1 // arm.cc -- arm target support for gold.
3 // Copyright (C) 2009-2014 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
61 template<bool big_endian>
62 class Output_data_plt_arm;
64 template<bool big_endian>
65 class Output_data_plt_arm_standard;
67 template<bool big_endian>
70 template<bool big_endian>
71 class Arm_input_section;
73 class Arm_exidx_cantunwind;
75 class Arm_exidx_merged_section;
77 class Arm_exidx_fixup;
79 template<bool big_endian>
80 class Arm_output_section;
82 class Arm_exidx_input_section;
84 template<bool big_endian>
87 template<bool big_endian>
88 class Arm_relocate_functions;
90 template<bool big_endian>
91 class Arm_output_data_got;
93 template<bool big_endian>
97 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
99 // Maximum branch offsets for ARM, THUMB and THUMB2.
100 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
107 // Thread Control Block size.
108 const size_t ARM_TCB_SIZE = 8;
110 // The arm target class.
112 // This is a very simple port of gold for ARM-EABI. It is intended for
113 // supporting Android only for the time being.
116 // - Implement all static relocation types documented in arm-reloc.def.
117 // - Make PLTs more flexible for different architecture features like
119 // There are probably a lot more.
121 // Ideally we would like to avoid using global variables but this is used
122 // very in many places and sometimes in loops. If we use a function
123 // returning a static instance of Arm_reloc_property_table, it will be very
124 // slow in an threaded environment since the static instance needs to be
125 // locked. The pointer is below initialized in the
126 // Target::do_select_as_default_target() hook so that we do not spend time
127 // building the table if we are not linking ARM objects.
129 // An alternative is to to process the information in arm-reloc.def in
130 // compilation time and generate a representation of it in PODs only. That
131 // way we can avoid initialization when the linker starts.
133 Arm_reloc_property_table* arm_reloc_property_table = NULL;
135 // Instruction template class. This class is similar to the insn_sequence
136 // struct in bfd/elf32-arm.c.
141 // Types of instruction templates.
145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
155 // Factory methods to create instruction templates in different formats.
157 static const Insn_template
158 thumb16_insn(uint32_t data)
159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
167 static const Insn_template
168 thumb32_insn(uint32_t data)
169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
190 // Accessors. This class is used for read-only objects so no modifiers
195 { return this->data_; }
197 // Return the instruction sequence type of this.
200 { return this->type_; }
202 // Return the ARM relocation type of this.
205 { return this->r_type_; }
209 { return this->reloc_addend_; }
211 // Return size of instruction template in bytes.
215 // Return byte-alignment of instruction template.
220 // We make the constructor private to ensure that only the factory
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
230 // Instruction template type.
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
238 // Macro for generating code to stub types. One entry per long/short
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
262 #define DEF_STUB(x) arm_stub_##x,
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
279 arm_stub_type_last = arm_stub_v4_veneer_bx
283 // Stub template class. Templates are meant to be read-only objects.
284 // A stub template for a stub type contains all read-only attributes
285 // common to all stubs of the same type.
290 Stub_template(Stub_type, const Insn_template*, size_t);
298 { return this->type_; }
300 // Return an array of instruction templates.
303 { return this->insns_; }
305 // Return size of template in number of instructions.
308 { return this->insn_count_; }
310 // Return size of template in bytes.
313 { return this->size_; }
315 // Return alignment of the stub template.
318 { return this->alignment_; }
320 // Return whether entry point is in thumb mode.
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
325 // Return number of relocations in this template.
328 { return this->relocs_.size(); }
330 // Return index of the I-th instruction with relocation.
332 reloc_insn_index(size_t i) const
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
341 reloc_offset(size_t i) const
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
352 // A Stub_template may not be copied. We want to share templates as much
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
363 // Size of templated instructions in bytes.
365 // Alignment of templated instructions.
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
371 // them here for speed.
372 std::vector<Reloc> relocs_;
376 // A class for code stubs. This is a base class for different type of
377 // stubs used in the ARM target.
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
395 // Return the stub template.
397 stub_template() const
398 { return this->stub_template_; }
400 // Return offset of code stub from beginning of its containing stub table.
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
408 // Set offset of code stub from beginning of its containing stub table.
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
431 // This must be defined in the child class.
433 do_reloc_target(size_t) = 0;
435 // This may be overridden in the child class.
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
442 this->do_fixed_endian_write<false>(view, view_size);
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
452 // A template to implement do_write.
453 template<bool big_endian>
455 do_fixed_endian_write(unsigned char*, section_size_type);
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
463 // Reloc stub class. These are stubs we use to fix up relocation because
464 // of limited branch ranges.
466 class Reloc_stub : public Stub
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
473 // Return destination address.
475 destination_address() const
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
481 // Set destination address.
483 set_destination_address(Arm_address address)
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
489 // Reset destination address.
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
518 this->r_sym_ = Reloc_stub::invalid_index;
519 this->u_.symbol = symbol;
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
532 // Accessors: Keys are meant to be read-only object so no modifiers are
538 { return this->stub_type_; }
540 // Return the local symbol index or invalid_index.
543 { return this->r_sym_; }
545 // Return the symbol if there is one.
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
550 // Return the relobj if there is one.
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
555 // Whether this equals to another key k.
557 eq(const Key& k) const
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
567 // Return a hash value.
571 return (this->stub_type_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
580 // Functors for STL associative containers.
584 operator()(const Key& k) const
585 { return k.hash_value(); }
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
595 // Name of key. This is mainly for debugging.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
608 // Arm_relobj, in order to avoid making the stub class a template
609 // as most of the stub machinery is endianness-neutral. However, it
610 // may require a bit of casting done by users of this class.
613 const Symbol* symbol;
614 const Relobj* relobj;
616 // Addend associated with a reloc.
621 // Reloc_stubs are created via a stub factory. So these are protected.
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
629 friend class Stub_factory;
631 // Return the relocation target address of the i-th relocation in the
634 do_reloc_target(size_t i)
636 // All reloc stub have only one relocation.
638 return this->destination_address_;
642 // Address of destination.
643 Arm_address destination_address_;
646 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647 // THUMB branch that meets the following conditions:
649 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650 // branch address is 0xffe.
651 // 2. The branch target address is in the same page as the first word of the
653 // 3. The branch follows a 32-bit instruction which is not a branch.
655 // To do the fix up, we need to store the address of the branch instruction
656 // and its target at least. We also need to store the original branch
657 // instruction bits for the condition code in a conditional branch. The
658 // condition code is used in a special instruction template. We also want
659 // to identify input sections needing Cortex-A8 workaround quickly. We store
660 // extra information about object and section index of the code section
661 // containing a branch being fixed up. The information is used to mark
662 // the code section when we finalize the Cortex-A8 stubs.
665 class Cortex_a8_stub : public Stub
671 // Return the object of the code section containing the branch being fixed
675 { return this->relobj_; }
677 // Return the section index of the code section containing the branch being
681 { return this->shndx_; }
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
687 source_address() const
688 { return this->source_address_; }
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
694 destination_address() const
695 { return this->destination_address_; }
697 // Return the instruction being fixed up.
699 original_insn() const
700 { return this->original_insn_; }
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
713 friend class Stub_factory;
715 // Return the relocation target address of the i-th relocation in the
718 do_reloc_target(size_t i)
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
722 // The conditional branch veneer has two relocations.
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
728 // All other Cortex-A8 stubs have only one relocation.
730 return this->destination_address_;
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
736 do_thumb16_special(size_t);
739 // Object of the code section containing the branch being fixed up.
741 // Section index of the code section containing the branch begin fixed up.
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
746 Arm_address destination_address_;
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
752 // ARMv4 BX Rx branch relocation stub class.
753 class Arm_v4bx_stub : public Stub
759 // Return the associated register.
762 { return this->reg_; }
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
770 friend class Stub_factory;
772 // Return the relocation target address of the i-th relocation in the
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
778 // This may be overridden in the child class.
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
789 // A template to implement do_write.
790 template<bool big_endian>
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
806 // A register index (r0-r14), which is associated with the stub.
810 // Stub factory class.
815 // Return the unique instance of this class.
816 static const Stub_factory&
819 static Stub_factory singleton;
823 // Make a relocation stub.
825 make_reloc_stub(Stub_type stub_type) const
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
832 // Make a Cortex-A8 stub.
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
847 make_arm_v4bx_stub(uint32_t reg) const
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
868 // A class to hold stubs for the ARM target.
870 template<bool big_endian>
871 class Stub_table : public Output_data
874 Stub_table(Arm_input_section<big_endian>* owner)
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
886 { return this->owner_; }
888 // Whether this stub table is empty.
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
897 // Return the current data size.
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
940 // Remove all Cortex-A8 stubs.
942 remove_all_cortex_a8_stubs();
944 // Look up a relocation stub using KEY. Return NULL if there is none.
946 find_reloc_stub(const Reloc_stub::Key& key) const
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
955 find_arm_v4bx_stub(const uint32_t reg) const
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
961 // Relocate stubs in this stub table.
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
971 update_data_size_and_addralign();
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
978 // Apply Cortex-A8 workaround to an address range.
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
985 // Write out section contents.
987 do_write(Output_file*);
989 // Return the required alignment.
992 { return this->prev_addralign_; }
994 // Reset address and file offset.
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
999 // Set final data size.
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
1005 // Relocate one stub.
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1011 // Unordered map of relocation stubs.
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
1041 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042 // we add to the end of an EXIDX input section that goes into the output.
1044 class Arm_exidx_cantunwind : public Output_section_data
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1051 // Return the object containing the section pointed by this.
1054 { return this->relobj_; }
1056 // Return the section index of the section pointed by this.
1059 { return this->shndx_; }
1063 do_write(Output_file* of)
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1068 this->do_fixed_endian_write<false>(of);
1071 // Write to a map file.
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1077 // Implement do_write for a given endianness.
1078 template<bool big_endian>
1080 do_fixed_endian_write(Output_file*);
1082 // The object containing the section pointed by this.
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1088 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1089 // Offset map is used to map input section offset within the EXIDX section
1090 // to the output offset from the start of this EXIDX section.
1092 typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1095 // Arm_exidx_merged_section class. This represents an EXIDX input section
1096 // with some of its entries merged.
1098 class Arm_exidx_merged_section : public Output_relaxed_input_section
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1111 // Build output contents.
1113 build_contents(const unsigned char*, section_size_type);
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1126 // Write merged section into file OF.
1128 do_write(Output_file* of);
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
1139 // Merged section contents. We need to keep build the merged section
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
1145 // A class to wrap an ordinary input section containing executable code.
1147 template<bool big_endian>
1148 class Arm_input_section : public Output_relaxed_input_section
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
1157 ~Arm_input_section()
1158 { delete[] this->original_contents_; }
1164 // Whether this is a stub table owner.
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1172 { return this->stub_table_; }
1174 // Set the stub_table.
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1185 // Return the original size of the section.
1187 original_size() const
1188 { return this->original_size_; }
1191 // Write data to output file.
1193 do_write(Output_file*);
1195 // Return required alignment of this.
1197 do_addralign() const
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
1201 static_cast<uint64_t>(this->original_addralign_));
1203 return this->original_addralign_;
1206 // Finalize data size.
1208 set_final_data_size();
1210 // Reset address and file offset.
1212 do_reset_address_and_file_offset();
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
1218 section_offset_type* poutput) const
1220 if ((object == this->relobj())
1221 && (shndx == this->shndx())
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1238 // Address alignment of the original input section.
1239 uint32_t original_addralign_;
1240 // Section size of the original input section.
1241 uint32_t original_size_;
1243 Stub_table<big_endian>* stub_table_;
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1247 unsigned char* original_contents_;
1250 // Arm_exidx_fixup class. This is used to define a number of methods
1251 // and keep states for fixing up EXIDX coverage.
1253 class Arm_exidx_fixup
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
1265 { delete this->section_offset_map_; }
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1272 // responsible for releasing it.
1273 template<bool big_endian>
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
1278 Arm_exidx_section_offset_map** psection_offset_map);
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1283 add_exidx_cantunwind_as_needed();
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1296 // Type of EXIDX unwind entry.
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1312 process_exidx_entry(uint32_t second_word);
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
1330 const Arm_exidx_input_section* last_input_section_;
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
1333 // Output section for the text section which is linked to the first exidx
1335 Output_section* first_output_text_section_;
1337 bool merge_exidx_entries_;
1340 // Arm output section class. This is defined mainly to add a number of
1341 // stub generation methods.
1343 template<bool big_endian>
1344 class Arm_output_section : public Output_section
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1361 ~Arm_output_section()
1364 // Group input sections for stub generation.
1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1374 // Append all input text sections in this into LIST.
1376 append_text_sections_to_list(Text_section_list* list);
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
1384 Symbol_table* symtab,
1385 bool merge_exidx_entries,
1388 // Link an EXIDX section into its corresponding text section.
1390 set_exidx_section_link();
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
1402 std::vector<Output_relaxed_input_section*>*,
1406 // Arm_exidx_input_section class. This represents an EXIDX input section.
1408 class Arm_exidx_input_section
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
1421 ~Arm_exidx_input_section()
1424 // Accessors: This is a read-only class.
1426 // Return the object containing this EXIDX input section.
1429 { return this->relobj_; }
1431 // Return the section index of this EXIDX input section.
1434 { return this->shndx_; }
1436 // Return the section index of linked text section in the same object.
1439 { return this->link_; }
1441 // Return size of the EXIDX input section.
1444 { return this->size_; }
1446 // Return address alignment of EXIDX input section.
1449 { return this->addralign_; }
1451 // Return size of the associated text input section.
1454 { return this->text_size_; }
1456 // Whether there are any errors in the EXIDX input section.
1459 { return this->has_errors_; }
1461 // Set has-errors flag.
1464 { this->has_errors_ = true; }
1467 // Object containing this.
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1473 // Size of this. For ARM 32-bit is sufficient.
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
1477 // Size of associated text section.
1478 uint32_t text_size_;
1479 // Whether this has any errors.
1483 // Arm_relobj class.
1485 template<bool big_endian>
1486 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1494 stub_tables_(), local_symbol_is_thumb_function_(),
1495 attributes_section_data_(NULL), mapping_symbols_info_(),
1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
1502 { delete this->attributes_section_data_; }
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
1506 stub_table(unsigned int shndx) const
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1529 // Scan all relocation sections for stub generation.
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1534 // Convert regular input section with index SHNDX to a relaxed section.
1536 convert_input_section_to_relaxed_section(unsigned shndx)
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
1540 this->set_section_offset(shndx, -1ULL);
1541 this->set_relocs_must_follow_section_writes();
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1550 // Processor-specific flags in ELF file header. This is valid only after
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1556 // Attribute section data This is the contents of the .ARM.attribute section
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1582 // Whether a section contains any Cortex-A8 workaround.
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1590 // Mark a section that has Cortex-A8 workaround.
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1623 // Whether output local symbol count needs updating.
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1628 // Set output_local_symbol_count_needs_update flag to be true.
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
1633 // Update output local symbol count at the end of relaxation.
1635 update_output_local_symbol_count();
1637 // Whether we want to merge processor-specific flags and attributes.
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
1642 // Export list of EXIDX section indices.
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1654 // Sort list to make result independent of implementation of map.
1655 std::sort(list->begin(), list->end());
1659 // Post constructor setup.
1663 // Call parent's setup method.
1664 Sized_relobj_file<32, big_endian>::do_setup();
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1671 // Count the local symbols.
1673 do_count_local_symbols(Stringpool_template<char>*,
1674 Stringpool_template<char>*);
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1682 // Read the symbol information.
1684 do_read_symbols(Read_symbols_data* sd);
1686 // Process relocs for garbage collection.
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1692 // Whether a section needs to be scanned for relocation stubs.
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
1696 const Symbol_table*, const unsigned char*);
1698 // Whether a section is a scannable text section.
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1701 const Output_section*, const Symbol_table*);
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
1707 const Symbol_table*);
1709 // Scan a section for the Cortex-A8 erratum.
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1715 // Find the linked text section of an EXIDX section by looking at the
1716 // first relocation of the EXIDX section. PSHDR points to the section
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1725 // Make a new Arm_exidx_input_section object for EXIDX section with
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
1729 make_exidx_input_section(unsigned int shndx,
1730 const elfcpp::Shdr<32, big_endian>& shdr,
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1737 simple_input_section_output_address(unsigned int, Output_section*);
1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1743 // List of stub tables.
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
1760 // Whether we merge processor flags and attributes of this object to
1762 bool merge_flags_and_attributes_;
1765 // Arm_dynobj class.
1767 template<bool big_endian>
1768 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
1778 { delete this->attributes_section_data_; }
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1786 // Processor-specific flags in ELF file header. This is valid only after
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1798 // Read the symbol information.
1800 do_read_symbols(Read_symbols_data* sd);
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
1809 // Functor to read reloc addends during stub generation.
1811 template<int sh_type, bool big_endian>
1812 struct Stub_addend_reader
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
1822 32, big_endian>::Reloc& /* reloc */) const;
1825 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1827 template<bool big_endian>
1828 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1830 elfcpp::Elf_types<32>::Elf_Swxword
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1837 // Specialized Stub_addend_reader for RELA type relocation sections.
1838 // We currently do not handle RELA type relocation sections but it is trivial
1839 // to implement the addend reader. This is provided for completeness and to
1840 // make it easier to add support for RELA relocation sections in the future.
1842 template<bool big_endian>
1843 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1845 elfcpp::Elf_types<32>::Elf_Swxword
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
1854 // Cortex_a8_reloc class. We keep record of relocation that may need
1855 // the Cortex-A8 erratum workaround.
1857 class Cortex_a8_reloc
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1868 // Accessors: This is a read-only class.
1870 // Return the relocation stub associated with this relocation if there is
1874 { return this->reloc_stub_; }
1876 // Return the relocation type.
1879 { return this->r_type_; }
1881 // Return the destination address of the relocation. LSB stores the THUMB
1885 { return this->destination_; }
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1894 Arm_address destination_;
1897 // Arm_output_data_got class. We derive this from Output_data_got to add
1898 // extra methods to handle TLS relocations in a static link.
1900 template<bool big_endian>
1901 class Arm_output_data_got : public Output_data_got<32, big_endian>
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1920 Sized_relobj_file<32, big_endian>* relobj,
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
1938 Sized_relobj_file<32, big_endian>* object,
1939 unsigned int index);
1942 // Write out the GOT table.
1944 do_write(Output_file*);
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1964 // Return the GOT offset.
1967 { return this->got_offset_; }
1972 { return this->r_type_; }
1974 // Whether the symbol is global or not.
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1979 // For a relocation against a global symbol, the global symbol.
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1987 // For a relocation against a local symbol, the defining object.
1988 Sized_relobj_file<32, big_endian>*
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1995 // For a relocation against a local symbol, the local symbol index.
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2015 // For a global symbol, the symbol itself.
2020 // For a local symbol, the object defining object.
2021 Sized_relobj_file<32, big_endian>* relobj;
2022 // For a local symbol, the symbol index.
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2036 // The ARM target has many relocation types with odd-sizes or noncontiguous
2037 // bits. The default handling of relocatable relocation cannot process these
2038 // relocations. So we have to extend the default code.
2040 template<bool big_endian, int sh_type, typename Classify_reloc>
2041 class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2082 // Relocations that write full 32 bits and
2083 // have alignment of 1.
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2110 template<bool big_endian>
2111 class Target_arm : public Sized_target<32, big_endian>
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2123 copy_relocs_(elfcpp::R_ARM_COPY),
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2126 should_force_pic_veneer_(false),
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2131 // Whether we force PCI branch veneers.
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2136 // Set PIC veneer flag.
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2141 // Whether we use THUMB-2 instructions.
2143 using_thumb2() const
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2151 // Whether we use THUMB/THUMB-2 instructions only.
2153 using_thumb_only() const
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2170 may_use_arm_nop() const
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2181 // Whether we have THUMB-2 NOP.W instruction.
2183 may_use_thumb2_nop() const
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2193 // Whether we have v4T interworking instructions available.
2195 may_use_v4t_interworking() const
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2204 // Whether we have v5T interworking instructions available.
2206 may_use_v5t_interworking() const
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2223 // Process the relocations to determine unreferenced sections for
2224 // garbage collection.
2226 gc_process_relocs(Symbol_table* symtab,
2228 Sized_relobj_file<32, big_endian>* object,
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2238 // Scan the relocations to look for symbol adjustments.
2240 scan_relocs(Symbol_table* symtab,
2242 Sized_relobj_file<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2252 // Finalize the sections.
2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2256 // Return the value to use for a dynamic symbol which requires special
2259 do_dynsym_value(const Symbol*) const;
2261 // Relocate a section.
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
2270 Arm_address view_address,
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
2274 // Scan the relocs during a relocatable link.
2276 scan_relocatable_relocs(Symbol_table* symtab,
2278 Sized_relobj_file<32, big_endian>* object,
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2289 // Emit relocations for a section.
2291 relocate_relocs(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2295 Output_section* output_section,
2296 typename elfcpp::Elf_types<32>::Elf_Off
2297 offset_in_output_section,
2298 const Relocatable_relocs*,
2299 unsigned char* view,
2300 Arm_address view_address,
2301 section_size_type view_size,
2302 unsigned char* reloc_view,
2303 section_size_type reloc_view_size);
2305 // Perform target-specific processing in a relocatable link. This is
2306 // only used if we use the relocation strategy RELOC_SPECIAL.
2308 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 unsigned int sh_type,
2310 const unsigned char* preloc_in,
2312 Output_section* output_section,
2313 typename elfcpp::Elf_types<32>::Elf_Off
2314 offset_in_output_section,
2315 unsigned char* view,
2316 typename elfcpp::Elf_types<32>::Elf_Addr
2318 section_size_type view_size,
2319 unsigned char* preloc_out);
2321 // Return whether SYM is defined by the ABI.
2323 do_is_defined_by_abi(const Symbol* sym) const
2324 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2326 // Return whether there is a GOT section.
2328 has_got_section() const
2329 { return this->got_ != NULL; }
2331 // Return the size of the GOT section.
2335 gold_assert(this->got_ != NULL);
2336 return this->got_->data_size();
2339 // Return the number of entries in the GOT.
2341 got_entry_count() const
2343 if (!this->has_got_section())
2345 return this->got_size() / 4;
2348 // Return the number of entries in the PLT.
2350 plt_entry_count() const;
2352 // Return the offset of the first non-reserved PLT entry.
2354 first_plt_entry_offset() const;
2356 // Return the size of each PLT entry.
2358 plt_entry_size() const;
2360 // Map platform-specific reloc types
2362 get_real_reloc_type(unsigned int r_type);
2365 // Methods to support stub-generations.
2368 // Return the stub factory
2370 stub_factory() const
2371 { return this->stub_factory_; }
2373 // Make a new Arm_input_section object.
2374 Arm_input_section<big_endian>*
2375 new_arm_input_section(Relobj*, unsigned int);
2377 // Find the Arm_input_section object corresponding to the SHNDX-th input
2378 // section of RELOBJ.
2379 Arm_input_section<big_endian>*
2380 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2382 // Make a new Stub_table
2383 Stub_table<big_endian>*
2384 new_stub_table(Arm_input_section<big_endian>*);
2386 // Scan a section for stub generation.
2388 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 const unsigned char*, size_t, Output_section*,
2390 bool, const unsigned char*, Arm_address,
2395 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2396 Output_section*, unsigned char*, Arm_address,
2399 // Get the default ARM target.
2400 static Target_arm<big_endian>*
2403 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 && parameters->target().is_big_endian() == big_endian);
2405 return static_cast<Target_arm<big_endian>*>(
2406 parameters->sized_target<32, big_endian>());
2409 // Whether NAME belongs to a mapping symbol.
2411 is_mapping_symbol_name(const char* name)
2415 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 && (name[2] == '\0' || name[2] == '.'));
2419 // Whether we work around the Cortex-A8 erratum.
2421 fix_cortex_a8() const
2422 { return this->fix_cortex_a8_; }
2424 // Whether we merge exidx entries in debuginfo.
2426 merge_exidx_entries() const
2427 { return parameters->options().merge_exidx_entries(); }
2429 // Whether we fix R_ARM_V4BX relocation.
2431 // 1 - replace with MOV instruction (armv4 target)
2432 // 2 - make interworking veneer (>= armv4t targets only)
2433 General_options::Fix_v4bx
2435 { return parameters->options().fix_v4bx(); }
2437 // Scan a span of THUMB code section for Cortex-A8 erratum.
2439 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 section_size_type, section_size_type,
2441 const unsigned char*, Arm_address);
2443 // Apply Cortex-A8 workaround to a branch.
2445 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 unsigned char*, Arm_address);
2449 // Make the PLT-generator object.
2450 Output_data_plt_arm<big_endian>*
2451 make_data_plt(Layout* layout, Output_data_space* got_plt)
2452 { return this->do_make_data_plt(layout, got_plt); }
2454 // Make an ELF object.
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<32, big_endian>& ehdr);
2460 do_make_elf_object(const std::string&, Input_file*, off_t,
2461 const elfcpp::Ehdr<32, !big_endian>&)
2462 { gold_unreachable(); }
2465 do_make_elf_object(const std::string&, Input_file*, off_t,
2466 const elfcpp::Ehdr<64, false>&)
2467 { gold_unreachable(); }
2470 do_make_elf_object(const std::string&, Input_file*, off_t,
2471 const elfcpp::Ehdr<64, true>&)
2472 { gold_unreachable(); }
2474 // Make an output section.
2476 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 elfcpp::Elf_Xword flags)
2478 { return new Arm_output_section<big_endian>(name, type, flags); }
2481 do_adjust_elf_header(unsigned char* view, int len);
2483 // We only need to generate stubs, and hence perform relaxation if we are
2484 // not doing relocatable linking.
2486 do_may_relax() const
2487 { return !parameters->options().relocatable(); }
2490 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2492 // Determine whether an object attribute tag takes an integer, a
2495 do_attribute_arg_type(int tag) const;
2497 // Reorder tags during output.
2499 do_attributes_order(int num) const;
2501 // This is called when the target is selected as the default.
2503 do_select_as_default_target()
2505 // No locking is required since there should only be one default target.
2506 // We cannot have both the big-endian and little-endian ARM targets
2508 gold_assert(arm_reloc_property_table == NULL);
2509 arm_reloc_property_table = new Arm_reloc_property_table();
2512 // Virtual function which is set to return true by a target if
2513 // it can use relocation types to determine if a function's
2514 // pointer is taken.
2516 do_can_check_for_function_pointers() const
2519 // Whether a section called SECTION_NAME may have function pointers to
2520 // sections not eligible for safe ICF folding.
2522 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2524 return (!is_prefix_of(".ARM.exidx", section_name)
2525 && !is_prefix_of(".ARM.extab", section_name)
2526 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2530 do_define_standard_symbols(Symbol_table*, Layout*);
2532 virtual Output_data_plt_arm<big_endian>*
2533 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2535 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2539 // The class which scans relocations.
2544 : issued_non_pic_error_(false)
2548 get_reference_flags(unsigned int r_type);
2551 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2552 Sized_relobj_file<32, big_endian>* object,
2553 unsigned int data_shndx,
2554 Output_section* output_section,
2555 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2556 const elfcpp::Sym<32, big_endian>& lsym,
2560 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2561 Sized_relobj_file<32, big_endian>* object,
2562 unsigned int data_shndx,
2563 Output_section* output_section,
2564 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2568 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2569 Sized_relobj_file<32, big_endian>* ,
2572 const elfcpp::Rel<32, big_endian>& ,
2574 const elfcpp::Sym<32, big_endian>&);
2577 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2578 Sized_relobj_file<32, big_endian>* ,
2581 const elfcpp::Rel<32, big_endian>& ,
2582 unsigned int , Symbol*);
2586 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2587 unsigned int r_type);
2590 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2591 unsigned int r_type, Symbol*);
2594 check_non_pic(Relobj*, unsigned int r_type);
2596 // Almost identical to Symbol::needs_plt_entry except that it also
2597 // handles STT_ARM_TFUNC.
2599 symbol_needs_plt_entry(const Symbol* sym)
2601 // An undefined symbol from an executable does not need a PLT entry.
2602 if (sym->is_undefined() && !parameters->options().shared())
2605 return (!parameters->doing_static_link()
2606 && (sym->type() == elfcpp::STT_FUNC
2607 || sym->type() == elfcpp::STT_ARM_TFUNC)
2608 && (sym->is_from_dynobj()
2609 || sym->is_undefined()
2610 || sym->is_preemptible()));
2614 possible_function_pointer_reloc(unsigned int r_type);
2616 // Whether we have issued an error about a non-PIC compilation.
2617 bool issued_non_pic_error_;
2620 // The class which implements relocation.
2630 // Return whether the static relocation needs to be applied.
2632 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2633 unsigned int r_type,
2635 Output_section* output_section);
2637 // Do a relocation. Return false if the caller should not issue
2638 // any warnings about this relocation.
2640 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641 Output_section*, size_t relnum,
2642 const elfcpp::Rel<32, big_endian>&,
2643 unsigned int r_type, const Sized_symbol<32>*,
2644 const Symbol_value<32>*,
2645 unsigned char*, Arm_address,
2648 // Return whether we want to pass flag NON_PIC_REF for this
2649 // reloc. This means the relocation type accesses a symbol not via
2652 reloc_is_non_pic(unsigned int r_type)
2656 // These relocation types reference GOT or PLT entries explicitly.
2657 case elfcpp::R_ARM_GOT_BREL:
2658 case elfcpp::R_ARM_GOT_ABS:
2659 case elfcpp::R_ARM_GOT_PREL:
2660 case elfcpp::R_ARM_GOT_BREL12:
2661 case elfcpp::R_ARM_PLT32_ABS:
2662 case elfcpp::R_ARM_TLS_GD32:
2663 case elfcpp::R_ARM_TLS_LDM32:
2664 case elfcpp::R_ARM_TLS_IE32:
2665 case elfcpp::R_ARM_TLS_IE12GP:
2667 // These relocate types may use PLT entries.
2668 case elfcpp::R_ARM_CALL:
2669 case elfcpp::R_ARM_THM_CALL:
2670 case elfcpp::R_ARM_JUMP24:
2671 case elfcpp::R_ARM_THM_JUMP24:
2672 case elfcpp::R_ARM_THM_JUMP19:
2673 case elfcpp::R_ARM_PLT32:
2674 case elfcpp::R_ARM_THM_XPC22:
2675 case elfcpp::R_ARM_PREL31:
2676 case elfcpp::R_ARM_SBREL31:
2685 // Do a TLS relocation.
2686 inline typename Arm_relocate_functions<big_endian>::Status
2687 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2688 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2689 const Sized_symbol<32>*, const Symbol_value<32>*,
2690 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2695 // A class which returns the size required for a relocation type,
2696 // used while scanning relocs during a relocatable link.
2697 class Relocatable_size_for_reloc
2701 get_size_for_reloc(unsigned int, Relobj*);
2704 // Adjust TLS relocation type based on the options and whether this
2705 // is a local symbol.
2706 static tls::Tls_optimization
2707 optimize_tls_reloc(bool is_final, int r_type);
2709 // Get the GOT section, creating it if necessary.
2710 Arm_output_data_got<big_endian>*
2711 got_section(Symbol_table*, Layout*);
2713 // Get the GOT PLT section.
2715 got_plt_section() const
2717 gold_assert(this->got_plt_ != NULL);
2718 return this->got_plt_;
2721 // Create a PLT entry for a global symbol.
2723 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2725 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2727 define_tls_base_symbol(Symbol_table*, Layout*);
2729 // Create a GOT entry for the TLS module index.
2731 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2732 Sized_relobj_file<32, big_endian>* object);
2734 // Get the PLT section.
2735 const Output_data_plt_arm<big_endian>*
2738 gold_assert(this->plt_ != NULL);
2742 // Get the dynamic reloc section, creating it if necessary.
2744 rel_dyn_section(Layout*);
2746 // Get the section to use for TLS_DESC relocations.
2748 rel_tls_desc_section(Layout*) const;
2750 // Return true if the symbol may need a COPY relocation.
2751 // References from an executable object to non-function symbols
2752 // defined in a dynamic object may need a COPY relocation.
2754 may_need_copy_reloc(Symbol* gsym)
2756 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757 && gsym->may_need_copy_reloc());
2760 // Add a potential copy relocation.
2762 copy_reloc(Symbol_table* symtab, Layout* layout,
2763 Sized_relobj_file<32, big_endian>* object,
2764 unsigned int shndx, Output_section* output_section,
2765 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2767 this->copy_relocs_.copy_reloc(symtab, layout,
2768 symtab->get_sized_symbol<32>(sym),
2769 object, shndx, output_section, reloc,
2770 this->rel_dyn_section(layout));
2773 // Whether two EABI versions are compatible.
2775 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2777 // Merge processor-specific flags from input object and those in the ELF
2778 // header of the output.
2780 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2782 // Get the secondary compatible architecture.
2784 get_secondary_compatible_arch(const Attributes_section_data*);
2786 // Set the secondary compatible architecture.
2788 set_secondary_compatible_arch(Attributes_section_data*, int);
2791 tag_cpu_arch_combine(const char*, int, int*, int, int);
2793 // Helper to print AEABI enum tag value.
2795 aeabi_enum_name(unsigned int);
2797 // Return string value for TAG_CPU_name.
2799 tag_cpu_name_value(unsigned int);
2801 // Query attributes object to see if integer divide instructions may be
2802 // present in an object.
2804 attributes_accept_div(int arch, int profile,
2805 const Object_attribute* div_attr);
2807 // Query attributes object to see if integer divide instructions are
2808 // forbidden to be in the object. This is not the inverse of
2809 // attributes_accept_div.
2811 attributes_forbid_div(const Object_attribute* div_attr);
2813 // Merge object attributes from input object and those in the output.
2815 merge_object_attributes(const char*, const Attributes_section_data*);
2817 // Helper to get an AEABI object attribute
2819 get_aeabi_object_attribute(int tag) const
2821 Attributes_section_data* pasd = this->attributes_section_data_;
2822 gold_assert(pasd != NULL);
2823 Object_attribute* attr =
2824 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2825 gold_assert(attr != NULL);
2830 // Methods to support stub-generations.
2833 // Group input sections for stub generation.
2835 group_sections(Layout*, section_size_type, bool, const Task*);
2837 // Scan a relocation for stub generation.
2839 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2840 const Sized_symbol<32>*, unsigned int,
2841 const Symbol_value<32>*,
2842 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2844 // Scan a relocation section for stub.
2845 template<int sh_type>
2847 scan_reloc_section_for_stubs(
2848 const Relocate_info<32, big_endian>* relinfo,
2849 const unsigned char* prelocs,
2851 Output_section* output_section,
2852 bool needs_special_offset_handling,
2853 const unsigned char* view,
2854 elfcpp::Elf_types<32>::Elf_Addr view_address,
2857 // Fix .ARM.exidx section coverage.
2859 fix_exidx_coverage(Layout*, const Input_objects*,
2860 Arm_output_section<big_endian>*, Symbol_table*,
2863 // Functors for STL set.
2864 struct output_section_address_less_than
2867 operator()(const Output_section* s1, const Output_section* s2) const
2868 { return s1->address() < s2->address(); }
2871 // Information about this specific target which we pass to the
2872 // general Target structure.
2873 static const Target::Target_info arm_info;
2875 // The types of GOT entries needed for this platform.
2876 // These values are exposed to the ABI in an incremental link.
2877 // Do not renumber existing values without changing the version
2878 // number of the .gnu_incremental_inputs section.
2881 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2882 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2883 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2884 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2885 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2888 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2890 // Map input section to Arm_input_section.
2891 typedef Unordered_map<Section_id,
2892 Arm_input_section<big_endian>*,
2894 Arm_input_section_map;
2896 // Map output addresses to relocs for Cortex-A8 erratum.
2897 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2898 Cortex_a8_relocs_info;
2901 Arm_output_data_got<big_endian>* got_;
2903 Output_data_plt_arm<big_endian>* plt_;
2904 // The GOT PLT section.
