Upload Tizen:Base source
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is an invalid index, this points to a global symbol.
602     // Otherwise, it points to a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj, in order to avoid making the stub class a template
605     // as most of the stub machinery is endianness-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB using KEY.  The caller is responsible for avoiding addition
899   // if a STUB with the same key has already been added.
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // The caller is responsible for avoiding addition if a STUB with the same
919   // address has already been added.
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067   // Write to a map file.
1068   void
1069   do_print_to_mapfile(Mapfile* mapfile) const
1070   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072  private:
1073   // Implement do_write for a given endianness.
1074   template<bool big_endian>
1075   void inline
1076   do_fixed_endian_write(Output_file*);
1077   
1078   // The object containing the section pointed by this.
1079   Relobj* relobj_;
1080   // The section index of the section pointed by this.
1081   unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section. 
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089         Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096  public:
1097   // Constructor for Arm_exidx_merged_section.
1098   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099   // SECTION_OFFSET_MAP points to a section offset map describing how
1100   // parts of the input section are mapped to output.  DELETED_BYTES is
1101   // the number of bytes deleted from the EXIDX input section.
1102   Arm_exidx_merged_section(
1103       const Arm_exidx_input_section& exidx_input_section,
1104       const Arm_exidx_section_offset_map& section_offset_map,
1105       uint32_t deleted_bytes);
1106
1107   // Build output contents.
1108   void
1109   build_contents(const unsigned char*, section_size_type);
1110
1111   // Return the original EXIDX input section.
1112   const Arm_exidx_input_section&
1113   exidx_input_section() const
1114   { return this->exidx_input_section_; }
1115
1116   // Return the section offset map.
1117   const Arm_exidx_section_offset_map&
1118   section_offset_map() const
1119   { return this->section_offset_map_; }
1120
1121  protected:
1122   // Write merged section into file OF.
1123   void
1124   do_write(Output_file* of);
1125
1126   bool
1127   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128                   section_offset_type*) const;
1129
1130  private:
1131   // Original EXIDX input section.
1132   const Arm_exidx_input_section& exidx_input_section_;
1133   // Section offset map.
1134   const Arm_exidx_section_offset_map& section_offset_map_;
1135   // Merged section contents.  We need to keep build the merged section 
1136   // and save it here to avoid accessing the original EXIDX section when
1137   // we cannot lock the sections' object.
1138   unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146  public:
1147   Arm_input_section(Relobj* relobj, unsigned int shndx)
1148     : Output_relaxed_input_section(relobj, shndx, 1),
1149       original_addralign_(1), original_size_(0), stub_table_(NULL),
1150       original_contents_(NULL)
1151   { }
1152
1153   ~Arm_input_section()
1154   { delete[] this->original_contents_; }
1155
1156   // Initialize.
1157   void
1158   init();
1159   
1160   // Whether this is a stub table owner.
1161   bool
1162   is_stub_table_owner() const
1163   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165   // Return the stub table.
1166   Stub_table<big_endian>*
1167   stub_table() const
1168   { return this->stub_table_; }
1169
1170   // Set the stub_table.
1171   void
1172   set_stub_table(Stub_table<big_endian>* stub_table)
1173   { this->stub_table_ = stub_table; }
1174
1175   // Downcast a base pointer to an Arm_input_section pointer.  This is
1176   // not type-safe but we only use Arm_input_section not the base class.
1177   static Arm_input_section<big_endian>*
1178   as_arm_input_section(Output_relaxed_input_section* poris)
1179   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181   // Return the original size of the section.
1182   uint32_t
1183   original_size() const
1184   { return this->original_size_; }
1185
1186  protected:
1187   // Write data to output file.
1188   void
1189   do_write(Output_file*);
1190
1191   // Return required alignment of this.
1192   uint64_t
1193   do_addralign() const
1194   {
1195     if (this->is_stub_table_owner())
1196       return std::max(this->stub_table_->addralign(),
1197                       static_cast<uint64_t>(this->original_addralign_));
1198     else
1199       return this->original_addralign_;
1200   }
1201
1202   // Finalize data size.
1203   void
1204   set_final_data_size();
1205
1206   // Reset address and file offset.
1207   void
1208   do_reset_address_and_file_offset();
1209
1210   // Output offset.
1211   bool
1212   do_output_offset(const Relobj* object, unsigned int shndx,
1213                    section_offset_type offset,
1214                    section_offset_type* poutput) const
1215   {
1216     if ((object == this->relobj())
1217         && (shndx == this->shndx())
1218         && (offset >= 0)
1219         && (offset <=
1220             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221       {
1222         *poutput = offset;
1223         return true;
1224       }
1225     else
1226       return false;
1227   }
1228
1229  private:
1230   // Copying is not allowed.
1231   Arm_input_section(const Arm_input_section&);
1232   Arm_input_section& operator=(const Arm_input_section&);
1233
1234   // Address alignment of the original input section.
1235   uint32_t original_addralign_;
1236   // Section size of the original input section.
1237   uint32_t original_size_;
1238   // Stub table.
1239   Stub_table<big_endian>* stub_table_;
1240   // Original section contents.  We have to make a copy here since the file
1241   // containing the original section may not be locked when we need to access
1242   // the contents.
1243   unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class.  This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251  public:
1252   Arm_exidx_fixup(Output_section* exidx_output_section,
1253                   bool merge_exidx_entries = true)
1254     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255       last_inlined_entry_(0), last_input_section_(NULL),
1256       section_offset_map_(NULL), first_output_text_section_(NULL),
1257       merge_exidx_entries_(merge_exidx_entries)
1258   { }
1259
1260   ~Arm_exidx_fixup()
1261   { delete this->section_offset_map_; }
1262
1263   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1264   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265   // number of bytes to be deleted in output.  If parts of the input EXIDX
1266   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1268   // responsible for releasing it.
1269   template<bool big_endian>
1270   uint32_t
1271   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272                         const unsigned char* section_contents,
1273                         section_size_type section_size,
1274                         Arm_exidx_section_offset_map** psection_offset_map);
1275   
1276   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277   // input section, if there is not one already.
1278   void
1279   add_exidx_cantunwind_as_needed();
1280
1281   // Return the output section for the text section which is linked to the
1282   // first exidx input in output.
1283   Output_section*
1284   first_output_text_section() const
1285   { return this->first_output_text_section_; }
1286
1287  private:
1288   // Copying is not allowed.
1289   Arm_exidx_fixup(const Arm_exidx_fixup&);
1290   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292   // Type of EXIDX unwind entry.
1293   enum Unwind_type
1294   {
1295     // No type.
1296     UT_NONE,
1297     // EXIDX_CANTUNWIND.
1298     UT_EXIDX_CANTUNWIND,
1299     // Inlined entry.
1300     UT_INLINED_ENTRY,
1301     // Normal entry.
1302     UT_NORMAL_ENTRY,
1303   };
1304
1305   // Process an EXIDX entry.  We only care about the second word of the
1306   // entry.  Return true if the entry can be deleted.
1307   bool
1308   process_exidx_entry(uint32_t second_word);
1309
1310   // Update the current section offset map during EXIDX section fix-up.
1311   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1312   // reference point, DELETED_BYTES is the number of deleted by in the
1313   // section so far.  If DELETE_ENTRY is true, the reference point and
1314   // all offsets after the previous reference point are discarded.
1315   void
1316   update_offset_map(section_offset_type input_offset,
1317                     section_size_type deleted_bytes, bool delete_entry);
1318
1319   // EXIDX output section.
1320   Output_section* exidx_output_section_;
1321   // Unwind type of the last EXIDX entry processed.
1322   Unwind_type last_unwind_type_;
1323   // Last seen inlined EXIDX entry.
1324   uint32_t last_inlined_entry_;
1325   // Last processed EXIDX input section.
1326   const Arm_exidx_input_section* last_input_section_;
1327   // Section offset map created in process_exidx_section.
1328   Arm_exidx_section_offset_map* section_offset_map_;
1329   // Output section for the text section which is linked to the first exidx
1330   // input in output.
1331   Output_section* first_output_text_section_;
1332
1333   bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class.  This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342  public:
1343   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1346                      elfcpp::Elf_Xword flags)
1347     : Output_section(name, type, flags)
1348   {
1349     if (type == elfcpp::SHT_ARM_EXIDX)
1350       this->set_always_keeps_input_sections();
1351   }
1352
1353   ~Arm_output_section()
1354   { }
1355   
1356   // Group input sections for stub generation.
1357   void
1358   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1359
1360   // Downcast a base pointer to an Arm_output_section pointer.  This is
1361   // not type-safe but we only use Arm_output_section not the base class.
1362   static Arm_output_section<big_endian>*
1363   as_arm_output_section(Output_section* os)
1364   { return static_cast<Arm_output_section<big_endian>*>(os); }
1365
1366   // Append all input text sections in this into LIST.
1367   void
1368   append_text_sections_to_list(Text_section_list* list);
1369
1370   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1371   // is a list of text input sections sorted in ascending order of their
1372   // output addresses.
1373   void
1374   fix_exidx_coverage(Layout* layout,
1375                      const Text_section_list& sorted_text_section,
1376                      Symbol_table* symtab,
1377                      bool merge_exidx_entries,
1378                      const Task* task);
1379
1380   // Link an EXIDX section into its corresponding text section.
1381   void
1382   set_exidx_section_link();
1383
1384  private:
1385   // For convenience.
1386   typedef Output_section::Input_section Input_section;
1387   typedef Output_section::Input_section_list Input_section_list;
1388
1389   // Create a stub group.
1390   void create_stub_group(Input_section_list::const_iterator,
1391                          Input_section_list::const_iterator,
1392                          Input_section_list::const_iterator,
1393                          Target_arm<big_endian>*,
1394                          std::vector<Output_relaxed_input_section*>*,
1395                          const Task* task);
1396 };
1397
1398 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1399
1400 class Arm_exidx_input_section
1401 {
1402  public:
1403   static const section_offset_type invalid_offset =
1404     static_cast<section_offset_type>(-1);
1405
1406   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1407                           unsigned int link, uint32_t size,
1408                           uint32_t addralign, uint32_t text_size)
1409     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1410       addralign_(addralign), text_size_(text_size), has_errors_(false)
1411   { }
1412
1413   ~Arm_exidx_input_section()
1414   { }
1415         
1416   // Accessors:  This is a read-only class.
1417
1418   // Return the object containing this EXIDX input section.
1419   Relobj*
1420   relobj() const
1421   { return this->relobj_; }
1422
1423   // Return the section index of this EXIDX input section.
1424   unsigned int
1425   shndx() const
1426   { return this->shndx_; }
1427
1428   // Return the section index of linked text section in the same object.
1429   unsigned int
1430   link() const
1431   { return this->link_; }
1432
1433   // Return size of the EXIDX input section.
1434   uint32_t
1435   size() const
1436   { return this->size_; }
1437
1438   // Return address alignment of EXIDX input section.
1439   uint32_t
1440   addralign() const
1441   { return this->addralign_; }
1442
1443   // Return size of the associated text input section.
1444   uint32_t
1445   text_size() const
1446   { return this->text_size_; }
1447
1448   // Whether there are any errors in the EXIDX input section.
1449   bool
1450   has_errors() const
1451   { return this->has_errors_; }
1452
1453   // Set has-errors flag.
1454   void
1455   set_has_errors()
1456   { this->has_errors_ = true; }
1457
1458  private:
1459   // Object containing this.
1460   Relobj* relobj_;
1461   // Section index of this.
1462   unsigned int shndx_;
1463   // text section linked to this in the same object.
1464   unsigned int link_;
1465   // Size of this.  For ARM 32-bit is sufficient.
1466   uint32_t size_;
1467   // Address alignment of this.  For ARM 32-bit is sufficient.
1468   uint32_t addralign_;
1469   // Size of associated text section.
1470   uint32_t text_size_;
1471   // Whether this has any errors.
1472   bool has_errors_;
1473 };
1474
1475 // Arm_relobj class.
1476
1477 template<bool big_endian>
1478 class Arm_relobj : public Sized_relobj<32, big_endian>
1479 {
1480  public:
1481   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1482
1483   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1484              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1485     : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1486       stub_tables_(), local_symbol_is_thumb_function_(),
1487       attributes_section_data_(NULL), mapping_symbols_info_(),
1488       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1489       output_local_symbol_count_needs_update_(false),
1490       merge_flags_and_attributes_(true)
1491   { }
1492
1493   ~Arm_relobj()
1494   { delete this->attributes_section_data_; }
1495  
1496   // Return the stub table of the SHNDX-th section if there is one.
1497   Stub_table<big_endian>*
1498   stub_table(unsigned int shndx) const
1499   {
1500     gold_assert(shndx < this->stub_tables_.size());
1501     return this->stub_tables_[shndx];
1502   }
1503
1504   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1505   void
1506   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1507   {
1508     gold_assert(shndx < this->stub_tables_.size());
1509     this->stub_tables_[shndx] = stub_table;
1510   }
1511
1512   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1513   // index.  This is only valid after do_count_local_symbol is called.
1514   bool
1515   local_symbol_is_thumb_function(unsigned int r_sym) const
1516   {
1517     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1518     return this->local_symbol_is_thumb_function_[r_sym];
1519   }
1520   
1521   // Scan all relocation sections for stub generation.
1522   void
1523   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1524                           const Layout*);
1525
1526   // Convert regular input section with index SHNDX to a relaxed section.
1527   void
1528   convert_input_section_to_relaxed_section(unsigned shndx)
1529   {
1530     // The stubs have relocations and we need to process them after writing
1531     // out the stubs.  So relocation now must follow section write.
1532     this->set_section_offset(shndx, -1ULL);
1533     this->set_relocs_must_follow_section_writes();
1534   }
1535
1536   // Downcast a base pointer to an Arm_relobj pointer.  This is
1537   // not type-safe but we only use Arm_relobj not the base class.
1538   static Arm_relobj<big_endian>*
1539   as_arm_relobj(Relobj* relobj)
1540   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1541
1542   // Processor-specific flags in ELF file header.  This is valid only after
1543   // reading symbols.
1544   elfcpp::Elf_Word
1545   processor_specific_flags() const
1546   { return this->processor_specific_flags_; }
1547
1548   // Attribute section data  This is the contents of the .ARM.attribute section
1549   // if there is one.
1550   const Attributes_section_data*
1551   attributes_section_data() const
1552   { return this->attributes_section_data_; }
1553
1554   // Mapping symbol location.
1555   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1556
1557   // Functor for STL container.
1558   struct Mapping_symbol_position_less
1559   {
1560     bool
1561     operator()(const Mapping_symbol_position& p1,
1562                const Mapping_symbol_position& p2) const
1563     {
1564       return (p1.first < p2.first
1565               || (p1.first == p2.first && p1.second < p2.second));
1566     }
1567   };
1568   
1569   // We only care about the first character of a mapping symbol, so
1570   // we only store that instead of the whole symbol name.
1571   typedef std::map<Mapping_symbol_position, char,
1572                    Mapping_symbol_position_less> Mapping_symbols_info;
1573
1574   // Whether a section contains any Cortex-A8 workaround.
1575   bool
1576   section_has_cortex_a8_workaround(unsigned int shndx) const
1577   { 
1578     return (this->section_has_cortex_a8_workaround_ != NULL
1579             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1580   }
1581   
1582   // Mark a section that has Cortex-A8 workaround.
1583   void
1584   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1585   {
1586     if (this->section_has_cortex_a8_workaround_ == NULL)
1587       this->section_has_cortex_a8_workaround_ =
1588         new std::vector<bool>(this->shnum(), false);
1589     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1590   }
1591
1592   // Return the EXIDX section of an text section with index SHNDX or NULL
1593   // if the text section has no associated EXIDX section.
1594   const Arm_exidx_input_section*
1595   exidx_input_section_by_link(unsigned int shndx) const
1596   {
1597     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1598     return ((p != this->exidx_section_map_.end()
1599              && p->second->link() == shndx)
1600             ? p->second
1601             : NULL);
1602   }
1603
1604   // Return the EXIDX section with index SHNDX or NULL if there is none.
1605   const Arm_exidx_input_section*
1606   exidx_input_section_by_shndx(unsigned shndx) const
1607   {
1608     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1609     return ((p != this->exidx_section_map_.end()
1610              && p->second->shndx() == shndx)
1611             ? p->second
1612             : NULL);
1613   }
1614
1615   // Whether output local symbol count needs updating.
1616   bool
1617   output_local_symbol_count_needs_update() const
1618   { return this->output_local_symbol_count_needs_update_; }
1619
1620   // Set output_local_symbol_count_needs_update flag to be true.
1621   void
1622   set_output_local_symbol_count_needs_update()
1623   { this->output_local_symbol_count_needs_update_ = true; }
1624   
1625   // Update output local symbol count at the end of relaxation.
1626   void
1627   update_output_local_symbol_count();
1628
1629   // Whether we want to merge processor-specific flags and attributes.
1630   bool
1631   merge_flags_and_attributes() const
1632   { return this->merge_flags_and_attributes_; }
1633   
1634   // Export list of EXIDX section indices.
1635   void
1636   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1637   {
1638     list->clear();
1639     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1640          p != this->exidx_section_map_.end();
1641          ++p)
1642       {
1643         if (p->second->shndx() == p->first)
1644           list->push_back(p->first);
1645       }
1646     // Sort list to make result independent of implementation of map. 
1647     std::sort(list->begin(), list->end());
1648   }
1649
1650  protected:
1651   // Post constructor setup.
1652   void
1653   do_setup()
1654   {
1655     // Call parent's setup method.
1656     Sized_relobj<32, big_endian>::do_setup();
1657
1658     // Initialize look-up tables.
1659     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1660     this->stub_tables_.swap(empty_stub_table_list);
1661   }
1662
1663   // Count the local symbols.
1664   void
1665   do_count_local_symbols(Stringpool_template<char>*,
1666                          Stringpool_template<char>*);
1667
1668   void
1669   do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1670                        const unsigned char* pshdrs, Output_file* of,
1671                        typename Sized_relobj<32, big_endian>::Views* pivews);
1672
1673   // Read the symbol information.
1674   void
1675   do_read_symbols(Read_symbols_data* sd);
1676
1677   // Process relocs for garbage collection.
1678   void
1679   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1680
1681  private:
1682
1683   // Whether a section needs to be scanned for relocation stubs.
1684   bool
1685   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1686                                     const Relobj::Output_sections&,
1687                                     const Symbol_table*, const unsigned char*);
1688
1689   // Whether a section is a scannable text section.
1690   bool
1691   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1692                        const Output_section*, const Symbol_table*);
1693
1694   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1695   bool
1696   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1697                                         unsigned int, Output_section*,
1698                                         const Symbol_table*);
1699
1700   // Scan a section for the Cortex-A8 erratum.
1701   void
1702   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1703                                      unsigned int, Output_section*,
1704                                      Target_arm<big_endian>*);
1705
1706   // Find the linked text section of an EXIDX section by looking at the
1707   // first relocation of the EXIDX section.  PSHDR points to the section
1708   // headers of a relocation section and PSYMS points to the local symbols.
1709   // PSHNDX points to a location storing the text section index if found.
1710   // Return whether we can find the linked section.
1711   bool
1712   find_linked_text_section(const unsigned char* pshdr,
1713                            const unsigned char* psyms, unsigned int* pshndx);
1714
1715   //
1716   // Make a new Arm_exidx_input_section object for EXIDX section with
1717   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1718   // index of the linked text section.
1719   void
1720   make_exidx_input_section(unsigned int shndx,
1721                            const elfcpp::Shdr<32, big_endian>& shdr,
1722                            unsigned int text_shndx,
1723                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1724
1725   // Return the output address of either a plain input section or a
1726   // relaxed input section.  SHNDX is the section index.
1727   Arm_address
1728   simple_input_section_output_address(unsigned int, Output_section*);
1729
1730   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1731   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1732     Exidx_section_map;
1733
1734   // List of stub tables.
1735   Stub_table_list stub_tables_;
1736   // Bit vector to tell if a local symbol is a thumb function or not.
1737   // This is only valid after do_count_local_symbol is called.
1738   std::vector<bool> local_symbol_is_thumb_function_;
1739   // processor-specific flags in ELF file header.
1740   elfcpp::Elf_Word processor_specific_flags_;
1741   // Object attributes if there is an .ARM.attributes section or NULL.
1742   Attributes_section_data* attributes_section_data_;
1743   // Mapping symbols information.
1744   Mapping_symbols_info mapping_symbols_info_;
1745   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1746   std::vector<bool>* section_has_cortex_a8_workaround_;
1747   // Map a text section to its associated .ARM.exidx section, if there is one.
1748   Exidx_section_map exidx_section_map_;
1749   // Whether output local symbol count needs updating.
1750   bool output_local_symbol_count_needs_update_;
1751   // Whether we merge processor flags and attributes of this object to
1752   // output.
1753   bool merge_flags_and_attributes_;
1754 };
1755
1756 // Arm_dynobj class.
1757
1758 template<bool big_endian>
1759 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1760 {
1761  public:
1762   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1763              const elfcpp::Ehdr<32, big_endian>& ehdr)
1764     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1765       processor_specific_flags_(0), attributes_section_data_(NULL)
1766   { }
1767  
1768   ~Arm_dynobj()
1769   { delete this->attributes_section_data_; }
1770
1771   // Downcast a base pointer to an Arm_relobj pointer.  This is
1772   // not type-safe but we only use Arm_relobj not the base class.
1773   static Arm_dynobj<big_endian>*
1774   as_arm_dynobj(Dynobj* dynobj)
1775   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1776
1777   // Processor-specific flags in ELF file header.  This is valid only after
1778   // reading symbols.
1779   elfcpp::Elf_Word
1780   processor_specific_flags() const
1781   { return this->processor_specific_flags_; }
1782
1783   // Attributes section data.
1784   const Attributes_section_data*
1785   attributes_section_data() const
1786   { return this->attributes_section_data_; }
1787
1788  protected:
1789   // Read the symbol information.
1790   void
1791   do_read_symbols(Read_symbols_data* sd);
1792
1793  private:
1794   // processor-specific flags in ELF file header.
1795   elfcpp::Elf_Word processor_specific_flags_;
1796   // Object attributes if there is an .ARM.attributes section or NULL.
1797   Attributes_section_data* attributes_section_data_;
1798 };
1799
1800 // Functor to read reloc addends during stub generation.
1801
1802 template<int sh_type, bool big_endian>
1803 struct Stub_addend_reader
1804 {
1805   // Return the addend for a relocation of a particular type.  Depending
1806   // on whether this is a REL or RELA relocation, read the addend from a
1807   // view or from a Reloc object.
1808   elfcpp::Elf_types<32>::Elf_Swxword
1809   operator()(
1810     unsigned int /* r_type */,
1811     const unsigned char* /* view */,
1812     const typename Reloc_types<sh_type,
1813                                32, big_endian>::Reloc& /* reloc */) const;
1814 };
1815
1816 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1817
1818 template<bool big_endian>
1819 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1820 {
1821   elfcpp::Elf_types<32>::Elf_Swxword
1822   operator()(
1823     unsigned int,
1824     const unsigned char*,
1825     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1826 };
1827
1828 // Specialized Stub_addend_reader for RELA type relocation sections.
1829 // We currently do not handle RELA type relocation sections but it is trivial
1830 // to implement the addend reader.  This is provided for completeness and to
1831 // make it easier to add support for RELA relocation sections in the future.
1832
1833 template<bool big_endian>
1834 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1835 {
1836   elfcpp::Elf_types<32>::Elf_Swxword
1837   operator()(
1838     unsigned int,
1839     const unsigned char*,
1840     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1841                                big_endian>::Reloc& reloc) const
1842   { return reloc.get_r_addend(); }
1843 };
1844
1845 // Cortex_a8_reloc class.  We keep record of relocation that may need
1846 // the Cortex-A8 erratum workaround.
1847
1848 class Cortex_a8_reloc
1849 {
1850  public:
1851   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1852                   Arm_address destination)
1853     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1854   { }
1855
1856   ~Cortex_a8_reloc()
1857   { }
1858
1859   // Accessors:  This is a read-only class.
1860   
1861   // Return the relocation stub associated with this relocation if there is
1862   // one.
1863   const Reloc_stub*
1864   reloc_stub() const
1865   { return this->reloc_stub_; } 
1866   
1867   // Return the relocation type.
1868   unsigned int
1869   r_type() const
1870   { return this->r_type_; }
1871
1872   // Return the destination address of the relocation.  LSB stores the THUMB
1873   // bit.
1874   Arm_address
1875   destination() const
1876   { return this->destination_; }
1877
1878  private:
1879   // Associated relocation stub if there is one, or NULL.
1880   const Reloc_stub* reloc_stub_;
1881   // Relocation type.
1882   unsigned int r_type_;
1883   // Destination address of this relocation.  LSB is used to distinguish
1884   // ARM/THUMB mode.
1885   Arm_address destination_;
1886 };
1887
1888 // Arm_output_data_got class.  We derive this from Output_data_got to add
1889 // extra methods to handle TLS relocations in a static link.
1890
1891 template<bool big_endian>
1892 class Arm_output_data_got : public Output_data_got<32, big_endian>
1893 {
1894  public:
1895   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1896     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1897   { }
1898
1899   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1900   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1901   // applied in a static link.
1902   void
1903   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1904   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1905
1906   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1907   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1908   // relocation that needs to be applied in a static link.
1909   void
1910   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1911                    Sized_relobj<32, big_endian>* relobj, unsigned int index)
1912   {
1913     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1914                                                 index));
1915   }
1916
1917   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1918   // The first one is initialized to be 1, which is the module index for
1919   // the main executable and the second one 0.  A reloc of the type
1920   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1921   // be applied by gold.  GSYM is a global symbol.
1922   void
1923   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1924
1925   // Same as the above but for a local symbol in OBJECT with INDEX.
1926   void
1927   add_tls_gd32_with_static_reloc(unsigned int got_type,
1928                                  Sized_relobj<32, big_endian>* object,
1929                                  unsigned int index);
1930
1931  protected:
1932   // Write out the GOT table.
1933   void
1934   do_write(Output_file*);
1935
1936  private:
1937   // This class represent dynamic relocations that need to be applied by
1938   // gold because we are using TLS relocations in a static link.
1939   class Static_reloc
1940   {
1941    public:
1942     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1943       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1944     { this->u_.global.symbol = gsym; }
1945
1946     Static_reloc(unsigned int got_offset, unsigned int r_type,
1947           Sized_relobj<32, big_endian>* relobj, unsigned int index)
1948       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1949     {
1950       this->u_.local.relobj = relobj;
1951       this->u_.local.index = index;
1952     }
1953
1954     // Return the GOT offset.
1955     unsigned int
1956     got_offset() const
1957     { return this->got_offset_; }
1958
1959     // Relocation type.
1960     unsigned int
1961     r_type() const
1962     { return this->r_type_; }
1963
1964     // Whether the symbol is global or not.
1965     bool
1966     symbol_is_global() const
1967     { return this->symbol_is_global_; }
1968
1969     // For a relocation against a global symbol, the global symbol.
1970     Symbol*
1971     symbol() const
1972     {
1973       gold_assert(this->symbol_is_global_);
1974       return this->u_.global.symbol;
1975     }
1976
1977     // For a relocation against a local symbol, the defining object.
1978     Sized_relobj<32, big_endian>*
1979     relobj() const
1980     {
1981       gold_assert(!this->symbol_is_global_);
1982       return this->u_.local.relobj;
1983     }
1984
1985     // For a relocation against a local symbol, the local symbol index.
1986     unsigned int
1987     index() const
1988     {
1989       gold_assert(!this->symbol_is_global_);
1990       return this->u_.local.index;
1991     }
1992
1993    private:
1994     // GOT offset of the entry to which this relocation is applied.
1995     unsigned int got_offset_;
1996     // Type of relocation.
1997     unsigned int r_type_;
1998     // Whether this relocation is against a global symbol.
1999     bool symbol_is_global_;
2000     // A global or local symbol.
2001     union
2002     {
2003       struct
2004       {
2005         // For a global symbol, the symbol itself.
2006         Symbol* symbol;
2007       } global;
2008       struct
2009       {
2010         // For a local symbol, the object defining object.
2011         Sized_relobj<32, big_endian>* relobj;
2012         // For a local symbol, the symbol index.
2013         unsigned int index;
2014       } local;
2015     } u_;
2016   };
2017
2018   // Symbol table of the output object.
2019   Symbol_table* symbol_table_;
2020   // Layout of the output object.
2021   Layout* layout_;
2022   // Static relocs to be applied to the GOT.
2023   std::vector<Static_reloc> static_relocs_;
2024 };
2025
2026 // The ARM target has many relocation types with odd-sizes or noncontiguous
2027 // bits.  The default handling of relocatable relocation cannot process these
2028 // relocations.  So we have to extend the default code.
2029
2030 template<bool big_endian, int sh_type, typename Classify_reloc>
2031 class Arm_scan_relocatable_relocs :
2032   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2033 {
2034  public:
2035   // Return the strategy to use for a local symbol which is a section
2036   // symbol, given the relocation type.
2037   inline Relocatable_relocs::Reloc_strategy
2038   local_section_strategy(unsigned int r_type, Relobj*)
2039   {
2040     if (sh_type == elfcpp::SHT_RELA)
2041       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2042     else
2043       {
2044         if (r_type == elfcpp::R_ARM_TARGET1
2045             || r_type == elfcpp::R_ARM_TARGET2)
2046           {
2047             const Target_arm<big_endian>* arm_target =
2048               Target_arm<big_endian>::default_target();
2049             r_type = arm_target->get_real_reloc_type(r_type);
2050           }
2051
2052         switch(r_type)
2053           {
2054           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2055           // and R_ARM_TARGET2.
2056           case elfcpp::R_ARM_NONE:
2057           case elfcpp::R_ARM_V4BX:
2058           case elfcpp::R_ARM_TLS_GOTDESC:
2059           case elfcpp::R_ARM_TLS_CALL:
2060           case elfcpp::R_ARM_TLS_DESCSEQ:
2061           case elfcpp::R_ARM_THM_TLS_CALL:
2062           case elfcpp::R_ARM_GOTRELAX:
2063           case elfcpp::R_ARM_GNU_VTENTRY:
2064           case elfcpp::R_ARM_GNU_VTINHERIT:
2065           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2066           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2067             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2068           // These should have been converted to something else above.
2069           case elfcpp::R_ARM_TARGET1:
2070           case elfcpp::R_ARM_TARGET2:
2071             gold_unreachable();
2072           // Relocations that write full 32 bits.
2073           case elfcpp::R_ARM_ABS32:
2074           case elfcpp::R_ARM_REL32:
2075           case elfcpp::R_ARM_SBREL32:
2076           case elfcpp::R_ARM_GOTOFF32:
2077           case elfcpp::R_ARM_BASE_PREL:
2078           case elfcpp::R_ARM_GOT_BREL:
2079           case elfcpp::R_ARM_BASE_ABS:
2080           case elfcpp::R_ARM_ABS32_NOI:
2081           case elfcpp::R_ARM_REL32_NOI:
2082           case elfcpp::R_ARM_PLT32_ABS:
2083           case elfcpp::R_ARM_GOT_ABS:
2084           case elfcpp::R_ARM_GOT_PREL:
2085           case elfcpp::R_ARM_TLS_GD32:
2086           case elfcpp::R_ARM_TLS_LDM32:
2087           case elfcpp::R_ARM_TLS_LDO32:
2088           case elfcpp::R_ARM_TLS_IE32:
2089           case elfcpp::R_ARM_TLS_LE32:
2090             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2091           default:
2092             // For all other static relocations, return RELOC_SPECIAL.
2093             return Relocatable_relocs::RELOC_SPECIAL;
2094           }
2095       }
2096   }
2097 };
2098
2099 // Utilities for manipulating integers of up to 32-bits
2100
2101 namespace utils
2102 {
2103   // Sign extend an n-bit unsigned integer stored in an uint32_t into
2104   // an int32_t.  NO_BITS must be between 1 to 32.
2105   template<int no_bits>
2106   static inline int32_t
2107   sign_extend(uint32_t bits)
2108   {
2109     gold_assert(no_bits >= 0 && no_bits <= 32);
2110     if (no_bits == 32)
2111       return static_cast<int32_t>(bits);
2112     uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2113     bits &= mask;
2114     uint32_t top_bit = 1U << (no_bits - 1);
2115     int32_t as_signed = static_cast<int32_t>(bits);
2116     return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2117   }
2118
2119   // Detects overflow of an NO_BITS integer stored in a uint32_t.
2120   template<int no_bits>
2121   static inline bool
2122   has_overflow(uint32_t bits)
2123   {
2124     gold_assert(no_bits >= 0 && no_bits <= 32);
2125     if (no_bits == 32)
2126       return false;
2127     int32_t max = (1 << (no_bits - 1)) - 1;
2128     int32_t min = -(1 << (no_bits - 1));
2129     int32_t as_signed = static_cast<int32_t>(bits);
2130     return as_signed > max || as_signed < min;
2131   }
2132
2133   // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2134   // fits in the given number of bits as either a signed or unsigned value.
2135   // For example, has_signed_unsigned_overflow<8> would check
2136   // -128 <= bits <= 255
2137   template<int no_bits>
2138   static inline bool
2139   has_signed_unsigned_overflow(uint32_t bits)
2140   {
2141     gold_assert(no_bits >= 2 && no_bits <= 32);
2142     if (no_bits == 32)
2143       return false;
2144     int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2145     int32_t min = -(1 << (no_bits - 1));
2146     int32_t as_signed = static_cast<int32_t>(bits);
2147     return as_signed > max || as_signed < min;
2148   }
2149
2150   // Select bits from A and B using bits in MASK.  For each n in [0..31],
2151   // the n-th bit in the result is chosen from the n-th bits of A and B.
2152   // A zero selects A and a one selects B.
2153   static inline uint32_t
2154   bit_select(uint32_t a, uint32_t b, uint32_t mask)
2155   { return (a & ~mask) | (b & mask); }
2156 };
2157
2158 template<bool big_endian>
2159 class Target_arm : public Sized_target<32, big_endian>
2160 {
2161  public:
2162   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2163     Reloc_section;
2164
2165   // When were are relocating a stub, we pass this as the relocation number.
2166   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2167
2168   Target_arm()
2169     : Sized_target<32, big_endian>(&arm_info),
2170       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2171       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2172       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2173       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2174       may_use_blx_(false), should_force_pic_veneer_(false),
2175       arm_input_section_map_(), attributes_section_data_(NULL),
2176       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2177   { }
2178
2179   // Virtual function which is set to return true by a target if
2180   // it can use relocation types to determine if a function's
2181   // pointer is taken.
2182   virtual bool
2183   can_check_for_function_pointers() const
2184   { return true; }
2185
2186   // Whether a section called SECTION_NAME may have function pointers to
2187   // sections not eligible for safe ICF folding.
2188   virtual bool
2189   section_may_have_icf_unsafe_pointers(const char* section_name) const
2190   {
2191     return (!is_prefix_of(".ARM.exidx", section_name)
2192             && !is_prefix_of(".ARM.extab", section_name)
2193             && Target::section_may_have_icf_unsafe_pointers(section_name));
2194   }
2195   
2196   // Whether we can use BLX.
2197   bool
2198   may_use_blx() const
2199   { return this->may_use_blx_; }
2200
2201   // Set use-BLX flag.
2202   void
2203   set_may_use_blx(bool value)
2204   { this->may_use_blx_ = value; }
2205   
2206   // Whether we force PCI branch veneers.
2207   bool
2208   should_force_pic_veneer() const
2209   { return this->should_force_pic_veneer_; }
2210
2211   // Set PIC veneer flag.
2212   void
2213   set_should_force_pic_veneer(bool value)
2214   { this->should_force_pic_veneer_ = value; }
2215   
2216   // Whether we use THUMB-2 instructions.
2217   bool
2218   using_thumb2() const
2219   {
2220     Object_attribute* attr =
2221       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2222     int arch = attr->int_value();
2223     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2224   }
2225
2226   // Whether we use THUMB/THUMB-2 instructions only.
2227   bool
2228   using_thumb_only() const
2229   {
2230     Object_attribute* attr =
2231       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2232
2233     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2234         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2235       return true;
2236     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2237         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2238       return false;
2239     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2240     return attr->int_value() == 'M';
2241   }
2242
2243   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2244   bool
2245   may_use_arm_nop() const
2246   {
2247     Object_attribute* attr =
2248       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2249     int arch = attr->int_value();
2250     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2251             || arch == elfcpp::TAG_CPU_ARCH_V6K
2252             || arch == elfcpp::TAG_CPU_ARCH_V7
2253             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2254   }
2255
2256   // Whether we have THUMB-2 NOP.W instruction.
