Arm_input_section<big_endian>::init()
5209 {
5210   Relobj* relobj = this->relobj();
5211   unsigned int shndx = this->shndx();
5212
5213   // We have to cache original size, alignment and contents to avoid locking
5214   // the original file.
5215   this->original_addralign_ =
5216     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5217
5218   // This is not efficient but we expect only a small number of relaxed
5219   // input sections for stubs.
5220   section_size_type section_size;
5221   const unsigned char* section_contents =
5222     relobj->section_contents(shndx, &section_size, false);
5223   this->original_size_ =
5224     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5225
5226   gold_assert(this->original_contents_ == NULL);
5227   this->original_contents_ = new unsigned char[section_size];
5228   memcpy(this->original_contents_, section_contents, section_size);
5229
5230   // We want to make this look like the original input section after
5231   // output sections are finalized.
5232   Output_section* os = relobj->output_section(shndx);
5233   off_t offset = relobj->output_section_offset(shndx);
5234   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5235   this->set_address(os->address() + offset);
5236   this->set_file_offset(os->offset() + offset);
5237
5238   this->set_current_data_size(this->original_size_);
5239   this->finalize_data_size();
5240 }
5241
5242 template<bool big_endian>
5243 void
5244 Arm_input_section<big_endian>::do_write(Output_file* of)
5245 {
5246   // We have to write out the original section content.
5247   gold_assert(this->original_contents_ != NULL);
5248   of->write(this->offset(), this->original_contents_,
5249             this->original_size_);
5250
5251   // If this owns a stub table and it is not empty, write it.
5252   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5253     this->stub_table_->write(of);
5254 }
5255
5256 // Finalize data size.
5257
5258 template<bool big_endian>
5259 void
5260 Arm_input_section<big_endian>::set_final_data_size()
5261 {
5262   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5263
5264   if (this->is_stub_table_owner())
5265     {
5266       this->stub_table_->finalize_data_size();
5267       off = align_address(off, this->stub_table_->addralign());
5268       off += this->stub_table_->data_size();
5269     }
5270   this->set_data_size(off);
5271 }
5272
5273 // Reset address and file offset.
5274
5275 template<bool big_endian>
5276 void
5277 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5278 {
5279   // Size of the original input section contents.
5280   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5281
5282   // If this is a stub table owner, account for the stub table size.
5283   if (this->is_stub_table_owner())
5284     {
5285       Stub_table<big_endian>* stub_table = this->stub_table_;
5286
5287       // Reset the stub table's address and file offset.  The
5288       // current data size for child will be updated after that.
5289       stub_table_->reset_address_and_file_offset();
5290       off = align_address(off, stub_table_->addralign());
5291       off += stub_table->current_data_size();
5292     }
5293
5294   this->set_current_data_size(off);
5295 }
5296
5297 // Arm_exidx_cantunwind methods.
5298
5299 // Write this to Output file OF for a fixed endianness.
5300
5301 template<bool big_endian>
5302 void
5303 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5304 {
5305   off_t offset = this->offset();
5306   const section_size_type oview_size = 8;
5307   unsigned char* const oview = of->get_output_view(offset, oview_size);
5308
5309   Output_section* os = this->relobj_->output_section(this->shndx_);
5310   gold_assert(os != NULL);
5311
5312   Arm_relobj<big_endian>* arm_relobj =
5313     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5314   Arm_address output_offset =
5315     arm_relobj->get_output_section_offset(this->shndx_);
5316   Arm_address section_start;
5317   section_size_type section_size;
5318
5319   // Find out the end of the text section referred by this.
5320   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5321     {
5322       section_start = os->address() + output_offset;
5323       const Arm_exidx_input_section* exidx_input_section =
5324         arm_relobj->exidx_input_section_by_link(this->shndx_);
5325       gold_assert(exidx_input_section != NULL);
5326       section_size =
5327         convert_to_section_size_type(exidx_input_section->text_size());
5328     }
5329   else
5330     {
5331       // Currently this only happens for a relaxed section.
5332       const Output_relaxed_input_section* poris =
5333         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5334       gold_assert(poris != NULL);
5335       section_start = poris->address();
5336       section_size = convert_to_section_size_type(poris->data_size());
5337     }
5338
5339   // We always append this to the end of an EXIDX section.
5340   Arm_address output_address = section_start + section_size;
5341
5342   // Write out the entry.  The first word either points to the beginning
5343   // or after the end of a text section.  The second word is the special
5344   // EXIDX_CANTUNWIND value.
5345   uint32_t prel31_offset = output_address - this->address();
5346   if (Bits<31>::has_overflow32(offset))
5347     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5348   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5349                                                    prel31_offset & 0x7fffffffU);
5350   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5351                                                    elfcpp::EXIDX_CANTUNWIND);
5352
5353   of->write_output_view(this->offset(), oview_size, oview);
5354 }
5355
5356 // Arm_exidx_merged_section methods.
5357
5358 // Constructor for Arm_exidx_merged_section.
5359 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5360 // SECTION_OFFSET_MAP points to a section offset map describing how
5361 // parts of the input section are mapped to output.  DELETED_BYTES is
5362 // the number of bytes deleted from the EXIDX input section.
5363
5364 Arm_exidx_merged_section::Arm_exidx_merged_section(
5365     const Arm_exidx_input_section& exidx_input_section,
5366     const Arm_exidx_section_offset_map& section_offset_map,
5367     uint32_t deleted_bytes)
5368   : Output_relaxed_input_section(exidx_input_section.relobj(),
5369                                  exidx_input_section.shndx(),
5370                                  exidx_input_section.addralign()),
5371     exidx_input_section_(exidx_input_section),
5372     section_offset_map_(section_offset_map)
5373 {
5374   // If we retain or discard the whole EXIDX input section,  we would
5375   // not be here.
5376   gold_assert(deleted_bytes != 0
5377               && deleted_bytes != this->exidx_input_section_.size());
5378
5379   // Fix size here so that we do not need to implement set_final_data_size.
5380   uint32_t size = exidx_input_section.size() - deleted_bytes;
5381   this->set_data_size(size);
5382   this->fix_data_size();
5383
5384   // Allocate buffer for section contents and build contents.
5385   this->section_contents_ = new unsigned char[size];
5386 }
5387
5388 // Build the contents of a merged EXIDX output section.
5389
5390 void
5391 Arm_exidx_merged_section::build_contents(
5392     const unsigned char* original_contents,
5393     section_size_type original_size)
5394 {
5395   // Go over spans of input offsets and write only those that are not
5396   // discarded.
5397   section_offset_type in_start = 0;
5398   section_offset_type out_start = 0;
5399   section_offset_type in_max =
5400     convert_types<section_offset_type>(original_size);
5401   section_offset_type out_max =
5402     convert_types<section_offset_type>(this->data_size());
5403   for (Arm_exidx_section_offset_map::const_iterator p =
5404         this->section_offset_map_.begin();
5405       p != this->section_offset_map_.end();
5406       ++p)
5407     {
5408       section_offset_type in_end = p->first;
5409       gold_assert(in_end >= in_start);
5410       section_offset_type out_end = p->second;
5411       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5412       if (out_end != -1)
5413         {
5414           size_t out_chunk_size =
5415             convert_types<size_t>(out_end - out_start + 1);
5416
5417           gold_assert(out_chunk_size == in_chunk_size
5418                       && in_end < in_max && out_end < out_max);
5419
5420           memcpy(this->section_contents_ + out_start,
5421                  original_contents + in_start,
5422                  out_chunk_size);
5423           out_start += out_chunk_size;
5424         }
5425       in_start += in_chunk_size;
5426     }
5427 }
5428
5429 // Given an input OBJECT, an input section index SHNDX within that
5430 // object, and an OFFSET relative to the start of that input
5431 // section, return whether or not the corresponding offset within
5432 // the output section is known.  If this function returns true, it
5433 // sets *POUTPUT to the output offset.  The value -1 indicates that
5434 // this input offset is being discarded.
5435
5436 bool
5437 Arm_exidx_merged_section::do_output_offset(
5438     const Relobj* relobj,
5439     unsigned int shndx,
5440     section_offset_type offset,
5441     section_offset_type* poutput) const
5442 {
5443   // We only handle offsets for the original EXIDX input section.
5444   if (relobj != this->exidx_input_section_.relobj()
5445       || shndx != this->exidx_input_section_.shndx())
5446     return false;
5447
5448   section_offset_type section_size =
5449     convert_types<section_offset_type>(this->exidx_input_section_.size());
5450   if (offset < 0 || offset >= section_size)
5451     // Input offset is out of valid range.
5452     *poutput = -1;
5453   else
5454     {
5455       // We need to look up the section offset map to determine the output
5456       // offset.  Find the reference point in map that is first offset
5457       // bigger than or equal to this offset.
5458       Arm_exidx_section_offset_map::const_iterator p =
5459         this->section_offset_map_.lower_bound(offset);
5460
5461       // The section offset maps are build such that this should not happen if
5462       // input offset is in the valid range.
5463       gold_assert(p != this->section_offset_map_.end());
5464
5465       // We need to check if this is dropped.
5466      section_offset_type ref = p->first;
5467      section_offset_type mapped_ref = p->second;
5468
5469       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5470         // Offset is present in output.
5471         *poutput = mapped_ref + (offset - ref);
5472       else
5473         // Offset is discarded owing to EXIDX entry merging.
5474         *poutput = -1;
5475     }
5476
5477   return true;
5478 }
5479
5480 // Write this to output file OF.
5481
5482 void
5483 Arm_exidx_merged_section::do_write(Output_file* of)
5484 {
5485   off_t offset = this->offset();
5486   const section_size_type oview_size = this->data_size();
5487   unsigned char* const oview = of->get_output_view(offset, oview_size);
5488
5489   Output_section* os = this->relobj()->output_section(this->shndx());
5490   gold_assert(os != NULL);
5491
5492   memcpy(oview, this->section_contents_, oview_size);
5493   of->write_output_view(this->offset(), oview_size, oview);
5494 }
5495
5496 // Arm_exidx_fixup methods.
5497
5498 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5499 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5500 // points to the end of the last seen EXIDX section.
5501
5502 void
5503 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5504 {
5505   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5506       && this->last_input_section_ != NULL)
5507     {
5508       Relobj* relobj = this->last_input_section_->relobj();
5509       unsigned int text_shndx = this->last_input_section_->link();
5510       Arm_exidx_cantunwind* cantunwind =
5511         new Arm_exidx_cantunwind(relobj, text_shndx);
5512       this->exidx_output_section_->add_output_section_data(cantunwind);
5513       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5514     }
5515 }
5516
5517 // Process an EXIDX section entry in input.  Return whether this entry
5518 // can be deleted in the output.  SECOND_WORD in the second word of the
5519 // EXIDX entry.
5520
5521 bool
5522 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5523 {
5524   bool delete_entry;
5525   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5526     {
5527       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5528       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5529       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5530     }
5531   else if ((second_word & 0x80000000) != 0)
5532     {
5533       // Inlined unwinding data.  Merge if equal to previous.
5534       delete_entry = (merge_exidx_entries_
5535                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5536                       && this->last_inlined_entry_ == second_word);
5537       this->last_unwind_type_ = UT_INLINED_ENTRY;
5538       this->last_inlined_entry_ = second_word;
5539     }
5540   else
5541     {
5542       // Normal table entry.  In theory we could merge these too,
5543       // but duplicate entries are likely to be much less common.
5544       delete_entry = false;
5545       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5546     }
5547   return delete_entry;
5548 }
5549
5550 // Update the current section offset map during EXIDX section fix-up.
5551 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5552 // reference point, DELETED_BYTES is the number of deleted by in the
5553 // section so far.  If DELETE_ENTRY is true, the reference point and
5554 // all offsets after the previous reference point are discarded.
5555
5556 void
5557 Arm_exidx_fixup::update_offset_map(
5558     section_offset_type input_offset,
5559     section_size_type deleted_bytes,
5560     bool delete_entry)
5561 {
5562   if (this->section_offset_map_ == NULL)
5563     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5564   section_offset_type output_offset;
5565   if (delete_entry)
5566     output_offset = Arm_exidx_input_section::invalid_offset;
5567   else
5568     output_offset = input_offset - deleted_bytes;
5569   (*this->section_offset_map_)[input_offset] = output_offset;
5570 }
5571
5572 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5573 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5574 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5575 // If some entries are merged, also store a pointer to a newly created
5576 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5577 // owns the map and is responsible for releasing it after use.
5578
5579 template<bool big_endian>
5580 uint32_t
5581 Arm_exidx_fixup::process_exidx_section(
5582     const Arm_exidx_input_section* exidx_input_section,
5583     const unsigned char* section_contents,
5584     section_size_type section_size,
5585     Arm_exidx_section_offset_map** psection_offset_map)
5586 {
5587   Relobj* relobj = exidx_input_section->relobj();
5588   unsigned shndx = exidx_input_section->shndx();
5589
5590   if ((section_size % 8) != 0)
5591     {
5592       // Something is wrong with this section.  Better not touch it.
5593       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5594                  relobj->name().c_str(), shndx);
5595       this->last_input_section_ = exidx_input_section;
5596       this->last_unwind_type_ = UT_NONE;
5597       return 0;
5598     }
5599
5600   uint32_t deleted_bytes = 0;
5601   bool prev_delete_entry = false;
5602   gold_assert(this->section_offset_map_ == NULL);
5603
5604   for (section_size_type i = 0; i < section_size; i += 8)
5605     {
5606       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5607       const Valtype* wv =
5608           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5609       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5610
5611       bool delete_entry = this->process_exidx_entry(second_word);
5612
5613       // Entry deletion causes changes in output offsets.  We use a std::map
5614       // to record these.  And entry (x, y) means input offset x
5615       // is mapped to output offset y.  If y is invalid_offset, then x is
5616       // dropped in the output.  Because of the way std::map::lower_bound
5617       // works, we record the last offset in a region w.r.t to keeping or
5618       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5619       // the output offset y0 of it is determined by the output offset y1 of
5620       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5621       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5622       // y0 is also -1.
5623       if (delete_entry != prev_delete_entry && i != 0)
5624         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5625
5626       // Update total deleted bytes for this entry.
5627       if (delete_entry)
5628         deleted_bytes += 8;
5629
5630       prev_delete_entry = delete_entry;
5631     }
5632
5633   // If section offset map is not NULL, make an entry for the end of
5634   // section.
5635   if (this->section_offset_map_ != NULL)
5636     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5637
5638   *psection_offset_map = this->section_offset_map_;
5639   this->section_offset_map_ = NULL;
5640   this->last_input_section_ = exidx_input_section;
5641
5642   // Set the first output text section so that we can link the EXIDX output
5643   // section to it.  Ignore any EXIDX input section that is completely merged.
5644   if (this->first_output_text_section_ == NULL
5645       && deleted_bytes != section_size)
5646     {
5647       unsigned int link = exidx_input_section->link();
5648       Output_section* os = relobj->output_section(link);
5649       gold_assert(os != NULL);
5650       this->first_output_text_section_ = os;
5651     }
5652
5653   return deleted_bytes;
5654 }
5655
5656 // Arm_output_section methods.
5657
5658 // Create a stub group for input sections from BEGIN to END.  OWNER
5659 // points to the input section to be the owner a new stub table.
5660
5661 template<bool big_endian>
5662 void
5663 Arm_output_section<big_endian>::create_stub_group(
5664   Input_section_list::const_iterator begin,
5665   Input_section_list::const_iterator end,
5666   Input_section_list::const_iterator owner,
5667   Target_arm<big_endian>* target,
5668   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5669   const Task* task)
5670 {
5671   // We use a different kind of relaxed section in an EXIDX section.
5672   // The static casting from Output_relaxed_input_section to
5673   // Arm_input_section is invalid in an EXIDX section.  We are okay
5674   // because we should not be calling this for an EXIDX section.
5675   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5676
5677   // Currently we convert ordinary input sections into relaxed sections only
5678   // at this point but we may want to support creating relaxed input section
5679   // very early.  So we check here to see if owner is already a relaxed
5680   // section.
5681
5682   Arm_input_section<big_endian>* arm_input_section;
5683   if (owner->is_relaxed_input_section())
5684     {
5685       arm_input_section =
5686         Arm_input_section<big_endian>::as_arm_input_section(
5687           owner->relaxed_input_section());
5688     }
5689   else
5690     {
5691       gold_assert(owner->is_input_section());
5692       // Create a new relaxed input section.  We need to lock the original
5693       // file.
5694       Task_lock_obj<Object> tl(task, owner->relobj());
5695       arm_input_section =
5696         target->new_arm_input_section(owner->relobj(), owner->shndx());
5697       new_relaxed_sections->push_back(arm_input_section);
5698     }
5699
5700   // Create a stub table.
5701   Stub_table<big_endian>* stub_table =
5702     target->new_stub_table(arm_input_section);
5703
5704   arm_input_section->set_stub_table(stub_table);
5705
5706   Input_section_list::const_iterator p = begin;
5707   Input_section_list::const_iterator prev_p;
5708
5709   // Look for input sections or relaxed input sections in [begin ... end].
5710   do
5711     {
5712       if (p->is_input_section() || p->is_relaxed_input_section())
5713         {
5714           // The stub table information for input sections live
5715           // in their objects.
5716           Arm_relobj<big_endian>* arm_relobj =
5717             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5718           arm_relobj->set_stub_table(p->shndx(), stub_table);
5719         }
5720       prev_p = p++;
5721     }
5722   while (prev_p != end);
5723 }
5724
5725 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5726 // of stub groups.  We grow a stub group by adding input section until the
5727 // size is just below GROUP_SIZE.  The last input section will be converted
5728 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5729 // input section after the stub table, effectively double the group size.
5730 //
5731 // This is similar to the group_sections() function in elf32-arm.c but is
5732 // implemented differently.
5733
5734 template<bool big_endian>
5735 void
5736 Arm_output_section<big_endian>::group_sections(
5737     section_size_type group_size,
5738     bool stubs_always_after_branch,
5739     Target_arm<big_endian>* target,
5740     const Task* task)
5741 {
5742   // States for grouping.
5743   typedef enum
5744   {
5745     // No group is being built.
5746     NO_GROUP,
5747     // A group is being built but the stub table is not found yet.
5748     // We keep group a stub group until the size is just under GROUP_SIZE.
5749     // The last input section in the group will be used as the stub table.
5750     FINDING_STUB_SECTION,
5751     // A group is being built and we have already found a stub table.
5752     // We enter this state to grow a stub group by adding input section
5753     // after the stub table.  This effectively doubles the group size.
5754     HAS_STUB_SECTION
5755   } State;
5756
5757   // Any newly created relaxed sections are stored here.
5758   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5759
5760   State state = NO_GROUP;
5761   section_size_type off = 0;
5762   section_size_type group_begin_offset = 0;
5763   section_size_type group_end_offset = 0;
5764   section_size_type stub_table_end_offset = 0;
5765   Input_section_list::const_iterator group_begin =
5766     this->input_sections().end();
5767   Input_section_list::const_iterator stub_table =
5768     this->input_sections().end();
5769   Input_section_list::const_iterator group_end = this->input_sections().end();
5770   for (Input_section_list::const_iterator p = this->input_sections().begin();
5771        p != this->input_sections().end();
5772        ++p)
5773     {
5774       section_size_type section_begin_offset =
5775         align_address(off, p->addralign());
5776       section_size_type section_end_offset =
5777         section_begin_offset + p->data_size();
5778
5779       // Check to see if we should group the previously seen sections.
5780       switch (state)
5781         {
5782         case NO_GROUP:
5783           break;
5784
5785         case FINDING_STUB_SECTION:
5786           // Adding this section makes the group larger than GROUP_SIZE.
5787           if (section_end_offset - group_begin_offset >= group_size)
5788             {
5789               if (stubs_always_after_branch)
5790                 {
5791                   gold_assert(group_end != this->input_sections().end());
5792                   this->create_stub_group(group_begin, group_end, group_end,
5793                                           target, &new_relaxed_sections,
5794                                           task);
5795                   state = NO_GROUP;
5796                 }
5797               else
5798                 {
5799                   // But wait, there's more!  Input sections up to
5800                   // stub_group_size bytes after the stub table can be
5801                   // handled by it too.
5802                   state = HAS_STUB_SECTION;
5803                   stub_table = group_end;
5804                   stub_table_end_offset = group_end_offset;
5805                 }
5806             }
5807             break;
5808
5809         case HAS_STUB_SECTION:
5810           // Adding this section makes the post stub-section group larger
5811           // than GROUP_SIZE.
5812           if (section_end_offset - stub_table_end_offset >= group_size)
5813            {
5814              gold_assert(group_end != this->input_sections().end());
5815              this->create_stub_group(group_begin, group_end, stub_table,
5816                                      target, &new_relaxed_sections, task);
5817              state = NO_GROUP;
5818            }
5819            break;
5820
5821           default:
5822             gold_unreachable();
5823         }
5824
5825       // If we see an input section and currently there is no group, start
5826       // a new one.  Skip any empty sections.  We look at the data size
5827       // instead of calling p->relobj()->section_size() to avoid locking.
5828       if ((p->is_input_section() || p->is_relaxed_input_section())
5829           && (p->data_size() != 0))
5830         {
5831           if (state == NO_GROUP)
5832             {
5833               state = FINDING_STUB_SECTION;
5834               group_begin = p;
5835               group_begin_offset = section_begin_offset;
5836             }
5837
5838           // Keep track of the last input section seen.
5839           group_end = p;
5840           group_end_offset = section_end_offset;
5841         }
5842
5843       off = section_end_offset;
5844     }
5845
5846   // Create a stub group for any ungrouped sections.
5847   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5848     {
5849       gold_assert(group_end != this->input_sections().end());
5850       this->create_stub_group(group_begin, group_end,
5851                               (state == FINDING_STUB_SECTION
5852                                ? group_end
5853                                : stub_table),
5854                                target, &new_relaxed_sections, task);
5855     }
5856
5857   // Convert input section into relaxed input section in a batch.
5858   if (!new_relaxed_sections.empty())
5859     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5860
5861   // Update the section offsets
5862   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5863     {
5864       Arm_relobj<big_endian>* arm_relobj =
5865         Arm_relobj<big_endian>::as_arm_relobj(
5866           new_relaxed_sections[i]->relobj());
5867       unsigned int shndx = new_relaxed_sections[i]->shndx();
5868       // Tell Arm_relobj that this input section is converted.
5869       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5870     }
5871 }
5872
5873 // Append non empty text sections in this to LIST in ascending
5874 // order of their position in this.
5875
5876 template<bool big_endian>
5877 void
5878 Arm_output_section<big_endian>::append_text_sections_to_list(
5879     Text_section_list* list)
5880 {
5881   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5882
5883   for (Input_section_list::const_iterator p = this->input_sections().begin();
5884        p != this->input_sections().end();
5885        ++p)
5886     {
5887       // We only care about plain or relaxed input sections.  We also
5888       // ignore any merged sections.
5889       if (p->is_input_section() || p->is_relaxed_input_section())
5890         list->push_back(Text_section_list::value_type(p->relobj(),
5891                                                       p->shndx()));
5892     }
5893 }
5894
5895 template<bool big_endian>
5896 void
5897 Arm_output_section<big_endian>::fix_exidx_coverage(
5898     Layout* layout,
5899     const Text_section_list& sorted_text_sections,
5900     Symbol_table* symtab,
5901     bool merge_exidx_entries,
5902     const Task* task)
5903 {
5904   // We should only do this for the EXIDX output section.
5905   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5906
5907   // We don't want the relaxation loop to undo these changes, so we discard
5908   // the current saved states and take another one after the fix-up.
5909   this->discard_states();
5910
5911   // Remove all input sections.
5912   uint64_t address = this->address();
5913   typedef std::list<Output_section::Input_section> Input_section_list;
5914   Input_section_list input_sections;
5915   this->reset_address_and_file_offset();
5916   this->get_input_sections(address, std::string(""), &input_sections);
5917
5918   if (!this->input_sections().empty())
5919     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5920
5921   // Go through all the known input sections and record them.
5922   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5923   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5924                         Section_id_hash> Text_to_exidx_map;
5925   Text_to_exidx_map text_to_exidx_map;
5926   for (Input_section_list::const_iterator p = input_sections.begin();
5927        p != input_sections.end();
5928        ++p)
5929     {
5930       // This should never happen.  At this point, we should only see
5931       // plain EXIDX input sections.
5932       gold_assert(!p->is_relaxed_input_section());
5933       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5934     }
5935
5936   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5937
5938   // Go over the sorted text sections.
5939   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5940   Section_id_set processed_input_sections;
5941   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5942        p != sorted_text_sections.end();
5943        ++p)
5944     {
5945       Relobj* relobj = p->first;
5946       unsigned int shndx = p->second;
5947
5948       Arm_relobj<big_endian>* arm_relobj =
5949          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5950       const Arm_exidx_input_section* exidx_input_section =
5951          arm_relobj->exidx_input_section_by_link(shndx);
5952
5953       // If this text section has no EXIDX section or if the EXIDX section
5954       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5955       // of the last seen EXIDX section.
5956       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5957         {
5958           exidx_fixup.add_exidx_cantunwind_as_needed();
5959           continue;
5960         }
5961
5962       Relobj* exidx_relobj = exidx_input_section->relobj();
5963       unsigned int exidx_shndx = exidx_input_section->shndx();
5964       Section_id sid(exidx_relobj, exidx_shndx);
5965       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5966       if (iter == text_to_exidx_map.end())
5967         {
5968           // This is odd.  We have not seen this EXIDX input section before.
5969           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5970           // issue a warning instead.  We assume the user knows what he
5971           // or she is doing.  Otherwise, this is an error.
5972           if (layout->script_options()->saw_sections_clause())
5973             gold_warning(_("unwinding may not work because EXIDX input section"
5974                            " %u of %s is not in EXIDX output section"),
5975                          exidx_shndx, exidx_relobj->name().c_str());
5976           else
5977             gold_error(_("unwinding may not work because EXIDX input section"
5978                          " %u of %s is not in EXIDX output section"),
5979                        exidx_shndx, exidx_relobj->name().c_str());
5980
5981           exidx_fixup.add_exidx_cantunwind_as_needed();
5982           continue;
5983         }
5984
5985       // We need to access the contents of the EXIDX section, lock the
5986       // object here.
5987       Task_lock_obj<Object> tl(task, exidx_relobj);
5988       section_size_type exidx_size;
5989       const unsigned char* exidx_contents =
5990         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5991
5992       // Fix up coverage and append input section to output data list.
5993       Arm_exidx_section_offset_map* section_offset_map = NULL;
5994       uint32_t deleted_bytes =
5995         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5996                                                       exidx_contents,
5997                                                       exidx_size,
5998                                                       &section_offset_map);
5999
6000       if (deleted_bytes == exidx_input_section->size())
6001         {
6002           // The whole EXIDX section got merged.  Remove it from output.
6003           gold_assert(section_offset_map == NULL);
6004           exidx_relobj->set_output_section(exidx_shndx, NULL);
6005
6006           // All local symbols defined in this input section will be dropped.
6007           // We need to adjust output local symbol count.
6008           arm_relobj->set_output_local_symbol_count_needs_update();
6009         }
6010       else if (deleted_bytes > 0)
6011         {
6012           // Some entries are merged.  We need to convert this EXIDX input
6013           // section into a relaxed section.
6014           gold_assert(section_offset_map != NULL);
6015
6016           Arm_exidx_merged_section* merged_section =
6017             new Arm_exidx_merged_section(*exidx_input_section,
6018                                          *section_offset_map, deleted_bytes);
6019           merged_section->build_contents(exidx_contents, exidx_size);
6020
6021           const std::string secname = exidx_relobj->section_name(exidx_shndx);
6022           this->add_relaxed_input_section(layout, merged_section, secname);
6023           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
6024
6025           // All local symbols defined in discarded portions of this input
6026           // section will be dropped.  We need to adjust output local symbol
6027           // count.
6028           arm_relobj->set_output_local_symbol_count_needs_update();
6029         }
6030       else
6031         {
6032           // Just add back the EXIDX input section.
6033           gold_assert(section_offset_map == NULL);
6034           const Output_section::Input_section* pis = iter->second;
6035           gold_assert(pis->is_input_section());
6036           this->add_script_input_section(*pis);
6037         }
6038
6039       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
6040     }
6041
6042   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6043   exidx_fixup.add_exidx_cantunwind_as_needed();
6044
6045   // Remove any known EXIDX input sections that are not processed.
6046   for (Input_section_list::const_iterator p = input_sections.begin();
6047        p != input_sections.end();
6048        ++p)
6049     {
6050       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6051           == processed_input_sections.end())
6052         {
6053           // We discard a known EXIDX section because its linked
6054           // text section has been folded by ICF.  We also discard an
6055           // EXIDX section with error, the output does not matter in this
6056           // case.  We do this to avoid triggering asserts.
6057           Arm_relobj<big_endian>* arm_relobj =
6058             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6059           const Arm_exidx_input_section* exidx_input_section =
6060             arm_relobj->exidx_input_section_by_shndx(p->shndx());
6061           gold_assert(exidx_input_section != NULL);
6062           if (!exidx_input_section->has_errors())
6063             {
6064               unsigned int text_shndx = exidx_input_section->link();
6065               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6066             }
6067
6068           // Remove this from link.  We also need to recount the
6069           // local symbols.
6070           p->relobj()->set_output_section(p->shndx(), NULL);
6071           arm_relobj->set_output_local_symbol_count_needs_update();
6072         }
6073     }
6074
6075   // Link exidx output section to the first seen output section and
6076   // set correct entry size.
6077   this->set_link_section(exidx_fixup.first_output_text_section());
6078   this->set_entsize(8);
6079
6080   // Make changes permanent.
6081   this->save_states();
6082   this->set_section_offsets_need_adjustment();
6083 }
6084
6085 // Link EXIDX output sections to text output sections.
6086
6087 template<bool big_endian>
6088 void
6089 Arm_output_section<big_endian>::set_exidx_section_link()
6090 {
6091   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6092   if (!this->input_sections().empty())
6093     {
6094       Input_section_list::const_iterator p = this->input_sections().begin();
6095       Arm_relobj<big_endian>* arm_relobj =
6096         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6097       unsigned exidx_shndx = p->shndx();
6098       const Arm_exidx_input_section* exidx_input_section =
6099         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6100       gold_assert(exidx_input_section != NULL);
6101       unsigned int text_shndx = exidx_input_section->link();
6102       Output_section* os = arm_relobj->output_section(text_shndx);
6103       this->set_link_section(os);
6104     }
6105 }
6106
6107 // Arm_relobj methods.
6108
6109 // Determine if an input section is scannable for stub processing.  SHDR is
6110 // the header of the section and SHNDX is the section index.  OS is the output
6111 // section for the input section and SYMTAB is the global symbol table used to
6112 // look up ICF information.
6113
6114 template<bool big_endian>
6115 bool
6116 Arm_relobj<big_endian>::section_is_scannable(
6117     const elfcpp::Shdr<32, big_endian>& shdr,
6118     unsigned int shndx,
6119     const Output_section* os,
6120     const Symbol_table* symtab)
6121 {
6122   // Skip any empty sections, unallocated sections or sections whose
6123   // type are not SHT_PROGBITS.
6124   if (shdr.get_sh_size() == 0
6125       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6126       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6127     return false;
6128
6129   // Skip any discarded or ICF'ed sections.
6130   if (os == NULL || symtab->is_section_folded(this, shndx))
6131     return false;
6132
6133   // If this requires special offset handling, check to see if it is
6134   // a relaxed section.  If this is not, then it is a merged section that
6135   // we cannot handle.
6136   if (this->is_output_section_offset_invalid(shndx))
6137     {
6138       const Output_relaxed_input_section* poris =
6139         os->find_relaxed_input_section(this, shndx);
6140       if (poris == NULL)
6141         return false;
6142     }
6143
6144   return true;
6145 }
6146
6147 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6148 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6149
6150 template<bool big_endian>
6151 bool
6152 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6153     const elfcpp::Shdr<32, big_endian>& shdr,
6154     const Relobj::Output_sections& out_sections,
6155     const Symbol_table* symtab,
6156     const unsigned char* pshdrs)
6157 {
6158   unsigned int sh_type = shdr.get_sh_type();
6159   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6160     return false;
6161
6162   // Ignore empty section.