2905 Output_data_space* got_plt_;
2906 // The dynamic reloc section.
2907 Reloc_section* rel_dyn_;
2908 // Relocs saved to avoid a COPY reloc.
2909 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2910 // Offset of the GOT entry for the TLS module index.
2911 unsigned int got_mod_index_offset_;
2912 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2913 bool tls_base_symbol_defined_;
2914 // Vector of Stub_tables created.
2915 Stub_table_list stub_tables_;
2917 const Stub_factory &stub_factory_;
2918 // Whether we force PIC branch veneers.
2919 bool should_force_pic_veneer_;
2920 // Map for locating Arm_input_sections.
2921 Arm_input_section_map arm_input_section_map_;
2922 // Attributes section data in output.
2923 Attributes_section_data* attributes_section_data_;
2924 // Whether we want to fix code for Cortex-A8 erratum.
2925 bool fix_cortex_a8_;
2926 // Map addresses to relocs for Cortex-A8 erratum.
2927 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2930 template<bool big_endian>
2931 const Target::Target_info Target_arm<big_endian>::arm_info =
2934 big_endian, // is_big_endian
2935 elfcpp::EM_ARM, // machine_code
2936 false, // has_make_symbol
2937 false, // has_resolve
2938 false, // has_code_fill
2939 true, // is_default_stack_executable
2940 false, // can_icf_inline_merge_sections
2942 "/usr/lib/libc.so.1", // dynamic_linker
2943 0x8000, // default_text_segment_address
2944 0x1000, // abi_pagesize (overridable by -z max-page-size)
2945 0x1000, // common_pagesize (overridable by -z common-page-size)
2946 false, // isolate_execinstr
2948 elfcpp::SHN_UNDEF, // small_common_shndx
2949 elfcpp::SHN_UNDEF, // large_common_shndx
2950 0, // small_common_section_flags
2951 0, // large_common_section_flags
2952 ".ARM.attributes", // attributes_section
2953 "aeabi", // attributes_vendor
2954 "_start" // entry_symbol_name
2957 // Arm relocate functions class
2960 template<bool big_endian>
2961 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2966 STATUS_OKAY, // No error during relocation.
2967 STATUS_OVERFLOW, // Relocation overflow.
2968 STATUS_BAD_RELOC // Relocation cannot be applied.
2972 typedef Relocate_functions<32, big_endian> Base;
2973 typedef Arm_relocate_functions<big_endian> This;
2975 // Encoding of imm16 argument for movt and movw ARM instructions
2978 // imm16 := imm4 | imm12
2980 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2981 // +-------+---------------+-------+-------+-----------------------+
2982 // | | |imm4 | |imm12 |
2983 // +-------+---------------+-------+-------+-----------------------+
2985 // Extract the relocation addend from VAL based on the ARM
2986 // instruction encoding described above.
2987 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988 extract_arm_movw_movt_addend(
2989 typename elfcpp::Swap<32, big_endian>::Valtype val)
2991 // According to the Elf ABI for ARM Architecture the immediate
2992 // field is sign-extended to form the addend.
2993 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2996 // Insert X into VAL based on the ARM instruction encoding described
2998 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2999 insert_val_arm_movw_movt(
3000 typename elfcpp::Swap<32, big_endian>::Valtype val,
3001 typename elfcpp::Swap<32, big_endian>::Valtype x)
3005 val |= (x & 0xf000) << 4;
3009 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3012 // imm16 := imm4 | i | imm3 | imm8
3014 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3015 // +---------+-+-----------+-------++-+-----+-------+---------------+
3016 // | |i| |imm4 || |imm3 | |imm8 |
3017 // +---------+-+-----------+-------++-+-----+-------+---------------+
3019 // Extract the relocation addend from VAL based on the Thumb2
3020 // instruction encoding described above.
3021 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3022 extract_thumb_movw_movt_addend(
3023 typename elfcpp::Swap<32, big_endian>::Valtype val)
3025 // According to the Elf ABI for ARM Architecture the immediate
3026 // field is sign-extended to form the addend.
3027 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3028 | ((val >> 15) & 0x0800)
3029 | ((val >> 4) & 0x0700)
3033 // Insert X into VAL based on the Thumb2 instruction encoding
3035 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3036 insert_val_thumb_movw_movt(
3037 typename elfcpp::Swap<32, big_endian>::Valtype val,
3038 typename elfcpp::Swap<32, big_endian>::Valtype x)
3041 val |= (x & 0xf000) << 4;
3042 val |= (x & 0x0800) << 15;
3043 val |= (x & 0x0700) << 4;
3044 val |= (x & 0x00ff);
3048 // Calculate the smallest constant Kn for the specified residual.
3049 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3051 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3057 // Determine the most significant bit in the residual and
3058 // align the resulting value to a 2-bit boundary.
3059 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3061 // The desired shift is now (msb - 6), or zero, whichever
3063 return (((msb - 6) < 0) ? 0 : (msb - 6));
3066 // Calculate the final residual for the specified group index.
3067 // If the passed group index is less than zero, the method will return
3068 // the value of the specified residual without any change.
3069 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3070 static typename elfcpp::Swap<32, big_endian>::Valtype
3071 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3074 for (int n = 0; n <= group; n++)
3076 // Calculate which part of the value to mask.
3077 uint32_t shift = calc_grp_kn(residual);
3078 // Calculate the residual for the next time around.
3079 residual &= ~(residual & (0xff << shift));
3085 // Calculate the value of Gn for the specified group index.
3086 // We return it in the form of an encoded constant-and-rotation.
3087 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3088 static typename elfcpp::Swap<32, big_endian>::Valtype
3089 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3092 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3095 for (int n = 0; n <= group; n++)
3097 // Calculate which part of the value to mask.
3098 shift = calc_grp_kn(residual);
3099 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3100 gn = residual & (0xff << shift);
3101 // Calculate the residual for the next time around.
3104 // Return Gn in the form of an encoded constant-and-rotation.
3105 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3109 // Handle ARM long branches.
3110 static typename This::Status
3111 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3112 unsigned char*, const Sized_symbol<32>*,
3113 const Arm_relobj<big_endian>*, unsigned int,
3114 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3116 // Handle THUMB long branches.
3117 static typename This::Status
3118 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3119 unsigned char*, const Sized_symbol<32>*,
3120 const Arm_relobj<big_endian>*, unsigned int,
3121 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3124 // Return the branch offset of a 32-bit THUMB branch.
3125 static inline int32_t
3126 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3128 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3129 // involving the J1 and J2 bits.
3130 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3131 uint32_t upper = upper_insn & 0x3ffU;
3132 uint32_t lower = lower_insn & 0x7ffU;
3133 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3134 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3135 uint32_t i1 = j1 ^ s ? 0 : 1;
3136 uint32_t i2 = j2 ^ s ? 0 : 1;
3138 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3139 | (upper << 12) | (lower << 1));
3142 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3143 // UPPER_INSN is the original upper instruction of the branch. Caller is
3144 // responsible for overflow checking and BLX offset adjustment.
3145 static inline uint16_t
3146 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3148 uint32_t s = offset < 0 ? 1 : 0;
3149 uint32_t bits = static_cast<uint32_t>(offset);
3150 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3153 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3154 // LOWER_INSN is the original lower instruction of the branch. Caller is
3155 // responsible for overflow checking and BLX offset adjustment.
3156 static inline uint16_t
3157 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3159 uint32_t s = offset < 0 ? 1 : 0;
3160 uint32_t bits = static_cast<uint32_t>(offset);
3161 return ((lower_insn & ~0x2fffU)
3162 | ((((bits >> 23) & 1) ^ !s) << 13)
3163 | ((((bits >> 22) & 1) ^ !s) << 11)
3164 | ((bits >> 1) & 0x7ffU));
3167 // Return the branch offset of a 32-bit THUMB conditional branch.
3168 static inline int32_t
3169 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3171 uint32_t s = (upper_insn & 0x0400U) >> 10;
3172 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3173 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3174 uint32_t lower = (lower_insn & 0x07ffU);
3175 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3177 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3180 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3181 // instruction. UPPER_INSN is the original upper instruction of the branch.
3182 // Caller is responsible for overflow checking.
3183 static inline uint16_t
3184 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3186 uint32_t s = offset < 0 ? 1 : 0;
3187 uint32_t bits = static_cast<uint32_t>(offset);
3188 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3191 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3192 // instruction. LOWER_INSN is the original lower instruction of the branch.
3193 // The caller is responsible for overflow checking.
3194 static inline uint16_t
3195 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3197 uint32_t bits = static_cast<uint32_t>(offset);
3198 uint32_t j2 = (bits & 0x00080000U) >> 19;
3199 uint32_t j1 = (bits & 0x00040000U) >> 18;
3200 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3202 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3205 // R_ARM_ABS8: S + A
3206 static inline typename This::Status
3207 abs8(unsigned char* view,
3208 const Sized_relobj_file<32, big_endian>* object,
3209 const Symbol_value<32>* psymval)
3211 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3212 Valtype* wv = reinterpret_cast<Valtype*>(view);
3213 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3214 int32_t addend = Bits<8>::sign_extend32(val);
3215 Arm_address x = psymval->value(object, addend);
3216 val = Bits<32>::bit_select32(val, x, 0xffU);
3217 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3219 // R_ARM_ABS8 permits signed or unsigned results.
3220 return (Bits<8>::has_signed_unsigned_overflow32(x)
3221 ? This::STATUS_OVERFLOW
3222 : This::STATUS_OKAY);
3225 // R_ARM_THM_ABS5: S + A
3226 static inline typename This::Status
3227 thm_abs5(unsigned char* view,
3228 const Sized_relobj_file<32, big_endian>* object,
3229 const Symbol_value<32>* psymval)
3231 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3232 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3233 Valtype* wv = reinterpret_cast<Valtype*>(view);
3234 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3235 Reltype addend = (val & 0x7e0U) >> 6;
3236 Reltype x = psymval->value(object, addend);
3237 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3238 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3239 return (Bits<5>::has_overflow32(x)
3240 ? This::STATUS_OVERFLOW
3241 : This::STATUS_OKAY);
3244 // R_ARM_ABS12: S + A
3245 static inline typename This::Status
3246 abs12(unsigned char* view,
3247 const Sized_relobj_file<32, big_endian>* object,
3248 const Symbol_value<32>* psymval)
3250 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3251 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3252 Valtype* wv = reinterpret_cast<Valtype*>(view);
3253 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3254 Reltype addend = val & 0x0fffU;
3255 Reltype x = psymval->value(object, addend);
3256 val = Bits<32>::bit_select32(val, x, 0x0fffU);
3257 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3258 return (Bits<12>::has_overflow32(x)
3259 ? This::STATUS_OVERFLOW
3260 : This::STATUS_OKAY);
3263 // R_ARM_ABS16: S + A
3264 static inline typename This::Status
3265 abs16(unsigned char* view,
3266 const Sized_relobj_file<32, big_endian>* object,
3267 const Symbol_value<32>* psymval)
3269 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3270 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3271 int32_t addend = Bits<16>::sign_extend32(val);
3272 Arm_address x = psymval->value(object, addend);
3273 val = Bits<32>::bit_select32(val, x, 0xffffU);
3274 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3276 // R_ARM_ABS16 permits signed or unsigned results.
3277 return (Bits<16>::has_signed_unsigned_overflow32(x)
3278 ? This::STATUS_OVERFLOW
3279 : This::STATUS_OKAY);
3282 // R_ARM_ABS32: (S + A) | T
3283 static inline typename This::Status
3284 abs32(unsigned char* view,
3285 const Sized_relobj_file<32, big_endian>* object,
3286 const Symbol_value<32>* psymval,
3287 Arm_address thumb_bit)
3289 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3290 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3291 Valtype x = psymval->value(object, addend) | thumb_bit;
3292 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3293 return This::STATUS_OKAY;
3296 // R_ARM_REL32: (S + A) | T - P
3297 static inline typename This::Status
3298 rel32(unsigned char* view,
3299 const Sized_relobj_file<32, big_endian>* object,
3300 const Symbol_value<32>* psymval,
3301 Arm_address address,
3302 Arm_address thumb_bit)
3304 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3305 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3306 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3307 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3308 return This::STATUS_OKAY;
3311 // R_ARM_THM_JUMP24: (S + A) | T - P
3312 static typename This::Status
3313 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3314 const Symbol_value<32>* psymval, Arm_address address,
3315 Arm_address thumb_bit);
3317 // R_ARM_THM_JUMP6: S + A – P
3318 static inline typename This::Status
3319 thm_jump6(unsigned char* view,
3320 const Sized_relobj_file<32, big_endian>* object,
3321 const Symbol_value<32>* psymval,
3322 Arm_address address)
3324 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3325 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3326 Valtype* wv = reinterpret_cast<Valtype*>(view);
3327 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3328 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3329 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3330 Reltype x = (psymval->value(object, addend) - address);
3331 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3332 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3333 // CZB does only forward jumps.
3334 return ((x > 0x007e)
3335 ? This::STATUS_OVERFLOW
3336 : This::STATUS_OKAY);
3339 // R_ARM_THM_JUMP8: S + A – P
3340 static inline typename This::Status
3341 thm_jump8(unsigned char* view,
3342 const Sized_relobj_file<32, big_endian>* object,
3343 const Symbol_value<32>* psymval,
3344 Arm_address address)
3346 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3347 Valtype* wv = reinterpret_cast<Valtype*>(view);
3348 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3349 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3350 int32_t x = (psymval->value(object, addend) - address);
3351 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3352 | ((x & 0x01fe) >> 1)));
3353 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3354 return (Bits<9>::has_overflow32(x)
3355 ? This::STATUS_OVERFLOW
3356 : This::STATUS_OKAY);
3359 // R_ARM_THM_JUMP11: S + A – P
3360 static inline typename This::Status
3361 thm_jump11(unsigned char* view,
3362 const Sized_relobj_file<32, big_endian>* object,
3363 const Symbol_value<32>* psymval,
3364 Arm_address address)
3366 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3367 Valtype* wv = reinterpret_cast<Valtype*>(view);
3368 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3369 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3370 int32_t x = (psymval->value(object, addend) - address);
3371 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3372 | ((x & 0x0ffe) >> 1)));
3373 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3374 return (Bits<12>::has_overflow32(x)
3375 ? This::STATUS_OVERFLOW
3376 : This::STATUS_OKAY);
3379 // R_ARM_BASE_PREL: B(S) + A - P
3380 static inline typename This::Status
3381 base_prel(unsigned char* view,
3383 Arm_address address)
3385 Base::rel32(view, origin - address);
3389 // R_ARM_BASE_ABS: B(S) + A
3390 static inline typename This::Status
3391 base_abs(unsigned char* view,
3394 Base::rel32(view, origin);
3398 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3399 static inline typename This::Status
3400 got_brel(unsigned char* view,
3401 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3403 Base::rel32(view, got_offset);
3404 return This::STATUS_OKAY;
3407 // R_ARM_GOT_PREL: GOT(S) + A - P
3408 static inline typename This::Status
3409 got_prel(unsigned char* view,
3410 Arm_address got_entry,
3411 Arm_address address)
3413 Base::rel32(view, got_entry - address);
3414 return This::STATUS_OKAY;
3417 // R_ARM_PREL: (S + A) | T - P
3418 static inline typename This::Status
3419 prel31(unsigned char* view,
3420 const Sized_relobj_file<32, big_endian>* object,
3421 const Symbol_value<32>* psymval,
3422 Arm_address address,
3423 Arm_address thumb_bit)
3425 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3426 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3427 Valtype addend = Bits<31>::sign_extend32(val);
3428 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3429 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3430 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3431 return (Bits<31>::has_overflow32(x)
3432 ? This::STATUS_OVERFLOW
3433 : This::STATUS_OKAY);
3436 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3437 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3438 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3439 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3440 static inline typename This::Status
3441 movw(unsigned char* view,
3442 const Sized_relobj_file<32, big_endian>* object,
3443 const Symbol_value<32>* psymval,
3444 Arm_address relative_address_base,
3445 Arm_address thumb_bit,
3446 bool check_overflow)
3448 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3449 Valtype* wv = reinterpret_cast<Valtype*>(view);
3450 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3451 Valtype addend = This::extract_arm_movw_movt_addend(val);
3452 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3453 - relative_address_base);
3454 val = This::insert_val_arm_movw_movt(val, x);
3455 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3456 return ((check_overflow && Bits<16>::has_overflow32(x))
3457 ? This::STATUS_OVERFLOW
3458 : This::STATUS_OKAY);
3461 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3462 // R_ARM_MOVT_PREL: S + A - P
3463 // R_ARM_MOVT_BREL: S + A - B(S)
3464 static inline typename This::Status
3465 movt(unsigned char* view,
3466 const Sized_relobj_file<32, big_endian>* object,
3467 const Symbol_value<32>* psymval,
3468 Arm_address relative_address_base)
3470 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3471 Valtype* wv = reinterpret_cast<Valtype*>(view);
3472 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3473 Valtype addend = This::extract_arm_movw_movt_addend(val);
3474 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3475 val = This::insert_val_arm_movw_movt(val, x);
3476 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3477 // FIXME: IHI0044D says that we should check for overflow.
3478 return This::STATUS_OKAY;
3481 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3482 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3483 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3484 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3485 static inline typename This::Status
3486 thm_movw(unsigned char* view,
3487 const Sized_relobj_file<32, big_endian>* object,
3488 const Symbol_value<32>* psymval,
3489 Arm_address relative_address_base,
3490 Arm_address thumb_bit,
3491 bool check_overflow)
3493 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3494 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3495 Valtype* wv = reinterpret_cast<Valtype*>(view);
3496 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3497 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3498 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3500 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3501 val = This::insert_val_thumb_movw_movt(val, x);
3502 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3503 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3504 return ((check_overflow && Bits<16>::has_overflow32(x))
3505 ? This::STATUS_OVERFLOW
3506 : This::STATUS_OKAY);
3509 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3510 // R_ARM_THM_MOVT_PREL: S + A - P
3511 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3512 static inline typename This::Status
3513 thm_movt(unsigned char* view,
3514 const Sized_relobj_file<32, big_endian>* object,
3515 const Symbol_value<32>* psymval,
3516 Arm_address relative_address_base)
3518 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3519 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3520 Valtype* wv = reinterpret_cast<Valtype*>(view);
3521 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3522 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3523 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3524 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3525 val = This::insert_val_thumb_movw_movt(val, x);
3526 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3527 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3528 return This::STATUS_OKAY;
3531 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3532 static inline typename This::Status
3533 thm_alu11(unsigned char* view,
3534 const Sized_relobj_file<32, big_endian>* object,
3535 const Symbol_value<32>* psymval,
3536 Arm_address address,
3537 Arm_address thumb_bit)
3539 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3540 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3541 Valtype* wv = reinterpret_cast<Valtype*>(view);
3542 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3543 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3545 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3546 // -----------------------------------------------------------------------
3547 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3548 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3549 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3550 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3551 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3552 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3554 // Determine a sign for the addend.
3555 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3556 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3557 // Thumb2 addend encoding:
3558 // imm12 := i | imm3 | imm8
3559 int32_t addend = (insn & 0xff)
3560 | ((insn & 0x00007000) >> 4)
3561 | ((insn & 0x04000000) >> 15);
3562 // Apply a sign to the added.
3565 int32_t x = (psymval->value(object, addend) | thumb_bit)
3566 - (address & 0xfffffffc);
3567 Reltype val = abs(x);
3568 // Mask out the value and a distinct part of the ADD/SUB opcode
3569 // (bits 7:5 of opword).
3570 insn = (insn & 0xfb0f8f00)
3572 | ((val & 0x700) << 4)
3573 | ((val & 0x800) << 15);
3574 // Set the opcode according to whether the value to go in the
3575 // place is negative.
3579 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3580 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3581 return ((val > 0xfff) ?
3582 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3585 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3586 static inline typename This::Status
3587 thm_pc8(unsigned char* view,
3588 const Sized_relobj_file<32, big_endian>* object,
3589 const Symbol_value<32>* psymval,
3590 Arm_address address)
3592 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3593 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3594 Valtype* wv = reinterpret_cast<Valtype*>(view);
3595 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3596 Reltype addend = ((insn & 0x00ff) << 2);
3597 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3598 Reltype val = abs(x);
3599 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3601 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3602 return ((val > 0x03fc)
3603 ? This::STATUS_OVERFLOW
3604 : This::STATUS_OKAY);
3607 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3608 static inline typename This::Status
3609 thm_pc12(unsigned char* view,
3610 const Sized_relobj_file<32, big_endian>* object,
3611 const Symbol_value<32>* psymval,
3612 Arm_address address)
3614 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3615 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3616 Valtype* wv = reinterpret_cast<Valtype*>(view);
3617 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3618 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3619 // Determine a sign for the addend (positive if the U bit is 1).
3620 const int sign = (insn & 0x00800000) ? 1 : -1;
3621 int32_t addend = (insn & 0xfff);
3622 // Apply a sign to the added.
3625 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3626 Reltype val = abs(x);
3627 // Mask out and apply the value and the U bit.
3628 insn = (insn & 0xff7ff000) | (val & 0xfff);
3629 // Set the U bit according to whether the value to go in the
3630 // place is positive.
3634 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3635 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3636 return ((val > 0xfff) ?
3637 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3641 static inline typename This::Status
3642 v4bx(const Relocate_info<32, big_endian>* relinfo,
3643 unsigned char* view,
3644 const Arm_relobj<big_endian>* object,
3645 const Arm_address address,
3646 const bool is_interworking)
3649 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3650 Valtype* wv = reinterpret_cast<Valtype*>(view);
3651 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3653 // Ensure that we have a BX instruction.
3654 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3655 const uint32_t reg = (val & 0xf);
3656 if (is_interworking && reg != 0xf)
3658 Stub_table<big_endian>* stub_table =
3659 object->stub_table(relinfo->data_shndx);
3660 gold_assert(stub_table != NULL);
3662 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3663 gold_assert(stub != NULL);
3665 int32_t veneer_address =
3666 stub_table->address() + stub->offset() - 8 - address;
3667 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3668 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3669 // Replace with a branch to veneer (B <addr>)
3670 val = (val & 0xf0000000) | 0x0a000000
3671 | ((veneer_address >> 2) & 0x00ffffff);
3675 // Preserve Rm (lowest four bits) and the condition code
3676 // (highest four bits). Other bits encode MOV PC,Rm.
3677 val = (val & 0xf000000f) | 0x01a0f000;
3679 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3680 return This::STATUS_OKAY;
3683 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3684 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3685 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3686 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3687 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3688 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3689 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3690 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3691 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3692 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3693 static inline typename This::Status
3694 arm_grp_alu(unsigned char* view,
3695 const Sized_relobj_file<32, big_endian>* object,
3696 const Symbol_value<32>* psymval,
3698 Arm_address address,
3699 Arm_address thumb_bit,
3700 bool check_overflow)
3702 gold_assert(group >= 0 && group < 3);
3703 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3704 Valtype* wv = reinterpret_cast<Valtype*>(view);
3705 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3707 // ALU group relocations are allowed only for the ADD/SUB instructions.
3708 // (0x00800000 - ADD, 0x00400000 - SUB)
3709 const Valtype opcode = insn & 0x01e00000;
3710 if (opcode != 0x00800000 && opcode != 0x00400000)
3711 return This::STATUS_BAD_RELOC;
3713 // Determine a sign for the addend.
3714 const int sign = (opcode == 0x00800000) ? 1 : -1;
3715 // shifter = rotate_imm * 2
3716 const uint32_t shifter = (insn & 0xf00) >> 7;
3717 // Initial addend value.
3718 int32_t addend = insn & 0xff;
3719 // Rotate addend right by shifter.
3720 addend = (addend >> shifter) | (addend << (32 - shifter));
3721 // Apply a sign to the added.
3724 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3725 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3726 // Check for overflow if required
3728 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3729 return This::STATUS_OVERFLOW;
3731 // Mask out the value and the ADD/SUB part of the opcode; take care
3732 // not to destroy the S bit.
3734 // Set the opcode according to whether the value to go in the
3735 // place is negative.
3736 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3737 // Encode the offset (encoded Gn).
3740 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3741 return This::STATUS_OKAY;
3744 // R_ARM_LDR_PC_G0: S + A - P
3745 // R_ARM_LDR_PC_G1: S + A - P
3746 // R_ARM_LDR_PC_G2: S + A - P
3747 // R_ARM_LDR_SB_G0: S + A - B(S)
3748 // R_ARM_LDR_SB_G1: S + A - B(S)
3749 // R_ARM_LDR_SB_G2: S + A - B(S)
3750 static inline typename This::Status
3751 arm_grp_ldr(unsigned char* view,
3752 const Sized_relobj_file<32, big_endian>* object,
3753 const Symbol_value<32>* psymval,
3755 Arm_address address)
3757 gold_assert(group >= 0 && group < 3);
3758 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3759 Valtype* wv = reinterpret_cast<Valtype*>(view);
3760 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3762 const int sign = (insn & 0x00800000) ? 1 : -1;
3763 int32_t addend = (insn & 0xfff) * sign;
3764 int32_t x = (psymval->value(object, addend) - address);
3765 // Calculate the relevant G(n-1) value to obtain this stage residual.
3767 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3768 if (residual >= 0x1000)
3769 return This::STATUS_OVERFLOW;
3771 // Mask out the value and U bit.
3773 // Set the U bit for non-negative values.
3778 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3779 return This::STATUS_OKAY;
3782 // R_ARM_LDRS_PC_G0: S + A - P
3783 // R_ARM_LDRS_PC_G1: S + A - P
3784 // R_ARM_LDRS_PC_G2: S + A - P
3785 // R_ARM_LDRS_SB_G0: S + A - B(S)
3786 // R_ARM_LDRS_SB_G1: S + A - B(S)
3787 // R_ARM_LDRS_SB_G2: S + A - B(S)
3788 static inline typename This::Status
3789 arm_grp_ldrs(unsigned char* view,
3790 const Sized_relobj_file<32, big_endian>* object,
3791 const Symbol_value<32>* psymval,
3793 Arm_address address)
3795 gold_assert(group >= 0 && group < 3);
3796 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3797 Valtype* wv = reinterpret_cast<Valtype*>(view);
3798 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3800 const int sign = (insn & 0x00800000) ? 1 : -1;
3801 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3802 int32_t x = (psymval->value(object, addend) - address);
3803 // Calculate the relevant G(n-1) value to obtain this stage residual.
3805 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3806 if (residual >= 0x100)
3807 return This::STATUS_OVERFLOW;
3809 // Mask out the value and U bit.
3811 // Set the U bit for non-negative values.
3814 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3816 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3817 return This::STATUS_OKAY;
3820 // R_ARM_LDC_PC_G0: S + A - P
3821 // R_ARM_LDC_PC_G1: S + A - P
3822 // R_ARM_LDC_PC_G2: S + A - P
3823 // R_ARM_LDC_SB_G0: S + A - B(S)
3824 // R_ARM_LDC_SB_G1: S + A - B(S)
3825 // R_ARM_LDC_SB_G2: S + A - B(S)
3826 static inline typename This::Status
3827 arm_grp_ldc(unsigned char* view,
3828 const Sized_relobj_file<32, big_endian>* object,
3829 const Symbol_value<32>* psymval,
3831 Arm_address address)
3833 gold_assert(group >= 0 && group < 3);
3834 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3835 Valtype* wv = reinterpret_cast<Valtype*>(view);
3836 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3838 const int sign = (insn & 0x00800000) ? 1 : -1;
3839 int32_t addend = ((insn & 0xff) << 2) * sign;
3840 int32_t x = (psymval->value(object, addend) - address);
3841 // Calculate the relevant G(n-1) value to obtain this stage residual.
3843 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3844 if ((residual & 0x3) != 0 || residual >= 0x400)
3845 return This::STATUS_OVERFLOW;
3847 // Mask out the value and U bit.
3849 // Set the U bit for non-negative values.
3852 insn |= (residual >> 2);
3854 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3855 return This::STATUS_OKAY;
3859 // Relocate ARM long branches. This handles relocation types
3860 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3861 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3862 // undefined and we do not use PLT in this relocation. In such a case,
3863 // the branch is converted into an NOP.
3865 template<bool big_endian>
3866 typename Arm_relocate_functions<big_endian>::Status
3867 Arm_relocate_functions<big_endian>::arm_branch_common(
3868 unsigned int r_type,
3869 const Relocate_info<32, big_endian>* relinfo,
3870 unsigned char* view,
3871 const Sized_symbol<32>* gsym,
3872 const Arm_relobj<big_endian>* object,
3874 const Symbol_value<32>* psymval,
3875 Arm_address address,
3876 Arm_address thumb_bit,
3877 bool is_weakly_undefined_without_plt)
3879 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3880 Valtype* wv = reinterpret_cast<Valtype*>(view);
3881 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3883 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3884 && ((val & 0x0f000000UL) == 0x0a000000UL);
3885 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3886 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3887 && ((val & 0x0f000000UL) == 0x0b000000UL);
3888 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3889 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3891 // Check that the instruction is valid.
3892 if (r_type == elfcpp::R_ARM_CALL)
3894 if (!insn_is_uncond_bl && !insn_is_blx)
3895 return This::STATUS_BAD_RELOC;
3897 else if (r_type == elfcpp::R_ARM_JUMP24)
3899 if (!insn_is_b && !insn_is_cond_bl)
3900 return This::STATUS_BAD_RELOC;
3902 else if (r_type == elfcpp::R_ARM_PLT32)
3904 if (!insn_is_any_branch)
3905 return This::STATUS_BAD_RELOC;
3907 else if (r_type == elfcpp::R_ARM_XPC25)
3909 // FIXME: AAELF document IH0044C does not say much about it other
3910 // than it being obsolete.
3911 if (!insn_is_any_branch)
3912 return This::STATUS_BAD_RELOC;
3917 // A branch to an undefined weak symbol is turned into a jump to
3918 // the next instruction unless a PLT entry will be created.
3919 // Do the same for local undefined symbols.
3920 // The jump to the next instruction is optimized as a NOP depending
3921 // on the architecture.
3922 const Target_arm<big_endian>* arm_target =
3923 Target_arm<big_endian>::default_target();
3924 if (is_weakly_undefined_without_plt)
3926 gold_assert(!parameters->options().relocatable());
3927 Valtype cond = val & 0xf0000000U;
3928 if (arm_target->may_use_arm_nop())
3929 val = cond | 0x0320f000;
3931 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3932 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3933 return This::STATUS_OKAY;
3936 Valtype addend = Bits<26>::sign_extend32(val << 2);
3937 Valtype branch_target = psymval->value(object, addend);
3938 int32_t branch_offset = branch_target - address;
3940 // We need a stub if the branch offset is too large or if we need
3942 bool may_use_blx = arm_target->may_use_v5t_interworking();
3943 Reloc_stub* stub = NULL;
3945 if (!parameters->options().relocatable()
3946 && (Bits<26>::has_overflow32(branch_offset)
3947 || ((thumb_bit != 0)
3948 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3950 Valtype unadjusted_branch_target = psymval->value(object, 0);
3952 Stub_type stub_type =
3953 Reloc_stub::stub_type_for_reloc(r_type, address,
3954 unadjusted_branch_target,
3956 if (stub_type != arm_stub_none)
3958 Stub_table<big_endian>* stub_table =
3959 object->stub_table(relinfo->data_shndx);
3960 gold_assert(stub_table != NULL);
3962 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3963 stub = stub_table->find_reloc_stub(stub_key);
3964 gold_assert(stub != NULL);
3965 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3966 branch_target = stub_table->address() + stub->offset() + addend;
3967 branch_offset = branch_target - address;
3968 gold_assert(!Bits<26>::has_overflow32(branch_offset));
3972 // At this point, if we still need to switch mode, the instruction
3973 // must either be a BLX or a BL that can be converted to a BLX.
3977 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3978 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3981 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3982 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3983 return (Bits<26>::has_overflow32(branch_offset)
3984 ? This::STATUS_OVERFLOW
3985 : This::STATUS_OKAY);
3988 // Relocate THUMB long branches. This handles relocation types
3989 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3990 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3991 // undefined and we do not use PLT in this relocation. In such a case,
3992 // the branch is converted into an NOP.
3994 template<bool big_endian>
3995 typename Arm_relocate_functions<big_endian>::Status
3996 Arm_relocate_functions<big_endian>::thumb_branch_common(
3997 unsigned int r_type,
3998 const Relocate_info<32, big_endian>* relinfo,
3999 unsigned char* view,
4000 const Sized_symbol<32>* gsym,
4001 const Arm_relobj<big_endian>* object,
4003 const Symbol_value<32>* psymval,
4004 Arm_address address,
4005 Arm_address thumb_bit,
4006 bool is_weakly_undefined_without_plt)
4008 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4009 Valtype* wv = reinterpret_cast<Valtype*>(view);
4010 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4011 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4013 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4015 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4016 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4018 // Check that the instruction is valid.
4019 if (r_type == elfcpp::R_ARM_THM_CALL)
4021 if (!is_bl_insn && !is_blx_insn)
4022 return This::STATUS_BAD_RELOC;
4024 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4026 // This cannot be a BLX.
4028 return This::STATUS_BAD_RELOC;
4030 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4032 // Check for Thumb to Thumb call.
4034 return This::STATUS_BAD_RELOC;
4037 gold_warning(_("%s: Thumb BLX instruction targets "
4038 "thumb function '%s'."),
4039 object->name().c_str(),
4040 (gsym ? gsym->name() : "(local)"));
4041 // Convert BLX to BL.
4042 lower_insn |= 0x1000U;
4048 // A branch to an undefined weak symbol is turned into a jump to
4049 // the next instruction unless a PLT entry will be created.
4050 // The jump to the next instruction is optimized as a NOP.W for
4051 // Thumb-2 enabled architectures.
4052 const Target_arm<big_endian>* arm_target =
4053 Target_arm<big_endian>::default_target();
4054 if (is_weakly_undefined_without_plt)
4056 gold_assert(!parameters->options().relocatable());
4057 if (arm_target->may_use_thumb2_nop())
4059 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4060 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4064 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4065 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4067 return This::STATUS_OKAY;
4070 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4071 Arm_address branch_target = psymval->value(object, addend);
4073 // For BLX, bit 1 of target address comes from bit 1 of base address.
4074 bool may_use_blx = arm_target->may_use_v5t_interworking();
4075 if (thumb_bit == 0 && may_use_blx)
4076 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4078 int32_t branch_offset = branch_target - address;
4080 // We need a stub if the branch offset is too large or if we need
4082 bool thumb2 = arm_target->using_thumb2();
4083 if (!parameters->options().relocatable()
4084 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4085 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4086 || ((thumb_bit == 0)
4087 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4088 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4090 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4092 Stub_type stub_type =
4093 Reloc_stub::stub_type_for_reloc(r_type, address,
4094 unadjusted_branch_target,
4097 if (stub_type != arm_stub_none)
4099 Stub_table<big_endian>* stub_table =
4100 object->stub_table(relinfo->data_shndx);
4101 gold_assert(stub_table != NULL);
4103 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4104 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4105 gold_assert(stub != NULL);
4106 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4107 branch_target = stub_table->address() + stub->offset() + addend;
4108 if (thumb_bit == 0 && may_use_blx)
4109 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4110 branch_offset = branch_target - address;
4114 // At this point, if we still need to switch mode, the instruction
4115 // must either be a BLX or a BL that can be converted to a BLX.
4118 gold_assert(may_use_blx
4119 && (r_type == elfcpp::R_ARM_THM_CALL
4120 || r_type == elfcpp::R_ARM_THM_XPC22));
4121 // Make sure this is a BLX.
4122 lower_insn &= ~0x1000U;
4126 // Make sure this is a BL.
4127 lower_insn |= 0x1000U;
4130 // For a BLX instruction, make sure that the relocation is rounded up
4131 // to a word boundary. This follows the semantics of the instruction
4132 // which specifies that bit 1 of the target address will come from bit
4133 // 1 of the base address.