2257   bool
2258   may_use_thumb2_nop() const
2259   {
2260     Object_attribute* attr =
2261       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2262     int arch = attr->int_value();
2263     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2264             || arch == elfcpp::TAG_CPU_ARCH_V7
2265             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2266   }
2267   
2268   // Process the relocations to determine unreferenced sections for 
2269   // garbage collection.
2270   void
2271   gc_process_relocs(Symbol_table* symtab,
2272                     Layout* layout,
2273                     Sized_relobj<32, big_endian>* object,
2274                     unsigned int data_shndx,
2275                     unsigned int sh_type,
2276                     const unsigned char* prelocs,
2277                     size_t reloc_count,
2278                     Output_section* output_section,
2279                     bool needs_special_offset_handling,
2280                     size_t local_symbol_count,
2281                     const unsigned char* plocal_symbols);
2282
2283   // Scan the relocations to look for symbol adjustments.
2284   void
2285   scan_relocs(Symbol_table* symtab,
2286               Layout* layout,
2287               Sized_relobj<32, big_endian>* object,
2288               unsigned int data_shndx,
2289               unsigned int sh_type,
2290               const unsigned char* prelocs,
2291               size_t reloc_count,
2292               Output_section* output_section,
2293               bool needs_special_offset_handling,
2294               size_t local_symbol_count,
2295               const unsigned char* plocal_symbols);
2296
2297   // Finalize the sections.
2298   void
2299   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2300
2301   // Return the value to use for a dynamic symbol which requires special
2302   // treatment.
2303   uint64_t
2304   do_dynsym_value(const Symbol*) const;
2305
2306   // Relocate a section.
2307   void
2308   relocate_section(const Relocate_info<32, big_endian>*,
2309                    unsigned int sh_type,
2310                    const unsigned char* prelocs,
2311                    size_t reloc_count,
2312                    Output_section* output_section,
2313                    bool needs_special_offset_handling,
2314                    unsigned char* view,
2315                    Arm_address view_address,
2316                    section_size_type view_size,
2317                    const Reloc_symbol_changes*);
2318
2319   // Scan the relocs during a relocatable link.
2320   void
2321   scan_relocatable_relocs(Symbol_table* symtab,
2322                           Layout* layout,
2323                           Sized_relobj<32, big_endian>* object,
2324                           unsigned int data_shndx,
2325                           unsigned int sh_type,
2326                           const unsigned char* prelocs,
2327                           size_t reloc_count,
2328                           Output_section* output_section,
2329                           bool needs_special_offset_handling,
2330                           size_t local_symbol_count,
2331                           const unsigned char* plocal_symbols,
2332                           Relocatable_relocs*);
2333
2334   // Relocate a section during a relocatable link.
2335   void
2336   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2337                            unsigned int sh_type,
2338                            const unsigned char* prelocs,
2339                            size_t reloc_count,
2340                            Output_section* output_section,
2341                            off_t offset_in_output_section,
2342                            const Relocatable_relocs*,
2343                            unsigned char* view,
2344                            Arm_address view_address,
2345                            section_size_type view_size,
2346                            unsigned char* reloc_view,
2347                            section_size_type reloc_view_size);
2348
2349   // Perform target-specific processing in a relocatable link.  This is
2350   // only used if we use the relocation strategy RELOC_SPECIAL.
2351   void
2352   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2353                                unsigned int sh_type,
2354                                const unsigned char* preloc_in,
2355                                size_t relnum,
2356                                Output_section* output_section,
2357                                off_t offset_in_output_section,
2358                                unsigned char* view,
2359                                typename elfcpp::Elf_types<32>::Elf_Addr
2360                                  view_address,
2361                                section_size_type view_size,
2362                                unsigned char* preloc_out);
2363  
2364   // Return whether SYM is defined by the ABI.
2365   bool
2366   do_is_defined_by_abi(Symbol* sym) const
2367   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2368
2369   // Return whether there is a GOT section.
2370   bool
2371   has_got_section() const
2372   { return this->got_ != NULL; }
2373
2374   // Return the size of the GOT section.
2375   section_size_type
2376   got_size() const
2377   {
2378     gold_assert(this->got_ != NULL);
2379     return this->got_->data_size();
2380   }
2381
2382   // Return the number of entries in the GOT.
2383   unsigned int
2384   got_entry_count() const
2385   {
2386     if (!this->has_got_section())
2387       return 0;
2388     return this->got_size() / 4;
2389   }
2390
2391   // Return the number of entries in the PLT.
2392   unsigned int
2393   plt_entry_count() const;
2394
2395   // Return the offset of the first non-reserved PLT entry.
2396   unsigned int
2397   first_plt_entry_offset() const;
2398
2399   // Return the size of each PLT entry.
2400   unsigned int
2401   plt_entry_size() const;
2402
2403   // Map platform-specific reloc types
2404   static unsigned int
2405   get_real_reloc_type(unsigned int r_type);
2406
2407   //
2408   // Methods to support stub-generations.
2409   //
2410   
2411   // Return the stub factory
2412   const Stub_factory&
2413   stub_factory() const
2414   { return this->stub_factory_; }
2415
2416   // Make a new Arm_input_section object.
2417   Arm_input_section<big_endian>*
2418   new_arm_input_section(Relobj*, unsigned int);
2419
2420   // Find the Arm_input_section object corresponding to the SHNDX-th input
2421   // section of RELOBJ.
2422   Arm_input_section<big_endian>*
2423   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2424
2425   // Make a new Stub_table
2426   Stub_table<big_endian>*
2427   new_stub_table(Arm_input_section<big_endian>*);
2428
2429   // Scan a section for stub generation.
2430   void
2431   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2432                          const unsigned char*, size_t, Output_section*,
2433                          bool, const unsigned char*, Arm_address,
2434                          section_size_type);
2435
2436   // Relocate a stub. 
2437   void
2438   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2439                 Output_section*, unsigned char*, Arm_address,
2440                 section_size_type);
2441  
2442   // Get the default ARM target.
2443   static Target_arm<big_endian>*
2444   default_target()
2445   {
2446     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2447                 && parameters->target().is_big_endian() == big_endian);
2448     return static_cast<Target_arm<big_endian>*>(
2449              parameters->sized_target<32, big_endian>());
2450   }
2451
2452   // Whether NAME belongs to a mapping symbol.
2453   static bool
2454   is_mapping_symbol_name(const char* name)
2455   {
2456     return (name
2457             && name[0] == '$'
2458             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2459             && (name[2] == '\0' || name[2] == '.'));
2460   }
2461
2462   // Whether we work around the Cortex-A8 erratum.
2463   bool
2464   fix_cortex_a8() const
2465   { return this->fix_cortex_a8_; }
2466
2467   // Whether we merge exidx entries in debuginfo.
2468   bool
2469   merge_exidx_entries() const
2470   { return parameters->options().merge_exidx_entries(); }
2471
2472   // Whether we fix R_ARM_V4BX relocation.
2473   // 0 - do not fix
2474   // 1 - replace with MOV instruction (armv4 target)
2475   // 2 - make interworking veneer (>= armv4t targets only)
2476   General_options::Fix_v4bx
2477   fix_v4bx() const
2478   { return parameters->options().fix_v4bx(); }
2479
2480   // Scan a span of THUMB code section for Cortex-A8 erratum.
2481   void
2482   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2483                                   section_size_type, section_size_type,
2484                                   const unsigned char*, Arm_address);
2485
2486   // Apply Cortex-A8 workaround to a branch.
2487   void
2488   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2489                              unsigned char*, Arm_address);
2490
2491  protected:
2492   // Make an ELF object.
2493   Object*
2494   do_make_elf_object(const std::string&, Input_file*, off_t,
2495                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2496
2497   Object*
2498   do_make_elf_object(const std::string&, Input_file*, off_t,
2499                      const elfcpp::Ehdr<32, !big_endian>&)
2500   { gold_unreachable(); }
2501
2502   Object*
2503   do_make_elf_object(const std::string&, Input_file*, off_t,
2504                       const elfcpp::Ehdr<64, false>&)
2505   { gold_unreachable(); }
2506
2507   Object*
2508   do_make_elf_object(const std::string&, Input_file*, off_t,
2509                      const elfcpp::Ehdr<64, true>&)
2510   { gold_unreachable(); }
2511
2512   // Make an output section.
2513   Output_section*
2514   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2515                          elfcpp::Elf_Xword flags)
2516   { return new Arm_output_section<big_endian>(name, type, flags); }
2517
2518   void
2519   do_adjust_elf_header(unsigned char* view, int len) const;
2520
2521   // We only need to generate stubs, and hence perform relaxation if we are
2522   // not doing relocatable linking.
2523   bool
2524   do_may_relax() const
2525   { return !parameters->options().relocatable(); }
2526
2527   bool
2528   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2529
2530   // Determine whether an object attribute tag takes an integer, a
2531   // string or both.
2532   int
2533   do_attribute_arg_type(int tag) const;
2534
2535   // Reorder tags during output.
2536   int
2537   do_attributes_order(int num) const;
2538
2539   // This is called when the target is selected as the default.
2540   void
2541   do_select_as_default_target()
2542   {
2543     // No locking is required since there should only be one default target.
2544     // We cannot have both the big-endian and little-endian ARM targets
2545     // as the default.
2546     gold_assert(arm_reloc_property_table == NULL);
2547     arm_reloc_property_table = new Arm_reloc_property_table();
2548   }
2549
2550  private:
2551   // The class which scans relocations.
2552   class Scan
2553   {
2554    public:
2555     Scan()
2556       : issued_non_pic_error_(false)
2557     { }
2558
2559     static inline int
2560     get_reference_flags(unsigned int r_type);
2561
2562     inline void
2563     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2564           Sized_relobj<32, big_endian>* object,
2565           unsigned int data_shndx,
2566           Output_section* output_section,
2567           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2568           const elfcpp::Sym<32, big_endian>& lsym);
2569
2570     inline void
2571     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2572            Sized_relobj<32, big_endian>* object,
2573            unsigned int data_shndx,
2574            Output_section* output_section,
2575            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2576            Symbol* gsym);
2577
2578     inline bool
2579     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2580                                         Sized_relobj<32, big_endian>* ,
2581                                         unsigned int ,
2582                                         Output_section* ,
2583                                         const elfcpp::Rel<32, big_endian>& ,
2584                                         unsigned int ,
2585                                         const elfcpp::Sym<32, big_endian>&);
2586
2587     inline bool
2588     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2589                                          Sized_relobj<32, big_endian>* ,
2590                                          unsigned int ,
2591                                          Output_section* ,
2592                                          const elfcpp::Rel<32, big_endian>& ,
2593                                          unsigned int , Symbol*);
2594
2595    private:
2596     static void
2597     unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2598                             unsigned int r_type);
2599
2600     static void
2601     unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2602                              unsigned int r_type, Symbol*);
2603
2604     void
2605     check_non_pic(Relobj*, unsigned int r_type);
2606
2607     // Almost identical to Symbol::needs_plt_entry except that it also
2608     // handles STT_ARM_TFUNC.
2609     static bool
2610     symbol_needs_plt_entry(const Symbol* sym)
2611     {
2612       // An undefined symbol from an executable does not need a PLT entry.
2613       if (sym->is_undefined() && !parameters->options().shared())
2614         return false;
2615
2616       return (!parameters->doing_static_link()
2617               && (sym->type() == elfcpp::STT_FUNC
2618                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2619               && (sym->is_from_dynobj()
2620                   || sym->is_undefined()
2621                   || sym->is_preemptible()));
2622     }
2623
2624     inline bool
2625     possible_function_pointer_reloc(unsigned int r_type);
2626
2627     // Whether we have issued an error about a non-PIC compilation.
2628     bool issued_non_pic_error_;
2629   };
2630
2631   // The class which implements relocation.
2632   class Relocate
2633   {
2634    public:
2635     Relocate()
2636     { }
2637
2638     ~Relocate()
2639     { }
2640
2641     // Return whether the static relocation needs to be applied.
2642     inline bool
2643     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2644                               unsigned int r_type,
2645                               bool is_32bit,
2646                               Output_section* output_section);
2647
2648     // Do a relocation.  Return false if the caller should not issue
2649     // any warnings about this relocation.
2650     inline bool
2651     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2652              Output_section*,  size_t relnum,
2653              const elfcpp::Rel<32, big_endian>&,
2654              unsigned int r_type, const Sized_symbol<32>*,
2655              const Symbol_value<32>*,
2656              unsigned char*, Arm_address,
2657              section_size_type);
2658
2659     // Return whether we want to pass flag NON_PIC_REF for this
2660     // reloc.  This means the relocation type accesses a symbol not via
2661     // GOT or PLT.
2662     static inline bool
2663     reloc_is_non_pic(unsigned int r_type)
2664     {
2665       switch (r_type)
2666         {
2667         // These relocation types reference GOT or PLT entries explicitly.
2668         case elfcpp::R_ARM_GOT_BREL:
2669         case elfcpp::R_ARM_GOT_ABS:
2670         case elfcpp::R_ARM_GOT_PREL:
2671         case elfcpp::R_ARM_GOT_BREL12:
2672         case elfcpp::R_ARM_PLT32_ABS:
2673         case elfcpp::R_ARM_TLS_GD32:
2674         case elfcpp::R_ARM_TLS_LDM32:
2675         case elfcpp::R_ARM_TLS_IE32:
2676         case elfcpp::R_ARM_TLS_IE12GP:
2677
2678         // These relocate types may use PLT entries.
2679         case elfcpp::R_ARM_CALL:
2680         case elfcpp::R_ARM_THM_CALL:
2681         case elfcpp::R_ARM_JUMP24:
2682         case elfcpp::R_ARM_THM_JUMP24:
2683         case elfcpp::R_ARM_THM_JUMP19:
2684         case elfcpp::R_ARM_PLT32:
2685         case elfcpp::R_ARM_THM_XPC22:
2686         case elfcpp::R_ARM_PREL31:
2687         case elfcpp::R_ARM_SBREL31:
2688           return false;
2689
2690         default:
2691           return true;
2692         }
2693     }
2694
2695    private:
2696     // Do a TLS relocation.
2697     inline typename Arm_relocate_functions<big_endian>::Status
2698     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2699                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2700                  const Sized_symbol<32>*, const Symbol_value<32>*,
2701                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2702                  section_size_type);
2703
2704   };
2705
2706   // A class which returns the size required for a relocation type,
2707   // used while scanning relocs during a relocatable link.
2708   class Relocatable_size_for_reloc
2709   {
2710    public:
2711     unsigned int
2712     get_size_for_reloc(unsigned int, Relobj*);
2713   };
2714
2715   // Adjust TLS relocation type based on the options and whether this
2716   // is a local symbol.
2717   static tls::Tls_optimization
2718   optimize_tls_reloc(bool is_final, int r_type);
2719
2720   // Get the GOT section, creating it if necessary.
2721   Arm_output_data_got<big_endian>*
2722   got_section(Symbol_table*, Layout*);
2723
2724   // Get the GOT PLT section.
2725   Output_data_space*
2726   got_plt_section() const
2727   {
2728     gold_assert(this->got_plt_ != NULL);
2729     return this->got_plt_;
2730   }
2731
2732   // Create a PLT entry for a global symbol.
2733   void
2734   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2735
2736   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2737   void
2738   define_tls_base_symbol(Symbol_table*, Layout*);
2739
2740   // Create a GOT entry for the TLS module index.
2741   unsigned int
2742   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2743                       Sized_relobj<32, big_endian>* object);
2744
2745   // Get the PLT section.
2746   const Output_data_plt_arm<big_endian>*
2747   plt_section() const
2748   {
2749     gold_assert(this->plt_ != NULL);
2750     return this->plt_;
2751   }
2752
2753   // Get the dynamic reloc section, creating it if necessary.
2754   Reloc_section*
2755   rel_dyn_section(Layout*);
2756
2757   // Get the section to use for TLS_DESC relocations.
2758   Reloc_section*
2759   rel_tls_desc_section(Layout*) const;
2760
2761   // Return true if the symbol may need a COPY relocation.
2762   // References from an executable object to non-function symbols
2763   // defined in a dynamic object may need a COPY relocation.
2764   bool
2765   may_need_copy_reloc(Symbol* gsym)
2766   {
2767     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2768             && gsym->may_need_copy_reloc());
2769   }
2770
2771   // Add a potential copy relocation.
2772   void
2773   copy_reloc(Symbol_table* symtab, Layout* layout,
2774              Sized_relobj<32, big_endian>* object,
2775              unsigned int shndx, Output_section* output_section,
2776              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2777   {
2778     this->copy_relocs_.copy_reloc(symtab, layout,
2779                                   symtab->get_sized_symbol<32>(sym),
2780                                   object, shndx, output_section, reloc,
2781                                   this->rel_dyn_section(layout));
2782   }
2783
2784   // Whether two EABI versions are compatible.
2785   static bool
2786   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2787
2788   // Merge processor-specific flags from input object and those in the ELF
2789   // header of the output.
2790   void
2791   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2792
2793   // Get the secondary compatible architecture.
2794   static int
2795   get_secondary_compatible_arch(const Attributes_section_data*);
2796
2797   // Set the secondary compatible architecture.
2798   static void
2799   set_secondary_compatible_arch(Attributes_section_data*, int);
2800
2801   static int
2802   tag_cpu_arch_combine(const char*, int, int*, int, int);
2803
2804   // Helper to print AEABI enum tag value.
2805   static std::string
2806   aeabi_enum_name(unsigned int);
2807
2808   // Return string value for TAG_CPU_name.
2809   static std::string
2810   tag_cpu_name_value(unsigned int);
2811
2812   // Merge object attributes from input object and those in the output.
2813   void
2814   merge_object_attributes(const char*, const Attributes_section_data*);
2815
2816   // Helper to get an AEABI object attribute
2817   Object_attribute*
2818   get_aeabi_object_attribute(int tag) const
2819   {
2820     Attributes_section_data* pasd = this->attributes_section_data_;
2821     gold_assert(pasd != NULL);
2822     Object_attribute* attr =
2823       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2824     gold_assert(attr != NULL);
2825     return attr;
2826   }
2827
2828   //
2829   // Methods to support stub-generations.
2830   //
2831
2832   // Group input sections for stub generation.
2833   void
2834   group_sections(Layout*, section_size_type, bool, const Task*);
2835
2836   // Scan a relocation for stub generation.
2837   void
2838   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2839                       const Sized_symbol<32>*, unsigned int,
2840                       const Symbol_value<32>*,
2841                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2842
2843   // Scan a relocation section for stub.
2844   template<int sh_type>
2845   void
2846   scan_reloc_section_for_stubs(
2847       const Relocate_info<32, big_endian>* relinfo,
2848       const unsigned char* prelocs,
2849       size_t reloc_count,
2850       Output_section* output_section,
2851       bool needs_special_offset_handling,
2852       const unsigned char* view,
2853       elfcpp::Elf_types<32>::Elf_Addr view_address,
2854       section_size_type);
2855
2856   // Fix .ARM.exidx section coverage.
2857   void
2858   fix_exidx_coverage(Layout*, const Input_objects*,
2859                      Arm_output_section<big_endian>*, Symbol_table*,
2860                      const Task*);
2861
2862   // Functors for STL set.
2863   struct output_section_address_less_than
2864   {
2865     bool
2866     operator()(const Output_section* s1, const Output_section* s2) const
2867     { return s1->address() < s2->address(); }
2868   };
2869
2870   // Information about this specific target which we pass to the
2871   // general Target structure.
2872   static const Target::Target_info arm_info;
2873
2874   // The types of GOT entries needed for this platform.
2875   // These values are exposed to the ABI in an incremental link.
2876   // Do not renumber existing values without changing the version
2877   // number of the .gnu_incremental_inputs section.
2878   enum Got_type
2879   {
2880     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2881     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2882     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2883     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2884     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2885   };
2886
2887   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2888
2889   // Map input section to Arm_input_section.
2890   typedef Unordered_map<Section_id,
2891                         Arm_input_section<big_endian>*,
2892                         Section_id_hash>
2893           Arm_input_section_map;
2894     
2895   // Map output addresses to relocs for Cortex-A8 erratum.
2896   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2897           Cortex_a8_relocs_info;
2898
2899   // The GOT section.
2900   Arm_output_data_got<big_endian>* got_;
2901   // The PLT section.
2902   Output_data_plt_arm<big_endian>* plt_;
2903   // The GOT PLT section.
2904   Output_data_space* got_plt_;
2905   // The dynamic reloc section.
2906   Reloc_section* rel_dyn_;
2907   // Relocs saved to avoid a COPY reloc.
2908   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2909   // Space for variables copied with a COPY reloc.
2910   Output_data_space* dynbss_;
2911   // Offset of the GOT entry for the TLS module index.
2912   unsigned int got_mod_index_offset_;
2913   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2914   bool tls_base_symbol_defined_;
2915   // Vector of Stub_tables created.
2916   Stub_table_list stub_tables_;
2917   // Stub factory.
2918   const Stub_factory &stub_factory_;
2919   // Whether we can use BLX.
2920   bool may_use_blx_;
2921   // Whether we force PIC branch veneers.
2922   bool should_force_pic_veneer_;
2923   // Map for locating Arm_input_sections.
2924   Arm_input_section_map arm_input_section_map_;
2925   // Attributes section data in output.
2926   Attributes_section_data* attributes_section_data_;
2927   // Whether we want to fix code for Cortex-A8 erratum.
2928   bool fix_cortex_a8_;
2929   // Map addresses to relocs for Cortex-A8 erratum.
2930   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2931 };
2932
2933 template<bool big_endian>
2934 const Target::Target_info Target_arm<big_endian>::arm_info =
2935 {
2936   32,                   // size
2937   big_endian,           // is_big_endian
2938   elfcpp::EM_ARM,       // machine_code
2939   false,                // has_make_symbol
2940   false,                // has_resolve
2941   false,                // has_code_fill
2942   true,                 // is_default_stack_executable
2943   '\0',                 // wrap_char
2944   "/usr/lib/libc.so.1", // dynamic_linker
2945   0x8000,               // default_text_segment_address
2946   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2947   0x1000,               // common_pagesize (overridable by -z common-page-size)
2948   elfcpp::SHN_UNDEF,    // small_common_shndx
2949   elfcpp::SHN_UNDEF,    // large_common_shndx
2950   0,                    // small_common_section_flags
2951   0,                    // large_common_section_flags
2952   ".ARM.attributes",    // attributes_section
2953   "aeabi"               // attributes_vendor
2954 };
2955
2956 // Arm relocate functions class
2957 //
2958
2959 template<bool big_endian>
2960 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2961 {
2962  public:
2963   typedef enum
2964   {
2965     STATUS_OKAY,        // No error during relocation.
2966     STATUS_OVERFLOW,    // Relocation overflow.
2967     STATUS_BAD_RELOC    // Relocation cannot be applied.
2968   } Status;
2969
2970  private:
2971   typedef Relocate_functions<32, big_endian> Base;
2972   typedef Arm_relocate_functions<big_endian> This;
2973
2974   // Encoding of imm16 argument for movt and movw ARM instructions
2975   // from ARM ARM:
2976   //     
2977   //     imm16 := imm4 | imm12
2978   //
2979   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2980   // +-------+---------------+-------+-------+-----------------------+
2981   // |       |               |imm4   |       |imm12                  |
2982   // +-------+---------------+-------+-------+-----------------------+
2983
2984   // Extract the relocation addend from VAL based on the ARM
2985   // instruction encoding described above.
2986   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2987   extract_arm_movw_movt_addend(
2988       typename elfcpp::Swap<32, big_endian>::Valtype val)
2989   {
2990     // According to the Elf ABI for ARM Architecture the immediate
2991     // field is sign-extended to form the addend.
2992     return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2993   }
2994
2995   // Insert X into VAL based on the ARM instruction encoding described
2996   // above.
2997   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2998   insert_val_arm_movw_movt(
2999       typename elfcpp::Swap<32, big_endian>::Valtype val,
3000       typename elfcpp::Swap<32, big_endian>::Valtype x)
3001   {
3002     val &= 0xfff0f000;
3003     val |= x & 0x0fff;
3004     val |= (x & 0xf000) << 4;
3005     return val;
3006   }
3007
3008   // Encoding of imm16 argument for movt and movw Thumb2 instructions
3009   // from ARM ARM:
3010   //     
3011   //     imm16 := imm4 | i | imm3 | imm8
3012   //
3013   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
3014   // +---------+-+-----------+-------++-+-----+-------+---------------+
3015   // |         |i|           |imm4   || |imm3 |       |imm8           |
3016   // +---------+-+-----------+-------++-+-----+-------+---------------+
3017
3018   // Extract the relocation addend from VAL based on the Thumb2
3019   // instruction encoding described above.
3020   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3021   extract_thumb_movw_movt_addend(
3022       typename elfcpp::Swap<32, big_endian>::Valtype val)
3023   {
3024     // According to the Elf ABI for ARM Architecture the immediate
3025     // field is sign-extended to form the addend.
3026     return utils::sign_extend<16>(((val >> 4) & 0xf000)
3027                                   | ((val >> 15) & 0x0800)
3028                                   | ((val >> 4) & 0x0700)
3029                                   | (val & 0x00ff));
3030   }
3031
3032   // Insert X into VAL based on the Thumb2 instruction encoding
3033   // described above.
3034   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3035   insert_val_thumb_movw_movt(
3036       typename elfcpp::Swap<32, big_endian>::Valtype val,
3037       typename elfcpp::Swap<32, big_endian>::Valtype x)
3038   {
3039     val &= 0xfbf08f00;
3040     val |= (x & 0xf000) << 4;
3041     val |= (x & 0x0800) << 15;
3042     val |= (x & 0x0700) << 4;
3043     val |= (x & 0x00ff);
3044     return val;
3045   }
3046
3047   // Calculate the smallest constant Kn for the specified residual.
3048   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3049   static uint32_t
3050   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3051   {
3052     int32_t msb;
3053
3054     if (residual == 0)
3055       return 0;
3056     // Determine the most significant bit in the residual and
3057     // align the resulting value to a 2-bit boundary.
3058     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3059       ;
3060     // The desired shift is now (msb - 6), or zero, whichever
3061     // is the greater.
3062     return (((msb - 6) < 0) ? 0 : (msb - 6));
3063   }
3064
3065   // Calculate the final residual for the specified group index.
3066   // If the passed group index is less than zero, the method will return
3067   // the value of the specified residual without any change.
3068   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3069   static typename elfcpp::Swap<32, big_endian>::Valtype
3070   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3071                     const int group)
3072   {
3073     for (int n = 0; n <= group; n++)
3074       {
3075         // Calculate which part of the value to mask.
3076         uint32_t shift = calc_grp_kn(residual);
3077         // Calculate the residual for the next time around.
3078         residual &= ~(residual & (0xff << shift));
3079       }
3080
3081     return residual;
3082   }
3083
3084   // Calculate the value of Gn for the specified group index.
3085   // We return it in the form of an encoded constant-and-rotation.
3086   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3087   static typename elfcpp::Swap<32, big_endian>::Valtype
3088   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3089               const int group)
3090   {
3091     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3092     uint32_t shift = 0;
3093
3094     for (int n = 0; n <= group; n++)
3095       {
3096         // Calculate which part of the value to mask.
3097         shift = calc_grp_kn(residual);
3098         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3099         gn = residual & (0xff << shift);
3100         // Calculate the residual for the next time around.
3101         residual &= ~gn;
3102       }
3103     // Return Gn in the form of an encoded constant-and-rotation.
3104     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3105   }
3106
3107  public:
3108   // Handle ARM long branches.
3109   static typename This::Status
3110   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3111                     unsigned char*, const Sized_symbol<32>*,
3112                     const Arm_relobj<big_endian>*, unsigned int,
3113                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3114
3115   // Handle THUMB long branches.
3116   static typename This::Status
3117   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3118                       unsigned char*, const Sized_symbol<32>*,
3119                       const Arm_relobj<big_endian>*, unsigned int,
3120                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3121
3122
3123   // Return the branch offset of a 32-bit THUMB branch.
3124   static inline int32_t
3125   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3126   {
3127     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3128     // involving the J1 and J2 bits.
3129     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3130     uint32_t upper = upper_insn & 0x3ffU;
3131     uint32_t lower = lower_insn & 0x7ffU;
3132     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3133     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3134     uint32_t i1 = j1 ^ s ? 0 : 1;
3135     uint32_t i2 = j2 ^ s ? 0 : 1;
3136
3137     return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3138                                   | (upper << 12) | (lower << 1));
3139   }
3140
3141   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3142   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3143   // responsible for overflow checking and BLX offset adjustment.
3144   static inline uint16_t
3145   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3146   {
3147     uint32_t s = offset < 0 ? 1 : 0;
3148     uint32_t bits = static_cast<uint32_t>(offset);
3149     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3150   }
3151
3152   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3153   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3154   // responsible for overflow checking and BLX offset adjustment.
3155   static inline uint16_t
3156   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3157   {
3158     uint32_t s = offset < 0 ? 1 : 0;
3159     uint32_t bits = static_cast<uint32_t>(offset);
3160     return ((lower_insn & ~0x2fffU)
3161             | ((((bits >> 23) & 1) ^ !s) << 13)
3162             | ((((bits >> 22) & 1) ^ !s) << 11)
3163             | ((bits >> 1) & 0x7ffU));
3164   }
3165
3166   // Return the branch offset of a 32-bit THUMB conditional branch.
3167   static inline int32_t
3168   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3169   {
3170     uint32_t s = (upper_insn & 0x0400U) >> 10;
3171     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3172     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3173     uint32_t lower = (lower_insn & 0x07ffU);
3174     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3175
3176     return utils::sign_extend<21>((upper << 12) | (lower << 1));
3177   }
3178
3179   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3180   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3181   // Caller is responsible for overflow checking.
3182   static inline uint16_t
3183   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3184   {
3185     uint32_t s = offset < 0 ? 1 : 0;
3186     uint32_t bits = static_cast<uint32_t>(offset);
3187     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3188   }
3189
3190   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3191   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3192   // The caller is responsible for overflow checking.
3193   static inline uint16_t
3194   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3195   {
3196     uint32_t bits = static_cast<uint32_t>(offset);
3197     uint32_t j2 = (bits & 0x00080000U) >> 19;
3198     uint32_t j1 = (bits & 0x00040000U) >> 18;
3199     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3200
3201     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3202   }
3203
3204   // R_ARM_ABS8: S + A
3205   static inline typename This::Status
3206   abs8(unsigned char* view,
3207        const Sized_relobj<32, big_endian>* object,
3208        const Symbol_value<32>* psymval)
3209   {
3210     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3211     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3212     Valtype* wv = reinterpret_cast<Valtype*>(view);
3213     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3214     Reltype addend = utils::sign_extend<8>(val);
3215     Reltype x = psymval->value(object, addend);
3216     val = utils::bit_select(val, x, 0xffU);
3217     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3218
3219     // R_ARM_ABS8 permits signed or unsigned results.
3220     int signed_x = static_cast<int32_t>(x);
3221     return ((signed_x < -128 || signed_x > 255)
3222             ? This::STATUS_OVERFLOW
3223             : This::STATUS_OKAY);
3224   }
3225
3226   // R_ARM_THM_ABS5: S + A
3227   static inline typename This::Status
3228   thm_abs5(unsigned char* view,
3229        const Sized_relobj<32, big_endian>* object,
3230        const Symbol_value<32>* psymval)
3231   {
3232     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3233     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3234     Valtype* wv = reinterpret_cast<Valtype*>(view);
3235     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3236     Reltype addend = (val & 0x7e0U) >> 6;
3237     Reltype x = psymval->value(object, addend);
3238     val = utils::bit_select(val, x << 6, 0x7e0U);
3239     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3240
3241     // R_ARM_ABS16 permits signed or unsigned results.
3242     int signed_x = static_cast<int32_t>(x);
3243     return ((signed_x < -32768 || signed_x > 65535)
3244             ? This::STATUS_OVERFLOW
3245             : This::STATUS_OKAY);
3246   }
3247
3248   // R_ARM_ABS12: S + A
3249   static inline typename This::Status
3250   abs12(unsigned char* view,
3251         const Sized_relobj<32, big_endian>* object,
3252         const Symbol_value<32>* psymval)
3253   {
3254     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3255     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3256     Valtype* wv = reinterpret_cast<Valtype*>(view);
3257     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3258     Reltype addend = val & 0x0fffU;
3259     Reltype x = psymval->value(object, addend);
3260     val = utils::bit_select(val, x, 0x0fffU);
3261     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3262     return (utils::has_overflow<12>(x)
3263             ? This::STATUS_OVERFLOW
3264             : This::STATUS_OKAY);
3265   }
3266
3267   // R_ARM_ABS16: S + A
3268   static inline typename This::Status
3269   abs16(unsigned char* view,
3270         const Sized_relobj<32, big_endian>* object,
3271         const Symbol_value<32>* psymval)
3272   {
3273     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3274     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3275     Valtype* wv = reinterpret_cast<Valtype*>(view);
3276     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3277     Reltype addend = utils::sign_extend<16>(val);
3278     Reltype x = psymval->value(object, addend);
3279     val = utils::bit_select(val, x, 0xffffU);
3280     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3281     return (utils::has_signed_unsigned_overflow<16>(x)
3282             ? This::STATUS_OVERFLOW
3283             : This::STATUS_OKAY);
3284   }
3285
3286   // R_ARM_ABS32: (S + A) | T
3287   static inline typename This::Status
3288   abs32(unsigned char* view,
3289         const Sized_relobj<32, big_endian>* object,
3290         const Symbol_value<32>* psymval,
3291         Arm_address thumb_bit)
3292   {
3293     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3294     Valtype* wv = reinterpret_cast<Valtype*>(view);
3295     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3296     Valtype x = psymval->value(object, addend) | thumb_bit;
3297     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3298     return This::STATUS_OKAY;
3299   }
3300
3301   // R_ARM_REL32: (S + A) | T - P
3302   static inline typename This::Status
3303   rel32(unsigned char* view,
3304         const Sized_relobj<32, big_endian>* object,
3305         const Symbol_value<32>* psymval,
3306         Arm_address address,
3307         Arm_address thumb_bit)
3308   {
3309     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3310     Valtype* wv = reinterpret_cast<Valtype*>(view);
3311     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3312     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3313     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3314     return This::STATUS_OKAY;
3315   }
3316
3317   // R_ARM_THM_JUMP24: (S + A) | T - P
3318   static typename This::Status
3319   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3320              const Symbol_value<32>* psymval, Arm_address address,
3321              Arm_address thumb_bit);
3322
3323   // R_ARM_THM_JUMP6: S + A â€“ P
3324   static inline typename This::Status
3325   thm_jump6(unsigned char* view,
3326             const Sized_relobj<32, big_endian>* object,
3327             const Symbol_value<32>* psymval,
3328             Arm_address address)
3329   {
3330     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3331     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3332     Valtype* wv = reinterpret_cast<Valtype*>(view);
3333     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3334     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3335     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3336     Reltype x = (psymval->value(object, addend) - address);
3337     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3338     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3339     // CZB does only forward jumps.