6163   off_t sh_size = shdr.get_sh_size();
6164   if (sh_size == 0)
6165     return false;
6166
6167   // Ignore reloc section with unexpected symbol table.  The
6168   // error will be reported in the final link.
6169   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6170     return false;
6171
6172   unsigned int reloc_size;
6173   if (sh_type == elfcpp::SHT_REL)
6174     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6175   else
6176     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6177
6178   // Ignore reloc section with unexpected entsize or uneven size.
6179   // The error will be reported in the final link.
6180   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6181     return false;
6182
6183   // Ignore reloc section with bad info.  This error will be
6184   // reported in the final link.
6185   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6186   if (index >= this->shnum())
6187     return false;
6188
6189   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6190   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6191   return this->section_is_scannable(text_shdr, index,
6192                                    out_sections[index], symtab);
6193 }
6194
6195 // Return the output address of either a plain input section or a relaxed
6196 // input section.  SHNDX is the section index.  We define and use this
6197 // instead of calling Output_section::output_address because that is slow
6198 // for large output.
6199
6200 template<bool big_endian>
6201 Arm_address
6202 Arm_relobj<big_endian>::simple_input_section_output_address(
6203     unsigned int shndx,
6204     Output_section* os)
6205 {
6206   if (this->is_output_section_offset_invalid(shndx))
6207     {
6208       const Output_relaxed_input_section* poris =
6209         os->find_relaxed_input_section(this, shndx);
6210       // We do not handle merged sections here.
6211       gold_assert(poris != NULL);
6212       return poris->address();
6213     }
6214   else
6215     return os->address() + this->get_output_section_offset(shndx);
6216 }
6217
6218 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6219 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6220
6221 template<bool big_endian>
6222 bool
6223 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6224     const elfcpp::Shdr<32, big_endian>& shdr,
6225     unsigned int shndx,
6226     Output_section* os,
6227     const Symbol_table* symtab)
6228 {
6229   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6230     return false;
6231
6232   // If the section does not cross any 4K-boundaries, it does not need to
6233   // be scanned.
6234   Arm_address address = this->simple_input_section_output_address(shndx, os);
6235   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6236     return false;
6237
6238   return true;
6239 }
6240
6241 // Scan a section for Cortex-A8 workaround.
6242
6243 template<bool big_endian>
6244 void
6245 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6246     const elfcpp::Shdr<32, big_endian>& shdr,
6247     unsigned int shndx,
6248     Output_section* os,
6249     Target_arm<big_endian>* arm_target)
6250 {
6251   // Look for the first mapping symbol in this section.  It should be
6252   // at (shndx, 0).
6253   Mapping_symbol_position section_start(shndx, 0);
6254   typename Mapping_symbols_info::const_iterator p =
6255     this->mapping_symbols_info_.lower_bound(section_start);
6256
6257   // There are no mapping symbols for this section.  Treat it as a data-only
6258   // section.  Issue a warning if section is marked as containing
6259   // instructions.
6260   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6261     {
6262       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6263         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6264                        "erratum because it has no mapping symbols."),
6265                      shndx, this->name().c_str());
6266       return;
6267     }
6268
6269   Arm_address output_address =
6270     this->simple_input_section_output_address(shndx, os);
6271
6272   // Get the section contents.
6273   section_size_type input_view_size = 0;
6274   const unsigned char* input_view =
6275     this->section_contents(shndx, &input_view_size, false);
6276
6277   // We need to go through the mapping symbols to determine what to
6278   // scan.  There are two reasons.  First, we should look at THUMB code and
6279   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6280   // to speed up the scanning.
6281
6282   while (p != this->mapping_symbols_info_.end()
6283         && p->first.first == shndx)
6284     {
6285       typename Mapping_symbols_info::const_iterator next =
6286         this->mapping_symbols_info_.upper_bound(p->first);
6287
6288       // Only scan part of a section with THUMB code.
6289       if (p->second == 't')
6290         {
6291           // Determine the end of this range.
6292           section_size_type span_start =
6293             convert_to_section_size_type(p->first.second);
6294           section_size_type span_end;
6295           if (next != this->mapping_symbols_info_.end()
6296               && next->first.first == shndx)
6297             span_end = convert_to_section_size_type(next->first.second);
6298           else
6299             span_end = convert_to_section_size_type(shdr.get_sh_size());
6300
6301           if (((span_start + output_address) & ~0xfffUL)
6302               != ((span_end + output_address - 1) & ~0xfffUL))
6303             {
6304               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6305                                                           span_start, span_end,
6306                                                           input_view,
6307                                                           output_address);
6308             }
6309         }
6310
6311       p = next;
6312     }
6313 }
6314
6315 // Scan relocations for stub generation.
6316
6317 template<bool big_endian>
6318 void
6319 Arm_relobj<big_endian>::scan_sections_for_stubs(
6320     Target_arm<big_endian>* arm_target,
6321     const Symbol_table* symtab,
6322     const Layout* layout)
6323 {
6324   unsigned int shnum = this->shnum();
6325   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6326
6327   // Read the section headers.
6328   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6329                                                shnum * shdr_size,
6330                                                true, true);
6331
6332   // To speed up processing, we set up hash tables for fast lookup of
6333   // input offsets to output addresses.
6334   this->initialize_input_to_output_maps();
6335
6336   const Relobj::Output_sections& out_sections(this->output_sections());
6337
6338   Relocate_info<32, big_endian> relinfo;
6339   relinfo.symtab = symtab;
6340   relinfo.layout = layout;
6341   relinfo.object = this;
6342
6343   // Do relocation stubs scanning.
6344   const unsigned char* p = pshdrs + shdr_size;
6345   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6346     {
6347       const elfcpp::Shdr<32, big_endian> shdr(p);
6348       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6349                                                   pshdrs))
6350         {
6351           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6352           Arm_address output_offset = this->get_output_section_offset(index);
6353           Arm_address output_address;
6354           if (output_offset != invalid_address)
6355             output_address = out_sections[index]->address() + output_offset;
6356           else
6357             {
6358               // Currently this only happens for a relaxed section.
6359               const Output_relaxed_input_section* poris =
6360               out_sections[index]->find_relaxed_input_section(this, index);
6361               gold_assert(poris != NULL);
6362               output_address = poris->address();
6363             }
6364
6365           // Get the relocations.
6366           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6367                                                         shdr.get_sh_size(),
6368                                                         true, false);
6369
6370           // Get the section contents.  This does work for the case in which
6371           // we modify the contents of an input section.  We need to pass the
6372           // output view under such circumstances.
6373           section_size_type input_view_size = 0;
6374           const unsigned char* input_view =
6375             this->section_contents(index, &input_view_size, false);
6376
6377           relinfo.reloc_shndx = i;
6378           relinfo.data_shndx = index;
6379           unsigned int sh_type = shdr.get_sh_type();
6380           unsigned int reloc_size;
6381           if (sh_type == elfcpp::SHT_REL)
6382             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6383           else
6384             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6385
6386           Output_section* os = out_sections[index];
6387           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6388                                              shdr.get_sh_size() / reloc_size,
6389                                              os,
6390                                              output_offset == invalid_address,
6391                                              input_view, output_address,
6392                                              input_view_size);
6393         }
6394     }
6395
6396   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6397   // after its relocation section, if there is one, is processed for
6398   // relocation stubs.  Merging this loop with the one above would have been
6399   // complicated since we would have had to make sure that relocation stub
6400   // scanning is done first.
6401   if (arm_target->fix_cortex_a8())
6402     {
6403       const unsigned char* p = pshdrs + shdr_size;
6404       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6405         {
6406           const elfcpp::Shdr<32, big_endian> shdr(p);
6407           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6408                                                           out_sections[i],
6409                                                           symtab))
6410             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6411                                                      arm_target);
6412         }
6413     }
6414
6415   // After we've done the relocations, we release the hash tables,
6416   // since we no longer need them.
6417   this->free_input_to_output_maps();
6418 }
6419
6420 // Count the local symbols.  The ARM backend needs to know if a symbol
6421 // is a THUMB function or not.  For global symbols, it is easy because
6422 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6423 // harder because we cannot access this information.   So we override the
6424 // do_count_local_symbol in parent and scan local symbols to mark
6425 // THUMB functions.  This is not the most efficient way but I do not want to
6426 // slow down other ports by calling a per symbol target hook inside
6427 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6428
6429 template<bool big_endian>
6430 void
6431 Arm_relobj<big_endian>::do_count_local_symbols(
6432     Stringpool_template<char>* pool,
6433     Stringpool_template<char>* dynpool)
6434 {
6435   // We need to fix-up the values of any local symbols whose type are
6436   // STT_ARM_TFUNC.
6437
6438   // Ask parent to count the local symbols.
6439   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6440   const unsigned int loccount = this->local_symbol_count();
6441   if (loccount == 0)
6442     return;
6443
6444   // Initialize the thumb function bit-vector.
6445   std::vector<bool> empty_vector(loccount, false);
6446   this->local_symbol_is_thumb_function_.swap(empty_vector);
6447
6448   // Read the symbol table section header.
6449   const unsigned int symtab_shndx = this->symtab_shndx();
6450   elfcpp::Shdr<32, big_endian>
6451       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6452   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6453
6454   // Read the local symbols.
6455   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6456   gold_assert(loccount == symtabshdr.get_sh_info());
6457   off_t locsize = loccount * sym_size;
6458   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6459                                               locsize, true, true);
6460
6461   // For mapping symbol processing, we need to read the symbol names.
6462   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6463   if (strtab_shndx >= this->shnum())
6464     {
6465       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6466       return;
6467     }
6468
6469   elfcpp::Shdr<32, big_endian>
6470     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6471   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6472     {
6473       this->error(_("symbol table name section has wrong type: %u"),
6474                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6475       return;
6476     }
6477   const char* pnames =
6478     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6479                                                  strtabshdr.get_sh_size(),
6480                                                  false, false));
6481
6482   // Loop over the local symbols and mark any local symbols pointing
6483   // to THUMB functions.
6484
6485   // Skip the first dummy symbol.
6486   psyms += sym_size;
6487   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6488     this->local_values();
6489   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6490     {
6491       elfcpp::Sym<32, big_endian> sym(psyms);
6492       elfcpp::STT st_type = sym.get_st_type();
6493       Symbol_value<32>& lv((*plocal_values)[i]);
6494       Arm_address input_value = lv.input_value();
6495
6496       // Check to see if this is a mapping symbol.
6497       const char* sym_name = pnames + sym.get_st_name();
6498       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6499         {
6500           bool is_ordinary;
6501           unsigned int input_shndx =
6502             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6503           gold_assert(is_ordinary);
6504
6505           // Strip of LSB in case this is a THUMB symbol.
6506           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6507           this->mapping_symbols_info_[msp] = sym_name[1];
6508         }
6509
6510       if (st_type == elfcpp::STT_ARM_TFUNC
6511           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6512         {
6513           // This is a THUMB function.  Mark this and canonicalize the
6514           // symbol value by setting LSB.
6515           this->local_symbol_is_thumb_function_[i] = true;
6516           if ((input_value & 1) == 0)
6517             lv.set_input_value(input_value | 1);
6518         }
6519     }
6520 }
6521
6522 // Relocate sections.
6523 template<bool big_endian>
6524 void
6525 Arm_relobj<big_endian>::do_relocate_sections(
6526     const Symbol_table* symtab,
6527     const Layout* layout,
6528     const unsigned char* pshdrs,
6529     Output_file* of,
6530     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6531 {
6532   // Call parent to relocate sections.
6533   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6534                                                           pshdrs, of, pviews);
6535
6536   // We do not generate stubs if doing a relocatable link.
6537   if (parameters->options().relocatable())
6538     return;
6539
6540   // Relocate stub tables.
6541   unsigned int shnum = this->shnum();
6542
6543   Target_arm<big_endian>* arm_target =
6544     Target_arm<big_endian>::default_target();
6545
6546   Relocate_info<32, big_endian> relinfo;
6547   relinfo.symtab = symtab;
6548   relinfo.layout = layout;
6549   relinfo.object = this;
6550
6551   for (unsigned int i = 1; i < shnum; ++i)
6552     {
6553       Arm_input_section<big_endian>* arm_input_section =
6554         arm_target->find_arm_input_section(this, i);
6555
6556       if (arm_input_section != NULL
6557           && arm_input_section->is_stub_table_owner()
6558           && !arm_input_section->stub_table()->empty())
6559         {
6560           // We cannot discard a section if it owns a stub table.
6561           Output_section* os = this->output_section(i);
6562           gold_assert(os != NULL);
6563
6564           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6565           relinfo.reloc_shdr = NULL;
6566           relinfo.data_shndx = i;
6567           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6568
6569           gold_assert((*pviews)[i].view != NULL);
6570
6571           // We are passed the output section view.  Adjust it to cover the
6572           // stub table only.
6573           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6574           gold_assert((stub_table->address() >= (*pviews)[i].address)
6575                       && ((stub_table->address() + stub_table->data_size())
6576                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6577
6578           off_t offset = stub_table->address() - (*pviews)[i].address;
6579           unsigned char* view = (*pviews)[i].view + offset;
6580           Arm_address address = stub_table->address();
6581           section_size_type view_size = stub_table->data_size();
6582
6583           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6584                                      view_size);
6585         }
6586
6587       // Apply Cortex A8 workaround if applicable.
6588       if (this->section_has_cortex_a8_workaround(i))
6589         {
6590           unsigned char* view = (*pviews)[i].view;
6591           Arm_address view_address = (*pviews)[i].address;
6592           section_size_type view_size = (*pviews)[i].view_size;
6593           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6594
6595           // Adjust view to cover section.
6596           Output_section* os = this->output_section(i);
6597           gold_assert(os != NULL);
6598           Arm_address section_address =
6599             this->simple_input_section_output_address(i, os);
6600           uint64_t section_size = this->section_size(i);
6601
6602           gold_assert(section_address >= view_address
6603                       && ((section_address + section_size)
6604                           <= (view_address + view_size)));
6605
6606           unsigned char* section_view = view + (section_address - view_address);
6607
6608           // Apply the Cortex-A8 workaround to the output address range
6609           // corresponding to this input section.
6610           stub_table->apply_cortex_a8_workaround_to_address_range(
6611               arm_target,
6612               section_view,
6613               section_address,
6614               section_size);
6615         }
6616     }
6617 }
6618
6619 // Find the linked text section of an EXIDX section by looking at the first
6620 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6621 // must be linked to its associated code section via the sh_link field of
6622 // its section header.  However, some tools are broken and the link is not
6623 // always set.  LD just drops such an EXIDX section silently, causing the
6624 // associated code not unwindabled.   Here we try a little bit harder to
6625 // discover the linked code section.
6626 //
6627 // PSHDR points to the section header of a relocation section of an EXIDX
6628 // section.  If we can find a linked text section, return true and
6629 // store the text section index in the location PSHNDX.  Otherwise
6630 // return false.
6631
6632 template<bool big_endian>
6633 bool
6634 Arm_relobj<big_endian>::find_linked_text_section(
6635     const unsigned char* pshdr,
6636     const unsigned char* psyms,
6637     unsigned int* pshndx)
6638 {
6639   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6640
6641   // If there is no relocation, we cannot find the linked text section.
6642   size_t reloc_size;
6643   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6644       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6645   else
6646       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6647   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6648
6649   // Get the relocations.
6650   const unsigned char* prelocs =
6651       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6652
6653   // Find the REL31 relocation for the first word of the first EXIDX entry.
6654   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6655     {
6656       Arm_address r_offset;
6657       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6658       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6659         {
6660           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6661           r_info = reloc.get_r_info();
6662           r_offset = reloc.get_r_offset();
6663         }
6664       else
6665         {
6666           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6667           r_info = reloc.get_r_info();
6668           r_offset = reloc.get_r_offset();
6669         }
6670
6671       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6672       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6673         continue;
6674
6675       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6676       if (r_sym == 0
6677           || r_sym >= this->local_symbol_count()
6678           || r_offset != 0)
6679         continue;
6680
6681       // This is the relocation for the first word of the first EXIDX entry.
6682       // We expect to see a local section symbol.
6683       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6684       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6685       if (sym.get_st_type() == elfcpp::STT_SECTION)
6686         {
6687           bool is_ordinary;
6688           *pshndx =
6689             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6690           gold_assert(is_ordinary);
6691           return true;
6692         }
6693       else
6694         return false;
6695     }
6696
6697   return false;
6698 }
6699
6700 // Make an EXIDX input section object for an EXIDX section whose index is
6701 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6702 // is the section index of the linked text section.
6703
6704 template<bool big_endian>
6705 void
6706 Arm_relobj<big_endian>::make_exidx_input_section(
6707     unsigned int shndx,
6708     const elfcpp::Shdr<32, big_endian>& shdr,
6709     unsigned int text_shndx,
6710     const elfcpp::Shdr<32, big_endian>& text_shdr)
6711 {
6712   // Create an Arm_exidx_input_section object for this EXIDX section.
6713   Arm_exidx_input_section* exidx_input_section =
6714     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6715                                 shdr.get_sh_addralign(),
6716                                 text_shdr.get_sh_size());
6717
6718   gold_assert(this->exidx_section_map_[shndx] == NULL);
6719   this->exidx_section_map_[shndx] = exidx_input_section;
6720
6721   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6722     {
6723       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6724                  this->section_name(shndx).c_str(), shndx, text_shndx,
6725                  this->name().c_str());
6726       exidx_input_section->set_has_errors();
6727     }
6728   else if (this->exidx_section_map_[text_shndx] != NULL)
6729     {
6730       unsigned other_exidx_shndx =
6731         this->exidx_section_map_[text_shndx]->shndx();
6732       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6733                    "%s(%u) in %s"),
6734                  this->section_name(shndx).c_str(), shndx,
6735                  this->section_name(other_exidx_shndx).c_str(),
6736                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6737                  text_shndx, this->name().c_str());
6738       exidx_input_section->set_has_errors();
6739     }
6740   else
6741      this->exidx_section_map_[text_shndx] = exidx_input_section;
6742
6743   // Check section flags of text section.
6744   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6745     {
6746       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6747                    " in %s"),
6748                  this->section_name(shndx).c_str(), shndx,
6749                  this->section_name(text_shndx).c_str(), text_shndx,
6750                  this->name().c_str());
6751       exidx_input_section->set_has_errors();
6752     }
6753   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6754     // I would like to make this an error but currently ld just ignores
6755     // this.
6756     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6757                    "%s(%u) in %s"),
6758                  this->section_name(shndx).c_str(), shndx,
6759                  this->section_name(text_shndx).c_str(), text_shndx,
6760                  this->name().c_str());
6761 }
6762
6763 // Read the symbol information.
6764
6765 template<bool big_endian>
6766 void
6767 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6768 {
6769   // Call parent class to read symbol information.
6770   this->base_read_symbols(sd);
6771
6772   // If this input file is a binary file, it has no processor
6773   // specific flags and attributes section.
6774   Input_file::Format format = this->input_file()->format();
6775   if (format != Input_file::FORMAT_ELF)
6776     {
6777       gold_assert(format == Input_file::FORMAT_BINARY);
6778       this->merge_flags_and_attributes_ = false;
6779       return;
6780     }
6781
6782   // Read processor-specific flags in ELF file header.
6783   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6784                                               elfcpp::Elf_sizes<32>::ehdr_size,
6785                                               true, false);
6786   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6787   this->processor_specific_flags_ = ehdr.get_e_flags();
6788
6789   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6790   // sections.
6791   std::vector<unsigned int> deferred_exidx_sections;
6792   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6793   const unsigned char* pshdrs = sd->section_headers->data();
6794   const unsigned char* ps = pshdrs + shdr_size;
6795   bool must_merge_flags_and_attributes = false;
6796   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6797     {
6798       elfcpp::Shdr<32, big_endian> shdr(ps);
6799
6800       // Sometimes an object has no contents except the section name string
6801       // table and an empty symbol table with the undefined symbol.  We
6802       // don't want to merge processor-specific flags from such an object.
6803       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6804         {
6805           // Symbol table is not empty.
6806           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6807              elfcpp::Elf_sizes<32>::sym_size;
6808           if (shdr.get_sh_size() > sym_size)
6809             must_merge_flags_and_attributes = true;
6810         }
6811       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6812         // If this is neither an empty symbol table nor a string table,
6813         // be conservative.
6814         must_merge_flags_and_attributes = true;
6815
6816       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6817         {
6818           gold_assert(this->attributes_section_data_ == NULL);
6819           section_offset_type section_offset = shdr.get_sh_offset();
6820           section_size_type section_size =
6821             convert_to_section_size_type(shdr.get_sh_size());
6822           const unsigned char* view =
6823              this->get_view(section_offset, section_size, true, false);
6824           this->attributes_section_data_ =
6825             new Attributes_section_data(view, section_size);
6826         }
6827       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6828         {
6829           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6830           if (text_shndx == elfcpp::SHN_UNDEF)
6831             deferred_exidx_sections.push_back(i);
6832           else
6833             {
6834               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6835                                                      + text_shndx * shdr_size);
6836               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6837             }
6838           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6839           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6840             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6841                          this->section_name(i).c_str(), this->name().c_str());
6842         }
6843     }
6844
6845   // This is rare.
6846   if (!must_merge_flags_and_attributes)
6847     {
6848       gold_assert(deferred_exidx_sections.empty());
6849       this->merge_flags_and_attributes_ = false;
6850       return;
6851     }
6852
6853   // Some tools are broken and they do not set the link of EXIDX sections.
6854   // We look at the first relocation to figure out the linked sections.
6855   if (!deferred_exidx_sections.empty())
6856     {
6857       // We need to go over the section headers again to find the mapping
6858       // from sections being relocated to their relocation sections.  This is
6859       // a bit inefficient as we could do that in the loop above.  However,
6860       // we do not expect any deferred EXIDX sections normally.  So we do not
6861       // want to slow down the most common path.
6862       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6863       Reloc_map reloc_map;
6864       ps = pshdrs + shdr_size;
6865       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6866         {
6867           elfcpp::Shdr<32, big_endian> shdr(ps);
6868           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6869           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6870             {
6871               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6872               if (info_shndx >= this->shnum())
6873                 gold_error(_("relocation section %u has invalid info %u"),
6874                            i, info_shndx);
6875               Reloc_map::value_type value(info_shndx, i);
6876               std::pair<Reloc_map::iterator, bool> result =
6877                 reloc_map.insert(value);
6878               if (!result.second)
6879                 gold_error(_("section %u has multiple relocation sections "
6880                              "%u and %u"),
6881                            info_shndx, i, reloc_map[info_shndx]);
6882             }
6883         }
6884
6885       // Read the symbol table section header.
6886       const unsigned int symtab_shndx = this->symtab_shndx();
6887       elfcpp::Shdr<32, big_endian>
6888           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6889       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6890
6891       // Read the local symbols.
6892       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6893       const unsigned int loccount = this->local_symbol_count();
6894       gold_assert(loccount == symtabshdr.get_sh_info());
6895       off_t locsize = loccount * sym_size;
6896       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6897                                                   locsize, true, true);
6898
6899       // Process the deferred EXIDX sections.
6900       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6901         {
6902           unsigned int shndx = deferred_exidx_sections[i];
6903           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6904           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6905           Reloc_map::const_iterator it = reloc_map.find(shndx);
6906           if (it != reloc_map.end())
6907             find_linked_text_section(pshdrs + it->second * shdr_size,
6908                                      psyms, &text_shndx);
6909           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6910                                                  + text_shndx * shdr_size);
6911           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6912         }
6913     }
6914 }
6915
6916 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6917 // sections for unwinding.  These sections are referenced implicitly by
6918 // text sections linked in the section headers.  If we ignore these implicit
6919 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6920 // will be garbage-collected incorrectly.  Hence we override the same function
6921 // in the base class to handle these implicit references.
6922
6923 template<bool big_endian>
6924 void
6925 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6926                                              Layout* layout,
6927                                              Read_relocs_data* rd)
6928 {
6929   // First, call base class method to process relocations in this object.
6930   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6931
6932   // If --gc-sections is not specified, there is nothing more to do.
6933   // This happens when --icf is used but --gc-sections is not.
6934   if (!parameters->options().gc_sections())
6935     return;
6936
6937   unsigned int shnum = this->shnum();
6938   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6939   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6940                                                shnum * shdr_size,
6941                                                true, true);
6942
6943   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6944   // to these from the linked text sections.
6945   const unsigned char* ps = pshdrs + shdr_size;
6946   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6947     {
6948       elfcpp::Shdr<32, big_endian> shdr(ps);
6949       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6950         {
6951           // Found an .ARM.exidx section, add it to the set of reachable
6952           // sections from its linked text section.
6953           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6954           symtab->gc()->add_reference(this, text_shndx, this, i);
6955         }
6956     }
6957 }
6958
6959 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6960 // symbols  will be removed in output.  Adjust output local symbol count
6961 // accordingly.  We can only changed the static output local symbol count.  It
6962 // is too late to change the dynamic symbols.
6963
6964 template<bool big_endian>
6965 void
6966 Arm_relobj<big_endian>::update_output_local_symbol_count()
6967 {
6968   // Caller should check that this needs updating.  We want caller checking
6969   // because output_local_symbol_count_needs_update() is most likely inlined.
6970   gold_assert(this->output_local_symbol_count_needs_update_);
6971
6972   gold_assert(this->symtab_shndx() != -1U);
6973   if (this->symtab_shndx() == 0)
6974     {
6975       // This object has no symbols.  Weird but legal.
6976       return;
6977     }
6978
6979   // Read the symbol table section header.
6980   const unsigned int symtab_shndx = this->symtab_shndx();
6981   elfcpp::Shdr<32, big_endian>
6982     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6983   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6984
6985   // Read the local symbols.
6986   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6987   const unsigned int loccount = this->local_symbol_count();
6988   gold_assert(loccount == symtabshdr.get_sh_info());
6989   off_t locsize = loccount * sym_size;
6990   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6991                                               locsize, true, true);
6992
6993   // Loop over the local symbols.
6994
6995   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6996      Output_sections;
6997   const Output_sections& out_sections(this->output_sections());
6998   unsigned int shnum = this->shnum();
6999   unsigned int count = 0;
7000   // Skip the first, dummy, symbol.
7001   psyms += sym_size;
7002   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7003     {
7004       elfcpp::Sym<32, big_endian> sym(psyms);
7005
7006       Symbol_value<32>& lv((*this->local_values())[i]);
7007
7008       // This local symbol was already discarded by do_count_local_symbols.
7009       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
7010         continue;
7011
7012       bool is_ordinary;
7013       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7014                                                   &is_ordinary);
7015
7016       if (shndx < shnum)
7017         {
7018           Output_section* os = out_sections[shndx];
7019
7020           // This local symbol no longer has an output section.  Discard it.
7021           if (os == NULL)
7022             {
7023               lv.set_no_output_symtab_entry();
7024               continue;
7025             }
7026
7027           // Currently we only discard parts of EXIDX input sections.
7028           // We explicitly check for a merged EXIDX input section to avoid
7029           // calling Output_section_data::output_offset unless necessary.
7030           if ((this->get_output_section_offset(shndx) == invalid_address)
7031               && (this->exidx_input_section_by_shndx(shndx) != NULL))
7032             {
7033               section_offset_type output_offset =
7034                 os->output_offset(this, shndx, lv.input_value());
7035               if (output_offset == -1)
7036                 {
7037                   // This symbol is defined in a part of an EXIDX input section
7038                   // that is discarded due to entry merging.
7039                   lv.set_no_output_symtab_entry();
7040                   continue;
7041                 }
7042             }
7043         }
7044
7045       ++count;
7046     }
7047
7048   this->set_output_local_symbol_count(count);
7049   this->output_local_symbol_count_needs_update_ = false;
7050 }
7051
7052 // Arm_dynobj methods.
7053
7054 // Read the symbol information.
7055
7056 template<bool big_endian>
7057 void
7058 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7059 {
7060   // Call parent class to read symbol information.
7061   this->base_read_symbols(sd);
7062
7063   // Read processor-specific flags in ELF file header.
7064   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7065                                               elfcpp::Elf_sizes<32>::ehdr_size,
7066                                               true, false);
7067   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7068   this->processor_specific_flags_ = ehdr.get_e_flags();
7069
7070   // Read the attributes section if there is one.
7071   // We read from the end because gas seems to put it near the end of
7072   // the section headers.
7073   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7074   const unsigned char* ps =
7075     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7076   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7077     {
7078       elfcpp::Shdr<32, big_endian> shdr(ps);
7079       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7080         {
7081           section_offset_type section_offset = shdr.get_sh_offset();
7082           section_size_type section_size =
7083             convert_to_section_size_type(shdr.get_sh_size());
7084           const unsigned char* view =
7085             this->get_view(section_offset, section_size, true, false);
7086           this->attributes_section_data_ =
7087             new Attributes_section_data(view, section_size);
7088           break;
7089         }
7090     }
7091 }
7092
7093 // Stub_addend_reader methods.
7094
7095 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7096
7097 template<bool big_endian>
7098 elfcpp::Elf_types<32>::Elf_Swxword
7099 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7100     unsigned int r_type,
7101     const unsigned char* view,
7102     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7103 {
7104   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7105
7106   switch (r_type)
7107     {
7108     case elfcpp::R_ARM_CALL:
7109     case elfcpp::R_ARM_JUMP24:
7110     case elfcpp::R_ARM_PLT32:
7111       {
7112         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7113         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7114         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7115         return Bits<26>::sign_extend32(val << 2);
7116       }
7117
7118     case elfcpp::R_ARM_THM_CALL:
7119     case elfcpp::R_ARM_THM_JUMP24:
7120     case elfcpp::R_ARM_THM_XPC22:
7121       {
7122         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7123         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7124         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7125         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7126         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7127       }
7128
7129     case elfcpp::R_ARM_THM_JUMP19:
7130       {
7131         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7132         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7133         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7134         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7135         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7136       }
7137
7138     default:
7139       gold_unreachable();
7140     }
7141 }
7142
7143 // Arm_output_data_got methods.
7144
7145 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7146 // The first one is initialized to be 1, which is the module index for
7147 // the main executable and the second one 0.  A reloc of the type
7148 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7149 // be applied by gold.  GSYM is a global symbol.
7150 //
7151 template<bool big_endian>
7152 void
7153 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7154     unsigned int got_type,
7155     Symbol* gsym)
7156 {
7157   if (gsym->has_got_offset(got_type))
7158     return;
7159
7160   // We are doing a static link.  Just mark it as belong to module 1,
7161   // the executable.
7162   unsigned int got_offset = this->add_constant(1);
7163   gsym->set_got_offset(got_type, got_offset);
7164   got_offset = this->add_constant(0);
7165   this->static_relocs_.push_back(Static_reloc(got_offset,
7166                                               elfcpp::R_ARM_TLS_DTPOFF32,
7167                                               gsym));
7168 }
7169
7170 // Same as the above but for a local symbol.
7171
7172 template<bool big_endian>
7173 void
7174 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7175   unsigned int got_type,
7176   Sized_relobj_file<32, big_endian>* object,
7177   unsigned int index)
7178 {
7179   if (object->local_has_got_offset(index, got_type))
7180     return;
7181
7182   // We are doing a static link.  Just mark it as belong to module 1,
7183   // the executable.
7184   unsigned int got_offset = this->add_constant(1);
7185   object->set_local_got_offset(index, got_type, got_offset);
7186   got_offset = this->add_constant(0);
7187   this->static_relocs_.push_back(Static_reloc(got_offset,
7188                                               elfcpp::R_ARM_TLS_DTPOFF32,
7189                                               object, index));
7190 }
7191
7192 template<bool big_endian>
7193 void
7194 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7195 {
7196   // Call parent to write out GOT.