4134 if ((lower_insn & 0x5000U) == 0x4000U)
4135 gold_assert((branch_offset & 3) == 0);
4137 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4138 // We use the Thumb-2 encoding, which is safe even if dealing with
4139 // a Thumb-1 instruction by virtue of our overflow check above. */
4140 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4141 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4143 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4144 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4146 gold_assert(!Bits<25>::has_overflow32(branch_offset));
4149 ? Bits<25>::has_overflow32(branch_offset)
4150 : Bits<23>::has_overflow32(branch_offset))
4151 ? This::STATUS_OVERFLOW
4152 : This::STATUS_OKAY);
4155 // Relocate THUMB-2 long conditional branches.
4156 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4157 // undefined and we do not use PLT in this relocation. In such a case,
4158 // the branch is converted into an NOP.
4160 template<bool big_endian>
4161 typename Arm_relocate_functions<big_endian>::Status
4162 Arm_relocate_functions<big_endian>::thm_jump19(
4163 unsigned char* view,
4164 const Arm_relobj<big_endian>* object,
4165 const Symbol_value<32>* psymval,
4166 Arm_address address,
4167 Arm_address thumb_bit)
4169 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4170 Valtype* wv = reinterpret_cast<Valtype*>(view);
4171 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4172 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4173 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4175 Arm_address branch_target = psymval->value(object, addend);
4176 int32_t branch_offset = branch_target - address;
4178 // ??? Should handle interworking? GCC might someday try to
4179 // use this for tail calls.
4180 // FIXME: We do support thumb entry to PLT yet.
4183 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4184 return This::STATUS_BAD_RELOC;
4187 // Put RELOCATION back into the insn.
4188 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4189 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4191 // Put the relocated value back in the object file:
4192 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4193 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4195 return (Bits<21>::has_overflow32(branch_offset)
4196 ? This::STATUS_OVERFLOW
4197 : This::STATUS_OKAY);
4200 // Get the GOT section, creating it if necessary.
4202 template<bool big_endian>
4203 Arm_output_data_got<big_endian>*
4204 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4206 if (this->got_ == NULL)
4208 gold_assert(symtab != NULL && layout != NULL);
4210 // When using -z now, we can treat .got as a relro section.
4211 // Without -z now, it is modified after program startup by lazy
4213 bool is_got_relro = parameters->options().now();
4214 Output_section_order got_order = (is_got_relro
4218 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4219 // .got.plt sections in output. The output .got section contains both
4220 // PLT and non-PLT GOT entries.
4221 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4223 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4224 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4225 this->got_, got_order, is_got_relro);
4227 // The old GNU linker creates a .got.plt section. We just
4228 // create another set of data in the .got section. Note that we
4229 // always create a PLT if we create a GOT, although the PLT
4231 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4232 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4233 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4234 this->got_plt_, got_order, is_got_relro);
4236 // The first three entries are reserved.
4237 this->got_plt_->set_current_data_size(3 * 4);
4239 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4240 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4241 Symbol_table::PREDEFINED,
4243 0, 0, elfcpp::STT_OBJECT,
4245 elfcpp::STV_HIDDEN, 0,
4251 // Get the dynamic reloc section, creating it if necessary.
4253 template<bool big_endian>
4254 typename Target_arm<big_endian>::Reloc_section*
4255 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4257 if (this->rel_dyn_ == NULL)
4259 gold_assert(layout != NULL);
4260 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4261 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4262 elfcpp::SHF_ALLOC, this->rel_dyn_,
4263 ORDER_DYNAMIC_RELOCS, false);
4265 return this->rel_dyn_;
4268 // Insn_template methods.
4270 // Return byte size of an instruction template.
4273 Insn_template::size() const
4275 switch (this->type())
4278 case THUMB16_SPECIAL_TYPE:
4289 // Return alignment of an instruction template.
4292 Insn_template::alignment() const
4294 switch (this->type())
4297 case THUMB16_SPECIAL_TYPE:
4308 // Stub_template methods.
4310 Stub_template::Stub_template(
4311 Stub_type type, const Insn_template* insns,
4313 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4314 entry_in_thumb_mode_(false), relocs_()
4318 // Compute byte size and alignment of stub template.
4319 for (size_t i = 0; i < insn_count; i++)
4321 unsigned insn_alignment = insns[i].alignment();
4322 size_t insn_size = insns[i].size();
4323 gold_assert((offset & (insn_alignment - 1)) == 0);
4324 this->alignment_ = std::max(this->alignment_, insn_alignment);
4325 switch (insns[i].type())
4327 case Insn_template::THUMB16_TYPE:
4328 case Insn_template::THUMB16_SPECIAL_TYPE:
4330 this->entry_in_thumb_mode_ = true;
4333 case Insn_template::THUMB32_TYPE:
4334 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4335 this->relocs_.push_back(Reloc(i, offset));
4337 this->entry_in_thumb_mode_ = true;
4340 case Insn_template::ARM_TYPE:
4341 // Handle cases where the target is encoded within the
4343 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4344 this->relocs_.push_back(Reloc(i, offset));
4347 case Insn_template::DATA_TYPE:
4348 // Entry point cannot be data.
4349 gold_assert(i != 0);
4350 this->relocs_.push_back(Reloc(i, offset));
4356 offset += insn_size;
4358 this->size_ = offset;
4363 // Template to implement do_write for a specific target endianness.
4365 template<bool big_endian>
4367 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4369 const Stub_template* stub_template = this->stub_template();
4370 const Insn_template* insns = stub_template->insns();
4372 // FIXME: We do not handle BE8 encoding yet.
4373 unsigned char* pov = view;
4374 for (size_t i = 0; i < stub_template->insn_count(); i++)
4376 switch (insns[i].type())
4378 case Insn_template::THUMB16_TYPE:
4379 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4381 case Insn_template::THUMB16_SPECIAL_TYPE:
4382 elfcpp::Swap<16, big_endian>::writeval(
4384 this->thumb16_special(i));
4386 case Insn_template::THUMB32_TYPE:
4388 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4389 uint32_t lo = insns[i].data() & 0xffff;
4390 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4391 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4394 case Insn_template::ARM_TYPE:
4395 case Insn_template::DATA_TYPE:
4396 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4401 pov += insns[i].size();
4403 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4406 // Reloc_stub::Key methods.
4408 // Dump a Key as a string for debugging.
4411 Reloc_stub::Key::name() const
4413 if (this->r_sym_ == invalid_index)
4415 // Global symbol key name
4416 // <stub-type>:<symbol name>:<addend>.
4417 const std::string sym_name = this->u_.symbol->name();
4418 // We need to print two hex number and two colons. So just add 100 bytes
4419 // to the symbol name size.
4420 size_t len = sym_name.size() + 100;
4421 char* buffer = new char[len];
4422 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4423 sym_name.c_str(), this->addend_);
4424 gold_assert(c > 0 && c < static_cast<int>(len));
4426 return std::string(buffer);
4430 // local symbol key name
4431 // <stub-type>:<object>:<r_sym>:<addend>.
4432 const size_t len = 200;
4434 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4435 this->u_.relobj, this->r_sym_, this->addend_);
4436 gold_assert(c > 0 && c < static_cast<int>(len));
4437 return std::string(buffer);
4441 // Reloc_stub methods.
4443 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4444 // LOCATION to DESTINATION.
4445 // This code is based on the arm_type_of_stub function in
4446 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4450 Reloc_stub::stub_type_for_reloc(
4451 unsigned int r_type,
4452 Arm_address location,
4453 Arm_address destination,
4454 bool target_is_thumb)
4456 Stub_type stub_type = arm_stub_none;
4458 // This is a bit ugly but we want to avoid using a templated class for
4459 // big and little endianities.
4461 bool should_force_pic_veneer;
4464 if (parameters->target().is_big_endian())
4466 const Target_arm<true>* big_endian_target =
4467 Target_arm<true>::default_target();
4468 may_use_blx = big_endian_target->may_use_v5t_interworking();
4469 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4470 thumb2 = big_endian_target->using_thumb2();
4471 thumb_only = big_endian_target->using_thumb_only();
4475 const Target_arm<false>* little_endian_target =
4476 Target_arm<false>::default_target();
4477 may_use_blx = little_endian_target->may_use_v5t_interworking();
4478 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4479 thumb2 = little_endian_target->using_thumb2();
4480 thumb_only = little_endian_target->using_thumb_only();
4483 int64_t branch_offset;
4484 bool output_is_position_independent =
4485 parameters->options().output_is_position_independent();
4486 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4488 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4489 // base address (instruction address + 4).
4490 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4491 destination = Bits<32>::bit_select32(destination, location, 0x2);
4492 branch_offset = static_cast<int64_t>(destination) - location;
4494 // Handle cases where:
4495 // - this call goes too far (different Thumb/Thumb2 max
4497 // - it's a Thumb->Arm call and blx is not available, or it's a
4498 // Thumb->Arm branch (not bl). A stub is needed in this case.
4500 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4501 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4503 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4504 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4505 || ((!target_is_thumb)
4506 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4507 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4509 if (target_is_thumb)
4514 stub_type = (output_is_position_independent
4515 || should_force_pic_veneer)
4518 && (r_type == elfcpp::R_ARM_THM_CALL))
4519 // V5T and above. Stub starts with ARM code, so
4520 // we must be able to switch mode before
4521 // reaching it, which is only possible for 'bl'
4522 // (ie R_ARM_THM_CALL relocation).
4523 ? arm_stub_long_branch_any_thumb_pic
4524 // On V4T, use Thumb code only.
4525 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4529 && (r_type == elfcpp::R_ARM_THM_CALL))
4530 ? arm_stub_long_branch_any_any // V5T and above.
4531 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4535 stub_type = (output_is_position_independent
4536 || should_force_pic_veneer)
4537 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4538 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4545 // FIXME: We should check that the input section is from an
4546 // object that has interwork enabled.
4548 stub_type = (output_is_position_independent
4549 || should_force_pic_veneer)
4552 && (r_type == elfcpp::R_ARM_THM_CALL))
4553 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4554 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4558 && (r_type == elfcpp::R_ARM_THM_CALL))
4559 ? arm_stub_long_branch_any_any // V5T and above.
4560 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4562 // Handle v4t short branches.
4563 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4564 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4565 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4566 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4570 else if (r_type == elfcpp::R_ARM_CALL
4571 || r_type == elfcpp::R_ARM_JUMP24
4572 || r_type == elfcpp::R_ARM_PLT32)
4574 branch_offset = static_cast<int64_t>(destination) - location;
4575 if (target_is_thumb)
4579 // FIXME: We should check that the input section is from an
4580 // object that has interwork enabled.
4582 // We have an extra 2-bytes reach because of
4583 // the mode change (bit 24 (H) of BLX encoding).
4584 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4585 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4586 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4587 || (r_type == elfcpp::R_ARM_JUMP24)
4588 || (r_type == elfcpp::R_ARM_PLT32))
4590 stub_type = (output_is_position_independent
4591 || should_force_pic_veneer)
4594 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4595 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4599 ? arm_stub_long_branch_any_any // V5T and above.
4600 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4606 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4607 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4609 stub_type = (output_is_position_independent
4610 || should_force_pic_veneer)
4611 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4612 : arm_stub_long_branch_any_any; /// non-PIC.
4620 // Cortex_a8_stub methods.
4622 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4623 // I is the position of the instruction template in the stub template.
4626 Cortex_a8_stub::do_thumb16_special(size_t i)
4628 // The only use of this is to copy condition code from a conditional
4629 // branch being worked around to the corresponding conditional branch in
4631 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4633 uint16_t data = this->stub_template()->insns()[i].data();
4634 gold_assert((data & 0xff00U) == 0xd000U);
4635 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4639 // Stub_factory methods.
4641 Stub_factory::Stub_factory()
4643 // The instruction template sequences are declared as static
4644 // objects and initialized first time the constructor runs.
4646 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4647 // to reach the stub if necessary.
4648 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4650 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4651 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4652 // dcd R_ARM_ABS32(X)
4655 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4657 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4659 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4660 Insn_template::arm_insn(0xe12fff1c), // bx ip
4661 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4662 // dcd R_ARM_ABS32(X)
4665 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4666 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4668 Insn_template::thumb16_insn(0xb401), // push {r0}
4669 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4670 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4671 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4672 Insn_template::thumb16_insn(0x4760), // bx ip
4673 Insn_template::thumb16_insn(0xbf00), // nop
4674 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4675 // dcd R_ARM_ABS32(X)
4678 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4680 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4682 Insn_template::thumb16_insn(0x4778), // bx pc
4683 Insn_template::thumb16_insn(0x46c0), // nop
4684 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4685 Insn_template::arm_insn(0xe12fff1c), // bx ip
4686 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4687 // dcd R_ARM_ABS32(X)
4690 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4692 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4694 Insn_template::thumb16_insn(0x4778), // bx pc
4695 Insn_template::thumb16_insn(0x46c0), // nop
4696 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4697 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4698 // dcd R_ARM_ABS32(X)
4701 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4702 // one, when the destination is close enough.
4703 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4705 Insn_template::thumb16_insn(0x4778), // bx pc
4706 Insn_template::thumb16_insn(0x46c0), // nop
4707 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4710 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4711 // blx to reach the stub if necessary.
4712 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4714 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4715 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4716 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4717 // dcd R_ARM_REL32(X-4)
4720 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4721 // blx to reach the stub if necessary. We can not add into pc;
4722 // it is not guaranteed to mode switch (different in ARMv6 and
4724 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4726 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4727 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4728 Insn_template::arm_insn(0xe12fff1c), // bx ip
4729 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4730 // dcd R_ARM_REL32(X)
4733 // V4T ARM -> ARM long branch stub, PIC.
4734 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4736 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4737 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4738 Insn_template::arm_insn(0xe12fff1c), // bx ip
4739 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4740 // dcd R_ARM_REL32(X)
4743 // V4T Thumb -> ARM long branch stub, PIC.
4744 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4746 Insn_template::thumb16_insn(0x4778), // bx pc
4747 Insn_template::thumb16_insn(0x46c0), // nop
4748 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4749 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4750 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4751 // dcd R_ARM_REL32(X)
4754 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4756 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4758 Insn_template::thumb16_insn(0xb401), // push {r0}
4759 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4760 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4761 Insn_template::thumb16_insn(0x4484), // add ip, r0
4762 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4763 Insn_template::thumb16_insn(0x4760), // bx ip
4764 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4765 // dcd R_ARM_REL32(X)
4768 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4770 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4772 Insn_template::thumb16_insn(0x4778), // bx pc
4773 Insn_template::thumb16_insn(0x46c0), // nop
4774 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4775 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4776 Insn_template::arm_insn(0xe12fff1c), // bx ip
4777 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4778 // dcd R_ARM_REL32(X)
4781 // Cortex-A8 erratum-workaround stubs.
4783 // Stub used for conditional branches (which may be beyond +/-1MB away,
4784 // so we can't use a conditional branch to reach this stub).
4791 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4793 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4794 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4795 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4799 // Stub used for b.w and bl.w instructions.
4801 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4803 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4806 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4808 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4811 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4812 // instruction (which switches to ARM mode) to point to this stub. Jump to
4813 // the real destination using an ARM-mode branch.
4814 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4816 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4819 // Stub used to provide an interworking for R_ARM_V4BX relocation
4820 // (bx r[n] instruction).
4821 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4823 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4824 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4825 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4828 // Fill in the stub template look-up table. Stub templates are constructed
4829 // per instance of Stub_factory for fast look-up without locking
4830 // in a thread-enabled environment.
4832 this->stub_templates_[arm_stub_none] =
4833 new Stub_template(arm_stub_none, NULL, 0);
4835 #define DEF_STUB(x) \
4839 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4840 Stub_type type = arm_stub_##x; \
4841 this->stub_templates_[type] = \
4842 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4850 // Stub_table methods.
4852 // Remove all Cortex-A8 stub.
4854 template<bool big_endian>
4856 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4858 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4859 p != this->cortex_a8_stubs_.end();
4862 this->cortex_a8_stubs_.clear();
4865 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4867 template<bool big_endian>
4869 Stub_table<big_endian>::relocate_stub(
4871 const Relocate_info<32, big_endian>* relinfo,
4872 Target_arm<big_endian>* arm_target,
4873 Output_section* output_section,
4874 unsigned char* view,
4875 Arm_address address,
4876 section_size_type view_size)
4878 const Stub_template* stub_template = stub->stub_template();
4879 if (stub_template->reloc_count() != 0)
4881 // Adjust view to cover the stub only.
4882 section_size_type offset = stub->offset();
4883 section_size_type stub_size = stub_template->size();
4884 gold_assert(offset + stub_size <= view_size);
4886 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4887 address + offset, stub_size);
4891 // Relocate all stubs in this stub table.
4893 template<bool big_endian>
4895 Stub_table<big_endian>::relocate_stubs(
4896 const Relocate_info<32, big_endian>* relinfo,
4897 Target_arm<big_endian>* arm_target,
4898 Output_section* output_section,
4899 unsigned char* view,
4900 Arm_address address,
4901 section_size_type view_size)
4903 // If we are passed a view bigger than the stub table's. we need to
4905 gold_assert(address == this->address()
4907 == static_cast<section_size_type>(this->data_size())));
4909 // Relocate all relocation stubs.
4910 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4911 p != this->reloc_stubs_.end();
4913 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4914 address, view_size);
4916 // Relocate all Cortex-A8 stubs.
4917 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4918 p != this->cortex_a8_stubs_.end();
4920 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4921 address, view_size);
4923 // Relocate all ARM V4BX stubs.
4924 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4925 p != this->arm_v4bx_stubs_.end();
4929 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4930 address, view_size);
4934 // Write out the stubs to file.
4936 template<bool big_endian>
4938 Stub_table<big_endian>::do_write(Output_file* of)
4940 off_t offset = this->offset();
4941 const section_size_type oview_size =
4942 convert_to_section_size_type(this->data_size());
4943 unsigned char* const oview = of->get_output_view(offset, oview_size);
4945 // Write relocation stubs.
4946 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4947 p != this->reloc_stubs_.end();
4950 Reloc_stub* stub = p->second;
4951 Arm_address address = this->address() + stub->offset();
4953 == align_address(address,
4954 stub->stub_template()->alignment()));
4955 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4959 // Write Cortex-A8 stubs.
4960 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4961 p != this->cortex_a8_stubs_.end();
4964 Cortex_a8_stub* stub = p->second;
4965 Arm_address address = this->address() + stub->offset();
4967 == align_address(address,
4968 stub->stub_template()->alignment()));
4969 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4973 // Write ARM V4BX relocation stubs.
4974 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4975 p != this->arm_v4bx_stubs_.end();
4981 Arm_address address = this->address() + (*p)->offset();
4983 == align_address(address,
4984 (*p)->stub_template()->alignment()));
4985 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4989 of->write_output_view(this->offset(), oview_size, oview);
4992 // Update the data size and address alignment of the stub table at the end
4993 // of a relaxation pass. Return true if either the data size or the
4994 // alignment changed in this relaxation pass.
4996 template<bool big_endian>
4998 Stub_table<big_endian>::update_data_size_and_addralign()
5000 // Go over all stubs in table to compute data size and address alignment.
5001 off_t size = this->reloc_stubs_size_;
5002 unsigned addralign = this->reloc_stubs_addralign_;
5004 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5005 p != this->cortex_a8_stubs_.end();
5008 const Stub_template* stub_template = p->second->stub_template();
5009 addralign = std::max(addralign, stub_template->alignment());
5010 size = (align_address(size, stub_template->alignment())
5011 + stub_template->size());
5014 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5015 p != this->arm_v4bx_stubs_.end();
5021 const Stub_template* stub_template = (*p)->stub_template();
5022 addralign = std::max(addralign, stub_template->alignment());
5023 size = (align_address(size, stub_template->alignment())
5024 + stub_template->size());
5027 // Check if either data size or alignment changed in this pass.
5028 // Update prev_data_size_ and prev_addralign_. These will be used
5029 // as the current data size and address alignment for the next pass.
5030 bool changed = size != this->prev_data_size_;
5031 this->prev_data_size_ = size;
5033 if (addralign != this->prev_addralign_)
5035 this->prev_addralign_ = addralign;
5040 // Finalize the stubs. This sets the offsets of the stubs within the stub
5041 // table. It also marks all input sections needing Cortex-A8 workaround.
5043 template<bool big_endian>
5045 Stub_table<big_endian>::finalize_stubs()
5047 off_t off = this->reloc_stubs_size_;
5048 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5049 p != this->cortex_a8_stubs_.end();
5052 Cortex_a8_stub* stub = p->second;
5053 const Stub_template* stub_template = stub->stub_template();
5054 uint64_t stub_addralign = stub_template->alignment();
5055 off = align_address(off, stub_addralign);
5056 stub->set_offset(off);
5057 off += stub_template->size();
5059 // Mark input section so that we can determine later if a code section
5060 // needs the Cortex-A8 workaround quickly.
5061 Arm_relobj<big_endian>* arm_relobj =
5062 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5063 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5066 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5067 p != this->arm_v4bx_stubs_.end();
5073 const Stub_template* stub_template = (*p)->stub_template();
5074 uint64_t stub_addralign = stub_template->alignment();
5075 off = align_address(off, stub_addralign);
5076 (*p)->set_offset(off);
5077 off += stub_template->size();
5080 gold_assert(off <= this->prev_data_size_);
5083 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5084 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5085 // of the address range seen by the linker.
5087 template<bool big_endian>
5089 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5090 Target_arm<big_endian>* arm_target,
5091 unsigned char* view,
5092 Arm_address view_address,
5093 section_size_type view_size)
5095 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5096 for (Cortex_a8_stub_list::const_iterator p =
5097 this->cortex_a8_stubs_.lower_bound(view_address);
5098 ((p != this->cortex_a8_stubs_.end())
5099 && (p->first < (view_address + view_size)));
5102 // We do not store the THUMB bit in the LSB of either the branch address
5103 // or the stub offset. There is no need to strip the LSB.
5104 Arm_address branch_address = p->first;
5105 const Cortex_a8_stub* stub = p->second;
5106 Arm_address stub_address = this->address() + stub->offset();
5108 // Offset of the branch instruction relative to this view.
5109 section_size_type offset =
5110 convert_to_section_size_type(branch_address - view_address);
5111 gold_assert((offset + 4) <= view_size);
5113 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5114 view + offset, branch_address);
5118 // Arm_input_section methods.
5120 // Initialize an Arm_input_section.
5122 template<bool big_endian>
5124 Arm_input_section<big_endian>::init()
5126 Relobj* relobj = this->relobj();
5127 unsigned int shndx = this->shndx();
5129 // We have to cache original size, alignment and contents to avoid locking
5130 // the original file.
5131 this->original_addralign_ =
5132 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5134 // This is not efficient but we expect only a small number of relaxed
5135 // input sections for stubs.
5136 section_size_type section_size;
5137 const unsigned char* section_contents =
5138 relobj->section_contents(shndx, §ion_size, false);
5139 this->original_size_ =
5140 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5142 gold_assert(this->original_contents_ == NULL);
5143 this->original_contents_ = new unsigned char[section_size];
5144 memcpy(this->original_contents_, section_contents, section_size);
5146 // We want to make this look like the original input section after
5147 // output sections are finalized.
5148 Output_section* os = relobj->output_section(shndx);
5149 off_t offset = relobj->output_section_offset(shndx);
5150 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5151 this->set_address(os->address() + offset);
5152 this->set_file_offset(os->offset() + offset);
5154 this->set_current_data_size(this->original_size_);
5155 this->finalize_data_size();
5158 template<bool big_endian>
5160 Arm_input_section<big_endian>::do_write(Output_file* of)
5162 // We have to write out the original section content.
5163 gold_assert(this->original_contents_ != NULL);
5164 of->write(this->offset(), this->original_contents_,
5165 this->original_size_);
5167 // If this owns a stub table and it is not empty, write it.
5168 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5169 this->stub_table_->write(of);
5172 // Finalize data size.
5174 template<bool big_endian>
5176 Arm_input_section<big_endian>::set_final_data_size()
5178 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5180 if (this->is_stub_table_owner())
5182 this->stub_table_->finalize_data_size();
5183 off = align_address(off, this->stub_table_->addralign());
5184 off += this->stub_table_->data_size();
5186 this->set_data_size(off);
5189 // Reset address and file offset.
5191 template<bool big_endian>
5193 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5195 // Size of the original input section contents.
5196 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5198 // If this is a stub table owner, account for the stub table size.
5199 if (this->is_stub_table_owner())
5201 Stub_table<big_endian>* stub_table = this->stub_table_;
5203 // Reset the stub table's address and file offset. The
5204 // current data size for child will be updated after that.
5205 stub_table_->reset_address_and_file_offset();
5206 off = align_address(off, stub_table_->addralign());
5207 off += stub_table->current_data_size();
5210 this->set_current_data_size(off);
5213 // Arm_exidx_cantunwind methods.
5215 // Write this to Output file OF for a fixed endianness.
5217 template<bool big_endian>
5219 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5221 off_t offset = this->offset();
5222 const section_size_type oview_size = 8;
5223 unsigned char* const oview = of->get_output_view(offset, oview_size);
5225 Output_section* os = this->relobj_->output_section(this->shndx_);
5226 gold_assert(os != NULL);
5228 Arm_relobj<big_endian>* arm_relobj =
5229 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5230 Arm_address output_offset =
5231 arm_relobj->get_output_section_offset(this->shndx_);
5232 Arm_address section_start;
5233 section_size_type section_size;
5235 // Find out the end of the text section referred by this.
5236 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5238 section_start = os->address() + output_offset;
5239 const Arm_exidx_input_section* exidx_input_section =
5240 arm_relobj->exidx_input_section_by_link(this->shndx_);
5241 gold_assert(exidx_input_section != NULL);
5243 convert_to_section_size_type(exidx_input_section->text_size());
5247 // Currently this only happens for a relaxed section.
5248 const Output_relaxed_input_section* poris =
5249 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5250 gold_assert(poris != NULL);
5251 section_start = poris->address();
5252 section_size = convert_to_section_size_type(poris->data_size());
5255 // We always append this to the end of an EXIDX section.
5256 Arm_address output_address = section_start + section_size;
5258 // Write out the entry. The first word either points to the beginning
5259 // or after the end of a text section. The second word is the special
5260 // EXIDX_CANTUNWIND value.
5261 uint32_t prel31_offset = output_address - this->address();
5262 if (Bits<31>::has_overflow32(offset))
5263 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5264 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5265 prel31_offset & 0x7fffffffU);
5266 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5267 elfcpp::EXIDX_CANTUNWIND);
5269 of->write_output_view(this->offset(), oview_size, oview);
5272 // Arm_exidx_merged_section methods.
5274 // Constructor for Arm_exidx_merged_section.
5275 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5276 // SECTION_OFFSET_MAP points to a section offset map describing how
5277 // parts of the input section are mapped to output. DELETED_BYTES is
5278 // the number of bytes deleted from the EXIDX input section.
5280 Arm_exidx_merged_section::Arm_exidx_merged_section(
5281 const Arm_exidx_input_section& exidx_input_section,
5282 const Arm_exidx_section_offset_map& section_offset_map,
5283 uint32_t deleted_bytes)
5284 : Output_relaxed_input_section(exidx_input_section.relobj(),
5285 exidx_input_section.shndx(),
5286 exidx_input_section.addralign()),
5287 exidx_input_section_(exidx_input_section),
5288 section_offset_map_(section_offset_map)
5290 // If we retain or discard the whole EXIDX input section, we would
5292 gold_assert(deleted_bytes != 0
5293 && deleted_bytes != this->exidx_input_section_.size());
5295 // Fix size here so that we do not need to implement set_final_data_size.
5296 uint32_t size = exidx_input_section.size() - deleted_bytes;
5297 this->set_data_size(size);
5298 this->fix_data_size();
5300 // Allocate buffer for section contents and build contents.
5301 this->section_contents_ = new unsigned char[size];
5304 // Build the contents of a merged EXIDX output section.
5307 Arm_exidx_merged_section::build_contents(
5308 const unsigned char* original_contents,
5309 section_size_type original_size)
5311 // Go over spans of input offsets and write only those that are not
5313 section_offset_type in_start = 0;
5314 section_offset_type out_start = 0;
5315 section_offset_type in_max =
5316 convert_types<section_offset_type>(original_size);
5317 section_offset_type out_max =
5318 convert_types<section_offset_type>(this->data_size());
5319 for (Arm_exidx_section_offset_map::const_iterator p =
5320 this->section_offset_map_.begin();
5321 p != this->section_offset_map_.end();
5324 section_offset_type in_end = p->first;
5325 gold_assert(in_end >= in_start);
5326 section_offset_type out_end = p->second;
5327 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5330 size_t out_chunk_size =
5331 convert_types<size_t>(out_end - out_start + 1);
5333 gold_assert(out_chunk_size == in_chunk_size
5334 && in_end < in_max && out_end < out_max);
5336 memcpy(this->section_contents_ + out_start,
5337 original_contents + in_start,
5339 out_start += out_chunk_size;
5341 in_start += in_chunk_size;
5345 // Given an input OBJECT, an input section index SHNDX within that
5346 // object, and an OFFSET relative to the start of that input
5347 // section, return whether or not the corresponding offset within
5348 // the output section is known. If this function returns true, it
5349 // sets *POUTPUT to the output offset. The value -1 indicates that
5350 // this input offset is being discarded.
5353 Arm_exidx_merged_section::do_output_offset(
5354 const Relobj* relobj,
5356 section_offset_type offset,
5357 section_offset_type* poutput) const
5359 // We only handle offsets for the original EXIDX input section.
5360 if (relobj != this->exidx_input_section_.relobj()
5361 || shndx != this->exidx_input_section_.shndx())
5364 section_offset_type section_size =
5365 convert_types<section_offset_type>(this->exidx_input_section_.size());
5366 if (offset < 0 || offset >= section_size)
5367 // Input offset is out of valid range.
5371 // We need to look up the section offset map to determine the output
5372 // offset. Find the reference point in map that is first offset
5373 // bigger than or equal to this offset.
5374 Arm_exidx_section_offset_map::const_iterator p =
5375 this->section_offset_map_.lower_bound(offset);
5377 // The section offset maps are build such that this should not happen if
5378 // input offset is in the valid range.
5379 gold_assert(p != this->section_offset_map_.end());
5381 // We need to check if this is dropped.
5382 section_offset_type ref = p->first;
5383 section_offset_type mapped_ref = p->second;
5385 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5386 // Offset is present in output.
5387 *poutput = mapped_ref + (offset - ref);
5389 // Offset is discarded owing to EXIDX entry merging.
5396 // Write this to output file OF.
5399 Arm_exidx_merged_section::do_write(Output_file* of)
5401 off_t offset = this->offset();
5402 const section_size_type oview_size = this->data_size();
5403 unsigned char* const oview = of->get_output_view(offset, oview_size);
5405 Output_section* os = this->relobj()->output_section(this->shndx());
5406 gold_assert(os != NULL);
5408 memcpy(oview, this->section_contents_, oview_size);
5409 of->write_output_view(this->offset(), oview_size, oview);
5412 // Arm_exidx_fixup methods.
5414 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5415 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5416 // points to the end of the last seen EXIDX section.
5419 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5421 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5422 && this->last_input_section_ != NULL)
5424 Relobj* relobj = this->last_input_section_->relobj();
5425 unsigned int text_shndx = this->last_input_section_->link();
5426 Arm_exidx_cantunwind* cantunwind =
5427 new Arm_exidx_cantunwind(relobj, text_shndx);
5428 this->exidx_output_section_->add_output_section_data(cantunwind);
5429 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5433 // Process an EXIDX section entry in input. Return whether this entry
5434 // can be deleted in the output. SECOND_WORD in the second word of the
5438 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5441 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5443 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5444 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5445 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5447 else if ((second_word & 0x80000000) != 0)
5449 // Inlined unwinding data. Merge if equal to previous.
5450 delete_entry = (merge_exidx_entries_
5451 && this->last_unwind_type_ == UT_INLINED_ENTRY
5452 && this->last_inlined_entry_ == second_word);
5453 this->last_unwind_type_ = UT_INLINED_ENTRY;
5454 this->last_inlined_entry_ = second_word;
5458 // Normal table entry. In theory we could merge these too,
5459 // but duplicate entries are likely to be much less common.
5460 delete_entry = false;
5461 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5463 return delete_entry;
5466 // Update the current section offset map during EXIDX section fix-up.
5467 // If there is no map, create one. INPUT_OFFSET is the offset of a
5468 // reference point, DELETED_BYTES is the number of deleted by in the
5469 // section so far. If DELETE_ENTRY is true, the reference point and
5470 // all offsets after the previous reference point are discarded.
5473 Arm_exidx_fixup::update_offset_map(
5474 section_offset_type input_offset,
5475 section_size_type deleted_bytes,
5478 if (this->section_offset_map_ == NULL)
5479 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5480 section_offset_type output_offset;
5482 output_offset = Arm_exidx_input_section::invalid_offset;
5484 output_offset = input_offset - deleted_bytes;
5485 (*this->section_offset_map_)[input_offset] = output_offset;
5488 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5489 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5490 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5491 // If some entries are merged, also store a pointer to a newly created
5492 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5493 // owns the map and is responsible for releasing it after use.
5495 template<bool big_endian>
5497 Arm_exidx_fixup::process_exidx_section(
5498 const Arm_exidx_input_section* exidx_input_section,
5499 const unsigned char* section_contents,
5500 section_size_type section_size,
5501 Arm_exidx_section_offset_map** psection_offset_map)
5503 Relobj* relobj = exidx_input_section->relobj();
5504 unsigned shndx = exidx_input_section->shndx();
5506 if ((section_size % 8) != 0)
5508 // Something is wrong with this section. Better not touch it.
5509 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5510 relobj->name().c_str(), shndx);
5511 this->last_input_section_ = exidx_input_section;
5512 this->last_unwind_type_ = UT_NONE;
5516 uint32_t deleted_bytes = 0;
5517 bool prev_delete_entry = false;
5518 gold_assert(this->section_offset_map_ == NULL);
5520 for (section_size_type i = 0; i < section_size; i += 8)
5522 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5524 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5525 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5527 bool delete_entry = this->process_exidx_entry(second_word);
5529 // Entry deletion causes changes in output offsets. We use a std::map
5530 // to record these. And entry (x, y) means input offset x
5531 // is mapped to output offset y. If y is invalid_offset, then x is
5532 // dropped in the output. Because of the way std::map::lower_bound
5533 // works, we record the last offset in a region w.r.t to keeping or
5534 // dropping. If there is no entry (x0, y0) for an input offset x0,
5535 // the output offset y0 of it is determined by the output offset y1 of
5536 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5537 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5539 if (delete_entry != prev_delete_entry && i != 0)
5540 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5542 // Update total deleted bytes for this entry.
5546 prev_delete_entry = delete_entry;
5549 // If section offset map is not NULL, make an entry for the end of
5551 if (this->section_offset_map_ != NULL)
5552 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5554 *psection_offset_map = this->section_offset_map_;
5555 this->section_offset_map_ = NULL;
5556 this->last_input_section_ = exidx_input_section;
5558 // Set the first output text section so that we can link the EXIDX output
5559 // section to it. Ignore any EXIDX input section that is completely merged.
5560 if (this->first_output_text_section_ == NULL
5561 && deleted_bytes != section_size)
5563 unsigned int link = exidx_input_section->link();
5564 Output_section* os = relobj->output_section(link);
5565 gold_assert(os != NULL);
5566 this->first_output_text_section_ = os;
5569 return deleted_bytes;
5572 // Arm_output_section methods.
5574 // Create a stub group for input sections from BEGIN to END. OWNER
5575 // points to the input section to be the owner a new stub table.
5577 template<bool big_endian>
5579 Arm_output_section<big_endian>::create_stub_group(
5580 Input_section_list::const_iterator begin,
5581 Input_section_list::const_iterator end,
5582 Input_section_list::const_iterator owner,
5583 Target_arm<big_endian>* target,
5584 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5587 // We use a different kind of relaxed section in an EXIDX section.