3340     return ((x > 0x007e)
3341             ? This::STATUS_OVERFLOW
3342             : This::STATUS_OKAY);
3343   }
3344
3345   // R_ARM_THM_JUMP8: S + A â€“ P
3346   static inline typename This::Status
3347   thm_jump8(unsigned char* view,
3348             const Sized_relobj<32, big_endian>* object,
3349             const Symbol_value<32>* psymval,
3350             Arm_address address)
3351   {
3352     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3353     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3354     Valtype* wv = reinterpret_cast<Valtype*>(view);
3355     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3356     Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3357     Reltype x = (psymval->value(object, addend) - address);
3358     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3359     return (utils::has_overflow<8>(x)
3360             ? This::STATUS_OVERFLOW
3361             : This::STATUS_OKAY);
3362   }
3363
3364   // R_ARM_THM_JUMP11: S + A â€“ P
3365   static inline typename This::Status
3366   thm_jump11(unsigned char* view,
3367             const Sized_relobj<32, big_endian>* object,
3368             const Symbol_value<32>* psymval,
3369             Arm_address address)
3370   {
3371     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3372     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3373     Valtype* wv = reinterpret_cast<Valtype*>(view);
3374     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3375     Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3376     Reltype x = (psymval->value(object, addend) - address);
3377     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3378     return (utils::has_overflow<11>(x)
3379             ? This::STATUS_OVERFLOW
3380             : This::STATUS_OKAY);
3381   }
3382
3383   // R_ARM_BASE_PREL: B(S) + A - P
3384   static inline typename This::Status
3385   base_prel(unsigned char* view,
3386             Arm_address origin,
3387             Arm_address address)
3388   {
3389     Base::rel32(view, origin - address);
3390     return STATUS_OKAY;
3391   }
3392
3393   // R_ARM_BASE_ABS: B(S) + A
3394   static inline typename This::Status
3395   base_abs(unsigned char* view,
3396            Arm_address origin)
3397   {
3398     Base::rel32(view, origin);
3399     return STATUS_OKAY;
3400   }
3401
3402   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3403   static inline typename This::Status
3404   got_brel(unsigned char* view,
3405            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3406   {
3407     Base::rel32(view, got_offset);
3408     return This::STATUS_OKAY;
3409   }
3410
3411   // R_ARM_GOT_PREL: GOT(S) + A - P
3412   static inline typename This::Status
3413   got_prel(unsigned char* view,
3414            Arm_address got_entry,
3415            Arm_address address)
3416   {
3417     Base::rel32(view, got_entry - address);
3418     return This::STATUS_OKAY;
3419   }
3420
3421   // R_ARM_PREL: (S + A) | T - P
3422   static inline typename This::Status
3423   prel31(unsigned char* view,
3424          const Sized_relobj<32, big_endian>* object,
3425          const Symbol_value<32>* psymval,
3426          Arm_address address,
3427          Arm_address thumb_bit)
3428   {
3429     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3430     Valtype* wv = reinterpret_cast<Valtype*>(view);
3431     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3432     Valtype addend = utils::sign_extend<31>(val);
3433     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3434     val = utils::bit_select(val, x, 0x7fffffffU);
3435     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3436     return (utils::has_overflow<31>(x) ?
3437             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3438   }
3439
3440   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3441   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3442   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3443   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3444   static inline typename This::Status
3445   movw(unsigned char* view,
3446        const Sized_relobj<32, big_endian>* object,
3447        const Symbol_value<32>* psymval,
3448        Arm_address relative_address_base,
3449        Arm_address thumb_bit,
3450        bool check_overflow)
3451   {
3452     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3453     Valtype* wv = reinterpret_cast<Valtype*>(view);
3454     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3455     Valtype addend = This::extract_arm_movw_movt_addend(val);
3456     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3457                  - relative_address_base);
3458     val = This::insert_val_arm_movw_movt(val, x);
3459     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3460     return ((check_overflow && utils::has_overflow<16>(x))
3461             ? This::STATUS_OVERFLOW
3462             : This::STATUS_OKAY);
3463   }
3464
3465   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3466   // R_ARM_MOVT_PREL: S + A - P
3467   // R_ARM_MOVT_BREL: S + A - B(S)
3468   static inline typename This::Status
3469   movt(unsigned char* view,
3470        const Sized_relobj<32, big_endian>* object,
3471        const Symbol_value<32>* psymval,
3472        Arm_address relative_address_base)
3473   {
3474     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3475     Valtype* wv = reinterpret_cast<Valtype*>(view);
3476     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3477     Valtype addend = This::extract_arm_movw_movt_addend(val);
3478     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3479     val = This::insert_val_arm_movw_movt(val, x);
3480     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3481     // FIXME: IHI0044D says that we should check for overflow.
3482     return This::STATUS_OKAY;
3483   }
3484
3485   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3486   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3487   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3488   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3489   static inline typename This::Status
3490   thm_movw(unsigned char* view,
3491            const Sized_relobj<32, big_endian>* object,
3492            const Symbol_value<32>* psymval,
3493            Arm_address relative_address_base,
3494            Arm_address thumb_bit,
3495            bool check_overflow)
3496   {
3497     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3498     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3499     Valtype* wv = reinterpret_cast<Valtype*>(view);
3500     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3501                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3502     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3503     Reltype x =
3504       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3505     val = This::insert_val_thumb_movw_movt(val, x);
3506     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3507     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3508     return ((check_overflow && utils::has_overflow<16>(x))
3509             ? This::STATUS_OVERFLOW
3510             : This::STATUS_OKAY);
3511   }
3512
3513   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3514   // R_ARM_THM_MOVT_PREL: S + A - P
3515   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3516   static inline typename This::Status
3517   thm_movt(unsigned char* view,
3518            const Sized_relobj<32, big_endian>* object,
3519            const Symbol_value<32>* psymval,
3520            Arm_address relative_address_base)
3521   {
3522     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3523     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3524     Valtype* wv = reinterpret_cast<Valtype*>(view);
3525     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3526                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3527     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3528     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3529     val = This::insert_val_thumb_movw_movt(val, x);
3530     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3531     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3532     return This::STATUS_OKAY;
3533   }
3534
3535   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3536   static inline typename This::Status
3537   thm_alu11(unsigned char* view,
3538             const Sized_relobj<32, big_endian>* object,
3539             const Symbol_value<32>* psymval,
3540             Arm_address address,
3541             Arm_address thumb_bit)
3542   {
3543     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3544     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3545     Valtype* wv = reinterpret_cast<Valtype*>(view);
3546     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3547                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3548
3549     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3550     // -----------------------------------------------------------------------
3551     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3552     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3553     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3554     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3555     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3556     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3557
3558     // Determine a sign for the addend.
3559     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3560                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3561     // Thumb2 addend encoding:
3562     // imm12 := i | imm3 | imm8
3563     int32_t addend = (insn & 0xff)
3564                      | ((insn & 0x00007000) >> 4)
3565                      | ((insn & 0x04000000) >> 15);
3566     // Apply a sign to the added.
3567     addend *= sign;
3568
3569     int32_t x = (psymval->value(object, addend) | thumb_bit)
3570                 - (address & 0xfffffffc);
3571     Reltype val = abs(x);
3572     // Mask out the value and a distinct part of the ADD/SUB opcode
3573     // (bits 7:5 of opword).
3574     insn = (insn & 0xfb0f8f00)
3575            | (val & 0xff)
3576            | ((val & 0x700) << 4)
3577            | ((val & 0x800) << 15);
3578     // Set the opcode according to whether the value to go in the
3579     // place is negative.
3580     if (x < 0)
3581       insn |= 0x00a00000;
3582
3583     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3584     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3585     return ((val > 0xfff) ?
3586             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3587   }
3588
3589   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3590   static inline typename This::Status
3591   thm_pc8(unsigned char* view,
3592           const Sized_relobj<32, big_endian>* object,
3593           const Symbol_value<32>* psymval,
3594           Arm_address address)
3595   {
3596     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3597     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3598     Valtype* wv = reinterpret_cast<Valtype*>(view);
3599     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3600     Reltype addend = ((insn & 0x00ff) << 2);
3601     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3602     Reltype val = abs(x);
3603     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3604
3605     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3606     return ((val > 0x03fc)
3607             ? This::STATUS_OVERFLOW
3608             : This::STATUS_OKAY);
3609   }
3610
3611   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3612   static inline typename This::Status
3613   thm_pc12(unsigned char* view,
3614            const Sized_relobj<32, big_endian>* object,
3615            const Symbol_value<32>* psymval,
3616            Arm_address address)
3617   {
3618     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3619     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3620     Valtype* wv = reinterpret_cast<Valtype*>(view);
3621     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3622                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3623     // Determine a sign for the addend (positive if the U bit is 1).
3624     const int sign = (insn & 0x00800000) ? 1 : -1;
3625     int32_t addend = (insn & 0xfff);
3626     // Apply a sign to the added.
3627     addend *= sign;
3628
3629     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3630     Reltype val = abs(x);
3631     // Mask out and apply the value and the U bit.
3632     insn = (insn & 0xff7ff000) | (val & 0xfff);
3633     // Set the U bit according to whether the value to go in the
3634     // place is positive.
3635     if (x >= 0)
3636       insn |= 0x00800000;
3637
3638     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3639     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3640     return ((val > 0xfff) ?
3641             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3642   }
3643
3644   // R_ARM_V4BX
3645   static inline typename This::Status
3646   v4bx(const Relocate_info<32, big_endian>* relinfo,
3647        unsigned char* view,
3648        const Arm_relobj<big_endian>* object,
3649        const Arm_address address,
3650        const bool is_interworking)
3651   {
3652
3653     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3654     Valtype* wv = reinterpret_cast<Valtype*>(view);
3655     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3656
3657     // Ensure that we have a BX instruction.
3658     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3659     const uint32_t reg = (val & 0xf);
3660     if (is_interworking && reg != 0xf)
3661       {
3662         Stub_table<big_endian>* stub_table =
3663             object->stub_table(relinfo->data_shndx);
3664         gold_assert(stub_table != NULL);
3665
3666         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3667         gold_assert(stub != NULL);
3668
3669         int32_t veneer_address =
3670             stub_table->address() + stub->offset() - 8 - address;
3671         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3672                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3673         // Replace with a branch to veneer (B <addr>)
3674         val = (val & 0xf0000000) | 0x0a000000
3675               | ((veneer_address >> 2) & 0x00ffffff);
3676       }
3677     else
3678       {
3679         // Preserve Rm (lowest four bits) and the condition code
3680         // (highest four bits). Other bits encode MOV PC,Rm.
3681         val = (val & 0xf000000f) | 0x01a0f000;
3682       }
3683     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3684     return This::STATUS_OKAY;
3685   }
3686
3687   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3688   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3689   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3690   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3691   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3692   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3693   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3694   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3695   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3696   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3697   static inline typename This::Status
3698   arm_grp_alu(unsigned char* view,
3699         const Sized_relobj<32, big_endian>* object,
3700         const Symbol_value<32>* psymval,
3701         const int group,
3702         Arm_address address,
3703         Arm_address thumb_bit,
3704         bool check_overflow)
3705   {
3706     gold_assert(group >= 0 && group < 3);
3707     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3708     Valtype* wv = reinterpret_cast<Valtype*>(view);
3709     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3710
3711     // ALU group relocations are allowed only for the ADD/SUB instructions.
3712     // (0x00800000 - ADD, 0x00400000 - SUB)
3713     const Valtype opcode = insn & 0x01e00000;
3714     if (opcode != 0x00800000 && opcode != 0x00400000)
3715       return This::STATUS_BAD_RELOC;
3716
3717     // Determine a sign for the addend.
3718     const int sign = (opcode == 0x00800000) ? 1 : -1;
3719     // shifter = rotate_imm * 2
3720     const uint32_t shifter = (insn & 0xf00) >> 7;
3721     // Initial addend value.
3722     int32_t addend = insn & 0xff;
3723     // Rotate addend right by shifter.
3724     addend = (addend >> shifter) | (addend << (32 - shifter));
3725     // Apply a sign to the added.
3726     addend *= sign;
3727
3728     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3729     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3730     // Check for overflow if required
3731     if (check_overflow
3732         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3733       return This::STATUS_OVERFLOW;
3734
3735     // Mask out the value and the ADD/SUB part of the opcode; take care
3736     // not to destroy the S bit.
3737     insn &= 0xff1ff000;
3738     // Set the opcode according to whether the value to go in the
3739     // place is negative.
3740     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3741     // Encode the offset (encoded Gn).
3742     insn |= gn;
3743
3744     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3745     return This::STATUS_OKAY;
3746   }
3747
3748   // R_ARM_LDR_PC_G0: S + A - P
3749   // R_ARM_LDR_PC_G1: S + A - P
3750   // R_ARM_LDR_PC_G2: S + A - P
3751   // R_ARM_LDR_SB_G0: S + A - B(S)
3752   // R_ARM_LDR_SB_G1: S + A - B(S)
3753   // R_ARM_LDR_SB_G2: S + A - B(S)
3754   static inline typename This::Status
3755   arm_grp_ldr(unsigned char* view,
3756         const Sized_relobj<32, big_endian>* object,
3757         const Symbol_value<32>* psymval,
3758         const int group,
3759         Arm_address address)
3760   {
3761     gold_assert(group >= 0 && group < 3);
3762     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3763     Valtype* wv = reinterpret_cast<Valtype*>(view);
3764     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3765
3766     const int sign = (insn & 0x00800000) ? 1 : -1;
3767     int32_t addend = (insn & 0xfff) * sign;
3768     int32_t x = (psymval->value(object, addend) - address);
3769     // Calculate the relevant G(n-1) value to obtain this stage residual.
3770     Valtype residual =
3771         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3772     if (residual >= 0x1000)
3773       return This::STATUS_OVERFLOW;
3774
3775     // Mask out the value and U bit.
3776     insn &= 0xff7ff000;
3777     // Set the U bit for non-negative values.
3778     if (x >= 0)
3779       insn |= 0x00800000;
3780     insn |= residual;
3781
3782     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3783     return This::STATUS_OKAY;
3784   }
3785
3786   // R_ARM_LDRS_PC_G0: S + A - P
3787   // R_ARM_LDRS_PC_G1: S + A - P
3788   // R_ARM_LDRS_PC_G2: S + A - P
3789   // R_ARM_LDRS_SB_G0: S + A - B(S)
3790   // R_ARM_LDRS_SB_G1: S + A - B(S)
3791   // R_ARM_LDRS_SB_G2: S + A - B(S)
3792   static inline typename This::Status
3793   arm_grp_ldrs(unsigned char* view,
3794         const Sized_relobj<32, big_endian>* object,
3795         const Symbol_value<32>* psymval,
3796         const int group,
3797         Arm_address address)
3798   {
3799     gold_assert(group >= 0 && group < 3);
3800     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3801     Valtype* wv = reinterpret_cast<Valtype*>(view);
3802     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3803
3804     const int sign = (insn & 0x00800000) ? 1 : -1;
3805     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3806     int32_t x = (psymval->value(object, addend) - address);
3807     // Calculate the relevant G(n-1) value to obtain this stage residual.
3808     Valtype residual =
3809         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3810    if (residual >= 0x100)
3811       return This::STATUS_OVERFLOW;
3812
3813     // Mask out the value and U bit.
3814     insn &= 0xff7ff0f0;
3815     // Set the U bit for non-negative values.
3816     if (x >= 0)
3817       insn |= 0x00800000;
3818     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3819
3820     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3821     return This::STATUS_OKAY;
3822   }
3823
3824   // R_ARM_LDC_PC_G0: S + A - P
3825   // R_ARM_LDC_PC_G1: S + A - P
3826   // R_ARM_LDC_PC_G2: S + A - P
3827   // R_ARM_LDC_SB_G0: S + A - B(S)
3828   // R_ARM_LDC_SB_G1: S + A - B(S)
3829   // R_ARM_LDC_SB_G2: S + A - B(S)
3830   static inline typename This::Status
3831   arm_grp_ldc(unsigned char* view,
3832       const Sized_relobj<32, big_endian>* object,
3833       const Symbol_value<32>* psymval,
3834       const int group,
3835       Arm_address address)
3836   {
3837     gold_assert(group >= 0 && group < 3);
3838     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3839     Valtype* wv = reinterpret_cast<Valtype*>(view);
3840     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3841
3842     const int sign = (insn & 0x00800000) ? 1 : -1;
3843     int32_t addend = ((insn & 0xff) << 2) * sign;
3844     int32_t x = (psymval->value(object, addend) - address);
3845     // Calculate the relevant G(n-1) value to obtain this stage residual.
3846     Valtype residual =
3847       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3848     if ((residual & 0x3) != 0 || residual >= 0x400)
3849       return This::STATUS_OVERFLOW;
3850
3851     // Mask out the value and U bit.
3852     insn &= 0xff7fff00;
3853     // Set the U bit for non-negative values.
3854     if (x >= 0)
3855       insn |= 0x00800000;
3856     insn |= (residual >> 2);
3857
3858     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3859     return This::STATUS_OKAY;
3860   }
3861 };
3862
3863 // Relocate ARM long branches.  This handles relocation types
3864 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3865 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3866 // undefined and we do not use PLT in this relocation.  In such a case,
3867 // the branch is converted into an NOP.
3868
3869 template<bool big_endian>
3870 typename Arm_relocate_functions<big_endian>::Status
3871 Arm_relocate_functions<big_endian>::arm_branch_common(
3872     unsigned int r_type,
3873     const Relocate_info<32, big_endian>* relinfo,
3874     unsigned char* view,
3875     const Sized_symbol<32>* gsym,
3876     const Arm_relobj<big_endian>* object,
3877     unsigned int r_sym,
3878     const Symbol_value<32>* psymval,
3879     Arm_address address,
3880     Arm_address thumb_bit,
3881     bool is_weakly_undefined_without_plt)
3882 {
3883   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3884   Valtype* wv = reinterpret_cast<Valtype*>(view);
3885   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3886      
3887   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3888                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3889   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3890   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3891                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3892   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3893   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3894
3895   // Check that the instruction is valid.
3896   if (r_type == elfcpp::R_ARM_CALL)
3897     {
3898       if (!insn_is_uncond_bl && !insn_is_blx)
3899         return This::STATUS_BAD_RELOC;
3900     }
3901   else if (r_type == elfcpp::R_ARM_JUMP24)
3902     {
3903       if (!insn_is_b && !insn_is_cond_bl)
3904         return This::STATUS_BAD_RELOC;
3905     }
3906   else if (r_type == elfcpp::R_ARM_PLT32)
3907     {
3908       if (!insn_is_any_branch)
3909         return This::STATUS_BAD_RELOC;
3910     }
3911   else if (r_type == elfcpp::R_ARM_XPC25)
3912     {
3913       // FIXME: AAELF document IH0044C does not say much about it other
3914       // than it being obsolete.
3915       if (!insn_is_any_branch)
3916         return This::STATUS_BAD_RELOC;
3917     }
3918   else
3919     gold_unreachable();
3920
3921   // A branch to an undefined weak symbol is turned into a jump to
3922   // the next instruction unless a PLT entry will be created.
3923   // Do the same for local undefined symbols.
3924   // The jump to the next instruction is optimized as a NOP depending
3925   // on the architecture.
3926   const Target_arm<big_endian>* arm_target =
3927     Target_arm<big_endian>::default_target();
3928   if (is_weakly_undefined_without_plt)
3929     {
3930       gold_assert(!parameters->options().relocatable());
3931       Valtype cond = val & 0xf0000000U;
3932       if (arm_target->may_use_arm_nop())
3933         val = cond | 0x0320f000;
3934       else
3935         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3936       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3937       return This::STATUS_OKAY;
3938     }
3939  
3940   Valtype addend = utils::sign_extend<26>(val << 2);
3941   Valtype branch_target = psymval->value(object, addend);
3942   int32_t branch_offset = branch_target - address;
3943
3944   // We need a stub if the branch offset is too large or if we need
3945   // to switch mode.
3946   bool may_use_blx = arm_target->may_use_blx();
3947   Reloc_stub* stub = NULL;
3948
3949   if (!parameters->options().relocatable()
3950       && (utils::has_overflow<26>(branch_offset)
3951           || ((thumb_bit != 0)
3952               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3953     {
3954       Valtype unadjusted_branch_target = psymval->value(object, 0);
3955
3956       Stub_type stub_type =
3957         Reloc_stub::stub_type_for_reloc(r_type, address,
3958                                         unadjusted_branch_target,
3959                                         (thumb_bit != 0));
3960       if (stub_type != arm_stub_none)
3961         {
3962           Stub_table<big_endian>* stub_table =
3963             object->stub_table(relinfo->data_shndx);
3964           gold_assert(stub_table != NULL);
3965
3966           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3967           stub = stub_table->find_reloc_stub(stub_key);
3968           gold_assert(stub != NULL);
3969           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3970           branch_target = stub_table->address() + stub->offset() + addend;
3971           branch_offset = branch_target - address;
3972           gold_assert(!utils::has_overflow<26>(branch_offset));
3973         }
3974     }
3975
3976   // At this point, if we still need to switch mode, the instruction
3977   // must either be a BLX or a BL that can be converted to a BLX.
3978   if (thumb_bit != 0)
3979     {
3980       // Turn BL to BLX.
3981       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3982       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3983     }
3984
3985   val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3986   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3987   return (utils::has_overflow<26>(branch_offset)
3988           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3989 }
3990
3991 // Relocate THUMB long branches.  This handles relocation types
3992 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3993 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3994 // undefined and we do not use PLT in this relocation.  In such a case,
3995 // the branch is converted into an NOP.
3996
3997 template<bool big_endian>
3998 typename Arm_relocate_functions<big_endian>::Status
3999 Arm_relocate_functions<big_endian>::thumb_branch_common(
4000     unsigned int r_type,
4001     const Relocate_info<32, big_endian>* relinfo,
4002     unsigned char* view,
4003     const Sized_symbol<32>* gsym,
4004     const Arm_relobj<big_endian>* object,
4005     unsigned int r_sym,
4006     const Symbol_value<32>* psymval,
4007     Arm_address address,
4008     Arm_address thumb_bit,
4009     bool is_weakly_undefined_without_plt)
4010 {
4011   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4012   Valtype* wv = reinterpret_cast<Valtype*>(view);
4013   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4014   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4015
4016   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4017   // into account.
4018   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4019   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4020      
4021   // Check that the instruction is valid.
4022   if (r_type == elfcpp::R_ARM_THM_CALL)
4023     {
4024       if (!is_bl_insn && !is_blx_insn)
4025         return This::STATUS_BAD_RELOC;
4026     }
4027   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4028     {
4029       // This cannot be a BLX.
4030       if (!is_bl_insn)
4031         return This::STATUS_BAD_RELOC;
4032     }
4033   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4034     {
4035       // Check for Thumb to Thumb call.
4036       if (!is_blx_insn)
4037         return This::STATUS_BAD_RELOC;
4038       if (thumb_bit != 0)
4039         {
4040           gold_warning(_("%s: Thumb BLX instruction targets "
4041                          "thumb function '%s'."),
4042                          object->name().c_str(),
4043                          (gsym ? gsym->name() : "(local)")); 
4044           // Convert BLX to BL.
4045           lower_insn |= 0x1000U;
4046         }
4047     }
4048   else
4049     gold_unreachable();
4050
4051   // A branch to an undefined weak symbol is turned into a jump to
4052   // the next instruction unless a PLT entry will be created.
4053   // The jump to the next instruction is optimized as a NOP.W for
4054   // Thumb-2 enabled architectures.
4055   const Target_arm<big_endian>* arm_target =
4056     Target_arm<big_endian>::default_target();
4057   if (is_weakly_undefined_without_plt)
4058     {
4059       gold_assert(!parameters->options().relocatable());
4060       if (arm_target->may_use_thumb2_nop())
4061         {
4062           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4063           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4064         }
4065       else
4066         {
4067           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4068           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4069         }
4070       return This::STATUS_OKAY;
4071     }
4072  
4073   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4074   Arm_address branch_target = psymval->value(object, addend);
4075
4076   // For BLX, bit 1 of target address comes from bit 1 of base address.
4077   bool may_use_blx = arm_target->may_use_blx();
4078   if (thumb_bit == 0 && may_use_blx)
4079     branch_target = utils::bit_select(branch_target, address, 0x2);
4080
4081   int32_t branch_offset = branch_target - address;
4082
4083   // We need a stub if the branch offset is too large or if we need
4084   // to switch mode.
4085   bool thumb2 = arm_target->using_thumb2();
4086   if (!parameters->options().relocatable()
4087       && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4088           || (thumb2 && utils::has_overflow<25>(branch_offset))
4089           || ((thumb_bit == 0)
4090               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4091                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4092     {
4093       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4094
4095       Stub_type stub_type =
4096         Reloc_stub::stub_type_for_reloc(r_type, address,
4097                                         unadjusted_branch_target,
4098                                         (thumb_bit != 0));
4099
4100       if (stub_type != arm_stub_none)
4101         {
4102           Stub_table<big_endian>* stub_table =
4103             object->stub_table(relinfo->data_shndx);
4104           gold_assert(stub_table != NULL);
4105
4106           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4107           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4108           gold_assert(stub != NULL);
4109           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4110           branch_target = stub_table->address() + stub->offset() + addend;
4111           if (thumb_bit == 0 && may_use_blx) 
4112             branch_target = utils::bit_select(branch_target, address, 0x2);
4113           branch_offset = branch_target - address;
4114         }
4115     }
4116
4117   // At this point, if we still need to switch mode, the instruction
4118   // must either be a BLX or a BL that can be converted to a BLX.
4119   if (thumb_bit == 0)
4120     {
4121       gold_assert(may_use_blx
4122                   && (r_type == elfcpp::R_ARM_THM_CALL
4123                       || r_type == elfcpp::R_ARM_THM_XPC22));
4124       // Make sure this is a BLX.
4125       lower_insn &= ~0x1000U;
4126     }
4127   else
4128     {
4129       // Make sure this is a BL.
4130       lower_insn |= 0x1000U;
4131     }
4132
4133   // For a BLX instruction, make sure that the relocation is rounded up
4134   // to a word boundary.  This follows the semantics of the instruction
4135   // which specifies that bit 1 of the target address will come from bit
4136   // 1 of the base address.
4137   if ((lower_insn & 0x5000U) == 0x4000U)
4138     gold_assert((branch_offset & 3) == 0);
4139
4140   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4141   // We use the Thumb-2 encoding, which is safe even if dealing with
4142   // a Thumb-1 instruction by virtue of our overflow check above.  */
4143   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4144   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4145
4146   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4147   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4148
4149   gold_assert(!utils::has_overflow<25>(branch_offset));
4150
4151   return ((thumb2
4152            ? utils::has_overflow<25>(branch_offset)
4153            : utils::has_overflow<23>(branch_offset))
4154           ? This::STATUS_OVERFLOW
4155           : This::STATUS_OKAY);
4156 }
4157
4158 // Relocate THUMB-2 long conditional branches.
4159 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4160 // undefined and we do not use PLT in this relocation.  In such a case,
4161 // the branch is converted into an NOP.
4162
4163 template<bool big_endian>
4164 typename Arm_relocate_functions<big_endian>::Status
4165 Arm_relocate_functions<big_endian>::thm_jump19(
4166     unsigned char* view,
4167     const Arm_relobj<big_endian>* object,
4168     const Symbol_value<32>* psymval,
4169     Arm_address address,
4170     Arm_address thumb_bit)
4171 {
4172   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4173   Valtype* wv = reinterpret_cast<Valtype*>(view);
4174   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4175   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4176   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4177
4178   Arm_address branch_target = psymval->value(object, addend);
4179   int32_t branch_offset = branch_target - address;
4180
4181   // ??? Should handle interworking?  GCC might someday try to
4182   // use this for tail calls.
4183   // FIXME: We do support thumb entry to PLT yet.
4184   if (thumb_bit == 0)
4185     {
4186       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4187       return This::STATUS_BAD_RELOC;
4188     }
4189
4190   // Put RELOCATION back into the insn.
4191   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4192   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4193
4194   // Put the relocated value back in the object file:
4195   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4196   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4197
4198   return (utils::has_overflow<21>(branch_offset)
4199           ? This::STATUS_OVERFLOW
4200           : This::STATUS_OKAY);
4201 }
4202
4203 // Get the GOT section, creating it if necessary.
4204
4205 template<bool big_endian>
4206 Arm_output_data_got<big_endian>*
4207 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4208 {
4209   if (this->got_ == NULL)
4210     {
4211       gold_assert(symtab != NULL && layout != NULL);
4212
4213       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4214
4215       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4216                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4217                                       this->got_, ORDER_DATA, false);
4218
4219       // The old GNU linker creates a .got.plt section.  We just
4220       // create another set of data in the .got section.  Note that we
4221       // always create a PLT if we create a GOT, although the PLT
4222       // might be empty.
4223       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4224       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4225                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4226                                       this->got_plt_, ORDER_DATA, false);
4227
4228       // The first three entries are reserved.
4229       this->got_plt_->set_current_data_size(3 * 4);
4230
4231       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4232       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4233                                     Symbol_table::PREDEFINED,
4234                                     this->got_plt_,
4235                                     0, 0, elfcpp::STT_OBJECT,
4236                                     elfcpp::STB_LOCAL,
4237                                     elfcpp::STV_HIDDEN, 0,
4238                                     false, false);
4239     }
4240   return this->got_;
4241 }
4242
4243 // Get the dynamic reloc section, creating it if necessary.
4244
4245 template<bool big_endian>
4246 typename Target_arm<big_endian>::Reloc_section*
4247 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4248 {
4249   if (this->rel_dyn_ == NULL)
4250     {
4251       gold_assert(layout != NULL);
4252       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4253       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4254                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4255                                       ORDER_DYNAMIC_RELOCS, false);
4256     }
4257   return this->rel_dyn_;
4258 }
4259
4260 // Insn_template methods.
4261
4262 // Return byte size of an instruction template.
4263
4264 size_t
4265 Insn_template::size() const
4266 {
4267   switch (this->type())
4268     {
4269     case THUMB16_TYPE:
4270     case THUMB16_SPECIAL_TYPE:
4271       return 2;
4272     case ARM_TYPE:
4273     case THUMB32_TYPE:
4274     case DATA_TYPE:
4275       return 4;
4276     default:
4277       gold_unreachable();
4278     }
4279 }
4280
4281 // Return alignment of an instruction template.
4282
4283 unsigned
4284 Insn_template::alignment() const
4285 {
4286   switch (this->type())
4287     {
4288     case THUMB16_TYPE:
4289     case THUMB16_SPECIAL_TYPE:
4290     case THUMB32_TYPE:
4291       return 2;
4292     case ARM_TYPE:
4293     case DATA_TYPE:
4294       return 4;
4295     default:
4296       gold_unreachable();
4297     }
4298 }
4299
4300 // Stub_template methods.
4301
4302 Stub_template::Stub_template(
4303     Stub_type type, const Insn_template* insns,
4304      size_t insn_count)
4305   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4306     entry_in_thumb_mode_(false), relocs_()
4307 {
4308   off_t offset = 0;
4309
4310   // Compute byte size and alignment of stub template.
4311   for (size_t i = 0; i < insn_count; i++)
4312     {
4313       unsigned insn_alignment = insns[i].alignment();
4314       size_t insn_size = insns[i].size();
4315       gold_assert((offset & (insn_alignment - 1)) == 0);
4316       this->alignment_ = std::max(this->alignment_, insn_alignment);
4317       switch (insns[i].type())
4318         {
4319         case Insn_template::THUMB16_TYPE:
4320         case Insn_template::THUMB16_SPECIAL_TYPE:
4321           if (i == 0)
4322             this->entry_in_thumb_mode_ = true;
4323           break;
4324
4325         case Insn_template::THUMB32_TYPE:
4326           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4327             this->relocs_.push_back(Reloc(i, offset));
4328           if (i == 0)
4329             this->entry_in_thumb_mode_ = true;
4330           break;
4331
4332         case Insn_template::ARM_TYPE:
4333           // Handle cases where the target is encoded within the
4334           // instruction.
4335           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4336             this->relocs_.push_back(Reloc(i, offset));
4337           break;
4338
4339         case Insn_template::DATA_TYPE:
4340           // Entry point cannot be data.
4341           gold_assert(i != 0);
4342           this->relocs_.push_back(Reloc(i, offset));
4343           break;
4344
4345         default:
4346           gold_unreachable();
4347         }
4348       offset += insn_size; 
4349     }
4350   this->size_ = offset;
4351 }
4352
4353 // Stub methods.
4354
4355 // Template to implement do_write for a specific target endianness.
4356
4357 template<bool big_endian>
4358 void inline
4359 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4360 {
4361   const Stub_template* stub_template = this->stub_template();
4362   const Insn_template* insns = stub_template->insns();
4363
4364   // FIXME:  We do not handle BE8 encoding yet.
4365   unsigned char* pov = view;
4366   for (size_t i = 0; i < stub_template->insn_count(); i++)
4367     {
4368       switch (insns[i].type())
4369         {
4370         case Insn_template::THUMB16_TYPE:
4371           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4372           break;
4373         case Insn_template::THUMB16_SPECIAL_TYPE:
4374           elfcpp::Swap<16, big_endian>::writeval(
4375               pov,
4376               this->thumb16_special(i));
4377           break;
4378         case Insn_template::THUMB32_TYPE:
4379           {
4380             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4381             uint32_t lo = insns[i].data() & 0xffff;
4382             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4383             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4384           }
4385           break;
4386         case Insn_template::ARM_TYPE:
4387         case Insn_template::DATA_TYPE:
4388           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4389           break;
4390         default:
4391           gold_unreachable();
4392         }
4393       pov += insns[i].size();
4394     }
4395   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4396
4397
4398 // Reloc_stub::Key methods.
4399
4400 // Dump a Key as a string for debugging.
4401
4402 std::string
4403 Reloc_stub::Key::name() const
4404 {
4405   if (this->r_sym_ == invalid_index)
4406     {
4407       // Global symbol key name
4408       // <stub-type>:<symbol name>:<addend>.
4409       const std::string sym_name = this->u_.symbol->name();
4410       // We need to print two hex number and two colons.  So just add 100 bytes
4411       // to the symbol name size.
4412       size_t len = sym_name.size() + 100;
4413       char* buffer = new char[len];
4414       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4415                        sym_name.c_str(), this->addend_);
4416       gold_assert(c > 0 && c < static_cast<int>(len));
4417       delete[] buffer;
4418       return std::string(buffer);
4419     }
4420   else
4421     {
4422       // local symbol key name
4423       // <stub-type>:<object>:<r_sym>:<addend>.
4424       const size_t len = 200;
4425       char buffer[len];
4426       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4427                        this->u_.relobj, this->r_sym_, this->addend_);
4428       gold_assert(c > 0 && c < static_cast<int>(len));
4429       return std::string(buffer);
4430     }
4431 }
4432
4433 // Reloc_stub methods.
4434
4435 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4436 // LOCATION to DESTINATION.
4437 // This code is based on the arm_type_of_stub function in
4438 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4439 // class simple.
4440
4441 Stub_type
4442 Reloc_stub::stub_type_for_reloc(
4443    unsigned int r_type,
4444    Arm_address location,
4445    Arm_address destination,
4446    bool target_is_thumb)
4447 {
4448   Stub_type stub_type = arm_stub_none;
4449
4450   // This is a bit ugly but we want to avoid using a templated class for
4451   // big and little endianities.
4452   bool may_use_blx;
4453   bool should_force_pic_veneer;
4454   bool thumb2;
4455   bool thumb_only;
4456   if (parameters->target().is_big_endian())
4457     {
4458       const Target_arm<true>* big_endian_target =
4459         Target_arm<true>::default_target();
4460       may_use_blx = big_endian_target->may_use_blx();
4461       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4462       thumb2 = big_endian_target->using_thumb2();
4463       thumb_only = big_endian_target->using_thumb_only();
4464     }
4465   else
4466     {
4467       const Target_arm<false>* little_endian_target =
4468         Target_arm<false>::default_target();
4469       may_use_blx = little_endian_target->may_use_blx();
4470       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4471       thumb2 = little_endian_target->using_thumb2();
4472       thumb_only = little_endian_target->using_thumb_only();
4473     }
4474
4475   int64_t branch_offset;
4476   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4477     {
4478       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4479       // base address (instruction address + 4).
4480       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4481         destination = utils::bit_select(destination, location, 0x2);
4482       branch_offset = static_cast<int64_t>(destination) - location;
4483         
4484       // Handle cases where:
4485       // - this call goes too far (different Thumb/Thumb2 max
4486       //   distance)
4487       // - it's a Thumb->Arm call and blx is not available, or it's a
4488       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4489       if ((!thumb2
4490             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4491                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4492           || (thumb2
4493               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4494                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4495           || ((!target_is_thumb)
4496               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4497                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4498         {
4499           if (target_is_thumb)
4500             {
4501               // Thumb to thumb.
4502               if (!thumb_only)
4503                 {
4504                   stub_type = (parameters->options().shared()
4505                                || should_force_pic_veneer)
4506                     // PIC stubs.
4507                     ? ((may_use_blx
4508                         && (r_type == elfcpp::R_ARM_THM_CALL))
4509                        // V5T and above. Stub starts with ARM code, so
4510                        // we must be able to switch mode before
4511                        // reaching it, which is only possible for 'bl'
4512                        // (ie R_ARM_THM_CALL relocation).
4513                        ? arm_stub_long_branch_any_thumb_pic
4514                        // On V4T, use Thumb code only.
4515                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4516
4517                     // non-PIC stubs.
4518                     : ((may_use_blx
4519                         && (r_type == elfcpp::R_ARM_THM_CALL))
4520                        ? arm_stub_long_branch_any_any // V5T and above.
4521                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4522                 }
4523               else
4524                 {
4525                   stub_type = (parameters->options().shared()
4526                                || should_force_pic_veneer)
4527                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4528                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4529                 }
4530             }
4531           else
4532             {
4533               // Thumb to arm.