7197   Output_data_got<32, big_endian>::do_write(of);
7198
7199   // We are done if there is no fix up.
7200   if (this->static_relocs_.empty())
7201     return;
7202
7203   gold_assert(parameters->doing_static_link());
7204
7205   const off_t offset = this->offset();
7206   const section_size_type oview_size =
7207     convert_to_section_size_type(this->data_size());
7208   unsigned char* const oview = of->get_output_view(offset, oview_size);
7209
7210   Output_segment* tls_segment = this->layout_->tls_segment();
7211   gold_assert(tls_segment != NULL);
7212
7213   // The thread pointer $tp points to the TCB, which is followed by the
7214   // TLS.  So we need to adjust $tp relative addressing by this amount.
7215   Arm_address aligned_tcb_size =
7216     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7217
7218   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7219     {
7220       Static_reloc& reloc(this->static_relocs_[i]);
7221
7222       Arm_address value;
7223       if (!reloc.symbol_is_global())
7224         {
7225           Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7226           const Symbol_value<32>* psymval =
7227             reloc.relobj()->local_symbol(reloc.index());
7228
7229           // We are doing static linking.  Issue an error and skip this
7230           // relocation if the symbol is undefined or in a discarded_section.
7231           bool is_ordinary;
7232           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7233           if ((shndx == elfcpp::SHN_UNDEF)
7234               || (is_ordinary
7235                   && shndx != elfcpp::SHN_UNDEF
7236                   && !object->is_section_included(shndx)
7237                   && !this->symbol_table_->is_section_folded(object, shndx)))
7238             {
7239               gold_error(_("undefined or discarded local symbol %u from "
7240                            " object %s in GOT"),
7241                          reloc.index(), reloc.relobj()->name().c_str());
7242               continue;
7243             }
7244
7245           value = psymval->value(object, 0);
7246         }
7247       else
7248         {
7249           const Symbol* gsym = reloc.symbol();
7250           gold_assert(gsym != NULL);
7251           if (gsym->is_forwarder())
7252             gsym = this->symbol_table_->resolve_forwards(gsym);
7253
7254           // We are doing static linking.  Issue an error and skip this
7255           // relocation if the symbol is undefined or in a discarded_section
7256           // unless it is a weakly_undefined symbol.
7257           if ((gsym->is_defined_in_discarded_section()
7258                || gsym->is_undefined())
7259               && !gsym->is_weak_undefined())
7260             {
7261               gold_error(_("undefined or discarded symbol %s in GOT"),
7262                          gsym->name());
7263               continue;
7264             }
7265
7266           if (!gsym->is_weak_undefined())
7267             {
7268               const Sized_symbol<32>* sym =
7269                 static_cast<const Sized_symbol<32>*>(gsym);
7270               value = sym->value();
7271             }
7272           else
7273               value = 0;
7274         }
7275
7276       unsigned got_offset = reloc.got_offset();
7277       gold_assert(got_offset < oview_size);
7278
7279       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7280       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7281       Valtype x;
7282       switch (reloc.r_type())
7283         {
7284         case elfcpp::R_ARM_TLS_DTPOFF32:
7285           x = value;
7286           break;
7287         case elfcpp::R_ARM_TLS_TPOFF32:
7288           x = value + aligned_tcb_size;
7289           break;
7290         default:
7291           gold_unreachable();
7292         }
7293       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7294     }
7295
7296   of->write_output_view(offset, oview_size, oview);
7297 }
7298
7299 // A class to handle the PLT data.
7300 // This is an abstract base class that handles most of the linker details
7301 // but does not know the actual contents of PLT entries.  The derived
7302 // classes below fill in those details.
7303
7304 template<bool big_endian>
7305 class Output_data_plt_arm : public Output_section_data
7306 {
7307  public:
7308   // Unlike aarch64, which records symbol value in "addend" field of relocations
7309   // and could be done at the same time an IRelative reloc is created for the
7310   // symbol, arm puts the symbol value into "GOT" table, which, however, is
7311   // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7312   // to keep necessary symbol information for later use in do_write. We usually
7313   // have only a very limited number of ifuncs, so the extra data required here
7314   // is also limited.
7315
7316   struct IRelative_data
7317   {
7318     IRelative_data(Sized_symbol<32>* sized_symbol)
7319       : symbol_is_global_(true)
7320     {
7321       u_.global = sized_symbol;
7322     }
7323
7324     IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7325                    unsigned int index)
7326       : symbol_is_global_(false)
7327     {
7328       u_.local.relobj = relobj;
7329       u_.local.index = index;
7330     }
7331
7332     union
7333     {
7334       Sized_symbol<32>* global;
7335
7336       struct
7337       {
7338         Sized_relobj_file<32, big_endian>* relobj;
7339         unsigned int index;
7340       } local;
7341     } u_;
7342
7343     bool symbol_is_global_;
7344   };
7345
7346   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7347     Reloc_section;
7348
7349   Output_data_plt_arm(Layout* layout, uint64_t addralign,
7350                       Arm_output_data_got<big_endian>* got,
7351                       Output_data_space* got_plt,
7352                       Output_data_space* got_irelative);
7353
7354   // Add an entry to the PLT.
7355   void
7356   add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7357
7358   // Add the relocation for a plt entry.
7359   void
7360   add_relocation(Symbol_table* symtab, Layout* layout,
7361                  Symbol* gsym, unsigned int got_offset);
7362
7363   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7364   unsigned int
7365   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7366                         Sized_relobj_file<32, big_endian>* relobj,
7367                         unsigned int local_sym_index);
7368
7369   // Return the .rel.plt section data.
7370   const Reloc_section*
7371   rel_plt() const
7372   { return this->rel_; }
7373
7374   // Return the PLT relocation container for IRELATIVE.
7375   Reloc_section*
7376   rel_irelative(Symbol_table*, Layout*);
7377
7378   // Return the number of PLT entries.
7379   unsigned int
7380   entry_count() const
7381   { return this->count_ + this->irelative_count_; }
7382
7383   // Return the offset of the first non-reserved PLT entry.
7384   unsigned int
7385   first_plt_entry_offset() const
7386   { return this->do_first_plt_entry_offset(); }
7387
7388   // Return the size of a PLT entry.
7389   unsigned int
7390   get_plt_entry_size() const
7391   { return this->do_get_plt_entry_size(); }
7392
7393   // Return the PLT address for globals.
7394   uint32_t
7395   address_for_global(const Symbol*) const;
7396
7397   // Return the PLT address for locals.
7398   uint32_t
7399   address_for_local(const Relobj*, unsigned int symndx) const;
7400
7401  protected:
7402   // Fill in the first PLT entry.
7403   void
7404   fill_first_plt_entry(unsigned char* pov,
7405                        Arm_address got_address,
7406                        Arm_address plt_address)
7407   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7408
7409   void
7410   fill_plt_entry(unsigned char* pov,
7411                  Arm_address got_address,
7412                  Arm_address plt_address,
7413                  unsigned int got_offset,
7414                  unsigned int plt_offset)
7415   { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7416
7417   virtual unsigned int
7418   do_first_plt_entry_offset() const = 0;
7419
7420   virtual unsigned int
7421   do_get_plt_entry_size() const = 0;
7422
7423   virtual void
7424   do_fill_first_plt_entry(unsigned char* pov,
7425                           Arm_address got_address,
7426                           Arm_address plt_address) = 0;
7427
7428   virtual void
7429   do_fill_plt_entry(unsigned char* pov,
7430                     Arm_address got_address,
7431                     Arm_address plt_address,
7432                     unsigned int got_offset,
7433                     unsigned int plt_offset) = 0;
7434
7435   void
7436   do_adjust_output_section(Output_section* os);
7437
7438   // Write to a map file.
7439   void
7440   do_print_to_mapfile(Mapfile* mapfile) const
7441   { mapfile->print_output_data(this, _("** PLT")); }
7442
7443  private:
7444   // Set the final size.
7445   void
7446   set_final_data_size()
7447   {
7448     this->set_data_size(this->first_plt_entry_offset()
7449                         + ((this->count_ + this->irelative_count_)
7450                            * this->get_plt_entry_size()));
7451   }
7452
7453   // Write out the PLT data.
7454   void
7455   do_write(Output_file*);
7456
7457   // Record irelative symbol data.
7458   void insert_irelative_data(const IRelative_data& idata)
7459   { irelative_data_vec_.push_back(idata); }
7460
7461   // The reloc section.
7462   Reloc_section* rel_;
7463   // The IRELATIVE relocs, if necessary.  These must follow the
7464   // regular PLT relocations.
7465   Reloc_section* irelative_rel_;
7466   // The .got section.
7467   Arm_output_data_got<big_endian>* got_;
7468   // The .got.plt section.
7469   Output_data_space* got_plt_;
7470   // The part of the .got.plt section used for IRELATIVE relocs.
7471   Output_data_space* got_irelative_;
7472   // The number of PLT entries.
7473   unsigned int count_;
7474   // Number of PLT entries with R_ARM_IRELATIVE relocs.  These
7475   // follow the regular PLT entries.
7476   unsigned int irelative_count_;
7477   // Vector for irelative data.
7478   typedef std::vector<IRelative_data> IRelative_data_vec;
7479   IRelative_data_vec irelative_data_vec_;
7480 };
7481
7482 // Create the PLT section.  The ordinary .got section is an argument,
7483 // since we need to refer to the start.  We also create our own .got
7484 // section just for PLT entries.
7485
7486 template<bool big_endian>
7487 Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7488     Layout* layout, uint64_t addralign,
7489     Arm_output_data_got<big_endian>* got,
7490     Output_data_space* got_plt,
7491     Output_data_space* got_irelative)
7492   : Output_section_data(addralign), irelative_rel_(NULL),
7493     got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7494     count_(0), irelative_count_(0)
7495 {
7496   this->rel_ = new Reloc_section(false);
7497   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7498                                   elfcpp::SHF_ALLOC, this->rel_,
7499                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7500 }
7501
7502 template<bool big_endian>
7503 void
7504 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7505 {
7506   os->set_entsize(0);
7507 }
7508
7509 // Add an entry to the PLT.
7510
7511 template<bool big_endian>
7512 void
7513 Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7514                                            Layout* layout,
7515                                            Symbol* gsym)
7516 {
7517   gold_assert(!gsym->has_plt_offset());
7518
7519   unsigned int* entry_count;
7520   Output_section_data_build* got;
7521
7522   // We have 2 different types of plt entry here, normal and ifunc.
7523
7524   // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7525   // 1st entry offset would be 20, the second 32, third 44 ... etc.
7526
7527   // For ifunc plt, the offset begins with 0. So the first offset would 0,
7528   // second 12, third 24 ... etc.
7529
7530   // IFunc plt entries *always* come after *normal* plt entries.
7531
7532   // Notice, when computing the plt address of a certain symbol, "plt_address +
7533   // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7534   // target->plt_address_for_local() instead.
7535
7536   int begin_offset = 0;
7537   if (gsym->type() == elfcpp::STT_GNU_IFUNC
7538       && gsym->can_use_relative_reloc(false))
7539     {
7540       entry_count = &this->irelative_count_;
7541       got = this->got_irelative_;
7542       // For irelative plt entries, offset is relative to the end of normal plt
7543       // entries, so it starts from 0.
7544       begin_offset = 0;
7545       // Record symbol information.
7546       this->insert_irelative_data(
7547           IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7548     }
7549   else
7550     {
7551       entry_count = &this->count_;
7552       got = this->got_plt_;
7553       // Note that for normal plt entries, when setting the PLT offset we skip
7554       // the initial reserved PLT entry.
7555       begin_offset = this->first_plt_entry_offset();
7556     }
7557
7558   gsym->set_plt_offset(begin_offset
7559                        + (*entry_count) * this->get_plt_entry_size());
7560
7561   ++(*entry_count);
7562
7563   section_offset_type got_offset = got->current_data_size();
7564
7565   // Every PLT entry needs a GOT entry which points back to the PLT
7566   // entry (this will be changed by the dynamic linker, normally
7567   // lazily when the function is called).
7568   got->set_current_data_size(got_offset + 4);
7569
7570   // Every PLT entry needs a reloc.
7571   this->add_relocation(symtab, layout, gsym, got_offset);
7572
7573   // Note that we don't need to save the symbol.  The contents of the
7574   // PLT are independent of which symbols are used.  The symbols only
7575   // appear in the relocations.
7576 }
7577
7578 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
7579 // the PLT offset.
7580
7581 template<bool big_endian>
7582 unsigned int
7583 Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7584     Symbol_table* symtab,
7585     Layout* layout,
7586     Sized_relobj_file<32, big_endian>* relobj,
7587     unsigned int local_sym_index)
7588 {
7589   this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7590
7591   // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7592   // no longer correct. Use target->plt_address_for_local() instead.
7593   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7594   ++this->irelative_count_;
7595
7596   section_offset_type got_offset = this->got_irelative_->current_data_size();
7597
7598   // Every PLT entry needs a GOT entry which points back to the PLT
7599   // entry.
7600   this->got_irelative_->set_current_data_size(got_offset + 4);
7601
7602
7603   // Every PLT entry needs a reloc.
7604   Reloc_section* rel = this->rel_irelative(symtab, layout);
7605   rel->add_symbolless_local_addend(relobj, local_sym_index,
7606                                    elfcpp::R_ARM_IRELATIVE,
7607                                    this->got_irelative_, got_offset);
7608   return plt_offset;
7609 }
7610
7611
7612 // Add the relocation for a PLT entry.
7613
7614 template<bool big_endian>
7615 void
7616 Output_data_plt_arm<big_endian>::add_relocation(
7617     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7618 {
7619   if (gsym->type() == elfcpp::STT_GNU_IFUNC
7620       && gsym->can_use_relative_reloc(false))
7621     {
7622       Reloc_section* rel = this->rel_irelative(symtab, layout);
7623       rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7624                                         this->got_irelative_, got_offset);
7625     }
7626   else
7627     {
7628       gsym->set_needs_dynsym_entry();
7629       this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7630                              got_offset);
7631     }
7632 }
7633
7634
7635 // Create the irelative relocation data.
7636
7637 template<bool big_endian>
7638 typename Output_data_plt_arm<big_endian>::Reloc_section*
7639 Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7640                                                 Layout* layout)
7641 {
7642   if (this->irelative_rel_ == NULL)
7643     {
7644       // Since irelative relocations goes into 'rel.dyn', we delegate the
7645       // creation of irelative_rel_ to where rel_dyn section gets created.
7646       Target_arm<big_endian>* arm_target =
7647           Target_arm<big_endian>::default_target();
7648       this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7649
7650       // Make sure we have a place for the TLSDESC relocations, in
7651       // case we see any later on.
7652       // this->rel_tlsdesc(layout);
7653       if (parameters->doing_static_link())
7654         {
7655           // A statically linked executable will only have a .rel.plt section to
7656           // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols.  The library
7657           // will use these symbols to locate the IRELATIVE relocs at program
7658           // startup time.
7659           symtab->define_in_output_data("__rel_iplt_start", NULL,
7660                                         Symbol_table::PREDEFINED,
7661                                         this->irelative_rel_, 0, 0,
7662                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7663                                         elfcpp::STV_HIDDEN, 0, false, true);
7664           symtab->define_in_output_data("__rel_iplt_end", NULL,
7665                                         Symbol_table::PREDEFINED,
7666                                         this->irelative_rel_, 0, 0,
7667                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7668                                         elfcpp::STV_HIDDEN, 0, true, true);
7669         }
7670     }
7671   return this->irelative_rel_;
7672 }
7673
7674
7675 // Return the PLT address for a global symbol.
7676
7677 template<bool big_endian>
7678 uint32_t
7679 Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7680 {
7681   uint64_t begin_offset = 0;
7682   if (gsym->type() == elfcpp::STT_GNU_IFUNC
7683       && gsym->can_use_relative_reloc(false))
7684     {
7685       begin_offset = (this->first_plt_entry_offset() +
7686                       this->count_ * this->get_plt_entry_size());
7687     }
7688   return this->address() + begin_offset + gsym->plt_offset();
7689 }
7690
7691
7692 // Return the PLT address for a local symbol.  These are always
7693 // IRELATIVE relocs.
7694
7695 template<bool big_endian>
7696 uint32_t
7697 Output_data_plt_arm<big_endian>::address_for_local(
7698     const Relobj* object,
7699     unsigned int r_sym) const
7700 {
7701   return (this->address()
7702           + this->first_plt_entry_offset()
7703           + this->count_ * this->get_plt_entry_size()
7704           + object->local_plt_offset(r_sym));
7705 }
7706
7707
7708 template<bool big_endian>
7709 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7710 {
7711  public:
7712   Output_data_plt_arm_standard(Layout* layout,
7713                                Arm_output_data_got<big_endian>* got,
7714                                Output_data_space* got_plt,
7715                                Output_data_space* got_irelative)
7716     : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
7717   { }
7718
7719  protected:
7720   // Return the offset of the first non-reserved PLT entry.
7721   virtual unsigned int
7722   do_first_plt_entry_offset() const
7723   { return sizeof(first_plt_entry); }
7724
7725   // Return the size of a PLT entry.
7726   virtual unsigned int
7727   do_get_plt_entry_size() const
7728   { return sizeof(plt_entry); }
7729
7730   virtual void
7731   do_fill_first_plt_entry(unsigned char* pov,
7732                           Arm_address got_address,
7733                           Arm_address plt_address);
7734
7735   virtual void
7736   do_fill_plt_entry(unsigned char* pov,
7737                     Arm_address got_address,
7738                     Arm_address plt_address,
7739                     unsigned int got_offset,
7740                     unsigned int plt_offset);
7741
7742  private:
7743   // Template for the first PLT entry.
7744   static const uint32_t first_plt_entry[5];
7745
7746   // Template for subsequent PLT entries.
7747   static const uint32_t plt_entry[3];
7748 };
7749
7750 // ARM PLTs.
7751 // FIXME:  This is not very flexible.  Right now this has only been tested
7752 // on armv5te.  If we are to support additional architecture features like
7753 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7754
7755 // The first entry in the PLT.
7756 template<bool big_endian>
7757 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7758 {
7759   0xe52de004,   // str   lr, [sp, #-4]!
7760   0xe59fe004,   // ldr   lr, [pc, #4]
7761   0xe08fe00e,   // add   lr, pc, lr
7762   0xe5bef008,   // ldr   pc, [lr, #8]!
7763   0x00000000,   // &GOT[0] - .
7764 };
7765
7766 template<bool big_endian>
7767 void
7768 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7769     unsigned char* pov,
7770     Arm_address got_address,
7771     Arm_address plt_address)
7772 {
7773   // Write first PLT entry.  All but the last word are constants.
7774   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7775                                       / sizeof(plt_entry[0]));
7776   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7777     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7778   // Last word in first PLT entry is &GOT[0] - .
7779   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7780                                          got_address - (plt_address + 16));
7781 }
7782
7783 // Subsequent entries in the PLT.
7784
7785 template<bool big_endian>
7786 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7787 {
7788   0xe28fc600,   // add   ip, pc, #0xNN00000
7789   0xe28cca00,   // add   ip, ip, #0xNN000
7790   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7791 };
7792
7793 template<bool big_endian>
7794 void
7795 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7796     unsigned char* pov,
7797     Arm_address got_address,
7798     Arm_address plt_address,
7799     unsigned int got_offset,
7800     unsigned int plt_offset)
7801 {
7802   int32_t offset = ((got_address + got_offset)
7803                     - (plt_address + plt_offset + 8));
7804
7805   gold_assert(offset >= 0 && offset < 0x0fffffff);
7806   uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7807   elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7808   uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7809   elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7810   uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7811   elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7812 }
7813
7814 // Write out the PLT.  This uses the hand-coded instructions above,
7815 // and adjusts them as needed.  This is all specified by the arm ELF
7816 // Processor Supplement.
7817
7818 template<bool big_endian>
7819 void
7820 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7821 {
7822   const off_t offset = this->offset();
7823   const section_size_type oview_size =
7824     convert_to_section_size_type(this->data_size());
7825   unsigned char* const oview = of->get_output_view(offset, oview_size);
7826
7827   const off_t got_file_offset = this->got_plt_->offset();
7828   gold_assert(got_file_offset + this->got_plt_->data_size()
7829               == this->got_irelative_->offset());
7830   const section_size_type got_size =
7831     convert_to_section_size_type(this->got_plt_->data_size()
7832                                  + this->got_irelative_->data_size());
7833   unsigned char* const got_view = of->get_output_view(got_file_offset,
7834                                                       got_size);
7835   unsigned char* pov = oview;
7836
7837   Arm_address plt_address = this->address();
7838   Arm_address got_address = this->got_plt_->address();
7839
7840   // Write first PLT entry.
7841   this->fill_first_plt_entry(pov, got_address, plt_address);
7842   pov += this->first_plt_entry_offset();
7843
7844   unsigned char* got_pov = got_view;
7845
7846   memset(got_pov, 0, 12);
7847   got_pov += 12;
7848
7849   unsigned int plt_offset = this->first_plt_entry_offset();
7850   unsigned int got_offset = 12;
7851   const unsigned int count = this->count_ + this->irelative_count_;
7852   gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
7853   for (unsigned int i = 0;
7854        i < count;
7855        ++i,
7856          pov += this->get_plt_entry_size(),
7857          got_pov += 4,
7858          plt_offset += this->get_plt_entry_size(),
7859          got_offset += 4)
7860     {
7861       // Set and adjust the PLT entry itself.
7862       this->fill_plt_entry(pov, got_address, plt_address,
7863                            got_offset, plt_offset);
7864
7865       Arm_address value;
7866       if (i < this->count_)
7867         {
7868           // For non-irelative got entries, the value is the beginning of plt.
7869           value = plt_address;
7870         }
7871       else
7872         {
7873           // For irelative got entries, the value is the (global/local) symbol
7874           // address.
7875           const IRelative_data& idata =
7876               this->irelative_data_vec_[i - this->count_];
7877           if (idata.symbol_is_global_)
7878             {
7879               // Set the entry in the GOT for irelative symbols.  The content is
7880               // the address of the ifunc, not the address of plt start.
7881               const Sized_symbol<32>* sized_symbol = idata.u_.global;
7882               gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7883               value = sized_symbol->value();
7884             }
7885           else
7886             {
7887               value = idata.u_.local.relobj->local_symbol_value(
7888                   idata.u_.local.index, 0);
7889             }
7890         }
7891       elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
7892     }
7893
7894   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7895   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7896
7897   of->write_output_view(offset, oview_size, oview);
7898   of->write_output_view(got_file_offset, got_size, got_view);
7899 }
7900
7901
7902 // Create a PLT entry for a global symbol.
7903
7904 template<bool big_endian>
7905 void
7906 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7907                                        Symbol* gsym)
7908 {
7909   if (gsym->has_plt_offset())
7910     return;
7911
7912   if (this->plt_ == NULL)
7913     this->make_plt_section(symtab, layout);
7914
7915   this->plt_->add_entry(symtab, layout, gsym);
7916 }
7917
7918
7919 // Create the PLT section.
7920 template<bool big_endian>
7921 void
7922 Target_arm<big_endian>::make_plt_section(
7923   Symbol_table* symtab, Layout* layout)
7924 {
7925   if (this->plt_ == NULL)
7926     {
7927       // Create the GOT section first.
7928       this->got_section(symtab, layout);
7929
7930       // GOT for irelatives is create along with got.plt.
7931       gold_assert(this->got_ != NULL
7932                   && this->got_plt_ != NULL
7933                   && this->got_irelative_ != NULL);
7934       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7935                                        this->got_irelative_);
7936
7937       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7938                                       (elfcpp::SHF_ALLOC
7939                                        | elfcpp::SHF_EXECINSTR),
7940                                       this->plt_, ORDER_PLT, false);
7941       symtab->define_in_output_data("$a", NULL,
7942                                     Symbol_table::PREDEFINED,
7943                                     this->plt_,
7944                                     0, 0, elfcpp::STT_NOTYPE,
7945                                     elfcpp::STB_LOCAL,
7946                                     elfcpp::STV_DEFAULT, 0,
7947                                     false, false);
7948     }
7949 }
7950
7951
7952 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
7953
7954 template<bool big_endian>
7955 void
7956 Target_arm<big_endian>::make_local_ifunc_plt_entry(
7957     Symbol_table* symtab, Layout* layout,
7958     Sized_relobj_file<32, big_endian>* relobj,
7959     unsigned int local_sym_index)
7960 {
7961   if (relobj->local_has_plt_offset(local_sym_index))
7962     return;
7963   if (this->plt_ == NULL)
7964     this->make_plt_section(symtab, layout);
7965   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7966                                                               relobj,
7967                                                               local_sym_index);
7968   relobj->set_local_plt_offset(local_sym_index, plt_offset);
7969 }
7970
7971
7972 // Return the number of entries in the PLT.
7973
7974 template<bool big_endian>
7975 unsigned int
7976 Target_arm<big_endian>::plt_entry_count() const
7977 {
7978   if (this->plt_ == NULL)
7979     return 0;
7980   return this->plt_->entry_count();
7981 }
7982
7983 // Return the offset of the first non-reserved PLT entry.
7984
7985 template<bool big_endian>
7986 unsigned int
7987 Target_arm<big_endian>::first_plt_entry_offset() const
7988 {
7989   return this->plt_->first_plt_entry_offset();
7990 }
7991
7992 // Return the size of each PLT entry.
7993
7994 template<bool big_endian>
7995 unsigned int
7996 Target_arm<big_endian>::plt_entry_size() const
7997 {
7998   return this->plt_->get_plt_entry_size();
7999 }
8000
8001 // Get the section to use for TLS_DESC relocations.
8002
8003 template<bool big_endian>
8004 typename Target_arm<big_endian>::Reloc_section*
8005 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8006 {
8007   return this->plt_section()->rel_tls_desc(layout);
8008 }
8009
8010 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8011
8012 template<bool big_endian>
8013 void
8014 Target_arm<big_endian>::define_tls_base_symbol(
8015     Symbol_table* symtab,
8016     Layout* layout)
8017 {
8018   if (this->tls_base_symbol_defined_)
8019     return;
8020
8021   Output_segment* tls_segment = layout->tls_segment();
8022   if (tls_segment != NULL)
8023     {
8024       bool is_exec = parameters->options().output_is_executable();
8025       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8026                                        Symbol_table::PREDEFINED,
8027                                        tls_segment, 0, 0,
8028                                        elfcpp::STT_TLS,
8029                                        elfcpp::STB_LOCAL,
8030                                        elfcpp::STV_HIDDEN, 0,
8031                                        (is_exec
8032                                         ? Symbol::SEGMENT_END
8033                                         : Symbol::SEGMENT_START),
8034                                        true);
8035     }
8036   this->tls_base_symbol_defined_ = true;
8037 }
8038
8039 // Create a GOT entry for the TLS module index.
8040
8041 template<bool big_endian>
8042 unsigned int
8043 Target_arm<big_endian>::got_mod_index_entry(
8044     Symbol_table* symtab,
8045     Layout* layout,
8046     Sized_relobj_file<32, big_endian>* object)
8047 {
8048   if (this->got_mod_index_offset_ == -1U)
8049     {
8050       gold_assert(symtab != NULL && layout != NULL && object != NULL);
8051       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8052       unsigned int got_offset;
8053       if (!parameters->doing_static_link())
8054         {
8055           got_offset = got->add_constant(0);
8056           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8057           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8058                              got_offset);
8059         }
8060       else
8061         {
8062           // We are doing a static link.  Just mark it as belong to module 1,
8063           // the executable.
8064           got_offset = got->add_constant(1);
8065         }
8066
8067       got->add_constant(0);
8068       this->got_mod_index_offset_ = got_offset;
8069     }
8070   return this->got_mod_index_offset_;
8071 }
8072
8073 // Optimize the TLS relocation type based on what we know about the
8074 // symbol.  IS_FINAL is true if the final address of this symbol is
8075 // known at link time.
8076
8077 template<bool big_endian>
8078 tls::Tls_optimization
8079 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8080 {
8081   // FIXME: Currently we do not do any TLS optimization.
8082   return tls::TLSOPT_NONE;
8083 }
8084
8085 // Get the Reference_flags for a particular relocation.
8086
8087 template<bool big_endian>
8088 int
8089 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8090 {
8091   switch (r_type)
8092     {
8093     case elfcpp::R_ARM_NONE:
8094     case elfcpp::R_ARM_V4BX:
8095     case elfcpp::R_ARM_GNU_VTENTRY:
8096     case elfcpp::R_ARM_GNU_VTINHERIT:
8097       // No symbol reference.
8098       return 0;
8099
8100     case elfcpp::R_ARM_ABS32:
8101     case elfcpp::R_ARM_ABS16:
8102     case elfcpp::R_ARM_ABS12:
8103     case elfcpp::R_ARM_THM_ABS5:
8104     case elfcpp::R_ARM_ABS8:
8105     case elfcpp::R_ARM_BASE_ABS:
8106     case elfcpp::R_ARM_MOVW_ABS_NC:
8107     case elfcpp::R_ARM_MOVT_ABS:
8108     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8109     case elfcpp::R_ARM_THM_MOVT_ABS:
8110     case elfcpp::R_ARM_ABS32_NOI:
8111       return Symbol::ABSOLUTE_REF;
8112
8113     case elfcpp::R_ARM_REL32:
8114     case elfcpp::R_ARM_LDR_PC_G0:
8115     case elfcpp::R_ARM_SBREL32:
8116     case elfcpp::R_ARM_THM_PC8:
8117     case elfcpp::R_ARM_BASE_PREL:
8118     case elfcpp::R_ARM_MOVW_PREL_NC:
8119     case elfcpp::R_ARM_MOVT_PREL:
8120     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8121     case elfcpp::R_ARM_THM_MOVT_PREL:
8122     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8123     case elfcpp::R_ARM_THM_PC12:
8124     case elfcpp::R_ARM_REL32_NOI:
8125     case elfcpp::R_ARM_ALU_PC_G0_NC:
8126     case elfcpp::R_ARM_ALU_PC_G0:
8127     case elfcpp::R_ARM_ALU_PC_G1_NC:
8128     case elfcpp::R_ARM_ALU_PC_G1:
8129     case elfcpp::R_ARM_ALU_PC_G2:
8130     case elfcpp::R_ARM_LDR_PC_G1:
8131     case elfcpp::R_ARM_LDR_PC_G2:
8132     case elfcpp::R_ARM_LDRS_PC_G0:
8133     case elfcpp::R_ARM_LDRS_PC_G1:
8134     case elfcpp::R_ARM_LDRS_PC_G2:
8135     case elfcpp::R_ARM_LDC_PC_G0:
8136     case elfcpp::R_ARM_LDC_PC_G1:
8137     case elfcpp::R_ARM_LDC_PC_G2:
8138     case elfcpp::R_ARM_ALU_SB_G0_NC:
8139     case elfcpp::R_ARM_ALU_SB_G0:
8140     case elfcpp::R_ARM_ALU_SB_G1_NC:
8141     case elfcpp::R_ARM_ALU_SB_G1:
8142     case elfcpp::R_ARM_ALU_SB_G2:
8143     case elfcpp::R_ARM_LDR_SB_G0:
8144     case elfcpp::R_ARM_LDR_SB_G1:
8145     case elfcpp::R_ARM_LDR_SB_G2:
8146     case elfcpp::R_ARM_LDRS_SB_G0:
8147     case elfcpp::R_ARM_LDRS_SB_G1:
8148     case elfcpp::R_ARM_LDRS_SB_G2:
8149     case elfcpp::R_ARM_LDC_SB_G0:
8150     case elfcpp::R_ARM_LDC_SB_G1:
8151     case elfcpp::R_ARM_LDC_SB_G2:
8152     case elfcpp::R_ARM_MOVW_BREL_NC:
8153     case elfcpp::R_ARM_MOVT_BREL:
8154     case elfcpp::R_ARM_MOVW_BREL:
8155     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8156     case elfcpp::R_ARM_THM_MOVT_BREL:
8157     case elfcpp::R_ARM_THM_MOVW_BREL:
8158     case elfcpp::R_ARM_GOTOFF32:
8159     case elfcpp::R_ARM_GOTOFF12:
8160     case elfcpp::R_ARM_SBREL31:
8161       return Symbol::RELATIVE_REF;
8162
8163     case elfcpp::R_ARM_PLT32:
8164     case elfcpp::R_ARM_CALL:
8165     case elfcpp::R_ARM_JUMP24:
8166     case elfcpp::R_ARM_THM_CALL:
8167     case elfcpp::R_ARM_THM_JUMP24:
8168     case elfcpp::R_ARM_THM_JUMP19:
8169     case elfcpp::R_ARM_THM_JUMP6:
8170     case elfcpp::R_ARM_THM_JUMP11:
8171     case elfcpp::R_ARM_THM_JUMP8:
8172     // R_ARM_PREL31 is not used to relocate call/jump instructions but
8173     // in unwind tables. It may point to functions via PLTs.