5588 // The static casting from Output_relaxed_input_section to
5589 // Arm_input_section is invalid in an EXIDX section. We are okay
5590 // because we should not be calling this for an EXIDX section.
5591 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5593 // Currently we convert ordinary input sections into relaxed sections only
5594 // at this point but we may want to support creating relaxed input section
5595 // very early. So we check here to see if owner is already a relaxed
5598 Arm_input_section<big_endian>* arm_input_section;
5599 if (owner->is_relaxed_input_section())
5602 Arm_input_section<big_endian>::as_arm_input_section(
5603 owner->relaxed_input_section());
5607 gold_assert(owner->is_input_section());
5608 // Create a new relaxed input section. We need to lock the original
5610 Task_lock_obj<Object> tl(task, owner->relobj());
5612 target->new_arm_input_section(owner->relobj(), owner->shndx());
5613 new_relaxed_sections->push_back(arm_input_section);
5616 // Create a stub table.
5617 Stub_table<big_endian>* stub_table =
5618 target->new_stub_table(arm_input_section);
5620 arm_input_section->set_stub_table(stub_table);
5622 Input_section_list::const_iterator p = begin;
5623 Input_section_list::const_iterator prev_p;
5625 // Look for input sections or relaxed input sections in [begin ... end].
5628 if (p->is_input_section() || p->is_relaxed_input_section())
5630 // The stub table information for input sections live
5631 // in their objects.
5632 Arm_relobj<big_endian>* arm_relobj =
5633 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5634 arm_relobj->set_stub_table(p->shndx(), stub_table);
5638 while (prev_p != end);
5641 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5642 // of stub groups. We grow a stub group by adding input section until the
5643 // size is just below GROUP_SIZE. The last input section will be converted
5644 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5645 // input section after the stub table, effectively double the group size.
5647 // This is similar to the group_sections() function in elf32-arm.c but is
5648 // implemented differently.
5650 template<bool big_endian>
5652 Arm_output_section<big_endian>::group_sections(
5653 section_size_type group_size,
5654 bool stubs_always_after_branch,
5655 Target_arm<big_endian>* target,
5658 // States for grouping.
5661 // No group is being built.
5663 // A group is being built but the stub table is not found yet.
5664 // We keep group a stub group until the size is just under GROUP_SIZE.
5665 // The last input section in the group will be used as the stub table.
5666 FINDING_STUB_SECTION,
5667 // A group is being built and we have already found a stub table.
5668 // We enter this state to grow a stub group by adding input section
5669 // after the stub table. This effectively doubles the group size.
5673 // Any newly created relaxed sections are stored here.
5674 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5676 State state = NO_GROUP;
5677 section_size_type off = 0;
5678 section_size_type group_begin_offset = 0;
5679 section_size_type group_end_offset = 0;
5680 section_size_type stub_table_end_offset = 0;
5681 Input_section_list::const_iterator group_begin =
5682 this->input_sections().end();
5683 Input_section_list::const_iterator stub_table =
5684 this->input_sections().end();
5685 Input_section_list::const_iterator group_end = this->input_sections().end();
5686 for (Input_section_list::const_iterator p = this->input_sections().begin();
5687 p != this->input_sections().end();
5690 section_size_type section_begin_offset =
5691 align_address(off, p->addralign());
5692 section_size_type section_end_offset =
5693 section_begin_offset + p->data_size();
5695 // Check to see if we should group the previously seen sections.
5701 case FINDING_STUB_SECTION:
5702 // Adding this section makes the group larger than GROUP_SIZE.
5703 if (section_end_offset - group_begin_offset >= group_size)
5705 if (stubs_always_after_branch)
5707 gold_assert(group_end != this->input_sections().end());
5708 this->create_stub_group(group_begin, group_end, group_end,
5709 target, &new_relaxed_sections,
5715 // But wait, there's more! Input sections up to
5716 // stub_group_size bytes after the stub table can be
5717 // handled by it too.
5718 state = HAS_STUB_SECTION;
5719 stub_table = group_end;
5720 stub_table_end_offset = group_end_offset;
5725 case HAS_STUB_SECTION:
5726 // Adding this section makes the post stub-section group larger
5728 if (section_end_offset - stub_table_end_offset >= group_size)
5730 gold_assert(group_end != this->input_sections().end());
5731 this->create_stub_group(group_begin, group_end, stub_table,
5732 target, &new_relaxed_sections, task);
5741 // If we see an input section and currently there is no group, start
5742 // a new one. Skip any empty sections. We look at the data size
5743 // instead of calling p->relobj()->section_size() to avoid locking.
5744 if ((p->is_input_section() || p->is_relaxed_input_section())
5745 && (p->data_size() != 0))
5747 if (state == NO_GROUP)
5749 state = FINDING_STUB_SECTION;
5751 group_begin_offset = section_begin_offset;
5754 // Keep track of the last input section seen.
5756 group_end_offset = section_end_offset;
5759 off = section_end_offset;
5762 // Create a stub group for any ungrouped sections.
5763 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5765 gold_assert(group_end != this->input_sections().end());
5766 this->create_stub_group(group_begin, group_end,
5767 (state == FINDING_STUB_SECTION
5770 target, &new_relaxed_sections, task);
5773 // Convert input section into relaxed input section in a batch.
5774 if (!new_relaxed_sections.empty())
5775 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5777 // Update the section offsets
5778 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5780 Arm_relobj<big_endian>* arm_relobj =
5781 Arm_relobj<big_endian>::as_arm_relobj(
5782 new_relaxed_sections[i]->relobj());
5783 unsigned int shndx = new_relaxed_sections[i]->shndx();
5784 // Tell Arm_relobj that this input section is converted.
5785 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5789 // Append non empty text sections in this to LIST in ascending
5790 // order of their position in this.
5792 template<bool big_endian>
5794 Arm_output_section<big_endian>::append_text_sections_to_list(
5795 Text_section_list* list)
5797 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5799 for (Input_section_list::const_iterator p = this->input_sections().begin();
5800 p != this->input_sections().end();
5803 // We only care about plain or relaxed input sections. We also
5804 // ignore any merged sections.
5805 if (p->is_input_section() || p->is_relaxed_input_section())
5806 list->push_back(Text_section_list::value_type(p->relobj(),
5811 template<bool big_endian>
5813 Arm_output_section<big_endian>::fix_exidx_coverage(
5815 const Text_section_list& sorted_text_sections,
5816 Symbol_table* symtab,
5817 bool merge_exidx_entries,
5820 // We should only do this for the EXIDX output section.
5821 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5823 // We don't want the relaxation loop to undo these changes, so we discard
5824 // the current saved states and take another one after the fix-up.
5825 this->discard_states();
5827 // Remove all input sections.
5828 uint64_t address = this->address();
5829 typedef std::list<Output_section::Input_section> Input_section_list;
5830 Input_section_list input_sections;
5831 this->reset_address_and_file_offset();
5832 this->get_input_sections(address, std::string(""), &input_sections);
5834 if (!this->input_sections().empty())
5835 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5837 // Go through all the known input sections and record them.
5838 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5839 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5840 Section_id_hash> Text_to_exidx_map;
5841 Text_to_exidx_map text_to_exidx_map;
5842 for (Input_section_list::const_iterator p = input_sections.begin();
5843 p != input_sections.end();
5846 // This should never happen. At this point, we should only see
5847 // plain EXIDX input sections.
5848 gold_assert(!p->is_relaxed_input_section());
5849 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5852 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5854 // Go over the sorted text sections.
5855 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5856 Section_id_set processed_input_sections;
5857 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5858 p != sorted_text_sections.end();
5861 Relobj* relobj = p->first;
5862 unsigned int shndx = p->second;
5864 Arm_relobj<big_endian>* arm_relobj =
5865 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5866 const Arm_exidx_input_section* exidx_input_section =
5867 arm_relobj->exidx_input_section_by_link(shndx);
5869 // If this text section has no EXIDX section or if the EXIDX section
5870 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5871 // of the last seen EXIDX section.
5872 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5874 exidx_fixup.add_exidx_cantunwind_as_needed();
5878 Relobj* exidx_relobj = exidx_input_section->relobj();
5879 unsigned int exidx_shndx = exidx_input_section->shndx();
5880 Section_id sid(exidx_relobj, exidx_shndx);
5881 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5882 if (iter == text_to_exidx_map.end())
5884 // This is odd. We have not seen this EXIDX input section before.
5885 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5886 // issue a warning instead. We assume the user knows what he
5887 // or she is doing. Otherwise, this is an error.
5888 if (layout->script_options()->saw_sections_clause())
5889 gold_warning(_("unwinding may not work because EXIDX input section"
5890 " %u of %s is not in EXIDX output section"),
5891 exidx_shndx, exidx_relobj->name().c_str());
5893 gold_error(_("unwinding may not work because EXIDX input section"
5894 " %u of %s is not in EXIDX output section"),
5895 exidx_shndx, exidx_relobj->name().c_str());
5897 exidx_fixup.add_exidx_cantunwind_as_needed();
5901 // We need to access the contents of the EXIDX section, lock the
5903 Task_lock_obj<Object> tl(task, exidx_relobj);
5904 section_size_type exidx_size;
5905 const unsigned char* exidx_contents =
5906 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5908 // Fix up coverage and append input section to output data list.
5909 Arm_exidx_section_offset_map* section_offset_map = NULL;
5910 uint32_t deleted_bytes =
5911 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5914 §ion_offset_map);
5916 if (deleted_bytes == exidx_input_section->size())
5918 // The whole EXIDX section got merged. Remove it from output.
5919 gold_assert(section_offset_map == NULL);
5920 exidx_relobj->set_output_section(exidx_shndx, NULL);
5922 // All local symbols defined in this input section will be dropped.
5923 // We need to adjust output local symbol count.
5924 arm_relobj->set_output_local_symbol_count_needs_update();
5926 else if (deleted_bytes > 0)
5928 // Some entries are merged. We need to convert this EXIDX input
5929 // section into a relaxed section.
5930 gold_assert(section_offset_map != NULL);
5932 Arm_exidx_merged_section* merged_section =
5933 new Arm_exidx_merged_section(*exidx_input_section,
5934 *section_offset_map, deleted_bytes);
5935 merged_section->build_contents(exidx_contents, exidx_size);
5937 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5938 this->add_relaxed_input_section(layout, merged_section, secname);
5939 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5941 // All local symbols defined in discarded portions of this input
5942 // section will be dropped. We need to adjust output local symbol
5944 arm_relobj->set_output_local_symbol_count_needs_update();
5948 // Just add back the EXIDX input section.
5949 gold_assert(section_offset_map == NULL);
5950 const Output_section::Input_section* pis = iter->second;
5951 gold_assert(pis->is_input_section());
5952 this->add_script_input_section(*pis);
5955 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5958 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5959 exidx_fixup.add_exidx_cantunwind_as_needed();
5961 // Remove any known EXIDX input sections that are not processed.
5962 for (Input_section_list::const_iterator p = input_sections.begin();
5963 p != input_sections.end();
5966 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5967 == processed_input_sections.end())
5969 // We discard a known EXIDX section because its linked
5970 // text section has been folded by ICF. We also discard an
5971 // EXIDX section with error, the output does not matter in this
5972 // case. We do this to avoid triggering asserts.
5973 Arm_relobj<big_endian>* arm_relobj =
5974 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5975 const Arm_exidx_input_section* exidx_input_section =
5976 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5977 gold_assert(exidx_input_section != NULL);
5978 if (!exidx_input_section->has_errors())
5980 unsigned int text_shndx = exidx_input_section->link();
5981 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5984 // Remove this from link. We also need to recount the
5986 p->relobj()->set_output_section(p->shndx(), NULL);
5987 arm_relobj->set_output_local_symbol_count_needs_update();
5991 // Link exidx output section to the first seen output section and
5992 // set correct entry size.
5993 this->set_link_section(exidx_fixup.first_output_text_section());
5994 this->set_entsize(8);
5996 // Make changes permanent.
5997 this->save_states();
5998 this->set_section_offsets_need_adjustment();
6001 // Link EXIDX output sections to text output sections.
6003 template<bool big_endian>
6005 Arm_output_section<big_endian>::set_exidx_section_link()
6007 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6008 if (!this->input_sections().empty())
6010 Input_section_list::const_iterator p = this->input_sections().begin();
6011 Arm_relobj<big_endian>* arm_relobj =
6012 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6013 unsigned exidx_shndx = p->shndx();
6014 const Arm_exidx_input_section* exidx_input_section =
6015 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6016 gold_assert(exidx_input_section != NULL);
6017 unsigned int text_shndx = exidx_input_section->link();
6018 Output_section* os = arm_relobj->output_section(text_shndx);
6019 this->set_link_section(os);
6023 // Arm_relobj methods.
6025 // Determine if an input section is scannable for stub processing. SHDR is
6026 // the header of the section and SHNDX is the section index. OS is the output
6027 // section for the input section and SYMTAB is the global symbol table used to
6028 // look up ICF information.
6030 template<bool big_endian>
6032 Arm_relobj<big_endian>::section_is_scannable(
6033 const elfcpp::Shdr<32, big_endian>& shdr,
6035 const Output_section* os,
6036 const Symbol_table* symtab)
6038 // Skip any empty sections, unallocated sections or sections whose
6039 // type are not SHT_PROGBITS.
6040 if (shdr.get_sh_size() == 0
6041 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6042 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6045 // Skip any discarded or ICF'ed sections.
6046 if (os == NULL || symtab->is_section_folded(this, shndx))
6049 // If this requires special offset handling, check to see if it is
6050 // a relaxed section. If this is not, then it is a merged section that
6051 // we cannot handle.
6052 if (this->is_output_section_offset_invalid(shndx))
6054 const Output_relaxed_input_section* poris =
6055 os->find_relaxed_input_section(this, shndx);
6063 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6064 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6066 template<bool big_endian>
6068 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6069 const elfcpp::Shdr<32, big_endian>& shdr,
6070 const Relobj::Output_sections& out_sections,
6071 const Symbol_table* symtab,
6072 const unsigned char* pshdrs)
6074 unsigned int sh_type = shdr.get_sh_type();
6075 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6078 // Ignore empty section.
6079 off_t sh_size = shdr.get_sh_size();
6083 // Ignore reloc section with unexpected symbol table. The
6084 // error will be reported in the final link.
6085 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6088 unsigned int reloc_size;
6089 if (sh_type == elfcpp::SHT_REL)
6090 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6092 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6094 // Ignore reloc section with unexpected entsize or uneven size.
6095 // The error will be reported in the final link.
6096 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6099 // Ignore reloc section with bad info. This error will be
6100 // reported in the final link.
6101 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6102 if (index >= this->shnum())
6105 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6106 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6107 return this->section_is_scannable(text_shdr, index,
6108 out_sections[index], symtab);
6111 // Return the output address of either a plain input section or a relaxed
6112 // input section. SHNDX is the section index. We define and use this
6113 // instead of calling Output_section::output_address because that is slow
6114 // for large output.
6116 template<bool big_endian>
6118 Arm_relobj<big_endian>::simple_input_section_output_address(
6122 if (this->is_output_section_offset_invalid(shndx))
6124 const Output_relaxed_input_section* poris =
6125 os->find_relaxed_input_section(this, shndx);
6126 // We do not handle merged sections here.
6127 gold_assert(poris != NULL);
6128 return poris->address();
6131 return os->address() + this->get_output_section_offset(shndx);
6134 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6135 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6137 template<bool big_endian>
6139 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6140 const elfcpp::Shdr<32, big_endian>& shdr,
6143 const Symbol_table* symtab)
6145 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6148 // If the section does not cross any 4K-boundaries, it does not need to
6150 Arm_address address = this->simple_input_section_output_address(shndx, os);
6151 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6157 // Scan a section for Cortex-A8 workaround.
6159 template<bool big_endian>
6161 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6162 const elfcpp::Shdr<32, big_endian>& shdr,
6165 Target_arm<big_endian>* arm_target)
6167 // Look for the first mapping symbol in this section. It should be
6169 Mapping_symbol_position section_start(shndx, 0);
6170 typename Mapping_symbols_info::const_iterator p =
6171 this->mapping_symbols_info_.lower_bound(section_start);
6173 // There are no mapping symbols for this section. Treat it as a data-only
6174 // section. Issue a warning if section is marked as containing
6176 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6178 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6179 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6180 "erratum because it has no mapping symbols."),
6181 shndx, this->name().c_str());
6185 Arm_address output_address =
6186 this->simple_input_section_output_address(shndx, os);
6188 // Get the section contents.
6189 section_size_type input_view_size = 0;
6190 const unsigned char* input_view =
6191 this->section_contents(shndx, &input_view_size, false);
6193 // We need to go through the mapping symbols to determine what to
6194 // scan. There are two reasons. First, we should look at THUMB code and
6195 // THUMB code only. Second, we only want to look at the 4K-page boundary
6196 // to speed up the scanning.
6198 while (p != this->mapping_symbols_info_.end()
6199 && p->first.first == shndx)
6201 typename Mapping_symbols_info::const_iterator next =
6202 this->mapping_symbols_info_.upper_bound(p->first);
6204 // Only scan part of a section with THUMB code.
6205 if (p->second == 't')
6207 // Determine the end of this range.
6208 section_size_type span_start =
6209 convert_to_section_size_type(p->first.second);
6210 section_size_type span_end;
6211 if (next != this->mapping_symbols_info_.end()
6212 && next->first.first == shndx)
6213 span_end = convert_to_section_size_type(next->first.second);
6215 span_end = convert_to_section_size_type(shdr.get_sh_size());
6217 if (((span_start + output_address) & ~0xfffUL)
6218 != ((span_end + output_address - 1) & ~0xfffUL))
6220 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6221 span_start, span_end,
6231 // Scan relocations for stub generation.
6233 template<bool big_endian>
6235 Arm_relobj<big_endian>::scan_sections_for_stubs(
6236 Target_arm<big_endian>* arm_target,
6237 const Symbol_table* symtab,
6238 const Layout* layout)
6240 unsigned int shnum = this->shnum();
6241 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6243 // Read the section headers.
6244 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6248 // To speed up processing, we set up hash tables for fast lookup of
6249 // input offsets to output addresses.
6250 this->initialize_input_to_output_maps();
6252 const Relobj::Output_sections& out_sections(this->output_sections());
6254 Relocate_info<32, big_endian> relinfo;
6255 relinfo.symtab = symtab;
6256 relinfo.layout = layout;
6257 relinfo.object = this;
6259 // Do relocation stubs scanning.
6260 const unsigned char* p = pshdrs + shdr_size;
6261 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6263 const elfcpp::Shdr<32, big_endian> shdr(p);
6264 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6267 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6268 Arm_address output_offset = this->get_output_section_offset(index);
6269 Arm_address output_address;
6270 if (output_offset != invalid_address)
6271 output_address = out_sections[index]->address() + output_offset;
6274 // Currently this only happens for a relaxed section.
6275 const Output_relaxed_input_section* poris =
6276 out_sections[index]->find_relaxed_input_section(this, index);
6277 gold_assert(poris != NULL);
6278 output_address = poris->address();
6281 // Get the relocations.
6282 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6286 // Get the section contents. This does work for the case in which
6287 // we modify the contents of an input section. We need to pass the
6288 // output view under such circumstances.
6289 section_size_type input_view_size = 0;
6290 const unsigned char* input_view =
6291 this->section_contents(index, &input_view_size, false);
6293 relinfo.reloc_shndx = i;
6294 relinfo.data_shndx = index;
6295 unsigned int sh_type = shdr.get_sh_type();
6296 unsigned int reloc_size;
6297 if (sh_type == elfcpp::SHT_REL)
6298 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6300 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6302 Output_section* os = out_sections[index];
6303 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6304 shdr.get_sh_size() / reloc_size,
6306 output_offset == invalid_address,
6307 input_view, output_address,
6312 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6313 // after its relocation section, if there is one, is processed for
6314 // relocation stubs. Merging this loop with the one above would have been
6315 // complicated since we would have had to make sure that relocation stub
6316 // scanning is done first.
6317 if (arm_target->fix_cortex_a8())
6319 const unsigned char* p = pshdrs + shdr_size;
6320 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6322 const elfcpp::Shdr<32, big_endian> shdr(p);
6323 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6326 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6331 // After we've done the relocations, we release the hash tables,
6332 // since we no longer need them.
6333 this->free_input_to_output_maps();
6336 // Count the local symbols. The ARM backend needs to know if a symbol
6337 // is a THUMB function or not. For global symbols, it is easy because
6338 // the Symbol object keeps the ELF symbol type. For local symbol it is
6339 // harder because we cannot access this information. So we override the
6340 // do_count_local_symbol in parent and scan local symbols to mark
6341 // THUMB functions. This is not the most efficient way but I do not want to
6342 // slow down other ports by calling a per symbol target hook inside
6343 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6345 template<bool big_endian>
6347 Arm_relobj<big_endian>::do_count_local_symbols(
6348 Stringpool_template<char>* pool,
6349 Stringpool_template<char>* dynpool)
6351 // We need to fix-up the values of any local symbols whose type are
6354 // Ask parent to count the local symbols.
6355 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6356 const unsigned int loccount = this->local_symbol_count();
6360 // Initialize the thumb function bit-vector.
6361 std::vector<bool> empty_vector(loccount, false);
6362 this->local_symbol_is_thumb_function_.swap(empty_vector);
6364 // Read the symbol table section header.
6365 const unsigned int symtab_shndx = this->symtab_shndx();
6366 elfcpp::Shdr<32, big_endian>
6367 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6368 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6370 // Read the local symbols.
6371 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6372 gold_assert(loccount == symtabshdr.get_sh_info());
6373 off_t locsize = loccount * sym_size;
6374 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6375 locsize, true, true);
6377 // For mapping symbol processing, we need to read the symbol names.
6378 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6379 if (strtab_shndx >= this->shnum())
6381 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6385 elfcpp::Shdr<32, big_endian>
6386 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6387 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6389 this->error(_("symbol table name section has wrong type: %u"),
6390 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6393 const char* pnames =
6394 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6395 strtabshdr.get_sh_size(),
6398 // Loop over the local symbols and mark any local symbols pointing
6399 // to THUMB functions.
6401 // Skip the first dummy symbol.
6403 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6404 this->local_values();
6405 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6407 elfcpp::Sym<32, big_endian> sym(psyms);
6408 elfcpp::STT st_type = sym.get_st_type();
6409 Symbol_value<32>& lv((*plocal_values)[i]);
6410 Arm_address input_value = lv.input_value();
6412 // Check to see if this is a mapping symbol.
6413 const char* sym_name = pnames + sym.get_st_name();
6414 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6417 unsigned int input_shndx =
6418 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6419 gold_assert(is_ordinary);
6421 // Strip of LSB in case this is a THUMB symbol.
6422 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6423 this->mapping_symbols_info_[msp] = sym_name[1];
6426 if (st_type == elfcpp::STT_ARM_TFUNC
6427 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6429 // This is a THUMB function. Mark this and canonicalize the
6430 // symbol value by setting LSB.
6431 this->local_symbol_is_thumb_function_[i] = true;
6432 if ((input_value & 1) == 0)
6433 lv.set_input_value(input_value | 1);
6438 // Relocate sections.
6439 template<bool big_endian>
6441 Arm_relobj<big_endian>::do_relocate_sections(
6442 const Symbol_table* symtab,
6443 const Layout* layout,
6444 const unsigned char* pshdrs,
6446 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6448 // Call parent to relocate sections.
6449 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6450 pshdrs, of, pviews);
6452 // We do not generate stubs if doing a relocatable link.
6453 if (parameters->options().relocatable())
6456 // Relocate stub tables.
6457 unsigned int shnum = this->shnum();
6459 Target_arm<big_endian>* arm_target =
6460 Target_arm<big_endian>::default_target();
6462 Relocate_info<32, big_endian> relinfo;
6463 relinfo.symtab = symtab;
6464 relinfo.layout = layout;
6465 relinfo.object = this;
6467 for (unsigned int i = 1; i < shnum; ++i)
6469 Arm_input_section<big_endian>* arm_input_section =
6470 arm_target->find_arm_input_section(this, i);
6472 if (arm_input_section != NULL
6473 && arm_input_section->is_stub_table_owner()
6474 && !arm_input_section->stub_table()->empty())
6476 // We cannot discard a section if it owns a stub table.
6477 Output_section* os = this->output_section(i);
6478 gold_assert(os != NULL);
6480 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6481 relinfo.reloc_shdr = NULL;
6482 relinfo.data_shndx = i;
6483 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6485 gold_assert((*pviews)[i].view != NULL);
6487 // We are passed the output section view. Adjust it to cover the
6489 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6490 gold_assert((stub_table->address() >= (*pviews)[i].address)
6491 && ((stub_table->address() + stub_table->data_size())
6492 <= (*pviews)[i].address + (*pviews)[i].view_size));
6494 off_t offset = stub_table->address() - (*pviews)[i].address;
6495 unsigned char* view = (*pviews)[i].view + offset;
6496 Arm_address address = stub_table->address();
6497 section_size_type view_size = stub_table->data_size();
6499 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6503 // Apply Cortex A8 workaround if applicable.
6504 if (this->section_has_cortex_a8_workaround(i))
6506 unsigned char* view = (*pviews)[i].view;
6507 Arm_address view_address = (*pviews)[i].address;
6508 section_size_type view_size = (*pviews)[i].view_size;
6509 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6511 // Adjust view to cover section.
6512 Output_section* os = this->output_section(i);
6513 gold_assert(os != NULL);
6514 Arm_address section_address =
6515 this->simple_input_section_output_address(i, os);
6516 uint64_t section_size = this->section_size(i);
6518 gold_assert(section_address >= view_address
6519 && ((section_address + section_size)
6520 <= (view_address + view_size)));
6522 unsigned char* section_view = view + (section_address - view_address);
6524 // Apply the Cortex-A8 workaround to the output address range
6525 // corresponding to this input section.
6526 stub_table->apply_cortex_a8_workaround_to_address_range(
6535 // Find the linked text section of an EXIDX section by looking at the first
6536 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6537 // must be linked to its associated code section via the sh_link field of
6538 // its section header. However, some tools are broken and the link is not
6539 // always set. LD just drops such an EXIDX section silently, causing the
6540 // associated code not unwindabled. Here we try a little bit harder to
6541 // discover the linked code section.
6543 // PSHDR points to the section header of a relocation section of an EXIDX
6544 // section. If we can find a linked text section, return true and
6545 // store the text section index in the location PSHNDX. Otherwise
6548 template<bool big_endian>
6550 Arm_relobj<big_endian>::find_linked_text_section(
6551 const unsigned char* pshdr,
6552 const unsigned char* psyms,
6553 unsigned int* pshndx)
6555 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6557 // If there is no relocation, we cannot find the linked text section.
6559 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6560 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6562 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6563 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6565 // Get the relocations.
6566 const unsigned char* prelocs =
6567 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6569 // Find the REL31 relocation for the first word of the first EXIDX entry.
6570 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6572 Arm_address r_offset;
6573 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6574 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6576 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6577 r_info = reloc.get_r_info();
6578 r_offset = reloc.get_r_offset();
6582 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6583 r_info = reloc.get_r_info();
6584 r_offset = reloc.get_r_offset();
6587 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6588 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6591 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6593 || r_sym >= this->local_symbol_count()
6597 // This is the relocation for the first word of the first EXIDX entry.
6598 // We expect to see a local section symbol.
6599 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6600 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6601 if (sym.get_st_type() == elfcpp::STT_SECTION)
6605 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6606 gold_assert(is_ordinary);
6616 // Make an EXIDX input section object for an EXIDX section whose index is
6617 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6618 // is the section index of the linked text section.
6620 template<bool big_endian>
6622 Arm_relobj<big_endian>::make_exidx_input_section(
6624 const elfcpp::Shdr<32, big_endian>& shdr,
6625 unsigned int text_shndx,
6626 const elfcpp::Shdr<32, big_endian>& text_shdr)
6628 // Create an Arm_exidx_input_section object for this EXIDX section.
6629 Arm_exidx_input_section* exidx_input_section =
6630 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6631 shdr.get_sh_addralign(),
6632 text_shdr.get_sh_size());
6634 gold_assert(this->exidx_section_map_[shndx] == NULL);
6635 this->exidx_section_map_[shndx] = exidx_input_section;
6637 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6639 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6640 this->section_name(shndx).c_str(), shndx, text_shndx,
6641 this->name().c_str());
6642 exidx_input_section->set_has_errors();
6644 else if (this->exidx_section_map_[text_shndx] != NULL)
6646 unsigned other_exidx_shndx =
6647 this->exidx_section_map_[text_shndx]->shndx();
6648 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6650 this->section_name(shndx).c_str(), shndx,
6651 this->section_name(other_exidx_shndx).c_str(),
6652 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6653 text_shndx, this->name().c_str());
6654 exidx_input_section->set_has_errors();
6657 this->exidx_section_map_[text_shndx] = exidx_input_section;
6659 // Check section flags of text section.
6660 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6662 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6664 this->section_name(shndx).c_str(), shndx,
6665 this->section_name(text_shndx).c_str(), text_shndx,
6666 this->name().c_str());
6667 exidx_input_section->set_has_errors();
6669 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6670 // I would like to make this an error but currently ld just ignores
6672 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6674 this->section_name(shndx).c_str(), shndx,
6675 this->section_name(text_shndx).c_str(), text_shndx,
6676 this->name().c_str());
6679 // Read the symbol information.
6681 template<bool big_endian>
6683 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6685 // Call parent class to read symbol information.
6686 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6688 // If this input file is a binary file, it has no processor
6689 // specific flags and attributes section.
6690 Input_file::Format format = this->input_file()->format();
6691 if (format != Input_file::FORMAT_ELF)
6693 gold_assert(format == Input_file::FORMAT_BINARY);
6694 this->merge_flags_and_attributes_ = false;
6698 // Read processor-specific flags in ELF file header.
6699 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6700 elfcpp::Elf_sizes<32>::ehdr_size,
6702 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6703 this->processor_specific_flags_ = ehdr.get_e_flags();
6705 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6707 std::vector<unsigned int> deferred_exidx_sections;
6708 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6709 const unsigned char* pshdrs = sd->section_headers->data();
6710 const unsigned char* ps = pshdrs + shdr_size;
6711 bool must_merge_flags_and_attributes = false;
6712 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6714 elfcpp::Shdr<32, big_endian> shdr(ps);
6716 // Sometimes an object has no contents except the section name string
6717 // table and an empty symbol table with the undefined symbol. We
6718 // don't want to merge processor-specific flags from such an object.
6719 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6721 // Symbol table is not empty.
6722 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6723 elfcpp::Elf_sizes<32>::sym_size;
6724 if (shdr.get_sh_size() > sym_size)
6725 must_merge_flags_and_attributes = true;
6727 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6728 // If this is neither an empty symbol table nor a string table,
6730 must_merge_flags_and_attributes = true;
6732 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6734 gold_assert(this->attributes_section_data_ == NULL);
6735 section_offset_type section_offset = shdr.get_sh_offset();
6736 section_size_type section_size =
6737 convert_to_section_size_type(shdr.get_sh_size());
6738 const unsigned char* view =
6739 this->get_view(section_offset, section_size, true, false);
6740 this->attributes_section_data_ =
6741 new Attributes_section_data(view, section_size);
6743 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6745 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6746 if (text_shndx == elfcpp::SHN_UNDEF)
6747 deferred_exidx_sections.push_back(i);
6750 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6751 + text_shndx * shdr_size);
6752 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6754 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6755 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6756 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6757 this->section_name(i).c_str(), this->name().c_str());
6762 if (!must_merge_flags_and_attributes)
6764 gold_assert(deferred_exidx_sections.empty());
6765 this->merge_flags_and_attributes_ = false;
6769 // Some tools are broken and they do not set the link of EXIDX sections.
6770 // We look at the first relocation to figure out the linked sections.
6771 if (!deferred_exidx_sections.empty())
6773 // We need to go over the section headers again to find the mapping
6774 // from sections being relocated to their relocation sections. This is
6775 // a bit inefficient as we could do that in the loop above. However,
6776 // we do not expect any deferred EXIDX sections normally. So we do not
6777 // want to slow down the most common path.
6778 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6779 Reloc_map reloc_map;
6780 ps = pshdrs + shdr_size;
6781 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6783 elfcpp::Shdr<32, big_endian> shdr(ps);
6784 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6785 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6787 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6788 if (info_shndx >= this->shnum())
6789 gold_error(_("relocation section %u has invalid info %u"),
6791 Reloc_map::value_type value(info_shndx, i);
6792 std::pair<Reloc_map::iterator, bool> result =
6793 reloc_map.insert(value);
6795 gold_error(_("section %u has multiple relocation sections "
6797 info_shndx, i, reloc_map[info_shndx]);
6801 // Read the symbol table section header.
6802 const unsigned int symtab_shndx = this->symtab_shndx();
6803 elfcpp::Shdr<32, big_endian>
6804 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6805 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6807 // Read the local symbols.
6808 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6809 const unsigned int loccount = this->local_symbol_count();
6810 gold_assert(loccount == symtabshdr.get_sh_info());
6811 off_t locsize = loccount * sym_size;
6812 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6813 locsize, true, true);
6815 // Process the deferred EXIDX sections.
6816 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6818 unsigned int shndx = deferred_exidx_sections[i];
6819 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6820 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6821 Reloc_map::const_iterator it = reloc_map.find(shndx);
6822 if (it != reloc_map.end())
6823 find_linked_text_section(pshdrs + it->second * shdr_size,
6824 psyms, &text_shndx);
6825 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6826 + text_shndx * shdr_size);
6827 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6832 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6833 // sections for unwinding. These sections are referenced implicitly by
6834 // text sections linked in the section headers. If we ignore these implicit
6835 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6836 // will be garbage-collected incorrectly. Hence we override the same function
6837 // in the base class to handle these implicit references.
6839 template<bool big_endian>
6841 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6843 Read_relocs_data* rd)
6845 // First, call base class method to process relocations in this object.
6846 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6848 // If --gc-sections is not specified, there is nothing more to do.
6849 // This happens when --icf is used but --gc-sections is not.
6850 if (!parameters->options().gc_sections())
6853 unsigned int shnum = this->shnum();
6854 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6855 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6859 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6860 // to these from the linked text sections.
6861 const unsigned char* ps = pshdrs + shdr_size;
6862 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6864 elfcpp::Shdr<32, big_endian> shdr(ps);
6865 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6867 // Found an .ARM.exidx section, add it to the set of reachable
6868 // sections from its linked text section.
6869 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6870 symtab->gc()->add_reference(this, text_shndx, this, i);
6875 // Update output local symbol count. Owing to EXIDX entry merging, some local
6876 // symbols will be removed in output. Adjust output local symbol count
6877 // accordingly. We can only changed the static output local symbol count. It
6878 // is too late to change the dynamic symbols.
6880 template<bool big_endian>
6882 Arm_relobj<big_endian>::update_output_local_symbol_count()
6884 // Caller should check that this needs updating. We want caller checking
6885 // because output_local_symbol_count_needs_update() is most likely inlined.
6886 gold_assert(this->output_local_symbol_count_needs_update_);
6888 gold_assert(this->symtab_shndx() != -1U);
6889 if (this->symtab_shndx() == 0)
6891 // This object has no symbols. Weird but legal.
6895 // Read the symbol table section header.
6896 const unsigned int symtab_shndx = this->symtab_shndx();
6897 elfcpp::Shdr<32, big_endian>
6898 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6899 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6901 // Read the local symbols.
6902 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6903 const unsigned int loccount = this->local_symbol_count();
6904 gold_assert(loccount == symtabshdr.get_sh_info());
6905 off_t locsize = loccount * sym_size;
6906 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6907 locsize, true, true);
6909 // Loop over the local symbols.
6911 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6913 const Output_sections& out_sections(this->output_sections());
6914 unsigned int shnum = this->shnum();
6915 unsigned int count = 0;
6916 // Skip the first, dummy, symbol.