4534              
4535               // FIXME: We should check that the input section is from an
4536               // object that has interwork enabled.
4537
4538               stub_type = (parameters->options().shared()
4539                            || should_force_pic_veneer)
4540                 // PIC stubs.
4541                 ? ((may_use_blx
4542                     && (r_type == elfcpp::R_ARM_THM_CALL))
4543                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4544                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4545
4546                 // non-PIC stubs.
4547                 : ((may_use_blx
4548                     && (r_type == elfcpp::R_ARM_THM_CALL))
4549                    ? arm_stub_long_branch_any_any       // V5T and above.
4550                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4551
4552               // Handle v4t short branches.
4553               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4554                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4555                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4556                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4557             }
4558         }
4559     }
4560   else if (r_type == elfcpp::R_ARM_CALL
4561            || r_type == elfcpp::R_ARM_JUMP24
4562            || r_type == elfcpp::R_ARM_PLT32)
4563     {
4564       branch_offset = static_cast<int64_t>(destination) - location;
4565       if (target_is_thumb)
4566         {
4567           // Arm to thumb.
4568
4569           // FIXME: We should check that the input section is from an
4570           // object that has interwork enabled.
4571
4572           // We have an extra 2-bytes reach because of
4573           // the mode change (bit 24 (H) of BLX encoding).
4574           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4575               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4576               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4577               || (r_type == elfcpp::R_ARM_JUMP24)
4578               || (r_type == elfcpp::R_ARM_PLT32))
4579             {
4580               stub_type = (parameters->options().shared()
4581                            || should_force_pic_veneer)
4582                 // PIC stubs.
4583                 ? (may_use_blx
4584                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4585                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4586
4587                 // non-PIC stubs.
4588                 : (may_use_blx
4589                    ? arm_stub_long_branch_any_any       // V5T and above.
4590                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4591             }
4592         }
4593       else
4594         {
4595           // Arm to arm.
4596           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4597               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4598             {
4599               stub_type = (parameters->options().shared()
4600                            || should_force_pic_veneer)
4601                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4602                 : arm_stub_long_branch_any_any;         /// non-PIC.
4603             }
4604         }
4605     }
4606
4607   return stub_type;
4608 }
4609
4610 // Cortex_a8_stub methods.
4611
4612 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4613 // I is the position of the instruction template in the stub template.
4614
4615 uint16_t
4616 Cortex_a8_stub::do_thumb16_special(size_t i)
4617 {
4618   // The only use of this is to copy condition code from a conditional
4619   // branch being worked around to the corresponding conditional branch in
4620   // to the stub.
4621   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4622               && i == 0);
4623   uint16_t data = this->stub_template()->insns()[i].data();
4624   gold_assert((data & 0xff00U) == 0xd000U);
4625   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4626   return data;
4627 }
4628
4629 // Stub_factory methods.
4630
4631 Stub_factory::Stub_factory()
4632 {
4633   // The instruction template sequences are declared as static
4634   // objects and initialized first time the constructor runs.
4635  
4636   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4637   // to reach the stub if necessary.
4638   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4639     {
4640       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4641       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4642                                                 // dcd   R_ARM_ABS32(X)
4643     };
4644   
4645   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4646   // available.
4647   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4648     {
4649       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4650       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4651       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4652                                                 // dcd   R_ARM_ABS32(X)
4653     };
4654   
4655   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4656   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4657     {
4658       Insn_template::thumb16_insn(0xb401),      // push {r0}
4659       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4660       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4661       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4662       Insn_template::thumb16_insn(0x4760),      // bx   ip
4663       Insn_template::thumb16_insn(0xbf00),      // nop
4664       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4665                                                 // dcd  R_ARM_ABS32(X)
4666     };
4667   
4668   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4669   // allowed.
4670   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4671     {
4672       Insn_template::thumb16_insn(0x4778),      // bx   pc
4673       Insn_template::thumb16_insn(0x46c0),      // nop
4674       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4675       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4676       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4677                                                 // dcd  R_ARM_ABS32(X)
4678     };
4679   
4680   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4681   // available.
4682   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4683     {
4684       Insn_template::thumb16_insn(0x4778),      // bx   pc
4685       Insn_template::thumb16_insn(0x46c0),      // nop
4686       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4687       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4688                                                 // dcd   R_ARM_ABS32(X)
4689     };
4690   
4691   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4692   // one, when the destination is close enough.
4693   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4694     {
4695       Insn_template::thumb16_insn(0x4778),              // bx   pc
4696       Insn_template::thumb16_insn(0x46c0),              // nop
4697       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4698     };
4699   
4700   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4701   // blx to reach the stub if necessary.
4702   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4703     {
4704       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4705       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4706       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4707                                                 // dcd   R_ARM_REL32(X-4)
4708     };
4709   
4710   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4711   // blx to reach the stub if necessary.  We can not add into pc;
4712   // it is not guaranteed to mode switch (different in ARMv6 and
4713   // ARMv7).
4714   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4715     {
4716       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4717       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4718       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4719       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4720                                                 // dcd   R_ARM_REL32(X)
4721     };
4722   
4723   // V4T ARM -> ARM long branch stub, PIC.
4724   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4725     {
4726       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4727       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4728       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4729       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4730                                                 // dcd   R_ARM_REL32(X)
4731     };
4732   
4733   // V4T Thumb -> ARM long branch stub, PIC.
4734   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4735     {
4736       Insn_template::thumb16_insn(0x4778),      // bx   pc
4737       Insn_template::thumb16_insn(0x46c0),      // nop
4738       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4739       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4740       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4741                                                 // dcd  R_ARM_REL32(X)
4742     };
4743   
4744   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4745   // architectures.
4746   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4747     {
4748       Insn_template::thumb16_insn(0xb401),      // push {r0}
4749       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4750       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4751       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4752       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4753       Insn_template::thumb16_insn(0x4760),      // bx   ip
4754       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4755                                                 // dcd  R_ARM_REL32(X)
4756     };
4757   
4758   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4759   // allowed.
4760   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4761     {
4762       Insn_template::thumb16_insn(0x4778),      // bx   pc
4763       Insn_template::thumb16_insn(0x46c0),      // nop
4764       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4765       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4766       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4767       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4768                                                 // dcd  R_ARM_REL32(X)
4769     };
4770   
4771   // Cortex-A8 erratum-workaround stubs.
4772   
4773   // Stub used for conditional branches (which may be beyond +/-1MB away,
4774   // so we can't use a conditional branch to reach this stub).
4775   
4776   // original code:
4777   //
4778   //    b<cond> X
4779   // after:
4780   //
4781   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4782     {
4783       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4784       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4785       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4786                                                         //      b.w X
4787     };
4788   
4789   // Stub used for b.w and bl.w instructions.
4790   
4791   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4792     {
4793       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4794     };
4795   
4796   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4797     {
4798       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4799     };
4800   
4801   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4802   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4803   // the real destination using an ARM-mode branch.
4804   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4805     {
4806       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4807     };
4808
4809   // Stub used to provide an interworking for R_ARM_V4BX relocation
4810   // (bx r[n] instruction).
4811   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4812     {
4813       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4814       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4815       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4816     };
4817
4818   // Fill in the stub template look-up table.  Stub templates are constructed
4819   // per instance of Stub_factory for fast look-up without locking
4820   // in a thread-enabled environment.
4821
4822   this->stub_templates_[arm_stub_none] =
4823     new Stub_template(arm_stub_none, NULL, 0);
4824
4825 #define DEF_STUB(x)     \
4826   do \
4827     { \
4828       size_t array_size \
4829         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4830       Stub_type type = arm_stub_##x; \
4831       this->stub_templates_[type] = \
4832         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4833     } \
4834   while (0);
4835
4836   DEF_STUBS
4837 #undef DEF_STUB
4838 }
4839
4840 // Stub_table methods.
4841
4842 // Remove all Cortex-A8 stub.
4843
4844 template<bool big_endian>
4845 void
4846 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4847 {
4848   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4849        p != this->cortex_a8_stubs_.end();
4850        ++p)
4851     delete p->second;
4852   this->cortex_a8_stubs_.clear();
4853 }
4854
4855 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4856
4857 template<bool big_endian>
4858 void
4859 Stub_table<big_endian>::relocate_stub(
4860     Stub* stub,
4861     const Relocate_info<32, big_endian>* relinfo,
4862     Target_arm<big_endian>* arm_target,
4863     Output_section* output_section,
4864     unsigned char* view,
4865     Arm_address address,
4866     section_size_type view_size)
4867 {
4868   const Stub_template* stub_template = stub->stub_template();
4869   if (stub_template->reloc_count() != 0)
4870     {
4871       // Adjust view to cover the stub only.
4872       section_size_type offset = stub->offset();
4873       section_size_type stub_size = stub_template->size();
4874       gold_assert(offset + stub_size <= view_size);
4875
4876       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4877                                 address + offset, stub_size);
4878     }
4879 }
4880
4881 // Relocate all stubs in this stub table.
4882
4883 template<bool big_endian>
4884 void
4885 Stub_table<big_endian>::relocate_stubs(
4886     const Relocate_info<32, big_endian>* relinfo,
4887     Target_arm<big_endian>* arm_target,
4888     Output_section* output_section,
4889     unsigned char* view,
4890     Arm_address address,
4891     section_size_type view_size)
4892 {
4893   // If we are passed a view bigger than the stub table's.  we need to
4894   // adjust the view.
4895   gold_assert(address == this->address()
4896               && (view_size
4897                   == static_cast<section_size_type>(this->data_size())));
4898
4899   // Relocate all relocation stubs.
4900   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4901       p != this->reloc_stubs_.end();
4902       ++p)
4903     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4904                         address, view_size);
4905
4906   // Relocate all Cortex-A8 stubs.
4907   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4908        p != this->cortex_a8_stubs_.end();
4909        ++p)
4910     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4911                         address, view_size);
4912
4913   // Relocate all ARM V4BX stubs.
4914   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4915        p != this->arm_v4bx_stubs_.end();
4916        ++p)
4917     {
4918       if (*p != NULL)
4919         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4920                             address, view_size);
4921     }
4922 }
4923
4924 // Write out the stubs to file.
4925
4926 template<bool big_endian>
4927 void
4928 Stub_table<big_endian>::do_write(Output_file* of)
4929 {
4930   off_t offset = this->offset();
4931   const section_size_type oview_size =
4932     convert_to_section_size_type(this->data_size());
4933   unsigned char* const oview = of->get_output_view(offset, oview_size);
4934
4935   // Write relocation stubs.
4936   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4937       p != this->reloc_stubs_.end();
4938       ++p)
4939     {
4940       Reloc_stub* stub = p->second;
4941       Arm_address address = this->address() + stub->offset();
4942       gold_assert(address
4943                   == align_address(address,
4944                                    stub->stub_template()->alignment()));
4945       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4946                   big_endian);
4947     }
4948
4949   // Write Cortex-A8 stubs.
4950   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4951        p != this->cortex_a8_stubs_.end();
4952        ++p)
4953     {
4954       Cortex_a8_stub* stub = p->second;
4955       Arm_address address = this->address() + stub->offset();
4956       gold_assert(address
4957                   == align_address(address,
4958                                    stub->stub_template()->alignment()));
4959       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4960                   big_endian);
4961     }
4962
4963   // Write ARM V4BX relocation stubs.
4964   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4965        p != this->arm_v4bx_stubs_.end();
4966        ++p)
4967     {
4968       if (*p == NULL)
4969         continue;
4970
4971       Arm_address address = this->address() + (*p)->offset();
4972       gold_assert(address
4973                   == align_address(address,
4974                                    (*p)->stub_template()->alignment()));
4975       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4976                   big_endian);
4977     }
4978
4979   of->write_output_view(this->offset(), oview_size, oview);
4980 }
4981
4982 // Update the data size and address alignment of the stub table at the end
4983 // of a relaxation pass.   Return true if either the data size or the
4984 // alignment changed in this relaxation pass.
4985
4986 template<bool big_endian>
4987 bool
4988 Stub_table<big_endian>::update_data_size_and_addralign()
4989 {
4990   // Go over all stubs in table to compute data size and address alignment.
4991   off_t size = this->reloc_stubs_size_;
4992   unsigned addralign = this->reloc_stubs_addralign_;
4993
4994   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4995        p != this->cortex_a8_stubs_.end();
4996        ++p)
4997     {
4998       const Stub_template* stub_template = p->second->stub_template();
4999       addralign = std::max(addralign, stub_template->alignment());
5000       size = (align_address(size, stub_template->alignment())
5001               + stub_template->size());
5002     }
5003
5004   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5005        p != this->arm_v4bx_stubs_.end();
5006        ++p)
5007     {
5008       if (*p == NULL)
5009         continue;
5010
5011       const Stub_template* stub_template = (*p)->stub_template();
5012       addralign = std::max(addralign, stub_template->alignment());
5013       size = (align_address(size, stub_template->alignment())
5014               + stub_template->size());
5015     }
5016
5017   // Check if either data size or alignment changed in this pass.
5018   // Update prev_data_size_ and prev_addralign_.  These will be used
5019   // as the current data size and address alignment for the next pass.
5020   bool changed = size != this->prev_data_size_;
5021   this->prev_data_size_ = size; 
5022
5023   if (addralign != this->prev_addralign_)
5024     changed = true;
5025   this->prev_addralign_ = addralign;
5026
5027   return changed;
5028 }
5029
5030 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5031 // table.  It also marks all input sections needing Cortex-A8 workaround.
5032
5033 template<bool big_endian>
5034 void
5035 Stub_table<big_endian>::finalize_stubs()
5036 {
5037   off_t off = this->reloc_stubs_size_;
5038   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5039        p != this->cortex_a8_stubs_.end();
5040        ++p)
5041     {
5042       Cortex_a8_stub* stub = p->second;
5043       const Stub_template* stub_template = stub->stub_template();
5044       uint64_t stub_addralign = stub_template->alignment();
5045       off = align_address(off, stub_addralign);
5046       stub->set_offset(off);
5047       off += stub_template->size();
5048
5049       // Mark input section so that we can determine later if a code section
5050       // needs the Cortex-A8 workaround quickly.
5051       Arm_relobj<big_endian>* arm_relobj =
5052         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5053       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5054     }
5055
5056   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5057       p != this->arm_v4bx_stubs_.end();
5058       ++p)
5059     {
5060       if (*p == NULL)
5061         continue;
5062
5063       const Stub_template* stub_template = (*p)->stub_template();
5064       uint64_t stub_addralign = stub_template->alignment();
5065       off = align_address(off, stub_addralign);
5066       (*p)->set_offset(off);
5067       off += stub_template->size();
5068     }
5069
5070   gold_assert(off <= this->prev_data_size_);
5071 }
5072
5073 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5074 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5075 // of the address range seen by the linker.
5076
5077 template<bool big_endian>
5078 void
5079 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5080     Target_arm<big_endian>* arm_target,
5081     unsigned char* view,
5082     Arm_address view_address,
5083     section_size_type view_size)
5084 {
5085   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5086   for (Cortex_a8_stub_list::const_iterator p =
5087          this->cortex_a8_stubs_.lower_bound(view_address);
5088        ((p != this->cortex_a8_stubs_.end())
5089         && (p->first < (view_address + view_size)));
5090        ++p)
5091     {
5092       // We do not store the THUMB bit in the LSB of either the branch address
5093       // or the stub offset.  There is no need to strip the LSB.
5094       Arm_address branch_address = p->first;
5095       const Cortex_a8_stub* stub = p->second;
5096       Arm_address stub_address = this->address() + stub->offset();
5097
5098       // Offset of the branch instruction relative to this view.
5099       section_size_type offset =
5100         convert_to_section_size_type(branch_address - view_address);
5101       gold_assert((offset + 4) <= view_size);
5102
5103       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5104                                              view + offset, branch_address);
5105     }
5106 }
5107
5108 // Arm_input_section methods.
5109
5110 // Initialize an Arm_input_section.
5111
5112 template<bool big_endian>
5113 void
5114 Arm_input_section<big_endian>::init()
5115 {
5116   Relobj* relobj = this->relobj();
5117   unsigned int shndx = this->shndx();
5118
5119   // We have to cache original size, alignment and contents to avoid locking
5120   // the original file.
5121   this->original_addralign_ =
5122     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5123
5124   // This is not efficient but we expect only a small number of relaxed
5125   // input sections for stubs.
5126   section_size_type section_size;
5127   const unsigned char* section_contents =
5128     relobj->section_contents(shndx, &section_size, false);
5129   this->original_size_ =
5130     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5131
5132   gold_assert(this->original_contents_ == NULL);
5133   this->original_contents_ = new unsigned char[section_size];
5134   memcpy(this->original_contents_, section_contents, section_size);
5135
5136   // We want to make this look like the original input section after
5137   // output sections are finalized.
5138   Output_section* os = relobj->output_section(shndx);
5139   off_t offset = relobj->output_section_offset(shndx);
5140   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5141   this->set_address(os->address() + offset);
5142   this->set_file_offset(os->offset() + offset);
5143
5144   this->set_current_data_size(this->original_size_);
5145   this->finalize_data_size();
5146 }
5147
5148 template<bool big_endian>
5149 void
5150 Arm_input_section<big_endian>::do_write(Output_file* of)
5151 {
5152   // We have to write out the original section content.
5153   gold_assert(this->original_contents_ != NULL);
5154   of->write(this->offset(), this->original_contents_,
5155             this->original_size_); 
5156
5157   // If this owns a stub table and it is not empty, write it.
5158   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5159     this->stub_table_->write(of);
5160 }
5161
5162 // Finalize data size.
5163
5164 template<bool big_endian>
5165 void
5166 Arm_input_section<big_endian>::set_final_data_size()
5167 {
5168   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5169
5170   if (this->is_stub_table_owner())
5171     {
5172       this->stub_table_->finalize_data_size();
5173       off = align_address(off, this->stub_table_->addralign());
5174       off += this->stub_table_->data_size();
5175     }
5176   this->set_data_size(off);
5177 }
5178
5179 // Reset address and file offset.
5180
5181 template<bool big_endian>
5182 void
5183 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5184 {
5185   // Size of the original input section contents.
5186   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5187
5188   // If this is a stub table owner, account for the stub table size.
5189   if (this->is_stub_table_owner())
5190     {
5191       Stub_table<big_endian>* stub_table = this->stub_table_;
5192
5193       // Reset the stub table's address and file offset.  The
5194       // current data size for child will be updated after that.
5195       stub_table_->reset_address_and_file_offset();
5196       off = align_address(off, stub_table_->addralign());
5197       off += stub_table->current_data_size();
5198     }
5199
5200   this->set_current_data_size(off);
5201 }
5202
5203 // Arm_exidx_cantunwind methods.
5204
5205 // Write this to Output file OF for a fixed endianness.
5206
5207 template<bool big_endian>
5208 void
5209 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5210 {
5211   off_t offset = this->offset();
5212   const section_size_type oview_size = 8;
5213   unsigned char* const oview = of->get_output_view(offset, oview_size);
5214   
5215   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5216   Valtype* wv = reinterpret_cast<Valtype*>(oview);
5217
5218   Output_section* os = this->relobj_->output_section(this->shndx_);
5219   gold_assert(os != NULL);
5220
5221   Arm_relobj<big_endian>* arm_relobj =
5222     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5223   Arm_address output_offset =
5224     arm_relobj->get_output_section_offset(this->shndx_);
5225   Arm_address section_start;
5226   section_size_type section_size;
5227
5228   // Find out the end of the text section referred by this.
5229   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5230     {
5231       section_start = os->address() + output_offset;
5232       const Arm_exidx_input_section* exidx_input_section =
5233         arm_relobj->exidx_input_section_by_link(this->shndx_);
5234       gold_assert(exidx_input_section != NULL);
5235       section_size =
5236         convert_to_section_size_type(exidx_input_section->text_size());
5237     }
5238   else
5239     {
5240       // Currently this only happens for a relaxed section.
5241       const Output_relaxed_input_section* poris =
5242         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5243       gold_assert(poris != NULL);
5244       section_start = poris->address();
5245       section_size = convert_to_section_size_type(poris->data_size());
5246     }
5247
5248   // We always append this to the end of an EXIDX section.
5249   Arm_address output_address = section_start + section_size;
5250
5251   // Write out the entry.  The first word either points to the beginning
5252   // or after the end of a text section.  The second word is the special
5253   // EXIDX_CANTUNWIND value.
5254   uint32_t prel31_offset = output_address - this->address();
5255   if (utils::has_overflow<31>(offset))
5256     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5257   elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5258   elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5259
5260   of->write_output_view(this->offset(), oview_size, oview);
5261 }
5262
5263 // Arm_exidx_merged_section methods.
5264
5265 // Constructor for Arm_exidx_merged_section.
5266 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5267 // SECTION_OFFSET_MAP points to a section offset map describing how
5268 // parts of the input section are mapped to output.  DELETED_BYTES is
5269 // the number of bytes deleted from the EXIDX input section.
5270
5271 Arm_exidx_merged_section::Arm_exidx_merged_section(
5272     const Arm_exidx_input_section& exidx_input_section,
5273     const Arm_exidx_section_offset_map& section_offset_map,
5274     uint32_t deleted_bytes)
5275   : Output_relaxed_input_section(exidx_input_section.relobj(),
5276                                  exidx_input_section.shndx(),
5277                                  exidx_input_section.addralign()),
5278     exidx_input_section_(exidx_input_section),
5279     section_offset_map_(section_offset_map)
5280 {
5281   // If we retain or discard the whole EXIDX input section,  we would
5282   // not be here.
5283   gold_assert(deleted_bytes != 0
5284               && deleted_bytes != this->exidx_input_section_.size());
5285
5286   // Fix size here so that we do not need to implement set_final_data_size.
5287   uint32_t size = exidx_input_section.size() - deleted_bytes;
5288   this->set_data_size(size);
5289   this->fix_data_size();
5290
5291   // Allocate buffer for section contents and build contents.
5292   this->section_contents_ = new unsigned char[size];
5293 }
5294
5295 // Build the contents of a merged EXIDX output section.
5296
5297 void
5298 Arm_exidx_merged_section::build_contents(
5299     const unsigned char* original_contents,
5300     section_size_type original_size)
5301 {
5302   // Go over spans of input offsets and write only those that are not
5303   // discarded.
5304   section_offset_type in_start = 0;
5305   section_offset_type out_start = 0;
5306   section_offset_type in_max =
5307     convert_types<section_offset_type>(original_size);
5308   section_offset_type out_max =
5309     convert_types<section_offset_type>(this->data_size());
5310   for (Arm_exidx_section_offset_map::const_iterator p =
5311         this->section_offset_map_.begin();
5312       p != this->section_offset_map_.end();
5313       ++p)
5314     {
5315       section_offset_type in_end = p->first;
5316       gold_assert(in_end >= in_start);
5317       section_offset_type out_end = p->second;
5318       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5319       if (out_end != -1)
5320         {
5321           size_t out_chunk_size =
5322             convert_types<size_t>(out_end - out_start + 1);
5323
5324           gold_assert(out_chunk_size == in_chunk_size
5325                       && in_end < in_max && out_end < out_max);
5326
5327           memcpy(this->section_contents_ + out_start,
5328                  original_contents + in_start,
5329                  out_chunk_size);
5330           out_start += out_chunk_size;
5331         }
5332       in_start += in_chunk_size;
5333     }
5334 }
5335
5336 // Given an input OBJECT, an input section index SHNDX within that
5337 // object, and an OFFSET relative to the start of that input
5338 // section, return whether or not the corresponding offset within
5339 // the output section is known.  If this function returns true, it
5340 // sets *POUTPUT to the output offset.  The value -1 indicates that
5341 // this input offset is being discarded.
5342
5343 bool
5344 Arm_exidx_merged_section::do_output_offset(
5345     const Relobj* relobj,
5346     unsigned int shndx,
5347     section_offset_type offset,
5348     section_offset_type* poutput) const
5349 {
5350   // We only handle offsets for the original EXIDX input section.
5351   if (relobj != this->exidx_input_section_.relobj()
5352       || shndx != this->exidx_input_section_.shndx())
5353     return false;
5354
5355   section_offset_type section_size =
5356     convert_types<section_offset_type>(this->exidx_input_section_.size());
5357   if (offset < 0 || offset >= section_size)
5358     // Input offset is out of valid range.
5359     *poutput = -1;
5360   else
5361     {
5362       // We need to look up the section offset map to determine the output
5363       // offset.  Find the reference point in map that is first offset
5364       // bigger than or equal to this offset.
5365       Arm_exidx_section_offset_map::const_iterator p =
5366         this->section_offset_map_.lower_bound(offset);
5367
5368       // The section offset maps are build such that this should not happen if
5369       // input offset is in the valid range.
5370       gold_assert(p != this->section_offset_map_.end());
5371
5372       // We need to check if this is dropped.
5373      section_offset_type ref = p->first;
5374      section_offset_type mapped_ref = p->second;
5375
5376       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5377         // Offset is present in output.
5378         *poutput = mapped_ref + (offset - ref);
5379       else
5380         // Offset is discarded owing to EXIDX entry merging.
5381         *poutput = -1;
5382     }
5383   
5384   return true;
5385 }
5386
5387 // Write this to output file OF.
5388
5389 void
5390 Arm_exidx_merged_section::do_write(Output_file* of)
5391 {
5392   off_t offset = this->offset();
5393   const section_size_type oview_size = this->data_size();
5394   unsigned char* const oview = of->get_output_view(offset, oview_size);
5395   
5396   Output_section* os = this->relobj()->output_section(this->shndx());
5397   gold_assert(os != NULL);
5398
5399   memcpy(oview, this->section_contents_, oview_size);
5400   of->write_output_view(this->offset(), oview_size, oview);
5401 }
5402
5403 // Arm_exidx_fixup methods.
5404
5405 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5406 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5407 // points to the end of the last seen EXIDX section.
5408
5409 void
5410 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5411 {
5412   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5413       && this->last_input_section_ != NULL)
5414     {
5415       Relobj* relobj = this->last_input_section_->relobj();
5416       unsigned int text_shndx = this->last_input_section_->link();
5417       Arm_exidx_cantunwind* cantunwind =
5418         new Arm_exidx_cantunwind(relobj, text_shndx);
5419       this->exidx_output_section_->add_output_section_data(cantunwind);
5420       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5421     }
5422 }
5423
5424 // Process an EXIDX section entry in input.  Return whether this entry
5425 // can be deleted in the output.  SECOND_WORD in the second word of the
5426 // EXIDX entry.
5427
5428 bool
5429 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5430 {
5431   bool delete_entry;
5432   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5433     {
5434       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5435       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5436       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5437     }
5438   else if ((second_word & 0x80000000) != 0)
5439     {
5440       // Inlined unwinding data.  Merge if equal to previous.
5441       delete_entry = (merge_exidx_entries_
5442                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5443                       && this->last_inlined_entry_ == second_word);
5444       this->last_unwind_type_ = UT_INLINED_ENTRY;
5445       this->last_inlined_entry_ = second_word;
5446     }
5447   else
5448     {
5449       // Normal table entry.  In theory we could merge these too,
5450       // but duplicate entries are likely to be much less common.
5451       delete_entry = false;
5452       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5453     }
5454   return delete_entry;
5455 }
5456
5457 // Update the current section offset map during EXIDX section fix-up.
5458 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5459 // reference point, DELETED_BYTES is the number of deleted by in the
5460 // section so far.  If DELETE_ENTRY is true, the reference point and
5461 // all offsets after the previous reference point are discarded.
5462
5463 void
5464 Arm_exidx_fixup::update_offset_map(
5465     section_offset_type input_offset,
5466     section_size_type deleted_bytes,
5467     bool delete_entry)
5468 {
5469   if (this->section_offset_map_ == NULL)
5470     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5471   section_offset_type output_offset;
5472   if (delete_entry)
5473     output_offset = Arm_exidx_input_section::invalid_offset;
5474   else
5475     output_offset = input_offset - deleted_bytes;
5476   (*this->section_offset_map_)[input_offset] = output_offset;
5477 }
5478
5479 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5480 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5481 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5482 // If some entries are merged, also store a pointer to a newly created
5483 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5484 // owns the map and is responsible for releasing it after use.
5485
5486 template<bool big_endian>
5487 uint32_t
5488 Arm_exidx_fixup::process_exidx_section(
5489     const Arm_exidx_input_section* exidx_input_section,
5490     const unsigned char* section_contents,
5491     section_size_type section_size,
5492     Arm_exidx_section_offset_map** psection_offset_map)
5493 {
5494   Relobj* relobj = exidx_input_section->relobj();
5495   unsigned shndx = exidx_input_section->shndx();
5496
5497   if ((section_size % 8) != 0)
5498     {
5499       // Something is wrong with this section.  Better not touch it.
5500       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5501                  relobj->name().c_str(), shndx);
5502       this->last_input_section_ = exidx_input_section;
5503       this->last_unwind_type_ = UT_NONE;
5504       return 0;
5505     }
5506   
5507   uint32_t deleted_bytes = 0;
5508   bool prev_delete_entry = false;
5509   gold_assert(this->section_offset_map_ == NULL);
5510
5511   for (section_size_type i = 0; i < section_size; i += 8)
5512     {
5513       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5514       const Valtype* wv =
5515           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5516       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5517
5518       bool delete_entry = this->process_exidx_entry(second_word);
5519
5520       // Entry deletion causes changes in output offsets.  We use a std::map
5521       // to record these.  And entry (x, y) means input offset x
5522       // is mapped to output offset y.  If y is invalid_offset, then x is
5523       // dropped in the output.  Because of the way std::map::lower_bound
5524       // works, we record the last offset in a region w.r.t to keeping or
5525       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5526       // the output offset y0 of it is determined by the output offset y1 of
5527       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5528       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5529       // y0 is also -1.
5530       if (delete_entry != prev_delete_entry && i != 0)
5531         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5532
5533       // Update total deleted bytes for this entry.
5534       if (delete_entry)
5535         deleted_bytes += 8;
5536
5537       prev_delete_entry = delete_entry;
5538     }
5539   
5540   // If section offset map is not NULL, make an entry for the end of
5541   // section.
5542   if (this->section_offset_map_ != NULL)
5543     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5544
5545   *psection_offset_map = this->section_offset_map_;
5546   this->section_offset_map_ = NULL;
5547   this->last_input_section_ = exidx_input_section;
5548   
5549   // Set the first output text section so that we can link the EXIDX output
5550   // section to it.  Ignore any EXIDX input section that is completely merged.
5551   if (this->first_output_text_section_ == NULL
5552       && deleted_bytes != section_size)
5553     {
5554       unsigned int link = exidx_input_section->link();
5555       Output_section* os = relobj->output_section(link);
5556       gold_assert(os != NULL);
5557       this->first_output_text_section_ = os;
5558     }
5559
5560   return deleted_bytes;
5561 }
5562
5563 // Arm_output_section methods.
5564
5565 // Create a stub group for input sections from BEGIN to END.  OWNER
5566 // points to the input section to be the owner a new stub table.
5567
5568 template<bool big_endian>
5569 void
5570 Arm_output_section<big_endian>::create_stub_group(
5571   Input_section_list::const_iterator begin,
5572   Input_section_list::const_iterator end,
5573   Input_section_list::const_iterator owner,
5574   Target_arm<big_endian>* target,
5575   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5576   const Task* task)
5577 {
5578   // We use a different kind of relaxed section in an EXIDX section.
5579   // The static casting from Output_relaxed_input_section to
5580   // Arm_input_section is invalid in an EXIDX section.  We are okay
5581   // because we should not be calling this for an EXIDX section. 
5582   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5583
5584   // Currently we convert ordinary input sections into relaxed sections only
5585   // at this point but we may want to support creating relaxed input section
5586   // very early.  So we check here to see if owner is already a relaxed
5587   // section.
5588   
5589   Arm_input_section<big_endian>* arm_input_section;
5590   if (owner->is_relaxed_input_section())
5591     {
5592       arm_input_section =
5593         Arm_input_section<big_endian>::as_arm_input_section(
5594           owner->relaxed_input_section());
5595     }
5596   else
5597     {
5598       gold_assert(owner->is_input_section());
5599       // Create a new relaxed input section.  We need to lock the original
5600       // file.
5601       Task_lock_obj<Object> tl(task, owner->relobj());
5602       arm_input_section =
5603         target->new_arm_input_section(owner->relobj(), owner->shndx());
5604       new_relaxed_sections->push_back(arm_input_section);
5605     }
5606
5607   // Create a stub table.
5608   Stub_table<big_endian>* stub_table =
5609     target->new_stub_table(arm_input_section);
5610
5611   arm_input_section->set_stub_table(stub_table);
5612   
5613   Input_section_list::const_iterator p = begin;
5614   Input_section_list::const_iterator prev_p;
5615
5616   // Look for input sections or relaxed input sections in [begin ... end].
5617   do
5618     {
5619       if (p->is_input_section() || p->is_relaxed_input_section())
5620         {
5621           // The stub table information for input sections live
5622           // in their objects.
5623           Arm_relobj<big_endian>* arm_relobj =
5624             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5625           arm_relobj->set_stub_table(p->shndx(), stub_table);
5626         }
5627       prev_p = p++;
5628     }
5629   while (prev_p != end);
5630 }
5631
5632 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5633 // of stub groups.  We grow a stub group by adding input section until the
5634 // size is just below GROUP_SIZE.  The last input section will be converted
5635 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5636 // input section after the stub table, effectively double the group size.
5637 // 
5638 // This is similar to the group_sections() function in elf32-arm.c but is
5639 // implemented differently.
5640
5641 template<bool big_endian>
5642 void
5643 Arm_output_section<big_endian>::group_sections(
5644     section_size_type group_size,
5645     bool stubs_always_after_branch,
5646     Target_arm<big_endian>* target,
5647     const Task* task)
5648 {
5649   // We only care about sections containing code.
5650   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5651     return;
5652
5653   // States for grouping.
5654   typedef enum
5655   {
5656     // No group is being built.
5657     NO_GROUP,
5658     // A group is being built but the stub table is not found yet.
5659     // We keep group a stub group until the size is just under GROUP_SIZE.
5660     // The last input section in the group will be used as the stub table.
5661     FINDING_STUB_SECTION,
5662     // A group is being built and we have already found a stub table.
5663     // We enter this state to grow a stub group by adding input section
5664     // after the stub table.  This effectively doubles the group size.
5665     HAS_STUB_SECTION
5666   } State;
5667
5668   // Any newly created relaxed sections are stored here.
5669   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5670
5671   State state = NO_GROUP;
5672   section_size_type off = 0;
5673   section_size_type group_begin_offset = 0;
5674   section_size_type group_end_offset = 0;
5675   section_size_type stub_table_end_offset = 0;
5676   Input_section_list::const_iterator group_begin =
5677     this->input_sections().end();
5678   Input_section_list::const_iterator stub_table =
5679     this->input_sections().end();
5680   Input_section_list::const_iterator group_end = this->input_sections().end();
5681   for (Input_section_list::const_iterator p = this->input_sections().begin();
5682        p != this->input_sections().end();
5683        ++p)
5684     {
5685       section_size_type section_begin_offset =
5686         align_address(off, p->addralign());
5687       section_size_type section_end_offset =
5688         section_begin_offset + p->data_size(); 
5689       
5690       // Check to see if we should group the previously seen sections.
5691       switch (state)
5692         {
5693         case NO_GROUP:
5694           break;
5695
5696         case FINDING_STUB_SECTION:
5697           // Adding this section makes the group larger than GROUP_SIZE.
5698           if (section_end_offset - group_begin_offset >= group_size)
5699             {
5700               if (stubs_always_after_branch)
5701                 {       
5702                   gold_assert(group_end != this->input_sections().end());
5703                   this->create_stub_group(group_begin, group_end, group_end,
5704                                           target, &new_relaxed_sections,
5705                                           task);
5706                   state = NO_GROUP;
5707                 }
5708               else
5709                 {
5710                   // But wait, there's more!  Input sections up to
5711                   // stub_group_size bytes after the stub table can be
5712                   // handled by it too.
5713                   state = HAS_STUB_SECTION;
5714                   stub_table = group_end;
5715                   stub_table_end_offset = group_end_offset;
5716                 }
5717             }
5718             break;
5719
5720         case HAS_STUB_SECTION:
5721           // Adding this section makes the post stub-section group larger
5722           // than GROUP_SIZE.