8174     // So we treat it like call/jump relocations above.
8175     case elfcpp::R_ARM_PREL31:
8176       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8177
8178     case elfcpp::R_ARM_GOT_BREL:
8179     case elfcpp::R_ARM_GOT_ABS:
8180     case elfcpp::R_ARM_GOT_PREL:
8181       // Absolute in GOT.
8182       return Symbol::ABSOLUTE_REF;
8183
8184     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8185     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8186     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8187     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8188     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8189       return Symbol::TLS_REF;
8190
8191     case elfcpp::R_ARM_TARGET1:
8192     case elfcpp::R_ARM_TARGET2:
8193     case elfcpp::R_ARM_COPY:
8194     case elfcpp::R_ARM_GLOB_DAT:
8195     case elfcpp::R_ARM_JUMP_SLOT:
8196     case elfcpp::R_ARM_RELATIVE:
8197     case elfcpp::R_ARM_PC24:
8198     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8199     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8200     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8201     default:
8202       // Not expected.  We will give an error later.
8203       return 0;
8204     }
8205 }
8206
8207 // Report an unsupported relocation against a local symbol.
8208
8209 template<bool big_endian>
8210 void
8211 Target_arm<big_endian>::Scan::unsupported_reloc_local(
8212     Sized_relobj_file<32, big_endian>* object,
8213     unsigned int r_type)
8214 {
8215   gold_error(_("%s: unsupported reloc %u against local symbol"),
8216              object->name().c_str(), r_type);
8217 }
8218
8219 // We are about to emit a dynamic relocation of type R_TYPE.  If the
8220 // dynamic linker does not support it, issue an error.  The GNU linker
8221 // only issues a non-PIC error for an allocated read-only section.
8222 // Here we know the section is allocated, but we don't know that it is
8223 // read-only.  But we check for all the relocation types which the
8224 // glibc dynamic linker supports, so it seems appropriate to issue an
8225 // error even if the section is not read-only.
8226
8227 template<bool big_endian>
8228 void
8229 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8230                                             unsigned int r_type)
8231 {
8232   switch (r_type)
8233     {
8234     // These are the relocation types supported by glibc for ARM.
8235     case elfcpp::R_ARM_RELATIVE:
8236     case elfcpp::R_ARM_COPY:
8237     case elfcpp::R_ARM_GLOB_DAT:
8238     case elfcpp::R_ARM_JUMP_SLOT:
8239     case elfcpp::R_ARM_ABS32:
8240     case elfcpp::R_ARM_ABS32_NOI:
8241     case elfcpp::R_ARM_IRELATIVE:
8242     case elfcpp::R_ARM_PC24:
8243     // FIXME: The following 3 types are not supported by Android's dynamic
8244     // linker.
8245     case elfcpp::R_ARM_TLS_DTPMOD32:
8246     case elfcpp::R_ARM_TLS_DTPOFF32:
8247     case elfcpp::R_ARM_TLS_TPOFF32:
8248       return;
8249
8250     default:
8251       {
8252         // This prevents us from issuing more than one error per reloc
8253         // section.  But we can still wind up issuing more than one
8254         // error per object file.
8255         if (this->issued_non_pic_error_)
8256           return;
8257         const Arm_reloc_property* reloc_property =
8258           arm_reloc_property_table->get_reloc_property(r_type);
8259         gold_assert(reloc_property != NULL);
8260         object->error(_("requires unsupported dynamic reloc %s; "
8261                       "recompile with -fPIC"),
8262                       reloc_property->name().c_str());
8263         this->issued_non_pic_error_ = true;
8264         return;
8265       }
8266
8267     case elfcpp::R_ARM_NONE:
8268       gold_unreachable();
8269     }
8270 }
8271
8272
8273 // Return whether we need to make a PLT entry for a relocation of the
8274 // given type against a STT_GNU_IFUNC symbol.
8275
8276 template<bool big_endian>
8277 bool
8278 Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8279     Sized_relobj_file<32, big_endian>* object,
8280     unsigned int r_type)
8281 {
8282   int flags = Scan::get_reference_flags(r_type);
8283   if (flags & Symbol::TLS_REF)
8284     {
8285       gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8286                  object->name().c_str(), r_type);
8287       return false;
8288     }
8289   return flags != 0;
8290 }
8291
8292
8293 // Scan a relocation for a local symbol.
8294 // FIXME: This only handles a subset of relocation types used by Android
8295 // on ARM v5te devices.
8296
8297 template<bool big_endian>
8298 inline void
8299 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
8300                                     Layout* layout,
8301                                     Target_arm* target,
8302                                     Sized_relobj_file<32, big_endian>* object,
8303                                     unsigned int data_shndx,
8304                                     Output_section* output_section,
8305                                     const elfcpp::Rel<32, big_endian>& reloc,
8306                                     unsigned int r_type,
8307                                     const elfcpp::Sym<32, big_endian>& lsym,
8308                                     bool is_discarded)
8309 {
8310   if (is_discarded)
8311     return;
8312
8313   r_type = get_real_reloc_type(r_type);
8314
8315   // A local STT_GNU_IFUNC symbol may require a PLT entry.
8316   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8317   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8318     {
8319       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8320       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8321     }
8322
8323   switch (r_type)
8324     {
8325     case elfcpp::R_ARM_NONE:
8326     case elfcpp::R_ARM_V4BX:
8327     case elfcpp::R_ARM_GNU_VTENTRY:
8328     case elfcpp::R_ARM_GNU_VTINHERIT:
8329       break;
8330
8331     case elfcpp::R_ARM_ABS32:
8332     case elfcpp::R_ARM_ABS32_NOI:
8333       // If building a shared library (or a position-independent
8334       // executable), we need to create a dynamic relocation for
8335       // this location. The relocation applied at link time will
8336       // apply the link-time value, so we flag the location with
8337       // an R_ARM_RELATIVE relocation so the dynamic loader can
8338       // relocate it easily.
8339       if (parameters->options().output_is_position_independent())
8340         {
8341           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8342           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8343           // If we are to add more other reloc types than R_ARM_ABS32,
8344           // we need to add check_non_pic(object, r_type) here.
8345           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8346                                       output_section, data_shndx,
8347                                       reloc.get_r_offset(), is_ifunc);
8348         }
8349       break;
8350
8351     case elfcpp::R_ARM_ABS16:
8352     case elfcpp::R_ARM_ABS12:
8353     case elfcpp::R_ARM_THM_ABS5:
8354     case elfcpp::R_ARM_ABS8:
8355     case elfcpp::R_ARM_BASE_ABS:
8356     case elfcpp::R_ARM_MOVW_ABS_NC:
8357     case elfcpp::R_ARM_MOVT_ABS:
8358     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8359     case elfcpp::R_ARM_THM_MOVT_ABS:
8360       // If building a shared library (or a position-independent
8361       // executable), we need to create a dynamic relocation for
8362       // this location. Because the addend needs to remain in the
8363       // data section, we need to be careful not to apply this
8364       // relocation statically.
8365       if (parameters->options().output_is_position_independent())
8366         {
8367           check_non_pic(object, r_type);
8368           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8369           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8370           if (lsym.get_st_type() != elfcpp::STT_SECTION)
8371             rel_dyn->add_local(object, r_sym, r_type, output_section,
8372                                data_shndx, reloc.get_r_offset());
8373           else
8374             {
8375               gold_assert(lsym.get_st_value() == 0);
8376               unsigned int shndx = lsym.get_st_shndx();
8377               bool is_ordinary;
8378               shndx = object->adjust_sym_shndx(r_sym, shndx,
8379                                                &is_ordinary);
8380               if (!is_ordinary)
8381                 object->error(_("section symbol %u has bad shndx %u"),
8382                               r_sym, shndx);
8383               else
8384                 rel_dyn->add_local_section(object, shndx,
8385                                            r_type, output_section,
8386                                            data_shndx, reloc.get_r_offset());
8387             }
8388         }
8389       break;
8390
8391     case elfcpp::R_ARM_REL32:
8392     case elfcpp::R_ARM_LDR_PC_G0:
8393     case elfcpp::R_ARM_SBREL32:
8394     case elfcpp::R_ARM_THM_CALL:
8395     case elfcpp::R_ARM_THM_PC8:
8396     case elfcpp::R_ARM_BASE_PREL:
8397     case elfcpp::R_ARM_PLT32:
8398     case elfcpp::R_ARM_CALL:
8399     case elfcpp::R_ARM_JUMP24:
8400     case elfcpp::R_ARM_THM_JUMP24:
8401     case elfcpp::R_ARM_SBREL31:
8402     case elfcpp::R_ARM_PREL31:
8403     case elfcpp::R_ARM_MOVW_PREL_NC:
8404     case elfcpp::R_ARM_MOVT_PREL:
8405     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8406     case elfcpp::R_ARM_THM_MOVT_PREL:
8407     case elfcpp::R_ARM_THM_JUMP19:
8408     case elfcpp::R_ARM_THM_JUMP6:
8409     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8410     case elfcpp::R_ARM_THM_PC12:
8411     case elfcpp::R_ARM_REL32_NOI:
8412     case elfcpp::R_ARM_ALU_PC_G0_NC:
8413     case elfcpp::R_ARM_ALU_PC_G0:
8414     case elfcpp::R_ARM_ALU_PC_G1_NC:
8415     case elfcpp::R_ARM_ALU_PC_G1:
8416     case elfcpp::R_ARM_ALU_PC_G2:
8417     case elfcpp::R_ARM_LDR_PC_G1:
8418     case elfcpp::R_ARM_LDR_PC_G2:
8419     case elfcpp::R_ARM_LDRS_PC_G0:
8420     case elfcpp::R_ARM_LDRS_PC_G1:
8421     case elfcpp::R_ARM_LDRS_PC_G2:
8422     case elfcpp::R_ARM_LDC_PC_G0:
8423     case elfcpp::R_ARM_LDC_PC_G1:
8424     case elfcpp::R_ARM_LDC_PC_G2:
8425     case elfcpp::R_ARM_ALU_SB_G0_NC:
8426     case elfcpp::R_ARM_ALU_SB_G0:
8427     case elfcpp::R_ARM_ALU_SB_G1_NC:
8428     case elfcpp::R_ARM_ALU_SB_G1:
8429     case elfcpp::R_ARM_ALU_SB_G2:
8430     case elfcpp::R_ARM_LDR_SB_G0:
8431     case elfcpp::R_ARM_LDR_SB_G1:
8432     case elfcpp::R_ARM_LDR_SB_G2:
8433     case elfcpp::R_ARM_LDRS_SB_G0:
8434     case elfcpp::R_ARM_LDRS_SB_G1:
8435     case elfcpp::R_ARM_LDRS_SB_G2:
8436     case elfcpp::R_ARM_LDC_SB_G0:
8437     case elfcpp::R_ARM_LDC_SB_G1:
8438     case elfcpp::R_ARM_LDC_SB_G2:
8439     case elfcpp::R_ARM_MOVW_BREL_NC:
8440     case elfcpp::R_ARM_MOVT_BREL:
8441     case elfcpp::R_ARM_MOVW_BREL:
8442     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8443     case elfcpp::R_ARM_THM_MOVT_BREL:
8444     case elfcpp::R_ARM_THM_MOVW_BREL:
8445     case elfcpp::R_ARM_THM_JUMP11:
8446     case elfcpp::R_ARM_THM_JUMP8:
8447       // We don't need to do anything for a relative addressing relocation
8448       // against a local symbol if it does not reference the GOT.
8449       break;
8450
8451     case elfcpp::R_ARM_GOTOFF32:
8452     case elfcpp::R_ARM_GOTOFF12:
8453       // We need a GOT section:
8454       target->got_section(symtab, layout);
8455       break;
8456
8457     case elfcpp::R_ARM_GOT_BREL:
8458     case elfcpp::R_ARM_GOT_PREL:
8459       {
8460         // The symbol requires a GOT entry.
8461         Arm_output_data_got<big_endian>* got =
8462           target->got_section(symtab, layout);
8463         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8464         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8465           {
8466             // If we are generating a shared object, we need to add a
8467             // dynamic RELATIVE relocation for this symbol's GOT entry.
8468             if (parameters->options().output_is_position_independent())
8469               {
8470                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8471                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8472                 rel_dyn->add_local_relative(
8473                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8474                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8475               }
8476           }
8477       }
8478       break;
8479
8480     case elfcpp::R_ARM_TARGET1:
8481     case elfcpp::R_ARM_TARGET2:
8482       // This should have been mapped to another type already.
8483       // Fall through.
8484     case elfcpp::R_ARM_COPY:
8485     case elfcpp::R_ARM_GLOB_DAT:
8486     case elfcpp::R_ARM_JUMP_SLOT:
8487     case elfcpp::R_ARM_RELATIVE:
8488       // These are relocations which should only be seen by the
8489       // dynamic linker, and should never be seen here.
8490       gold_error(_("%s: unexpected reloc %u in object file"),
8491                  object->name().c_str(), r_type);
8492       break;
8493
8494
8495       // These are initial TLS relocs, which are expected when
8496       // linking.
8497     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8498     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8499     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8500     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8501     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8502       {
8503         bool output_is_shared = parameters->options().shared();
8504         const tls::Tls_optimization optimized_type
8505             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8506                                                          r_type);
8507         switch (r_type)
8508           {
8509           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8510             if (optimized_type == tls::TLSOPT_NONE)
8511               {
8512                 // Create a pair of GOT entries for the module index and
8513                 // dtv-relative offset.
8514                 Arm_output_data_got<big_endian>* got
8515                     = target->got_section(symtab, layout);
8516                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8517                 unsigned int shndx = lsym.get_st_shndx();
8518                 bool is_ordinary;
8519                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8520                 if (!is_ordinary)
8521                   {
8522                     object->error(_("local symbol %u has bad shndx %u"),
8523                                   r_sym, shndx);
8524                     break;
8525                   }
8526
8527                 if (!parameters->doing_static_link())
8528                   got->add_local_pair_with_rel(object, r_sym, shndx,
8529                                                GOT_TYPE_TLS_PAIR,
8530                                                target->rel_dyn_section(layout),
8531                                                elfcpp::R_ARM_TLS_DTPMOD32);
8532                 else
8533                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8534                                                       object, r_sym);
8535               }
8536             else
8537               // FIXME: TLS optimization not supported yet.
8538               gold_unreachable();
8539             break;
8540
8541           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8542             if (optimized_type == tls::TLSOPT_NONE)
8543               {
8544                 // Create a GOT entry for the module index.
8545                 target->got_mod_index_entry(symtab, layout, object);
8546               }
8547             else
8548               // FIXME: TLS optimization not supported yet.
8549               gold_unreachable();
8550             break;
8551
8552           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8553             break;
8554
8555           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8556             layout->set_has_static_tls();
8557             if (optimized_type == tls::TLSOPT_NONE)
8558               {
8559                 // Create a GOT entry for the tp-relative offset.
8560                 Arm_output_data_got<big_endian>* got
8561                   = target->got_section(symtab, layout);
8562                 unsigned int r_sym =
8563                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
8564                 if (!parameters->doing_static_link())
8565                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8566                                             target->rel_dyn_section(layout),
8567                                             elfcpp::R_ARM_TLS_TPOFF32);
8568                 else if (!object->local_has_got_offset(r_sym,
8569                                                        GOT_TYPE_TLS_OFFSET))
8570                   {
8571                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8572                     unsigned int got_offset =
8573                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8574                     got->add_static_reloc(got_offset,
8575                                           elfcpp::R_ARM_TLS_TPOFF32, object,
8576                                           r_sym);
8577                   }
8578               }
8579             else
8580               // FIXME: TLS optimization not supported yet.
8581               gold_unreachable();
8582             break;
8583
8584           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8585             layout->set_has_static_tls();
8586             if (output_is_shared)
8587               {
8588                 // We need to create a dynamic relocation.
8589                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8590                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8591                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8592                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8593                                    output_section, data_shndx,
8594                                    reloc.get_r_offset());
8595               }
8596             break;
8597
8598           default:
8599             gold_unreachable();
8600           }
8601       }
8602       break;
8603
8604     case elfcpp::R_ARM_PC24:
8605     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8606     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8607     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8608     default:
8609       unsupported_reloc_local(object, r_type);
8610       break;
8611     }
8612 }
8613
8614 // Report an unsupported relocation against a global symbol.
8615
8616 template<bool big_endian>
8617 void
8618 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8619     Sized_relobj_file<32, big_endian>* object,
8620     unsigned int r_type,
8621     Symbol* gsym)
8622 {
8623   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8624              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8625 }
8626
8627 template<bool big_endian>
8628 inline bool
8629 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8630     unsigned int r_type)
8631 {
8632   switch (r_type)
8633     {
8634     case elfcpp::R_ARM_PC24:
8635     case elfcpp::R_ARM_THM_CALL:
8636     case elfcpp::R_ARM_PLT32:
8637     case elfcpp::R_ARM_CALL:
8638     case elfcpp::R_ARM_JUMP24:
8639     case elfcpp::R_ARM_THM_JUMP24:
8640     case elfcpp::R_ARM_SBREL31:
8641     case elfcpp::R_ARM_PREL31:
8642     case elfcpp::R_ARM_THM_JUMP19:
8643     case elfcpp::R_ARM_THM_JUMP6:
8644     case elfcpp::R_ARM_THM_JUMP11:
8645     case elfcpp::R_ARM_THM_JUMP8:
8646       // All the relocations above are branches except SBREL31 and PREL31.
8647       return false;
8648
8649     default:
8650       // Be conservative and assume this is a function pointer.
8651       return true;
8652     }
8653 }
8654
8655 template<bool big_endian>
8656 inline bool
8657 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8658   Symbol_table*,
8659   Layout*,
8660   Target_arm<big_endian>* target,
8661   Sized_relobj_file<32, big_endian>*,
8662   unsigned int,
8663   Output_section*,
8664   const elfcpp::Rel<32, big_endian>&,
8665   unsigned int r_type,
8666   const elfcpp::Sym<32, big_endian>&)
8667 {
8668   r_type = target->get_real_reloc_type(r_type);
8669   return possible_function_pointer_reloc(r_type);
8670 }
8671
8672 template<bool big_endian>
8673 inline bool
8674 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8675   Symbol_table*,
8676   Layout*,
8677   Target_arm<big_endian>* target,
8678   Sized_relobj_file<32, big_endian>*,
8679   unsigned int,
8680   Output_section*,
8681   const elfcpp::Rel<32, big_endian>&,
8682   unsigned int r_type,
8683   Symbol* gsym)
8684 {
8685   // GOT is not a function.
8686   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8687     return false;
8688
8689   r_type = target->get_real_reloc_type(r_type);
8690   return possible_function_pointer_reloc(r_type);
8691 }
8692
8693 // Scan a relocation for a global symbol.
8694
8695 template<bool big_endian>
8696 inline void
8697 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8698                                      Layout* layout,
8699                                      Target_arm* target,
8700                                      Sized_relobj_file<32, big_endian>* object,
8701                                      unsigned int data_shndx,
8702                                      Output_section* output_section,
8703                                      const elfcpp::Rel<32, big_endian>& reloc,
8704                                      unsigned int r_type,
8705                                      Symbol* gsym)
8706 {
8707   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8708   // section.  We check here to avoid creating a dynamic reloc against
8709   // _GLOBAL_OFFSET_TABLE_.
8710   if (!target->has_got_section()
8711       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8712     target->got_section(symtab, layout);
8713
8714   // A STT_GNU_IFUNC symbol may require a PLT entry.
8715   if (gsym->type() == elfcpp::STT_GNU_IFUNC
8716       && this->reloc_needs_plt_for_ifunc(object, r_type))
8717     target->make_plt_entry(symtab, layout, gsym);
8718
8719   r_type = get_real_reloc_type(r_type);
8720   switch (r_type)
8721     {
8722     case elfcpp::R_ARM_NONE:
8723     case elfcpp::R_ARM_V4BX:
8724     case elfcpp::R_ARM_GNU_VTENTRY:
8725     case elfcpp::R_ARM_GNU_VTINHERIT:
8726       break;
8727
8728     case elfcpp::R_ARM_ABS32:
8729     case elfcpp::R_ARM_ABS16:
8730     case elfcpp::R_ARM_ABS12:
8731     case elfcpp::R_ARM_THM_ABS5:
8732     case elfcpp::R_ARM_ABS8:
8733     case elfcpp::R_ARM_BASE_ABS:
8734     case elfcpp::R_ARM_MOVW_ABS_NC:
8735     case elfcpp::R_ARM_MOVT_ABS:
8736     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8737     case elfcpp::R_ARM_THM_MOVT_ABS:
8738     case elfcpp::R_ARM_ABS32_NOI:
8739       // Absolute addressing relocations.
8740       {
8741         // Make a PLT entry if necessary.
8742         if (this->symbol_needs_plt_entry(gsym))
8743           {
8744             target->make_plt_entry(symtab, layout, gsym);
8745             // Since this is not a PC-relative relocation, we may be
8746             // taking the address of a function. In that case we need to
8747             // set the entry in the dynamic symbol table to the address of
8748             // the PLT entry.
8749             if (gsym->is_from_dynobj() && !parameters->options().shared())
8750               gsym->set_needs_dynsym_value();
8751           }
8752         // Make a dynamic relocation if necessary.
8753         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8754           {
8755             if (!parameters->options().output_is_position_independent()
8756                 && gsym->may_need_copy_reloc())
8757               {
8758                 target->copy_reloc(symtab, layout, object,
8759                                    data_shndx, output_section, gsym, reloc);
8760               }
8761             else if ((r_type == elfcpp::R_ARM_ABS32
8762                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8763                      && gsym->type() == elfcpp::STT_GNU_IFUNC
8764                      && gsym->can_use_relative_reloc(false)
8765                      && !gsym->is_from_dynobj()
8766                      && !gsym->is_undefined()
8767                      && !gsym->is_preemptible())
8768               {
8769                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8770                 // symbol. This makes a function address in a PIE executable
8771                 // match the address in a shared library that it links against.
8772                 Reloc_section* rel_irelative =
8773                     target->rel_irelative_section(layout);
8774                 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8775                 rel_irelative->add_symbolless_global_addend(
8776                     gsym, r_type, output_section, object,
8777                     data_shndx, reloc.get_r_offset());
8778               }
8779             else if ((r_type == elfcpp::R_ARM_ABS32
8780                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8781                      && gsym->can_use_relative_reloc(false))
8782               {
8783                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8784                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8785                                              output_section, object,
8786                                              data_shndx, reloc.get_r_offset());
8787               }
8788             else
8789               {
8790                 check_non_pic(object, r_type);
8791                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8792                 rel_dyn->add_global(gsym, r_type, output_section, object,
8793                                     data_shndx, reloc.get_r_offset());
8794               }
8795           }
8796       }
8797       break;
8798
8799     case elfcpp::R_ARM_GOTOFF32:
8800     case elfcpp::R_ARM_GOTOFF12:
8801       // We need a GOT section.
8802       target->got_section(symtab, layout);
8803       break;
8804
8805     case elfcpp::R_ARM_REL32:
8806     case elfcpp::R_ARM_LDR_PC_G0:
8807     case elfcpp::R_ARM_SBREL32:
8808     case elfcpp::R_ARM_THM_PC8:
8809     case elfcpp::R_ARM_BASE_PREL:
8810     case elfcpp::R_ARM_MOVW_PREL_NC:
8811     case elfcpp::R_ARM_MOVT_PREL:
8812     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8813     case elfcpp::R_ARM_THM_MOVT_PREL:
8814     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8815     case elfcpp::R_ARM_THM_PC12:
8816     case elfcpp::R_ARM_REL32_NOI:
8817     case elfcpp::R_ARM_ALU_PC_G0_NC:
8818     case elfcpp::R_ARM_ALU_PC_G0:
8819     case elfcpp::R_ARM_ALU_PC_G1_NC:
8820     case elfcpp::R_ARM_ALU_PC_G1:
8821     case elfcpp::R_ARM_ALU_PC_G2:
8822     case elfcpp::R_ARM_LDR_PC_G1:
8823     case elfcpp::R_ARM_LDR_PC_G2:
8824     case elfcpp::R_ARM_LDRS_PC_G0:
8825     case elfcpp::R_ARM_LDRS_PC_G1:
8826     case elfcpp::R_ARM_LDRS_PC_G2:
8827     case elfcpp::R_ARM_LDC_PC_G0:
8828     case elfcpp::R_ARM_LDC_PC_G1:
8829     case elfcpp::R_ARM_LDC_PC_G2:
8830     case elfcpp::R_ARM_ALU_SB_G0_NC:
8831     case elfcpp::R_ARM_ALU_SB_G0:
8832     case elfcpp::R_ARM_ALU_SB_G1_NC:
8833     case elfcpp::R_ARM_ALU_SB_G1:
8834     case elfcpp::R_ARM_ALU_SB_G2:
8835     case elfcpp::R_ARM_LDR_SB_G0:
8836     case elfcpp::R_ARM_LDR_SB_G1:
8837     case elfcpp::R_ARM_LDR_SB_G2:
8838     case elfcpp::R_ARM_LDRS_SB_G0:
8839     case elfcpp::R_ARM_LDRS_SB_G1:
8840     case elfcpp::R_ARM_LDRS_SB_G2:
8841     case elfcpp::R_ARM_LDC_SB_G0:
8842     case elfcpp::R_ARM_LDC_SB_G1:
8843     case elfcpp::R_ARM_LDC_SB_G2:
8844     case elfcpp::R_ARM_MOVW_BREL_NC:
8845     case elfcpp::R_ARM_MOVT_BREL:
8846     case elfcpp::R_ARM_MOVW_BREL:
8847     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8848     case elfcpp::R_ARM_THM_MOVT_BREL:
8849     case elfcpp::R_ARM_THM_MOVW_BREL:
8850       // Relative addressing relocations.
8851       {
8852         // Make a dynamic relocation if necessary.
8853         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8854           {
8855             if (parameters->options().output_is_executable()
8856                 && target->may_need_copy_reloc(gsym))
8857               {
8858                 target->copy_reloc(symtab, layout, object,
8859                                    data_shndx, output_section, gsym, reloc);
8860               }
8861             else
8862               {
8863                 check_non_pic(object, r_type);
8864                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8865                 rel_dyn->add_global(gsym, r_type, output_section, object,
8866                                     data_shndx, reloc.get_r_offset());
8867               }
8868           }
8869       }
8870       break;
8871
8872     case elfcpp::R_ARM_THM_CALL:
8873     case elfcpp::R_ARM_PLT32:
8874     case elfcpp::R_ARM_CALL:
8875     case elfcpp::R_ARM_JUMP24:
8876     case elfcpp::R_ARM_THM_JUMP24:
8877     case elfcpp::R_ARM_SBREL31:
8878     case elfcpp::R_ARM_PREL31:
8879     case elfcpp::R_ARM_THM_JUMP19:
8880     case elfcpp::R_ARM_THM_JUMP6:
8881     case elfcpp::R_ARM_THM_JUMP11:
8882     case elfcpp::R_ARM_THM_JUMP8:
8883       // All the relocation above are branches except for the PREL31 ones.
8884       // A PREL31 relocation can point to a personality function in a shared
8885       // library.  In that case we want to use a PLT because we want to
8886       // call the personality routine and the dynamic linkers we care about
8887       // do not support dynamic PREL31 relocations. An REL31 relocation may
8888       // point to a function whose unwinding behaviour is being described but
8889       // we will not mistakenly generate a PLT for that because we should use
8890       // a local section symbol.
8891
8892       // If the symbol is fully resolved, this is just a relative
8893       // local reloc.  Otherwise we need a PLT entry.
8894       if (gsym->final_value_is_known())
8895         break;
8896       // If building a shared library, we can also skip the PLT entry
8897       // if the symbol is defined in the output file and is protected
8898       // or hidden.
8899       if (gsym->is_defined()
8900           && !gsym->is_from_dynobj()
8901           && !gsym->is_preemptible())
8902         break;
8903       target->make_plt_entry(symtab, layout, gsym);
8904       break;
8905
8906     case elfcpp::R_ARM_GOT_BREL:
8907     case elfcpp::R_ARM_GOT_ABS:
8908     case elfcpp::R_ARM_GOT_PREL:
8909       {
8910         // The symbol requires a GOT entry.
8911         Arm_output_data_got<big_endian>* got =
8912           target->got_section(symtab, layout);
8913         if (gsym->final_value_is_known())
8914           {
8915             // For a STT_GNU_IFUNC symbol we want the PLT address.
8916             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8917               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8918             else
8919               got->add_global(gsym, GOT_TYPE_STANDARD);
8920           }
8921         else
8922           {
8923             // If this symbol is not fully resolved, we need to add a
8924             // GOT entry with a dynamic relocation.
8925             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8926             if (gsym->is_from_dynobj()
8927                 || gsym->is_undefined()
8928                 || gsym->is_preemptible()
8929                 || (gsym->visibility() == elfcpp::STV_PROTECTED
8930                     && parameters->options().shared())
8931                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8932                     && parameters->options().output_is_position_independent()))
8933               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8934                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8935             else
8936               {
8937                 // For a STT_GNU_IFUNC symbol we want to write the PLT
8938                 // offset into the GOT, so that function pointer
8939                 // comparisons work correctly.
8940                 bool is_new;
8941                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8942                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8943                 else
8944                   {
8945                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8946                     // Tell the dynamic linker to use the PLT address
8947                     // when resolving relocations.
8948                     if (gsym->is_from_dynobj()
8949                         && !parameters->options().shared())
8950                       gsym->set_needs_dynsym_value();
8951                   }
8952                 if (is_new)
8953                   rel_dyn->add_global_relative(
8954                       gsym, elfcpp::R_ARM_RELATIVE, got,
8955                       gsym->got_offset(GOT_TYPE_STANDARD));
8956               }
8957           }
8958       }
8959       break;
8960
8961     case elfcpp::R_ARM_TARGET1:
8962     case elfcpp::R_ARM_TARGET2:
8963       // These should have been mapped to other types already.
8964       // Fall through.
8965     case elfcpp::R_ARM_COPY:
8966     case elfcpp::R_ARM_GLOB_DAT:
8967     case elfcpp::R_ARM_JUMP_SLOT:
8968     case elfcpp::R_ARM_RELATIVE:
8969       // These are relocations which should only be seen by the
8970       // dynamic linker, and should never be seen here.
8971       gold_error(_("%s: unexpected reloc %u in object file"),
8972                  object->name().c_str(), r_type);
8973       break;
8974
8975       // These are initial tls relocs, which are expected when
8976       // linking.
8977     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8978     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8979     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8980     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8981     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8982       {
8983         const bool is_final = gsym->final_value_is_known();
8984         const tls::Tls_optimization optimized_type
8985             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8986         switch (r_type)
8987           {
8988           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8989             if (optimized_type == tls::TLSOPT_NONE)
8990               {
8991                 // Create a pair of GOT entries for the module index and
8992                 // dtv-relative offset.
8993                 Arm_output_data_got<big_endian>* got
8994                     = target->got_section(symtab, layout);
8995                 if (!parameters->doing_static_link())
8996                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8997                                                 target->rel_dyn_section(layout),
8998                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8999                                                 elfcpp::R_ARM_TLS_DTPOFF32);
9000                 else
9001                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
9002               }
9003             else
9004               // FIXME: TLS optimization not supported yet.