6918 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6920 elfcpp::Sym<32, big_endian> sym(psyms);
6922 Symbol_value<32>& lv((*this->local_values())[i]);
6924 // This local symbol was already discarded by do_count_local_symbols.
6925 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6929 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6934 Output_section* os = out_sections[shndx];
6936 // This local symbol no longer has an output section. Discard it.
6939 lv.set_no_output_symtab_entry();
6943 // Currently we only discard parts of EXIDX input sections.
6944 // We explicitly check for a merged EXIDX input section to avoid
6945 // calling Output_section_data::output_offset unless necessary.
6946 if ((this->get_output_section_offset(shndx) == invalid_address)
6947 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6949 section_offset_type output_offset =
6950 os->output_offset(this, shndx, lv.input_value());
6951 if (output_offset == -1)
6953 // This symbol is defined in a part of an EXIDX input section
6954 // that is discarded due to entry merging.
6955 lv.set_no_output_symtab_entry();
6964 this->set_output_local_symbol_count(count);
6965 this->output_local_symbol_count_needs_update_ = false;
6968 // Arm_dynobj methods.
6970 // Read the symbol information.
6972 template<bool big_endian>
6974 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6976 // Call parent class to read symbol information.
6977 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6979 // Read processor-specific flags in ELF file header.
6980 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6981 elfcpp::Elf_sizes<32>::ehdr_size,
6983 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6984 this->processor_specific_flags_ = ehdr.get_e_flags();
6986 // Read the attributes section if there is one.
6987 // We read from the end because gas seems to put it near the end of
6988 // the section headers.
6989 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6990 const unsigned char* ps =
6991 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6992 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6994 elfcpp::Shdr<32, big_endian> shdr(ps);
6995 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6997 section_offset_type section_offset = shdr.get_sh_offset();
6998 section_size_type section_size =
6999 convert_to_section_size_type(shdr.get_sh_size());
7000 const unsigned char* view =
7001 this->get_view(section_offset, section_size, true, false);
7002 this->attributes_section_data_ =
7003 new Attributes_section_data(view, section_size);
7009 // Stub_addend_reader methods.
7011 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7013 template<bool big_endian>
7014 elfcpp::Elf_types<32>::Elf_Swxword
7015 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7016 unsigned int r_type,
7017 const unsigned char* view,
7018 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7020 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
7024 case elfcpp::R_ARM_CALL:
7025 case elfcpp::R_ARM_JUMP24:
7026 case elfcpp::R_ARM_PLT32:
7028 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7029 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7030 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7031 return Bits<26>::sign_extend32(val << 2);
7034 case elfcpp::R_ARM_THM_CALL:
7035 case elfcpp::R_ARM_THM_JUMP24:
7036 case elfcpp::R_ARM_THM_XPC22:
7038 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7039 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7040 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7041 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7042 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7045 case elfcpp::R_ARM_THM_JUMP19:
7047 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7048 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7049 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7050 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7051 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7059 // Arm_output_data_got methods.
7061 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7062 // The first one is initialized to be 1, which is the module index for
7063 // the main executable and the second one 0. A reloc of the type
7064 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7065 // be applied by gold. GSYM is a global symbol.
7067 template<bool big_endian>
7069 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7070 unsigned int got_type,
7073 if (gsym->has_got_offset(got_type))
7076 // We are doing a static link. Just mark it as belong to module 1,
7078 unsigned int got_offset = this->add_constant(1);
7079 gsym->set_got_offset(got_type, got_offset);
7080 got_offset = this->add_constant(0);
7081 this->static_relocs_.push_back(Static_reloc(got_offset,
7082 elfcpp::R_ARM_TLS_DTPOFF32,
7086 // Same as the above but for a local symbol.
7088 template<bool big_endian>
7090 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7091 unsigned int got_type,
7092 Sized_relobj_file<32, big_endian>* object,
7095 if (object->local_has_got_offset(index, got_type))
7098 // We are doing a static link. Just mark it as belong to module 1,
7100 unsigned int got_offset = this->add_constant(1);
7101 object->set_local_got_offset(index, got_type, got_offset);
7102 got_offset = this->add_constant(0);
7103 this->static_relocs_.push_back(Static_reloc(got_offset,
7104 elfcpp::R_ARM_TLS_DTPOFF32,
7108 template<bool big_endian>
7110 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7112 // Call parent to write out GOT.
7113 Output_data_got<32, big_endian>::do_write(of);
7115 // We are done if there is no fix up.
7116 if (this->static_relocs_.empty())
7119 gold_assert(parameters->doing_static_link());
7121 const off_t offset = this->offset();
7122 const section_size_type oview_size =
7123 convert_to_section_size_type(this->data_size());
7124 unsigned char* const oview = of->get_output_view(offset, oview_size);
7126 Output_segment* tls_segment = this->layout_->tls_segment();
7127 gold_assert(tls_segment != NULL);
7129 // The thread pointer $tp points to the TCB, which is followed by the
7130 // TLS. So we need to adjust $tp relative addressing by this amount.
7131 Arm_address aligned_tcb_size =
7132 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7134 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7136 Static_reloc& reloc(this->static_relocs_[i]);
7139 if (!reloc.symbol_is_global())
7141 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7142 const Symbol_value<32>* psymval =
7143 reloc.relobj()->local_symbol(reloc.index());
7145 // We are doing static linking. Issue an error and skip this
7146 // relocation if the symbol is undefined or in a discarded_section.
7148 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7149 if ((shndx == elfcpp::SHN_UNDEF)
7151 && shndx != elfcpp::SHN_UNDEF
7152 && !object->is_section_included(shndx)
7153 && !this->symbol_table_->is_section_folded(object, shndx)))
7155 gold_error(_("undefined or discarded local symbol %u from "
7156 " object %s in GOT"),
7157 reloc.index(), reloc.relobj()->name().c_str());
7161 value = psymval->value(object, 0);
7165 const Symbol* gsym = reloc.symbol();
7166 gold_assert(gsym != NULL);
7167 if (gsym->is_forwarder())
7168 gsym = this->symbol_table_->resolve_forwards(gsym);
7170 // We are doing static linking. Issue an error and skip this
7171 // relocation if the symbol is undefined or in a discarded_section
7172 // unless it is a weakly_undefined symbol.
7173 if ((gsym->is_defined_in_discarded_section()
7174 || gsym->is_undefined())
7175 && !gsym->is_weak_undefined())
7177 gold_error(_("undefined or discarded symbol %s in GOT"),
7182 if (!gsym->is_weak_undefined())
7184 const Sized_symbol<32>* sym =
7185 static_cast<const Sized_symbol<32>*>(gsym);
7186 value = sym->value();
7192 unsigned got_offset = reloc.got_offset();
7193 gold_assert(got_offset < oview_size);
7195 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7196 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7198 switch (reloc.r_type())
7200 case elfcpp::R_ARM_TLS_DTPOFF32:
7203 case elfcpp::R_ARM_TLS_TPOFF32:
7204 x = value + aligned_tcb_size;
7209 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7212 of->write_output_view(offset, oview_size, oview);
7215 // A class to handle the PLT data.
7216 // This is an abstract base class that handles most of the linker details
7217 // but does not know the actual contents of PLT entries. The derived
7218 // classes below fill in those details.
7220 template<bool big_endian>
7221 class Output_data_plt_arm : public Output_section_data
7224 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7227 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
7229 // Add an entry to the PLT.
7231 add_entry(Symbol* gsym);
7233 // Return the .rel.plt section data.
7234 const Reloc_section*
7236 { return this->rel_; }
7238 // Return the number of PLT entries.
7241 { return this->count_; }
7243 // Return the offset of the first non-reserved PLT entry.
7245 first_plt_entry_offset() const
7246 { return this->do_first_plt_entry_offset(); }
7248 // Return the size of a PLT entry.
7250 get_plt_entry_size() const
7251 { return this->do_get_plt_entry_size(); }
7254 // Fill in the first PLT entry.
7256 fill_first_plt_entry(unsigned char* pov,
7257 Arm_address got_address,
7258 Arm_address plt_address)
7259 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7262 fill_plt_entry(unsigned char* pov,
7263 Arm_address got_address,
7264 Arm_address plt_address,
7265 unsigned int got_offset,
7266 unsigned int plt_offset)
7267 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7269 virtual unsigned int
7270 do_first_plt_entry_offset() const = 0;
7272 virtual unsigned int
7273 do_get_plt_entry_size() const = 0;
7276 do_fill_first_plt_entry(unsigned char* pov,
7277 Arm_address got_address,
7278 Arm_address plt_address) = 0;
7281 do_fill_plt_entry(unsigned char* pov,
7282 Arm_address got_address,
7283 Arm_address plt_address,
7284 unsigned int got_offset,
7285 unsigned int plt_offset) = 0;
7288 do_adjust_output_section(Output_section* os);
7290 // Write to a map file.
7292 do_print_to_mapfile(Mapfile* mapfile) const
7293 { mapfile->print_output_data(this, _("** PLT")); }
7296 // Set the final size.
7298 set_final_data_size()
7300 this->set_data_size(this->first_plt_entry_offset()
7301 + this->count_ * this->get_plt_entry_size());
7304 // Write out the PLT data.
7306 do_write(Output_file*);
7308 // The reloc section.
7309 Reloc_section* rel_;
7310 // The .got.plt section.
7311 Output_data_space* got_plt_;
7312 // The number of PLT entries.
7313 unsigned int count_;
7316 // Create the PLT section. The ordinary .got section is an argument,
7317 // since we need to refer to the start. We also create our own .got
7318 // section just for PLT entries.
7320 template<bool big_endian>
7321 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7323 Output_data_space* got_plt)
7324 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
7326 this->rel_ = new Reloc_section(false);
7327 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7328 elfcpp::SHF_ALLOC, this->rel_,
7329 ORDER_DYNAMIC_PLT_RELOCS, false);
7332 template<bool big_endian>
7334 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7339 // Add an entry to the PLT.
7341 template<bool big_endian>
7343 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7345 gold_assert(!gsym->has_plt_offset());
7347 // Note that when setting the PLT offset we skip the initial
7348 // reserved PLT entry.
7349 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7350 + this->first_plt_entry_offset());
7354 section_offset_type got_offset = this->got_plt_->current_data_size();
7356 // Every PLT entry needs a GOT entry which points back to the PLT
7357 // entry (this will be changed by the dynamic linker, normally
7358 // lazily when the function is called).
7359 this->got_plt_->set_current_data_size(got_offset + 4);
7361 // Every PLT entry needs a reloc.
7362 gsym->set_needs_dynsym_entry();
7363 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7366 // Note that we don't need to save the symbol. The contents of the
7367 // PLT are independent of which symbols are used. The symbols only
7368 // appear in the relocations.
7371 template<bool big_endian>
7372 class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7375 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7376 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7380 // Return the offset of the first non-reserved PLT entry.
7381 virtual unsigned int
7382 do_first_plt_entry_offset() const
7383 { return sizeof(first_plt_entry); }
7385 // Return the size of a PLT entry.
7386 virtual unsigned int
7387 do_get_plt_entry_size() const
7388 { return sizeof(plt_entry); }
7391 do_fill_first_plt_entry(unsigned char* pov,
7392 Arm_address got_address,
7393 Arm_address plt_address);
7396 do_fill_plt_entry(unsigned char* pov,
7397 Arm_address got_address,
7398 Arm_address plt_address,
7399 unsigned int got_offset,
7400 unsigned int plt_offset);
7403 // Template for the first PLT entry.
7404 static const uint32_t first_plt_entry[5];
7406 // Template for subsequent PLT entries.
7407 static const uint32_t plt_entry[3];
7411 // FIXME: This is not very flexible. Right now this has only been tested
7412 // on armv5te. If we are to support additional architecture features like
7413 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7415 // The first entry in the PLT.
7416 template<bool big_endian>
7417 const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
7419 0xe52de004, // str lr, [sp, #-4]!
7420 0xe59fe004, // ldr lr, [pc, #4]
7421 0xe08fe00e, // add lr, pc, lr
7422 0xe5bef008, // ldr pc, [lr, #8]!
7423 0x00000000, // &GOT[0] - .
7426 template<bool big_endian>
7428 Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7430 Arm_address got_address,
7431 Arm_address plt_address)
7433 // Write first PLT entry. All but the last word are constants.
7434 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7435 / sizeof(plt_entry[0]));
7436 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7437 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7438 // Last word in first PLT entry is &GOT[0] - .
7439 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7440 got_address - (plt_address + 16));
7443 // Subsequent entries in the PLT.
7445 template<bool big_endian>
7446 const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
7448 0xe28fc600, // add ip, pc, #0xNN00000
7449 0xe28cca00, // add ip, ip, #0xNN000
7450 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7453 template<bool big_endian>
7455 Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7457 Arm_address got_address,
7458 Arm_address plt_address,
7459 unsigned int got_offset,
7460 unsigned int plt_offset)
7462 int32_t offset = ((got_address + got_offset)
7463 - (plt_address + plt_offset + 8));
7465 gold_assert(offset >= 0 && offset < 0x0fffffff);
7466 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7467 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7468 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7469 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7470 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7471 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7474 // Write out the PLT. This uses the hand-coded instructions above,
7475 // and adjusts them as needed. This is all specified by the arm ELF
7476 // Processor Supplement.
7478 template<bool big_endian>
7480 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7482 const off_t offset = this->offset();
7483 const section_size_type oview_size =
7484 convert_to_section_size_type(this->data_size());
7485 unsigned char* const oview = of->get_output_view(offset, oview_size);
7487 const off_t got_file_offset = this->got_plt_->offset();
7488 const section_size_type got_size =
7489 convert_to_section_size_type(this->got_plt_->data_size());
7490 unsigned char* const got_view = of->get_output_view(got_file_offset,
7492 unsigned char* pov = oview;
7494 Arm_address plt_address = this->address();
7495 Arm_address got_address = this->got_plt_->address();
7497 // Write first PLT entry.
7498 this->fill_first_plt_entry(pov, got_address, plt_address);
7499 pov += this->first_plt_entry_offset();
7501 unsigned char* got_pov = got_view;
7503 memset(got_pov, 0, 12);
7506 unsigned int plt_offset = this->first_plt_entry_offset();
7507 unsigned int got_offset = 12;
7508 const unsigned int count = this->count_;
7509 for (unsigned int i = 0;
7512 pov += this->get_plt_entry_size(),
7514 plt_offset += this->get_plt_entry_size(),
7517 // Set and adjust the PLT entry itself.
7518 this->fill_plt_entry(pov, got_address, plt_address,
7519 got_offset, plt_offset);
7521 // Set the entry in the GOT.
7522 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7525 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7526 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7528 of->write_output_view(offset, oview_size, oview);
7529 of->write_output_view(got_file_offset, got_size, got_view);
7532 // Create a PLT entry for a global symbol.
7534 template<bool big_endian>
7536 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7539 if (gsym->has_plt_offset())
7542 if (this->plt_ == NULL)
7544 // Create the GOT sections first.
7545 this->got_section(symtab, layout);
7547 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7549 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7551 | elfcpp::SHF_EXECINSTR),
7552 this->plt_, ORDER_PLT, false);
7554 this->plt_->add_entry(gsym);
7557 // Return the number of entries in the PLT.
7559 template<bool big_endian>
7561 Target_arm<big_endian>::plt_entry_count() const
7563 if (this->plt_ == NULL)
7565 return this->plt_->entry_count();
7568 // Return the offset of the first non-reserved PLT entry.
7570 template<bool big_endian>
7572 Target_arm<big_endian>::first_plt_entry_offset() const
7574 return this->plt_->first_plt_entry_offset();
7577 // Return the size of each PLT entry.
7579 template<bool big_endian>
7581 Target_arm<big_endian>::plt_entry_size() const
7583 return this->plt_->get_plt_entry_size();
7586 // Get the section to use for TLS_DESC relocations.
7588 template<bool big_endian>
7589 typename Target_arm<big_endian>::Reloc_section*
7590 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7592 return this->plt_section()->rel_tls_desc(layout);
7595 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7597 template<bool big_endian>
7599 Target_arm<big_endian>::define_tls_base_symbol(
7600 Symbol_table* symtab,
7603 if (this->tls_base_symbol_defined_)
7606 Output_segment* tls_segment = layout->tls_segment();
7607 if (tls_segment != NULL)
7609 bool is_exec = parameters->options().output_is_executable();
7610 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7611 Symbol_table::PREDEFINED,
7615 elfcpp::STV_HIDDEN, 0,
7617 ? Symbol::SEGMENT_END
7618 : Symbol::SEGMENT_START),
7621 this->tls_base_symbol_defined_ = true;
7624 // Create a GOT entry for the TLS module index.
7626 template<bool big_endian>
7628 Target_arm<big_endian>::got_mod_index_entry(
7629 Symbol_table* symtab,
7631 Sized_relobj_file<32, big_endian>* object)
7633 if (this->got_mod_index_offset_ == -1U)
7635 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7636 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7637 unsigned int got_offset;
7638 if (!parameters->doing_static_link())
7640 got_offset = got->add_constant(0);
7641 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7642 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7647 // We are doing a static link. Just mark it as belong to module 1,
7649 got_offset = got->add_constant(1);
7652 got->add_constant(0);
7653 this->got_mod_index_offset_ = got_offset;
7655 return this->got_mod_index_offset_;
7658 // Optimize the TLS relocation type based on what we know about the
7659 // symbol. IS_FINAL is true if the final address of this symbol is
7660 // known at link time.
7662 template<bool big_endian>
7663 tls::Tls_optimization
7664 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7666 // FIXME: Currently we do not do any TLS optimization.
7667 return tls::TLSOPT_NONE;
7670 // Get the Reference_flags for a particular relocation.
7672 template<bool big_endian>
7674 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7678 case elfcpp::R_ARM_NONE:
7679 case elfcpp::R_ARM_V4BX:
7680 case elfcpp::R_ARM_GNU_VTENTRY:
7681 case elfcpp::R_ARM_GNU_VTINHERIT:
7682 // No symbol reference.
7685 case elfcpp::R_ARM_ABS32:
7686 case elfcpp::R_ARM_ABS16:
7687 case elfcpp::R_ARM_ABS12:
7688 case elfcpp::R_ARM_THM_ABS5:
7689 case elfcpp::R_ARM_ABS8:
7690 case elfcpp::R_ARM_BASE_ABS:
7691 case elfcpp::R_ARM_MOVW_ABS_NC:
7692 case elfcpp::R_ARM_MOVT_ABS:
7693 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7694 case elfcpp::R_ARM_THM_MOVT_ABS:
7695 case elfcpp::R_ARM_ABS32_NOI:
7696 return Symbol::ABSOLUTE_REF;
7698 case elfcpp::R_ARM_REL32:
7699 case elfcpp::R_ARM_LDR_PC_G0:
7700 case elfcpp::R_ARM_SBREL32:
7701 case elfcpp::R_ARM_THM_PC8:
7702 case elfcpp::R_ARM_BASE_PREL:
7703 case elfcpp::R_ARM_MOVW_PREL_NC:
7704 case elfcpp::R_ARM_MOVT_PREL:
7705 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7706 case elfcpp::R_ARM_THM_MOVT_PREL:
7707 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7708 case elfcpp::R_ARM_THM_PC12:
7709 case elfcpp::R_ARM_REL32_NOI:
7710 case elfcpp::R_ARM_ALU_PC_G0_NC:
7711 case elfcpp::R_ARM_ALU_PC_G0:
7712 case elfcpp::R_ARM_ALU_PC_G1_NC:
7713 case elfcpp::R_ARM_ALU_PC_G1:
7714 case elfcpp::R_ARM_ALU_PC_G2:
7715 case elfcpp::R_ARM_LDR_PC_G1:
7716 case elfcpp::R_ARM_LDR_PC_G2:
7717 case elfcpp::R_ARM_LDRS_PC_G0:
7718 case elfcpp::R_ARM_LDRS_PC_G1:
7719 case elfcpp::R_ARM_LDRS_PC_G2:
7720 case elfcpp::R_ARM_LDC_PC_G0:
7721 case elfcpp::R_ARM_LDC_PC_G1:
7722 case elfcpp::R_ARM_LDC_PC_G2:
7723 case elfcpp::R_ARM_ALU_SB_G0_NC:
7724 case elfcpp::R_ARM_ALU_SB_G0:
7725 case elfcpp::R_ARM_ALU_SB_G1_NC:
7726 case elfcpp::R_ARM_ALU_SB_G1:
7727 case elfcpp::R_ARM_ALU_SB_G2:
7728 case elfcpp::R_ARM_LDR_SB_G0:
7729 case elfcpp::R_ARM_LDR_SB_G1:
7730 case elfcpp::R_ARM_LDR_SB_G2:
7731 case elfcpp::R_ARM_LDRS_SB_G0:
7732 case elfcpp::R_ARM_LDRS_SB_G1:
7733 case elfcpp::R_ARM_LDRS_SB_G2:
7734 case elfcpp::R_ARM_LDC_SB_G0:
7735 case elfcpp::R_ARM_LDC_SB_G1:
7736 case elfcpp::R_ARM_LDC_SB_G2:
7737 case elfcpp::R_ARM_MOVW_BREL_NC:
7738 case elfcpp::R_ARM_MOVT_BREL:
7739 case elfcpp::R_ARM_MOVW_BREL:
7740 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7741 case elfcpp::R_ARM_THM_MOVT_BREL:
7742 case elfcpp::R_ARM_THM_MOVW_BREL:
7743 case elfcpp::R_ARM_GOTOFF32:
7744 case elfcpp::R_ARM_GOTOFF12:
7745 case elfcpp::R_ARM_SBREL31:
7746 return Symbol::RELATIVE_REF;
7748 case elfcpp::R_ARM_PLT32:
7749 case elfcpp::R_ARM_CALL:
7750 case elfcpp::R_ARM_JUMP24:
7751 case elfcpp::R_ARM_THM_CALL:
7752 case elfcpp::R_ARM_THM_JUMP24:
7753 case elfcpp::R_ARM_THM_JUMP19:
7754 case elfcpp::R_ARM_THM_JUMP6:
7755 case elfcpp::R_ARM_THM_JUMP11:
7756 case elfcpp::R_ARM_THM_JUMP8:
7757 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7758 // in unwind tables. It may point to functions via PLTs.
7759 // So we treat it like call/jump relocations above.
7760 case elfcpp::R_ARM_PREL31:
7761 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7763 case elfcpp::R_ARM_GOT_BREL:
7764 case elfcpp::R_ARM_GOT_ABS:
7765 case elfcpp::R_ARM_GOT_PREL:
7767 return Symbol::ABSOLUTE_REF;
7769 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7770 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7771 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7772 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7773 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7774 return Symbol::TLS_REF;
7776 case elfcpp::R_ARM_TARGET1:
7777 case elfcpp::R_ARM_TARGET2:
7778 case elfcpp::R_ARM_COPY:
7779 case elfcpp::R_ARM_GLOB_DAT:
7780 case elfcpp::R_ARM_JUMP_SLOT:
7781 case elfcpp::R_ARM_RELATIVE:
7782 case elfcpp::R_ARM_PC24:
7783 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7784 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7785 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7787 // Not expected. We will give an error later.
7792 // Report an unsupported relocation against a local symbol.
7794 template<bool big_endian>
7796 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7797 Sized_relobj_file<32, big_endian>* object,
7798 unsigned int r_type)
7800 gold_error(_("%s: unsupported reloc %u against local symbol"),
7801 object->name().c_str(), r_type);
7804 // We are about to emit a dynamic relocation of type R_TYPE. If the
7805 // dynamic linker does not support it, issue an error. The GNU linker
7806 // only issues a non-PIC error for an allocated read-only section.
7807 // Here we know the section is allocated, but we don't know that it is
7808 // read-only. But we check for all the relocation types which the
7809 // glibc dynamic linker supports, so it seems appropriate to issue an
7810 // error even if the section is not read-only.
7812 template<bool big_endian>
7814 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7815 unsigned int r_type)
7819 // These are the relocation types supported by glibc for ARM.
7820 case elfcpp::R_ARM_RELATIVE:
7821 case elfcpp::R_ARM_COPY:
7822 case elfcpp::R_ARM_GLOB_DAT:
7823 case elfcpp::R_ARM_JUMP_SLOT:
7824 case elfcpp::R_ARM_ABS32:
7825 case elfcpp::R_ARM_ABS32_NOI:
7826 case elfcpp::R_ARM_PC24:
7827 // FIXME: The following 3 types are not supported by Android's dynamic
7829 case elfcpp::R_ARM_TLS_DTPMOD32:
7830 case elfcpp::R_ARM_TLS_DTPOFF32:
7831 case elfcpp::R_ARM_TLS_TPOFF32:
7836 // This prevents us from issuing more than one error per reloc
7837 // section. But we can still wind up issuing more than one
7838 // error per object file.
7839 if (this->issued_non_pic_error_)
7841 const Arm_reloc_property* reloc_property =
7842 arm_reloc_property_table->get_reloc_property(r_type);
7843 gold_assert(reloc_property != NULL);
7844 object->error(_("requires unsupported dynamic reloc %s; "
7845 "recompile with -fPIC"),
7846 reloc_property->name().c_str());
7847 this->issued_non_pic_error_ = true;
7851 case elfcpp::R_ARM_NONE:
7856 // Scan a relocation for a local symbol.
7857 // FIXME: This only handles a subset of relocation types used by Android
7858 // on ARM v5te devices.
7860 template<bool big_endian>
7862 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7865 Sized_relobj_file<32, big_endian>* object,
7866 unsigned int data_shndx,
7867 Output_section* output_section,
7868 const elfcpp::Rel<32, big_endian>& reloc,
7869 unsigned int r_type,
7870 const elfcpp::Sym<32, big_endian>& lsym,
7876 r_type = get_real_reloc_type(r_type);
7879 case elfcpp::R_ARM_NONE:
7880 case elfcpp::R_ARM_V4BX:
7881 case elfcpp::R_ARM_GNU_VTENTRY:
7882 case elfcpp::R_ARM_GNU_VTINHERIT:
7885 case elfcpp::R_ARM_ABS32:
7886 case elfcpp::R_ARM_ABS32_NOI:
7887 // If building a shared library (or a position-independent
7888 // executable), we need to create a dynamic relocation for
7889 // this location. The relocation applied at link time will
7890 // apply the link-time value, so we flag the location with
7891 // an R_ARM_RELATIVE relocation so the dynamic loader can
7892 // relocate it easily.
7893 if (parameters->options().output_is_position_independent())
7895 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7896 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7897 // If we are to add more other reloc types than R_ARM_ABS32,
7898 // we need to add check_non_pic(object, r_type) here.
7899 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7900 output_section, data_shndx,
7901 reloc.get_r_offset());
7905 case elfcpp::R_ARM_ABS16:
7906 case elfcpp::R_ARM_ABS12:
7907 case elfcpp::R_ARM_THM_ABS5:
7908 case elfcpp::R_ARM_ABS8:
7909 case elfcpp::R_ARM_BASE_ABS:
7910 case elfcpp::R_ARM_MOVW_ABS_NC:
7911 case elfcpp::R_ARM_MOVT_ABS:
7912 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7913 case elfcpp::R_ARM_THM_MOVT_ABS:
7914 // If building a shared library (or a position-independent
7915 // executable), we need to create a dynamic relocation for
7916 // this location. Because the addend needs to remain in the
7917 // data section, we need to be careful not to apply this
7918 // relocation statically.
7919 if (parameters->options().output_is_position_independent())
7921 check_non_pic(object, r_type);
7922 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7923 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7924 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7925 rel_dyn->add_local(object, r_sym, r_type, output_section,
7926 data_shndx, reloc.get_r_offset());
7929 gold_assert(lsym.get_st_value() == 0);
7930 unsigned int shndx = lsym.get_st_shndx();
7932 shndx = object->adjust_sym_shndx(r_sym, shndx,
7935 object->error(_("section symbol %u has bad shndx %u"),
7938 rel_dyn->add_local_section(object, shndx,
7939 r_type, output_section,
7940 data_shndx, reloc.get_r_offset());
7945 case elfcpp::R_ARM_REL32:
7946 case elfcpp::R_ARM_LDR_PC_G0:
7947 case elfcpp::R_ARM_SBREL32:
7948 case elfcpp::R_ARM_THM_CALL:
7949 case elfcpp::R_ARM_THM_PC8:
7950 case elfcpp::R_ARM_BASE_PREL:
7951 case elfcpp::R_ARM_PLT32:
7952 case elfcpp::R_ARM_CALL:
7953 case elfcpp::R_ARM_JUMP24:
7954 case elfcpp::R_ARM_THM_JUMP24:
7955 case elfcpp::R_ARM_SBREL31:
7956 case elfcpp::R_ARM_PREL31:
7957 case elfcpp::R_ARM_MOVW_PREL_NC:
7958 case elfcpp::R_ARM_MOVT_PREL:
7959 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7960 case elfcpp::R_ARM_THM_MOVT_PREL:
7961 case elfcpp::R_ARM_THM_JUMP19:
7962 case elfcpp::R_ARM_THM_JUMP6:
7963 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7964 case elfcpp::R_ARM_THM_PC12:
7965 case elfcpp::R_ARM_REL32_NOI:
7966 case elfcpp::R_ARM_ALU_PC_G0_NC:
7967 case elfcpp::R_ARM_ALU_PC_G0:
7968 case elfcpp::R_ARM_ALU_PC_G1_NC:
7969 case elfcpp::R_ARM_ALU_PC_G1:
7970 case elfcpp::R_ARM_ALU_PC_G2:
7971 case elfcpp::R_ARM_LDR_PC_G1:
7972 case elfcpp::R_ARM_LDR_PC_G2:
7973 case elfcpp::R_ARM_LDRS_PC_G0:
7974 case elfcpp::R_ARM_LDRS_PC_G1:
7975 case elfcpp::R_ARM_LDRS_PC_G2:
7976 case elfcpp::R_ARM_LDC_PC_G0:
7977 case elfcpp::R_ARM_LDC_PC_G1:
7978 case elfcpp::R_ARM_LDC_PC_G2:
7979 case elfcpp::R_ARM_ALU_SB_G0_NC:
7980 case elfcpp::R_ARM_ALU_SB_G0:
7981 case elfcpp::R_ARM_ALU_SB_G1_NC:
7982 case elfcpp::R_ARM_ALU_SB_G1:
7983 case elfcpp::R_ARM_ALU_SB_G2:
7984 case elfcpp::R_ARM_LDR_SB_G0:
7985 case elfcpp::R_ARM_LDR_SB_G1:
7986 case elfcpp::R_ARM_LDR_SB_G2:
7987 case elfcpp::R_ARM_LDRS_SB_G0:
7988 case elfcpp::R_ARM_LDRS_SB_G1:
7989 case elfcpp::R_ARM_LDRS_SB_G2:
7990 case elfcpp::R_ARM_LDC_SB_G0:
7991 case elfcpp::R_ARM_LDC_SB_G1:
7992 case elfcpp::R_ARM_LDC_SB_G2:
7993 case elfcpp::R_ARM_MOVW_BREL_NC:
7994 case elfcpp::R_ARM_MOVT_BREL:
7995 case elfcpp::R_ARM_MOVW_BREL:
7996 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7997 case elfcpp::R_ARM_THM_MOVT_BREL:
7998 case elfcpp::R_ARM_THM_MOVW_BREL:
7999 case elfcpp::R_ARM_THM_JUMP11:
8000 case elfcpp::R_ARM_THM_JUMP8:
8001 // We don't need to do anything for a relative addressing relocation
8002 // against a local symbol if it does not reference the GOT.
8005 case elfcpp::R_ARM_GOTOFF32:
8006 case elfcpp::R_ARM_GOTOFF12:
8007 // We need a GOT section:
8008 target->got_section(symtab, layout);
8011 case elfcpp::R_ARM_GOT_BREL:
8012 case elfcpp::R_ARM_GOT_PREL:
8014 // The symbol requires a GOT entry.
8015 Arm_output_data_got<big_endian>* got =
8016 target->got_section(symtab, layout);
8017 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8018 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8020 // If we are generating a shared object, we need to add a
8021 // dynamic RELATIVE relocation for this symbol's GOT entry.
8022 if (parameters->options().output_is_position_independent())
8024 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8025 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8026 rel_dyn->add_local_relative(
8027 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8028 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
8034 case elfcpp::R_ARM_TARGET1:
8035 case elfcpp::R_ARM_TARGET2:
8036 // This should have been mapped to another type already.
8038 case elfcpp::R_ARM_COPY:
8039 case elfcpp::R_ARM_GLOB_DAT:
8040 case elfcpp::R_ARM_JUMP_SLOT:
8041 case elfcpp::R_ARM_RELATIVE:
8042 // These are relocations which should only be seen by the
8043 // dynamic linker, and should never be seen here.
8044 gold_error(_("%s: unexpected reloc %u in object file"),
8045 object->name().c_str(), r_type);
8049 // These are initial TLS relocs, which are expected when
8051 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8052 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8053 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8054 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8055 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8057 bool output_is_shared = parameters->options().shared();
8058 const tls::Tls_optimization optimized_type
8059 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
8063 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8064 if (optimized_type == tls::TLSOPT_NONE)
8066 // Create a pair of GOT entries for the module index and
8067 // dtv-relative offset.
8068 Arm_output_data_got<big_endian>* got
8069 = target->got_section(symtab, layout);
8070 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8071 unsigned int shndx = lsym.get_st_shndx();
8073 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8076 object->error(_("local symbol %u has bad shndx %u"),
8081 if (!parameters->doing_static_link())
8082 got->add_local_pair_with_rel(object, r_sym, shndx,
8084 target->rel_dyn_section(layout),
8085 elfcpp::R_ARM_TLS_DTPMOD32);
8087 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8091 // FIXME: TLS optimization not supported yet.
8095 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8096 if (optimized_type == tls::TLSOPT_NONE)
8098 // Create a GOT entry for the module index.
8099 target->got_mod_index_entry(symtab, layout, object);
8102 // FIXME: TLS optimization not supported yet.
8106 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8109 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8110 layout->set_has_static_tls();
8111 if (optimized_type == tls::TLSOPT_NONE)
8113 // Create a GOT entry for the tp-relative offset.
8114 Arm_output_data_got<big_endian>* got
8115 = target->got_section(symtab, layout);
8116 unsigned int r_sym =
8117 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8118 if (!parameters->doing_static_link())
8119 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8120 target->rel_dyn_section(layout),
8121 elfcpp::R_ARM_TLS_TPOFF32);
8122 else if (!object->local_has_got_offset(r_sym,
8123 GOT_TYPE_TLS_OFFSET))
8125 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8126 unsigned int got_offset =
8127 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8128 got->add_static_reloc(got_offset,
8129 elfcpp::R_ARM_TLS_TPOFF32, object,
8134 // FIXME: TLS optimization not supported yet.
8138 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8139 layout->set_has_static_tls();
8140 if (output_is_shared)
8142 // We need to create a dynamic relocation.
8143 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8144 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8145 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8146 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8147 output_section, data_shndx,
8148 reloc.get_r_offset());
8158 case elfcpp::R_ARM_PC24:
8159 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8160 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8161 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8163 unsupported_reloc_local(object, r_type);
8168 // Report an unsupported relocation against a global symbol.
8170 template<bool big_endian>
8172 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8173 Sized_relobj_file<32, big_endian>* object,
8174 unsigned int r_type,
8177 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8178 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8181 template<bool big_endian>
8183 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8184 unsigned int r_type)
8188 case elfcpp::R_ARM_PC24:
8189 case elfcpp::R_ARM_THM_CALL:
8190 case elfcpp::R_ARM_PLT32:
8191 case elfcpp::R_ARM_CALL:
8192 case elfcpp::R_ARM_JUMP24:
8193 case elfcpp::R_ARM_THM_JUMP24:
8194 case elfcpp::R_ARM_SBREL31:
8195 case elfcpp::R_ARM_PREL31:
8196 case elfcpp::R_ARM_THM_JUMP19:
8197 case elfcpp::R_ARM_THM_JUMP6:
8198 case elfcpp::R_ARM_THM_JUMP11:
8199 case elfcpp::R_ARM_THM_JUMP8:
8200 // All the relocations above are branches except SBREL31 and PREL31.