5723           if (section_end_offset - stub_table_end_offset >= group_size)
5724            {
5725              gold_assert(group_end != this->input_sections().end());
5726              this->create_stub_group(group_begin, group_end, stub_table,
5727                                      target, &new_relaxed_sections, task);
5728              state = NO_GROUP;
5729            }
5730            break;
5731
5732           default:
5733             gold_unreachable();
5734         }       
5735
5736       // If we see an input section and currently there is no group, start
5737       // a new one.  Skip any empty sections.  We look at the data size
5738       // instead of calling p->relobj()->section_size() to avoid locking.
5739       if ((p->is_input_section() || p->is_relaxed_input_section())
5740           && (p->data_size() != 0))
5741         {
5742           if (state == NO_GROUP)
5743             {
5744               state = FINDING_STUB_SECTION;
5745               group_begin = p;
5746               group_begin_offset = section_begin_offset;
5747             }
5748
5749           // Keep track of the last input section seen.
5750           group_end = p;
5751           group_end_offset = section_end_offset;
5752         }
5753
5754       off = section_end_offset;
5755     }
5756
5757   // Create a stub group for any ungrouped sections.
5758   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5759     {
5760       gold_assert(group_end != this->input_sections().end());
5761       this->create_stub_group(group_begin, group_end,
5762                               (state == FINDING_STUB_SECTION
5763                                ? group_end
5764                                : stub_table),
5765                                target, &new_relaxed_sections, task);
5766     }
5767
5768   // Convert input section into relaxed input section in a batch.
5769   if (!new_relaxed_sections.empty())
5770     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5771
5772   // Update the section offsets
5773   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5774     {
5775       Arm_relobj<big_endian>* arm_relobj =
5776         Arm_relobj<big_endian>::as_arm_relobj(
5777           new_relaxed_sections[i]->relobj());
5778       unsigned int shndx = new_relaxed_sections[i]->shndx();
5779       // Tell Arm_relobj that this input section is converted.
5780       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5781     }
5782 }
5783
5784 // Append non empty text sections in this to LIST in ascending
5785 // order of their position in this.
5786
5787 template<bool big_endian>
5788 void
5789 Arm_output_section<big_endian>::append_text_sections_to_list(
5790     Text_section_list* list)
5791 {
5792   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5793
5794   for (Input_section_list::const_iterator p = this->input_sections().begin();
5795        p != this->input_sections().end();
5796        ++p)
5797     {
5798       // We only care about plain or relaxed input sections.  We also
5799       // ignore any merged sections.
5800       if ((p->is_input_section() || p->is_relaxed_input_section())
5801           && p->data_size() != 0)
5802         list->push_back(Text_section_list::value_type(p->relobj(),
5803                                                       p->shndx()));
5804     }
5805 }
5806
5807 template<bool big_endian>
5808 void
5809 Arm_output_section<big_endian>::fix_exidx_coverage(
5810     Layout* layout,
5811     const Text_section_list& sorted_text_sections,
5812     Symbol_table* symtab,
5813     bool merge_exidx_entries,
5814     const Task* task)
5815 {
5816   // We should only do this for the EXIDX output section.
5817   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5818
5819   // We don't want the relaxation loop to undo these changes, so we discard
5820   // the current saved states and take another one after the fix-up.
5821   this->discard_states();
5822
5823   // Remove all input sections.
5824   uint64_t address = this->address();
5825   typedef std::list<Output_section::Input_section> Input_section_list;
5826   Input_section_list input_sections;
5827   this->reset_address_and_file_offset();
5828   this->get_input_sections(address, std::string(""), &input_sections);
5829
5830   if (!this->input_sections().empty())
5831     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5832   
5833   // Go through all the known input sections and record them.
5834   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5835   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5836                         Section_id_hash> Text_to_exidx_map;
5837   Text_to_exidx_map text_to_exidx_map;
5838   for (Input_section_list::const_iterator p = input_sections.begin();
5839        p != input_sections.end();
5840        ++p)
5841     {
5842       // This should never happen.  At this point, we should only see
5843       // plain EXIDX input sections.
5844       gold_assert(!p->is_relaxed_input_section());
5845       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5846     }
5847
5848   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5849
5850   // Go over the sorted text sections.
5851   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5852   Section_id_set processed_input_sections;
5853   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5854        p != sorted_text_sections.end();
5855        ++p)
5856     {
5857       Relobj* relobj = p->first;
5858       unsigned int shndx = p->second;
5859
5860       Arm_relobj<big_endian>* arm_relobj =
5861          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5862       const Arm_exidx_input_section* exidx_input_section =
5863          arm_relobj->exidx_input_section_by_link(shndx);
5864
5865       // If this text section has no EXIDX section or if the EXIDX section
5866       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5867       // of the last seen EXIDX section.
5868       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5869         {
5870           exidx_fixup.add_exidx_cantunwind_as_needed();
5871           continue;
5872         }
5873
5874       Relobj* exidx_relobj = exidx_input_section->relobj();
5875       unsigned int exidx_shndx = exidx_input_section->shndx();
5876       Section_id sid(exidx_relobj, exidx_shndx);
5877       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5878       if (iter == text_to_exidx_map.end())
5879         {
5880           // This is odd.  We have not seen this EXIDX input section before.
5881           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5882           // issue a warning instead.  We assume the user knows what he
5883           // or she is doing.  Otherwise, this is an error.
5884           if (layout->script_options()->saw_sections_clause())
5885             gold_warning(_("unwinding may not work because EXIDX input section"
5886                            " %u of %s is not in EXIDX output section"),
5887                          exidx_shndx, exidx_relobj->name().c_str());
5888           else
5889             gold_error(_("unwinding may not work because EXIDX input section"
5890                          " %u of %s is not in EXIDX output section"),
5891                        exidx_shndx, exidx_relobj->name().c_str());
5892
5893           exidx_fixup.add_exidx_cantunwind_as_needed();
5894           continue;
5895         }
5896
5897       // We need to access the contents of the EXIDX section, lock the
5898       // object here.
5899       Task_lock_obj<Object> tl(task, exidx_relobj);
5900       section_size_type exidx_size;
5901       const unsigned char* exidx_contents =
5902         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); 
5903
5904       // Fix up coverage and append input section to output data list.
5905       Arm_exidx_section_offset_map* section_offset_map = NULL;
5906       uint32_t deleted_bytes =
5907         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5908                                                       exidx_contents,
5909                                                       exidx_size,
5910                                                       &section_offset_map);
5911
5912       if (deleted_bytes == exidx_input_section->size())
5913         {
5914           // The whole EXIDX section got merged.  Remove it from output.
5915           gold_assert(section_offset_map == NULL);
5916           exidx_relobj->set_output_section(exidx_shndx, NULL);
5917
5918           // All local symbols defined in this input section will be dropped.
5919           // We need to adjust output local symbol count.
5920           arm_relobj->set_output_local_symbol_count_needs_update();
5921         }
5922       else if (deleted_bytes > 0)
5923         {
5924           // Some entries are merged.  We need to convert this EXIDX input
5925           // section into a relaxed section.
5926           gold_assert(section_offset_map != NULL);
5927
5928           Arm_exidx_merged_section* merged_section =
5929             new Arm_exidx_merged_section(*exidx_input_section,
5930                                          *section_offset_map, deleted_bytes);
5931           merged_section->build_contents(exidx_contents, exidx_size);
5932
5933           const std::string secname = exidx_relobj->section_name(exidx_shndx);
5934           this->add_relaxed_input_section(layout, merged_section, secname);
5935           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5936
5937           // All local symbols defined in discarded portions of this input
5938           // section will be dropped.  We need to adjust output local symbol
5939           // count.
5940           arm_relobj->set_output_local_symbol_count_needs_update();
5941         }
5942       else
5943         {
5944           // Just add back the EXIDX input section.
5945           gold_assert(section_offset_map == NULL);
5946           const Output_section::Input_section* pis = iter->second;
5947           gold_assert(pis->is_input_section());
5948           this->add_script_input_section(*pis);
5949         }
5950
5951       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5952     }
5953
5954   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5955   exidx_fixup.add_exidx_cantunwind_as_needed();
5956
5957   // Remove any known EXIDX input sections that are not processed.
5958   for (Input_section_list::const_iterator p = input_sections.begin();
5959        p != input_sections.end();
5960        ++p)
5961     {
5962       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5963           == processed_input_sections.end())
5964         {
5965           // We discard a known EXIDX section because its linked
5966           // text section has been folded by ICF.  We also discard an
5967           // EXIDX section with error, the output does not matter in this
5968           // case.  We do this to avoid triggering asserts.
5969           Arm_relobj<big_endian>* arm_relobj =
5970             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5971           const Arm_exidx_input_section* exidx_input_section =
5972             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5973           gold_assert(exidx_input_section != NULL);
5974           if (!exidx_input_section->has_errors())
5975             {
5976               unsigned int text_shndx = exidx_input_section->link();
5977               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5978             }
5979
5980           // Remove this from link.  We also need to recount the
5981           // local symbols.
5982           p->relobj()->set_output_section(p->shndx(), NULL);
5983           arm_relobj->set_output_local_symbol_count_needs_update();
5984         }
5985     }
5986     
5987   // Link exidx output section to the first seen output section and
5988   // set correct entry size.
5989   this->set_link_section(exidx_fixup.first_output_text_section());
5990   this->set_entsize(8);
5991
5992   // Make changes permanent.
5993   this->save_states();
5994   this->set_section_offsets_need_adjustment();
5995 }
5996
5997 // Link EXIDX output sections to text output sections.
5998
5999 template<bool big_endian>
6000 void
6001 Arm_output_section<big_endian>::set_exidx_section_link()
6002 {
6003   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6004   if (!this->input_sections().empty())
6005     {
6006       Input_section_list::const_iterator p = this->input_sections().begin();
6007       Arm_relobj<big_endian>* arm_relobj =
6008         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6009       unsigned exidx_shndx = p->shndx();
6010       const Arm_exidx_input_section* exidx_input_section =
6011         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6012       gold_assert(exidx_input_section != NULL);
6013       unsigned int text_shndx = exidx_input_section->link();
6014       Output_section* os = arm_relobj->output_section(text_shndx);
6015       this->set_link_section(os);
6016     }
6017 }
6018
6019 // Arm_relobj methods.
6020
6021 // Determine if an input section is scannable for stub processing.  SHDR is
6022 // the header of the section and SHNDX is the section index.  OS is the output
6023 // section for the input section and SYMTAB is the global symbol table used to
6024 // look up ICF information.
6025
6026 template<bool big_endian>
6027 bool
6028 Arm_relobj<big_endian>::section_is_scannable(
6029     const elfcpp::Shdr<32, big_endian>& shdr,
6030     unsigned int shndx,
6031     const Output_section* os,
6032     const Symbol_table* symtab)
6033 {
6034   // Skip any empty sections, unallocated sections or sections whose
6035   // type are not SHT_PROGBITS.
6036   if (shdr.get_sh_size() == 0
6037       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6038       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6039     return false;
6040
6041   // Skip any discarded or ICF'ed sections.
6042   if (os == NULL || symtab->is_section_folded(this, shndx))
6043     return false;
6044
6045   // If this requires special offset handling, check to see if it is
6046   // a relaxed section.  If this is not, then it is a merged section that
6047   // we cannot handle.
6048   if (this->is_output_section_offset_invalid(shndx))
6049     {
6050       const Output_relaxed_input_section* poris =
6051         os->find_relaxed_input_section(this, shndx);
6052       if (poris == NULL)
6053         return false;
6054     }
6055
6056   return true;
6057 }
6058
6059 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6060 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6061
6062 template<bool big_endian>
6063 bool
6064 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6065     const elfcpp::Shdr<32, big_endian>& shdr,
6066     const Relobj::Output_sections& out_sections,
6067     const Symbol_table* symtab,
6068     const unsigned char* pshdrs)
6069 {
6070   unsigned int sh_type = shdr.get_sh_type();
6071   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6072     return false;
6073
6074   // Ignore empty section.
6075   off_t sh_size = shdr.get_sh_size();
6076   if (sh_size == 0)
6077     return false;
6078
6079   // Ignore reloc section with unexpected symbol table.  The
6080   // error will be reported in the final link.
6081   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6082     return false;
6083
6084   unsigned int reloc_size;
6085   if (sh_type == elfcpp::SHT_REL)
6086     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6087   else
6088     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6089
6090   // Ignore reloc section with unexpected entsize or uneven size.
6091   // The error will be reported in the final link.
6092   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6093     return false;
6094
6095   // Ignore reloc section with bad info.  This error will be
6096   // reported in the final link.
6097   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6098   if (index >= this->shnum())
6099     return false;
6100
6101   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6102   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6103   return this->section_is_scannable(text_shdr, index,
6104                                    out_sections[index], symtab);
6105 }
6106
6107 // Return the output address of either a plain input section or a relaxed
6108 // input section.  SHNDX is the section index.  We define and use this
6109 // instead of calling Output_section::output_address because that is slow
6110 // for large output.
6111
6112 template<bool big_endian>
6113 Arm_address
6114 Arm_relobj<big_endian>::simple_input_section_output_address(
6115     unsigned int shndx,
6116     Output_section* os)
6117 {
6118   if (this->is_output_section_offset_invalid(shndx))
6119     {
6120       const Output_relaxed_input_section* poris =
6121         os->find_relaxed_input_section(this, shndx);
6122       // We do not handle merged sections here.
6123       gold_assert(poris != NULL);
6124       return poris->address();
6125     }
6126   else
6127     return os->address() + this->get_output_section_offset(shndx);
6128 }
6129
6130 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6131 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6132
6133 template<bool big_endian>
6134 bool
6135 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6136     const elfcpp::Shdr<32, big_endian>& shdr,
6137     unsigned int shndx,
6138     Output_section* os,
6139     const Symbol_table* symtab)
6140 {
6141   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6142     return false;
6143
6144   // If the section does not cross any 4K-boundaries, it does not need to
6145   // be scanned.
6146   Arm_address address = this->simple_input_section_output_address(shndx, os);
6147   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6148     return false;
6149
6150   return true;
6151 }
6152
6153 // Scan a section for Cortex-A8 workaround.
6154
6155 template<bool big_endian>
6156 void
6157 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6158     const elfcpp::Shdr<32, big_endian>& shdr,
6159     unsigned int shndx,
6160     Output_section* os,
6161     Target_arm<big_endian>* arm_target)
6162 {
6163   // Look for the first mapping symbol in this section.  It should be
6164   // at (shndx, 0).
6165   Mapping_symbol_position section_start(shndx, 0);
6166   typename Mapping_symbols_info::const_iterator p =
6167     this->mapping_symbols_info_.lower_bound(section_start);
6168
6169   // There are no mapping symbols for this section.  Treat it as a data-only
6170   // section.  Issue a warning if section is marked as containing
6171   // instructions.
6172   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6173     {
6174       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6175         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6176                        "erratum because it has no mapping symbols."),
6177                      shndx, this->name().c_str());
6178       return;
6179     }
6180
6181   Arm_address output_address =
6182     this->simple_input_section_output_address(shndx, os);
6183
6184   // Get the section contents.
6185   section_size_type input_view_size = 0;
6186   const unsigned char* input_view =
6187     this->section_contents(shndx, &input_view_size, false);
6188
6189   // We need to go through the mapping symbols to determine what to
6190   // scan.  There are two reasons.  First, we should look at THUMB code and
6191   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6192   // to speed up the scanning.
6193   
6194   while (p != this->mapping_symbols_info_.end()
6195         && p->first.first == shndx)
6196     {
6197       typename Mapping_symbols_info::const_iterator next =
6198         this->mapping_symbols_info_.upper_bound(p->first);
6199
6200       // Only scan part of a section with THUMB code.
6201       if (p->second == 't')
6202         {
6203           // Determine the end of this range.
6204           section_size_type span_start =
6205             convert_to_section_size_type(p->first.second);
6206           section_size_type span_end;
6207           if (next != this->mapping_symbols_info_.end()
6208               && next->first.first == shndx)
6209             span_end = convert_to_section_size_type(next->first.second);
6210           else
6211             span_end = convert_to_section_size_type(shdr.get_sh_size());
6212           
6213           if (((span_start + output_address) & ~0xfffUL)
6214               != ((span_end + output_address - 1) & ~0xfffUL))
6215             {
6216               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6217                                                           span_start, span_end,
6218                                                           input_view,
6219                                                           output_address);
6220             }
6221         }
6222
6223       p = next; 
6224     }
6225 }
6226
6227 // Scan relocations for stub generation.
6228
6229 template<bool big_endian>
6230 void
6231 Arm_relobj<big_endian>::scan_sections_for_stubs(
6232     Target_arm<big_endian>* arm_target,
6233     const Symbol_table* symtab,
6234     const Layout* layout)
6235 {
6236   unsigned int shnum = this->shnum();
6237   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6238
6239   // Read the section headers.
6240   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6241                                                shnum * shdr_size,
6242                                                true, true);
6243
6244   // To speed up processing, we set up hash tables for fast lookup of
6245   // input offsets to output addresses.
6246   this->initialize_input_to_output_maps();
6247
6248   const Relobj::Output_sections& out_sections(this->output_sections());
6249
6250   Relocate_info<32, big_endian> relinfo;
6251   relinfo.symtab = symtab;
6252   relinfo.layout = layout;
6253   relinfo.object = this;
6254
6255   // Do relocation stubs scanning.
6256   const unsigned char* p = pshdrs + shdr_size;
6257   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6258     {
6259       const elfcpp::Shdr<32, big_endian> shdr(p);
6260       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6261                                                   pshdrs))
6262         {
6263           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6264           Arm_address output_offset = this->get_output_section_offset(index);
6265           Arm_address output_address;
6266           if (output_offset != invalid_address)
6267             output_address = out_sections[index]->address() + output_offset;
6268           else
6269             {
6270               // Currently this only happens for a relaxed section.
6271               const Output_relaxed_input_section* poris =
6272               out_sections[index]->find_relaxed_input_section(this, index);
6273               gold_assert(poris != NULL);
6274               output_address = poris->address();
6275             }
6276
6277           // Get the relocations.
6278           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6279                                                         shdr.get_sh_size(),
6280                                                         true, false);
6281
6282           // Get the section contents.  This does work for the case in which
6283           // we modify the contents of an input section.  We need to pass the
6284           // output view under such circumstances.
6285           section_size_type input_view_size = 0;
6286           const unsigned char* input_view =
6287             this->section_contents(index, &input_view_size, false);
6288
6289           relinfo.reloc_shndx = i;
6290           relinfo.data_shndx = index;
6291           unsigned int sh_type = shdr.get_sh_type();
6292           unsigned int reloc_size;
6293           if (sh_type == elfcpp::SHT_REL)
6294             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6295           else
6296             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6297
6298           Output_section* os = out_sections[index];
6299           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6300                                              shdr.get_sh_size() / reloc_size,
6301                                              os,
6302                                              output_offset == invalid_address,
6303                                              input_view, output_address,
6304                                              input_view_size);
6305         }
6306     }
6307
6308   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6309   // after its relocation section, if there is one, is processed for
6310   // relocation stubs.  Merging this loop with the one above would have been
6311   // complicated since we would have had to make sure that relocation stub
6312   // scanning is done first.
6313   if (arm_target->fix_cortex_a8())
6314     {
6315       const unsigned char* p = pshdrs + shdr_size;
6316       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6317         {
6318           const elfcpp::Shdr<32, big_endian> shdr(p);
6319           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6320                                                           out_sections[i],
6321                                                           symtab))
6322             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6323                                                      arm_target);
6324         }
6325     }
6326
6327   // After we've done the relocations, we release the hash tables,
6328   // since we no longer need them.
6329   this->free_input_to_output_maps();
6330 }
6331
6332 // Count the local symbols.  The ARM backend needs to know if a symbol
6333 // is a THUMB function or not.  For global symbols, it is easy because
6334 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6335 // harder because we cannot access this information.   So we override the
6336 // do_count_local_symbol in parent and scan local symbols to mark
6337 // THUMB functions.  This is not the most efficient way but I do not want to
6338 // slow down other ports by calling a per symbol target hook inside
6339 // Sized_relobj<size, big_endian>::do_count_local_symbols. 
6340
6341 template<bool big_endian>
6342 void
6343 Arm_relobj<big_endian>::do_count_local_symbols(
6344     Stringpool_template<char>* pool,
6345     Stringpool_template<char>* dynpool)
6346 {
6347   // We need to fix-up the values of any local symbols whose type are
6348   // STT_ARM_TFUNC.
6349   
6350   // Ask parent to count the local symbols.
6351   Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6352   const unsigned int loccount = this->local_symbol_count();
6353   if (loccount == 0)
6354     return;
6355
6356   // Initialize the thumb function bit-vector.
6357   std::vector<bool> empty_vector(loccount, false);
6358   this->local_symbol_is_thumb_function_.swap(empty_vector);
6359
6360   // Read the symbol table section header.
6361   const unsigned int symtab_shndx = this->symtab_shndx();
6362   elfcpp::Shdr<32, big_endian>
6363       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6364   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6365
6366   // Read the local symbols.
6367   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6368   gold_assert(loccount == symtabshdr.get_sh_info());
6369   off_t locsize = loccount * sym_size;
6370   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6371                                               locsize, true, true);
6372
6373   // For mapping symbol processing, we need to read the symbol names.
6374   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6375   if (strtab_shndx >= this->shnum())
6376     {
6377       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6378       return;
6379     }
6380
6381   elfcpp::Shdr<32, big_endian>
6382     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6383   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6384     {
6385       this->error(_("symbol table name section has wrong type: %u"),
6386                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6387       return;
6388     }
6389   const char* pnames =
6390     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6391                                                  strtabshdr.get_sh_size(),
6392                                                  false, false));
6393
6394   // Loop over the local symbols and mark any local symbols pointing
6395   // to THUMB functions.
6396
6397   // Skip the first dummy symbol.
6398   psyms += sym_size;
6399   typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6400     this->local_values();
6401   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6402     {
6403       elfcpp::Sym<32, big_endian> sym(psyms);
6404       elfcpp::STT st_type = sym.get_st_type();
6405       Symbol_value<32>& lv((*plocal_values)[i]);
6406       Arm_address input_value = lv.input_value();
6407
6408       // Check to see if this is a mapping symbol.
6409       const char* sym_name = pnames + sym.get_st_name();
6410       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6411         {
6412           bool is_ordinary;
6413           unsigned int input_shndx =
6414             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6415           gold_assert(is_ordinary);
6416
6417           // Strip of LSB in case this is a THUMB symbol.
6418           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6419           this->mapping_symbols_info_[msp] = sym_name[1];
6420         }
6421
6422       if (st_type == elfcpp::STT_ARM_TFUNC
6423           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6424         {
6425           // This is a THUMB function.  Mark this and canonicalize the
6426           // symbol value by setting LSB.
6427           this->local_symbol_is_thumb_function_[i] = true;
6428           if ((input_value & 1) == 0)
6429             lv.set_input_value(input_value | 1);
6430         }
6431     }
6432 }
6433
6434 // Relocate sections.
6435 template<bool big_endian>
6436 void
6437 Arm_relobj<big_endian>::do_relocate_sections(
6438     const Symbol_table* symtab,
6439     const Layout* layout,
6440     const unsigned char* pshdrs,
6441     Output_file* of,
6442     typename Sized_relobj<32, big_endian>::Views* pviews)
6443 {
6444   // Call parent to relocate sections.
6445   Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6446                                                      of, pviews); 
6447
6448   // We do not generate stubs if doing a relocatable link.
6449   if (parameters->options().relocatable())
6450     return;
6451
6452   // Relocate stub tables.
6453   unsigned int shnum = this->shnum();
6454
6455   Target_arm<big_endian>* arm_target =
6456     Target_arm<big_endian>::default_target();
6457
6458   Relocate_info<32, big_endian> relinfo;
6459   relinfo.symtab = symtab;
6460   relinfo.layout = layout;
6461   relinfo.object = this;
6462
6463   for (unsigned int i = 1; i < shnum; ++i)
6464     {
6465       Arm_input_section<big_endian>* arm_input_section =
6466         arm_target->find_arm_input_section(this, i);
6467
6468       if (arm_input_section != NULL
6469           && arm_input_section->is_stub_table_owner()
6470           && !arm_input_section->stub_table()->empty())
6471         {
6472           // We cannot discard a section if it owns a stub table.
6473           Output_section* os = this->output_section(i);
6474           gold_assert(os != NULL);
6475
6476           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6477           relinfo.reloc_shdr = NULL;
6478           relinfo.data_shndx = i;
6479           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6480
6481           gold_assert((*pviews)[i].view != NULL);
6482
6483           // We are passed the output section view.  Adjust it to cover the
6484           // stub table only.
6485           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6486           gold_assert((stub_table->address() >= (*pviews)[i].address)
6487                       && ((stub_table->address() + stub_table->data_size())
6488                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6489
6490           off_t offset = stub_table->address() - (*pviews)[i].address;
6491           unsigned char* view = (*pviews)[i].view + offset;
6492           Arm_address address = stub_table->address();
6493           section_size_type view_size = stub_table->data_size();
6494  
6495           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6496                                      view_size);
6497         }
6498
6499       // Apply Cortex A8 workaround if applicable.
6500       if (this->section_has_cortex_a8_workaround(i))
6501         {
6502           unsigned char* view = (*pviews)[i].view;
6503           Arm_address view_address = (*pviews)[i].address;
6504           section_size_type view_size = (*pviews)[i].view_size;
6505           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6506
6507           // Adjust view to cover section.
6508           Output_section* os = this->output_section(i);
6509           gold_assert(os != NULL);
6510           Arm_address section_address =
6511             this->simple_input_section_output_address(i, os);
6512           uint64_t section_size = this->section_size(i);
6513
6514           gold_assert(section_address >= view_address
6515                       && ((section_address + section_size)
6516                           <= (view_address + view_size)));
6517
6518           unsigned char* section_view = view + (section_address - view_address);
6519
6520           // Apply the Cortex-A8 workaround to the output address range
6521           // corresponding to this input section.
6522           stub_table->apply_cortex_a8_workaround_to_address_range(
6523               arm_target,
6524               section_view,
6525               section_address,
6526               section_size);
6527         }
6528     }
6529 }
6530
6531 // Find the linked text section of an EXIDX section by looking at the first
6532 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6533 // must be linked to its associated code section via the sh_link field of
6534 // its section header.  However, some tools are broken and the link is not
6535 // always set.  LD just drops such an EXIDX section silently, causing the
6536 // associated code not unwindabled.   Here we try a little bit harder to
6537 // discover the linked code section.
6538 //
6539 // PSHDR points to the section header of a relocation section of an EXIDX
6540 // section.  If we can find a linked text section, return true and
6541 // store the text section index in the location PSHNDX.  Otherwise
6542 // return false.
6543
6544 template<bool big_endian>
6545 bool
6546 Arm_relobj<big_endian>::find_linked_text_section(
6547     const unsigned char* pshdr,
6548     const unsigned char* psyms,
6549     unsigned int* pshndx)
6550 {
6551   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6552   
6553   // If there is no relocation, we cannot find the linked text section.
6554   size_t reloc_size;
6555   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6556       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6557   else
6558       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6559   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6560  
6561   // Get the relocations.
6562   const unsigned char* prelocs =
6563       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6564
6565   // Find the REL31 relocation for the first word of the first EXIDX entry.
6566   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6567     {
6568       Arm_address r_offset;
6569       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6570       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6571         {
6572           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6573           r_info = reloc.get_r_info();
6574           r_offset = reloc.get_r_offset();
6575         }
6576       else
6577         {
6578           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6579           r_info = reloc.get_r_info();
6580           r_offset = reloc.get_r_offset();
6581         }
6582
6583       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6584       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6585         continue;
6586
6587       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6588       if (r_sym == 0
6589           || r_sym >= this->local_symbol_count()
6590           || r_offset != 0)
6591         continue;
6592
6593       // This is the relocation for the first word of the first EXIDX entry.
6594       // We expect to see a local section symbol.
6595       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6596       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6597       if (sym.get_st_type() == elfcpp::STT_SECTION)
6598         {
6599           bool is_ordinary;
6600           *pshndx =
6601             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6602           gold_assert(is_ordinary);
6603           return true;
6604         }
6605       else
6606         return false;
6607     }
6608
6609   return false;
6610 }
6611
6612 // Make an EXIDX input section object for an EXIDX section whose index is
6613 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6614 // is the section index of the linked text section.
6615
6616 template<bool big_endian>
6617 void
6618 Arm_relobj<big_endian>::make_exidx_input_section(
6619     unsigned int shndx,
6620     const elfcpp::Shdr<32, big_endian>& shdr,
6621     unsigned int text_shndx,
6622     const elfcpp::Shdr<32, big_endian>& text_shdr)
6623 {
6624   // Create an Arm_exidx_input_section object for this EXIDX section.
6625   Arm_exidx_input_section* exidx_input_section =
6626     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6627                                 shdr.get_sh_addralign(),
6628                                 text_shdr.get_sh_size());
6629
6630   gold_assert(this->exidx_section_map_[shndx] == NULL);
6631   this->exidx_section_map_[shndx] = exidx_input_section;
6632
6633   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6634     {
6635       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6636                  this->section_name(shndx).c_str(), shndx, text_shndx,
6637                  this->name().c_str());
6638       exidx_input_section->set_has_errors();
6639     } 
6640   else if (this->exidx_section_map_[text_shndx] != NULL)
6641     {
6642       unsigned other_exidx_shndx =
6643         this->exidx_section_map_[text_shndx]->shndx();
6644       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6645                    "%s(%u) in %s"),
6646                  this->section_name(shndx).c_str(), shndx,
6647                  this->section_name(other_exidx_shndx).c_str(),
6648                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6649                  text_shndx, this->name().c_str());
6650       exidx_input_section->set_has_errors();
6651     }
6652   else
6653      this->exidx_section_map_[text_shndx] = exidx_input_section;
6654
6655   // Check section flags of text section.
6656   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6657     {
6658       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6659                    " in %s"),
6660                  this->section_name(shndx).c_str(), shndx,
6661                  this->section_name(text_shndx).c_str(), text_shndx,
6662                  this->name().c_str());
6663       exidx_input_section->set_has_errors();
6664     }
6665   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6666     // I would like to make this an error but currently ld just ignores
6667     // this.
6668     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6669                    "%s(%u) in %s"),
6670                  this->section_name(shndx).c_str(), shndx,
6671                  this->section_name(text_shndx).c_str(), text_shndx,
6672                  this->name().c_str());
6673 }
6674
6675 // Read the symbol information.
6676
6677 template<bool big_endian>
6678 void
6679 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6680 {
6681   // Call parent class to read symbol information.
6682   Sized_relobj<32, big_endian>::do_read_symbols(sd);
6683
6684   // If this input file is a binary file, it has no processor
6685   // specific flags and attributes section.
6686   Input_file::Format format = this->input_file()->format();
6687   if (format != Input_file::FORMAT_ELF)
6688     {
6689       gold_assert(format == Input_file::FORMAT_BINARY);
6690       this->merge_flags_and_attributes_ = false;
6691       return;
6692     }
6693
6694   // Read processor-specific flags in ELF file header.
6695   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6696                                               elfcpp::Elf_sizes<32>::ehdr_size,
6697                                               true, false);
6698   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6699   this->processor_specific_flags_ = ehdr.get_e_flags();
6700
6701   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6702   // sections.
6703   std::vector<unsigned int> deferred_exidx_sections;
6704   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6705   const unsigned char* pshdrs = sd->section_headers->data();
6706   const unsigned char* ps = pshdrs + shdr_size;
6707   bool must_merge_flags_and_attributes = false;
6708   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6709     {
6710       elfcpp::Shdr<32, big_endian> shdr(ps);
6711
6712       // Sometimes an object has no contents except the section name string
6713       // table and an empty symbol table with the undefined symbol.  We
6714       // don't want to merge processor-specific flags from such an object.
6715       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6716         {
6717           // Symbol table is not empty.
6718           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6719              elfcpp::Elf_sizes<32>::sym_size;
6720           if (shdr.get_sh_size() > sym_size)
6721             must_merge_flags_and_attributes = true;
6722         }
6723       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6724         // If this is neither an empty symbol table nor a string table,
6725         // be conservative.
6726         must_merge_flags_and_attributes = true;
6727
6728       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6729         {
6730           gold_assert(this->attributes_section_data_ == NULL);
6731           section_offset_type section_offset = shdr.get_sh_offset();
6732           section_size_type section_size =
6733             convert_to_section_size_type(shdr.get_sh_size());
6734           const unsigned char* view =
6735              this->get_view(section_offset, section_size, true, false);
6736           this->attributes_section_data_ =
6737             new Attributes_section_data(view, section_size);
6738         }
6739       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6740         {
6741           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6742           if (text_shndx == elfcpp::SHN_UNDEF)
6743             deferred_exidx_sections.push_back(i);
6744           else
6745             {
6746               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6747                                                      + text_shndx * shdr_size);
6748               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6749             }
6750           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6751           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6752             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6753                          this->section_name(i).c_str(), this->name().c_str());
6754         }
6755     }
6756
6757   // This is rare.
6758   if (!must_merge_flags_and_attributes)
6759     {
6760       gold_assert(deferred_exidx_sections.empty());
6761       this->merge_flags_and_attributes_ = false;
6762       return;
6763     }
6764
6765   // Some tools are broken and they do not set the link of EXIDX sections. 
6766   // We look at the first relocation to figure out the linked sections.
6767   if (!deferred_exidx_sections.empty())
6768     {
6769       // We need to go over the section headers again to find the mapping
6770       // from sections being relocated to their relocation sections.  This is
6771       // a bit inefficient as we could do that in the loop above.  However,
6772       // we do not expect any deferred EXIDX sections normally.  So we do not
6773       // want to slow down the most common path.
6774       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6775       Reloc_map reloc_map;
6776       ps = pshdrs + shdr_size;
6777       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6778         {
6779           elfcpp::Shdr<32, big_endian> shdr(ps);
6780           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6781           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6782             {
6783               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6784               if (info_shndx >= this->shnum())
6785                 gold_error(_("relocation section %u has invalid info %u"),
6786                            i, info_shndx);
6787               Reloc_map::value_type value(info_shndx, i);
6788               std::pair<Reloc_map::iterator, bool> result =
6789                 reloc_map.insert(value);
6790               if (!result.second)
6791                 gold_error(_("section %u has multiple relocation sections "
6792                              "%u and %u"),
6793                            info_shndx, i, reloc_map[info_shndx]);
6794             }
6795         }
6796
6797       // Read the symbol table section header.
6798       const unsigned int symtab_shndx = this->symtab_shndx();
6799       elfcpp::Shdr<32, big_endian>
6800           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6801       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6802
6803       // Read the local symbols.
6804       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6805       const unsigned int loccount = this->local_symbol_count();
6806       gold_assert(loccount == symtabshdr.get_sh_info());
6807       off_t locsize = loccount * sym_size;
6808       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6809                                                   locsize, true, true);
6810
6811       // Process the deferred EXIDX sections. 
6812       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6813         {
6814           unsigned int shndx = deferred_exidx_sections[i];
6815           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6816           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6817           Reloc_map::const_iterator it = reloc_map.find(shndx);
6818           if (it != reloc_map.end())
6819             find_linked_text_section(pshdrs + it->second * shdr_size,
6820                                      psyms, &text_shndx);
6821           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6822                                                  + text_shndx * shdr_size);
6823           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6824         }
6825     }
6826 }
6827
6828 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6829 // sections for unwinding.  These sections are referenced implicitly by 
6830 // text sections linked in the section headers.  If we ignore these implicit
6831 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6832 // will be garbage-collected incorrectly.  Hence we override the same function
6833 // in the base class to handle these implicit references.
6834
6835 template<bool big_endian>
6836 void
6837 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6838                                              Layout* layout,
6839                                              Read_relocs_data* rd)
6840 {
6841   // First, call base class method to process relocations in this object.
6842   Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6843
6844   // If --gc-sections is not specified, there is nothing more to do.
6845   // This happens when --icf is used but --gc-sections is not.
6846   if (!parameters->options().gc_sections())
6847     return;
6848   
6849   unsigned int shnum = this->shnum();
6850   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6851   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6852                                                shnum * shdr_size,
6853                                                true, true);
6854
6855   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6856   // to these from the linked text sections.
6857   const unsigned char* ps = pshdrs + shdr_size;
6858   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6859     {
6860       elfcpp::Shdr<32, big_endian> shdr(ps);
6861       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6862         {
6863           // Found an .ARM.exidx section, add it to the set of reachable
6864           // sections from its linked text section.
6865           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6866           symtab->gc()->add_reference(this, text_shndx, this, i);
6867         }
6868     }
6869 }
6870
6871 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6872 // symbols  will be removed in output.  Adjust output local symbol count
6873 // accordingly.  We can only changed the static output local symbol count.  It
6874 // is too late to change the dynamic symbols.