9005               gold_unreachable();
9006             break;
9007
9008           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
9009             if (optimized_type == tls::TLSOPT_NONE)
9010               {
9011                 // Create a GOT entry for the module index.
9012                 target->got_mod_index_entry(symtab, layout, object);
9013               }
9014             else
9015               // FIXME: TLS optimization not supported yet.
9016               gold_unreachable();
9017             break;
9018
9019           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
9020             break;
9021
9022           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
9023             layout->set_has_static_tls();
9024             if (optimized_type == tls::TLSOPT_NONE)
9025               {
9026                 // Create a GOT entry for the tp-relative offset.
9027                 Arm_output_data_got<big_endian>* got
9028                   = target->got_section(symtab, layout);
9029                 if (!parameters->doing_static_link())
9030                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9031                                            target->rel_dyn_section(layout),
9032                                            elfcpp::R_ARM_TLS_TPOFF32);
9033                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9034                   {
9035                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9036                     unsigned int got_offset =
9037                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9038                     got->add_static_reloc(got_offset,
9039                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
9040                   }
9041               }
9042             else
9043               // FIXME: TLS optimization not supported yet.
9044               gold_unreachable();
9045             break;
9046
9047           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
9048             layout->set_has_static_tls();
9049             if (parameters->options().shared())
9050               {
9051                 // We need to create a dynamic relocation.
9052                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9053                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
9054                                     output_section, object,
9055                                     data_shndx, reloc.get_r_offset());
9056               }
9057             break;
9058
9059           default:
9060             gold_unreachable();
9061           }
9062       }
9063       break;
9064
9065     case elfcpp::R_ARM_PC24:
9066     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9067     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9068     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9069     default:
9070       unsupported_reloc_global(object, r_type, gsym);
9071       break;
9072     }
9073 }
9074
9075 // Process relocations for gc.
9076
9077 template<bool big_endian>
9078 void
9079 Target_arm<big_endian>::gc_process_relocs(
9080     Symbol_table* symtab,
9081     Layout* layout,
9082     Sized_relobj_file<32, big_endian>* object,
9083     unsigned int data_shndx,
9084     unsigned int,
9085     const unsigned char* prelocs,
9086     size_t reloc_count,
9087     Output_section* output_section,
9088     bool needs_special_offset_handling,
9089     size_t local_symbol_count,
9090     const unsigned char* plocal_symbols)
9091 {
9092   typedef Target_arm<big_endian> Arm;
9093   typedef typename Target_arm<big_endian>::Scan Scan;
9094
9095   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
9096                           typename Target_arm::Relocatable_size_for_reloc>(
9097     symtab,
9098     layout,
9099     this,
9100     object,
9101     data_shndx,
9102     prelocs,
9103     reloc_count,
9104     output_section,
9105     needs_special_offset_handling,
9106     local_symbol_count,
9107     plocal_symbols);
9108 }
9109
9110 // Scan relocations for a section.
9111
9112 template<bool big_endian>
9113 void
9114 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
9115                                     Layout* layout,
9116                                     Sized_relobj_file<32, big_endian>* object,
9117                                     unsigned int data_shndx,
9118                                     unsigned int sh_type,
9119                                     const unsigned char* prelocs,
9120                                     size_t reloc_count,
9121                                     Output_section* output_section,
9122                                     bool needs_special_offset_handling,
9123                                     size_t local_symbol_count,
9124                                     const unsigned char* plocal_symbols)
9125 {
9126   typedef typename Target_arm<big_endian>::Scan Scan;
9127   if (sh_type == elfcpp::SHT_RELA)
9128     {
9129       gold_error(_("%s: unsupported RELA reloc section"),
9130                  object->name().c_str());
9131       return;
9132     }
9133
9134   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
9135     symtab,
9136     layout,
9137     this,
9138     object,
9139     data_shndx,
9140     prelocs,
9141     reloc_count,
9142     output_section,
9143     needs_special_offset_handling,
9144     local_symbol_count,
9145     plocal_symbols);
9146 }
9147
9148 // Finalize the sections.
9149
9150 template<bool big_endian>
9151 void
9152 Target_arm<big_endian>::do_finalize_sections(
9153     Layout* layout,
9154     const Input_objects* input_objects,
9155     Symbol_table*)
9156 {
9157   bool merged_any_attributes = false;
9158   // Merge processor-specific flags.
9159   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9160        p != input_objects->relobj_end();
9161        ++p)
9162     {
9163       Arm_relobj<big_endian>* arm_relobj =
9164         Arm_relobj<big_endian>::as_arm_relobj(*p);
9165       if (arm_relobj->merge_flags_and_attributes())
9166         {
9167           this->merge_processor_specific_flags(
9168               arm_relobj->name(),
9169               arm_relobj->processor_specific_flags());
9170           this->merge_object_attributes(arm_relobj->name().c_str(),
9171                                         arm_relobj->attributes_section_data());
9172           merged_any_attributes = true;
9173         }
9174     }
9175
9176   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9177        p != input_objects->dynobj_end();
9178        ++p)
9179     {
9180       Arm_dynobj<big_endian>* arm_dynobj =
9181         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9182       this->merge_processor_specific_flags(
9183           arm_dynobj->name(),
9184           arm_dynobj->processor_specific_flags());
9185       this->merge_object_attributes(arm_dynobj->name().c_str(),
9186                                     arm_dynobj->attributes_section_data());
9187       merged_any_attributes = true;
9188     }
9189
9190   // Create an empty uninitialized attribute section if we still don't have it
9191   // at this moment.  This happens if there is no attributes sections in all
9192   // inputs.
9193   if (this->attributes_section_data_ == NULL)
9194     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9195
9196   const Object_attribute* cpu_arch_attr =
9197     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
9198   // Check if we need to use Cortex-A8 workaround.
9199   if (parameters->options().user_set_fix_cortex_a8())
9200     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9201   else
9202     {
9203       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9204       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
9205       // profile.
9206       const Object_attribute* cpu_arch_profile_attr =
9207         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9208       this->fix_cortex_a8_ =
9209         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
9210          && (cpu_arch_profile_attr->int_value() == 'A'
9211              || cpu_arch_profile_attr->int_value() == 0));
9212     }
9213
9214   // Check if we can use V4BX interworking.
9215   // The V4BX interworking stub contains BX instruction,
9216   // which is not specified for some profiles.
9217   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
9218       && !this->may_use_v4t_interworking())
9219     gold_error(_("unable to provide V4BX reloc interworking fix up; "
9220                  "the target profile does not support BX instruction"));
9221
9222   // Fill in some more dynamic tags.
9223   const Reloc_section* rel_plt = (this->plt_ == NULL
9224                                   ? NULL
9225                                   : this->plt_->rel_plt());
9226   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
9227                                   this->rel_dyn_, true, false);
9228
9229   // Emit any relocs we saved in an attempt to avoid generating COPY
9230   // relocs.
9231   if (this->copy_relocs_.any_saved_relocs())
9232     this->copy_relocs_.emit(this->rel_dyn_section(layout));
9233
9234   // Handle the .ARM.exidx section.
9235   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
9236
9237   if (!parameters->options().relocatable())
9238     {
9239       if (exidx_section != NULL
9240           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9241         {
9242           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9243           // the .ARM.exidx section.
9244           if (!layout->script_options()->saw_phdrs_clause())
9245             {
9246               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9247                                                       0)
9248                           == NULL);
9249               Output_segment*  exidx_segment =
9250                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9251               exidx_segment->add_output_section_to_nonload(exidx_section,
9252                                                            elfcpp::PF_R);
9253             }
9254         }
9255     }
9256
9257   // Create an .ARM.attributes section if we have merged any attributes
9258   // from inputs.
9259   if (merged_any_attributes)
9260     {
9261       Output_attributes_section_data* attributes_section =
9262       new Output_attributes_section_data(*this->attributes_section_data_);
9263       layout->add_output_section_data(".ARM.attributes",
9264                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
9265                                       attributes_section, ORDER_INVALID,
9266                                       false);
9267     }
9268
9269   // Fix up links in section EXIDX headers.
9270   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9271        p != layout->section_list().end();
9272        ++p)
9273     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9274       {
9275         Arm_output_section<big_endian>* os =
9276           Arm_output_section<big_endian>::as_arm_output_section(*p);
9277         os->set_exidx_section_link();
9278       }
9279 }
9280
9281 // Return whether a direct absolute static relocation needs to be applied.
9282 // In cases where Scan::local() or Scan::global() has created
9283 // a dynamic relocation other than R_ARM_RELATIVE, the addend
9284 // of the relocation is carried in the data, and we must not
9285 // apply the static relocation.
9286
9287 template<bool big_endian>
9288 inline bool
9289 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9290     const Sized_symbol<32>* gsym,
9291     unsigned int r_type,
9292     bool is_32bit,
9293     Output_section* output_section)
9294 {
9295   // If the output section is not allocated, then we didn't call
9296   // scan_relocs, we didn't create a dynamic reloc, and we must apply
9297   // the reloc here.
9298   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9299       return true;
9300
9301   int ref_flags = Scan::get_reference_flags(r_type);
9302
9303   // For local symbols, we will have created a non-RELATIVE dynamic
9304   // relocation only if (a) the output is position independent,
9305   // (b) the relocation is absolute (not pc- or segment-relative), and
9306   // (c) the relocation is not 32 bits wide.
9307   if (gsym == NULL)
9308     return !(parameters->options().output_is_position_independent()
9309              && (ref_flags & Symbol::ABSOLUTE_REF)
9310              && !is_32bit);
9311
9312   // For global symbols, we use the same helper routines used in the
9313   // scan pass.  If we did not create a dynamic relocation, or if we
9314   // created a RELATIVE dynamic relocation, we should apply the static
9315   // relocation.
9316   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9317   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9318                  && gsym->can_use_relative_reloc(ref_flags
9319                                                  & Symbol::FUNCTION_CALL);
9320   return !has_dyn || is_rel;
9321 }
9322
9323 // Perform a relocation.
9324
9325 template<bool big_endian>
9326 inline bool
9327 Target_arm<big_endian>::Relocate::relocate(
9328     const Relocate_info<32, big_endian>* relinfo,
9329     Target_arm* target,
9330     Output_section* output_section,
9331     size_t relnum,
9332     const elfcpp::Rel<32, big_endian>& rel,
9333     unsigned int r_type,
9334     const Sized_symbol<32>* gsym,
9335     const Symbol_value<32>* psymval,
9336     unsigned char* view,
9337     Arm_address address,
9338     section_size_type view_size)
9339 {
9340   if (view == NULL)
9341     return true;
9342
9343   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9344
9345   r_type = get_real_reloc_type(r_type);
9346   const Arm_reloc_property* reloc_property =
9347     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9348   if (reloc_property == NULL)
9349     {
9350       std::string reloc_name =
9351         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9352       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9353                              _("cannot relocate %s in object file"),
9354                              reloc_name.c_str());
9355       return true;
9356     }
9357
9358   const Arm_relobj<big_endian>* object =
9359     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9360
9361   // If the final branch target of a relocation is THUMB instruction, this
9362   // is 1.  Otherwise it is 0.
9363   Arm_address thumb_bit = 0;
9364   Symbol_value<32> symval;
9365   bool is_weakly_undefined_without_plt = false;
9366   bool have_got_offset = false;
9367   unsigned int got_offset = 0;
9368
9369   // If the relocation uses the GOT entry of a symbol instead of the symbol
9370   // itself, we don't care about whether the symbol is defined or what kind
9371   // of symbol it is.
9372   if (reloc_property->uses_got_entry())
9373     {
9374       // Get the GOT offset.
9375       // The GOT pointer points to the end of the GOT section.
9376       // We need to subtract the size of the GOT section to get
9377       // the actual offset to use in the relocation.
9378       // TODO: We should move GOT offset computing code in TLS relocations
9379       // to here.
9380       switch (r_type)
9381         {
9382         case elfcpp::R_ARM_GOT_BREL:
9383         case elfcpp::R_ARM_GOT_PREL:
9384           if (gsym != NULL)
9385             {
9386               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9387               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9388                             - target->got_size());
9389             }
9390           else
9391             {
9392               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9393               gold_assert(object->local_has_got_offset(r_sym,
9394                                                        GOT_TYPE_STANDARD));
9395               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9396                             - target->got_size());
9397             }
9398           have_got_offset = true;
9399           break;
9400
9401         default:
9402           break;
9403         }
9404     }
9405   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
9406     {
9407       if (gsym != NULL)
9408         {
9409           // This is a global symbol.  Determine if we use PLT and if the
9410           // final target is THUMB.
9411           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
9412             {
9413               // This uses a PLT, change the symbol value.
9414               symval.set_output_value(target->plt_address_for_global(gsym));
9415               psymval = &symval;
9416             }
9417           else if (gsym->is_weak_undefined())
9418             {
9419               // This is a weakly undefined symbol and we do not use PLT
9420               // for this relocation.  A branch targeting this symbol will
9421               // be converted into an NOP.
9422               is_weakly_undefined_without_plt = true;
9423             }
9424           else if (gsym->is_undefined() && reloc_property->uses_symbol())
9425             {
9426               // This relocation uses the symbol value but the symbol is
9427               // undefined.  Exit early and have the caller reporting an
9428               // error.
9429               return true;
9430             }
9431           else
9432             {
9433               // Set thumb bit if symbol:
9434               // -Has type STT_ARM_TFUNC or
9435               // -Has type STT_FUNC, is defined and with LSB in value set.
9436               thumb_bit =
9437                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9438                  || (gsym->type() == elfcpp::STT_FUNC
9439                      && !gsym->is_undefined()
9440                      && ((psymval->value(object, 0) & 1) != 0)))
9441                 ? 1
9442                 : 0);
9443             }
9444         }
9445       else
9446         {
9447           // This is a local symbol.  Determine if the final target is THUMB.
9448           // We saved this information when all the local symbols were read.
9449           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9450           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9451           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9452
9453           if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9454             {
9455               symval.set_output_value(
9456                   target->plt_address_for_local(object, r_sym));
9457               psymval = &symval;
9458             }
9459         }
9460     }
9461   else
9462     {
9463       // This is a fake relocation synthesized for a stub.  It does not have
9464       // a real symbol.  We just look at the LSB of the symbol value to
9465       // determine if the target is THUMB or not.
9466       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
9467     }
9468
9469   // Strip LSB if this points to a THUMB target.
9470   if (thumb_bit != 0
9471       && reloc_property->uses_thumb_bit()
9472       && ((psymval->value(object, 0) & 1) != 0))
9473     {
9474       Arm_address stripped_value =
9475         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9476       symval.set_output_value(stripped_value);
9477       psymval = &symval;
9478     }
9479
9480   // To look up relocation stubs, we need to pass the symbol table index of
9481   // a local symbol.
9482   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9483
9484   // Get the addressing origin of the output segment defining the
9485   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9486   Arm_address sym_origin = 0;
9487   if (reloc_property->uses_symbol_base())
9488     {
9489       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9490         // R_ARM_BASE_ABS with the NULL symbol will give the
9491         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9492         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9493         sym_origin = target->got_plt_section()->address();
9494       else if (gsym == NULL)
9495         sym_origin = 0;
9496       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9497         sym_origin = gsym->output_segment()->vaddr();
9498       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9499         sym_origin = gsym->output_data()->address();
9500
9501       // TODO: Assumes the segment base to be zero for the global symbols
9502       // till the proper support for the segment-base-relative addressing
9503       // will be implemented.  This is consistent with GNU ld.
9504     }
9505
9506   // For relative addressing relocation, find out the relative address base.
9507   Arm_address relative_address_base = 0;
9508   switch(reloc_property->relative_address_base())
9509     {
9510     case Arm_reloc_property::RAB_NONE:
9511     // Relocations with relative address bases RAB_TLS and RAB_tp are
9512     // handled by relocate_tls.  So we do not need to do anything here.
9513     case Arm_reloc_property::RAB_TLS:
9514     case Arm_reloc_property::RAB_tp:
9515       break;
9516     case Arm_reloc_property::RAB_B_S:
9517       relative_address_base = sym_origin;
9518       break;
9519     case Arm_reloc_property::RAB_GOT_ORG:
9520       relative_address_base = target->got_plt_section()->address();
9521       break;
9522     case Arm_reloc_property::RAB_P:
9523       relative_address_base = address;
9524       break;
9525     case Arm_reloc_property::RAB_Pa:
9526       relative_address_base = address & 0xfffffffcU;
9527       break;
9528     default:
9529       gold_unreachable();
9530     }
9531
9532   typename Arm_relocate_functions::Status reloc_status =
9533         Arm_relocate_functions::STATUS_OKAY;
9534   bool check_overflow = reloc_property->checks_overflow();
9535   switch (r_type)
9536     {
9537     case elfcpp::R_ARM_NONE:
9538       break;
9539
9540     case elfcpp::R_ARM_ABS8:
9541       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9542         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9543       break;
9544
9545     case elfcpp::R_ARM_ABS12:
9546       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9547         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9548       break;
9549
9550     case elfcpp::R_ARM_ABS16:
9551       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9552         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9553       break;
9554
9555     case elfcpp::R_ARM_ABS32:
9556       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9557         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9558                                                      thumb_bit);
9559       break;
9560
9561     case elfcpp::R_ARM_ABS32_NOI:
9562       if (should_apply_static_reloc(gsym, r_type, true, output_section))
9563         // No thumb bit for this relocation: (S + A)
9564         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9565                                                      0);
9566       break;
9567
9568     case elfcpp::R_ARM_MOVW_ABS_NC:
9569       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9570         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9571                                                     0, thumb_bit,
9572                                                     check_overflow);
9573       break;
9574
9575     case elfcpp::R_ARM_MOVT_ABS:
9576       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9577         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9578       break;
9579
9580     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9581       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9582         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9583                                                         0, thumb_bit, false);
9584       break;
9585
9586     case elfcpp::R_ARM_THM_MOVT_ABS:
9587       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9588         reloc_status = Arm_relocate_functions::thm_movt(view, object,
9589                                                         psymval, 0);
9590       break;
9591
9592     case elfcpp::R_ARM_MOVW_PREL_NC:
9593     case elfcpp::R_ARM_MOVW_BREL_NC:
9594     case elfcpp::R_ARM_MOVW_BREL:
9595       reloc_status =
9596         Arm_relocate_functions::movw(view, object, psymval,
9597                                      relative_address_base, thumb_bit,
9598                                      check_overflow);
9599       break;
9600
9601     case elfcpp::R_ARM_MOVT_PREL:
9602     case elfcpp::R_ARM_MOVT_BREL:
9603       reloc_status =
9604         Arm_relocate_functions::movt(view, object, psymval,
9605                                      relative_address_base);
9606       break;
9607
9608     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9609     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9610     case elfcpp::R_ARM_THM_MOVW_BREL:
9611       reloc_status =
9612         Arm_relocate_functions::thm_movw(view, object, psymval,
9613                                          relative_address_base,
9614                                          thumb_bit, check_overflow);
9615       break;
9616
9617     case elfcpp::R_ARM_THM_MOVT_PREL:
9618     case elfcpp::R_ARM_THM_MOVT_BREL:
9619       reloc_status =
9620         Arm_relocate_functions::thm_movt(view, object, psymval,
9621                                          relative_address_base);
9622       break;
9623
9624     case elfcpp::R_ARM_REL32:
9625       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9626                                                    address, thumb_bit);
9627       break;
9628
9629     case elfcpp::R_ARM_THM_ABS5:
9630       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9631         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9632       break;
9633
9634     // Thumb long branches.
9635     case elfcpp::R_ARM_THM_CALL:
9636     case elfcpp::R_ARM_THM_XPC22:
9637     case elfcpp::R_ARM_THM_JUMP24:
9638       reloc_status =
9639         Arm_relocate_functions::thumb_branch_common(
9640             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9641             thumb_bit, is_weakly_undefined_without_plt);
9642       break;
9643
9644     case elfcpp::R_ARM_GOTOFF32:
9645       {
9646         Arm_address got_origin;
9647         got_origin = target->got_plt_section()->address();
9648         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9649                                                      got_origin, thumb_bit);
9650       }
9651       break;
9652
9653     case elfcpp::R_ARM_BASE_PREL:
9654       gold_assert(gsym != NULL);
9655       reloc_status =
9656           Arm_relocate_functions::base_prel(view, sym_origin, address);
9657       break;
9658
9659     case elfcpp::R_ARM_BASE_ABS:
9660       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9661         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9662       break;
9663
9664     case elfcpp::R_ARM_GOT_BREL:
9665       gold_assert(have_got_offset);
9666       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9667       break;
9668
9669     case elfcpp::R_ARM_GOT_PREL:
9670       gold_assert(have_got_offset);
9671       // Get the address origin for GOT PLT, which is allocated right
9672       // after the GOT section, to calculate an absolute address of
9673       // the symbol GOT entry (got_origin + got_offset).
9674       Arm_address got_origin;
9675       got_origin = target->got_plt_section()->address();
9676       reloc_status = Arm_relocate_functions::got_prel(view,
9677                                                       got_origin + got_offset,
9678                                                       address);
9679       break;
9680
9681     case elfcpp::R_ARM_PLT32:
9682     case elfcpp::R_ARM_CALL:
9683     case elfcpp::R_ARM_JUMP24:
9684     case elfcpp::R_ARM_XPC25:
9685       gold_assert(gsym == NULL
9686                   || gsym->has_plt_offset()
9687                   || gsym->final_value_is_known()
9688                   || (gsym->is_defined()
9689                       && !gsym->is_from_dynobj()
9690                       && !gsym->is_preemptible()));
9691       reloc_status =
9692         Arm_relocate_functions::arm_branch_common(
9693             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9694             thumb_bit, is_weakly_undefined_without_plt);
9695       break;
9696
9697     case elfcpp::R_ARM_THM_JUMP19:
9698       reloc_status =
9699         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9700                                            thumb_bit);
9701       break;
9702
9703     case elfcpp::R_ARM_THM_JUMP6:
9704       reloc_status =
9705         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9706       break;
9707
9708     case elfcpp::R_ARM_THM_JUMP8:
9709       reloc_status =
9710         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9711       break;
9712
9713     case elfcpp::R_ARM_THM_JUMP11:
9714       reloc_status =
9715         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9716       break;
9717
9718     case elfcpp::R_ARM_PREL31:
9719       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9720                                                     address, thumb_bit);
9721       break;
9722
9723     case elfcpp::R_ARM_V4BX:
9724       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9725         {
9726           const bool is_v4bx_interworking =
9727               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9728           reloc_status =
9729             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9730                                          is_v4bx_interworking);
9731         }
9732       break;
9733
9734     case elfcpp::R_ARM_THM_PC8:
9735       reloc_status =
9736         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9737       break;
9738
9739     case elfcpp::R_ARM_THM_PC12:
9740       reloc_status =
9741         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9742       break;
9743
9744     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9745       reloc_status =
9746         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9747                                           thumb_bit);
9748       break;
9749
9750     case elfcpp::R_ARM_ALU_PC_G0_NC:
9751     case elfcpp::R_ARM_ALU_PC_G0:
9752     case elfcpp::R_ARM_ALU_PC_G1_NC:
9753     case elfcpp::R_ARM_ALU_PC_G1:
9754     case elfcpp::R_ARM_ALU_PC_G2:
9755     case elfcpp::R_ARM_ALU_SB_G0_NC:
9756     case elfcpp::R_ARM_ALU_SB_G0:
9757     case elfcpp::R_ARM_ALU_SB_G1_NC:
9758     case elfcpp::R_ARM_ALU_SB_G1:
9759     case elfcpp::R_ARM_ALU_SB_G2:
9760       reloc_status =
9761         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9762                                             reloc_property->group_index(),
9763                                             relative_address_base,
9764                                             thumb_bit, check_overflow);
9765       break;
9766
9767     case elfcpp::R_ARM_LDR_PC_G0:
9768     case elfcpp::R_ARM_LDR_PC_G1:
9769     case elfcpp::R_ARM_LDR_PC_G2:
9770     case elfcpp::R_ARM_LDR_SB_G0:
9771     case elfcpp::R_ARM_LDR_SB_G1:
9772     case elfcpp::R_ARM_LDR_SB_G2:
9773       reloc_status =
9774           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9775                                               reloc_property->group_index(),
9776                                               relative_address_base);
9777       break;
9778
9779     case elfcpp::R_ARM_LDRS_PC_G0:
9780     case elfcpp::R_ARM_LDRS_PC_G1:
9781     case elfcpp::R_ARM_LDRS_PC_G2:
9782     case elfcpp::R_ARM_LDRS_SB_G0:
9783     case elfcpp::R_ARM_LDRS_SB_G1:
9784     case elfcpp::R_ARM_LDRS_SB_G2:
9785       reloc_status =
9786           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9787                                                reloc_property->group_index(),
9788                                                relative_address_base);
9789       break;
9790
9791     case elfcpp::R_ARM_LDC_PC_G0:
9792     case elfcpp::R_ARM_LDC_PC_G1:
9793     case elfcpp::R_ARM_LDC_PC_G2:
9794     case elfcpp::R_ARM_LDC_SB_G0:
9795     case elfcpp::R_ARM_LDC_SB_G1:
9796     case elfcpp::R_ARM_LDC_SB_G2:
9797       reloc_status =
9798           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9799                                               reloc_property->group_index(),
9800                                               relative_address_base);
9801       break;
9802
9803       // These are initial tls relocs, which are expected when
9804       // linking.
9805     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9806     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9807     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9808     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9809     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9810       reloc_status =
9811         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9812                            view, address, view_size);
9813       break;
9814
9815     // The known and unknown unsupported and/or deprecated relocations.
9816     case elfcpp::R_ARM_PC24:
9817     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9818     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9819     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9820     default:
9821       // Just silently leave the method. We should get an appropriate error
9822       // message in the scan methods.
9823       break;
9824     }
9825
9826   // Report any errors.
9827   switch (reloc_status)
9828     {
9829     case Arm_relocate_functions::STATUS_OKAY:
9830       break;
9831     case Arm_relocate_functions::STATUS_OVERFLOW:
9832       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9833                              _("relocation overflow in %s"),
9834                              reloc_property->name().c_str());
9835       break;
9836     case Arm_relocate_functions::STATUS_BAD_RELOC:
9837       gold_error_at_location(
9838         relinfo,
9839         relnum,
9840         rel.get_r_offset(),
9841         _("unexpected opcode while processing relocation %s"),
9842         reloc_property->name().c_str());
9843       break;
9844     default:
9845       gold_unreachable();
9846     }
9847
9848   return true;
9849 }
9850
9851 // Perform a TLS relocation.
9852
9853 template<bool big_endian>
9854 inline typename Arm_relocate_functions<big_endian>::Status
9855 Target_arm<big_endian>::Relocate::relocate_tls(
9856     const Relocate_info<32, big_endian>* relinfo,
9857     Target_arm<big_endian>* target,
9858     size_t relnum,
9859     const elfcpp::Rel<32, big_endian>& rel,
9860     unsigned int r_type,
9861     const Sized_symbol<32>* gsym,
9862     const Symbol_value<32>* psymval,
9863     unsigned char* view,
9864     elfcpp::Elf_types<32>::Elf_Addr address,
9865     section_size_type /*view_size*/ )
9866 {
9867   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9868   typedef Relocate_functions<32, big_endian> RelocFuncs;
9869   Output_segment* tls_segment = relinfo->layout->tls_segment();
9870
9871   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9872
9873   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9874
9875   const bool is_final = (gsym == NULL
9876                          ? !parameters->options().shared()
9877                          : gsym->final_value_is_known());
9878   const tls::Tls_optimization optimized_type
9879       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9880   switch (r_type)
9881     {
9882     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9883         {
9884           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9885           unsigned int got_offset;
9886           if (gsym != NULL)
9887             {
9888               gold_assert(gsym->has_got_offset(got_type));
9889               got_offset = gsym->got_offset(got_type) - target->got_size();
9890             }
9891           else
9892             {
9893               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9894               gold_assert(object->local_has_got_offset(r_sym, got_type));
9895               got_offset = (object->local_got_offset(r_sym, got_type)
9896                             - target->got_size());
9897             }
9898           if (optimized_type == tls::TLSOPT_NONE)
9899             {
9900               Arm_address got_entry =
9901                 target->got_plt_section()->address() + got_offset;
9902
9903               // Relocate the field with the PC relative offset of the pair of
9904               // GOT entries.
9905               RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9906               return ArmRelocFuncs::STATUS_OKAY;
9907             }
9908         }
9909       break;
9910
9911     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9912       if (optimized_type == tls::TLSOPT_NONE)
9913         {
9914           // Relocate the field with the offset of the GOT entry for
9915           // the module index.
9916           unsigned int got_offset;
9917           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9918                         - target->got_size());
9919           Arm_address got_entry =
9920             target->got_plt_section()->address() + got_offset;
9921
9922           // Relocate the field with the PC relative offset of the pair of
9923           // GOT entries.
9924           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9925           return ArmRelocFuncs::STATUS_OKAY;
9926         }
9927       break;
9928
9929     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9930       RelocFuncs::rel32_unaligned(view, value);
9931       return ArmRelocFuncs::STATUS_OKAY;
9932
9933     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9934       if (optimized_type == tls::TLSOPT_NONE)
9935         {
9936           // Relocate the field with the offset of the GOT entry for
9937           // the tp-relative offset of the symbol.
9938           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9939           unsigned int got_offset;
9940           if (gsym != NULL)
9941             {
9942               gold_assert(gsym->has_got_offset(got_type));
9943               got_offset = gsym->got_offset(got_type);
9944             }
9945           else
9946             {
9947               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9948               gold_assert(object->local_has_got_offset(r_sym, got_type));
9949               got_offset = object->local_got_offset(r_sym, got_type);
9950             }
9951
9952           // All GOT offsets are relative to the end of the GOT.
9953           got_offset -= target->got_size();
9954
9955           Arm_address got_entry =
9956             target->got_plt_section()->address() + got_offset;
9957
9958           // Relocate the field with the PC relative offset of the GOT entry.
9959           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9960           return ArmRelocFuncs::STATUS_OKAY;
9961         }
9962       break;
9963
9964     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9965       // If we're creating a shared library, a dynamic relocation will
9966       // have been created for this location, so do not apply it now.
9967       if (!parameters->options().shared())
9968         {
9969           gold_assert(tls_segment != NULL);
9970
9971           // $tp points to the TCB, which is followed by the TLS, so we
9972           // need to add TCB size to the offset.
9973           Arm_address aligned_tcb_size =
9974             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9975           RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9976
9977         }
9978       return ArmRelocFuncs::STATUS_OKAY;
9979
9980     default:
9981       gold_unreachable();
9982     }
9983
9984   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9985                          _("unsupported reloc %u"),
9986                          r_type);
9987   return ArmRelocFuncs::STATUS_BAD_RELOC;
9988 }
9989
9990 // Relocate section data.
9991
9992 template<bool big_endian>
9993 void
9994 Target_arm<big_endian>::relocate_section(
9995     const Relocate_info<32, big_endian>* relinfo,
9996     unsigned int sh_type,
9997     const unsigned char* prelocs,
9998     size_t reloc_count,
9999     Output_section* output_section,
10000     bool needs_special_offset_handling,
10001     unsigned char* view,
10002     Arm_address address,
10003     section_size_type view_size,
10004     const Reloc_symbol_changes* reloc_symbol_changes)
10005 {
10006   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10007   gold_assert(sh_type == elfcpp::SHT_REL);
10008
10009   // See if we are relocating a relaxed input section.  If so, the view
10010   // covers the whole output section and we need to adjust accordingly.