8204 // Be conservative and assume this is a function pointer.
8209 template<bool big_endian>
8211 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8214 Target_arm<big_endian>* target,
8215 Sized_relobj_file<32, big_endian>*,
8218 const elfcpp::Rel<32, big_endian>&,
8219 unsigned int r_type,
8220 const elfcpp::Sym<32, big_endian>&)
8222 r_type = target->get_real_reloc_type(r_type);
8223 return possible_function_pointer_reloc(r_type);
8226 template<bool big_endian>
8228 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8231 Target_arm<big_endian>* target,
8232 Sized_relobj_file<32, big_endian>*,
8235 const elfcpp::Rel<32, big_endian>&,
8236 unsigned int r_type,
8239 // GOT is not a function.
8240 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8243 r_type = target->get_real_reloc_type(r_type);
8244 return possible_function_pointer_reloc(r_type);
8247 // Scan a relocation for a global symbol.
8249 template<bool big_endian>
8251 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8254 Sized_relobj_file<32, big_endian>* object,
8255 unsigned int data_shndx,
8256 Output_section* output_section,
8257 const elfcpp::Rel<32, big_endian>& reloc,
8258 unsigned int r_type,
8261 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8262 // section. We check here to avoid creating a dynamic reloc against
8263 // _GLOBAL_OFFSET_TABLE_.
8264 if (!target->has_got_section()
8265 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8266 target->got_section(symtab, layout);
8268 r_type = get_real_reloc_type(r_type);
8271 case elfcpp::R_ARM_NONE:
8272 case elfcpp::R_ARM_V4BX:
8273 case elfcpp::R_ARM_GNU_VTENTRY:
8274 case elfcpp::R_ARM_GNU_VTINHERIT:
8277 case elfcpp::R_ARM_ABS32:
8278 case elfcpp::R_ARM_ABS16:
8279 case elfcpp::R_ARM_ABS12:
8280 case elfcpp::R_ARM_THM_ABS5:
8281 case elfcpp::R_ARM_ABS8:
8282 case elfcpp::R_ARM_BASE_ABS:
8283 case elfcpp::R_ARM_MOVW_ABS_NC:
8284 case elfcpp::R_ARM_MOVT_ABS:
8285 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8286 case elfcpp::R_ARM_THM_MOVT_ABS:
8287 case elfcpp::R_ARM_ABS32_NOI:
8288 // Absolute addressing relocations.
8290 // Make a PLT entry if necessary.
8291 if (this->symbol_needs_plt_entry(gsym))
8293 target->make_plt_entry(symtab, layout, gsym);
8294 // Since this is not a PC-relative relocation, we may be
8295 // taking the address of a function. In that case we need to
8296 // set the entry in the dynamic symbol table to the address of
8298 if (gsym->is_from_dynobj() && !parameters->options().shared())
8299 gsym->set_needs_dynsym_value();
8301 // Make a dynamic relocation if necessary.
8302 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8304 if (gsym->may_need_copy_reloc())
8306 target->copy_reloc(symtab, layout, object,
8307 data_shndx, output_section, gsym, reloc);
8309 else if ((r_type == elfcpp::R_ARM_ABS32
8310 || r_type == elfcpp::R_ARM_ABS32_NOI)
8311 && gsym->can_use_relative_reloc(false))
8313 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8314 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8315 output_section, object,
8316 data_shndx, reloc.get_r_offset());
8320 check_non_pic(object, r_type);
8321 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8322 rel_dyn->add_global(gsym, r_type, output_section, object,
8323 data_shndx, reloc.get_r_offset());
8329 case elfcpp::R_ARM_GOTOFF32:
8330 case elfcpp::R_ARM_GOTOFF12:
8331 // We need a GOT section.
8332 target->got_section(symtab, layout);
8335 case elfcpp::R_ARM_REL32:
8336 case elfcpp::R_ARM_LDR_PC_G0:
8337 case elfcpp::R_ARM_SBREL32:
8338 case elfcpp::R_ARM_THM_PC8:
8339 case elfcpp::R_ARM_BASE_PREL:
8340 case elfcpp::R_ARM_MOVW_PREL_NC:
8341 case elfcpp::R_ARM_MOVT_PREL:
8342 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8343 case elfcpp::R_ARM_THM_MOVT_PREL:
8344 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8345 case elfcpp::R_ARM_THM_PC12:
8346 case elfcpp::R_ARM_REL32_NOI:
8347 case elfcpp::R_ARM_ALU_PC_G0_NC:
8348 case elfcpp::R_ARM_ALU_PC_G0:
8349 case elfcpp::R_ARM_ALU_PC_G1_NC:
8350 case elfcpp::R_ARM_ALU_PC_G1:
8351 case elfcpp::R_ARM_ALU_PC_G2:
8352 case elfcpp::R_ARM_LDR_PC_G1:
8353 case elfcpp::R_ARM_LDR_PC_G2:
8354 case elfcpp::R_ARM_LDRS_PC_G0:
8355 case elfcpp::R_ARM_LDRS_PC_G1:
8356 case elfcpp::R_ARM_LDRS_PC_G2:
8357 case elfcpp::R_ARM_LDC_PC_G0:
8358 case elfcpp::R_ARM_LDC_PC_G1:
8359 case elfcpp::R_ARM_LDC_PC_G2:
8360 case elfcpp::R_ARM_ALU_SB_G0_NC:
8361 case elfcpp::R_ARM_ALU_SB_G0:
8362 case elfcpp::R_ARM_ALU_SB_G1_NC:
8363 case elfcpp::R_ARM_ALU_SB_G1:
8364 case elfcpp::R_ARM_ALU_SB_G2:
8365 case elfcpp::R_ARM_LDR_SB_G0:
8366 case elfcpp::R_ARM_LDR_SB_G1:
8367 case elfcpp::R_ARM_LDR_SB_G2:
8368 case elfcpp::R_ARM_LDRS_SB_G0:
8369 case elfcpp::R_ARM_LDRS_SB_G1:
8370 case elfcpp::R_ARM_LDRS_SB_G2:
8371 case elfcpp::R_ARM_LDC_SB_G0:
8372 case elfcpp::R_ARM_LDC_SB_G1:
8373 case elfcpp::R_ARM_LDC_SB_G2:
8374 case elfcpp::R_ARM_MOVW_BREL_NC:
8375 case elfcpp::R_ARM_MOVT_BREL:
8376 case elfcpp::R_ARM_MOVW_BREL:
8377 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8378 case elfcpp::R_ARM_THM_MOVT_BREL:
8379 case elfcpp::R_ARM_THM_MOVW_BREL:
8380 // Relative addressing relocations.
8382 // Make a dynamic relocation if necessary.
8383 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8385 if (target->may_need_copy_reloc(gsym))
8387 target->copy_reloc(symtab, layout, object,
8388 data_shndx, output_section, gsym, reloc);
8392 check_non_pic(object, r_type);
8393 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8394 rel_dyn->add_global(gsym, r_type, output_section, object,
8395 data_shndx, reloc.get_r_offset());
8401 case elfcpp::R_ARM_THM_CALL:
8402 case elfcpp::R_ARM_PLT32:
8403 case elfcpp::R_ARM_CALL:
8404 case elfcpp::R_ARM_JUMP24:
8405 case elfcpp::R_ARM_THM_JUMP24:
8406 case elfcpp::R_ARM_SBREL31:
8407 case elfcpp::R_ARM_PREL31:
8408 case elfcpp::R_ARM_THM_JUMP19:
8409 case elfcpp::R_ARM_THM_JUMP6:
8410 case elfcpp::R_ARM_THM_JUMP11:
8411 case elfcpp::R_ARM_THM_JUMP8:
8412 // All the relocation above are branches except for the PREL31 ones.
8413 // A PREL31 relocation can point to a personality function in a shared
8414 // library. In that case we want to use a PLT because we want to
8415 // call the personality routine and the dynamic linkers we care about
8416 // do not support dynamic PREL31 relocations. An REL31 relocation may
8417 // point to a function whose unwinding behaviour is being described but
8418 // we will not mistakenly generate a PLT for that because we should use
8419 // a local section symbol.
8421 // If the symbol is fully resolved, this is just a relative
8422 // local reloc. Otherwise we need a PLT entry.
8423 if (gsym->final_value_is_known())
8425 // If building a shared library, we can also skip the PLT entry
8426 // if the symbol is defined in the output file and is protected
8428 if (gsym->is_defined()
8429 && !gsym->is_from_dynobj()
8430 && !gsym->is_preemptible())
8432 target->make_plt_entry(symtab, layout, gsym);
8435 case elfcpp::R_ARM_GOT_BREL:
8436 case elfcpp::R_ARM_GOT_ABS:
8437 case elfcpp::R_ARM_GOT_PREL:
8439 // The symbol requires a GOT entry.
8440 Arm_output_data_got<big_endian>* got =
8441 target->got_section(symtab, layout);
8442 if (gsym->final_value_is_known())
8443 got->add_global(gsym, GOT_TYPE_STANDARD);
8446 // If this symbol is not fully resolved, we need to add a
8447 // GOT entry with a dynamic relocation.
8448 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8449 if (gsym->is_from_dynobj()
8450 || gsym->is_undefined()
8451 || gsym->is_preemptible()
8452 || (gsym->visibility() == elfcpp::STV_PROTECTED
8453 && parameters->options().shared()))
8454 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8455 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8458 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8459 rel_dyn->add_global_relative(
8460 gsym, elfcpp::R_ARM_RELATIVE, got,
8461 gsym->got_offset(GOT_TYPE_STANDARD));
8467 case elfcpp::R_ARM_TARGET1:
8468 case elfcpp::R_ARM_TARGET2:
8469 // These should have been mapped to other types already.
8471 case elfcpp::R_ARM_COPY:
8472 case elfcpp::R_ARM_GLOB_DAT:
8473 case elfcpp::R_ARM_JUMP_SLOT:
8474 case elfcpp::R_ARM_RELATIVE:
8475 // These are relocations which should only be seen by the
8476 // dynamic linker, and should never be seen here.
8477 gold_error(_("%s: unexpected reloc %u in object file"),
8478 object->name().c_str(), r_type);
8481 // These are initial tls relocs, which are expected when
8483 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8484 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8485 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8486 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8487 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8489 const bool is_final = gsym->final_value_is_known();
8490 const tls::Tls_optimization optimized_type
8491 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8494 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8495 if (optimized_type == tls::TLSOPT_NONE)
8497 // Create a pair of GOT entries for the module index and
8498 // dtv-relative offset.
8499 Arm_output_data_got<big_endian>* got
8500 = target->got_section(symtab, layout);
8501 if (!parameters->doing_static_link())
8502 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8503 target->rel_dyn_section(layout),
8504 elfcpp::R_ARM_TLS_DTPMOD32,
8505 elfcpp::R_ARM_TLS_DTPOFF32);
8507 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8510 // FIXME: TLS optimization not supported yet.
8514 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8515 if (optimized_type == tls::TLSOPT_NONE)
8517 // Create a GOT entry for the module index.
8518 target->got_mod_index_entry(symtab, layout, object);
8521 // FIXME: TLS optimization not supported yet.
8525 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8528 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8529 layout->set_has_static_tls();
8530 if (optimized_type == tls::TLSOPT_NONE)
8532 // Create a GOT entry for the tp-relative offset.
8533 Arm_output_data_got<big_endian>* got
8534 = target->got_section(symtab, layout);
8535 if (!parameters->doing_static_link())
8536 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8537 target->rel_dyn_section(layout),
8538 elfcpp::R_ARM_TLS_TPOFF32);
8539 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8541 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8542 unsigned int got_offset =
8543 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8544 got->add_static_reloc(got_offset,
8545 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8549 // FIXME: TLS optimization not supported yet.
8553 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8554 layout->set_has_static_tls();
8555 if (parameters->options().shared())
8557 // We need to create a dynamic relocation.
8558 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8559 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8560 output_section, object,
8561 data_shndx, reloc.get_r_offset());
8571 case elfcpp::R_ARM_PC24:
8572 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8573 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8574 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8576 unsupported_reloc_global(object, r_type, gsym);
8581 // Process relocations for gc.
8583 template<bool big_endian>
8585 Target_arm<big_endian>::gc_process_relocs(
8586 Symbol_table* symtab,
8588 Sized_relobj_file<32, big_endian>* object,
8589 unsigned int data_shndx,
8591 const unsigned char* prelocs,
8593 Output_section* output_section,
8594 bool needs_special_offset_handling,
8595 size_t local_symbol_count,
8596 const unsigned char* plocal_symbols)
8598 typedef Target_arm<big_endian> Arm;
8599 typedef typename Target_arm<big_endian>::Scan Scan;
8601 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8602 typename Target_arm::Relocatable_size_for_reloc>(
8611 needs_special_offset_handling,
8616 // Scan relocations for a section.
8618 template<bool big_endian>
8620 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8622 Sized_relobj_file<32, big_endian>* object,
8623 unsigned int data_shndx,
8624 unsigned int sh_type,
8625 const unsigned char* prelocs,
8627 Output_section* output_section,
8628 bool needs_special_offset_handling,
8629 size_t local_symbol_count,
8630 const unsigned char* plocal_symbols)
8632 typedef typename Target_arm<big_endian>::Scan Scan;
8633 if (sh_type == elfcpp::SHT_RELA)
8635 gold_error(_("%s: unsupported RELA reloc section"),
8636 object->name().c_str());
8640 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8649 needs_special_offset_handling,
8654 // Finalize the sections.
8656 template<bool big_endian>
8658 Target_arm<big_endian>::do_finalize_sections(
8660 const Input_objects* input_objects,
8663 bool merged_any_attributes = false;
8664 // Merge processor-specific flags.
8665 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8666 p != input_objects->relobj_end();
8669 Arm_relobj<big_endian>* arm_relobj =
8670 Arm_relobj<big_endian>::as_arm_relobj(*p);
8671 if (arm_relobj->merge_flags_and_attributes())
8673 this->merge_processor_specific_flags(
8675 arm_relobj->processor_specific_flags());
8676 this->merge_object_attributes(arm_relobj->name().c_str(),
8677 arm_relobj->attributes_section_data());
8678 merged_any_attributes = true;
8682 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8683 p != input_objects->dynobj_end();
8686 Arm_dynobj<big_endian>* arm_dynobj =
8687 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8688 this->merge_processor_specific_flags(
8690 arm_dynobj->processor_specific_flags());
8691 this->merge_object_attributes(arm_dynobj->name().c_str(),
8692 arm_dynobj->attributes_section_data());
8693 merged_any_attributes = true;
8696 // Create an empty uninitialized attribute section if we still don't have it
8697 // at this moment. This happens if there is no attributes sections in all
8699 if (this->attributes_section_data_ == NULL)
8700 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8702 const Object_attribute* cpu_arch_attr =
8703 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8704 // Check if we need to use Cortex-A8 workaround.
8705 if (parameters->options().user_set_fix_cortex_a8())
8706 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8709 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8710 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8712 const Object_attribute* cpu_arch_profile_attr =
8713 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8714 this->fix_cortex_a8_ =
8715 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8716 && (cpu_arch_profile_attr->int_value() == 'A'
8717 || cpu_arch_profile_attr->int_value() == 0));
8720 // Check if we can use V4BX interworking.
8721 // The V4BX interworking stub contains BX instruction,
8722 // which is not specified for some profiles.
8723 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8724 && !this->may_use_v4t_interworking())
8725 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8726 "the target profile does not support BX instruction"));
8728 // Fill in some more dynamic tags.
8729 const Reloc_section* rel_plt = (this->plt_ == NULL
8731 : this->plt_->rel_plt());
8732 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8733 this->rel_dyn_, true, false);
8735 // Emit any relocs we saved in an attempt to avoid generating COPY
8737 if (this->copy_relocs_.any_saved_relocs())
8738 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8740 // Handle the .ARM.exidx section.
8741 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8743 if (!parameters->options().relocatable())
8745 if (exidx_section != NULL
8746 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8748 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8749 // the .ARM.exidx section.
8750 if (!layout->script_options()->saw_phdrs_clause())
8752 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8755 Output_segment* exidx_segment =
8756 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8757 exidx_segment->add_output_section_to_nonload(exidx_section,
8763 // Create an .ARM.attributes section if we have merged any attributes
8765 if (merged_any_attributes)
8767 Output_attributes_section_data* attributes_section =
8768 new Output_attributes_section_data(*this->attributes_section_data_);
8769 layout->add_output_section_data(".ARM.attributes",
8770 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8771 attributes_section, ORDER_INVALID,
8775 // Fix up links in section EXIDX headers.
8776 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8777 p != layout->section_list().end();
8779 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8781 Arm_output_section<big_endian>* os =
8782 Arm_output_section<big_endian>::as_arm_output_section(*p);
8783 os->set_exidx_section_link();
8787 // Return whether a direct absolute static relocation needs to be applied.
8788 // In cases where Scan::local() or Scan::global() has created
8789 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8790 // of the relocation is carried in the data, and we must not
8791 // apply the static relocation.
8793 template<bool big_endian>
8795 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8796 const Sized_symbol<32>* gsym,
8797 unsigned int r_type,
8799 Output_section* output_section)
8801 // If the output section is not allocated, then we didn't call
8802 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8804 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8807 int ref_flags = Scan::get_reference_flags(r_type);
8809 // For local symbols, we will have created a non-RELATIVE dynamic
8810 // relocation only if (a) the output is position independent,
8811 // (b) the relocation is absolute (not pc- or segment-relative), and
8812 // (c) the relocation is not 32 bits wide.
8814 return !(parameters->options().output_is_position_independent()
8815 && (ref_flags & Symbol::ABSOLUTE_REF)
8818 // For global symbols, we use the same helper routines used in the
8819 // scan pass. If we did not create a dynamic relocation, or if we
8820 // created a RELATIVE dynamic relocation, we should apply the static
8822 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8823 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8824 && gsym->can_use_relative_reloc(ref_flags
8825 & Symbol::FUNCTION_CALL);
8826 return !has_dyn || is_rel;
8829 // Perform a relocation.
8831 template<bool big_endian>
8833 Target_arm<big_endian>::Relocate::relocate(
8834 const Relocate_info<32, big_endian>* relinfo,
8836 Output_section* output_section,
8838 const elfcpp::Rel<32, big_endian>& rel,
8839 unsigned int r_type,
8840 const Sized_symbol<32>* gsym,
8841 const Symbol_value<32>* psymval,
8842 unsigned char* view,
8843 Arm_address address,
8844 section_size_type view_size)
8849 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8851 r_type = get_real_reloc_type(r_type);
8852 const Arm_reloc_property* reloc_property =
8853 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8854 if (reloc_property == NULL)
8856 std::string reloc_name =
8857 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8858 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8859 _("cannot relocate %s in object file"),
8860 reloc_name.c_str());
8864 const Arm_relobj<big_endian>* object =
8865 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8867 // If the final branch target of a relocation is THUMB instruction, this
8868 // is 1. Otherwise it is 0.
8869 Arm_address thumb_bit = 0;
8870 Symbol_value<32> symval;
8871 bool is_weakly_undefined_without_plt = false;
8872 bool have_got_offset = false;
8873 unsigned int got_offset = 0;
8875 // If the relocation uses the GOT entry of a symbol instead of the symbol
8876 // itself, we don't care about whether the symbol is defined or what kind
8878 if (reloc_property->uses_got_entry())
8880 // Get the GOT offset.
8881 // The GOT pointer points to the end of the GOT section.
8882 // We need to subtract the size of the GOT section to get
8883 // the actual offset to use in the relocation.
8884 // TODO: We should move GOT offset computing code in TLS relocations
8888 case elfcpp::R_ARM_GOT_BREL:
8889 case elfcpp::R_ARM_GOT_PREL:
8892 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8893 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8894 - target->got_size());
8898 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8899 gold_assert(object->local_has_got_offset(r_sym,
8900 GOT_TYPE_STANDARD));
8901 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8902 - target->got_size());
8904 have_got_offset = true;
8911 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8915 // This is a global symbol. Determine if we use PLT and if the
8916 // final target is THUMB.
8917 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8919 // This uses a PLT, change the symbol value.
8920 symval.set_output_value(target->plt_section()->address()
8921 + gsym->plt_offset());
8924 else if (gsym->is_weak_undefined())
8926 // This is a weakly undefined symbol and we do not use PLT
8927 // for this relocation. A branch targeting this symbol will
8928 // be converted into an NOP.
8929 is_weakly_undefined_without_plt = true;
8931 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8933 // This relocation uses the symbol value but the symbol is
8934 // undefined. Exit early and have the caller reporting an
8940 // Set thumb bit if symbol:
8941 // -Has type STT_ARM_TFUNC or
8942 // -Has type STT_FUNC, is defined and with LSB in value set.
8944 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8945 || (gsym->type() == elfcpp::STT_FUNC
8946 && !gsym->is_undefined()
8947 && ((psymval->value(object, 0) & 1) != 0)))
8954 // This is a local symbol. Determine if the final target is THUMB.
8955 // We saved this information when all the local symbols were read.
8956 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8957 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8958 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8963 // This is a fake relocation synthesized for a stub. It does not have
8964 // a real symbol. We just look at the LSB of the symbol value to
8965 // determine if the target is THUMB or not.
8966 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8969 // Strip LSB if this points to a THUMB target.
8971 && reloc_property->uses_thumb_bit()
8972 && ((psymval->value(object, 0) & 1) != 0))
8974 Arm_address stripped_value =
8975 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8976 symval.set_output_value(stripped_value);
8980 // To look up relocation stubs, we need to pass the symbol table index of
8982 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8984 // Get the addressing origin of the output segment defining the
8985 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8986 Arm_address sym_origin = 0;
8987 if (reloc_property->uses_symbol_base())
8989 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8990 // R_ARM_BASE_ABS with the NULL symbol will give the
8991 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8992 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8993 sym_origin = target->got_plt_section()->address();
8994 else if (gsym == NULL)
8996 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8997 sym_origin = gsym->output_segment()->vaddr();
8998 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8999 sym_origin = gsym->output_data()->address();
9001 // TODO: Assumes the segment base to be zero for the global symbols
9002 // till the proper support for the segment-base-relative addressing
9003 // will be implemented. This is consistent with GNU ld.
9006 // For relative addressing relocation, find out the relative address base.
9007 Arm_address relative_address_base = 0;
9008 switch(reloc_property->relative_address_base())
9010 case Arm_reloc_property::RAB_NONE:
9011 // Relocations with relative address bases RAB_TLS and RAB_tp are
9012 // handled by relocate_tls. So we do not need to do anything here.
9013 case Arm_reloc_property::RAB_TLS:
9014 case Arm_reloc_property::RAB_tp:
9016 case Arm_reloc_property::RAB_B_S:
9017 relative_address_base = sym_origin;
9019 case Arm_reloc_property::RAB_GOT_ORG:
9020 relative_address_base = target->got_plt_section()->address();
9022 case Arm_reloc_property::RAB_P:
9023 relative_address_base = address;
9025 case Arm_reloc_property::RAB_Pa:
9026 relative_address_base = address & 0xfffffffcU;
9032 typename Arm_relocate_functions::Status reloc_status =
9033 Arm_relocate_functions::STATUS_OKAY;
9034 bool check_overflow = reloc_property->checks_overflow();
9037 case elfcpp::R_ARM_NONE:
9040 case elfcpp::R_ARM_ABS8:
9041 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9042 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9045 case elfcpp::R_ARM_ABS12:
9046 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9047 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9050 case elfcpp::R_ARM_ABS16:
9051 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9052 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
9055 case elfcpp::R_ARM_ABS32:
9056 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9057 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9061 case elfcpp::R_ARM_ABS32_NOI:
9062 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9063 // No thumb bit for this relocation: (S + A)
9064 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9068 case elfcpp::R_ARM_MOVW_ABS_NC:
9069 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9070 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9075 case elfcpp::R_ARM_MOVT_ABS:
9076 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9077 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9080 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9081 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9082 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9083 0, thumb_bit, false);
9086 case elfcpp::R_ARM_THM_MOVT_ABS:
9087 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9088 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9092 case elfcpp::R_ARM_MOVW_PREL_NC:
9093 case elfcpp::R_ARM_MOVW_BREL_NC:
9094 case elfcpp::R_ARM_MOVW_BREL:
9096 Arm_relocate_functions::movw(view, object, psymval,
9097 relative_address_base, thumb_bit,
9101 case elfcpp::R_ARM_MOVT_PREL:
9102 case elfcpp::R_ARM_MOVT_BREL:
9104 Arm_relocate_functions::movt(view, object, psymval,
9105 relative_address_base);
9108 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9109 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9110 case elfcpp::R_ARM_THM_MOVW_BREL:
9112 Arm_relocate_functions::thm_movw(view, object, psymval,
9113 relative_address_base,
9114 thumb_bit, check_overflow);
9117 case elfcpp::R_ARM_THM_MOVT_PREL:
9118 case elfcpp::R_ARM_THM_MOVT_BREL:
9120 Arm_relocate_functions::thm_movt(view, object, psymval,
9121 relative_address_base);
9124 case elfcpp::R_ARM_REL32:
9125 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9126 address, thumb_bit);
9129 case elfcpp::R_ARM_THM_ABS5:
9130 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9131 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9134 // Thumb long branches.
9135 case elfcpp::R_ARM_THM_CALL:
9136 case elfcpp::R_ARM_THM_XPC22:
9137 case elfcpp::R_ARM_THM_JUMP24:
9139 Arm_relocate_functions::thumb_branch_common(
9140 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9141 thumb_bit, is_weakly_undefined_without_plt);
9144 case elfcpp::R_ARM_GOTOFF32:
9146 Arm_address got_origin;
9147 got_origin = target->got_plt_section()->address();
9148 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9149 got_origin, thumb_bit);
9153 case elfcpp::R_ARM_BASE_PREL:
9154 gold_assert(gsym != NULL);
9156 Arm_relocate_functions::base_prel(view, sym_origin, address);
9159 case elfcpp::R_ARM_BASE_ABS:
9160 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9161 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9164 case elfcpp::R_ARM_GOT_BREL:
9165 gold_assert(have_got_offset);
9166 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9169 case elfcpp::R_ARM_GOT_PREL:
9170 gold_assert(have_got_offset);
9171 // Get the address origin for GOT PLT, which is allocated right
9172 // after the GOT section, to calculate an absolute address of
9173 // the symbol GOT entry (got_origin + got_offset).
9174 Arm_address got_origin;
9175 got_origin = target->got_plt_section()->address();
9176 reloc_status = Arm_relocate_functions::got_prel(view,
9177 got_origin + got_offset,
9181 case elfcpp::R_ARM_PLT32:
9182 case elfcpp::R_ARM_CALL:
9183 case elfcpp::R_ARM_JUMP24:
9184 case elfcpp::R_ARM_XPC25:
9185 gold_assert(gsym == NULL
9186 || gsym->has_plt_offset()
9187 || gsym->final_value_is_known()
9188 || (gsym->is_defined()
9189 && !gsym->is_from_dynobj()
9190 && !gsym->is_preemptible()));
9192 Arm_relocate_functions::arm_branch_common(
9193 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9194 thumb_bit, is_weakly_undefined_without_plt);
9197 case elfcpp::R_ARM_THM_JUMP19:
9199 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9203 case elfcpp::R_ARM_THM_JUMP6:
9205 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9208 case elfcpp::R_ARM_THM_JUMP8:
9210 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9213 case elfcpp::R_ARM_THM_JUMP11:
9215 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9218 case elfcpp::R_ARM_PREL31:
9219 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9220 address, thumb_bit);
9223 case elfcpp::R_ARM_V4BX:
9224 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9226 const bool is_v4bx_interworking =
9227 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9229 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9230 is_v4bx_interworking);
9234 case elfcpp::R_ARM_THM_PC8:
9236 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9239 case elfcpp::R_ARM_THM_PC12:
9241 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9244 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9246 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9250 case elfcpp::R_ARM_ALU_PC_G0_NC:
9251 case elfcpp::R_ARM_ALU_PC_G0:
9252 case elfcpp::R_ARM_ALU_PC_G1_NC:
9253 case elfcpp::R_ARM_ALU_PC_G1:
9254 case elfcpp::R_ARM_ALU_PC_G2:
9255 case elfcpp::R_ARM_ALU_SB_G0_NC:
9256 case elfcpp::R_ARM_ALU_SB_G0:
9257 case elfcpp::R_ARM_ALU_SB_G1_NC:
9258 case elfcpp::R_ARM_ALU_SB_G1:
9259 case elfcpp::R_ARM_ALU_SB_G2:
9261 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9262 reloc_property->group_index(),
9263 relative_address_base,
9264 thumb_bit, check_overflow);
9267 case elfcpp::R_ARM_LDR_PC_G0:
9268 case elfcpp::R_ARM_LDR_PC_G1:
9269 case elfcpp::R_ARM_LDR_PC_G2:
9270 case elfcpp::R_ARM_LDR_SB_G0:
9271 case elfcpp::R_ARM_LDR_SB_G1:
9272 case elfcpp::R_ARM_LDR_SB_G2:
9274 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9275 reloc_property->group_index(),
9276 relative_address_base);
9279 case elfcpp::R_ARM_LDRS_PC_G0:
9280 case elfcpp::R_ARM_LDRS_PC_G1:
9281 case elfcpp::R_ARM_LDRS_PC_G2:
9282 case elfcpp::R_ARM_LDRS_SB_G0:
9283 case elfcpp::R_ARM_LDRS_SB_G1:
9284 case elfcpp::R_ARM_LDRS_SB_G2:
9286 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9287 reloc_property->group_index(),
9288 relative_address_base);
9291 case elfcpp::R_ARM_LDC_PC_G0:
9292 case elfcpp::R_ARM_LDC_PC_G1:
9293 case elfcpp::R_ARM_LDC_PC_G2:
9294 case elfcpp::R_ARM_LDC_SB_G0:
9295 case elfcpp::R_ARM_LDC_SB_G1:
9296 case elfcpp::R_ARM_LDC_SB_G2:
9298 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9299 reloc_property->group_index(),
9300 relative_address_base);
9303 // These are initial tls relocs, which are expected when
9305 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9306 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9307 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9308 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9309 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9311 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9312 view, address, view_size);
9315 // The known and unknown unsupported and/or deprecated relocations.
9316 case elfcpp::R_ARM_PC24:
9317 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9318 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9319 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9321 // Just silently leave the method. We should get an appropriate error
9322 // message in the scan methods.
9326 // Report any errors.
9327 switch (reloc_status)
9329 case Arm_relocate_functions::STATUS_OKAY:
9331 case Arm_relocate_functions::STATUS_OVERFLOW:
9332 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9333 _("relocation overflow in %s"),
9334 reloc_property->name().c_str());
9336 case Arm_relocate_functions::STATUS_BAD_RELOC:
9337 gold_error_at_location(
9341 _("unexpected opcode while processing relocation %s"),
9342 reloc_property->name().c_str());
9351 // Perform a TLS relocation.
9353 template<bool big_endian>
9354 inline typename Arm_relocate_functions<big_endian>::Status
9355 Target_arm<big_endian>::Relocate::relocate_tls(
9356 const Relocate_info<32, big_endian>* relinfo,
9357 Target_arm<big_endian>* target,
9359 const elfcpp::Rel<32, big_endian>& rel,
9360 unsigned int r_type,
9361 const Sized_symbol<32>* gsym,
9362 const Symbol_value<32>* psymval,
9363 unsigned char* view,
9364 elfcpp::Elf_types<32>::Elf_Addr address,
9365 section_size_type /*view_size*/ )
9367 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9368 typedef Relocate_functions<32, big_endian> RelocFuncs;
9369 Output_segment* tls_segment = relinfo->layout->tls_segment();
9371 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9373 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9375 const bool is_final = (gsym == NULL
9376 ? !parameters->options().shared()
9377 : gsym->final_value_is_known());
9378 const tls::Tls_optimization optimized_type
9379 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9382 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9384 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9385 unsigned int got_offset;
9388 gold_assert(gsym->has_got_offset(got_type));
9389 got_offset = gsym->got_offset(got_type) - target->got_size();
9393 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9394 gold_assert(object->local_has_got_offset(r_sym, got_type));
9395 got_offset = (object->local_got_offset(r_sym, got_type)
9396 - target->got_size());
9398 if (optimized_type == tls::TLSOPT_NONE)
9400 Arm_address got_entry =
9401 target->got_plt_section()->address() + got_offset;
9403 // Relocate the field with the PC relative offset of the pair of
9405 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9406 return ArmRelocFuncs::STATUS_OKAY;
9411 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9412 if (optimized_type == tls::TLSOPT_NONE)
9414 // Relocate the field with the offset of the GOT entry for
9415 // the module index.
9416 unsigned int got_offset;
9417 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9418 - target->got_size());
9419 Arm_address got_entry =
9420 target->got_plt_section()->address() + got_offset;
9422 // Relocate the field with the PC relative offset of the pair of
9424 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9425 return ArmRelocFuncs::STATUS_OKAY;
9429 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9430 RelocFuncs::rel32_unaligned(view, value);
9431 return ArmRelocFuncs::STATUS_OKAY;
9433 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9434 if (optimized_type == tls::TLSOPT_NONE)
9436 // Relocate the field with the offset of the GOT entry for
9437 // the tp-relative offset of the symbol.
9438 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9439 unsigned int got_offset;
9442 gold_assert(gsym->has_got_offset(got_type));
9443 got_offset = gsym->got_offset(got_type);
9447 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9448 gold_assert(object->local_has_got_offset(r_sym, got_type));
9449 got_offset = object->local_got_offset(r_sym, got_type);
9452 // All GOT offsets are relative to the end of the GOT.
9453 got_offset -= target->got_size();
9455 Arm_address got_entry =
9456 target->got_plt_section()->address() + got_offset;
9458 // Relocate the field with the PC relative offset of the GOT entry.
9459 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9460 return ArmRelocFuncs::STATUS_OKAY;
9464 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9465 // If we're creating a shared library, a dynamic relocation will
9466 // have been created for this location, so do not apply it now.
9467 if (!parameters->options().shared())
9469 gold_assert(tls_segment != NULL);
9471 // $tp points to the TCB, which is followed by the TLS, so we
9472 // need to add TCB size to the offset.
9473 Arm_address aligned_tcb_size =
9474 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9475 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9478 return ArmRelocFuncs::STATUS_OKAY;
9484 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9485 _("unsupported reloc %u"),
9487 return ArmRelocFuncs::STATUS_BAD_RELOC;
9490 // Relocate section data.
9492 template<bool big_endian>
9494 Target_arm<big_endian>::relocate_section(
9495 const Relocate_info<32, big_endian>* relinfo,
9496 unsigned int sh_type,
9497 const unsigned char* prelocs,
9499 Output_section* output_section,
9500 bool needs_special_offset_handling,
9501 unsigned char* view,
9502 Arm_address address,
9503 section_size_type view_size,
9504 const Reloc_symbol_changes* reloc_symbol_changes)
9506 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9507 gold_assert(sh_type == elfcpp::SHT_REL);
9509 // See if we are relocating a relaxed input section. If so, the view
9510 // covers the whole output section and we need to adjust accordingly.
9511 if (needs_special_offset_handling)
9513 const Output_relaxed_input_section* poris =
9514 output_section->find_relaxed_input_section(relinfo->object,
9515 relinfo->data_shndx);
9518 Arm_address section_address = poris->address();
9519 section_size_type section_size = poris->data_size();
9521 gold_assert((section_address >= address)
9522 && ((section_address + section_size)
9523 <= (address + view_size)));
9525 off_t offset = section_address - address;
9528 view_size = section_size;
9532 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9533 Arm_relocate, gold::Default_comdat_behavior>(
9539 needs_special_offset_handling,
9543 reloc_symbol_changes);
9546 // Return the size of a relocation while scanning during a relocatable
9549 template<bool big_endian>
9551 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9552 unsigned int r_type,
9555 r_type = get_real_reloc_type(r_type);
9556 const Arm_reloc_property* arp =
9557 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9562 std::string reloc_name =
9563 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9564 gold_error(_("%s: unexpected %s in object file"),
9565 object->name().c_str(), reloc_name.c_str());
9570 // Scan the relocs during a relocatable link.