6875
6876 template<bool big_endian>
6877 void
6878 Arm_relobj<big_endian>::update_output_local_symbol_count()
6879 {
6880   // Caller should check that this needs updating.  We want caller checking
6881   // because output_local_symbol_count_needs_update() is most likely inlined.
6882   gold_assert(this->output_local_symbol_count_needs_update_);
6883
6884   gold_assert(this->symtab_shndx() != -1U);
6885   if (this->symtab_shndx() == 0)
6886     {
6887       // This object has no symbols.  Weird but legal.
6888       return;
6889     }
6890
6891   // Read the symbol table section header.
6892   const unsigned int symtab_shndx = this->symtab_shndx();
6893   elfcpp::Shdr<32, big_endian>
6894     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6895   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6896
6897   // Read the local symbols.
6898   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6899   const unsigned int loccount = this->local_symbol_count();
6900   gold_assert(loccount == symtabshdr.get_sh_info());
6901   off_t locsize = loccount * sym_size;
6902   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6903                                               locsize, true, true);
6904
6905   // Loop over the local symbols.
6906
6907   typedef typename Sized_relobj<32, big_endian>::Output_sections
6908      Output_sections;
6909   const Output_sections& out_sections(this->output_sections());
6910   unsigned int shnum = this->shnum();
6911   unsigned int count = 0;
6912   // Skip the first, dummy, symbol.
6913   psyms += sym_size;
6914   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6915     {
6916       elfcpp::Sym<32, big_endian> sym(psyms);
6917
6918       Symbol_value<32>& lv((*this->local_values())[i]);
6919
6920       // This local symbol was already discarded by do_count_local_symbols.
6921       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6922         continue;
6923
6924       bool is_ordinary;
6925       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6926                                                   &is_ordinary);
6927
6928       if (shndx < shnum)
6929         {
6930           Output_section* os = out_sections[shndx];
6931
6932           // This local symbol no longer has an output section.  Discard it.
6933           if (os == NULL)
6934             {
6935               lv.set_no_output_symtab_entry();
6936               continue;
6937             }
6938
6939           // Currently we only discard parts of EXIDX input sections.
6940           // We explicitly check for a merged EXIDX input section to avoid
6941           // calling Output_section_data::output_offset unless necessary.
6942           if ((this->get_output_section_offset(shndx) == invalid_address)
6943               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6944             {
6945               section_offset_type output_offset =
6946                 os->output_offset(this, shndx, lv.input_value());
6947               if (output_offset == -1)
6948                 {
6949                   // This symbol is defined in a part of an EXIDX input section
6950                   // that is discarded due to entry merging.
6951                   lv.set_no_output_symtab_entry();
6952                   continue;
6953                 }       
6954             }
6955         }
6956
6957       ++count;
6958     }
6959
6960   this->set_output_local_symbol_count(count);
6961   this->output_local_symbol_count_needs_update_ = false;
6962 }
6963
6964 // Arm_dynobj methods.
6965
6966 // Read the symbol information.
6967
6968 template<bool big_endian>
6969 void
6970 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6971 {
6972   // Call parent class to read symbol information.
6973   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6974
6975   // Read processor-specific flags in ELF file header.
6976   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6977                                               elfcpp::Elf_sizes<32>::ehdr_size,
6978                                               true, false);
6979   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6980   this->processor_specific_flags_ = ehdr.get_e_flags();
6981
6982   // Read the attributes section if there is one.
6983   // We read from the end because gas seems to put it near the end of
6984   // the section headers.
6985   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6986   const unsigned char* ps =
6987     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6988   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6989     {
6990       elfcpp::Shdr<32, big_endian> shdr(ps);
6991       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6992         {
6993           section_offset_type section_offset = shdr.get_sh_offset();
6994           section_size_type section_size =
6995             convert_to_section_size_type(shdr.get_sh_size());
6996           const unsigned char* view =
6997             this->get_view(section_offset, section_size, true, false);
6998           this->attributes_section_data_ =
6999             new Attributes_section_data(view, section_size);
7000           break;
7001         }
7002     }
7003 }
7004
7005 // Stub_addend_reader methods.
7006
7007 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7008
7009 template<bool big_endian>
7010 elfcpp::Elf_types<32>::Elf_Swxword
7011 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7012     unsigned int r_type,
7013     const unsigned char* view,
7014     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7015 {
7016   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7017   
7018   switch (r_type)
7019     {
7020     case elfcpp::R_ARM_CALL:
7021     case elfcpp::R_ARM_JUMP24:
7022     case elfcpp::R_ARM_PLT32:
7023       {
7024         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7025         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7026         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7027         return utils::sign_extend<26>(val << 2);
7028       }
7029
7030     case elfcpp::R_ARM_THM_CALL:
7031     case elfcpp::R_ARM_THM_JUMP24:
7032     case elfcpp::R_ARM_THM_XPC22:
7033       {
7034         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7035         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7036         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7037         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7038         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7039       }
7040
7041     case elfcpp::R_ARM_THM_JUMP19:
7042       {
7043         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7044         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7045         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7046         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7047         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7048       }
7049
7050     default:
7051       gold_unreachable();
7052     }
7053 }
7054
7055 // Arm_output_data_got methods.
7056
7057 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7058 // The first one is initialized to be 1, which is the module index for
7059 // the main executable and the second one 0.  A reloc of the type
7060 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7061 // be applied by gold.  GSYM is a global symbol.
7062 //
7063 template<bool big_endian>
7064 void
7065 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7066     unsigned int got_type,
7067     Symbol* gsym)
7068 {
7069   if (gsym->has_got_offset(got_type))
7070     return;
7071
7072   // We are doing a static link.  Just mark it as belong to module 1,
7073   // the executable.
7074   unsigned int got_offset = this->add_constant(1);
7075   gsym->set_got_offset(got_type, got_offset); 
7076   got_offset = this->add_constant(0);
7077   this->static_relocs_.push_back(Static_reloc(got_offset,
7078                                               elfcpp::R_ARM_TLS_DTPOFF32,
7079                                               gsym));
7080 }
7081
7082 // Same as the above but for a local symbol.
7083
7084 template<bool big_endian>
7085 void
7086 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7087   unsigned int got_type,
7088   Sized_relobj<32, big_endian>* object,
7089   unsigned int index)
7090 {
7091   if (object->local_has_got_offset(index, got_type))
7092     return;
7093
7094   // We are doing a static link.  Just mark it as belong to module 1,
7095   // the executable.
7096   unsigned int got_offset = this->add_constant(1);
7097   object->set_local_got_offset(index, got_type, got_offset);
7098   got_offset = this->add_constant(0);
7099   this->static_relocs_.push_back(Static_reloc(got_offset, 
7100                                               elfcpp::R_ARM_TLS_DTPOFF32, 
7101                                               object, index));
7102 }
7103
7104 template<bool big_endian>
7105 void
7106 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7107 {
7108   // Call parent to write out GOT.
7109   Output_data_got<32, big_endian>::do_write(of);
7110
7111   // We are done if there is no fix up.
7112   if (this->static_relocs_.empty())
7113     return;
7114
7115   gold_assert(parameters->doing_static_link());
7116
7117   const off_t offset = this->offset();
7118   const section_size_type oview_size =
7119     convert_to_section_size_type(this->data_size());
7120   unsigned char* const oview = of->get_output_view(offset, oview_size);
7121
7122   Output_segment* tls_segment = this->layout_->tls_segment();
7123   gold_assert(tls_segment != NULL);
7124   
7125   // The thread pointer $tp points to the TCB, which is followed by the
7126   // TLS.  So we need to adjust $tp relative addressing by this amount.
7127   Arm_address aligned_tcb_size =
7128     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7129
7130   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7131     {
7132       Static_reloc& reloc(this->static_relocs_[i]);
7133       
7134       Arm_address value;
7135       if (!reloc.symbol_is_global())
7136         {
7137           Sized_relobj<32, big_endian>* object = reloc.relobj();
7138           const Symbol_value<32>* psymval =
7139             reloc.relobj()->local_symbol(reloc.index());
7140
7141           // We are doing static linking.  Issue an error and skip this
7142           // relocation if the symbol is undefined or in a discarded_section.
7143           bool is_ordinary;
7144           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7145           if ((shndx == elfcpp::SHN_UNDEF)
7146               || (is_ordinary
7147                   && shndx != elfcpp::SHN_UNDEF
7148                   && !object->is_section_included(shndx)
7149                   && !this->symbol_table_->is_section_folded(object, shndx)))
7150             {
7151               gold_error(_("undefined or discarded local symbol %u from "
7152                            " object %s in GOT"),
7153                          reloc.index(), reloc.relobj()->name().c_str());
7154               continue;
7155             }
7156           
7157           value = psymval->value(object, 0);
7158         }
7159       else
7160         {
7161           const Symbol* gsym = reloc.symbol();
7162           gold_assert(gsym != NULL);
7163           if (gsym->is_forwarder())
7164             gsym = this->symbol_table_->resolve_forwards(gsym);
7165
7166           // We are doing static linking.  Issue an error and skip this
7167           // relocation if the symbol is undefined or in a discarded_section
7168           // unless it is a weakly_undefined symbol.
7169           if ((gsym->is_defined_in_discarded_section()
7170                || gsym->is_undefined())
7171               && !gsym->is_weak_undefined())
7172             {
7173               gold_error(_("undefined or discarded symbol %s in GOT"),
7174                          gsym->name());
7175               continue;
7176             }
7177
7178           if (!gsym->is_weak_undefined())
7179             {
7180               const Sized_symbol<32>* sym =
7181                 static_cast<const Sized_symbol<32>*>(gsym);
7182               value = sym->value();
7183             }
7184           else
7185               value = 0;
7186         }
7187
7188       unsigned got_offset = reloc.got_offset();
7189       gold_assert(got_offset < oview_size);
7190
7191       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7192       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7193       Valtype x;
7194       switch (reloc.r_type())
7195         {
7196         case elfcpp::R_ARM_TLS_DTPOFF32:
7197           x = value;
7198           break;
7199         case elfcpp::R_ARM_TLS_TPOFF32:
7200           x = value + aligned_tcb_size;
7201           break;
7202         default:
7203           gold_unreachable();
7204         }
7205       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7206     }
7207
7208   of->write_output_view(offset, oview_size, oview);
7209 }
7210
7211 // A class to handle the PLT data.
7212
7213 template<bool big_endian>
7214 class Output_data_plt_arm : public Output_section_data
7215 {
7216  public:
7217   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7218     Reloc_section;
7219
7220   Output_data_plt_arm(Layout*, Output_data_space*);
7221
7222   // Add an entry to the PLT.
7223   void
7224   add_entry(Symbol* gsym);
7225
7226   // Return the .rel.plt section data.
7227   const Reloc_section*
7228   rel_plt() const
7229   { return this->rel_; }
7230
7231   // Return the number of PLT entries.
7232   unsigned int
7233   entry_count() const
7234   { return this->count_; }
7235
7236   // Return the offset of the first non-reserved PLT entry.
7237   static unsigned int
7238   first_plt_entry_offset()
7239   { return sizeof(first_plt_entry); }
7240
7241   // Return the size of a PLT entry.
7242   static unsigned int
7243   get_plt_entry_size()
7244   { return sizeof(plt_entry); }
7245
7246  protected:
7247   void
7248   do_adjust_output_section(Output_section* os);
7249
7250   // Write to a map file.
7251   void
7252   do_print_to_mapfile(Mapfile* mapfile) const
7253   { mapfile->print_output_data(this, _("** PLT")); }
7254
7255  private:
7256   // Template for the first PLT entry.
7257   static const uint32_t first_plt_entry[5];
7258
7259   // Template for subsequent PLT entries. 
7260   static const uint32_t plt_entry[3];
7261
7262   // Set the final size.
7263   void
7264   set_final_data_size()
7265   {
7266     this->set_data_size(sizeof(first_plt_entry)
7267                         + this->count_ * sizeof(plt_entry));
7268   }
7269
7270   // Write out the PLT data.
7271   void
7272   do_write(Output_file*);
7273
7274   // The reloc section.
7275   Reloc_section* rel_;
7276   // The .got.plt section.
7277   Output_data_space* got_plt_;
7278   // The number of PLT entries.
7279   unsigned int count_;
7280 };
7281
7282 // Create the PLT section.  The ordinary .got section is an argument,
7283 // since we need to refer to the start.  We also create our own .got
7284 // section just for PLT entries.
7285
7286 template<bool big_endian>
7287 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7288                                                      Output_data_space* got_plt)
7289   : Output_section_data(4), got_plt_(got_plt), count_(0)
7290 {
7291   this->rel_ = new Reloc_section(false);
7292   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7293                                   elfcpp::SHF_ALLOC, this->rel_,
7294                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7295 }
7296
7297 template<bool big_endian>
7298 void
7299 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7300 {
7301   os->set_entsize(0);
7302 }
7303
7304 // Add an entry to the PLT.
7305
7306 template<bool big_endian>
7307 void
7308 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7309 {
7310   gold_assert(!gsym->has_plt_offset());
7311
7312   // Note that when setting the PLT offset we skip the initial
7313   // reserved PLT entry.
7314   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7315                        + sizeof(first_plt_entry));
7316
7317   ++this->count_;
7318
7319   section_offset_type got_offset = this->got_plt_->current_data_size();
7320
7321   // Every PLT entry needs a GOT entry which points back to the PLT
7322   // entry (this will be changed by the dynamic linker, normally
7323   // lazily when the function is called).
7324   this->got_plt_->set_current_data_size(got_offset + 4);
7325
7326   // Every PLT entry needs a reloc.
7327   gsym->set_needs_dynsym_entry();
7328   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7329                          got_offset);
7330
7331   // Note that we don't need to save the symbol.  The contents of the
7332   // PLT are independent of which symbols are used.  The symbols only
7333   // appear in the relocations.
7334 }
7335
7336 // ARM PLTs.
7337 // FIXME:  This is not very flexible.  Right now this has only been tested
7338 // on armv5te.  If we are to support additional architecture features like
7339 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7340
7341 // The first entry in the PLT.
7342 template<bool big_endian>
7343 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7344 {
7345   0xe52de004,   // str   lr, [sp, #-4]!
7346   0xe59fe004,   // ldr   lr, [pc, #4]
7347   0xe08fe00e,   // add   lr, pc, lr 
7348   0xe5bef008,   // ldr   pc, [lr, #8]!
7349   0x00000000,   // &GOT[0] - .
7350 };
7351
7352 // Subsequent entries in the PLT.
7353
7354 template<bool big_endian>
7355 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7356 {
7357   0xe28fc600,   // add   ip, pc, #0xNN00000
7358   0xe28cca00,   // add   ip, ip, #0xNN000
7359   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7360 };
7361
7362 // Write out the PLT.  This uses the hand-coded instructions above,
7363 // and adjusts them as needed.  This is all specified by the arm ELF
7364 // Processor Supplement.
7365
7366 template<bool big_endian>
7367 void
7368 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7369 {
7370   const off_t offset = this->offset();
7371   const section_size_type oview_size =
7372     convert_to_section_size_type(this->data_size());
7373   unsigned char* const oview = of->get_output_view(offset, oview_size);
7374
7375   const off_t got_file_offset = this->got_plt_->offset();
7376   const section_size_type got_size =
7377     convert_to_section_size_type(this->got_plt_->data_size());
7378   unsigned char* const got_view = of->get_output_view(got_file_offset,
7379                                                       got_size);
7380   unsigned char* pov = oview;
7381
7382   Arm_address plt_address = this->address();
7383   Arm_address got_address = this->got_plt_->address();
7384
7385   // Write first PLT entry.  All but the last word are constants.
7386   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7387                                       / sizeof(plt_entry[0]));
7388   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7389     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7390   // Last word in first PLT entry is &GOT[0] - .
7391   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7392                                          got_address - (plt_address + 16));
7393   pov += sizeof(first_plt_entry);
7394
7395   unsigned char* got_pov = got_view;
7396
7397   memset(got_pov, 0, 12);
7398   got_pov += 12;
7399
7400   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7401   unsigned int plt_offset = sizeof(first_plt_entry);
7402   unsigned int plt_rel_offset = 0;
7403   unsigned int got_offset = 12;
7404   const unsigned int count = this->count_;
7405   for (unsigned int i = 0;
7406        i < count;
7407        ++i,
7408          pov += sizeof(plt_entry),
7409          got_pov += 4,
7410          plt_offset += sizeof(plt_entry),
7411          plt_rel_offset += rel_size,
7412          got_offset += 4)
7413     {
7414       // Set and adjust the PLT entry itself.
7415       int32_t offset = ((got_address + got_offset)
7416                          - (plt_address + plt_offset + 8));
7417
7418       gold_assert(offset >= 0 && offset < 0x0fffffff);
7419       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7420       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7421       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7422       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7423       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7424       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7425
7426       // Set the entry in the GOT.
7427       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7428     }
7429
7430   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7431   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7432
7433   of->write_output_view(offset, oview_size, oview);
7434   of->write_output_view(got_file_offset, got_size, got_view);
7435 }
7436
7437 // Create a PLT entry for a global symbol.
7438
7439 template<bool big_endian>
7440 void
7441 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7442                                        Symbol* gsym)
7443 {
7444   if (gsym->has_plt_offset())
7445     return;
7446
7447   if (this->plt_ == NULL)
7448     {
7449       // Create the GOT sections first.
7450       this->got_section(symtab, layout);
7451
7452       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7453       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7454                                       (elfcpp::SHF_ALLOC
7455                                        | elfcpp::SHF_EXECINSTR),
7456                                       this->plt_, ORDER_PLT, false);
7457     }
7458   this->plt_->add_entry(gsym);
7459 }
7460
7461 // Return the number of entries in the PLT.
7462
7463 template<bool big_endian>
7464 unsigned int
7465 Target_arm<big_endian>::plt_entry_count() const
7466 {
7467   if (this->plt_ == NULL)
7468     return 0;
7469   return this->plt_->entry_count();
7470 }
7471
7472 // Return the offset of the first non-reserved PLT entry.
7473
7474 template<bool big_endian>
7475 unsigned int
7476 Target_arm<big_endian>::first_plt_entry_offset() const
7477 {
7478   return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7479 }
7480
7481 // Return the size of each PLT entry.
7482
7483 template<bool big_endian>
7484 unsigned int
7485 Target_arm<big_endian>::plt_entry_size() const
7486 {
7487   return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7488 }
7489
7490 // Get the section to use for TLS_DESC relocations.
7491
7492 template<bool big_endian>
7493 typename Target_arm<big_endian>::Reloc_section*
7494 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7495 {
7496   return this->plt_section()->rel_tls_desc(layout);
7497 }
7498
7499 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7500
7501 template<bool big_endian>
7502 void
7503 Target_arm<big_endian>::define_tls_base_symbol(
7504     Symbol_table* symtab,
7505     Layout* layout)
7506 {
7507   if (this->tls_base_symbol_defined_)
7508     return;
7509
7510   Output_segment* tls_segment = layout->tls_segment();
7511   if (tls_segment != NULL)
7512     {
7513       bool is_exec = parameters->options().output_is_executable();
7514       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7515                                        Symbol_table::PREDEFINED,
7516                                        tls_segment, 0, 0,
7517                                        elfcpp::STT_TLS,
7518                                        elfcpp::STB_LOCAL,
7519                                        elfcpp::STV_HIDDEN, 0,
7520                                        (is_exec
7521                                         ? Symbol::SEGMENT_END
7522                                         : Symbol::SEGMENT_START),
7523                                        true);
7524     }
7525   this->tls_base_symbol_defined_ = true;
7526 }
7527
7528 // Create a GOT entry for the TLS module index.
7529
7530 template<bool big_endian>
7531 unsigned int
7532 Target_arm<big_endian>::got_mod_index_entry(
7533     Symbol_table* symtab,
7534     Layout* layout,
7535     Sized_relobj<32, big_endian>* object)
7536 {
7537   if (this->got_mod_index_offset_ == -1U)
7538     {
7539       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7540       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7541       unsigned int got_offset;
7542       if (!parameters->doing_static_link())
7543         {
7544           got_offset = got->add_constant(0);
7545           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7546           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7547                              got_offset);
7548         }
7549       else
7550         {
7551           // We are doing a static link.  Just mark it as belong to module 1,
7552           // the executable.
7553           got_offset = got->add_constant(1);
7554         }
7555
7556       got->add_constant(0);
7557       this->got_mod_index_offset_ = got_offset;
7558     }
7559   return this->got_mod_index_offset_;
7560 }
7561
7562 // Optimize the TLS relocation type based on what we know about the
7563 // symbol.  IS_FINAL is true if the final address of this symbol is
7564 // known at link time.
7565
7566 template<bool big_endian>
7567 tls::Tls_optimization
7568 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7569 {
7570   // FIXME: Currently we do not do any TLS optimization.
7571   return tls::TLSOPT_NONE;
7572 }
7573
7574 // Get the Reference_flags for a particular relocation.
7575
7576 template<bool big_endian>
7577 int
7578 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7579 {
7580   switch (r_type)
7581     {
7582     case elfcpp::R_ARM_NONE:
7583     case elfcpp::R_ARM_V4BX:
7584     case elfcpp::R_ARM_GNU_VTENTRY:
7585     case elfcpp::R_ARM_GNU_VTINHERIT:
7586       // No symbol reference.
7587       return 0;
7588
7589     case elfcpp::R_ARM_ABS32:
7590     case elfcpp::R_ARM_ABS16:
7591     case elfcpp::R_ARM_ABS12:
7592     case elfcpp::R_ARM_THM_ABS5:
7593     case elfcpp::R_ARM_ABS8:
7594     case elfcpp::R_ARM_BASE_ABS:
7595     case elfcpp::R_ARM_MOVW_ABS_NC:
7596     case elfcpp::R_ARM_MOVT_ABS:
7597     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7598     case elfcpp::R_ARM_THM_MOVT_ABS:
7599     case elfcpp::R_ARM_ABS32_NOI:
7600       return Symbol::ABSOLUTE_REF;
7601
7602     case elfcpp::R_ARM_REL32:
7603     case elfcpp::R_ARM_LDR_PC_G0:
7604     case elfcpp::R_ARM_SBREL32:
7605     case elfcpp::R_ARM_THM_PC8:
7606     case elfcpp::R_ARM_BASE_PREL:
7607     case elfcpp::R_ARM_MOVW_PREL_NC:
7608     case elfcpp::R_ARM_MOVT_PREL:
7609     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7610     case elfcpp::R_ARM_THM_MOVT_PREL:
7611     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7612     case elfcpp::R_ARM_THM_PC12:
7613     case elfcpp::R_ARM_REL32_NOI:
7614     case elfcpp::R_ARM_ALU_PC_G0_NC:
7615     case elfcpp::R_ARM_ALU_PC_G0:
7616     case elfcpp::R_ARM_ALU_PC_G1_NC:
7617     case elfcpp::R_ARM_ALU_PC_G1:
7618     case elfcpp::R_ARM_ALU_PC_G2:
7619     case elfcpp::R_ARM_LDR_PC_G1:
7620     case elfcpp::R_ARM_LDR_PC_G2:
7621     case elfcpp::R_ARM_LDRS_PC_G0:
7622     case elfcpp::R_ARM_LDRS_PC_G1:
7623     case elfcpp::R_ARM_LDRS_PC_G2:
7624     case elfcpp::R_ARM_LDC_PC_G0:
7625     case elfcpp::R_ARM_LDC_PC_G1:
7626     case elfcpp::R_ARM_LDC_PC_G2:
7627     case elfcpp::R_ARM_ALU_SB_G0_NC:
7628     case elfcpp::R_ARM_ALU_SB_G0:
7629     case elfcpp::R_ARM_ALU_SB_G1_NC:
7630     case elfcpp::R_ARM_ALU_SB_G1:
7631     case elfcpp::R_ARM_ALU_SB_G2:
7632     case elfcpp::R_ARM_LDR_SB_G0:
7633     case elfcpp::R_ARM_LDR_SB_G1:
7634     case elfcpp::R_ARM_LDR_SB_G2:
7635     case elfcpp::R_ARM_LDRS_SB_G0:
7636     case elfcpp::R_ARM_LDRS_SB_G1:
7637     case elfcpp::R_ARM_LDRS_SB_G2:
7638     case elfcpp::R_ARM_LDC_SB_G0:
7639     case elfcpp::R_ARM_LDC_SB_G1:
7640     case elfcpp::R_ARM_LDC_SB_G2:
7641     case elfcpp::R_ARM_MOVW_BREL_NC:
7642     case elfcpp::R_ARM_MOVT_BREL:
7643     case elfcpp::R_ARM_MOVW_BREL:
7644     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7645     case elfcpp::R_ARM_THM_MOVT_BREL:
7646     case elfcpp::R_ARM_THM_MOVW_BREL:
7647     case elfcpp::R_ARM_GOTOFF32:
7648     case elfcpp::R_ARM_GOTOFF12:
7649     case elfcpp::R_ARM_SBREL31:
7650       return Symbol::RELATIVE_REF;
7651
7652     case elfcpp::R_ARM_PLT32:
7653     case elfcpp::R_ARM_CALL:
7654     case elfcpp::R_ARM_JUMP24:
7655     case elfcpp::R_ARM_THM_CALL:
7656     case elfcpp::R_ARM_THM_JUMP24:
7657     case elfcpp::R_ARM_THM_JUMP19:
7658     case elfcpp::R_ARM_THM_JUMP6:
7659     case elfcpp::R_ARM_THM_JUMP11:
7660     case elfcpp::R_ARM_THM_JUMP8:
7661     // R_ARM_PREL31 is not used to relocate call/jump instructions but
7662     // in unwind tables. It may point to functions via PLTs.
7663     // So we treat it like call/jump relocations above.
7664     case elfcpp::R_ARM_PREL31:
7665       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7666
7667     case elfcpp::R_ARM_GOT_BREL:
7668     case elfcpp::R_ARM_GOT_ABS:
7669     case elfcpp::R_ARM_GOT_PREL:
7670       // Absolute in GOT.
7671       return Symbol::ABSOLUTE_REF;
7672
7673     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7674     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7675     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7676     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7677     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7678       return Symbol::TLS_REF;
7679
7680     case elfcpp::R_ARM_TARGET1:
7681     case elfcpp::R_ARM_TARGET2:
7682     case elfcpp::R_ARM_COPY:
7683     case elfcpp::R_ARM_GLOB_DAT:
7684     case elfcpp::R_ARM_JUMP_SLOT:
7685     case elfcpp::R_ARM_RELATIVE:
7686     case elfcpp::R_ARM_PC24:
7687     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7688     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7689     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7690     default:
7691       // Not expected.  We will give an error later.
7692       return 0;
7693     }
7694 }
7695
7696 // Report an unsupported relocation against a local symbol.
7697
7698 template<bool big_endian>
7699 void
7700 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7701     Sized_relobj<32, big_endian>* object,
7702     unsigned int r_type)
7703 {
7704   gold_error(_("%s: unsupported reloc %u against local symbol"),
7705              object->name().c_str(), r_type);
7706 }
7707
7708 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7709 // dynamic linker does not support it, issue an error.  The GNU linker
7710 // only issues a non-PIC error for an allocated read-only section.
7711 // Here we know the section is allocated, but we don't know that it is
7712 // read-only.  But we check for all the relocation types which the
7713 // glibc dynamic linker supports, so it seems appropriate to issue an
7714 // error even if the section is not read-only.
7715
7716 template<bool big_endian>
7717 void
7718 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7719                                             unsigned int r_type)
7720 {
7721   switch (r_type)
7722     {
7723     // These are the relocation types supported by glibc for ARM.
7724     case elfcpp::R_ARM_RELATIVE:
7725     case elfcpp::R_ARM_COPY:
7726     case elfcpp::R_ARM_GLOB_DAT:
7727     case elfcpp::R_ARM_JUMP_SLOT:
7728     case elfcpp::R_ARM_ABS32:
7729     case elfcpp::R_ARM_ABS32_NOI:
7730     case elfcpp::R_ARM_PC24:
7731     // FIXME: The following 3 types are not supported by Android's dynamic
7732     // linker.
7733     case elfcpp::R_ARM_TLS_DTPMOD32:
7734     case elfcpp::R_ARM_TLS_DTPOFF32:
7735     case elfcpp::R_ARM_TLS_TPOFF32:
7736       return;
7737
7738     default:
7739       {
7740         // This prevents us from issuing more than one error per reloc
7741         // section.  But we can still wind up issuing more than one
7742         // error per object file.
7743         if (this->issued_non_pic_error_)
7744           return;
7745         const Arm_reloc_property* reloc_property =
7746           arm_reloc_property_table->get_reloc_property(r_type);
7747         gold_assert(reloc_property != NULL);
7748         object->error(_("requires unsupported dynamic reloc %s; "
7749                       "recompile with -fPIC"),
7750                       reloc_property->name().c_str());
7751         this->issued_non_pic_error_ = true;
7752         return;
7753       }
7754
7755     case elfcpp::R_ARM_NONE:
7756       gold_unreachable();
7757     }
7758 }
7759
7760 // Scan a relocation for a local symbol.
7761 // FIXME: This only handles a subset of relocation types used by Android
7762 // on ARM v5te devices.
7763
7764 template<bool big_endian>
7765 inline void
7766 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7767                                     Layout* layout,
7768                                     Target_arm* target,
7769                                     Sized_relobj<32, big_endian>* object,
7770                                     unsigned int data_shndx,
7771                                     Output_section* output_section,
7772                                     const elfcpp::Rel<32, big_endian>& reloc,
7773                                     unsigned int r_type,
7774                                     const elfcpp::Sym<32, big_endian>& lsym)
7775 {
7776   r_type = get_real_reloc_type(r_type);
7777   switch (r_type)
7778     {
7779     case elfcpp::R_ARM_NONE:
7780     case elfcpp::R_ARM_V4BX:
7781     case elfcpp::R_ARM_GNU_VTENTRY:
7782     case elfcpp::R_ARM_GNU_VTINHERIT:
7783       break;
7784
7785     case elfcpp::R_ARM_ABS32:
7786     case elfcpp::R_ARM_ABS32_NOI:
7787       // If building a shared library (or a position-independent
7788       // executable), we need to create a dynamic relocation for
7789       // this location. The relocation applied at link time will
7790       // apply the link-time value, so we flag the location with
7791       // an R_ARM_RELATIVE relocation so the dynamic loader can
7792       // relocate it easily.
7793       if (parameters->options().output_is_position_independent())
7794         {
7795           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7796           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7797           // If we are to add more other reloc types than R_ARM_ABS32,
7798           // we need to add check_non_pic(object, r_type) here.
7799           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7800                                       output_section, data_shndx,
7801                                       reloc.get_r_offset());
7802         }
7803       break;
7804
7805     case elfcpp::R_ARM_ABS16:
7806     case elfcpp::R_ARM_ABS12:
7807     case elfcpp::R_ARM_THM_ABS5:
7808     case elfcpp::R_ARM_ABS8:
7809     case elfcpp::R_ARM_BASE_ABS:
7810     case elfcpp::R_ARM_MOVW_ABS_NC:
7811     case elfcpp::R_ARM_MOVT_ABS:
7812     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7813     case elfcpp::R_ARM_THM_MOVT_ABS:
7814       // If building a shared library (or a position-independent
7815       // executable), we need to create a dynamic relocation for
7816       // this location. Because the addend needs to remain in the
7817       // data section, we need to be careful not to apply this
7818       // relocation statically.
7819       if (parameters->options().output_is_position_independent())
7820         {
7821           check_non_pic(object, r_type);
7822           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7823           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7824           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7825             rel_dyn->add_local(object, r_sym, r_type, output_section,
7826                                data_shndx, reloc.get_r_offset());
7827           else
7828             {
7829               gold_assert(lsym.get_st_value() == 0);
7830               unsigned int shndx = lsym.get_st_shndx();
7831               bool is_ordinary;
7832               shndx = object->adjust_sym_shndx(r_sym, shndx,
7833                                                &is_ordinary);
7834               if (!is_ordinary)
7835                 object->error(_("section symbol %u has bad shndx %u"),
7836                               r_sym, shndx);
7837               else
7838                 rel_dyn->add_local_section(object, shndx,
7839                                            r_type, output_section,
7840                                            data_shndx, reloc.get_r_offset());
7841             }
7842         }
7843       break;
7844
7845     case elfcpp::R_ARM_REL32:
7846     case elfcpp::R_ARM_LDR_PC_G0:
7847     case elfcpp::R_ARM_SBREL32:
7848     case elfcpp::R_ARM_THM_CALL:
7849     case elfcpp::R_ARM_THM_PC8:
7850     case elfcpp::R_ARM_BASE_PREL:
7851     case elfcpp::R_ARM_PLT32:
7852     case elfcpp::R_ARM_CALL:
7853     case elfcpp::R_ARM_JUMP24:
7854     case elfcpp::R_ARM_THM_JUMP24:
7855     case elfcpp::R_ARM_SBREL31:
7856     case elfcpp::R_ARM_PREL31:
7857     case elfcpp::R_ARM_MOVW_PREL_NC:
7858     case elfcpp::R_ARM_MOVT_PREL:
7859     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7860     case elfcpp::R_ARM_THM_MOVT_PREL:
7861     case elfcpp::R_ARM_THM_JUMP19:
7862     case elfcpp::R_ARM_THM_JUMP6:
7863     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7864     case elfcpp::R_ARM_THM_PC12:
7865     case elfcpp::R_ARM_REL32_NOI:
7866     case elfcpp::R_ARM_ALU_PC_G0_NC:
7867     case elfcpp::R_ARM_ALU_PC_G0:
7868     case elfcpp::R_ARM_ALU_PC_G1_NC:
7869     case elfcpp::R_ARM_ALU_PC_G1:
7870     case elfcpp::R_ARM_ALU_PC_G2:
7871     case elfcpp::R_ARM_LDR_PC_G1:
7872     case elfcpp::R_ARM_LDR_PC_G2:
7873     case elfcpp::R_ARM_LDRS_PC_G0:
7874     case elfcpp::R_ARM_LDRS_PC_G1:
7875     case elfcpp::R_ARM_LDRS_PC_G2:
7876     case elfcpp::R_ARM_LDC_PC_G0:
7877     case elfcpp::R_ARM_LDC_PC_G1:
7878     case elfcpp::R_ARM_LDC_PC_G2:
7879     case elfcpp::R_ARM_ALU_SB_G0_NC:
7880     case elfcpp::R_ARM_ALU_SB_G0:
7881     case elfcpp::R_ARM_ALU_SB_G1_NC:
7882     case elfcpp::R_ARM_ALU_SB_G1:
7883     case elfcpp::R_ARM_ALU_SB_G2:
7884     case elfcpp::R_ARM_LDR_SB_G0:
7885     case elfcpp::R_ARM_LDR_SB_G1:
7886     case elfcpp::R_ARM_LDR_SB_G2:
7887     case elfcpp::R_ARM_LDRS_SB_G0:
7888     case elfcpp::R_ARM_LDRS_SB_G1:
7889     case elfcpp::R_ARM_LDRS_SB_G2:
7890     case elfcpp::R_ARM_LDC_SB_G0:
7891     case elfcpp::R_ARM_LDC_SB_G1:
7892     case elfcpp::R_ARM_LDC_SB_G2:
7893     case elfcpp::R_ARM_MOVW_BREL_NC:
7894     case elfcpp::R_ARM_MOVT_BREL:
7895     case elfcpp::R_ARM_MOVW_BREL:
7896     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7897     case elfcpp::R_ARM_THM_MOVT_BREL:
7898     case elfcpp::R_ARM_THM_MOVW_BREL:
7899     case elfcpp::R_ARM_THM_JUMP11:
7900     case elfcpp::R_ARM_THM_JUMP8:
7901       // We don't need to do anything for a relative addressing relocation
7902       // against a local symbol if it does not reference the GOT.
7903       break;
7904
7905     case elfcpp::R_ARM_GOTOFF32:
7906     case elfcpp::R_ARM_GOTOFF12:
7907       // We need a GOT section:
7908       target->got_section(symtab, layout);
7909       break;
7910
7911     case elfcpp::R_ARM_GOT_BREL:
7912     case elfcpp::R_ARM_GOT_PREL:
7913       {
7914         // The symbol requires a GOT entry.
7915         Arm_output_data_got<big_endian>* got =
7916           target->got_section(symtab, layout);
7917         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7918         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7919           {
7920             // If we are generating a shared object, we need to add a
7921             // dynamic RELATIVE relocation for this symbol's GOT entry.