10011   if (needs_special_offset_handling)
10012     {
10013       const Output_relaxed_input_section* poris =
10014         output_section->find_relaxed_input_section(relinfo->object,
10015                                                    relinfo->data_shndx);
10016       if (poris != NULL)
10017         {
10018           Arm_address section_address = poris->address();
10019           section_size_type section_size = poris->data_size();
10020
10021           gold_assert((section_address >= address)
10022                       && ((section_address + section_size)
10023                           <= (address + view_size)));
10024
10025           off_t offset = section_address - address;
10026           view += offset;
10027           address += offset;
10028           view_size = section_size;
10029         }
10030     }
10031
10032   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
10033                          Arm_relocate, gold::Default_comdat_behavior>(
10034     relinfo,
10035     this,
10036     prelocs,
10037     reloc_count,
10038     output_section,
10039     needs_special_offset_handling,
10040     view,
10041     address,
10042     view_size,
10043     reloc_symbol_changes);
10044 }
10045
10046 // Return the size of a relocation while scanning during a relocatable
10047 // link.
10048
10049 template<bool big_endian>
10050 unsigned int
10051 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10052     unsigned int r_type,
10053     Relobj* object)
10054 {
10055   r_type = get_real_reloc_type(r_type);
10056   const Arm_reloc_property* arp =
10057       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10058   if (arp != NULL)
10059     return arp->size();
10060   else
10061     {
10062       std::string reloc_name =
10063         arm_reloc_property_table->reloc_name_in_error_message(r_type);
10064       gold_error(_("%s: unexpected %s in object file"),
10065                  object->name().c_str(), reloc_name.c_str());
10066       return 0;
10067     }
10068 }
10069
10070 // Scan the relocs during a relocatable link.
10071
10072 template<bool big_endian>
10073 void
10074 Target_arm<big_endian>::scan_relocatable_relocs(
10075     Symbol_table* symtab,
10076     Layout* layout,
10077     Sized_relobj_file<32, big_endian>* object,
10078     unsigned int data_shndx,
10079     unsigned int sh_type,
10080     const unsigned char* prelocs,
10081     size_t reloc_count,
10082     Output_section* output_section,
10083     bool needs_special_offset_handling,
10084     size_t local_symbol_count,
10085     const unsigned char* plocal_symbols,
10086     Relocatable_relocs* rr)
10087 {
10088   gold_assert(sh_type == elfcpp::SHT_REL);
10089
10090   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
10091     Relocatable_size_for_reloc> Scan_relocatable_relocs;
10092
10093   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10094       Scan_relocatable_relocs>(
10095     symtab,
10096     layout,
10097     object,
10098     data_shndx,
10099     prelocs,
10100     reloc_count,
10101     output_section,
10102     needs_special_offset_handling,
10103     local_symbol_count,
10104     plocal_symbols,
10105     rr);
10106 }
10107
10108 // Emit relocations for a section.
10109
10110 template<bool big_endian>
10111 void
10112 Target_arm<big_endian>::relocate_relocs(
10113     const Relocate_info<32, big_endian>* relinfo,
10114     unsigned int sh_type,
10115     const unsigned char* prelocs,
10116     size_t reloc_count,
10117     Output_section* output_section,
10118     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10119     const Relocatable_relocs* rr,
10120     unsigned char* view,
10121     Arm_address view_address,
10122     section_size_type view_size,
10123     unsigned char* reloc_view,
10124     section_size_type reloc_view_size)
10125 {
10126   gold_assert(sh_type == elfcpp::SHT_REL);
10127
10128   gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
10129     relinfo,
10130     prelocs,
10131     reloc_count,
10132     output_section,
10133     offset_in_output_section,
10134     rr,
10135     view,
10136     view_address,
10137     view_size,
10138     reloc_view,
10139     reloc_view_size);
10140 }
10141
10142 // Perform target-specific processing in a relocatable link.  This is
10143 // only used if we use the relocation strategy RELOC_SPECIAL.
10144
10145 template<bool big_endian>
10146 void
10147 Target_arm<big_endian>::relocate_special_relocatable(
10148     const Relocate_info<32, big_endian>* relinfo,
10149     unsigned int sh_type,
10150     const unsigned char* preloc_in,
10151     size_t relnum,
10152     Output_section* output_section,
10153     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
10154     unsigned char* view,
10155     elfcpp::Elf_types<32>::Elf_Addr view_address,
10156     section_size_type,
10157     unsigned char* preloc_out)
10158 {
10159   // We can only handle REL type relocation sections.
10160   gold_assert(sh_type == elfcpp::SHT_REL);
10161
10162   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10163   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10164     Reltype_write;
10165   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10166
10167   const Arm_relobj<big_endian>* object =
10168     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10169   const unsigned int local_count = object->local_symbol_count();
10170
10171   Reltype reloc(preloc_in);
10172   Reltype_write reloc_write(preloc_out);
10173
10174   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10175   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10176   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10177
10178   const Arm_reloc_property* arp =
10179     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10180   gold_assert(arp != NULL);
10181
10182   // Get the new symbol index.
10183   // We only use RELOC_SPECIAL strategy in local relocations.
10184   gold_assert(r_sym < local_count);
10185
10186   // We are adjusting a section symbol.  We need to find
10187   // the symbol table index of the section symbol for
10188   // the output section corresponding to input section
10189   // in which this symbol is defined.
10190   bool is_ordinary;
10191   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10192   gold_assert(is_ordinary);
10193   Output_section* os = object->output_section(shndx);
10194   gold_assert(os != NULL);
10195   gold_assert(os->needs_symtab_index());
10196   unsigned int new_symndx = os->symtab_index();
10197
10198   // Get the new offset--the location in the output section where
10199   // this relocation should be applied.
10200
10201   Arm_address offset = reloc.get_r_offset();
10202   Arm_address new_offset;
10203   if (offset_in_output_section != invalid_address)
10204     new_offset = offset + offset_in_output_section;
10205   else
10206     {
10207       section_offset_type sot_offset =
10208           convert_types<section_offset_type, Arm_address>(offset);
10209       section_offset_type new_sot_offset =
10210           output_section->output_offset(object, relinfo->data_shndx,
10211                                         sot_offset);
10212       gold_assert(new_sot_offset != -1);
10213       new_offset = new_sot_offset;
10214     }
10215
10216   // In an object file, r_offset is an offset within the section.
10217   // In an executable or dynamic object, generated by
10218   // --emit-relocs, r_offset is an absolute address.
10219   if (!parameters->options().relocatable())
10220     {
10221       new_offset += view_address;
10222       if (offset_in_output_section != invalid_address)
10223         new_offset -= offset_in_output_section;
10224     }
10225
10226   reloc_write.put_r_offset(new_offset);
10227   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10228
10229   // Handle the reloc addend.
10230   // The relocation uses a section symbol in the input file.
10231   // We are adjusting it to use a section symbol in the output
10232   // file.  The input section symbol refers to some address in
10233   // the input section.  We need the relocation in the output
10234   // file to refer to that same address.  This adjustment to
10235   // the addend is the same calculation we use for a simple
10236   // absolute relocation for the input section symbol.
10237
10238   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10239
10240   // Handle THUMB bit.
10241   Symbol_value<32> symval;
10242   Arm_address thumb_bit =
10243      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10244   if (thumb_bit != 0
10245       && arp->uses_thumb_bit()
10246       && ((psymval->value(object, 0) & 1) != 0))
10247     {
10248       Arm_address stripped_value =
10249         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10250       symval.set_output_value(stripped_value);
10251       psymval = &symval;
10252     }
10253
10254   unsigned char* paddend = view + offset;
10255   typename Arm_relocate_functions<big_endian>::Status reloc_status =
10256         Arm_relocate_functions<big_endian>::STATUS_OKAY;
10257   switch (r_type)
10258     {
10259     case elfcpp::R_ARM_ABS8:
10260       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10261                                                               psymval);
10262       break;
10263
10264     case elfcpp::R_ARM_ABS12:
10265       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10266                                                                psymval);
10267       break;
10268
10269     case elfcpp::R_ARM_ABS16:
10270       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10271                                                                psymval);
10272       break;
10273
10274     case elfcpp::R_ARM_THM_ABS5:
10275       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10276                                                                   object,
10277                                                                   psymval);
10278       break;
10279
10280     case elfcpp::R_ARM_MOVW_ABS_NC:
10281     case elfcpp::R_ARM_MOVW_PREL_NC:
10282     case elfcpp::R_ARM_MOVW_BREL_NC:
10283     case elfcpp::R_ARM_MOVW_BREL:
10284       reloc_status = Arm_relocate_functions<big_endian>::movw(
10285           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10286       break;
10287
10288     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10289     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10290     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10291     case elfcpp::R_ARM_THM_MOVW_BREL:
10292       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10293           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10294       break;
10295
10296     case elfcpp::R_ARM_THM_CALL:
10297     case elfcpp::R_ARM_THM_XPC22:
10298     case elfcpp::R_ARM_THM_JUMP24:
10299       reloc_status =
10300         Arm_relocate_functions<big_endian>::thumb_branch_common(
10301             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10302             false);
10303       break;
10304
10305     case elfcpp::R_ARM_PLT32:
10306     case elfcpp::R_ARM_CALL:
10307     case elfcpp::R_ARM_JUMP24:
10308     case elfcpp::R_ARM_XPC25:
10309       reloc_status =
10310         Arm_relocate_functions<big_endian>::arm_branch_common(
10311             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10312             false);
10313       break;
10314
10315     case elfcpp::R_ARM_THM_JUMP19:
10316       reloc_status =
10317         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10318                                                        psymval, 0, thumb_bit);
10319       break;
10320
10321     case elfcpp::R_ARM_THM_JUMP6:
10322       reloc_status =
10323         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10324                                                       0);
10325       break;
10326
10327     case elfcpp::R_ARM_THM_JUMP8:
10328       reloc_status =
10329         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10330                                                       0);
10331       break;
10332
10333     case elfcpp::R_ARM_THM_JUMP11:
10334       reloc_status =
10335         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10336                                                        0);
10337       break;
10338
10339     case elfcpp::R_ARM_PREL31:
10340       reloc_status =
10341         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10342                                                    thumb_bit);
10343       break;
10344
10345     case elfcpp::R_ARM_THM_PC8:
10346       reloc_status =
10347         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10348                                                     0);
10349       break;
10350
10351     case elfcpp::R_ARM_THM_PC12:
10352       reloc_status =
10353         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10354                                                      0);
10355       break;
10356
10357     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10358       reloc_status =
10359         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10360                                                       0, thumb_bit);
10361       break;
10362
10363     // These relocation truncate relocation results so we cannot handle them
10364     // in a relocatable link.
10365     case elfcpp::R_ARM_MOVT_ABS:
10366     case elfcpp::R_ARM_THM_MOVT_ABS:
10367     case elfcpp::R_ARM_MOVT_PREL:
10368     case elfcpp::R_ARM_MOVT_BREL:
10369     case elfcpp::R_ARM_THM_MOVT_PREL:
10370     case elfcpp::R_ARM_THM_MOVT_BREL:
10371     case elfcpp::R_ARM_ALU_PC_G0_NC:
10372     case elfcpp::R_ARM_ALU_PC_G0:
10373     case elfcpp::R_ARM_ALU_PC_G1_NC:
10374     case elfcpp::R_ARM_ALU_PC_G1:
10375     case elfcpp::R_ARM_ALU_PC_G2:
10376     case elfcpp::R_ARM_ALU_SB_G0_NC:
10377     case elfcpp::R_ARM_ALU_SB_G0:
10378     case elfcpp::R_ARM_ALU_SB_G1_NC:
10379     case elfcpp::R_ARM_ALU_SB_G1:
10380     case elfcpp::R_ARM_ALU_SB_G2:
10381     case elfcpp::R_ARM_LDR_PC_G0:
10382     case elfcpp::R_ARM_LDR_PC_G1:
10383     case elfcpp::R_ARM_LDR_PC_G2:
10384     case elfcpp::R_ARM_LDR_SB_G0:
10385     case elfcpp::R_ARM_LDR_SB_G1:
10386     case elfcpp::R_ARM_LDR_SB_G2:
10387     case elfcpp::R_ARM_LDRS_PC_G0:
10388     case elfcpp::R_ARM_LDRS_PC_G1:
10389     case elfcpp::R_ARM_LDRS_PC_G2:
10390     case elfcpp::R_ARM_LDRS_SB_G0:
10391     case elfcpp::R_ARM_LDRS_SB_G1:
10392     case elfcpp::R_ARM_LDRS_SB_G2:
10393     case elfcpp::R_ARM_LDC_PC_G0:
10394     case elfcpp::R_ARM_LDC_PC_G1:
10395     case elfcpp::R_ARM_LDC_PC_G2:
10396     case elfcpp::R_ARM_LDC_SB_G0:
10397     case elfcpp::R_ARM_LDC_SB_G1:
10398     case elfcpp::R_ARM_LDC_SB_G2:
10399       gold_error(_("cannot handle %s in a relocatable link"),
10400                  arp->name().c_str());
10401       break;
10402
10403     default:
10404       gold_unreachable();
10405     }
10406
10407   // Report any errors.
10408   switch (reloc_status)
10409     {
10410     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10411       break;
10412     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10413       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10414                              _("relocation overflow in %s"),
10415                              arp->name().c_str());
10416       break;
10417     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10418       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10419         _("unexpected opcode while processing relocation %s"),
10420         arp->name().c_str());
10421       break;
10422     default:
10423       gold_unreachable();
10424     }
10425 }
10426
10427 // Return the value to use for a dynamic symbol which requires special
10428 // treatment.  This is how we support equality comparisons of function
10429 // pointers across shared library boundaries, as described in the
10430 // processor specific ABI supplement.
10431
10432 template<bool big_endian>
10433 uint64_t
10434 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
10435 {
10436   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10437   return this->plt_address_for_global(gsym);
10438 }
10439
10440 // Map platform-specific relocs to real relocs
10441 //
10442 template<bool big_endian>
10443 unsigned int
10444 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
10445 {
10446   switch (r_type)
10447     {
10448     case elfcpp::R_ARM_TARGET1:
10449       // This is either R_ARM_ABS32 or R_ARM_REL32;
10450       return elfcpp::R_ARM_ABS32;
10451
10452     case elfcpp::R_ARM_TARGET2:
10453       // This can be any reloc type but usually is R_ARM_GOT_PREL
10454       return elfcpp::R_ARM_GOT_PREL;
10455
10456     default:
10457       return r_type;
10458     }
10459 }
10460
10461 // Whether if two EABI versions V1 and V2 are compatible.
10462
10463 template<bool big_endian>
10464 bool
10465 Target_arm<big_endian>::are_eabi_versions_compatible(
10466     elfcpp::Elf_Word v1,
10467     elfcpp::Elf_Word v2)
10468 {
10469   // v4 and v5 are the same spec before and after it was released,
10470   // so allow mixing them.
10471   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10472       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
10473       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10474     return true;
10475
10476   return v1 == v2;
10477 }
10478
10479 // Combine FLAGS from an input object called NAME and the processor-specific
10480 // flags in the ELF header of the output.  Much of this is adapted from the
10481 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10482 // in bfd/elf32-arm.c.
10483
10484 template<bool big_endian>
10485 void
10486 Target_arm<big_endian>::merge_processor_specific_flags(
10487     const std::string& name,
10488     elfcpp::Elf_Word flags)
10489 {
10490   if (this->are_processor_specific_flags_set())
10491     {
10492       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10493
10494       // Nothing to merge if flags equal to those in output.
10495       if (flags == out_flags)
10496         return;
10497
10498       // Complain about various flag mismatches.
10499       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10500       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10501       if (!this->are_eabi_versions_compatible(version1, version2)
10502           && parameters->options().warn_mismatch())
10503         gold_error(_("Source object %s has EABI version %d but output has "
10504                      "EABI version %d."),
10505                    name.c_str(),
10506                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10507                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10508     }
10509   else
10510     {
10511       // If the input is the default architecture and had the default
10512       // flags then do not bother setting the flags for the output
10513       // architecture, instead allow future merges to do this.  If no
10514       // future merges ever set these flags then they will retain their
10515       // uninitialised values, which surprise surprise, correspond
10516       // to the default values.
10517       if (flags == 0)
10518         return;
10519
10520       // This is the first time, just copy the flags.
10521       // We only copy the EABI version for now.
10522       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10523     }
10524 }
10525
10526 // Adjust ELF file header.
10527 template<bool big_endian>
10528 void
10529 Target_arm<big_endian>::do_adjust_elf_header(
10530     unsigned char* view,
10531     int len)
10532 {
10533   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10534
10535   elfcpp::Ehdr<32, big_endian> ehdr(view);
10536   elfcpp::Elf_Word flags = this->processor_specific_flags();
10537   unsigned char e_ident[elfcpp::EI_NIDENT];
10538   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10539
10540   if (elfcpp::arm_eabi_version(flags)
10541       == elfcpp::EF_ARM_EABI_UNKNOWN)
10542     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10543   else
10544     e_ident[elfcpp::EI_OSABI] = 0;
10545   e_ident[elfcpp::EI_ABIVERSION] = 0;
10546
10547   // FIXME: Do EF_ARM_BE8 adjustment.
10548
10549   // If we're working in EABI_VER5, set the hard/soft float ABI flags
10550   // as appropriate.
10551   if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10552   {
10553     elfcpp::Elf_Half type = ehdr.get_e_type();
10554     if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10555       {
10556         Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10557         if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
10558           flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10559         else
10560           flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10561         this->set_processor_specific_flags(flags);
10562       }
10563   }
10564   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10565   oehdr.put_e_ident(e_ident);
10566 }
10567
10568 // do_make_elf_object to override the same function in the base class.
10569 // We need to use a target-specific sub-class of
10570 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10571 // Hence we need to have our own ELF object creation.
10572
10573 template<bool big_endian>
10574 Object*
10575 Target_arm<big_endian>::do_make_elf_object(
10576     const std::string& name,
10577     Input_file* input_file,
10578     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10579 {
10580   int et = ehdr.get_e_type();
10581   // ET_EXEC files are valid input for --just-symbols/-R,
10582   // and we treat them as relocatable objects.
10583   if (et == elfcpp::ET_REL
10584       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10585     {
10586       Arm_relobj<big_endian>* obj =
10587         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10588       obj->setup();
10589       return obj;
10590     }
10591   else if (et == elfcpp::ET_DYN)
10592     {
10593       Sized_dynobj<32, big_endian>* obj =
10594         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10595       obj->setup();
10596       return obj;
10597     }
10598   else
10599     {
10600       gold_error(_("%s: unsupported ELF file type %d"),
10601                  name.c_str(), et);
10602       return NULL;
10603     }
10604 }
10605
10606 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10607 // Returns -1 if no architecture could be read.
10608 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10609
10610 template<bool big_endian>
10611 int
10612 Target_arm<big_endian>::get_secondary_compatible_arch(
10613     const Attributes_section_data* pasd)
10614 {
10615   const Object_attribute* known_attributes =
10616     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10617
10618   // Note: the tag and its argument below are uleb128 values, though
10619   // currently-defined values fit in one byte for each.
10620   const std::string& sv =
10621     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10622   if (sv.size() == 2
10623       && sv.data()[0] == elfcpp::Tag_CPU_arch
10624       && (sv.data()[1] & 128) != 128)
10625    return sv.data()[1];
10626
10627   // This tag is "safely ignorable", so don't complain if it looks funny.
10628   return -1;
10629 }
10630
10631 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10632 // The tag is removed if ARCH is -1.
10633 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10634
10635 template<bool big_endian>
10636 void
10637 Target_arm<big_endian>::set_secondary_compatible_arch(
10638     Attributes_section_data* pasd,
10639     int arch)
10640 {
10641   Object_attribute* known_attributes =
10642     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10643
10644   if (arch == -1)
10645     {
10646       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10647       return;
10648     }
10649
10650   // Note: the tag and its argument below are uleb128 values, though
10651   // currently-defined values fit in one byte for each.
10652   char sv[3];
10653   sv[0] = elfcpp::Tag_CPU_arch;
10654   gold_assert(arch != 0);
10655   sv[1] = arch;
10656   sv[2] = '\0';
10657
10658   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10659 }
10660
10661 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10662 // into account.
10663 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10664
10665 template<bool big_endian>
10666 int
10667 Target_arm<big_endian>::tag_cpu_arch_combine(
10668     const char* name,
10669     int oldtag,
10670     int* secondary_compat_out,
10671     int newtag,
10672     int secondary_compat)
10673 {
10674 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10675   static const int v6t2[] =
10676     {
10677       T(V6T2),   // PRE_V4.
10678       T(V6T2),   // V4.
10679       T(V6T2),   // V4T.
10680       T(V6T2),   // V5T.
10681       T(V6T2),   // V5TE.
10682       T(V6T2),   // V5TEJ.
10683       T(V6T2),   // V6.
10684       T(V7),     // V6KZ.
10685       T(V6T2)    // V6T2.
10686     };
10687   static const int v6k[] =
10688     {
10689       T(V6K),    // PRE_V4.
10690       T(V6K),    // V4.
10691       T(V6K),    // V4T.
10692       T(V6K),    // V5T.
10693       T(V6K),    // V5TE.
10694       T(V6K),    // V5TEJ.
10695       T(V6K),    // V6.
10696       T(V6KZ),   // V6KZ.
10697       T(V7),     // V6T2.
10698       T(V6K)     // V6K.
10699     };
10700   static const int v7[] =
10701     {
10702       T(V7),     // PRE_V4.
10703       T(V7),     // V4.
10704       T(V7),     // V4T.
10705       T(V7),     // V5T.
10706       T(V7),     // V5TE.
10707       T(V7),     // V5TEJ.
10708       T(V7),     // V6.
10709       T(V7),     // V6KZ.
10710       T(V7),     // V6T2.
10711       T(V7),     // V6K.
10712       T(V7)      // V7.
10713     };
10714   static const int v6_m[] =
10715     {
10716       -1,        // PRE_V4.
10717       -1,        // V4.
10718       T(V6K),    // V4T.
10719       T(V6K),    // V5T.
10720       T(V6K),    // V5TE.
10721       T(V6K),    // V5TEJ.
10722       T(V6K),    // V6.
10723       T(V6KZ),   // V6KZ.
10724       T(V7),     // V6T2.
10725       T(V6K),    // V6K.
10726       T(V7),     // V7.
10727       T(V6_M)    // V6_M.
10728     };
10729   static const int v6s_m[] =
10730     {
10731       -1,        // PRE_V4.
10732       -1,        // V4.
10733       T(V6K),    // V4T.
10734       T(V6K),    // V5T.
10735       T(V6K),    // V5TE.
10736       T(V6K),    // V5TEJ.
10737       T(V6K),    // V6.
10738       T(V6KZ),   // V6KZ.
10739       T(V7),     // V6T2.
10740       T(V6K),    // V6K.
10741       T(V7),     // V7.
10742       T(V6S_M),  // V6_M.
10743       T(V6S_M)   // V6S_M.
10744     };
10745   static const int v7e_m[] =
10746     {
10747       -1,       // PRE_V4.
10748       -1,       // V4.
10749       T(V7E_M), // V4T.
10750       T(V7E_M), // V5T.
10751       T(V7E_M), // V5TE.
10752       T(V7E_M), // V5TEJ.
10753       T(V7E_M), // V6.
10754       T(V7E_M), // V6KZ.
10755       T(V7E_M), // V6T2.
10756       T(V7E_M), // V6K.
10757       T(V7E_M), // V7.
10758       T(V7E_M), // V6_M.
10759       T(V7E_M), // V6S_M.
10760       T(V7E_M)  // V7E_M.
10761     };
10762   static const int v8[] =
10763     {
10764       T(V8),   // PRE_V4.
10765       T(V8),   // V4.
10766       T(V8),   // V4T.
10767       T(V8),   // V5T.
10768       T(V8),   // V5TE.
10769       T(V8),   // V5TEJ.
10770       T(V8),   // V6.
10771       T(V8),   // V6KZ.
10772       T(V8),   // V6T2.
10773       T(V8),   // V6K.
10774       T(V8),   // V7.
10775       T(V8),   // V6_M.
10776       T(V8),   // V6S_M.
10777       T(V8),   // V7E_M.
10778       T(V8)    // V8.
10779     };
10780   static const int v4t_plus_v6_m[] =
10781     {
10782       -1,               // PRE_V4.
10783       -1,               // V4.
10784       T(V4T),           // V4T.
10785       T(V5T),           // V5T.
10786       T(V5TE),          // V5TE.
10787       T(V5TEJ),         // V5TEJ.
10788       T(V6),            // V6.
10789       T(V6KZ),          // V6KZ.
10790       T(V6T2),          // V6T2.
10791       T(V6K),           // V6K.
10792       T(V7),            // V7.
10793       T(V6_M),          // V6_M.
10794       T(V6S_M),         // V6S_M.
10795       T(V7E_M),         // V7E_M.
10796       T(V8),            // V8.
10797       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10798     };
10799   static const int* comb[] =
10800     {
10801       v6t2,
10802       v6k,
10803       v7,
10804       v6_m,
10805       v6s_m,
10806       v7e_m,
10807       v8,
10808       // Pseudo-architecture.
10809       v4t_plus_v6_m
10810     };
10811
10812   // Check we've not got a higher architecture than we know about.
10813
10814   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10815     {
10816       gold_error(_("%s: unknown CPU architecture"), name);
10817       return -1;
10818     }
10819
10820   // Override old tag if we have a Tag_also_compatible_with on the output.
10821
10822   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10823       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10824     oldtag = T(V4T_PLUS_V6_M);
10825
10826   // And override the new tag if we have a Tag_also_compatible_with on the
10827   // input.
10828
10829   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10830       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10831     newtag = T(V4T_PLUS_V6_M);
10832
10833   // Architectures before V6KZ add features monotonically.
10834   int tagh = std::max(oldtag, newtag);
10835   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10836     return tagh;
10837
10838   int tagl = std::min(oldtag, newtag);
10839   int result = comb[tagh - T(V6T2)][tagl];
10840
10841   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10842   // as the canonical version.
10843   if (result == T(V4T_PLUS_V6_M))
10844     {
10845       result = T(V4T);
10846       *secondary_compat_out = T(V6_M);
10847     }
10848   else
10849     *secondary_compat_out = -1;
10850
10851   if (result == -1)
10852     {
10853       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10854                  name, oldtag, newtag);
10855       return -1;
10856     }
10857
10858   return result;
10859 #undef T
10860 }
10861
10862 // Helper to print AEABI enum tag value.
10863
10864 template<bool big_endian>
10865 std::string
10866 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10867 {
10868   static const char* aeabi_enum_names[] =
10869     { "", "variable-size", "32-bit", "" };
10870   const size_t aeabi_enum_names_size =
10871     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10872
10873   if (value < aeabi_enum_names_size)
10874     return std::string(aeabi_enum_names[value]);
10875   else
10876     {
10877       char buffer[100];
10878       sprintf(buffer, "<unknown value %u>", value);
10879       return std::string(buffer);
10880     }
10881 }
10882
10883 // Return the string value to store in TAG_CPU_name.
10884
10885 template<bool big_endian>
10886 std::string
10887 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10888 {
10889   static const char* name_table[] = {
10890     // These aren't real CPU names, but we can't guess
10891     // that from the architecture version alone.
10892    "Pre v4",
10893    "ARM v4",
10894    "ARM v4T",
10895    "ARM v5T",
10896    "ARM v5TE",
10897    "ARM v5TEJ",
10898    "ARM v6",
10899    "ARM v6KZ",
10900    "ARM v6T2",
10901    "ARM v6K",
10902    "ARM v7",
10903    "ARM v6-M",
10904    "ARM v6S-M",
10905    "ARM v7E-M",
10906    "ARM v8"
10907  };
10908  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10909
10910   if (value < name_table_size)
10911     return std::string(name_table[value]);
10912   else
10913     {
10914       char buffer[100];
10915       sprintf(buffer, "<unknown CPU value %u>", value);
10916       return std::string(buffer);
10917     }
10918 }
10919
10920 // Query attributes object to see if integer divide instructions may be
10921 // present in an object.
10922
10923 template<bool big_endian>
10924 bool
10925 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10926     const Object_attribute* div_attr)
10927 {
10928   switch (div_attr->int_value())
10929     {
10930     case 0:
10931       // Integer divide allowed if instruction contained in
10932       // archetecture.
10933       if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10934         return true;
10935       else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10936         return true;
10937       else
10938         return false;
10939
10940     case 1:
10941       // Integer divide explicitly prohibited.
10942       return false;
10943
10944     default:
10945       // Unrecognised case - treat as allowing divide everywhere.
10946     case 2:
10947       // Integer divide allowed in ARM state.
10948       return true;
10949     }
10950 }
10951
10952 // Query attributes object to see if integer divide instructions are
10953 // forbidden to be in the object.  This is not the inverse of
10954 // attributes_accept_div.
10955
10956 template<bool big_endian>
10957 bool
10958 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10959 {
10960   return div_attr->int_value() == 1;
10961 }
10962
10963 // Merge object attributes from input file called NAME with those of the
10964 // output.  The input object attributes are in the object pointed by PASD.
10965
10966 template<bool big_endian>
10967 void
10968 Target_arm<big_endian>::merge_object_attributes(
10969     const char* name,
10970     const Attributes_section_data* pasd)
10971 {
10972   // Return if there is no attributes section data.
10973   if (pasd == NULL)
10974     return;
10975
10976   // If output has no object attributes, just copy.
10977   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10978   if (this->attributes_section_data_ == NULL)
10979     {
10980       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10981       Object_attribute* out_attr =
10982         this->attributes_section_data_->known_attributes(vendor);
10983
10984       // We do not output objects with Tag_MPextension_use_legacy - we move
10985       //  the attribute's value to Tag_MPextension_use.  */
10986       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10987         {
10988           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10989               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10990                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10991             {
10992               gold_error(_("%s has both the current and legacy "
10993                            "Tag_MPextension_use attributes"),
10994                          name);
10995             }
10996
10997           out_attr[elfcpp::Tag_MPextension_use] =
10998             out_attr[elfcpp::Tag_MPextension_use_legacy];
10999           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
11000           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
11001         }
11002
11003       return;
11004     }
11005
11006   const Object_attribute* in_attr = pasd->known_attributes(vendor);
11007   Object_attribute* out_attr =
11008     this->attributes_section_data_->known_attributes(vendor);
11009
11010   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
11011   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11012       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11013     {
11014       // Ignore mismatches if the object doesn't use floating point.  */
11015       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11016           == elfcpp::AEABI_FP_number_model_none
11017           || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11018               != elfcpp::AEABI_FP_number_model_none
11019               && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11020                  == elfcpp::AEABI_VFP_args_compatible))
11021         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11022             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
11023       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
11024                != elfcpp::AEABI_FP_number_model_none
11025                && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11026                   != elfcpp::AEABI_VFP_args_compatible
11027                && parameters->options().warn_mismatch())
11028         gold_error(_("%s uses VFP register arguments, output does not"),
11029                    name);
11030     }
11031
11032   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11033     {
11034       // Merge this attribute with existing attributes.
11035       switch (i)
11036         {
11037         case elfcpp::Tag_CPU_raw_name:
11038         case elfcpp::Tag_CPU_name:
11039           // These are merged after Tag_CPU_arch.
11040           break;
11041
11042         case elfcpp::Tag_ABI_optimization_goals:
11043         case elfcpp::Tag_ABI_FP_optimization_goals:
11044           // Use the first value seen.
11045           break;
11046
11047         case elfcpp::Tag_CPU_arch:
11048           {
11049             unsigned int saved_out_attr = out_attr->int_value();
11050             // Merge Tag_CPU_arch and Tag_also_compatible_with.
11051             int secondary_compat =
11052               this->get_secondary_compatible_arch(pasd);
11053             int secondary_compat_out =
11054               this->get_secondary_compatible_arch(
11055                   this->attributes_section_data_);
11056             out_attr[i].set_int_value(
11057                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11058                                      &secondary_compat_out,
11059                                      in_attr[i].int_value(),
11060                                      secondary_compat));
11061             this->set_secondary_compatible_arch(this->attributes_section_data_,
11062                                                 secondary_compat_out);
11063
11064             // Merge Tag_CPU_name and Tag_CPU_raw_name.