9572 template<bool big_endian>
9574 Target_arm<big_endian>::scan_relocatable_relocs(
9575 Symbol_table* symtab,
9577 Sized_relobj_file<32, big_endian>* object,
9578 unsigned int data_shndx,
9579 unsigned int sh_type,
9580 const unsigned char* prelocs,
9582 Output_section* output_section,
9583 bool needs_special_offset_handling,
9584 size_t local_symbol_count,
9585 const unsigned char* plocal_symbols,
9586 Relocatable_relocs* rr)
9588 gold_assert(sh_type == elfcpp::SHT_REL);
9590 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9591 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9593 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9594 Scan_relocatable_relocs>(
9602 needs_special_offset_handling,
9608 // Emit relocations for a section.
9610 template<bool big_endian>
9612 Target_arm<big_endian>::relocate_relocs(
9613 const Relocate_info<32, big_endian>* relinfo,
9614 unsigned int sh_type,
9615 const unsigned char* prelocs,
9617 Output_section* output_section,
9618 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9619 const Relocatable_relocs* rr,
9620 unsigned char* view,
9621 Arm_address view_address,
9622 section_size_type view_size,
9623 unsigned char* reloc_view,
9624 section_size_type reloc_view_size)
9626 gold_assert(sh_type == elfcpp::SHT_REL);
9628 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
9633 offset_in_output_section,
9642 // Perform target-specific processing in a relocatable link. This is
9643 // only used if we use the relocation strategy RELOC_SPECIAL.
9645 template<bool big_endian>
9647 Target_arm<big_endian>::relocate_special_relocatable(
9648 const Relocate_info<32, big_endian>* relinfo,
9649 unsigned int sh_type,
9650 const unsigned char* preloc_in,
9652 Output_section* output_section,
9653 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
9654 unsigned char* view,
9655 elfcpp::Elf_types<32>::Elf_Addr view_address,
9657 unsigned char* preloc_out)
9659 // We can only handle REL type relocation sections.
9660 gold_assert(sh_type == elfcpp::SHT_REL);
9662 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9663 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9665 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9667 const Arm_relobj<big_endian>* object =
9668 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9669 const unsigned int local_count = object->local_symbol_count();
9671 Reltype reloc(preloc_in);
9672 Reltype_write reloc_write(preloc_out);
9674 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9675 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9676 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9678 const Arm_reloc_property* arp =
9679 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9680 gold_assert(arp != NULL);
9682 // Get the new symbol index.
9683 // We only use RELOC_SPECIAL strategy in local relocations.
9684 gold_assert(r_sym < local_count);
9686 // We are adjusting a section symbol. We need to find
9687 // the symbol table index of the section symbol for
9688 // the output section corresponding to input section
9689 // in which this symbol is defined.
9691 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9692 gold_assert(is_ordinary);
9693 Output_section* os = object->output_section(shndx);
9694 gold_assert(os != NULL);
9695 gold_assert(os->needs_symtab_index());
9696 unsigned int new_symndx = os->symtab_index();
9698 // Get the new offset--the location in the output section where
9699 // this relocation should be applied.
9701 Arm_address offset = reloc.get_r_offset();
9702 Arm_address new_offset;
9703 if (offset_in_output_section != invalid_address)
9704 new_offset = offset + offset_in_output_section;
9707 section_offset_type sot_offset =
9708 convert_types<section_offset_type, Arm_address>(offset);
9709 section_offset_type new_sot_offset =
9710 output_section->output_offset(object, relinfo->data_shndx,
9712 gold_assert(new_sot_offset != -1);
9713 new_offset = new_sot_offset;
9716 // In an object file, r_offset is an offset within the section.
9717 // In an executable or dynamic object, generated by
9718 // --emit-relocs, r_offset is an absolute address.
9719 if (!parameters->options().relocatable())
9721 new_offset += view_address;
9722 if (offset_in_output_section != invalid_address)
9723 new_offset -= offset_in_output_section;
9726 reloc_write.put_r_offset(new_offset);
9727 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9729 // Handle the reloc addend.
9730 // The relocation uses a section symbol in the input file.
9731 // We are adjusting it to use a section symbol in the output
9732 // file. The input section symbol refers to some address in
9733 // the input section. We need the relocation in the output
9734 // file to refer to that same address. This adjustment to
9735 // the addend is the same calculation we use for a simple
9736 // absolute relocation for the input section symbol.
9738 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9740 // Handle THUMB bit.
9741 Symbol_value<32> symval;
9742 Arm_address thumb_bit =
9743 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9745 && arp->uses_thumb_bit()
9746 && ((psymval->value(object, 0) & 1) != 0))
9748 Arm_address stripped_value =
9749 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9750 symval.set_output_value(stripped_value);
9754 unsigned char* paddend = view + offset;
9755 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9756 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9759 case elfcpp::R_ARM_ABS8:
9760 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9764 case elfcpp::R_ARM_ABS12:
9765 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9769 case elfcpp::R_ARM_ABS16:
9770 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9774 case elfcpp::R_ARM_THM_ABS5:
9775 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9780 case elfcpp::R_ARM_MOVW_ABS_NC:
9781 case elfcpp::R_ARM_MOVW_PREL_NC:
9782 case elfcpp::R_ARM_MOVW_BREL_NC:
9783 case elfcpp::R_ARM_MOVW_BREL:
9784 reloc_status = Arm_relocate_functions<big_endian>::movw(
9785 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9788 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9789 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9790 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9791 case elfcpp::R_ARM_THM_MOVW_BREL:
9792 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9793 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9796 case elfcpp::R_ARM_THM_CALL:
9797 case elfcpp::R_ARM_THM_XPC22:
9798 case elfcpp::R_ARM_THM_JUMP24:
9800 Arm_relocate_functions<big_endian>::thumb_branch_common(
9801 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9805 case elfcpp::R_ARM_PLT32:
9806 case elfcpp::R_ARM_CALL:
9807 case elfcpp::R_ARM_JUMP24:
9808 case elfcpp::R_ARM_XPC25:
9810 Arm_relocate_functions<big_endian>::arm_branch_common(
9811 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9815 case elfcpp::R_ARM_THM_JUMP19:
9817 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9818 psymval, 0, thumb_bit);
9821 case elfcpp::R_ARM_THM_JUMP6:
9823 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9827 case elfcpp::R_ARM_THM_JUMP8:
9829 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9833 case elfcpp::R_ARM_THM_JUMP11:
9835 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9839 case elfcpp::R_ARM_PREL31:
9841 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9845 case elfcpp::R_ARM_THM_PC8:
9847 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9851 case elfcpp::R_ARM_THM_PC12:
9853 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9857 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9859 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9863 // These relocation truncate relocation results so we cannot handle them
9864 // in a relocatable link.
9865 case elfcpp::R_ARM_MOVT_ABS:
9866 case elfcpp::R_ARM_THM_MOVT_ABS:
9867 case elfcpp::R_ARM_MOVT_PREL:
9868 case elfcpp::R_ARM_MOVT_BREL:
9869 case elfcpp::R_ARM_THM_MOVT_PREL:
9870 case elfcpp::R_ARM_THM_MOVT_BREL:
9871 case elfcpp::R_ARM_ALU_PC_G0_NC:
9872 case elfcpp::R_ARM_ALU_PC_G0:
9873 case elfcpp::R_ARM_ALU_PC_G1_NC:
9874 case elfcpp::R_ARM_ALU_PC_G1:
9875 case elfcpp::R_ARM_ALU_PC_G2:
9876 case elfcpp::R_ARM_ALU_SB_G0_NC:
9877 case elfcpp::R_ARM_ALU_SB_G0:
9878 case elfcpp::R_ARM_ALU_SB_G1_NC:
9879 case elfcpp::R_ARM_ALU_SB_G1:
9880 case elfcpp::R_ARM_ALU_SB_G2:
9881 case elfcpp::R_ARM_LDR_PC_G0:
9882 case elfcpp::R_ARM_LDR_PC_G1:
9883 case elfcpp::R_ARM_LDR_PC_G2:
9884 case elfcpp::R_ARM_LDR_SB_G0:
9885 case elfcpp::R_ARM_LDR_SB_G1:
9886 case elfcpp::R_ARM_LDR_SB_G2:
9887 case elfcpp::R_ARM_LDRS_PC_G0:
9888 case elfcpp::R_ARM_LDRS_PC_G1:
9889 case elfcpp::R_ARM_LDRS_PC_G2:
9890 case elfcpp::R_ARM_LDRS_SB_G0:
9891 case elfcpp::R_ARM_LDRS_SB_G1:
9892 case elfcpp::R_ARM_LDRS_SB_G2:
9893 case elfcpp::R_ARM_LDC_PC_G0:
9894 case elfcpp::R_ARM_LDC_PC_G1:
9895 case elfcpp::R_ARM_LDC_PC_G2:
9896 case elfcpp::R_ARM_LDC_SB_G0:
9897 case elfcpp::R_ARM_LDC_SB_G1:
9898 case elfcpp::R_ARM_LDC_SB_G2:
9899 gold_error(_("cannot handle %s in a relocatable link"),
9900 arp->name().c_str());
9907 // Report any errors.
9908 switch (reloc_status)
9910 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9912 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9913 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9914 _("relocation overflow in %s"),
9915 arp->name().c_str());
9917 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9918 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9919 _("unexpected opcode while processing relocation %s"),
9920 arp->name().c_str());
9927 // Return the value to use for a dynamic symbol which requires special
9928 // treatment. This is how we support equality comparisons of function
9929 // pointers across shared library boundaries, as described in the
9930 // processor specific ABI supplement.
9932 template<bool big_endian>
9934 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9936 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9937 return this->plt_section()->address() + gsym->plt_offset();
9940 // Map platform-specific relocs to real relocs
9942 template<bool big_endian>
9944 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9948 case elfcpp::R_ARM_TARGET1:
9949 // This is either R_ARM_ABS32 or R_ARM_REL32;
9950 return elfcpp::R_ARM_ABS32;
9952 case elfcpp::R_ARM_TARGET2:
9953 // This can be any reloc type but usually is R_ARM_GOT_PREL
9954 return elfcpp::R_ARM_GOT_PREL;
9961 // Whether if two EABI versions V1 and V2 are compatible.
9963 template<bool big_endian>
9965 Target_arm<big_endian>::are_eabi_versions_compatible(
9966 elfcpp::Elf_Word v1,
9967 elfcpp::Elf_Word v2)
9969 // v4 and v5 are the same spec before and after it was released,
9970 // so allow mixing them.
9971 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9972 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9973 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9979 // Combine FLAGS from an input object called NAME and the processor-specific
9980 // flags in the ELF header of the output. Much of this is adapted from the
9981 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9982 // in bfd/elf32-arm.c.
9984 template<bool big_endian>
9986 Target_arm<big_endian>::merge_processor_specific_flags(
9987 const std::string& name,
9988 elfcpp::Elf_Word flags)
9990 if (this->are_processor_specific_flags_set())
9992 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9994 // Nothing to merge if flags equal to those in output.
9995 if (flags == out_flags)
9998 // Complain about various flag mismatches.
9999 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10000 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
10001 if (!this->are_eabi_versions_compatible(version1, version2)
10002 && parameters->options().warn_mismatch())
10003 gold_error(_("Source object %s has EABI version %d but output has "
10004 "EABI version %d."),
10006 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10007 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10011 // If the input is the default architecture and had the default
10012 // flags then do not bother setting the flags for the output
10013 // architecture, instead allow future merges to do this. If no
10014 // future merges ever set these flags then they will retain their
10015 // uninitialised values, which surprise surprise, correspond
10016 // to the default values.
10020 // This is the first time, just copy the flags.
10021 // We only copy the EABI version for now.
10022 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10026 // Adjust ELF file header.
10027 template<bool big_endian>
10029 Target_arm<big_endian>::do_adjust_elf_header(
10030 unsigned char* view,
10033 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10035 elfcpp::Ehdr<32, big_endian> ehdr(view);
10036 elfcpp::Elf_Word flags = this->processor_specific_flags();
10037 unsigned char e_ident[elfcpp::EI_NIDENT];
10038 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10040 if (elfcpp::arm_eabi_version(flags)
10041 == elfcpp::EF_ARM_EABI_UNKNOWN)
10042 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10044 e_ident[elfcpp::EI_OSABI] = 0;
10045 e_ident[elfcpp::EI_ABIVERSION] = 0;
10047 // FIXME: Do EF_ARM_BE8 adjustment.
10049 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10051 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10053 elfcpp::Elf_Half type = ehdr.get_e_type();
10054 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10056 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10057 if (attr->int_value())
10058 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10060 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10061 this->set_processor_specific_flags(flags);
10064 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10065 oehdr.put_e_ident(e_ident);
10068 // do_make_elf_object to override the same function in the base class.
10069 // We need to use a target-specific sub-class of
10070 // Sized_relobj_file<32, big_endian> to store ARM specific information.
10071 // Hence we need to have our own ELF object creation.
10073 template<bool big_endian>
10075 Target_arm<big_endian>::do_make_elf_object(
10076 const std::string& name,
10077 Input_file* input_file,
10078 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10080 int et = ehdr.get_e_type();
10081 // ET_EXEC files are valid input for --just-symbols/-R,
10082 // and we treat them as relocatable objects.
10083 if (et == elfcpp::ET_REL
10084 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
10086 Arm_relobj<big_endian>* obj =
10087 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10091 else if (et == elfcpp::ET_DYN)
10093 Sized_dynobj<32, big_endian>* obj =
10094 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10100 gold_error(_("%s: unsupported ELF file type %d"),
10106 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10107 // Returns -1 if no architecture could be read.
10108 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10110 template<bool big_endian>
10112 Target_arm<big_endian>::get_secondary_compatible_arch(
10113 const Attributes_section_data* pasd)
10115 const Object_attribute* known_attributes =
10116 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10118 // Note: the tag and its argument below are uleb128 values, though
10119 // currently-defined values fit in one byte for each.
10120 const std::string& sv =
10121 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10123 && sv.data()[0] == elfcpp::Tag_CPU_arch
10124 && (sv.data()[1] & 128) != 128)
10125 return sv.data()[1];
10127 // This tag is "safely ignorable", so don't complain if it looks funny.
10131 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10132 // The tag is removed if ARCH is -1.
10133 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10135 template<bool big_endian>
10137 Target_arm<big_endian>::set_secondary_compatible_arch(
10138 Attributes_section_data* pasd,
10141 Object_attribute* known_attributes =
10142 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10146 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10150 // Note: the tag and its argument below are uleb128 values, though
10151 // currently-defined values fit in one byte for each.
10153 sv[0] = elfcpp::Tag_CPU_arch;
10154 gold_assert(arch != 0);
10158 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10161 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10163 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10165 template<bool big_endian>
10167 Target_arm<big_endian>::tag_cpu_arch_combine(
10170 int* secondary_compat_out,
10172 int secondary_compat)
10174 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10175 static const int v6t2[] =
10177 T(V6T2), // PRE_V4.
10187 static const int v6k[] =
10200 static const int v7[] =
10214 static const int v6_m[] =
10229 static const int v6s_m[] =
10245 static const int v7e_m[] =
10252 T(V7E_M), // V5TEJ.
10259 T(V7E_M), // V6S_M.
10262 static const int v4t_plus_v6_m[] =
10269 T(V5TEJ), // V5TEJ.
10276 T(V6S_M), // V6S_M.
10277 T(V7E_M), // V7E_M.
10278 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10280 static const int* comb[] =
10288 // Pseudo-architecture.
10292 // Check we've not got a higher architecture than we know about.
10294 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10296 gold_error(_("%s: unknown CPU architecture"), name);
10300 // Override old tag if we have a Tag_also_compatible_with on the output.
10302 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10303 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10304 oldtag = T(V4T_PLUS_V6_M);
10306 // And override the new tag if we have a Tag_also_compatible_with on the
10309 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10310 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10311 newtag = T(V4T_PLUS_V6_M);
10313 // Architectures before V6KZ add features monotonically.
10314 int tagh = std::max(oldtag, newtag);
10315 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10318 int tagl = std::min(oldtag, newtag);
10319 int result = comb[tagh - T(V6T2)][tagl];
10321 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10322 // as the canonical version.
10323 if (result == T(V4T_PLUS_V6_M))
10326 *secondary_compat_out = T(V6_M);
10329 *secondary_compat_out = -1;
10333 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10334 name, oldtag, newtag);
10342 // Helper to print AEABI enum tag value.
10344 template<bool big_endian>
10346 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10348 static const char* aeabi_enum_names[] =
10349 { "", "variable-size", "32-bit", "" };
10350 const size_t aeabi_enum_names_size =
10351 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10353 if (value < aeabi_enum_names_size)
10354 return std::string(aeabi_enum_names[value]);
10358 sprintf(buffer, "<unknown value %u>", value);
10359 return std::string(buffer);
10363 // Return the string value to store in TAG_CPU_name.
10365 template<bool big_endian>
10367 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10369 static const char* name_table[] = {
10370 // These aren't real CPU names, but we can't guess
10371 // that from the architecture version alone.
10387 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10389 if (value < name_table_size)
10390 return std::string(name_table[value]);
10394 sprintf(buffer, "<unknown CPU value %u>", value);
10395 return std::string(buffer);
10399 // Query attributes object to see if integer divide instructions may be
10400 // present in an object.
10402 template<bool big_endian>
10404 Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10405 const Object_attribute* div_attr)
10407 switch (div_attr->int_value())
10410 // Integer divide allowed if instruction contained in
10412 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10414 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10420 // Integer divide explicitly prohibited.
10424 // Unrecognised case - treat as allowing divide everywhere.
10426 // Integer divide allowed in ARM state.
10431 // Query attributes object to see if integer divide instructions are
10432 // forbidden to be in the object. This is not the inverse of
10433 // attributes_accept_div.
10435 template<bool big_endian>
10437 Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10439 return div_attr->int_value() == 1;
10442 // Merge object attributes from input file called NAME with those of the
10443 // output. The input object attributes are in the object pointed by PASD.
10445 template<bool big_endian>
10447 Target_arm<big_endian>::merge_object_attributes(
10449 const Attributes_section_data* pasd)
10451 // Return if there is no attributes section data.
10455 // If output has no object attributes, just copy.
10456 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10457 if (this->attributes_section_data_ == NULL)
10459 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10460 Object_attribute* out_attr =
10461 this->attributes_section_data_->known_attributes(vendor);
10463 // We do not output objects with Tag_MPextension_use_legacy - we move
10464 // the attribute's value to Tag_MPextension_use. */
10465 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10467 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10468 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10469 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10471 gold_error(_("%s has both the current and legacy "
10472 "Tag_MPextension_use attributes"),
10476 out_attr[elfcpp::Tag_MPextension_use] =
10477 out_attr[elfcpp::Tag_MPextension_use_legacy];
10478 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10479 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10485 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10486 Object_attribute* out_attr =
10487 this->attributes_section_data_->known_attributes(vendor);
10489 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10490 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10491 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10493 // Ignore mismatches if the object doesn't use floating point. */
10494 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10495 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10496 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10497 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10498 && parameters->options().warn_mismatch())
10499 gold_error(_("%s uses VFP register arguments, output does not"),
10503 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10505 // Merge this attribute with existing attributes.
10508 case elfcpp::Tag_CPU_raw_name:
10509 case elfcpp::Tag_CPU_name:
10510 // These are merged after Tag_CPU_arch.
10513 case elfcpp::Tag_ABI_optimization_goals:
10514 case elfcpp::Tag_ABI_FP_optimization_goals:
10515 // Use the first value seen.
10518 case elfcpp::Tag_CPU_arch:
10520 unsigned int saved_out_attr = out_attr->int_value();
10521 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10522 int secondary_compat =
10523 this->get_secondary_compatible_arch(pasd);
10524 int secondary_compat_out =
10525 this->get_secondary_compatible_arch(
10526 this->attributes_section_data_);
10527 out_attr[i].set_int_value(
10528 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10529 &secondary_compat_out,
10530 in_attr[i].int_value(),
10531 secondary_compat));
10532 this->set_secondary_compatible_arch(this->attributes_section_data_,
10533 secondary_compat_out);
10535 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10536 if (out_attr[i].int_value() == saved_out_attr)
10537 ; // Leave the names alone.
10538 else if (out_attr[i].int_value() == in_attr[i].int_value())
10540 // The output architecture has been changed to match the
10541 // input architecture. Use the input names.
10542 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10543 in_attr[elfcpp::Tag_CPU_name].string_value());
10544 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10545 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10549 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10550 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10553 // If we still don't have a value for Tag_CPU_name,
10554 // make one up now. Tag_CPU_raw_name remains blank.
10555 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10557 const std::string cpu_name =
10558 this->tag_cpu_name_value(out_attr[i].int_value());
10559 // FIXME: If we see an unknown CPU, this will be set
10560 // to "<unknown CPU n>", where n is the attribute value.
10561 // This is different from BFD, which leaves the name alone.
10562 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10567 case elfcpp::Tag_ARM_ISA_use:
10568 case elfcpp::Tag_THUMB_ISA_use:
10569 case elfcpp::Tag_WMMX_arch:
10570 case elfcpp::Tag_Advanced_SIMD_arch:
10571 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10572 case elfcpp::Tag_ABI_FP_rounding:
10573 case elfcpp::Tag_ABI_FP_exceptions:
10574 case elfcpp::Tag_ABI_FP_user_exceptions:
10575 case elfcpp::Tag_ABI_FP_number_model:
10576 case elfcpp::Tag_VFP_HP_extension:
10577 case elfcpp::Tag_CPU_unaligned_access:
10578 case elfcpp::Tag_T2EE_use:
10579 case elfcpp::Tag_Virtualization_use:
10580 case elfcpp::Tag_MPextension_use:
10581 // Use the largest value specified.
10582 if (in_attr[i].int_value() > out_attr[i].int_value())
10583 out_attr[i].set_int_value(in_attr[i].int_value());
10586 case elfcpp::Tag_ABI_align8_preserved:
10587 case elfcpp::Tag_ABI_PCS_RO_data:
10588 // Use the smallest value specified.
10589 if (in_attr[i].int_value() < out_attr[i].int_value())
10590 out_attr[i].set_int_value(in_attr[i].int_value());
10593 case elfcpp::Tag_ABI_align8_needed:
10594 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10595 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10596 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10599 // This error message should be enabled once all non-conforming
10600 // binaries in the toolchain have had the attributes set
10602 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10606 case elfcpp::Tag_ABI_FP_denormal:
10607 case elfcpp::Tag_ABI_PCS_GOT_use:
10609 // These tags have 0 = don't care, 1 = strong requirement,
10610 // 2 = weak requirement.
10611 static const int order_021[3] = {0, 2, 1};
10613 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10614 // value if greater than 2 (for future-proofing).
10615 if ((in_attr[i].int_value() > 2
10616 && in_attr[i].int_value() > out_attr[i].int_value())
10617 || (in_attr[i].int_value() <= 2
10618 && out_attr[i].int_value() <= 2
10619 && (order_021[in_attr[i].int_value()]
10620 > order_021[out_attr[i].int_value()])))
10621 out_attr[i].set_int_value(in_attr[i].int_value());
10625 case elfcpp::Tag_CPU_arch_profile:
10626 if (out_attr[i].int_value() != in_attr[i].int_value())
10628 // 0 will merge with anything.
10629 // 'A' and 'S' merge to 'A'.
10630 // 'R' and 'S' merge to 'R'.
10631 // 'M' and 'A|R|S' is an error.
10632 if (out_attr[i].int_value() == 0
10633 || (out_attr[i].int_value() == 'S'
10634 && (in_attr[i].int_value() == 'A'
10635 || in_attr[i].int_value() == 'R')))
10636 out_attr[i].set_int_value(in_attr[i].int_value());
10637 else if (in_attr[i].int_value() == 0
10638 || (in_attr[i].int_value() == 'S'
10639 && (out_attr[i].int_value() == 'A'
10640 || out_attr[i].int_value() == 'R')))
10642 else if (parameters->options().warn_mismatch())
10645 (_("conflicting architecture profiles %c/%c"),
10646 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10647 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10651 case elfcpp::Tag_VFP_arch:
10653 static const struct
10657 } vfp_versions[7] =
10668 // Values greater than 6 aren't defined, so just pick the
10670 if (in_attr[i].int_value() > 6
10671 && in_attr[i].int_value() > out_attr[i].int_value())
10673 *out_attr = *in_attr;
10676 // The output uses the superset of input features
10677 // (ISA version) and registers.
10678 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10679 vfp_versions[out_attr[i].int_value()].ver);
10680 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10681 vfp_versions[out_attr[i].int_value()].regs);
10682 // This assumes all possible supersets are also a valid
10685 for (newval = 6; newval > 0; newval--)
10687 if (regs == vfp_versions[newval].regs
10688 && ver == vfp_versions[newval].ver)
10691 out_attr[i].set_int_value(newval);
10694 case elfcpp::Tag_PCS_config:
10695 if (out_attr[i].int_value() == 0)
10696 out_attr[i].set_int_value(in_attr[i].int_value());
10697 else if (in_attr[i].int_value() != 0
10698 && out_attr[i].int_value() != 0
10699 && parameters->options().warn_mismatch())
10701 // It's sometimes ok to mix different configs, so this is only
10703 gold_warning(_("%s: conflicting platform configuration"), name);
10706 case elfcpp::Tag_ABI_PCS_R9_use:
10707 if (in_attr[i].int_value() != out_attr[i].int_value()
10708 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10709 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10710 && parameters->options().warn_mismatch())
10712 gold_error(_("%s: conflicting use of R9"), name);
10714 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10715 out_attr[i].set_int_value(in_attr[i].int_value());
10717 case elfcpp::Tag_ABI_PCS_RW_data:
10718 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10719 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10720 != elfcpp::AEABI_R9_SB)
10721 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10722 != elfcpp::AEABI_R9_unused)
10723 && parameters->options().warn_mismatch())
10725 gold_error(_("%s: SB relative addressing conflicts with use "
10729 // Use the smallest value specified.
10730 if (in_attr[i].int_value() < out_attr[i].int_value())
10731 out_attr[i].set_int_value(in_attr[i].int_value());
10733 case elfcpp::Tag_ABI_PCS_wchar_t:
10734 if (out_attr[i].int_value()
10735 && in_attr[i].int_value()
10736 && out_attr[i].int_value() != in_attr[i].int_value()
10737 && parameters->options().warn_mismatch()
10738 && parameters->options().wchar_size_warning())
10740 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10741 "use %u-byte wchar_t; use of wchar_t values "
10742 "across objects may fail"),
10743 name, in_attr[i].int_value(),
10744 out_attr[i].int_value());
10746 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10747 out_attr[i].set_int_value(in_attr[i].int_value());
10749 case elfcpp::Tag_ABI_enum_size:
10750 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10752 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10753 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10755 // The existing object is compatible with anything.
10756 // Use whatever requirements the new object has.
10757 out_attr[i].set_int_value(in_attr[i].int_value());
10759 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10760 && out_attr[i].int_value() != in_attr[i].int_value()
10761 && parameters->options().warn_mismatch()
10762 && parameters->options().enum_size_warning())
10764 unsigned int in_value = in_attr[i].int_value();
10765 unsigned int out_value = out_attr[i].int_value();
10766 gold_warning(_("%s uses %s enums yet the output is to use "
10767 "%s enums; use of enum values across objects "
10770 this->aeabi_enum_name(in_value).c_str(),
10771 this->aeabi_enum_name(out_value).c_str());
10775 case elfcpp::Tag_ABI_VFP_args:
10778 case elfcpp::Tag_ABI_WMMX_args:
10779 if (in_attr[i].int_value() != out_attr[i].int_value()
10780 && parameters->options().warn_mismatch())
10782 gold_error(_("%s uses iWMMXt register arguments, output does "
10787 case Object_attribute::Tag_compatibility:
10788 // Merged in target-independent code.
10790 case elfcpp::Tag_ABI_HardFP_use:
10791 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10792 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10793 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10794 out_attr[i].set_int_value(3);
10795 else if (in_attr[i].int_value() > out_attr[i].int_value())
10796 out_attr[i].set_int_value(in_attr[i].int_value());
10798 case elfcpp::Tag_ABI_FP_16bit_format:
10799 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10801 if (in_attr[i].int_value() != out_attr[i].int_value()
10802 && parameters->options().warn_mismatch())
10803 gold_error(_("fp16 format mismatch between %s and output"),
10806 if (in_attr[i].int_value() != 0)
10807 out_attr[i].set_int_value(in_attr[i].int_value());
10810 case elfcpp::Tag_DIV_use:
10812 // A value of zero on input means that the divide
10813 // instruction may be used if available in the base
10814 // architecture as specified via Tag_CPU_arch and
10815 // Tag_CPU_arch_profile. A value of 1 means that the user
10816 // did not want divide instructions. A value of 2
10817 // explicitly means that divide instructions were allowed
10818 // in ARM and Thumb state.
10820 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
10822 int profile = this->
10823 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
10825 if (in_attr[i].int_value() == out_attr[i].int_value())
10829 else if (attributes_forbid_div(&in_attr[i])
10830 && !attributes_accept_div(arch, profile, &out_attr[i]))
10831 out_attr[i].set_int_value(1);
10832 else if (attributes_forbid_div(&out_attr[i])
10833 && attributes_accept_div(arch, profile, &in_attr[i]))
10834 out_attr[i].set_int_value(in_attr[i].int_value());
10835 else if (in_attr[i].int_value() == 2)
10836 out_attr[i].set_int_value(in_attr[i].int_value());
10840 case elfcpp::Tag_MPextension_use_legacy:
10841 // We don't output objects with Tag_MPextension_use_legacy - we
10842 // move the value to Tag_MPextension_use.
10843 if (in_attr[i].int_value() != 0
10844 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10846 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10847 != in_attr[i].int_value())
10849 gold_error(_("%s has has both the current and legacy "
10850 "Tag_MPextension_use attributes"),
10855 if (in_attr[i].int_value()
10856 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10857 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10861 case elfcpp::Tag_nodefaults:
10862 // This tag is set if it exists, but the value is unused (and is
10863 // typically zero). We don't actually need to do anything here -
10864 // the merge happens automatically when the type flags are merged
10867 case elfcpp::Tag_also_compatible_with:
10868 // Already done in Tag_CPU_arch.
10870 case elfcpp::Tag_conformance:
10871 // Keep the attribute if it matches. Throw it away otherwise.
10872 // No attribute means no claim to conform.
10873 if (in_attr[i].string_value() != out_attr[i].string_value())
10874 out_attr[i].set_string_value("");
10879 const char* err_object = NULL;
10881 // The "known_obj_attributes" table does contain some undefined
10882 // attributes. Ensure that there are unused.
10883 if (out_attr[i].int_value() != 0
10884 || out_attr[i].string_value() != "")
10885 err_object = "output";
10886 else if (in_attr[i].int_value() != 0
10887 || in_attr[i].string_value() != "")
10890 if (err_object != NULL
10891 && parameters->options().warn_mismatch())
10893 // Attribute numbers >=64 (mod 128) can be safely ignored.
10894 if ((i & 127) < 64)
10895 gold_error(_("%s: unknown mandatory EABI object attribute "
10899 gold_warning(_("%s: unknown EABI object attribute %d"),
10903 // Only pass on attributes that match in both inputs.
10904 if (!in_attr[i].matches(out_attr[i]))
10906 out_attr[i].set_int_value(0);
10907 out_attr[i].set_string_value("");
10912 // If out_attr was copied from in_attr then it won't have a type yet.
10913 if (in_attr[i].type() && !out_attr[i].type())
10914 out_attr[i].set_type(in_attr[i].type());
10917 // Merge Tag_compatibility attributes and any common GNU ones.
10918 this->attributes_section_data_->merge(name, pasd);
10920 // Check for any attributes not known on ARM.
10921 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10922 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10923 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10924 Other_attributes* out_other_attributes =
10925 this->attributes_section_data_->other_attributes(vendor);
10926 Other_attributes::iterator out_iter = out_other_attributes->begin();
10928 while (in_iter != in_other_attributes->end()
10929 || out_iter != out_other_attributes->end())
10931 const char* err_object = NULL;
10934 // The tags for each list are in numerical order.
10935 // If the tags are equal, then merge.
10936 if (out_iter != out_other_attributes->end()
10937 && (in_iter == in_other_attributes->end()
10938 || in_iter->first > out_iter->first))
10940 // This attribute only exists in output. We can't merge, and we
10941 // don't know what the tag means, so delete it.
10942 err_object = "output";
10943 err_tag = out_iter->first;
10944 int saved_tag = out_iter->first;
10945 delete out_iter->second;
10946 out_other_attributes->erase(out_iter);
10947 out_iter = out_other_attributes->upper_bound(saved_tag);
10949 else if (in_iter != in_other_attributes->end()
10950 && (out_iter != out_other_attributes->end()
10951 || in_iter->first < out_iter->first))
10953 // This attribute only exists in input. We can't merge, and we
10954 // don't know what the tag means, so ignore it.
10956 err_tag = in_iter->first;
10959 else // The tags are equal.
10961 // As present, all attributes in the list are unknown, and
10962 // therefore can't be merged meaningfully.
10963 err_object = "output";
10964 err_tag = out_iter->first;
10966 // Only pass on attributes that match in both inputs.
10967 if (!in_iter->second->matches(*(out_iter->second)))
10969 // No match. Delete the attribute.
10970 int saved_tag = out_iter->first;
10971 delete out_iter->second;
10972 out_other_attributes->erase(out_iter);
10973 out_iter = out_other_attributes->upper_bound(saved_tag);
10977 // Matched. Keep the attribute and move to the next.
10983 if (err_object && parameters->options().warn_mismatch())
10985 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10986 if ((err_tag & 127) < 64)
10988 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10989 err_object, err_tag);
10993 gold_warning(_("%s: unknown EABI object attribute %d"),
10994 err_object, err_tag);
11000 // Stub-generation methods for Target_arm.
11002 // Make a new Arm_input_section object.
11004 template<bool big_endian>
11005 Arm_input_section<big_endian>*
11006 Target_arm<big_endian>::new_arm_input_section(
11008 unsigned int shndx)
11010 Section_id sid(relobj, shndx);
11012 Arm_input_section<big_endian>* arm_input_section =
11013 new Arm_input_section<big_endian>(relobj, shndx);
11014 arm_input_section->init();
11016 // Register new Arm_input_section in map for look-up.
11017 std::pair<typename Arm_input_section_map::iterator, bool> ins =
11018 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
11020 // Make sure that it we have not created another Arm_input_section
11021 // for this input section already.
11022 gold_assert(ins.second);
11024 return arm_input_section;
11027 // Find the Arm_input_section object corresponding to the SHNDX-th input
11028 // section of RELOBJ.
11030 template<bool big_endian>
11031 Arm_input_section<big_endian>*
11032 Target_arm<big_endian>::find_arm_input_section(
11034 unsigned int shndx) const
11036 Section_id sid(relobj, shndx);
11037 typename Arm_input_section_map::const_iterator p =
11038 this->arm_input_section_map_.find(sid);
11039 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11042 // Make a new stub table.
11044 template<bool big_endian>
11045 Stub_table<big_endian>*
11046 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11048 Stub_table<big_endian>* stub_table =
11049 new Stub_table<big_endian>(owner);
11050 this->stub_tables_.push_back(stub_table);
11052 stub_table->set_address(owner->address() + owner->data_size());
11053 stub_table->set_file_offset(owner->offset() + owner->data_size());
11054 stub_table->finalize_data_size();
11059 // Scan a relocation for stub generation.