7922             if (parameters->options().output_is_position_independent())
7923               {
7924                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7925                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7926                 rel_dyn->add_local_relative(
7927                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7928                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7929               }
7930           }
7931       }
7932       break;
7933
7934     case elfcpp::R_ARM_TARGET1:
7935     case elfcpp::R_ARM_TARGET2:
7936       // This should have been mapped to another type already.
7937       // Fall through.
7938     case elfcpp::R_ARM_COPY:
7939     case elfcpp::R_ARM_GLOB_DAT:
7940     case elfcpp::R_ARM_JUMP_SLOT:
7941     case elfcpp::R_ARM_RELATIVE:
7942       // These are relocations which should only be seen by the
7943       // dynamic linker, and should never be seen here.
7944       gold_error(_("%s: unexpected reloc %u in object file"),
7945                  object->name().c_str(), r_type);
7946       break;
7947
7948
7949       // These are initial TLS relocs, which are expected when
7950       // linking.
7951     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7952     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7953     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7954     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7955     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7956       {
7957         bool output_is_shared = parameters->options().shared();
7958         const tls::Tls_optimization optimized_type
7959             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7960                                                          r_type);
7961         switch (r_type)
7962           {
7963           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7964             if (optimized_type == tls::TLSOPT_NONE)
7965               {
7966                 // Create a pair of GOT entries for the module index and
7967                 // dtv-relative offset.
7968                 Arm_output_data_got<big_endian>* got
7969                     = target->got_section(symtab, layout);
7970                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7971                 unsigned int shndx = lsym.get_st_shndx();
7972                 bool is_ordinary;
7973                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7974                 if (!is_ordinary)
7975                   {
7976                     object->error(_("local symbol %u has bad shndx %u"),
7977                                   r_sym, shndx);
7978                     break;
7979                   }
7980
7981                 if (!parameters->doing_static_link())
7982                   got->add_local_pair_with_rel(object, r_sym, shndx,
7983                                                GOT_TYPE_TLS_PAIR,
7984                                                target->rel_dyn_section(layout),
7985                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7986                 else
7987                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7988                                                       object, r_sym);
7989               }
7990             else
7991               // FIXME: TLS optimization not supported yet.
7992               gold_unreachable();
7993             break;
7994
7995           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7996             if (optimized_type == tls::TLSOPT_NONE)
7997               {
7998                 // Create a GOT entry for the module index.
7999                 target->got_mod_index_entry(symtab, layout, object);
8000               }
8001             else
8002               // FIXME: TLS optimization not supported yet.
8003               gold_unreachable();
8004             break;
8005
8006           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8007             break;
8008
8009           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8010             layout->set_has_static_tls();
8011             if (optimized_type == tls::TLSOPT_NONE)
8012               {
8013                 // Create a GOT entry for the tp-relative offset.
8014                 Arm_output_data_got<big_endian>* got
8015                   = target->got_section(symtab, layout);
8016                 unsigned int r_sym =
8017                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
8018                 if (!parameters->doing_static_link())
8019                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8020                                             target->rel_dyn_section(layout),
8021                                             elfcpp::R_ARM_TLS_TPOFF32);
8022                 else if (!object->local_has_got_offset(r_sym,
8023                                                        GOT_TYPE_TLS_OFFSET))
8024                   {
8025                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8026                     unsigned int got_offset =
8027                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8028                     got->add_static_reloc(got_offset,
8029                                           elfcpp::R_ARM_TLS_TPOFF32, object,
8030                                           r_sym);
8031                   }
8032               }
8033             else
8034               // FIXME: TLS optimization not supported yet.
8035               gold_unreachable();
8036             break;
8037
8038           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8039             layout->set_has_static_tls();
8040             if (output_is_shared)
8041               {
8042                 // We need to create a dynamic relocation.
8043                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8044                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8045                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8046                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8047                                    output_section, data_shndx,
8048                                    reloc.get_r_offset());
8049               }
8050             break;
8051
8052           default:
8053             gold_unreachable();
8054           }
8055       }
8056       break;
8057
8058     case elfcpp::R_ARM_PC24:
8059     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8060     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8061     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8062     default:
8063       unsupported_reloc_local(object, r_type);
8064       break;
8065     }
8066 }
8067
8068 // Report an unsupported relocation against a global symbol.
8069
8070 template<bool big_endian>
8071 void
8072 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8073     Sized_relobj<32, big_endian>* object,
8074     unsigned int r_type,
8075     Symbol* gsym)
8076 {
8077   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8078              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8079 }
8080
8081 template<bool big_endian>
8082 inline bool
8083 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8084     unsigned int r_type)
8085 {
8086   switch (r_type)
8087     {
8088     case elfcpp::R_ARM_PC24:
8089     case elfcpp::R_ARM_THM_CALL:
8090     case elfcpp::R_ARM_PLT32:
8091     case elfcpp::R_ARM_CALL:
8092     case elfcpp::R_ARM_JUMP24:
8093     case elfcpp::R_ARM_THM_JUMP24:
8094     case elfcpp::R_ARM_SBREL31:
8095     case elfcpp::R_ARM_PREL31:
8096     case elfcpp::R_ARM_THM_JUMP19:
8097     case elfcpp::R_ARM_THM_JUMP6:
8098     case elfcpp::R_ARM_THM_JUMP11:
8099     case elfcpp::R_ARM_THM_JUMP8:
8100       // All the relocations above are branches except SBREL31 and PREL31.
8101       return false;
8102
8103     default:
8104       // Be conservative and assume this is a function pointer.
8105       return true;
8106     }
8107 }
8108
8109 template<bool big_endian>
8110 inline bool
8111 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8112   Symbol_table*,
8113   Layout*,
8114   Target_arm<big_endian>* target,
8115   Sized_relobj<32, big_endian>*,
8116   unsigned int,
8117   Output_section*,
8118   const elfcpp::Rel<32, big_endian>&,
8119   unsigned int r_type,
8120   const elfcpp::Sym<32, big_endian>&)
8121 {
8122   r_type = target->get_real_reloc_type(r_type);
8123   return possible_function_pointer_reloc(r_type);
8124 }
8125
8126 template<bool big_endian>
8127 inline bool
8128 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8129   Symbol_table*,
8130   Layout*,
8131   Target_arm<big_endian>* target,
8132   Sized_relobj<32, big_endian>*,
8133   unsigned int,
8134   Output_section*,
8135   const elfcpp::Rel<32, big_endian>&,
8136   unsigned int r_type,
8137   Symbol* gsym)
8138 {
8139   // GOT is not a function.
8140   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8141     return false;
8142
8143   r_type = target->get_real_reloc_type(r_type);
8144   return possible_function_pointer_reloc(r_type);
8145 }
8146
8147 // Scan a relocation for a global symbol.
8148
8149 template<bool big_endian>
8150 inline void
8151 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8152                                      Layout* layout,
8153                                      Target_arm* target,
8154                                      Sized_relobj<32, big_endian>* object,
8155                                      unsigned int data_shndx,
8156                                      Output_section* output_section,
8157                                      const elfcpp::Rel<32, big_endian>& reloc,
8158                                      unsigned int r_type,
8159                                      Symbol* gsym)
8160 {
8161   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8162   // section.  We check here to avoid creating a dynamic reloc against
8163   // _GLOBAL_OFFSET_TABLE_.
8164   if (!target->has_got_section()
8165       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8166     target->got_section(symtab, layout);
8167
8168   r_type = get_real_reloc_type(r_type);
8169   switch (r_type)
8170     {
8171     case elfcpp::R_ARM_NONE:
8172     case elfcpp::R_ARM_V4BX:
8173     case elfcpp::R_ARM_GNU_VTENTRY:
8174     case elfcpp::R_ARM_GNU_VTINHERIT:
8175       break;
8176
8177     case elfcpp::R_ARM_ABS32:
8178     case elfcpp::R_ARM_ABS16:
8179     case elfcpp::R_ARM_ABS12:
8180     case elfcpp::R_ARM_THM_ABS5:
8181     case elfcpp::R_ARM_ABS8:
8182     case elfcpp::R_ARM_BASE_ABS:
8183     case elfcpp::R_ARM_MOVW_ABS_NC:
8184     case elfcpp::R_ARM_MOVT_ABS:
8185     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8186     case elfcpp::R_ARM_THM_MOVT_ABS:
8187     case elfcpp::R_ARM_ABS32_NOI:
8188       // Absolute addressing relocations.
8189       {
8190         // Make a PLT entry if necessary.
8191         if (this->symbol_needs_plt_entry(gsym))
8192           {
8193             target->make_plt_entry(symtab, layout, gsym);
8194             // Since this is not a PC-relative relocation, we may be
8195             // taking the address of a function. In that case we need to
8196             // set the entry in the dynamic symbol table to the address of
8197             // the PLT entry.
8198             if (gsym->is_from_dynobj() && !parameters->options().shared())
8199               gsym->set_needs_dynsym_value();
8200           }
8201         // Make a dynamic relocation if necessary.
8202         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8203           {
8204             if (gsym->may_need_copy_reloc())
8205               {
8206                 target->copy_reloc(symtab, layout, object,
8207                                    data_shndx, output_section, gsym, reloc);
8208               }
8209             else if ((r_type == elfcpp::R_ARM_ABS32
8210                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8211                      && gsym->can_use_relative_reloc(false))
8212               {
8213                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8214                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8215                                              output_section, object,
8216                                              data_shndx, reloc.get_r_offset());
8217               }
8218             else
8219               {
8220                 check_non_pic(object, r_type);
8221                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8222                 rel_dyn->add_global(gsym, r_type, output_section, object,
8223                                     data_shndx, reloc.get_r_offset());
8224               }
8225           }
8226       }
8227       break;
8228
8229     case elfcpp::R_ARM_GOTOFF32:
8230     case elfcpp::R_ARM_GOTOFF12:
8231       // We need a GOT section.
8232       target->got_section(symtab, layout);
8233       break;
8234       
8235     case elfcpp::R_ARM_REL32:
8236     case elfcpp::R_ARM_LDR_PC_G0:
8237     case elfcpp::R_ARM_SBREL32:
8238     case elfcpp::R_ARM_THM_PC8:
8239     case elfcpp::R_ARM_BASE_PREL:
8240     case elfcpp::R_ARM_MOVW_PREL_NC:
8241     case elfcpp::R_ARM_MOVT_PREL:
8242     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8243     case elfcpp::R_ARM_THM_MOVT_PREL:
8244     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8245     case elfcpp::R_ARM_THM_PC12:
8246     case elfcpp::R_ARM_REL32_NOI:
8247     case elfcpp::R_ARM_ALU_PC_G0_NC:
8248     case elfcpp::R_ARM_ALU_PC_G0:
8249     case elfcpp::R_ARM_ALU_PC_G1_NC:
8250     case elfcpp::R_ARM_ALU_PC_G1:
8251     case elfcpp::R_ARM_ALU_PC_G2:
8252     case elfcpp::R_ARM_LDR_PC_G1:
8253     case elfcpp::R_ARM_LDR_PC_G2:
8254     case elfcpp::R_ARM_LDRS_PC_G0:
8255     case elfcpp::R_ARM_LDRS_PC_G1:
8256     case elfcpp::R_ARM_LDRS_PC_G2:
8257     case elfcpp::R_ARM_LDC_PC_G0:
8258     case elfcpp::R_ARM_LDC_PC_G1:
8259     case elfcpp::R_ARM_LDC_PC_G2:
8260     case elfcpp::R_ARM_ALU_SB_G0_NC:
8261     case elfcpp::R_ARM_ALU_SB_G0:
8262     case elfcpp::R_ARM_ALU_SB_G1_NC:
8263     case elfcpp::R_ARM_ALU_SB_G1:
8264     case elfcpp::R_ARM_ALU_SB_G2:
8265     case elfcpp::R_ARM_LDR_SB_G0:
8266     case elfcpp::R_ARM_LDR_SB_G1:
8267     case elfcpp::R_ARM_LDR_SB_G2:
8268     case elfcpp::R_ARM_LDRS_SB_G0:
8269     case elfcpp::R_ARM_LDRS_SB_G1:
8270     case elfcpp::R_ARM_LDRS_SB_G2:
8271     case elfcpp::R_ARM_LDC_SB_G0:
8272     case elfcpp::R_ARM_LDC_SB_G1:
8273     case elfcpp::R_ARM_LDC_SB_G2:
8274     case elfcpp::R_ARM_MOVW_BREL_NC:
8275     case elfcpp::R_ARM_MOVT_BREL:
8276     case elfcpp::R_ARM_MOVW_BREL:
8277     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8278     case elfcpp::R_ARM_THM_MOVT_BREL:
8279     case elfcpp::R_ARM_THM_MOVW_BREL:
8280       // Relative addressing relocations.
8281       {
8282         // Make a dynamic relocation if necessary.
8283         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8284           {
8285             if (target->may_need_copy_reloc(gsym))
8286               {
8287                 target->copy_reloc(symtab, layout, object,
8288                                    data_shndx, output_section, gsym, reloc);
8289               }
8290             else
8291               {
8292                 check_non_pic(object, r_type);
8293                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8294                 rel_dyn->add_global(gsym, r_type, output_section, object,
8295                                     data_shndx, reloc.get_r_offset());
8296               }
8297           }
8298       }
8299       break;
8300
8301     case elfcpp::R_ARM_THM_CALL:
8302     case elfcpp::R_ARM_PLT32:
8303     case elfcpp::R_ARM_CALL:
8304     case elfcpp::R_ARM_JUMP24:
8305     case elfcpp::R_ARM_THM_JUMP24:
8306     case elfcpp::R_ARM_SBREL31:
8307     case elfcpp::R_ARM_PREL31:
8308     case elfcpp::R_ARM_THM_JUMP19:
8309     case elfcpp::R_ARM_THM_JUMP6:
8310     case elfcpp::R_ARM_THM_JUMP11:
8311     case elfcpp::R_ARM_THM_JUMP8:
8312       // All the relocation above are branches except for the PREL31 ones.
8313       // A PREL31 relocation can point to a personality function in a shared
8314       // library.  In that case we want to use a PLT because we want to
8315       // call the personality routine and the dynamic linkers we care about
8316       // do not support dynamic PREL31 relocations. An REL31 relocation may
8317       // point to a function whose unwinding behaviour is being described but
8318       // we will not mistakenly generate a PLT for that because we should use
8319       // a local section symbol.
8320
8321       // If the symbol is fully resolved, this is just a relative
8322       // local reloc.  Otherwise we need a PLT entry.
8323       if (gsym->final_value_is_known())
8324         break;
8325       // If building a shared library, we can also skip the PLT entry
8326       // if the symbol is defined in the output file and is protected
8327       // or hidden.
8328       if (gsym->is_defined()
8329           && !gsym->is_from_dynobj()
8330           && !gsym->is_preemptible())
8331         break;
8332       target->make_plt_entry(symtab, layout, gsym);
8333       break;
8334
8335     case elfcpp::R_ARM_GOT_BREL:
8336     case elfcpp::R_ARM_GOT_ABS:
8337     case elfcpp::R_ARM_GOT_PREL:
8338       {
8339         // The symbol requires a GOT entry.
8340         Arm_output_data_got<big_endian>* got =
8341           target->got_section(symtab, layout);
8342         if (gsym->final_value_is_known())
8343           got->add_global(gsym, GOT_TYPE_STANDARD);
8344         else
8345           {
8346             // If this symbol is not fully resolved, we need to add a
8347             // GOT entry with a dynamic relocation.
8348             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8349             if (gsym->is_from_dynobj()
8350                 || gsym->is_undefined()
8351                 || gsym->is_preemptible())
8352               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8353                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8354             else
8355               {
8356                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8357                   rel_dyn->add_global_relative(
8358                       gsym, elfcpp::R_ARM_RELATIVE, got,
8359                       gsym->got_offset(GOT_TYPE_STANDARD));
8360               }
8361           }
8362       }
8363       break;
8364
8365     case elfcpp::R_ARM_TARGET1:
8366     case elfcpp::R_ARM_TARGET2:
8367       // These should have been mapped to other types already.
8368       // Fall through.
8369     case elfcpp::R_ARM_COPY:
8370     case elfcpp::R_ARM_GLOB_DAT:
8371     case elfcpp::R_ARM_JUMP_SLOT:
8372     case elfcpp::R_ARM_RELATIVE:
8373       // These are relocations which should only be seen by the
8374       // dynamic linker, and should never be seen here.
8375       gold_error(_("%s: unexpected reloc %u in object file"),
8376                  object->name().c_str(), r_type);
8377       break;
8378
8379       // These are initial tls relocs, which are expected when
8380       // linking.
8381     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8382     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8383     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8384     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8385     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8386       {
8387         const bool is_final = gsym->final_value_is_known();
8388         const tls::Tls_optimization optimized_type
8389             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8390         switch (r_type)
8391           {
8392           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8393             if (optimized_type == tls::TLSOPT_NONE)
8394               {
8395                 // Create a pair of GOT entries for the module index and
8396                 // dtv-relative offset.
8397                 Arm_output_data_got<big_endian>* got
8398                     = target->got_section(symtab, layout);
8399                 if (!parameters->doing_static_link())
8400                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8401                                                 target->rel_dyn_section(layout),
8402                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8403                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8404                 else
8405                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8406               }
8407             else
8408               // FIXME: TLS optimization not supported yet.
8409               gold_unreachable();
8410             break;
8411
8412           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8413             if (optimized_type == tls::TLSOPT_NONE)
8414               {
8415                 // Create a GOT entry for the module index.
8416                 target->got_mod_index_entry(symtab, layout, object);
8417               }
8418             else
8419               // FIXME: TLS optimization not supported yet.
8420               gold_unreachable();
8421             break;
8422
8423           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8424             break;
8425
8426           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8427             layout->set_has_static_tls();
8428             if (optimized_type == tls::TLSOPT_NONE)
8429               {
8430                 // Create a GOT entry for the tp-relative offset.
8431                 Arm_output_data_got<big_endian>* got
8432                   = target->got_section(symtab, layout);
8433                 if (!parameters->doing_static_link())
8434                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8435                                            target->rel_dyn_section(layout),
8436                                            elfcpp::R_ARM_TLS_TPOFF32);
8437                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8438                   {
8439                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8440                     unsigned int got_offset =
8441                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8442                     got->add_static_reloc(got_offset,
8443                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
8444                   }
8445               }
8446             else
8447               // FIXME: TLS optimization not supported yet.
8448               gold_unreachable();
8449             break;
8450
8451           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8452             layout->set_has_static_tls();
8453             if (parameters->options().shared())
8454               {
8455                 // We need to create a dynamic relocation.
8456                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8457                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8458                                     output_section, object,
8459                                     data_shndx, reloc.get_r_offset());
8460               }
8461             break;
8462
8463           default:
8464             gold_unreachable();
8465           }
8466       }
8467       break;
8468
8469     case elfcpp::R_ARM_PC24:
8470     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8471     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8472     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8473     default:
8474       unsupported_reloc_global(object, r_type, gsym);
8475       break;
8476     }
8477 }
8478
8479 // Process relocations for gc.
8480
8481 template<bool big_endian>
8482 void
8483 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8484                                           Layout* layout,
8485                                           Sized_relobj<32, big_endian>* object,
8486                                           unsigned int data_shndx,
8487                                           unsigned int,
8488                                           const unsigned char* prelocs,
8489                                           size_t reloc_count,
8490                                           Output_section* output_section,
8491                                           bool needs_special_offset_handling,
8492                                           size_t local_symbol_count,
8493                                           const unsigned char* plocal_symbols)
8494 {
8495   typedef Target_arm<big_endian> Arm;
8496   typedef typename Target_arm<big_endian>::Scan Scan;
8497
8498   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8499                           typename Target_arm::Relocatable_size_for_reloc>(
8500     symtab,
8501     layout,
8502     this,
8503     object,
8504     data_shndx,
8505     prelocs,
8506     reloc_count,
8507     output_section,
8508     needs_special_offset_handling,
8509     local_symbol_count,
8510     plocal_symbols);
8511 }
8512
8513 // Scan relocations for a section.
8514
8515 template<bool big_endian>
8516 void
8517 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8518                                     Layout* layout,
8519                                     Sized_relobj<32, big_endian>* object,
8520                                     unsigned int data_shndx,
8521                                     unsigned int sh_type,
8522                                     const unsigned char* prelocs,
8523                                     size_t reloc_count,
8524                                     Output_section* output_section,
8525                                     bool needs_special_offset_handling,
8526                                     size_t local_symbol_count,
8527                                     const unsigned char* plocal_symbols)
8528 {
8529   typedef typename Target_arm<big_endian>::Scan Scan;
8530   if (sh_type == elfcpp::SHT_RELA)
8531     {
8532       gold_error(_("%s: unsupported RELA reloc section"),
8533                  object->name().c_str());
8534       return;
8535     }
8536
8537   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8538     symtab,
8539     layout,
8540     this,
8541     object,
8542     data_shndx,
8543     prelocs,
8544     reloc_count,
8545     output_section,
8546     needs_special_offset_handling,
8547     local_symbol_count,
8548     plocal_symbols);
8549 }
8550
8551 // Finalize the sections.
8552
8553 template<bool big_endian>
8554 void
8555 Target_arm<big_endian>::do_finalize_sections(
8556     Layout* layout,
8557     const Input_objects* input_objects,
8558     Symbol_table* symtab)
8559 {
8560   bool merged_any_attributes = false;
8561   // Merge processor-specific flags.
8562   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8563        p != input_objects->relobj_end();
8564        ++p)
8565     {
8566       Arm_relobj<big_endian>* arm_relobj =
8567         Arm_relobj<big_endian>::as_arm_relobj(*p);
8568       if (arm_relobj->merge_flags_and_attributes())
8569         {
8570           this->merge_processor_specific_flags(
8571               arm_relobj->name(),
8572               arm_relobj->processor_specific_flags());
8573           this->merge_object_attributes(arm_relobj->name().c_str(),
8574                                         arm_relobj->attributes_section_data());
8575           merged_any_attributes = true;
8576         }
8577     } 
8578
8579   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8580        p != input_objects->dynobj_end();
8581        ++p)
8582     {
8583       Arm_dynobj<big_endian>* arm_dynobj =
8584         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8585       this->merge_processor_specific_flags(
8586           arm_dynobj->name(),
8587           arm_dynobj->processor_specific_flags());
8588       this->merge_object_attributes(arm_dynobj->name().c_str(),
8589                                     arm_dynobj->attributes_section_data());
8590       merged_any_attributes = true;
8591     }
8592
8593   // Create an empty uninitialized attribute section if we still don't have it
8594   // at this moment.  This happens if there is no attributes sections in all
8595   // inputs.
8596   if (this->attributes_section_data_ == NULL)
8597     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8598
8599   // Check BLX use.
8600   const Object_attribute* cpu_arch_attr =
8601     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8602   if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8603     this->set_may_use_blx(true);
8604  
8605   // Check if we need to use Cortex-A8 workaround.
8606   if (parameters->options().user_set_fix_cortex_a8())
8607     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8608   else
8609     {
8610       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8611       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8612       // profile.  
8613       const Object_attribute* cpu_arch_profile_attr =
8614         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8615       this->fix_cortex_a8_ =
8616         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8617          && (cpu_arch_profile_attr->int_value() == 'A'
8618              || cpu_arch_profile_attr->int_value() == 0));
8619     }
8620   
8621   // Check if we can use V4BX interworking.
8622   // The V4BX interworking stub contains BX instruction,
8623   // which is not specified for some profiles.
8624   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8625       && !this->may_use_blx())
8626     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8627                  "the target profile does not support BX instruction"));
8628
8629   // Fill in some more dynamic tags.
8630   const Reloc_section* rel_plt = (this->plt_ == NULL
8631                                   ? NULL
8632                                   : this->plt_->rel_plt());
8633   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8634                                   this->rel_dyn_, true, false);
8635
8636   // Emit any relocs we saved in an attempt to avoid generating COPY
8637   // relocs.
8638   if (this->copy_relocs_.any_saved_relocs())
8639     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8640
8641   // Handle the .ARM.exidx section.
8642   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8643
8644   if (!parameters->options().relocatable())
8645     {
8646       if (exidx_section != NULL
8647           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8648         {
8649           // Create __exidx_start and __exidx_end symbols.
8650           symtab->define_in_output_data("__exidx_start", NULL,
8651                                         Symbol_table::PREDEFINED,
8652                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8653                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8654                                         0, false, true);
8655           symtab->define_in_output_data("__exidx_end", NULL,
8656                                         Symbol_table::PREDEFINED,
8657                                         exidx_section, 0, 0, elfcpp::STT_OBJECT,
8658                                         elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8659                                         0, true, true);
8660
8661           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8662           // the .ARM.exidx section.
8663           if (!layout->script_options()->saw_phdrs_clause())
8664             {
8665               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8666                                                       0)
8667                           == NULL);
8668               Output_segment*  exidx_segment =
8669                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8670               exidx_segment->add_output_section_to_nonload(exidx_section,
8671                                                            elfcpp::PF_R);
8672             }
8673         }
8674       else
8675         {
8676           symtab->define_as_constant("__exidx_start", NULL,
8677                                      Symbol_table::PREDEFINED,
8678                                      0, 0, elfcpp::STT_OBJECT,
8679                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8680                                      true, false);
8681           symtab->define_as_constant("__exidx_end", NULL,
8682                                      Symbol_table::PREDEFINED,
8683                                      0, 0, elfcpp::STT_OBJECT,
8684                                      elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8685                                      true, false);
8686         }
8687     }
8688
8689   // Create an .ARM.attributes section if we have merged any attributes
8690   // from inputs.
8691   if (merged_any_attributes)
8692     {
8693       Output_attributes_section_data* attributes_section =
8694       new Output_attributes_section_data(*this->attributes_section_data_);
8695       layout->add_output_section_data(".ARM.attributes",
8696                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8697                                       attributes_section, ORDER_INVALID,
8698                                       false);
8699     }
8700
8701   // Fix up links in section EXIDX headers.
8702   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8703        p != layout->section_list().end();
8704        ++p)
8705     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8706       {
8707         Arm_output_section<big_endian>* os =
8708           Arm_output_section<big_endian>::as_arm_output_section(*p);
8709         os->set_exidx_section_link();
8710       }
8711 }
8712
8713 // Return whether a direct absolute static relocation needs to be applied.
8714 // In cases where Scan::local() or Scan::global() has created
8715 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8716 // of the relocation is carried in the data, and we must not
8717 // apply the static relocation.
8718
8719 template<bool big_endian>
8720 inline bool
8721 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8722     const Sized_symbol<32>* gsym,
8723     unsigned int r_type,
8724     bool is_32bit,
8725     Output_section* output_section)
8726 {
8727   // If the output section is not allocated, then we didn't call
8728   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8729   // the reloc here.
8730   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8731       return true;
8732
8733   int ref_flags = Scan::get_reference_flags(r_type);
8734
8735   // For local symbols, we will have created a non-RELATIVE dynamic
8736   // relocation only if (a) the output is position independent,
8737   // (b) the relocation is absolute (not pc- or segment-relative), and
8738   // (c) the relocation is not 32 bits wide.
8739   if (gsym == NULL)
8740     return !(parameters->options().output_is_position_independent()
8741              && (ref_flags & Symbol::ABSOLUTE_REF)
8742              && !is_32bit);
8743
8744   // For global symbols, we use the same helper routines used in the
8745   // scan pass.  If we did not create a dynamic relocation, or if we
8746   // created a RELATIVE dynamic relocation, we should apply the static
8747   // relocation.
8748   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8749   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8750                  && gsym->can_use_relative_reloc(ref_flags
8751                                                  & Symbol::FUNCTION_CALL);
8752   return !has_dyn || is_rel;
8753 }
8754
8755 // Perform a relocation.
8756
8757 template<bool big_endian>
8758 inline bool
8759 Target_arm<big_endian>::Relocate::relocate(
8760     const Relocate_info<32, big_endian>* relinfo,
8761     Target_arm* target,
8762     Output_section* output_section,
8763     size_t relnum,
8764     const elfcpp::Rel<32, big_endian>& rel,
8765     unsigned int r_type,
8766     const Sized_symbol<32>* gsym,
8767     const Symbol_value<32>* psymval,
8768     unsigned char* view,
8769     Arm_address address,
8770     section_size_type view_size)
8771 {
8772   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8773
8774   r_type = get_real_reloc_type(r_type);
8775   const Arm_reloc_property* reloc_property =
8776     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8777   if (reloc_property == NULL)
8778     {
8779       std::string reloc_name =
8780         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8781       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8782                              _("cannot relocate %s in object file"),
8783                              reloc_name.c_str());
8784       return true;
8785     }
8786
8787   const Arm_relobj<big_endian>* object =
8788     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8789
8790   // If the final branch target of a relocation is THUMB instruction, this
8791   // is 1.  Otherwise it is 0.
8792   Arm_address thumb_bit = 0;
8793   Symbol_value<32> symval;
8794   bool is_weakly_undefined_without_plt = false;
8795   bool have_got_offset = false;
8796   unsigned int got_offset = 0;
8797
8798   // If the relocation uses the GOT entry of a symbol instead of the symbol
8799   // itself, we don't care about whether the symbol is defined or what kind
8800   // of symbol it is.
8801   if (reloc_property->uses_got_entry())
8802     {
8803       // Get the GOT offset.
8804       // The GOT pointer points to the end of the GOT section.
8805       // We need to subtract the size of the GOT section to get
8806       // the actual offset to use in the relocation.
8807       // TODO: We should move GOT offset computing code in TLS relocations
8808       // to here.
8809       switch (r_type)
8810         {
8811         case elfcpp::R_ARM_GOT_BREL:
8812         case elfcpp::R_ARM_GOT_PREL:
8813           if (gsym != NULL)
8814             {
8815               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8816               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8817                             - target->got_size());
8818             }
8819           else
8820             {
8821               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8822               gold_assert(object->local_has_got_offset(r_sym,
8823                                                        GOT_TYPE_STANDARD));
8824               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8825                             - target->got_size());
8826             }
8827           have_got_offset = true;
8828           break;
8829
8830         default:
8831           break;
8832         }
8833     }
8834   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8835     {
8836       if (gsym != NULL)
8837         {
8838           // This is a global symbol.  Determine if we use PLT and if the
8839           // final target is THUMB.
8840           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8841             {
8842               // This uses a PLT, change the symbol value.
8843               symval.set_output_value(target->plt_section()->address()
8844                                       + gsym->plt_offset());
8845               psymval = &symval;
8846             }
8847           else if (gsym->is_weak_undefined())
8848             {
8849               // This is a weakly undefined symbol and we do not use PLT
8850               // for this relocation.  A branch targeting this symbol will
8851               // be converted into an NOP.
8852               is_weakly_undefined_without_plt = true;
8853             }
8854           else if (gsym->is_undefined() && reloc_property->uses_symbol())
8855             {
8856               // This relocation uses the symbol value but the symbol is
8857               // undefined.  Exit early and have the caller reporting an
8858               // error.
8859               return true;
8860             }
8861           else
8862             {
8863               // Set thumb bit if symbol:
8864               // -Has type STT_ARM_TFUNC or
8865               // -Has type STT_FUNC, is defined and with LSB in value set.
8866               thumb_bit =
8867                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8868                  || (gsym->type() == elfcpp::STT_FUNC
8869                      && !gsym->is_undefined()
8870                      && ((psymval->value(object, 0) & 1) != 0)))
8871                 ? 1
8872                 : 0);
8873             }
8874         }
8875       else
8876         {
8877           // This is a local symbol.  Determine if the final target is THUMB.
8878           // We saved this information when all the local symbols were read.
8879           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8880           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8881           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8882         }
8883     }
8884   else
8885     {
8886       // This is a fake relocation synthesized for a stub.  It does not have
8887       // a real symbol.  We just look at the LSB of the symbol value to
8888       // determine if the target is THUMB or not.
8889       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8890     }
8891
8892   // Strip LSB if this points to a THUMB target.
8893   if (thumb_bit != 0
8894       && reloc_property->uses_thumb_bit() 
8895       && ((psymval->value(object, 0) & 1) != 0))
8896     {
8897       Arm_address stripped_value =
8898         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8899       symval.set_output_value(stripped_value);
8900       psymval = &symval;
8901     } 
8902
8903   // To look up relocation stubs, we need to pass the symbol table index of
8904   // a local symbol.
8905   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8906
8907   // Get the addressing origin of the output segment defining the
8908   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8909   Arm_address sym_origin = 0;
8910   if (reloc_property->uses_symbol_base())
8911     {
8912       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8913         // R_ARM_BASE_ABS with the NULL symbol will give the
8914         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8915         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8916         sym_origin = target->got_plt_section()->address();
8917       else if (gsym == NULL)
8918         sym_origin = 0;
8919       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8920         sym_origin = gsym->output_segment()->vaddr();
8921       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8922         sym_origin = gsym->output_data()->address();
8923
8924       // TODO: Assumes the segment base to be zero for the global symbols
8925       // till the proper support for the segment-base-relative addressing
8926       // will be implemented.  This is consistent with GNU ld.
8927     }
8928
8929   // For relative addressing relocation, find out the relative address base.
8930   Arm_address relative_address_base = 0;
8931   switch(reloc_property->relative_address_base())
8932     {
8933     case Arm_reloc_property::RAB_NONE:
8934     // Relocations with relative address bases RAB_TLS and RAB_tp are
8935     // handled by relocate_tls.  So we do not need to do anything here.
8936     case Arm_reloc_property::RAB_TLS:
8937     case Arm_reloc_property::RAB_tp:
8938       break;
8939     case Arm_reloc_property::RAB_B_S:
8940       relative_address_base = sym_origin;
8941       break;
8942     case Arm_reloc_property::RAB_GOT_ORG:
8943       relative_address_base = target->got_plt_section()->address();
8944       break;
8945     case Arm_reloc_property::RAB_P:
8946       relative_address_base = address;
8947       break;
8948     case Arm_reloc_property::RAB_Pa:
8949       relative_address_base = address & 0xfffffffcU;
8950       break;
8951     default:
8952       gold_unreachable(); 
8953     }
8954     
8955   typename Arm_relocate_functions::Status reloc_status =
8956         Arm_relocate_functions::STATUS_OKAY;
8957   bool check_overflow = reloc_property->checks_overflow();
8958   switch (r_type)
8959     {
8960     case elfcpp::R_ARM_NONE:
8961       break;
8962
8963     case elfcpp::R_ARM_ABS8:
8964       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8965         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8966       break;
8967
8968     case elfcpp::R_ARM_ABS12:
8969       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8970         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8971       break;
8972
8973     case elfcpp::R_ARM_ABS16:
8974       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8975         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8976       break;
8977
8978     case elfcpp::R_ARM_ABS32:
8979       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8980         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8981                                                      thumb_bit);
8982       break;
8983
8984     case elfcpp::R_ARM_ABS32_NOI:
8985       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8986         // No thumb bit for this relocation: (S + A)
8987         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8988                                                      0);
8989       break;
8990
8991     case elfcpp::R_ARM_MOVW_ABS_NC:
8992       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8993         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8994                                                     0, thumb_bit,
8995                                                     check_overflow);
8996       break;
8997
8998     case elfcpp::R_ARM_MOVT_ABS:
8999       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9000         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9001       break;
9002
9003     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9004       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9005         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9006                                                         0, thumb_bit, false);
9007       break;
9008
9009     case elfcpp::R_ARM_THM_MOVT_ABS:
9010       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9011         reloc_status = Arm_relocate_functions::thm_movt(view, object,
9012                                                         psymval, 0);
9013       break;
9014
9015     case elfcpp::R_ARM_MOVW_PREL_NC:
9016     case elfcpp::R_ARM_MOVW_BREL_NC:
9017     case elfcpp::R_ARM_MOVW_BREL:
9018       reloc_status =
9019         Arm_relocate_functions::movw(view, object, psymval,
9020                                      relative_address_base, thumb_bit,
9021                                      check_overflow);
9022       break;
9023
9024     case elfcpp::R_ARM_MOVT_PREL:
9025     case elfcpp::R_ARM_MOVT_BREL:
9026       reloc_status =
9027         Arm_relocate_functions::movt(view, object, psymval,
9028                                      relative_address_base);
9029       break;
9030
9031     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9032     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9033     case elfcpp::R_ARM_THM_MOVW_BREL:
9034       reloc_status =
9035         Arm_relocate_functions::thm_movw(view, object, psymval,
9036                                          relative_address_base,
9037                                          thumb_bit, check_overflow);
9038       break;
9039
9040     case elfcpp::R_ARM_THM_MOVT_PREL:
9041     case elfcpp::R_ARM_THM_MOVT_BREL:
9042       reloc_status =
9043         Arm_relocate_functions::thm_movt(view, object, psymval,
9044                                          relative_address_base);
9045       break;
9046         
9047     case elfcpp::R_ARM_REL32:
9048       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9049                                                    address, thumb_bit);
9050       break;
9051
9052     case elfcpp::R_ARM_THM_ABS5:
9053       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9054         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9055       break;
9056
9057     // Thumb long branches.