11065             if (out_attr[i].int_value() == saved_out_attr)
11066               ; // Leave the names alone.
11067             else if (out_attr[i].int_value() == in_attr[i].int_value())
11068               {
11069                 // The output architecture has been changed to match the
11070                 // input architecture.  Use the input names.
11071                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11072                     in_attr[elfcpp::Tag_CPU_name].string_value());
11073                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11074                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11075               }
11076             else
11077               {
11078                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11079                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11080               }
11081
11082             // If we still don't have a value for Tag_CPU_name,
11083             // make one up now.  Tag_CPU_raw_name remains blank.
11084             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11085               {
11086                 const std::string cpu_name =
11087                   this->tag_cpu_name_value(out_attr[i].int_value());
11088                 // FIXME:  If we see an unknown CPU, this will be set
11089                 // to "<unknown CPU n>", where n is the attribute value.
11090                 // This is different from BFD, which leaves the name alone.
11091                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11092               }
11093           }
11094           break;
11095
11096         case elfcpp::Tag_ARM_ISA_use:
11097         case elfcpp::Tag_THUMB_ISA_use:
11098         case elfcpp::Tag_WMMX_arch:
11099         case elfcpp::Tag_Advanced_SIMD_arch:
11100           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11101         case elfcpp::Tag_ABI_FP_rounding:
11102         case elfcpp::Tag_ABI_FP_exceptions:
11103         case elfcpp::Tag_ABI_FP_user_exceptions:
11104         case elfcpp::Tag_ABI_FP_number_model:
11105         case elfcpp::Tag_VFP_HP_extension:
11106         case elfcpp::Tag_CPU_unaligned_access:
11107         case elfcpp::Tag_T2EE_use:
11108         case elfcpp::Tag_Virtualization_use:
11109         case elfcpp::Tag_MPextension_use:
11110           // Use the largest value specified.
11111           if (in_attr[i].int_value() > out_attr[i].int_value())
11112             out_attr[i].set_int_value(in_attr[i].int_value());
11113           break;
11114
11115         case elfcpp::Tag_ABI_align8_preserved:
11116         case elfcpp::Tag_ABI_PCS_RO_data:
11117           // Use the smallest value specified.
11118           if (in_attr[i].int_value() < out_attr[i].int_value())
11119             out_attr[i].set_int_value(in_attr[i].int_value());
11120           break;
11121
11122         case elfcpp::Tag_ABI_align8_needed:
11123           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11124               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11125                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11126                       == 0)))
11127             {
11128               // This error message should be enabled once all non-conforming
11129               // binaries in the toolchain have had the attributes set
11130               // properly.
11131               // gold_error(_("output 8-byte data alignment conflicts with %s"),
11132               //            name);
11133             }
11134           // Fall through.
11135         case elfcpp::Tag_ABI_FP_denormal:
11136         case elfcpp::Tag_ABI_PCS_GOT_use:
11137           {
11138             // These tags have 0 = don't care, 1 = strong requirement,
11139             // 2 = weak requirement.
11140             static const int order_021[3] = {0, 2, 1};
11141
11142             // Use the "greatest" from the sequence 0, 2, 1, or the largest
11143             // value if greater than 2 (for future-proofing).
11144             if ((in_attr[i].int_value() > 2
11145                  && in_attr[i].int_value() > out_attr[i].int_value())
11146                 || (in_attr[i].int_value() <= 2
11147                     && out_attr[i].int_value() <= 2
11148                     && (order_021[in_attr[i].int_value()]
11149                         > order_021[out_attr[i].int_value()])))
11150               out_attr[i].set_int_value(in_attr[i].int_value());
11151           }
11152           break;
11153
11154         case elfcpp::Tag_CPU_arch_profile:
11155           if (out_attr[i].int_value() != in_attr[i].int_value())
11156             {
11157               // 0 will merge with anything.
11158               // 'A' and 'S' merge to 'A'.
11159               // 'R' and 'S' merge to 'R'.
11160               // 'M' and 'A|R|S' is an error.
11161               if (out_attr[i].int_value() == 0
11162                   || (out_attr[i].int_value() == 'S'
11163                       && (in_attr[i].int_value() == 'A'
11164                           || in_attr[i].int_value() == 'R')))
11165                 out_attr[i].set_int_value(in_attr[i].int_value());
11166               else if (in_attr[i].int_value() == 0
11167                        || (in_attr[i].int_value() == 'S'
11168                            && (out_attr[i].int_value() == 'A'
11169                                || out_attr[i].int_value() == 'R')))
11170                 ; // Do nothing.
11171               else if (parameters->options().warn_mismatch())
11172                 {
11173                   gold_error
11174                     (_("conflicting architecture profiles %c/%c"),
11175                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11176                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11177                 }
11178             }
11179           break;
11180         case elfcpp::Tag_VFP_arch:
11181             {
11182               static const struct
11183               {
11184                   int ver;
11185                   int regs;
11186               } vfp_versions[7] =
11187                 {
11188                   {0, 0},
11189                   {1, 16},
11190                   {2, 16},
11191                   {3, 32},
11192                   {3, 16},
11193                   {4, 32},
11194                   {4, 16}
11195                 };
11196
11197               // Values greater than 6 aren't defined, so just pick the
11198               // biggest.
11199               if (in_attr[i].int_value() > 6
11200                   && in_attr[i].int_value() > out_attr[i].int_value())
11201                 {
11202                   *out_attr = *in_attr;
11203                   break;
11204                 }
11205               // The output uses the superset of input features
11206               // (ISA version) and registers.
11207               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11208                                  vfp_versions[out_attr[i].int_value()].ver);
11209               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11210                                   vfp_versions[out_attr[i].int_value()].regs);
11211               // This assumes all possible supersets are also a valid
11212               // options.
11213               int newval;
11214               for (newval = 6; newval > 0; newval--)
11215                 {
11216                   if (regs == vfp_versions[newval].regs
11217                       && ver == vfp_versions[newval].ver)
11218                     break;
11219                 }
11220               out_attr[i].set_int_value(newval);
11221             }
11222           break;
11223         case elfcpp::Tag_PCS_config:
11224           if (out_attr[i].int_value() == 0)
11225             out_attr[i].set_int_value(in_attr[i].int_value());
11226           else if (in_attr[i].int_value() != 0
11227                    && out_attr[i].int_value() != 0
11228                    && parameters->options().warn_mismatch())
11229             {
11230               // It's sometimes ok to mix different configs, so this is only
11231               // a warning.
11232               gold_warning(_("%s: conflicting platform configuration"), name);
11233             }
11234           break;
11235         case elfcpp::Tag_ABI_PCS_R9_use:
11236           if (in_attr[i].int_value() != out_attr[i].int_value()
11237               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
11238               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11239               && parameters->options().warn_mismatch())
11240             {
11241               gold_error(_("%s: conflicting use of R9"), name);
11242             }
11243           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11244             out_attr[i].set_int_value(in_attr[i].int_value());
11245           break;
11246         case elfcpp::Tag_ABI_PCS_RW_data:
11247           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11248               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11249                   != elfcpp::AEABI_R9_SB)
11250               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11251                   != elfcpp::AEABI_R9_unused)
11252               && parameters->options().warn_mismatch())
11253             {
11254               gold_error(_("%s: SB relative addressing conflicts with use "
11255                            "of R9"),
11256                            name);
11257             }
11258           // Use the smallest value specified.
11259           if (in_attr[i].int_value() < out_attr[i].int_value())
11260             out_attr[i].set_int_value(in_attr[i].int_value());
11261           break;
11262         case elfcpp::Tag_ABI_PCS_wchar_t:
11263           if (out_attr[i].int_value()
11264               && in_attr[i].int_value()
11265               && out_attr[i].int_value() != in_attr[i].int_value()
11266               && parameters->options().warn_mismatch()
11267               && parameters->options().wchar_size_warning())
11268             {
11269               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11270                              "use %u-byte wchar_t; use of wchar_t values "
11271                              "across objects may fail"),
11272                            name, in_attr[i].int_value(),
11273                            out_attr[i].int_value());
11274             }
11275           else if (in_attr[i].int_value() && !out_attr[i].int_value())
11276             out_attr[i].set_int_value(in_attr[i].int_value());
11277           break;
11278         case elfcpp::Tag_ABI_enum_size:
11279           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11280             {
11281               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11282                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11283                 {
11284                   // The existing object is compatible with anything.
11285                   // Use whatever requirements the new object has.
11286                   out_attr[i].set_int_value(in_attr[i].int_value());
11287                 }
11288               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
11289                        && out_attr[i].int_value() != in_attr[i].int_value()
11290                        && parameters->options().warn_mismatch()
11291                        && parameters->options().enum_size_warning())
11292                 {
11293                   unsigned int in_value = in_attr[i].int_value();
11294                   unsigned int out_value = out_attr[i].int_value();
11295                   gold_warning(_("%s uses %s enums yet the output is to use "
11296                                  "%s enums; use of enum values across objects "
11297                                  "may fail"),
11298                                name,
11299                                this->aeabi_enum_name(in_value).c_str(),
11300                                this->aeabi_enum_name(out_value).c_str());
11301                 }
11302             }
11303           break;
11304         case elfcpp::Tag_ABI_VFP_args:
11305           // Already done.
11306           break;
11307         case elfcpp::Tag_ABI_WMMX_args:
11308           if (in_attr[i].int_value() != out_attr[i].int_value()
11309               && parameters->options().warn_mismatch())
11310             {
11311               gold_error(_("%s uses iWMMXt register arguments, output does "
11312                            "not"),
11313                          name);
11314             }
11315           break;
11316         case Object_attribute::Tag_compatibility:
11317           // Merged in target-independent code.
11318           break;
11319         case elfcpp::Tag_ABI_HardFP_use:
11320           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11321           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11322               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11323             out_attr[i].set_int_value(3);
11324           else if (in_attr[i].int_value() > out_attr[i].int_value())
11325             out_attr[i].set_int_value(in_attr[i].int_value());
11326           break;
11327         case elfcpp::Tag_ABI_FP_16bit_format:
11328           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11329             {
11330               if (in_attr[i].int_value() != out_attr[i].int_value()
11331                   && parameters->options().warn_mismatch())
11332                 gold_error(_("fp16 format mismatch between %s and output"),
11333                            name);
11334             }
11335           if (in_attr[i].int_value() != 0)
11336             out_attr[i].set_int_value(in_attr[i].int_value());
11337           break;
11338
11339         case elfcpp::Tag_DIV_use:
11340           {
11341             // A value of zero on input means that the divide
11342             // instruction may be used if available in the base
11343             // architecture as specified via Tag_CPU_arch and
11344             // Tag_CPU_arch_profile.  A value of 1 means that the user
11345             // did not want divide instructions.  A value of 2
11346             // explicitly means that divide instructions were allowed
11347             // in ARM and Thumb state.
11348             int arch = this->
11349               get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11350               int_value();
11351             int profile = this->
11352               get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11353               int_value();
11354             if (in_attr[i].int_value() == out_attr[i].int_value())
11355               {
11356                 // Do nothing.
11357               }
11358             else if (attributes_forbid_div(&in_attr[i])
11359                      && !attributes_accept_div(arch, profile, &out_attr[i]))
11360               out_attr[i].set_int_value(1);
11361             else if (attributes_forbid_div(&out_attr[i])
11362                      && attributes_accept_div(arch, profile, &in_attr[i]))
11363               out_attr[i].set_int_value(in_attr[i].int_value());
11364             else if (in_attr[i].int_value() == 2)
11365               out_attr[i].set_int_value(in_attr[i].int_value());
11366           }
11367           break;
11368
11369         case elfcpp::Tag_MPextension_use_legacy:
11370           // We don't output objects with Tag_MPextension_use_legacy - we
11371           // move the value to Tag_MPextension_use.
11372           if (in_attr[i].int_value() != 0
11373               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11374             {
11375               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11376                   != in_attr[i].int_value())
11377                 {
11378                   gold_error(_("%s has has both the current and legacy "
11379                                "Tag_MPextension_use attributes"),
11380                              name);
11381                 }
11382             }
11383
11384           if (in_attr[i].int_value()
11385               > out_attr[elfcpp::Tag_MPextension_use].int_value())
11386             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11387
11388           break;
11389
11390         case elfcpp::Tag_nodefaults:
11391           // This tag is set if it exists, but the value is unused (and is
11392           // typically zero).  We don't actually need to do anything here -
11393           // the merge happens automatically when the type flags are merged
11394           // below.
11395           break;
11396         case elfcpp::Tag_also_compatible_with:
11397           // Already done in Tag_CPU_arch.
11398           break;
11399         case elfcpp::Tag_conformance:
11400           // Keep the attribute if it matches.  Throw it away otherwise.
11401           // No attribute means no claim to conform.
11402           if (in_attr[i].string_value() != out_attr[i].string_value())
11403             out_attr[i].set_string_value("");
11404           break;
11405
11406         default:
11407           {
11408             const char* err_object = NULL;
11409
11410             // The "known_obj_attributes" table does contain some undefined
11411             // attributes.  Ensure that there are unused.
11412             if (out_attr[i].int_value() != 0
11413                 || out_attr[i].string_value() != "")
11414               err_object = "output";
11415             else if (in_attr[i].int_value() != 0
11416                      || in_attr[i].string_value() != "")
11417               err_object = name;
11418
11419             if (err_object != NULL
11420                 && parameters->options().warn_mismatch())
11421               {
11422                 // Attribute numbers >=64 (mod 128) can be safely ignored.
11423                 if ((i & 127) < 64)
11424                   gold_error(_("%s: unknown mandatory EABI object attribute "
11425                                "%d"),
11426                              err_object, i);
11427                 else
11428                   gold_warning(_("%s: unknown EABI object attribute %d"),
11429                                err_object, i);
11430               }
11431
11432             // Only pass on attributes that match in both inputs.
11433             if (!in_attr[i].matches(out_attr[i]))
11434               {
11435                 out_attr[i].set_int_value(0);
11436                 out_attr[i].set_string_value("");
11437               }
11438           }
11439         }
11440
11441       // If out_attr was copied from in_attr then it won't have a type yet.
11442       if (in_attr[i].type() && !out_attr[i].type())
11443         out_attr[i].set_type(in_attr[i].type());
11444     }
11445
11446   // Merge Tag_compatibility attributes and any common GNU ones.
11447   this->attributes_section_data_->merge(name, pasd);
11448
11449   // Check for any attributes not known on ARM.
11450   typedef Vendor_object_attributes::Other_attributes Other_attributes;
11451   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11452   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11453   Other_attributes* out_other_attributes =
11454     this->attributes_section_data_->other_attributes(vendor);
11455   Other_attributes::iterator out_iter = out_other_attributes->begin();
11456
11457   while (in_iter != in_other_attributes->end()
11458          || out_iter != out_other_attributes->end())
11459     {
11460       const char* err_object = NULL;
11461       int err_tag = 0;
11462
11463       // The tags for each list are in numerical order.
11464       // If the tags are equal, then merge.
11465       if (out_iter != out_other_attributes->end()
11466           && (in_iter == in_other_attributes->end()
11467               || in_iter->first > out_iter->first))
11468         {
11469           // This attribute only exists in output.  We can't merge, and we
11470           // don't know what the tag means, so delete it.
11471           err_object = "output";
11472           err_tag = out_iter->first;
11473           int saved_tag = out_iter->first;
11474           delete out_iter->second;
11475           out_other_attributes->erase(out_iter);
11476           out_iter = out_other_attributes->upper_bound(saved_tag);
11477         }
11478       else if (in_iter != in_other_attributes->end()
11479                && (out_iter != out_other_attributes->end()
11480                    || in_iter->first < out_iter->first))
11481         {
11482           // This attribute only exists in input. We can't merge, and we
11483           // don't know what the tag means, so ignore it.
11484           err_object = name;
11485           err_tag = in_iter->first;
11486           ++in_iter;
11487         }
11488       else // The tags are equal.
11489         {
11490           // As present, all attributes in the list are unknown, and
11491           // therefore can't be merged meaningfully.
11492           err_object = "output";
11493           err_tag = out_iter->first;
11494
11495           //  Only pass on attributes that match in both inputs.
11496           if (!in_iter->second->matches(*(out_iter->second)))
11497             {
11498               // No match.  Delete the attribute.
11499               int saved_tag = out_iter->first;
11500               delete out_iter->second;
11501               out_other_attributes->erase(out_iter);
11502               out_iter = out_other_attributes->upper_bound(saved_tag);
11503             }
11504           else
11505             {
11506               // Matched.  Keep the attribute and move to the next.
11507               ++out_iter;
11508               ++in_iter;
11509             }
11510         }
11511
11512       if (err_object && parameters->options().warn_mismatch())
11513         {
11514           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
11515           if ((err_tag & 127) < 64)
11516             {
11517               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11518                          err_object, err_tag);
11519             }
11520           else
11521             {
11522               gold_warning(_("%s: unknown EABI object attribute %d"),
11523                            err_object, err_tag);
11524             }
11525         }
11526     }
11527 }
11528
11529 // Stub-generation methods for Target_arm.
11530
11531 // Make a new Arm_input_section object.
11532
11533 template<bool big_endian>
11534 Arm_input_section<big_endian>*
11535 Target_arm<big_endian>::new_arm_input_section(
11536     Relobj* relobj,
11537     unsigned int shndx)
11538 {
11539   Section_id sid(relobj, shndx);
11540
11541   Arm_input_section<big_endian>* arm_input_section =
11542     new Arm_input_section<big_endian>(relobj, shndx);
11543   arm_input_section->init();
11544
11545   // Register new Arm_input_section in map for look-up.
11546   std::pair<typename Arm_input_section_map::iterator, bool> ins =
11547     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11548
11549   // Make sure that it we have not created another Arm_input_section
11550   // for this input section already.
11551   gold_assert(ins.second);
11552
11553   return arm_input_section;
11554 }
11555
11556 // Find the Arm_input_section object corresponding to the SHNDX-th input
11557 // section of RELOBJ.
11558
11559 template<bool big_endian>
11560 Arm_input_section<big_endian>*
11561 Target_arm<big_endian>::find_arm_input_section(
11562     Relobj* relobj,
11563     unsigned int shndx) const
11564 {
11565   Section_id sid(relobj, shndx);
11566   typename Arm_input_section_map::const_iterator p =
11567     this->arm_input_section_map_.find(sid);
11568   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11569 }
11570
11571 // Make a new stub table.
11572
11573 template<bool big_endian>
11574 Stub_table<big_endian>*
11575 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11576 {
11577   Stub_table<big_endian>* stub_table =
11578     new Stub_table<big_endian>(owner);
11579   this->stub_tables_.push_back(stub_table);
11580
11581   stub_table->set_address(owner->address() + owner->data_size());
11582   stub_table->set_file_offset(owner->offset() + owner->data_size());
11583   stub_table->finalize_data_size();
11584
11585   return stub_table;
11586 }
11587
11588 // Scan a relocation for stub generation.
11589
11590 template<bool big_endian>
11591 void
11592 Target_arm<big_endian>::scan_reloc_for_stub(
11593     const Relocate_info<32, big_endian>* relinfo,
11594     unsigned int r_type,
11595     const Sized_symbol<32>* gsym,
11596     unsigned int r_sym,
11597     const Symbol_value<32>* psymval,
11598     elfcpp::Elf_types<32>::Elf_Swxword addend,
11599     Arm_address address)
11600 {
11601   const Arm_relobj<big_endian>* arm_relobj =
11602     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11603
11604   bool target_is_thumb;
11605   Symbol_value<32> symval;
11606   if (gsym != NULL)
11607     {
11608       // This is a global symbol.  Determine if we use PLT and if the
11609       // final target is THUMB.
11610       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11611         {
11612           // This uses a PLT, change the symbol value.
11613           symval.set_output_value(this->plt_address_for_global(gsym));
11614           psymval = &symval;
11615           target_is_thumb = false;
11616         }
11617       else if (gsym->is_undefined())
11618         // There is no need to generate a stub symbol is undefined.
11619         return;
11620       else
11621         {
11622           target_is_thumb =
11623             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11624              || (gsym->type() == elfcpp::STT_FUNC
11625                  && !gsym->is_undefined()
11626                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11627         }
11628     }
11629   else
11630     {
11631       // This is a local symbol.  Determine if the final target is THUMB.
11632       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11633     }
11634
11635   // Strip LSB if this points to a THUMB target.
11636   const Arm_reloc_property* reloc_property =
11637     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11638   gold_assert(reloc_property != NULL);
11639   if (target_is_thumb
11640       && reloc_property->uses_thumb_bit()
11641       && ((psymval->value(arm_relobj, 0) & 1) != 0))
11642     {
11643       Arm_address stripped_value =
11644         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11645       symval.set_output_value(stripped_value);
11646       psymval = &symval;
11647     }
11648
11649   // Get the symbol value.
11650   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11651
11652   // Owing to pipelining, the PC relative branches below actually skip
11653   // two instructions when the branch offset is 0.
11654   Arm_address destination;
11655   switch (r_type)
11656     {
11657     case elfcpp::R_ARM_CALL:
11658     case elfcpp::R_ARM_JUMP24:
11659     case elfcpp::R_ARM_PLT32:
11660       // ARM branches.
11661       destination = value + addend + 8;
11662       break;
11663     case elfcpp::R_ARM_THM_CALL:
11664     case elfcpp::R_ARM_THM_XPC22:
11665     case elfcpp::R_ARM_THM_JUMP24:
11666     case elfcpp::R_ARM_THM_JUMP19:
11667       // THUMB branches.
11668       destination = value + addend + 4;
11669       break;
11670     default:
11671       gold_unreachable();
11672     }
11673
11674   Reloc_stub* stub = NULL;
11675   Stub_type stub_type =
11676     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11677                                     target_is_thumb);
11678   if (stub_type != arm_stub_none)
11679     {
11680       // Try looking up an existing stub from a stub table.
11681       Stub_table<big_endian>* stub_table =
11682         arm_relobj->stub_table(relinfo->data_shndx);
11683       gold_assert(stub_table != NULL);
11684
11685       // Locate stub by destination.
11686       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11687
11688       // Create a stub if there is not one already
11689       stub = stub_table->find_reloc_stub(stub_key);
11690       if (stub == NULL)
11691         {
11692           // create a new stub and add it to stub table.
11693           stub = this->stub_factory().make_reloc_stub(stub_type);
11694           stub_table->add_reloc_stub(stub, stub_key);
11695         }
11696
11697       // Record the destination address.
11698       stub->set_destination_address(destination
11699                                     | (target_is_thumb ? 1 : 0));
11700     }
11701
11702   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11703   if (this->fix_cortex_a8_
11704       && (r_type == elfcpp::R_ARM_THM_JUMP24
11705           || r_type == elfcpp::R_ARM_THM_JUMP19
11706           || r_type == elfcpp::R_ARM_THM_CALL
11707           || r_type == elfcpp::R_ARM_THM_XPC22)
11708       && (address & 0xfffU) == 0xffeU)
11709     {
11710       // Found a candidate.  Note we haven't checked the destination is
11711       // within 4K here: if we do so (and don't create a record) we can't
11712       // tell that a branch should have been relocated when scanning later.
11713       this->cortex_a8_relocs_info_[address] =
11714         new Cortex_a8_reloc(stub, r_type,
11715                             destination | (target_is_thumb ? 1 : 0));
11716     }
11717 }
11718
11719 // This function scans a relocation sections for stub generation.
11720 // The template parameter Relocate must be a class type which provides
11721 // a single function, relocate(), which implements the machine
11722 // specific part of a relocation.
11723
11724 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11725 // SHT_REL or SHT_RELA.
11726
11727 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11728 // of relocs.  OUTPUT_SECTION is the output section.
11729 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11730 // mapped to output offsets.
11731
11732 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11733 // VIEW_SIZE is the size.  These refer to the input section, unless
11734 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11735 // the output section.
11736
11737 template<bool big_endian>
11738 template<int sh_type>
11739 void inline
11740 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11741     const Relocate_info<32, big_endian>* relinfo,
11742     const unsigned char* prelocs,
11743     size_t reloc_count,
11744     Output_section* output_section,
11745     bool needs_special_offset_handling,
11746     const unsigned char* view,
11747     elfcpp::Elf_types<32>::Elf_Addr view_address,
11748     section_size_type)
11749 {
11750   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11751   const int reloc_size =
11752     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11753
11754   Arm_relobj<big_endian>* arm_object =
11755     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11756   unsigned int local_count = arm_object->local_symbol_count();
11757
11758   gold::Default_comdat_behavior default_comdat_behavior;
11759   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11760
11761   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11762     {
11763       Reltype reloc(prelocs);
11764
11765       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11766       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11767       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11768
11769       r_type = this->get_real_reloc_type(r_type);
11770
11771       // Only a few relocation types need stubs.
11772       if ((r_type != elfcpp::R_ARM_CALL)
11773          && (r_type != elfcpp::R_ARM_JUMP24)
11774          && (r_type != elfcpp::R_ARM_PLT32)
11775          && (r_type != elfcpp::R_ARM_THM_CALL)
11776          && (r_type != elfcpp::R_ARM_THM_XPC22)
11777          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11778          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11779          && (r_type != elfcpp::R_ARM_V4BX))
11780         continue;
11781
11782       section_offset_type offset =
11783         convert_to_section_size_type(reloc.get_r_offset());
11784
11785       if (needs_special_offset_handling)
11786         {
11787           offset = output_section->output_offset(relinfo->object,
11788                                                  relinfo->data_shndx,
11789                                                  offset);
11790           if (offset == -1)
11791             continue;
11792         }
11793
11794       // Create a v4bx stub if --fix-v4bx-interworking is used.
11795       if (r_type == elfcpp::R_ARM_V4BX)
11796         {
11797           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11798             {
11799               // Get the BX instruction.
11800               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11801               const Valtype* wv =
11802                 reinterpret_cast<const Valtype*>(view + offset);
11803               elfcpp::Elf_types<32>::Elf_Swxword insn =
11804                 elfcpp::Swap<32, big_endian>::readval(wv);
11805               const uint32_t reg = (insn & 0xf);
11806
11807               if (reg < 0xf)
11808                 {
11809                   // Try looking up an existing stub from a stub table.
11810                   Stub_table<big_endian>* stub_table =
11811                     arm_object->stub_table(relinfo->data_shndx);
11812                   gold_assert(stub_table != NULL);
11813
11814                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11815                     {
11816                       // create a new stub and add it to stub table.
11817                       Arm_v4bx_stub* stub =
11818                         this->stub_factory().make_arm_v4bx_stub(reg);
11819                       gold_assert(stub != NULL);
11820                       stub_table->add_arm_v4bx_stub(stub);
11821                     }
11822                 }
11823             }
11824           continue;
11825         }
11826
11827       // Get the addend.
11828       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11829       elfcpp::Elf_types<32>::Elf_Swxword addend =
11830         stub_addend_reader(r_type, view + offset, reloc);
11831
11832       const Sized_symbol<32>* sym;
11833
11834       Symbol_value<32> symval;
11835       const Symbol_value<32> *psymval;
11836       bool is_defined_in_discarded_section;
11837       unsigned int shndx;
11838       if (r_sym < local_count)
11839         {
11840           sym = NULL;
11841           psymval = arm_object->local_symbol(r_sym);
11842
11843           // If the local symbol belongs to a section we are discarding,
11844           // and that section is a debug section, try to find the
11845           // corresponding kept section and map this symbol to its
11846           // counterpart in the kept section.  The symbol must not
11847           // correspond to a section we are folding.
11848           bool is_ordinary;
11849           shndx = psymval->input_shndx(&is_ordinary);
11850           is_defined_in_discarded_section =
11851             (is_ordinary
11852              && shndx != elfcpp::SHN_UNDEF
11853              && !arm_object->is_section_included(shndx)
11854              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11855
11856           // We need to compute the would-be final value of this local
11857           // symbol.
11858           if (!is_defined_in_discarded_section)
11859             {
11860               typedef Sized_relobj_file<32, big_endian> ObjType;
11861               typename ObjType::Compute_final_local_value_status status =
11862                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11863                                                       relinfo->symtab);
11864               if (status == ObjType::CFLV_OK)
11865                 {
11866                   // Currently we cannot handle a branch to a target in
11867                   // a merged section.  If this is the case, issue an error
11868                   // and also free the merge symbol value.
11869                   if (!symval.has_output_value())
11870                     {
11871                       const std::string& section_name =
11872                         arm_object->section_name(shndx);
11873                       arm_object->error(_("cannot handle branch to local %u "
11874                                           "in a merged section %s"),
11875                                         r_sym, section_name.c_str());
11876                     }
11877                   psymval = &symval;
11878                 }
11879               else
11880                 {
11881                   // We cannot determine the final value.
11882                   continue;
11883                 }
11884             }
11885         }
11886       else
11887         {
11888           const Symbol* gsym;
11889           gsym = arm_object->global_symbol(r_sym);
11890           gold_assert(gsym != NULL);
11891           if (gsym->is_forwarder())
11892             gsym = relinfo->symtab->resolve_forwards(gsym);
11893
11894           sym = static_cast<const Sized_symbol<32>*>(gsym);
11895           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11896             symval.set_output_symtab_index(sym->symtab_index());
11897           else
11898             symval.set_no_output_symtab_entry();
11899
11900           // We need to compute the would-be final value of this global
11901           // symbol.
11902           const Symbol_table* symtab = relinfo->symtab;
11903           const Sized_symbol<32>* sized_symbol =
11904             symtab->get_sized_symbol<32>(gsym);
11905           Symbol_table::Compute_final_value_status status;
11906           Arm_address value =
11907             symtab->compute_final_value<32>(sized_symbol, &status);
11908
11909           // Skip this if the symbol has not output section.
11910           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11911             continue;
11912           symval.set_output_value(value);
11913
11914           if (gsym->type() == elfcpp::STT_TLS)
11915             symval.set_is_tls_symbol();
11916           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11917             symval.set_is_ifunc_symbol();
11918           psymval = &symval;
11919
11920           is_defined_in_discarded_section =
11921             (gsym->is_defined_in_discarded_section()
11922              && gsym->is_undefined());
11923           shndx = 0;
11924         }
11925
11926       Symbol_value<32> symval2;
11927       if (is_defined_in_discarded_section)
11928         {
11929           if (comdat_behavior == CB_UNDETERMINED)
11930             {
11931               std::string name = arm_object->section_name(relinfo->data_shndx);
11932               comdat_behavior = default_comdat_behavior.get(name.c_str());
11933             }
11934           if (comdat_behavior == CB_PRETEND)
11935             {
11936               // FIXME: This case does not work for global symbols.
11937               // We have no place to store the original section index.
11938               // Fortunately this does not matter for comdat sections,
11939               // only for sections explicitly discarded by a linker
11940               // script.
11941               bool found;
11942               typename elfcpp::Elf_types<32>::Elf_Addr value =
11943                 arm_object->map_to_kept_section(shndx, &found);
11944               if (found)
11945                 symval2.set_output_value(value + psymval->input_value());
11946               else
11947                 symval2.set_output_value(0);
11948             }
11949           else
11950             {
11951               if (comdat_behavior == CB_WARNING)
11952                 gold_warning_at_location(relinfo, i, offset,
11953                                          _("relocation refers to discarded "
11954                                            "section"));
11955               symval2.set_output_value(0);
11956             }
11957           symval2.set_no_output_symtab_entry();
11958           psymval = &symval2;
11959         }
11960
11961       // If symbol is a section symbol, we don't know the actual type of
11962       // destination.  Give up.
11963       if (psymval->is_section_symbol())
11964         continue;
11965
11966       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11967                                 addend, view_address + offset);
11968     }
11969 }
11970
11971 // Scan an input section for stub generation.