11061 template<bool big_endian>
11063 Target_arm<big_endian>::scan_reloc_for_stub(
11064 const Relocate_info<32, big_endian>* relinfo,
11065 unsigned int r_type,
11066 const Sized_symbol<32>* gsym,
11067 unsigned int r_sym,
11068 const Symbol_value<32>* psymval,
11069 elfcpp::Elf_types<32>::Elf_Swxword addend,
11070 Arm_address address)
11072 const Arm_relobj<big_endian>* arm_relobj =
11073 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11075 bool target_is_thumb;
11076 Symbol_value<32> symval;
11079 // This is a global symbol. Determine if we use PLT and if the
11080 // final target is THUMB.
11081 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
11083 // This uses a PLT, change the symbol value.
11084 symval.set_output_value(this->plt_section()->address()
11085 + gsym->plt_offset());
11087 target_is_thumb = false;
11089 else if (gsym->is_undefined())
11090 // There is no need to generate a stub symbol is undefined.
11095 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11096 || (gsym->type() == elfcpp::STT_FUNC
11097 && !gsym->is_undefined()
11098 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11103 // This is a local symbol. Determine if the final target is THUMB.
11104 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11107 // Strip LSB if this points to a THUMB target.
11108 const Arm_reloc_property* reloc_property =
11109 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11110 gold_assert(reloc_property != NULL);
11111 if (target_is_thumb
11112 && reloc_property->uses_thumb_bit()
11113 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11115 Arm_address stripped_value =
11116 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11117 symval.set_output_value(stripped_value);
11121 // Get the symbol value.
11122 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11124 // Owing to pipelining, the PC relative branches below actually skip
11125 // two instructions when the branch offset is 0.
11126 Arm_address destination;
11129 case elfcpp::R_ARM_CALL:
11130 case elfcpp::R_ARM_JUMP24:
11131 case elfcpp::R_ARM_PLT32:
11133 destination = value + addend + 8;
11135 case elfcpp::R_ARM_THM_CALL:
11136 case elfcpp::R_ARM_THM_XPC22:
11137 case elfcpp::R_ARM_THM_JUMP24:
11138 case elfcpp::R_ARM_THM_JUMP19:
11140 destination = value + addend + 4;
11143 gold_unreachable();
11146 Reloc_stub* stub = NULL;
11147 Stub_type stub_type =
11148 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11150 if (stub_type != arm_stub_none)
11152 // Try looking up an existing stub from a stub table.
11153 Stub_table<big_endian>* stub_table =
11154 arm_relobj->stub_table(relinfo->data_shndx);
11155 gold_assert(stub_table != NULL);
11157 // Locate stub by destination.
11158 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11160 // Create a stub if there is not one already
11161 stub = stub_table->find_reloc_stub(stub_key);
11164 // create a new stub and add it to stub table.
11165 stub = this->stub_factory().make_reloc_stub(stub_type);
11166 stub_table->add_reloc_stub(stub, stub_key);
11169 // Record the destination address.
11170 stub->set_destination_address(destination
11171 | (target_is_thumb ? 1 : 0));
11174 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11175 if (this->fix_cortex_a8_
11176 && (r_type == elfcpp::R_ARM_THM_JUMP24
11177 || r_type == elfcpp::R_ARM_THM_JUMP19
11178 || r_type == elfcpp::R_ARM_THM_CALL
11179 || r_type == elfcpp::R_ARM_THM_XPC22)
11180 && (address & 0xfffU) == 0xffeU)
11182 // Found a candidate. Note we haven't checked the destination is
11183 // within 4K here: if we do so (and don't create a record) we can't
11184 // tell that a branch should have been relocated when scanning later.
11185 this->cortex_a8_relocs_info_[address] =
11186 new Cortex_a8_reloc(stub, r_type,
11187 destination | (target_is_thumb ? 1 : 0));
11191 // This function scans a relocation sections for stub generation.
11192 // The template parameter Relocate must be a class type which provides
11193 // a single function, relocate(), which implements the machine
11194 // specific part of a relocation.
11196 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11197 // SHT_REL or SHT_RELA.
11199 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11200 // of relocs. OUTPUT_SECTION is the output section.
11201 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11202 // mapped to output offsets.
11204 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11205 // VIEW_SIZE is the size. These refer to the input section, unless
11206 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11207 // the output section.
11209 template<bool big_endian>
11210 template<int sh_type>
11212 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11213 const Relocate_info<32, big_endian>* relinfo,
11214 const unsigned char* prelocs,
11215 size_t reloc_count,
11216 Output_section* output_section,
11217 bool needs_special_offset_handling,
11218 const unsigned char* view,
11219 elfcpp::Elf_types<32>::Elf_Addr view_address,
11222 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11223 const int reloc_size =
11224 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11226 Arm_relobj<big_endian>* arm_object =
11227 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11228 unsigned int local_count = arm_object->local_symbol_count();
11230 gold::Default_comdat_behavior default_comdat_behavior;
11231 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11233 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11235 Reltype reloc(prelocs);
11237 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11238 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11239 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11241 r_type = this->get_real_reloc_type(r_type);
11243 // Only a few relocation types need stubs.
11244 if ((r_type != elfcpp::R_ARM_CALL)
11245 && (r_type != elfcpp::R_ARM_JUMP24)
11246 && (r_type != elfcpp::R_ARM_PLT32)
11247 && (r_type != elfcpp::R_ARM_THM_CALL)
11248 && (r_type != elfcpp::R_ARM_THM_XPC22)
11249 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11250 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11251 && (r_type != elfcpp::R_ARM_V4BX))
11254 section_offset_type offset =
11255 convert_to_section_size_type(reloc.get_r_offset());
11257 if (needs_special_offset_handling)
11259 offset = output_section->output_offset(relinfo->object,
11260 relinfo->data_shndx,
11266 // Create a v4bx stub if --fix-v4bx-interworking is used.
11267 if (r_type == elfcpp::R_ARM_V4BX)
11269 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11271 // Get the BX instruction.
11272 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11273 const Valtype* wv =
11274 reinterpret_cast<const Valtype*>(view + offset);
11275 elfcpp::Elf_types<32>::Elf_Swxword insn =
11276 elfcpp::Swap<32, big_endian>::readval(wv);
11277 const uint32_t reg = (insn & 0xf);
11281 // Try looking up an existing stub from a stub table.
11282 Stub_table<big_endian>* stub_table =
11283 arm_object->stub_table(relinfo->data_shndx);
11284 gold_assert(stub_table != NULL);
11286 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11288 // create a new stub and add it to stub table.
11289 Arm_v4bx_stub* stub =
11290 this->stub_factory().make_arm_v4bx_stub(reg);
11291 gold_assert(stub != NULL);
11292 stub_table->add_arm_v4bx_stub(stub);
11300 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11301 elfcpp::Elf_types<32>::Elf_Swxword addend =
11302 stub_addend_reader(r_type, view + offset, reloc);
11304 const Sized_symbol<32>* sym;
11306 Symbol_value<32> symval;
11307 const Symbol_value<32> *psymval;
11308 bool is_defined_in_discarded_section;
11309 unsigned int shndx;
11310 if (r_sym < local_count)
11313 psymval = arm_object->local_symbol(r_sym);
11315 // If the local symbol belongs to a section we are discarding,
11316 // and that section is a debug section, try to find the
11317 // corresponding kept section and map this symbol to its
11318 // counterpart in the kept section. The symbol must not
11319 // correspond to a section we are folding.
11321 shndx = psymval->input_shndx(&is_ordinary);
11322 is_defined_in_discarded_section =
11324 && shndx != elfcpp::SHN_UNDEF
11325 && !arm_object->is_section_included(shndx)
11326 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11328 // We need to compute the would-be final value of this local
11330 if (!is_defined_in_discarded_section)
11332 typedef Sized_relobj_file<32, big_endian> ObjType;
11333 typename ObjType::Compute_final_local_value_status status =
11334 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11336 if (status == ObjType::CFLV_OK)
11338 // Currently we cannot handle a branch to a target in
11339 // a merged section. If this is the case, issue an error
11340 // and also free the merge symbol value.
11341 if (!symval.has_output_value())
11343 const std::string& section_name =
11344 arm_object->section_name(shndx);
11345 arm_object->error(_("cannot handle branch to local %u "
11346 "in a merged section %s"),
11347 r_sym, section_name.c_str());
11353 // We cannot determine the final value.
11360 const Symbol* gsym;
11361 gsym = arm_object->global_symbol(r_sym);
11362 gold_assert(gsym != NULL);
11363 if (gsym->is_forwarder())
11364 gsym = relinfo->symtab->resolve_forwards(gsym);
11366 sym = static_cast<const Sized_symbol<32>*>(gsym);
11367 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11368 symval.set_output_symtab_index(sym->symtab_index());
11370 symval.set_no_output_symtab_entry();
11372 // We need to compute the would-be final value of this global
11374 const Symbol_table* symtab = relinfo->symtab;
11375 const Sized_symbol<32>* sized_symbol =
11376 symtab->get_sized_symbol<32>(gsym);
11377 Symbol_table::Compute_final_value_status status;
11378 Arm_address value =
11379 symtab->compute_final_value<32>(sized_symbol, &status);
11381 // Skip this if the symbol has not output section.
11382 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11384 symval.set_output_value(value);
11386 if (gsym->type() == elfcpp::STT_TLS)
11387 symval.set_is_tls_symbol();
11388 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11389 symval.set_is_ifunc_symbol();
11392 is_defined_in_discarded_section =
11393 (gsym->is_defined_in_discarded_section()
11394 && gsym->is_undefined());
11398 Symbol_value<32> symval2;
11399 if (is_defined_in_discarded_section)
11401 if (comdat_behavior == CB_UNDETERMINED)
11403 std::string name = arm_object->section_name(relinfo->data_shndx);
11404 comdat_behavior = default_comdat_behavior.get(name.c_str());
11406 if (comdat_behavior == CB_PRETEND)
11408 // FIXME: This case does not work for global symbols.
11409 // We have no place to store the original section index.
11410 // Fortunately this does not matter for comdat sections,
11411 // only for sections explicitly discarded by a linker
11414 typename elfcpp::Elf_types<32>::Elf_Addr value =
11415 arm_object->map_to_kept_section(shndx, &found);
11417 symval2.set_output_value(value + psymval->input_value());
11419 symval2.set_output_value(0);
11423 if (comdat_behavior == CB_WARNING)
11424 gold_warning_at_location(relinfo, i, offset,
11425 _("relocation refers to discarded "
11427 symval2.set_output_value(0);
11429 symval2.set_no_output_symtab_entry();
11430 psymval = &symval2;
11433 // If symbol is a section symbol, we don't know the actual type of
11434 // destination. Give up.
11435 if (psymval->is_section_symbol())
11438 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11439 addend, view_address + offset);
11443 // Scan an input section for stub generation.
11445 template<bool big_endian>
11447 Target_arm<big_endian>::scan_section_for_stubs(
11448 const Relocate_info<32, big_endian>* relinfo,
11449 unsigned int sh_type,
11450 const unsigned char* prelocs,
11451 size_t reloc_count,
11452 Output_section* output_section,
11453 bool needs_special_offset_handling,
11454 const unsigned char* view,
11455 Arm_address view_address,
11456 section_size_type view_size)
11458 if (sh_type == elfcpp::SHT_REL)
11459 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11464 needs_special_offset_handling,
11468 else if (sh_type == elfcpp::SHT_RELA)
11469 // We do not support RELA type relocations yet. This is provided for
11471 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11476 needs_special_offset_handling,
11481 gold_unreachable();
11484 // Group input sections for stub generation.
11486 // We group input sections in an output section so that the total size,
11487 // including any padding space due to alignment is smaller than GROUP_SIZE
11488 // unless the only input section in group is bigger than GROUP_SIZE already.
11489 // Then an ARM stub table is created to follow the last input section
11490 // in group. For each group an ARM stub table is created an is placed
11491 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11492 // extend the group after the stub table.
11494 template<bool big_endian>
11496 Target_arm<big_endian>::group_sections(
11498 section_size_type group_size,
11499 bool stubs_always_after_branch,
11502 // Group input sections and insert stub table
11503 Layout::Section_list section_list;
11504 layout->get_executable_sections(§ion_list);
11505 for (Layout::Section_list::const_iterator p = section_list.begin();
11506 p != section_list.end();
11509 Arm_output_section<big_endian>* output_section =
11510 Arm_output_section<big_endian>::as_arm_output_section(*p);
11511 output_section->group_sections(group_size, stubs_always_after_branch,
11516 // Relaxation hook. This is where we do stub generation.
11518 template<bool big_endian>
11520 Target_arm<big_endian>::do_relax(
11522 const Input_objects* input_objects,
11523 Symbol_table* symtab,
11527 // No need to generate stubs if this is a relocatable link.
11528 gold_assert(!parameters->options().relocatable());
11530 // If this is the first pass, we need to group input sections into
11532 bool done_exidx_fixup = false;
11533 typedef typename Stub_table_list::iterator Stub_table_iterator;
11536 // Determine the stub group size. The group size is the absolute
11537 // value of the parameter --stub-group-size. If --stub-group-size
11538 // is passed a negative value, we restrict stubs to be always after
11539 // the stubbed branches.
11540 int32_t stub_group_size_param =
11541 parameters->options().stub_group_size();
11542 bool stubs_always_after_branch = stub_group_size_param < 0;
11543 section_size_type stub_group_size = abs(stub_group_size_param);
11545 if (stub_group_size == 1)
11548 // Thumb branch range is +-4MB has to be used as the default
11549 // maximum size (a given section can contain both ARM and Thumb
11550 // code, so the worst case has to be taken into account). If we are
11551 // fixing cortex-a8 errata, the branch range has to be even smaller,
11552 // since wide conditional branch has a range of +-1MB only.
11554 // This value is 48K less than that, which allows for 4096
11555 // 12-byte stubs. If we exceed that, then we will fail to link.
11556 // The user will have to relink with an explicit group size
11558 stub_group_size = 4145152;
11561 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11562 // page as the first half of a 32-bit branch straddling two 4K pages.
11563 // This is a crude way of enforcing that. In addition, long conditional
11564 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11565 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11566 // cortex-A8 stubs from long conditional branches.
11567 if (this->fix_cortex_a8_)
11569 stubs_always_after_branch = true;
11570 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11571 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11574 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11576 // Also fix .ARM.exidx section coverage.
11577 Arm_output_section<big_endian>* exidx_output_section = NULL;
11578 for (Layout::Section_list::const_iterator p =
11579 layout->section_list().begin();
11580 p != layout->section_list().end();
11582 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11584 if (exidx_output_section == NULL)
11585 exidx_output_section =
11586 Arm_output_section<big_endian>::as_arm_output_section(*p);
11588 // We cannot handle this now.
11589 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11590 "non-relocatable link"),
11591 exidx_output_section->name(),
11595 if (exidx_output_section != NULL)
11597 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11599 done_exidx_fixup = true;
11604 // If this is not the first pass, addresses and file offsets have
11605 // been reset at this point, set them here.
11606 for (Stub_table_iterator sp = this->stub_tables_.begin();
11607 sp != this->stub_tables_.end();
11610 Arm_input_section<big_endian>* owner = (*sp)->owner();
11611 off_t off = align_address(owner->original_size(),
11612 (*sp)->addralign());
11613 (*sp)->set_address_and_file_offset(owner->address() + off,
11614 owner->offset() + off);
11618 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11619 // beginning of each relaxation pass, just blow away all the stubs.
11620 // Alternatively, we could selectively remove only the stubs and reloc
11621 // information for code sections that have moved since the last pass.
11622 // That would require more book-keeping.
11623 if (this->fix_cortex_a8_)
11625 // Clear all Cortex-A8 reloc information.
11626 for (typename Cortex_a8_relocs_info::const_iterator p =
11627 this->cortex_a8_relocs_info_.begin();
11628 p != this->cortex_a8_relocs_info_.end();
11631 this->cortex_a8_relocs_info_.clear();
11633 // Remove all Cortex-A8 stubs.
11634 for (Stub_table_iterator sp = this->stub_tables_.begin();
11635 sp != this->stub_tables_.end();
11637 (*sp)->remove_all_cortex_a8_stubs();
11640 // Scan relocs for relocation stubs
11641 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11642 op != input_objects->relobj_end();
11645 Arm_relobj<big_endian>* arm_relobj =
11646 Arm_relobj<big_endian>::as_arm_relobj(*op);
11647 // Lock the object so we can read from it. This is only called
11648 // single-threaded from Layout::finalize, so it is OK to lock.
11649 Task_lock_obj<Object> tl(task, arm_relobj);
11650 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11653 // Check all stub tables to see if any of them have their data sizes
11654 // or addresses alignments changed. These are the only things that
11656 bool any_stub_table_changed = false;
11657 Unordered_set<const Output_section*> sections_needing_adjustment;
11658 for (Stub_table_iterator sp = this->stub_tables_.begin();
11659 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11662 if ((*sp)->update_data_size_and_addralign())
11664 // Update data size of stub table owner.
11665 Arm_input_section<big_endian>* owner = (*sp)->owner();
11666 uint64_t address = owner->address();
11667 off_t offset = owner->offset();
11668 owner->reset_address_and_file_offset();
11669 owner->set_address_and_file_offset(address, offset);
11671 sections_needing_adjustment.insert(owner->output_section());
11672 any_stub_table_changed = true;
11676 // Output_section_data::output_section() returns a const pointer but we
11677 // need to update output sections, so we record all output sections needing
11678 // update above and scan the sections here to find out what sections need
11680 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11681 p != layout->section_list().end();
11684 if (sections_needing_adjustment.find(*p)
11685 != sections_needing_adjustment.end())
11686 (*p)->set_section_offsets_need_adjustment();
11689 // Stop relaxation if no EXIDX fix-up and no stub table change.
11690 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11692 // Finalize the stubs in the last relaxation pass.
11693 if (!continue_relaxation)
11695 for (Stub_table_iterator sp = this->stub_tables_.begin();
11696 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11698 (*sp)->finalize_stubs();
11700 // Update output local symbol counts of objects if necessary.
11701 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11702 op != input_objects->relobj_end();
11705 Arm_relobj<big_endian>* arm_relobj =
11706 Arm_relobj<big_endian>::as_arm_relobj(*op);
11708 // Update output local symbol counts. We need to discard local
11709 // symbols defined in parts of input sections that are discarded by
11711 if (arm_relobj->output_local_symbol_count_needs_update())
11713 // We need to lock the object's file to update it.
11714 Task_lock_obj<Object> tl(task, arm_relobj);
11715 arm_relobj->update_output_local_symbol_count();
11720 return continue_relaxation;
11723 // Relocate a stub.
11725 template<bool big_endian>
11727 Target_arm<big_endian>::relocate_stub(
11729 const Relocate_info<32, big_endian>* relinfo,
11730 Output_section* output_section,
11731 unsigned char* view,
11732 Arm_address address,
11733 section_size_type view_size)
11736 const Stub_template* stub_template = stub->stub_template();
11737 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11739 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11740 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11742 unsigned int r_type = insn->r_type();
11743 section_size_type reloc_offset = stub_template->reloc_offset(i);
11744 section_size_type reloc_size = insn->size();
11745 gold_assert(reloc_offset + reloc_size <= view_size);
11747 // This is the address of the stub destination.
11748 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11749 Symbol_value<32> symval;
11750 symval.set_output_value(target);
11752 // Synthesize a fake reloc just in case. We don't have a symbol so
11754 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11755 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11756 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11757 reloc_write.put_r_offset(reloc_offset);
11758 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11759 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11761 relocate.relocate(relinfo, this, output_section,
11762 this->fake_relnum_for_stubs, rel, r_type,
11763 NULL, &symval, view + reloc_offset,
11764 address + reloc_offset, reloc_size);
11768 // Determine whether an object attribute tag takes an integer, a
11771 template<bool big_endian>
11773 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11775 if (tag == Object_attribute::Tag_compatibility)
11776 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11777 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11778 else if (tag == elfcpp::Tag_nodefaults)
11779 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11780 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11781 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11782 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11784 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11786 return ((tag & 1) != 0
11787 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11788 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11791 // Reorder attributes.
11793 // The ABI defines that Tag_conformance should be emitted first, and that
11794 // Tag_nodefaults should be second (if either is defined). This sets those
11795 // two positions, and bumps up the position of all the remaining tags to
11798 template<bool big_endian>
11800 Target_arm<big_endian>::do_attributes_order(int num) const
11802 // Reorder the known object attributes in output. We want to move
11803 // Tag_conformance to position 4 and Tag_conformance to position 5
11804 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11806 return elfcpp::Tag_conformance;
11808 return elfcpp::Tag_nodefaults;
11809 if ((num - 2) < elfcpp::Tag_nodefaults)
11811 if ((num - 1) < elfcpp::Tag_conformance)
11816 // Scan a span of THUMB code for Cortex-A8 erratum.
11818 template<bool big_endian>
11820 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11821 Arm_relobj<big_endian>* arm_relobj,
11822 unsigned int shndx,
11823 section_size_type span_start,
11824 section_size_type span_end,
11825 const unsigned char* view,
11826 Arm_address address)
11828 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11830 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11831 // The branch target is in the same 4KB region as the
11832 // first half of the branch.
11833 // The instruction before the branch is a 32-bit
11834 // length non-branch instruction.
11835 section_size_type i = span_start;
11836 bool last_was_32bit = false;
11837 bool last_was_branch = false;
11838 while (i < span_end)
11840 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11841 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11842 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11843 bool is_blx = false, is_b = false;
11844 bool is_bl = false, is_bcc = false;
11846 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11849 // Load the rest of the insn (in manual-friendly order).
11850 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11852 // Encoding T4: B<c>.W.
11853 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11854 // Encoding T1: BL<c>.W.
11855 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11856 // Encoding T2: BLX<c>.W.
11857 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11858 // Encoding T3: B<c>.W (not permitted in IT block).
11859 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11860 && (insn & 0x07f00000U) != 0x03800000U);
11863 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11865 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11866 // page boundary and it follows 32-bit non-branch instruction,
11867 // we need to work around.
11868 if (is_32bit_branch
11869 && ((address + i) & 0xfffU) == 0xffeU
11871 && !last_was_branch)
11873 // Check to see if there is a relocation stub for this branch.
11874 bool force_target_arm = false;
11875 bool force_target_thumb = false;
11876 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11877 Cortex_a8_relocs_info::const_iterator p =
11878 this->cortex_a8_relocs_info_.find(address + i);
11880 if (p != this->cortex_a8_relocs_info_.end())
11882 cortex_a8_reloc = p->second;
11883 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11885 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11886 && !target_is_thumb)
11887 force_target_arm = true;
11888 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11889 && target_is_thumb)
11890 force_target_thumb = true;
11894 Stub_type stub_type = arm_stub_none;
11896 // Check if we have an offending branch instruction.
11897 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11898 uint16_t lower_insn = insn & 0xffffU;
11899 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11901 if (cortex_a8_reloc != NULL
11902 && cortex_a8_reloc->reloc_stub() != NULL)
11903 // We've already made a stub for this instruction, e.g.
11904 // it's a long branch or a Thumb->ARM stub. Assume that
11905 // stub will suffice to work around the A8 erratum (see
11906 // setting of always_after_branch above).
11910 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11912 stub_type = arm_stub_a8_veneer_b_cond;
11914 else if (is_b || is_bl || is_blx)
11916 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11921 stub_type = (is_blx
11922 ? arm_stub_a8_veneer_blx
11924 ? arm_stub_a8_veneer_bl
11925 : arm_stub_a8_veneer_b));
11928 if (stub_type != arm_stub_none)
11930 Arm_address pc_for_insn = address + i + 4;
11932 // The original instruction is a BL, but the target is
11933 // an ARM instruction. If we were not making a stub,
11934 // the BL would have been converted to a BLX. Use the
11935 // BLX stub instead in that case.
11936 if (this->may_use_v5t_interworking() && force_target_arm
11937 && stub_type == arm_stub_a8_veneer_bl)
11939 stub_type = arm_stub_a8_veneer_blx;
11943 // Conversely, if the original instruction was
11944 // BLX but the target is Thumb mode, use the BL stub.
11945 else if (force_target_thumb
11946 && stub_type == arm_stub_a8_veneer_blx)
11948 stub_type = arm_stub_a8_veneer_bl;
11956 // If we found a relocation, use the proper destination,
11957 // not the offset in the (unrelocated) instruction.
11958 // Note this is always done if we switched the stub type above.
11959 if (cortex_a8_reloc != NULL)
11960 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11962 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11964 // Add a new stub if destination address in in the same page.
11965 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11967 Cortex_a8_stub* stub =
11968 this->stub_factory_.make_cortex_a8_stub(stub_type,
11972 Stub_table<big_endian>* stub_table =
11973 arm_relobj->stub_table(shndx);
11974 gold_assert(stub_table != NULL);
11975 stub_table->add_cortex_a8_stub(address + i, stub);
11980 i += insn_32bit ? 4 : 2;
11981 last_was_32bit = insn_32bit;
11982 last_was_branch = is_32bit_branch;
11986 // Apply the Cortex-A8 workaround.
11988 template<bool big_endian>
11990 Target_arm<big_endian>::apply_cortex_a8_workaround(
11991 const Cortex_a8_stub* stub,
11992 Arm_address stub_address,
11993 unsigned char* insn_view,
11994 Arm_address insn_address)
11996 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11997 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11998 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11999 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12000 off_t branch_offset = stub_address - (insn_address + 4);
12002 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
12003 switch (stub->stub_template()->type())
12005 case arm_stub_a8_veneer_b_cond:
12006 // For a conditional branch, we re-write it to be an unconditional
12007 // branch to the stub. We use the THUMB-2 encoding here.
12008 upper_insn = 0xf000U;
12009 lower_insn = 0xb800U;
12011 case arm_stub_a8_veneer_b:
12012 case arm_stub_a8_veneer_bl:
12013 case arm_stub_a8_veneer_blx:
12014 if ((lower_insn & 0x5000U) == 0x4000U)
12015 // For a BLX instruction, make sure that the relocation is
12016 // rounded up to a word boundary. This follows the semantics of
12017 // the instruction which specifies that bit 1 of the target
12018 // address will come from bit 1 of the base address.
12019 branch_offset = (branch_offset + 2) & ~3;
12021 // Put BRANCH_OFFSET back into the insn.
12022 gold_assert(!Bits<25>::has_overflow32(branch_offset));
12023 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12024 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12028 gold_unreachable();
12031 // Put the relocated value back in the object file:
12032 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12033 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12036 // Target selector for ARM. Note this is never instantiated directly.
12037 // It's only used in Target_selector_arm_nacl, below.
12039 template<bool big_endian>
12040 class Target_selector_arm : public Target_selector
12043 Target_selector_arm()
12044 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
12045 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12046 (big_endian ? "armelfb" : "armelf"))
12050 do_instantiate_target()
12051 { return new Target_arm<big_endian>(); }
12054 // Fix .ARM.exidx section coverage.
12056 template<bool big_endian>
12058 Target_arm<big_endian>::fix_exidx_coverage(
12060 const Input_objects* input_objects,
12061 Arm_output_section<big_endian>* exidx_section,
12062 Symbol_table* symtab,
12065 // We need to look at all the input sections in output in ascending
12066 // order of of output address. We do that by building a sorted list
12067 // of output sections by addresses. Then we looks at the output sections
12068 // in order. The input sections in an output section are already sorted
12069 // by addresses within the output section.
12071 typedef std::set<Output_section*, output_section_address_less_than>
12072 Sorted_output_section_list;
12073 Sorted_output_section_list sorted_output_sections;
12075 // Find out all the output sections of input sections pointed by
12076 // EXIDX input sections.
12077 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12078 p != input_objects->relobj_end();
12081 Arm_relobj<big_endian>* arm_relobj =
12082 Arm_relobj<big_endian>::as_arm_relobj(*p);
12083 std::vector<unsigned int> shndx_list;
12084 arm_relobj->get_exidx_shndx_list(&shndx_list);
12085 for (size_t i = 0; i < shndx_list.size(); ++i)
12087 const Arm_exidx_input_section* exidx_input_section =
12088 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12089 gold_assert(exidx_input_section != NULL);
12090 if (!exidx_input_section->has_errors())
12092 unsigned int text_shndx = exidx_input_section->link();
12093 Output_section* os = arm_relobj->output_section(text_shndx);
12094 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12095 sorted_output_sections.insert(os);
12100 // Go over the output sections in ascending order of output addresses.
12101 typedef typename Arm_output_section<big_endian>::Text_section_list
12103 Text_section_list sorted_text_sections;
12104 for (typename Sorted_output_section_list::iterator p =
12105 sorted_output_sections.begin();
12106 p != sorted_output_sections.end();
12109 Arm_output_section<big_endian>* arm_output_section =
12110 Arm_output_section<big_endian>::as_arm_output_section(*p);
12111 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
12114 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
12115 merge_exidx_entries(), task);
12118 template<bool big_endian>
12120 Target_arm<big_endian>::do_define_standard_symbols(
12121 Symbol_table* symtab,
12124 // Handle the .ARM.exidx section.
12125 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12127 if (exidx_section != NULL)
12129 // Create __exidx_start and __exidx_end symbols.
12130 symtab->define_in_output_data("__exidx_start",
12132 Symbol_table::PREDEFINED,
12136 elfcpp::STT_NOTYPE,
12137 elfcpp::STB_GLOBAL,
12138 elfcpp::STV_HIDDEN,
12140 false, // offset_is_from_end
12141 true); // only_if_ref
12143 symtab->define_in_output_data("__exidx_end",
12145 Symbol_table::PREDEFINED,
12149 elfcpp::STT_NOTYPE,
12150 elfcpp::STB_GLOBAL,
12151 elfcpp::STV_HIDDEN,
12153 true, // offset_is_from_end
12154 true); // only_if_ref
12158 // Define __exidx_start and __exidx_end even when .ARM.exidx
12159 // section is missing to match ld's behaviour.
12160 symtab->define_as_constant("__exidx_start", NULL,
12161 Symbol_table::PREDEFINED,
12162 0, 0, elfcpp::STT_OBJECT,
12163 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12165 symtab->define_as_constant("__exidx_end", NULL,
12166 Symbol_table::PREDEFINED,
12167 0, 0, elfcpp::STT_OBJECT,
12168 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12173 // NaCl variant. It uses different PLT contents.
12175 template<bool big_endian>
12176 class Output_data_plt_arm_nacl;
12178 template<bool big_endian>
12179 class Target_arm_nacl : public Target_arm<big_endian>
12183 : Target_arm<big_endian>(&arm_nacl_info)
12187 virtual Output_data_plt_arm<big_endian>*
12188 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12189 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12192 static const Target::Target_info arm_nacl_info;
12195 template<bool big_endian>
12196 const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12199 big_endian, // is_big_endian
12200 elfcpp::EM_ARM, // machine_code
12201 false, // has_make_symbol
12202 false, // has_resolve
12203 false, // has_code_fill
12204 true, // is_default_stack_executable
12205 false, // can_icf_inline_merge_sections
12207 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12208 0x20000, // default_text_segment_address
12209 0x10000, // abi_pagesize (overridable by -z max-page-size)
12210 0x10000, // common_pagesize (overridable by -z common-page-size)
12211 true, // isolate_execinstr
12212 0x10000000, // rosegment_gap
12213 elfcpp::SHN_UNDEF, // small_common_shndx
12214 elfcpp::SHN_UNDEF, // large_common_shndx
12215 0, // small_common_section_flags
12216 0, // large_common_section_flags
12217 ".ARM.attributes", // attributes_section
12218 "aeabi", // attributes_vendor
12219 "_start" // entry_symbol_name
12222 template<bool big_endian>
12223 class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12226 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12227 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12231 // Return the offset of the first non-reserved PLT entry.
12232 virtual unsigned int
12233 do_first_plt_entry_offset() const
12234 { return sizeof(first_plt_entry); }
12236 // Return the size of a PLT entry.
12237 virtual unsigned int
12238 do_get_plt_entry_size() const
12239 { return sizeof(plt_entry); }
12242 do_fill_first_plt_entry(unsigned char* pov,
12243 Arm_address got_address,
12244 Arm_address plt_address);
12247 do_fill_plt_entry(unsigned char* pov,
12248 Arm_address got_address,
12249 Arm_address plt_address,
12250 unsigned int got_offset,
12251 unsigned int plt_offset);
12254 inline uint32_t arm_movw_immediate(uint32_t value)
12256 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12259 inline uint32_t arm_movt_immediate(uint32_t value)
12261 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12264 // Template for the first PLT entry.
12265 static const uint32_t first_plt_entry[16];
12267 // Template for subsequent PLT entries.
12268 static const uint32_t plt_entry[4];
12271 // The first entry in the PLT.
12272 template<bool big_endian>
12273 const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12276 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12277 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12278 0xe08cc00f, // add ip, ip, pc
12279 0xe52dc008, // str ip, [sp, #-8]!
12281 0xe3ccc103, // bic ip, ip, #0xc0000000
12282 0xe59cc000, // ldr ip, [ip]
12283 0xe3ccc13f, // bic ip, ip, #0xc000000f
12284 0xe12fff1c, // bx ip
12290 0xe50dc004, // str ip, [sp, #-4]
12292 0xe3ccc103, // bic ip, ip, #0xc0000000
12293 0xe59cc000, // ldr ip, [ip]
12294 0xe3ccc13f, // bic ip, ip, #0xc000000f
12295 0xe12fff1c, // bx ip
12298 template<bool big_endian>
12300 Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12301 unsigned char* pov,
12302 Arm_address got_address,
12303 Arm_address plt_address)
12305 // Write first PLT entry. All but first two words are constants.
12306 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12307 / sizeof(first_plt_entry[0]));
12309 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12311 elfcpp::Swap<32, big_endian>::writeval
12312 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12313 elfcpp::Swap<32, big_endian>::writeval
12314 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12316 for (size_t i = 2; i < num_first_plt_words; ++i)
12317 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12320 // Subsequent entries in the PLT.
12322 template<bool big_endian>
12323 const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12325 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12326 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12327 0xe08cc00f, // add ip, ip, pc
12328 0xea000000, // b .Lplt_tail
12331 template<bool big_endian>
12333 Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12334 unsigned char* pov,
12335 Arm_address got_address,
12336 Arm_address plt_address,
12337 unsigned int got_offset,
12338 unsigned int plt_offset)
12340 // Calculate the displacement between the PLT slot and the
12341 // common tail that's part of the special initial PLT slot.
12342 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12343 - (plt_address + plt_offset
12344 + sizeof(plt_entry) + sizeof(uint32_t)));
12345 gold_assert((tail_displacement & 3) == 0);
12346 tail_displacement >>= 2;
12348 gold_assert ((tail_displacement & 0xff000000) == 0
12349 || (-tail_displacement & 0xff000000) == 0);
12351 // Calculate the displacement between the PLT slot and the entry
12352 // in the GOT. The offset accounts for the value produced by
12353 // adding to pc in the penultimate instruction of the PLT stub.
12354 const int32_t got_displacement = (got_address + got_offset
12355 - (plt_address + sizeof(plt_entry)));
12357 elfcpp::Swap<32, big_endian>::writeval
12358 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12359 elfcpp::Swap<32, big_endian>::writeval
12360 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12361 elfcpp::Swap<32, big_endian>::writeval
12362 (pov + 8, plt_entry[2]);
12363 elfcpp::Swap<32, big_endian>::writeval
12364 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12367 // Target selectors.
12369 template<bool big_endian>
12370 class Target_selector_arm_nacl
12371 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12372 Target_arm_nacl<big_endian> >
12375 Target_selector_arm_nacl()
12376 : Target_selector_nacl<Target_selector_arm<big_endian>,
12377 Target_arm_nacl<big_endian> >(
12379 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12380 big_endian ? "armelfb_nacl" : "armelf_nacl")
12384 Target_selector_arm_nacl<false> target_selector_arm;
12385 Target_selector_arm_nacl<true> target_selector_armbe;
12387 } // End anonymous namespace.