11972
11973 template<bool big_endian>
11974 void
11975 Target_arm<big_endian>::scan_section_for_stubs(
11976     const Relocate_info<32, big_endian>* relinfo,
11977     unsigned int sh_type,
11978     const unsigned char* prelocs,
11979     size_t reloc_count,
11980     Output_section* output_section,
11981     bool needs_special_offset_handling,
11982     const unsigned char* view,
11983     Arm_address view_address,
11984     section_size_type view_size)
11985 {
11986   if (sh_type == elfcpp::SHT_REL)
11987     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11988         relinfo,
11989         prelocs,
11990         reloc_count,
11991         output_section,
11992         needs_special_offset_handling,
11993         view,
11994         view_address,
11995         view_size);
11996   else if (sh_type == elfcpp::SHT_RELA)
11997     // We do not support RELA type relocations yet.  This is provided for
11998     // completeness.
11999     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
12000         relinfo,
12001         prelocs,
12002         reloc_count,
12003         output_section,
12004         needs_special_offset_handling,
12005         view,
12006         view_address,
12007         view_size);
12008   else
12009     gold_unreachable();
12010 }
12011
12012 // Group input sections for stub generation.
12013 //
12014 // We group input sections in an output section so that the total size,
12015 // including any padding space due to alignment is smaller than GROUP_SIZE
12016 // unless the only input section in group is bigger than GROUP_SIZE already.
12017 // Then an ARM stub table is created to follow the last input section
12018 // in group.  For each group an ARM stub table is created an is placed
12019 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
12020 // extend the group after the stub table.
12021
12022 template<bool big_endian>
12023 void
12024 Target_arm<big_endian>::group_sections(
12025     Layout* layout,
12026     section_size_type group_size,
12027     bool stubs_always_after_branch,
12028     const Task* task)
12029 {
12030   // Group input sections and insert stub table
12031   Layout::Section_list section_list;
12032   layout->get_executable_sections(&section_list);
12033   for (Layout::Section_list::const_iterator p = section_list.begin();
12034        p != section_list.end();
12035        ++p)
12036     {
12037       Arm_output_section<big_endian>* output_section =
12038         Arm_output_section<big_endian>::as_arm_output_section(*p);
12039       output_section->group_sections(group_size, stubs_always_after_branch,
12040                                      this, task);
12041     }
12042 }
12043
12044 // Relaxation hook.  This is where we do stub generation.
12045
12046 template<bool big_endian>
12047 bool
12048 Target_arm<big_endian>::do_relax(
12049     int pass,
12050     const Input_objects* input_objects,
12051     Symbol_table* symtab,
12052     Layout* layout,
12053     const Task* task)
12054 {
12055   // No need to generate stubs if this is a relocatable link.
12056   gold_assert(!parameters->options().relocatable());
12057
12058   // If this is the first pass, we need to group input sections into
12059   // stub groups.
12060   bool done_exidx_fixup = false;
12061   typedef typename Stub_table_list::iterator Stub_table_iterator;
12062   if (pass == 1)
12063     {
12064       // Determine the stub group size.  The group size is the absolute
12065       // value of the parameter --stub-group-size.  If --stub-group-size
12066       // is passed a negative value, we restrict stubs to be always after
12067       // the stubbed branches.
12068       int32_t stub_group_size_param =
12069         parameters->options().stub_group_size();
12070       bool stubs_always_after_branch = stub_group_size_param < 0;
12071       section_size_type stub_group_size = abs(stub_group_size_param);
12072
12073       if (stub_group_size == 1)
12074         {
12075           // Default value.
12076           // Thumb branch range is +-4MB has to be used as the default
12077           // maximum size (a given section can contain both ARM and Thumb
12078           // code, so the worst case has to be taken into account).  If we are
12079           // fixing cortex-a8 errata, the branch range has to be even smaller,
12080           // since wide conditional branch has a range of +-1MB only.
12081           //
12082           // This value is 48K less than that, which allows for 4096
12083           // 12-byte stubs.  If we exceed that, then we will fail to link.
12084           // The user will have to relink with an explicit group size
12085           // option.
12086             stub_group_size = 4145152;
12087         }
12088
12089       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12090       // page as the first half of a 32-bit branch straddling two 4K pages.
12091       // This is a crude way of enforcing that.  In addition, long conditional
12092       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
12093       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
12094       // cortex-A8 stubs from long conditional branches.
12095       if (this->fix_cortex_a8_)
12096         {
12097           stubs_always_after_branch = true;
12098           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12099           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
12100         }
12101
12102       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
12103
12104       // Also fix .ARM.exidx section coverage.
12105       Arm_output_section<big_endian>* exidx_output_section = NULL;
12106       for (Layout::Section_list::const_iterator p =
12107              layout->section_list().begin();
12108            p != layout->section_list().end();
12109            ++p)
12110         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12111           {
12112             if (exidx_output_section == NULL)
12113               exidx_output_section =
12114                 Arm_output_section<big_endian>::as_arm_output_section(*p);
12115             else
12116               // We cannot handle this now.
12117               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12118                            "non-relocatable link"),
12119                           exidx_output_section->name(),
12120                           (*p)->name());
12121           }
12122
12123       if (exidx_output_section != NULL)
12124         {
12125           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
12126                                    symtab, task);
12127           done_exidx_fixup = true;
12128         }
12129     }
12130   else
12131     {
12132       // If this is not the first pass, addresses and file offsets have
12133       // been reset at this point, set them here.
12134       for (Stub_table_iterator sp = this->stub_tables_.begin();
12135            sp != this->stub_tables_.end();
12136            ++sp)
12137         {
12138           Arm_input_section<big_endian>* owner = (*sp)->owner();
12139           off_t off = align_address(owner->original_size(),
12140                                     (*sp)->addralign());
12141           (*sp)->set_address_and_file_offset(owner->address() + off,
12142                                              owner->offset() + off);
12143         }
12144     }
12145
12146   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
12147   // beginning of each relaxation pass, just blow away all the stubs.
12148   // Alternatively, we could selectively remove only the stubs and reloc
12149   // information for code sections that have moved since the last pass.
12150   // That would require more book-keeping.
12151   if (this->fix_cortex_a8_)
12152     {
12153       // Clear all Cortex-A8 reloc information.
12154       for (typename Cortex_a8_relocs_info::const_iterator p =
12155              this->cortex_a8_relocs_info_.begin();
12156            p != this->cortex_a8_relocs_info_.end();
12157            ++p)
12158         delete p->second;
12159       this->cortex_a8_relocs_info_.clear();
12160
12161       // Remove all Cortex-A8 stubs.
12162       for (Stub_table_iterator sp = this->stub_tables_.begin();
12163            sp != this->stub_tables_.end();
12164            ++sp)
12165         (*sp)->remove_all_cortex_a8_stubs();
12166     }
12167
12168   // Scan relocs for relocation stubs
12169   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12170        op != input_objects->relobj_end();
12171        ++op)
12172     {
12173       Arm_relobj<big_endian>* arm_relobj =
12174         Arm_relobj<big_endian>::as_arm_relobj(*op);
12175       // Lock the object so we can read from it.  This is only called
12176       // single-threaded from Layout::finalize, so it is OK to lock.
12177       Task_lock_obj<Object> tl(task, arm_relobj);
12178       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
12179     }
12180
12181   // Check all stub tables to see if any of them have their data sizes
12182   // or addresses alignments changed.  These are the only things that
12183   // matter.
12184   bool any_stub_table_changed = false;
12185   Unordered_set<const Output_section*> sections_needing_adjustment;
12186   for (Stub_table_iterator sp = this->stub_tables_.begin();
12187        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12188        ++sp)
12189     {
12190       if ((*sp)->update_data_size_and_addralign())
12191         {
12192           // Update data size of stub table owner.
12193           Arm_input_section<big_endian>* owner = (*sp)->owner();
12194           uint64_t address = owner->address();
12195           off_t offset = owner->offset();
12196           owner->reset_address_and_file_offset();
12197           owner->set_address_and_file_offset(address, offset);
12198
12199           sections_needing_adjustment.insert(owner->output_section());
12200           any_stub_table_changed = true;
12201         }
12202     }
12203
12204   // Output_section_data::output_section() returns a const pointer but we
12205   // need to update output sections, so we record all output sections needing
12206   // update above and scan the sections here to find out what sections need
12207   // to be updated.
12208   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
12209       p != layout->section_list().end();
12210       ++p)
12211     {
12212       if (sections_needing_adjustment.find(*p)
12213           != sections_needing_adjustment.end())
12214         (*p)->set_section_offsets_need_adjustment();
12215     }
12216
12217   // Stop relaxation if no EXIDX fix-up and no stub table change.
12218   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12219
12220   // Finalize the stubs in the last relaxation pass.
12221   if (!continue_relaxation)
12222     {
12223       for (Stub_table_iterator sp = this->stub_tables_.begin();
12224            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12225             ++sp)
12226         (*sp)->finalize_stubs();
12227
12228       // Update output local symbol counts of objects if necessary.
12229       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12230            op != input_objects->relobj_end();
12231            ++op)
12232         {
12233           Arm_relobj<big_endian>* arm_relobj =
12234             Arm_relobj<big_endian>::as_arm_relobj(*op);
12235
12236           // Update output local symbol counts.  We need to discard local
12237           // symbols defined in parts of input sections that are discarded by
12238           // relaxation.
12239           if (arm_relobj->output_local_symbol_count_needs_update())
12240             {
12241               // We need to lock the object's file to update it.
12242               Task_lock_obj<Object> tl(task, arm_relobj);
12243               arm_relobj->update_output_local_symbol_count();
12244             }
12245         }
12246     }
12247
12248   return continue_relaxation;
12249 }
12250
12251 // Relocate a stub.
12252
12253 template<bool big_endian>
12254 void
12255 Target_arm<big_endian>::relocate_stub(
12256     Stub* stub,
12257     const Relocate_info<32, big_endian>* relinfo,
12258     Output_section* output_section,
12259     unsigned char* view,
12260     Arm_address address,
12261     section_size_type view_size)
12262 {
12263   Relocate relocate;
12264   const Stub_template* stub_template = stub->stub_template();
12265   for (size_t i = 0; i < stub_template->reloc_count(); i++)
12266     {
12267       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12268       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
12269
12270       unsigned int r_type = insn->r_type();
12271       section_size_type reloc_offset = stub_template->reloc_offset(i);
12272       section_size_type reloc_size = insn->size();
12273       gold_assert(reloc_offset + reloc_size <= view_size);
12274
12275       // This is the address of the stub destination.
12276       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
12277       Symbol_value<32> symval;
12278       symval.set_output_value(target);
12279
12280       // Synthesize a fake reloc just in case.  We don't have a symbol so
12281       // we use 0.
12282       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12283       memset(reloc_buffer, 0, sizeof(reloc_buffer));
12284       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12285       reloc_write.put_r_offset(reloc_offset);
12286       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12287       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
12288
12289       relocate.relocate(relinfo, this, output_section,
12290                         this->fake_relnum_for_stubs, rel, r_type,
12291                         NULL, &symval, view + reloc_offset,
12292                         address + reloc_offset, reloc_size);
12293     }
12294 }
12295
12296 // Determine whether an object attribute tag takes an integer, a
12297 // string or both.
12298
12299 template<bool big_endian>
12300 int
12301 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12302 {
12303   if (tag == Object_attribute::Tag_compatibility)
12304     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12305             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12306   else if (tag == elfcpp::Tag_nodefaults)
12307     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12308             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12309   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12310     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12311   else if (tag < 32)
12312     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12313   else
12314     return ((tag & 1) != 0
12315             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12316             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12317 }
12318
12319 // Reorder attributes.
12320 //
12321 // The ABI defines that Tag_conformance should be emitted first, and that
12322 // Tag_nodefaults should be second (if either is defined).  This sets those
12323 // two positions, and bumps up the position of all the remaining tags to
12324 // compensate.
12325
12326 template<bool big_endian>
12327 int
12328 Target_arm<big_endian>::do_attributes_order(int num) const
12329 {
12330   // Reorder the known object attributes in output.  We want to move
12331   // Tag_conformance to position 4 and Tag_conformance to position 5
12332   // and shift everything between 4 .. Tag_conformance - 1 to make room.
12333   if (num == 4)
12334     return elfcpp::Tag_conformance;
12335   if (num == 5)
12336     return elfcpp::Tag_nodefaults;
12337   if ((num - 2) < elfcpp::Tag_nodefaults)
12338     return num - 2;
12339   if ((num - 1) < elfcpp::Tag_conformance)
12340     return num - 1;
12341   return num;
12342 }
12343
12344 // Scan a span of THUMB code for Cortex-A8 erratum.
12345
12346 template<bool big_endian>
12347 void
12348 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12349     Arm_relobj<big_endian>* arm_relobj,
12350     unsigned int shndx,
12351     section_size_type span_start,
12352     section_size_type span_end,
12353     const unsigned char* view,
12354     Arm_address address)
12355 {
12356   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12357   //
12358   // The opcode is BLX.W, BL.W, B.W, Bcc.W
12359   // The branch target is in the same 4KB region as the
12360   // first half of the branch.
12361   // The instruction before the branch is a 32-bit
12362   // length non-branch instruction.
12363   section_size_type i = span_start;
12364   bool last_was_32bit = false;
12365   bool last_was_branch = false;
12366   while (i < span_end)
12367     {
12368       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12369       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12370       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12371       bool is_blx = false, is_b = false;
12372       bool is_bl = false, is_bcc = false;
12373
12374       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12375       if (insn_32bit)
12376         {
12377           // Load the rest of the insn (in manual-friendly order).
12378           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12379
12380           // Encoding T4: B<c>.W.
12381           is_b = (insn & 0xf800d000U) == 0xf0009000U;
12382           // Encoding T1: BL<c>.W.
12383           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12384           // Encoding T2: BLX<c>.W.
12385           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
12386           // Encoding T3: B<c>.W (not permitted in IT block).
12387           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12388                     && (insn & 0x07f00000U) != 0x03800000U);
12389         }
12390
12391       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
12392
12393       // If this instruction is a 32-bit THUMB branch that crosses a 4K
12394       // page boundary and it follows 32-bit non-branch instruction,
12395       // we need to work around.
12396       if (is_32bit_branch
12397           && ((address + i) & 0xfffU) == 0xffeU
12398           && last_was_32bit
12399           && !last_was_branch)
12400         {
12401           // Check to see if there is a relocation stub for this branch.
12402           bool force_target_arm = false;
12403           bool force_target_thumb = false;
12404           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12405           Cortex_a8_relocs_info::const_iterator p =
12406             this->cortex_a8_relocs_info_.find(address + i);
12407
12408           if (p != this->cortex_a8_relocs_info_.end())
12409             {
12410               cortex_a8_reloc = p->second;
12411               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12412
12413               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12414                   && !target_is_thumb)
12415                 force_target_arm = true;
12416               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12417                        && target_is_thumb)
12418                 force_target_thumb = true;
12419             }
12420
12421           off_t offset;
12422           Stub_type stub_type = arm_stub_none;
12423
12424           // Check if we have an offending branch instruction.
12425           uint16_t upper_insn = (insn >> 16) & 0xffffU;
12426           uint16_t lower_insn = insn & 0xffffU;
12427           typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12428
12429           if (cortex_a8_reloc != NULL
12430               && cortex_a8_reloc->reloc_stub() != NULL)
12431             // We've already made a stub for this instruction, e.g.
12432             // it's a long branch or a Thumb->ARM stub.  Assume that
12433             // stub will suffice to work around the A8 erratum (see
12434             // setting of always_after_branch above).
12435             ;
12436           else if (is_bcc)
12437             {
12438               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12439                                                               lower_insn);
12440               stub_type = arm_stub_a8_veneer_b_cond;
12441             }
12442           else if (is_b || is_bl || is_blx)
12443             {
12444               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12445                                                          lower_insn);
12446               if (is_blx)
12447                 offset &= ~3;
12448
12449               stub_type = (is_blx
12450                            ? arm_stub_a8_veneer_blx
12451                            : (is_bl
12452                               ? arm_stub_a8_veneer_bl
12453                               : arm_stub_a8_veneer_b));
12454             }
12455
12456           if (stub_type != arm_stub_none)
12457             {
12458               Arm_address pc_for_insn = address + i + 4;
12459
12460               // The original instruction is a BL, but the target is
12461               // an ARM instruction.  If we were not making a stub,
12462               // the BL would have been converted to a BLX.  Use the
12463               // BLX stub instead in that case.
12464               if (this->may_use_v5t_interworking() && force_target_arm
12465                   && stub_type == arm_stub_a8_veneer_bl)
12466                 {
12467                   stub_type = arm_stub_a8_veneer_blx;
12468                   is_blx = true;
12469                   is_bl = false;
12470                 }
12471               // Conversely, if the original instruction was
12472               // BLX but the target is Thumb mode, use the BL stub.
12473               else if (force_target_thumb
12474                        && stub_type == arm_stub_a8_veneer_blx)
12475                 {
12476                   stub_type = arm_stub_a8_veneer_bl;
12477                   is_blx = false;
12478                   is_bl = true;
12479                 }
12480
12481               if (is_blx)
12482                 pc_for_insn &= ~3;
12483
12484               // If we found a relocation, use the proper destination,
12485               // not the offset in the (unrelocated) instruction.
12486               // Note this is always done if we switched the stub type above.
12487               if (cortex_a8_reloc != NULL)
12488                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
12489
12490               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
12491
12492               // Add a new stub if destination address in in the same page.
12493               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12494                 {
12495                   Cortex_a8_stub* stub =
12496                     this->stub_factory_.make_cortex_a8_stub(stub_type,
12497                                                             arm_relobj, shndx,
12498                                                             address + i,
12499                                                             target, insn);
12500                   Stub_table<big_endian>* stub_table =
12501                     arm_relobj->stub_table(shndx);
12502                   gold_assert(stub_table != NULL);
12503                   stub_table->add_cortex_a8_stub(address + i, stub);
12504                 }
12505             }
12506         }
12507
12508       i += insn_32bit ? 4 : 2;
12509       last_was_32bit = insn_32bit;
12510       last_was_branch = is_32bit_branch;
12511     }
12512 }
12513
12514 // Apply the Cortex-A8 workaround.
12515
12516 template<bool big_endian>
12517 void
12518 Target_arm<big_endian>::apply_cortex_a8_workaround(
12519     const Cortex_a8_stub* stub,
12520     Arm_address stub_address,
12521     unsigned char* insn_view,
12522     Arm_address insn_address)
12523 {
12524   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12525   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12526   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12527   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12528   off_t branch_offset = stub_address - (insn_address + 4);
12529
12530   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12531   switch (stub->stub_template()->type())
12532     {
12533     case arm_stub_a8_veneer_b_cond:
12534       // For a conditional branch, we re-write it to be an unconditional
12535       // branch to the stub.  We use the THUMB-2 encoding here.
12536       upper_insn = 0xf000U;
12537       lower_insn = 0xb800U;
12538       // Fall through
12539     case arm_stub_a8_veneer_b:
12540     case arm_stub_a8_veneer_bl:
12541     case arm_stub_a8_veneer_blx:
12542       if ((lower_insn & 0x5000U) == 0x4000U)
12543         // For a BLX instruction, make sure that the relocation is
12544         // rounded up to a word boundary.  This follows the semantics of
12545         // the instruction which specifies that bit 1 of the target
12546         // address will come from bit 1 of the base address.
12547         branch_offset = (branch_offset + 2) & ~3;
12548
12549       // Put BRANCH_OFFSET back into the insn.
12550       gold_assert(!Bits<25>::has_overflow32(branch_offset));
12551       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12552       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12553       break;
12554
12555     default:
12556       gold_unreachable();
12557     }
12558
12559   // Put the relocated value back in the object file:
12560   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12561   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12562 }
12563
12564 // Target selector for ARM.  Note this is never instantiated directly.
12565 // It's only used in Target_selector_arm_nacl, below.
12566
12567 template<bool big_endian>
12568 class Target_selector_arm : public Target_selector
12569 {
12570  public:
12571   Target_selector_arm()
12572     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12573                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12574                       (big_endian ? "armelfb" : "armelf"))
12575   { }
12576
12577   Target*
12578   do_instantiate_target()
12579   { return new Target_arm<big_endian>(); }
12580 };
12581
12582 // Fix .ARM.exidx section coverage.
12583
12584 template<bool big_endian>
12585 void
12586 Target_arm<big_endian>::fix_exidx_coverage(
12587     Layout* layout,
12588     const Input_objects* input_objects,
12589     Arm_output_section<big_endian>* exidx_section,
12590     Symbol_table* symtab,
12591     const Task* task)
12592 {
12593   // We need to look at all the input sections in output in ascending
12594   // order of of output address.  We do that by building a sorted list
12595   // of output sections by addresses.  Then we looks at the output sections
12596   // in order.  The input sections in an output section are already sorted
12597   // by addresses within the output section.
12598
12599   typedef std::set<Output_section*, output_section_address_less_than>
12600       Sorted_output_section_list;
12601   Sorted_output_section_list sorted_output_sections;
12602
12603   // Find out all the output sections of input sections pointed by
12604   // EXIDX input sections.
12605   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12606        p != input_objects->relobj_end();
12607        ++p)
12608     {
12609       Arm_relobj<big_endian>* arm_relobj =
12610         Arm_relobj<big_endian>::as_arm_relobj(*p);
12611       std::vector<unsigned int> shndx_list;
12612       arm_relobj->get_exidx_shndx_list(&shndx_list);
12613       for (size_t i = 0; i < shndx_list.size(); ++i)
12614         {
12615           const Arm_exidx_input_section* exidx_input_section =
12616             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12617           gold_assert(exidx_input_section != NULL);
12618           if (!exidx_input_section->has_errors())
12619             {
12620               unsigned int text_shndx = exidx_input_section->link();
12621               Output_section* os = arm_relobj->output_section(text_shndx);
12622               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12623                 sorted_output_sections.insert(os);
12624             }
12625         }
12626     }
12627
12628   // Go over the output sections in ascending order of output addresses.
12629   typedef typename Arm_output_section<big_endian>::Text_section_list
12630       Text_section_list;
12631   Text_section_list sorted_text_sections;
12632   for (typename Sorted_output_section_list::iterator p =
12633         sorted_output_sections.begin();
12634       p != sorted_output_sections.end();
12635       ++p)
12636     {
12637       Arm_output_section<big_endian>* arm_output_section =
12638         Arm_output_section<big_endian>::as_arm_output_section(*p);
12639       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12640     }
12641
12642   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12643                                     merge_exidx_entries(), task);
12644 }
12645
12646 template<bool big_endian>
12647 void
12648 Target_arm<big_endian>::do_define_standard_symbols(
12649     Symbol_table* symtab,
12650     Layout* layout)
12651 {
12652   // Handle the .ARM.exidx section.
12653   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12654
12655   if (exidx_section != NULL)
12656     {
12657       // Create __exidx_start and __exidx_end symbols.
12658       symtab->define_in_output_data("__exidx_start",
12659                                     NULL, // version
12660                                     Symbol_table::PREDEFINED,
12661                                     exidx_section,
12662                                     0, // value
12663                                     0, // symsize
12664                                     elfcpp::STT_NOTYPE,
12665                                     elfcpp::STB_GLOBAL,
12666                                     elfcpp::STV_HIDDEN,
12667                                     0, // nonvis
12668                                     false, // offset_is_from_end
12669                                     true); // only_if_ref
12670
12671       symtab->define_in_output_data("__exidx_end",
12672                                     NULL, // version
12673                                     Symbol_table::PREDEFINED,
12674                                     exidx_section,
12675                                     0, // value
12676                                     0, // symsize
12677                                     elfcpp::STT_NOTYPE,
12678                                     elfcpp::STB_GLOBAL,
12679                                     elfcpp::STV_HIDDEN,
12680                                     0, // nonvis
12681                                     true, // offset_is_from_end
12682                                     true); // only_if_ref
12683     }
12684   else
12685     {
12686       // Define __exidx_start and __exidx_end even when .ARM.exidx
12687       // section is missing to match ld's behaviour.
12688       symtab->define_as_constant("__exidx_start", NULL,
12689                                  Symbol_table::PREDEFINED,
12690                                  0, 0, elfcpp::STT_OBJECT,
12691                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12692                                  true, false);
12693       symtab->define_as_constant("__exidx_end", NULL,
12694                                  Symbol_table::PREDEFINED,
12695                                  0, 0, elfcpp::STT_OBJECT,
12696                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12697                                  true, false);
12698     }
12699 }
12700
12701 // NaCl variant.  It uses different PLT contents.
12702
12703 template<bool big_endian>
12704 class Output_data_plt_arm_nacl;
12705
12706 template<bool big_endian>
12707 class Target_arm_nacl : public Target_arm<big_endian>
12708 {
12709  public:
12710   Target_arm_nacl()
12711     : Target_arm<big_endian>(&arm_nacl_info)
12712   { }
12713
12714  protected:
12715   virtual Output_data_plt_arm<big_endian>*
12716   do_make_data_plt(
12717                    Layout* layout,
12718                    Arm_output_data_got<big_endian>* got,
12719                    Output_data_space* got_plt,
12720                    Output_data_space* got_irelative)
12721   { return new Output_data_plt_arm_nacl<big_endian>(
12722       layout, got, got_plt, got_irelative); }
12723
12724  private:
12725   static const Target::Target_info arm_nacl_info;
12726 };
12727
12728 template<bool big_endian>
12729 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12730 {
12731   32,                   // size
12732   big_endian,           // is_big_endian
12733   elfcpp::EM_ARM,       // machine_code
12734   false,                // has_make_symbol
12735   false,                // has_resolve
12736   false,                // has_code_fill
12737   true,                 // is_default_stack_executable
12738   false,                // can_icf_inline_merge_sections
12739   '\0',                 // wrap_char
12740   "/lib/ld-nacl-arm.so.1", // dynamic_linker
12741   0x20000,              // default_text_segment_address
12742   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12743   0x10000,              // common_pagesize (overridable by -z common-page-size)
12744   true,                 // isolate_execinstr
12745   0x10000000,           // rosegment_gap
12746   elfcpp::SHN_UNDEF,    // small_common_shndx
12747   elfcpp::SHN_UNDEF,    // large_common_shndx
12748   0,                    // small_common_section_flags
12749   0,                    // large_common_section_flags
12750   ".ARM.attributes",    // attributes_section
12751   "aeabi",              // attributes_vendor
12752   "_start"              // entry_symbol_name
12753 };
12754
12755 template<bool big_endian>
12756 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12757 {
12758  public:
12759   Output_data_plt_arm_nacl(
12760       Layout* layout,
12761       Arm_output_data_got<big_endian>* got,
12762       Output_data_space* got_plt,
12763       Output_data_space* got_irelative)
12764     : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
12765   { }
12766
12767  protected:
12768   // Return the offset of the first non-reserved PLT entry.
12769   virtual unsigned int
12770   do_first_plt_entry_offset() const
12771   { return sizeof(first_plt_entry); }
12772
12773   // Return the size of a PLT entry.
12774   virtual unsigned int
12775   do_get_plt_entry_size() const
12776   { return sizeof(plt_entry); }
12777
12778   virtual void
12779   do_fill_first_plt_entry(unsigned char* pov,
12780                           Arm_address got_address,
12781                           Arm_address plt_address);
12782
12783   virtual void
12784   do_fill_plt_entry(unsigned char* pov,
12785                     Arm_address got_address,
12786                     Arm_address plt_address,
12787                     unsigned int got_offset,
12788                     unsigned int plt_offset);
12789
12790  private:
12791   inline uint32_t arm_movw_immediate(uint32_t value)
12792   {
12793     return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12794   }
12795
12796   inline uint32_t arm_movt_immediate(uint32_t value)
12797   {
12798     return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12799   }
12800
12801   // Template for the first PLT entry.
12802   static const uint32_t first_plt_entry[16];
12803
12804   // Template for subsequent PLT entries.
12805   static const uint32_t plt_entry[4];
12806 };
12807
12808 // The first entry in the PLT.
12809 template<bool big_endian>
12810 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12811 {
12812   // First bundle:
12813   0xe300c000,                           // movw ip, #:lower16:&GOT[2]-.+8
12814   0xe340c000,                           // movt ip, #:upper16:&GOT[2]-.+8
12815   0xe08cc00f,                           // add  ip, ip, pc
12816   0xe52dc008,                           // str  ip, [sp, #-8]!
12817   // Second bundle:
12818   0xe3ccc103,                           // bic  ip, ip, #0xc0000000
12819   0xe59cc000,                           // ldr  ip, [ip]
12820   0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
12821   0xe12fff1c,                           // bx   ip
12822   // Third bundle:
12823   0xe320f000,                           // nop
12824   0xe320f000,                           // nop
12825   0xe320f000,                           // nop
12826   // .Lplt_tail:
12827   0xe50dc004,                           // str  ip, [sp, #-4]
12828   // Fourth bundle:
12829   0xe3ccc103,                           // bic  ip, ip, #0xc0000000
12830   0xe59cc000,                           // ldr  ip, [ip]
12831   0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
12832   0xe12fff1c,                           // bx   ip
12833 };
12834
12835 template<bool big_endian>
12836 void
12837 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12838     unsigned char* pov,
12839     Arm_address got_address,
12840     Arm_address plt_address)
12841 {
12842   // Write first PLT entry.  All but first two words are constants.
12843   const size_t num_first_plt_words = (sizeof(first_plt_entry)
12844                                       / sizeof(first_plt_entry[0]));
12845
12846   int32_t got_displacement = got_address + 8 - (plt_address + 16);
12847
12848   elfcpp::Swap<32, big_endian>::writeval
12849     (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12850   elfcpp::Swap<32, big_endian>::writeval
12851     (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12852
12853   for (size_t i = 2; i < num_first_plt_words; ++i)
12854     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12855 }
12856
12857 // Subsequent entries in the PLT.
12858
12859 template<bool big_endian>
12860 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12861 {
12862   0xe300c000,                           // movw ip, #:lower16:&GOT[n]-.+8
12863   0xe340c000,                           // movt ip, #:upper16:&GOT[n]-.+8
12864   0xe08cc00f,                           // add  ip, ip, pc
12865   0xea000000,                           // b    .Lplt_tail
12866 };
12867
12868 template<bool big_endian>
12869 void
12870 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12871     unsigned char* pov,
12872     Arm_address got_address,
12873     Arm_address plt_address,
12874     unsigned int got_offset,
12875     unsigned int plt_offset)
12876 {
12877   // Calculate the displacement between the PLT slot and the
12878   // common tail that's part of the special initial PLT slot.
12879   int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12880                                - (plt_address + plt_offset
12881                                   + sizeof(plt_entry) + sizeof(uint32_t)));
12882   gold_assert((tail_displacement & 3) == 0);
12883   tail_displacement >>= 2;
12884
12885   gold_assert ((tail_displacement & 0xff000000) == 0
12886                || (-tail_displacement & 0xff000000) == 0);
12887
12888   // Calculate the displacement between the PLT slot and the entry
12889   // in the GOT.  The offset accounts for the value produced by
12890   // adding to pc in the penultimate instruction of the PLT stub.
12891   const int32_t got_displacement = (got_address + got_offset
12892                                     - (plt_address + sizeof(plt_entry)));
12893
12894   elfcpp::Swap<32, big_endian>::writeval
12895     (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12896   elfcpp::Swap<32, big_endian>::writeval
12897     (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12898   elfcpp::Swap<32, big_endian>::writeval
12899     (pov + 8, plt_entry[2]);
12900   elfcpp::Swap<32, big_endian>::writeval
12901     (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12902 }
12903
12904 // Target selectors.
12905
12906 template<bool big_endian>
12907 class Target_selector_arm_nacl
12908   : public Target_selector_nacl<Target_selector_arm<big_endian>,
12909                                 Target_arm_nacl<big_endian> >
12910 {
12911  public:
12912   Target_selector_arm_nacl()
12913     : Target_selector_nacl<Target_selector_arm<big_endian>,
12914                            Target_arm_nacl<big_endian> >(
12915           "arm",
12916           big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12917           big_endian ? "armelfb_nacl" : "armelf_nacl")
12918   { }
12919 };
12920
12921 Target_selector_arm_nacl<false> target_selector_arm;
12922 Target_selector_arm_nacl<true> target_selector_armbe;
12923
12924 } // End anonymous namespace.