9058     case elfcpp::R_ARM_THM_CALL:
9059     case elfcpp::R_ARM_THM_XPC22:
9060     case elfcpp::R_ARM_THM_JUMP24:
9061       reloc_status =
9062         Arm_relocate_functions::thumb_branch_common(
9063             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9064             thumb_bit, is_weakly_undefined_without_plt);
9065       break;
9066
9067     case elfcpp::R_ARM_GOTOFF32:
9068       {
9069         Arm_address got_origin;
9070         got_origin = target->got_plt_section()->address();
9071         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9072                                                      got_origin, thumb_bit);
9073       }
9074       break;
9075
9076     case elfcpp::R_ARM_BASE_PREL:
9077       gold_assert(gsym != NULL);
9078       reloc_status =
9079           Arm_relocate_functions::base_prel(view, sym_origin, address);
9080       break;
9081
9082     case elfcpp::R_ARM_BASE_ABS:
9083       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9084         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9085       break;
9086
9087     case elfcpp::R_ARM_GOT_BREL:
9088       gold_assert(have_got_offset);
9089       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9090       break;
9091
9092     case elfcpp::R_ARM_GOT_PREL:
9093       gold_assert(have_got_offset);
9094       // Get the address origin for GOT PLT, which is allocated right
9095       // after the GOT section, to calculate an absolute address of
9096       // the symbol GOT entry (got_origin + got_offset).
9097       Arm_address got_origin;
9098       got_origin = target->got_plt_section()->address();
9099       reloc_status = Arm_relocate_functions::got_prel(view,
9100                                                       got_origin + got_offset,
9101                                                       address);
9102       break;
9103
9104     case elfcpp::R_ARM_PLT32:
9105     case elfcpp::R_ARM_CALL:
9106     case elfcpp::R_ARM_JUMP24:
9107     case elfcpp::R_ARM_XPC25:
9108       gold_assert(gsym == NULL
9109                   || gsym->has_plt_offset()
9110                   || gsym->final_value_is_known()
9111                   || (gsym->is_defined()
9112                       && !gsym->is_from_dynobj()
9113                       && !gsym->is_preemptible()));
9114       reloc_status =
9115         Arm_relocate_functions::arm_branch_common(
9116             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9117             thumb_bit, is_weakly_undefined_without_plt);
9118       break;
9119
9120     case elfcpp::R_ARM_THM_JUMP19:
9121       reloc_status =
9122         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9123                                            thumb_bit);
9124       break;
9125
9126     case elfcpp::R_ARM_THM_JUMP6:
9127       reloc_status =
9128         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9129       break;
9130
9131     case elfcpp::R_ARM_THM_JUMP8:
9132       reloc_status =
9133         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9134       break;
9135
9136     case elfcpp::R_ARM_THM_JUMP11:
9137       reloc_status =
9138         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9139       break;
9140
9141     case elfcpp::R_ARM_PREL31:
9142       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9143                                                     address, thumb_bit);
9144       break;
9145
9146     case elfcpp::R_ARM_V4BX:
9147       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9148         {
9149           const bool is_v4bx_interworking =
9150               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9151           reloc_status =
9152             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9153                                          is_v4bx_interworking);
9154         }
9155       break;
9156
9157     case elfcpp::R_ARM_THM_PC8:
9158       reloc_status =
9159         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9160       break;
9161
9162     case elfcpp::R_ARM_THM_PC12:
9163       reloc_status =
9164         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9165       break;
9166
9167     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9168       reloc_status =
9169         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9170                                           thumb_bit);
9171       break;
9172
9173     case elfcpp::R_ARM_ALU_PC_G0_NC:
9174     case elfcpp::R_ARM_ALU_PC_G0:
9175     case elfcpp::R_ARM_ALU_PC_G1_NC:
9176     case elfcpp::R_ARM_ALU_PC_G1:
9177     case elfcpp::R_ARM_ALU_PC_G2:
9178     case elfcpp::R_ARM_ALU_SB_G0_NC:
9179     case elfcpp::R_ARM_ALU_SB_G0:
9180     case elfcpp::R_ARM_ALU_SB_G1_NC:
9181     case elfcpp::R_ARM_ALU_SB_G1:
9182     case elfcpp::R_ARM_ALU_SB_G2:
9183       reloc_status =
9184         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9185                                             reloc_property->group_index(),
9186                                             relative_address_base,
9187                                             thumb_bit, check_overflow);
9188       break;
9189
9190     case elfcpp::R_ARM_LDR_PC_G0:
9191     case elfcpp::R_ARM_LDR_PC_G1:
9192     case elfcpp::R_ARM_LDR_PC_G2:
9193     case elfcpp::R_ARM_LDR_SB_G0:
9194     case elfcpp::R_ARM_LDR_SB_G1:
9195     case elfcpp::R_ARM_LDR_SB_G2:
9196       reloc_status =
9197           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9198                                               reloc_property->group_index(),
9199                                               relative_address_base);
9200       break;
9201
9202     case elfcpp::R_ARM_LDRS_PC_G0:
9203     case elfcpp::R_ARM_LDRS_PC_G1:
9204     case elfcpp::R_ARM_LDRS_PC_G2:
9205     case elfcpp::R_ARM_LDRS_SB_G0:
9206     case elfcpp::R_ARM_LDRS_SB_G1:
9207     case elfcpp::R_ARM_LDRS_SB_G2:
9208       reloc_status =
9209           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9210                                                reloc_property->group_index(),
9211                                                relative_address_base);
9212       break;
9213
9214     case elfcpp::R_ARM_LDC_PC_G0:
9215     case elfcpp::R_ARM_LDC_PC_G1:
9216     case elfcpp::R_ARM_LDC_PC_G2:
9217     case elfcpp::R_ARM_LDC_SB_G0:
9218     case elfcpp::R_ARM_LDC_SB_G1:
9219     case elfcpp::R_ARM_LDC_SB_G2:
9220       reloc_status =
9221           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9222                                               reloc_property->group_index(),
9223                                               relative_address_base);
9224       break;
9225
9226       // These are initial tls relocs, which are expected when
9227       // linking.
9228     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9229     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9230     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9231     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9232     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9233       reloc_status =
9234         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9235                            view, address, view_size);
9236       break;
9237
9238     // The known and unknown unsupported and/or deprecated relocations.
9239     case elfcpp::R_ARM_PC24:
9240     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9241     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9242     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9243     default:
9244       // Just silently leave the method. We should get an appropriate error
9245       // message in the scan methods.
9246       break;
9247     }
9248
9249   // Report any errors.
9250   switch (reloc_status)
9251     {
9252     case Arm_relocate_functions::STATUS_OKAY:
9253       break;
9254     case Arm_relocate_functions::STATUS_OVERFLOW:
9255       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9256                              _("relocation overflow in %s"),
9257                              reloc_property->name().c_str());
9258       break;
9259     case Arm_relocate_functions::STATUS_BAD_RELOC:
9260       gold_error_at_location(
9261         relinfo,
9262         relnum,
9263         rel.get_r_offset(),
9264         _("unexpected opcode while processing relocation %s"),
9265         reloc_property->name().c_str());
9266       break;
9267     default:
9268       gold_unreachable();
9269     }
9270
9271   return true;
9272 }
9273
9274 // Perform a TLS relocation.
9275
9276 template<bool big_endian>
9277 inline typename Arm_relocate_functions<big_endian>::Status
9278 Target_arm<big_endian>::Relocate::relocate_tls(
9279     const Relocate_info<32, big_endian>* relinfo,
9280     Target_arm<big_endian>* target,
9281     size_t relnum,
9282     const elfcpp::Rel<32, big_endian>& rel,
9283     unsigned int r_type,
9284     const Sized_symbol<32>* gsym,
9285     const Symbol_value<32>* psymval,
9286     unsigned char* view,
9287     elfcpp::Elf_types<32>::Elf_Addr address,
9288     section_size_type /*view_size*/ )
9289 {
9290   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9291   typedef Relocate_functions<32, big_endian> RelocFuncs;
9292   Output_segment* tls_segment = relinfo->layout->tls_segment();
9293
9294   const Sized_relobj<32, big_endian>* object = relinfo->object;
9295
9296   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9297
9298   const bool is_final = (gsym == NULL
9299                          ? !parameters->options().shared()
9300                          : gsym->final_value_is_known());
9301   const tls::Tls_optimization optimized_type
9302       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9303   switch (r_type)
9304     {
9305     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9306         {
9307           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9308           unsigned int got_offset;
9309           if (gsym != NULL)
9310             {
9311               gold_assert(gsym->has_got_offset(got_type));
9312               got_offset = gsym->got_offset(got_type) - target->got_size();
9313             }
9314           else
9315             {
9316               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9317               gold_assert(object->local_has_got_offset(r_sym, got_type));
9318               got_offset = (object->local_got_offset(r_sym, got_type)
9319                             - target->got_size());
9320             }
9321           if (optimized_type == tls::TLSOPT_NONE)
9322             {
9323               Arm_address got_entry =
9324                 target->got_plt_section()->address() + got_offset;
9325               
9326               // Relocate the field with the PC relative offset of the pair of
9327               // GOT entries.
9328               RelocFuncs::pcrel32(view, got_entry, address);
9329               return ArmRelocFuncs::STATUS_OKAY;
9330             }
9331         }
9332       break;
9333
9334     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9335       if (optimized_type == tls::TLSOPT_NONE)
9336         {
9337           // Relocate the field with the offset of the GOT entry for
9338           // the module index.
9339           unsigned int got_offset;
9340           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9341                         - target->got_size());
9342           Arm_address got_entry =
9343             target->got_plt_section()->address() + got_offset;
9344
9345           // Relocate the field with the PC relative offset of the pair of
9346           // GOT entries.
9347           RelocFuncs::pcrel32(view, got_entry, address);
9348           return ArmRelocFuncs::STATUS_OKAY;
9349         }
9350       break;
9351
9352     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9353       RelocFuncs::rel32(view, value);
9354       return ArmRelocFuncs::STATUS_OKAY;
9355
9356     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9357       if (optimized_type == tls::TLSOPT_NONE)
9358         {
9359           // Relocate the field with the offset of the GOT entry for
9360           // the tp-relative offset of the symbol.
9361           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9362           unsigned int got_offset;
9363           if (gsym != NULL)
9364             {
9365               gold_assert(gsym->has_got_offset(got_type));
9366               got_offset = gsym->got_offset(got_type);
9367             }
9368           else
9369             {
9370               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9371               gold_assert(object->local_has_got_offset(r_sym, got_type));
9372               got_offset = object->local_got_offset(r_sym, got_type);
9373             }
9374
9375           // All GOT offsets are relative to the end of the GOT.
9376           got_offset -= target->got_size();
9377
9378           Arm_address got_entry =
9379             target->got_plt_section()->address() + got_offset;
9380
9381           // Relocate the field with the PC relative offset of the GOT entry.
9382           RelocFuncs::pcrel32(view, got_entry, address);
9383           return ArmRelocFuncs::STATUS_OKAY;
9384         }
9385       break;
9386
9387     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9388       // If we're creating a shared library, a dynamic relocation will
9389       // have been created for this location, so do not apply it now.
9390       if (!parameters->options().shared())
9391         {
9392           gold_assert(tls_segment != NULL);
9393
9394           // $tp points to the TCB, which is followed by the TLS, so we
9395           // need to add TCB size to the offset.
9396           Arm_address aligned_tcb_size =
9397             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9398           RelocFuncs::rel32(view, value + aligned_tcb_size);
9399
9400         }
9401       return ArmRelocFuncs::STATUS_OKAY;
9402     
9403     default:
9404       gold_unreachable();
9405     }
9406
9407   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9408                          _("unsupported reloc %u"),
9409                          r_type);
9410   return ArmRelocFuncs::STATUS_BAD_RELOC;
9411 }
9412
9413 // Relocate section data.
9414
9415 template<bool big_endian>
9416 void
9417 Target_arm<big_endian>::relocate_section(
9418     const Relocate_info<32, big_endian>* relinfo,
9419     unsigned int sh_type,
9420     const unsigned char* prelocs,
9421     size_t reloc_count,
9422     Output_section* output_section,
9423     bool needs_special_offset_handling,
9424     unsigned char* view,
9425     Arm_address address,
9426     section_size_type view_size,
9427     const Reloc_symbol_changes* reloc_symbol_changes)
9428 {
9429   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9430   gold_assert(sh_type == elfcpp::SHT_REL);
9431
9432   // See if we are relocating a relaxed input section.  If so, the view
9433   // covers the whole output section and we need to adjust accordingly.
9434   if (needs_special_offset_handling)
9435     {
9436       const Output_relaxed_input_section* poris =
9437         output_section->find_relaxed_input_section(relinfo->object,
9438                                                    relinfo->data_shndx);
9439       if (poris != NULL)
9440         {
9441           Arm_address section_address = poris->address();
9442           section_size_type section_size = poris->data_size();
9443
9444           gold_assert((section_address >= address)
9445                       && ((section_address + section_size)
9446                           <= (address + view_size)));
9447
9448           off_t offset = section_address - address;
9449           view += offset;
9450           address += offset;
9451           view_size = section_size;
9452         }
9453     }
9454
9455   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9456                          Arm_relocate>(
9457     relinfo,
9458     this,
9459     prelocs,
9460     reloc_count,
9461     output_section,
9462     needs_special_offset_handling,
9463     view,
9464     address,
9465     view_size,
9466     reloc_symbol_changes);
9467 }
9468
9469 // Return the size of a relocation while scanning during a relocatable
9470 // link.
9471
9472 template<bool big_endian>
9473 unsigned int
9474 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9475     unsigned int r_type,
9476     Relobj* object)
9477 {
9478   r_type = get_real_reloc_type(r_type);
9479   const Arm_reloc_property* arp =
9480       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9481   if (arp != NULL)
9482     return arp->size();
9483   else
9484     {
9485       std::string reloc_name =
9486         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9487       gold_error(_("%s: unexpected %s in object file"),
9488                  object->name().c_str(), reloc_name.c_str());
9489       return 0;
9490     }
9491 }
9492
9493 // Scan the relocs during a relocatable link.
9494
9495 template<bool big_endian>
9496 void
9497 Target_arm<big_endian>::scan_relocatable_relocs(
9498     Symbol_table* symtab,
9499     Layout* layout,
9500     Sized_relobj<32, big_endian>* object,
9501     unsigned int data_shndx,
9502     unsigned int sh_type,
9503     const unsigned char* prelocs,
9504     size_t reloc_count,
9505     Output_section* output_section,
9506     bool needs_special_offset_handling,
9507     size_t local_symbol_count,
9508     const unsigned char* plocal_symbols,
9509     Relocatable_relocs* rr)
9510 {
9511   gold_assert(sh_type == elfcpp::SHT_REL);
9512
9513   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9514     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9515
9516   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9517       Scan_relocatable_relocs>(
9518     symtab,
9519     layout,
9520     object,
9521     data_shndx,
9522     prelocs,
9523     reloc_count,
9524     output_section,
9525     needs_special_offset_handling,
9526     local_symbol_count,
9527     plocal_symbols,
9528     rr);
9529 }
9530
9531 // Relocate a section during a relocatable link.
9532
9533 template<bool big_endian>
9534 void
9535 Target_arm<big_endian>::relocate_for_relocatable(
9536     const Relocate_info<32, big_endian>* relinfo,
9537     unsigned int sh_type,
9538     const unsigned char* prelocs,
9539     size_t reloc_count,
9540     Output_section* output_section,
9541     off_t offset_in_output_section,
9542     const Relocatable_relocs* rr,
9543     unsigned char* view,
9544     Arm_address view_address,
9545     section_size_type view_size,
9546     unsigned char* reloc_view,
9547     section_size_type reloc_view_size)
9548 {
9549   gold_assert(sh_type == elfcpp::SHT_REL);
9550
9551   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9552     relinfo,
9553     prelocs,
9554     reloc_count,
9555     output_section,
9556     offset_in_output_section,
9557     rr,
9558     view,
9559     view_address,
9560     view_size,
9561     reloc_view,
9562     reloc_view_size);
9563 }
9564
9565 // Perform target-specific processing in a relocatable link.  This is
9566 // only used if we use the relocation strategy RELOC_SPECIAL.
9567
9568 template<bool big_endian>
9569 void
9570 Target_arm<big_endian>::relocate_special_relocatable(
9571     const Relocate_info<32, big_endian>* relinfo,
9572     unsigned int sh_type,
9573     const unsigned char* preloc_in,
9574     size_t relnum,
9575     Output_section* output_section,
9576     off_t offset_in_output_section,
9577     unsigned char* view,
9578     elfcpp::Elf_types<32>::Elf_Addr view_address,
9579     section_size_type,
9580     unsigned char* preloc_out)
9581 {
9582   // We can only handle REL type relocation sections.
9583   gold_assert(sh_type == elfcpp::SHT_REL);
9584
9585   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9586   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9587     Reltype_write;
9588   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9589
9590   const Arm_relobj<big_endian>* object =
9591     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9592   const unsigned int local_count = object->local_symbol_count();
9593
9594   Reltype reloc(preloc_in);
9595   Reltype_write reloc_write(preloc_out);
9596
9597   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9598   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9599   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9600
9601   const Arm_reloc_property* arp =
9602     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9603   gold_assert(arp != NULL);
9604
9605   // Get the new symbol index.
9606   // We only use RELOC_SPECIAL strategy in local relocations.
9607   gold_assert(r_sym < local_count);
9608
9609   // We are adjusting a section symbol.  We need to find
9610   // the symbol table index of the section symbol for
9611   // the output section corresponding to input section
9612   // in which this symbol is defined.
9613   bool is_ordinary;
9614   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9615   gold_assert(is_ordinary);
9616   Output_section* os = object->output_section(shndx);
9617   gold_assert(os != NULL);
9618   gold_assert(os->needs_symtab_index());
9619   unsigned int new_symndx = os->symtab_index();
9620
9621   // Get the new offset--the location in the output section where
9622   // this relocation should be applied.
9623
9624   Arm_address offset = reloc.get_r_offset();
9625   Arm_address new_offset;
9626   if (offset_in_output_section != invalid_address)
9627     new_offset = offset + offset_in_output_section;
9628   else
9629     {
9630       section_offset_type sot_offset =
9631           convert_types<section_offset_type, Arm_address>(offset);
9632       section_offset_type new_sot_offset =
9633           output_section->output_offset(object, relinfo->data_shndx,
9634                                         sot_offset);
9635       gold_assert(new_sot_offset != -1);
9636       new_offset = new_sot_offset;
9637     }
9638
9639   // In an object file, r_offset is an offset within the section.
9640   // In an executable or dynamic object, generated by
9641   // --emit-relocs, r_offset is an absolute address.
9642   if (!parameters->options().relocatable())
9643     {
9644       new_offset += view_address;
9645       if (offset_in_output_section != invalid_address)
9646         new_offset -= offset_in_output_section;
9647     }
9648
9649   reloc_write.put_r_offset(new_offset);
9650   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9651
9652   // Handle the reloc addend.
9653   // The relocation uses a section symbol in the input file.
9654   // We are adjusting it to use a section symbol in the output
9655   // file.  The input section symbol refers to some address in
9656   // the input section.  We need the relocation in the output
9657   // file to refer to that same address.  This adjustment to
9658   // the addend is the same calculation we use for a simple
9659   // absolute relocation for the input section symbol.
9660
9661   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9662
9663   // Handle THUMB bit.
9664   Symbol_value<32> symval;
9665   Arm_address thumb_bit =
9666      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9667   if (thumb_bit != 0
9668       && arp->uses_thumb_bit() 
9669       && ((psymval->value(object, 0) & 1) != 0))
9670     {
9671       Arm_address stripped_value =
9672         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9673       symval.set_output_value(stripped_value);
9674       psymval = &symval;
9675     } 
9676
9677   unsigned char* paddend = view + offset;
9678   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9679         Arm_relocate_functions<big_endian>::STATUS_OKAY;
9680   switch (r_type)
9681     {
9682     case elfcpp::R_ARM_ABS8:
9683       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9684                                                               psymval);
9685       break;
9686
9687     case elfcpp::R_ARM_ABS12:
9688       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9689                                                                psymval);
9690       break;
9691
9692     case elfcpp::R_ARM_ABS16:
9693       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9694                                                                psymval);
9695       break;
9696
9697     case elfcpp::R_ARM_THM_ABS5:
9698       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9699                                                                   object,
9700                                                                   psymval);
9701       break;
9702
9703     case elfcpp::R_ARM_MOVW_ABS_NC:
9704     case elfcpp::R_ARM_MOVW_PREL_NC:
9705     case elfcpp::R_ARM_MOVW_BREL_NC:
9706     case elfcpp::R_ARM_MOVW_BREL:
9707       reloc_status = Arm_relocate_functions<big_endian>::movw(
9708           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9709       break;
9710
9711     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9712     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9713     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9714     case elfcpp::R_ARM_THM_MOVW_BREL:
9715       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9716           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9717       break;
9718
9719     case elfcpp::R_ARM_THM_CALL:
9720     case elfcpp::R_ARM_THM_XPC22:
9721     case elfcpp::R_ARM_THM_JUMP24:
9722       reloc_status =
9723         Arm_relocate_functions<big_endian>::thumb_branch_common(
9724             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9725             false);
9726       break;
9727
9728     case elfcpp::R_ARM_PLT32:
9729     case elfcpp::R_ARM_CALL:
9730     case elfcpp::R_ARM_JUMP24:
9731     case elfcpp::R_ARM_XPC25:
9732       reloc_status =
9733         Arm_relocate_functions<big_endian>::arm_branch_common(
9734             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9735             false);
9736       break;
9737
9738     case elfcpp::R_ARM_THM_JUMP19:
9739       reloc_status =
9740         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9741                                                        psymval, 0, thumb_bit);
9742       break;
9743
9744     case elfcpp::R_ARM_THM_JUMP6:
9745       reloc_status =
9746         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9747                                                       0);
9748       break;
9749
9750     case elfcpp::R_ARM_THM_JUMP8:
9751       reloc_status =
9752         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9753                                                       0);
9754       break;
9755
9756     case elfcpp::R_ARM_THM_JUMP11:
9757       reloc_status =
9758         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9759                                                        0);
9760       break;
9761
9762     case elfcpp::R_ARM_PREL31:
9763       reloc_status =
9764         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9765                                                    thumb_bit);
9766       break;
9767
9768     case elfcpp::R_ARM_THM_PC8:
9769       reloc_status =
9770         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9771                                                     0);
9772       break;
9773
9774     case elfcpp::R_ARM_THM_PC12:
9775       reloc_status =
9776         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9777                                                      0);
9778       break;
9779
9780     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9781       reloc_status =
9782         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9783                                                       0, thumb_bit);
9784       break;
9785
9786     // These relocation truncate relocation results so we cannot handle them
9787     // in a relocatable link.
9788     case elfcpp::R_ARM_MOVT_ABS:
9789     case elfcpp::R_ARM_THM_MOVT_ABS:
9790     case elfcpp::R_ARM_MOVT_PREL:
9791     case elfcpp::R_ARM_MOVT_BREL:
9792     case elfcpp::R_ARM_THM_MOVT_PREL:
9793     case elfcpp::R_ARM_THM_MOVT_BREL:
9794     case elfcpp::R_ARM_ALU_PC_G0_NC:
9795     case elfcpp::R_ARM_ALU_PC_G0:
9796     case elfcpp::R_ARM_ALU_PC_G1_NC:
9797     case elfcpp::R_ARM_ALU_PC_G1:
9798     case elfcpp::R_ARM_ALU_PC_G2:
9799     case elfcpp::R_ARM_ALU_SB_G0_NC:
9800     case elfcpp::R_ARM_ALU_SB_G0:
9801     case elfcpp::R_ARM_ALU_SB_G1_NC:
9802     case elfcpp::R_ARM_ALU_SB_G1:
9803     case elfcpp::R_ARM_ALU_SB_G2:
9804     case elfcpp::R_ARM_LDR_PC_G0:
9805     case elfcpp::R_ARM_LDR_PC_G1:
9806     case elfcpp::R_ARM_LDR_PC_G2:
9807     case elfcpp::R_ARM_LDR_SB_G0:
9808     case elfcpp::R_ARM_LDR_SB_G1:
9809     case elfcpp::R_ARM_LDR_SB_G2:
9810     case elfcpp::R_ARM_LDRS_PC_G0:
9811     case elfcpp::R_ARM_LDRS_PC_G1:
9812     case elfcpp::R_ARM_LDRS_PC_G2:
9813     case elfcpp::R_ARM_LDRS_SB_G0:
9814     case elfcpp::R_ARM_LDRS_SB_G1:
9815     case elfcpp::R_ARM_LDRS_SB_G2:
9816     case elfcpp::R_ARM_LDC_PC_G0:
9817     case elfcpp::R_ARM_LDC_PC_G1:
9818     case elfcpp::R_ARM_LDC_PC_G2:
9819     case elfcpp::R_ARM_LDC_SB_G0:
9820     case elfcpp::R_ARM_LDC_SB_G1:
9821     case elfcpp::R_ARM_LDC_SB_G2:
9822       gold_error(_("cannot handle %s in a relocatable link"),
9823                  arp->name().c_str());
9824       break;
9825
9826     default:
9827       gold_unreachable();
9828     }
9829
9830   // Report any errors.
9831   switch (reloc_status)
9832     {
9833     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9834       break;
9835     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9836       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9837                              _("relocation overflow in %s"),
9838                              arp->name().c_str());
9839       break;
9840     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9841       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9842         _("unexpected opcode while processing relocation %s"),
9843         arp->name().c_str());
9844       break;
9845     default:
9846       gold_unreachable();
9847     }
9848 }
9849
9850 // Return the value to use for a dynamic symbol which requires special
9851 // treatment.  This is how we support equality comparisons of function
9852 // pointers across shared library boundaries, as described in the
9853 // processor specific ABI supplement.
9854
9855 template<bool big_endian>
9856 uint64_t
9857 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9858 {
9859   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9860   return this->plt_section()->address() + gsym->plt_offset();
9861 }
9862
9863 // Map platform-specific relocs to real relocs
9864 //
9865 template<bool big_endian>
9866 unsigned int
9867 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9868 {
9869   switch (r_type)
9870     {
9871     case elfcpp::R_ARM_TARGET1:
9872       // This is either R_ARM_ABS32 or R_ARM_REL32;
9873       return elfcpp::R_ARM_ABS32;
9874
9875     case elfcpp::R_ARM_TARGET2:
9876       // This can be any reloc type but usually is R_ARM_GOT_PREL
9877       return elfcpp::R_ARM_GOT_PREL;
9878
9879     default:
9880       return r_type;
9881     }
9882 }
9883
9884 // Whether if two EABI versions V1 and V2 are compatible.
9885
9886 template<bool big_endian>
9887 bool
9888 Target_arm<big_endian>::are_eabi_versions_compatible(
9889     elfcpp::Elf_Word v1,
9890     elfcpp::Elf_Word v2)
9891 {
9892   // v4 and v5 are the same spec before and after it was released,
9893   // so allow mixing them.
9894   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9895       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9896       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9897     return true;
9898
9899   return v1 == v2;
9900 }
9901
9902 // Combine FLAGS from an input object called NAME and the processor-specific
9903 // flags in the ELF header of the output.  Much of this is adapted from the
9904 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9905 // in bfd/elf32-arm.c.
9906
9907 template<bool big_endian>
9908 void
9909 Target_arm<big_endian>::merge_processor_specific_flags(
9910     const std::string& name,
9911     elfcpp::Elf_Word flags)
9912 {
9913   if (this->are_processor_specific_flags_set())
9914     {
9915       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9916
9917       // Nothing to merge if flags equal to those in output.
9918       if (flags == out_flags)
9919         return;
9920
9921       // Complain about various flag mismatches.
9922       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9923       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9924       if (!this->are_eabi_versions_compatible(version1, version2)
9925           && parameters->options().warn_mismatch())
9926         gold_error(_("Source object %s has EABI version %d but output has "
9927                      "EABI version %d."),
9928                    name.c_str(),
9929                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9930                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9931     }
9932   else
9933     {
9934       // If the input is the default architecture and had the default
9935       // flags then do not bother setting the flags for the output
9936       // architecture, instead allow future merges to do this.  If no
9937       // future merges ever set these flags then they will retain their
9938       // uninitialised values, which surprise surprise, correspond
9939       // to the default values.
9940       if (flags == 0)
9941         return;
9942
9943       // This is the first time, just copy the flags.
9944       // We only copy the EABI version for now.
9945       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9946     }
9947 }
9948
9949 // Adjust ELF file header.
9950 template<bool big_endian>
9951 void
9952 Target_arm<big_endian>::do_adjust_elf_header(
9953     unsigned char* view,
9954     int len) const
9955 {
9956   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9957
9958   elfcpp::Ehdr<32, big_endian> ehdr(view);
9959   unsigned char e_ident[elfcpp::EI_NIDENT];
9960   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9961
9962   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9963       == elfcpp::EF_ARM_EABI_UNKNOWN)
9964     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9965   else
9966     e_ident[elfcpp::EI_OSABI] = 0;
9967   e_ident[elfcpp::EI_ABIVERSION] = 0;
9968
9969   // FIXME: Do EF_ARM_BE8 adjustment.
9970
9971   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9972   oehdr.put_e_ident(e_ident);
9973 }
9974
9975 // do_make_elf_object to override the same function in the base class.
9976 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9977 // to store ARM specific information.  Hence we need to have our own
9978 // ELF object creation.
9979
9980 template<bool big_endian>
9981 Object*
9982 Target_arm<big_endian>::do_make_elf_object(
9983     const std::string& name,
9984     Input_file* input_file,
9985     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9986 {
9987   int et = ehdr.get_e_type();
9988   if (et == elfcpp::ET_REL)
9989     {
9990       Arm_relobj<big_endian>* obj =
9991         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9992       obj->setup();
9993       return obj;
9994     }
9995   else if (et == elfcpp::ET_DYN)
9996     {
9997       Sized_dynobj<32, big_endian>* obj =
9998         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9999       obj->setup();
10000       return obj;
10001     }
10002   else
10003     {
10004       gold_error(_("%s: unsupported ELF file type %d"),
10005                  name.c_str(), et);
10006       return NULL;
10007     }
10008 }
10009
10010 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10011 // Returns -1 if no architecture could be read.
10012 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10013
10014 template<bool big_endian>
10015 int
10016 Target_arm<big_endian>::get_secondary_compatible_arch(
10017     const Attributes_section_data* pasd)
10018 {
10019   const Object_attribute* known_attributes =
10020     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10021
10022   // Note: the tag and its argument below are uleb128 values, though
10023   // currently-defined values fit in one byte for each.
10024   const std::string& sv =
10025     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10026   if (sv.size() == 2
10027       && sv.data()[0] == elfcpp::Tag_CPU_arch
10028       && (sv.data()[1] & 128) != 128)
10029    return sv.data()[1];
10030
10031   // This tag is "safely ignorable", so don't complain if it looks funny.
10032   return -1;
10033 }
10034
10035 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10036 // The tag is removed if ARCH is -1.
10037 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10038
10039 template<bool big_endian>
10040 void
10041 Target_arm<big_endian>::set_secondary_compatible_arch(
10042     Attributes_section_data* pasd,
10043     int arch)
10044 {
10045   Object_attribute* known_attributes =
10046     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10047
10048   if (arch == -1)
10049     {
10050       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10051       return;
10052     }
10053
10054   // Note: the tag and its argument below are uleb128 values, though
10055   // currently-defined values fit in one byte for each.
10056   char sv[3];
10057   sv[0] = elfcpp::Tag_CPU_arch;
10058   gold_assert(arch != 0);
10059   sv[1] = arch;
10060   sv[2] = '\0';
10061
10062   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10063 }
10064
10065 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10066 // into account.
10067 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10068
10069 template<bool big_endian>
10070 int
10071 Target_arm<big_endian>::tag_cpu_arch_combine(
10072     const char* name,
10073     int oldtag,
10074     int* secondary_compat_out,
10075     int newtag,
10076     int secondary_compat)
10077 {
10078 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10079   static const int v6t2[] =
10080     {
10081       T(V6T2),   // PRE_V4.
10082       T(V6T2),   // V4.
10083       T(V6T2),   // V4T.
10084       T(V6T2),   // V5T.
10085       T(V6T2),   // V5TE.
10086       T(V6T2),   // V5TEJ.
10087       T(V6T2),   // V6.
10088       T(V7),     // V6KZ.
10089       T(V6T2)    // V6T2.
10090     };
10091   static const int v6k[] =
10092     {
10093       T(V6K),    // PRE_V4.
10094       T(V6K),    // V4.
10095       T(V6K),    // V4T.
10096       T(V6K),    // V5T.
10097       T(V6K),    // V5TE.
10098       T(V6K),    // V5TEJ.
10099       T(V6K),    // V6.
10100       T(V6KZ),   // V6KZ.
10101       T(V7),     // V6T2.
10102       T(V6K)     // V6K.
10103     };
10104   static const int v7[] =
10105     {
10106       T(V7),     // PRE_V4.
10107       T(V7),     // V4.
10108       T(V7),     // V4T.
10109       T(V7),     // V5T.
10110       T(V7),     // V5TE.
10111       T(V7),     // V5TEJ.
10112       T(V7),     // V6.
10113       T(V7),     // V6KZ.
10114       T(V7),     // V6T2.
10115       T(V7),     // V6K.
10116       T(V7)      // V7.
10117     };
10118   static const int v6_m[] =
10119     {
10120       -1,        // PRE_V4.
10121       -1,        // V4.
10122       T(V6K),    // V4T.
10123       T(V6K),    // V5T.
10124       T(V6K),    // V5TE.
10125       T(V6K),    // V5TEJ.
10126       T(V6K),    // V6.
10127       T(V6KZ),   // V6KZ.
10128       T(V7),     // V6T2.
10129       T(V6K),    // V6K.
10130       T(V7),     // V7.
10131       T(V6_M)    // V6_M.
10132     };
10133   static const int v6s_m[] =
10134     {
10135       -1,        // PRE_V4.
10136       -1,        // V4.
10137       T(V6K),    // V4T.
10138       T(V6K),    // V5T.
10139       T(V6K),    // V5TE.
10140       T(V6K),    // V5TEJ.
10141       T(V6K),    // V6.
10142       T(V6KZ),   // V6KZ.
10143       T(V7),     // V6T2.
10144       T(V6K),    // V6K.
10145       T(V7),     // V7.
10146       T(V6S_M),  // V6_M.
10147       T(V6S_M)   // V6S_M.
10148     };
10149   static const int v7e_m[] =
10150     {
10151       -1,       // PRE_V4.
10152       -1,       // V4.
10153       T(V7E_M), // V4T.
10154       T(V7E_M), // V5T.
10155       T(V7E_M), // V5TE.
10156       T(V7E_M), // V5TEJ.
10157       T(V7E_M), // V6.
10158       T(V7E_M), // V6KZ.
10159       T(V7E_M), // V6T2.
10160       T(V7E_M), // V6K.
10161       T(V7E_M), // V7.
10162       T(V7E_M), // V6_M.
10163       T(V7E_M), // V6S_M.
10164       T(V7E_M)  // V7E_M.
10165     };
10166   static const int v4t_plus_v6_m[] =
10167     {
10168       -1,               // PRE_V4.
10169       -1,               // V4.
10170       T(V4T),           // V4T.
10171       T(V5T),           // V5T.
10172       T(V5TE),          // V5TE.
10173       T(V5TEJ),         // V5TEJ.
10174       T(V6),            // V6.
10175       T(V6KZ),          // V6KZ.
10176       T(V6T2),          // V6T2.
10177       T(V6K),           // V6K.
10178       T(V7),            // V7.
10179       T(V6_M),          // V6_M.
10180       T(V6S_M),         // V6S_M.
10181       T(V7E_M),         // V7E_M.
10182       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10183     };
10184   static const int* comb[] =
10185     {
10186       v6t2,
10187       v6k,
10188       v7,
10189       v6_m,
10190       v6s_m,
10191       v7e_m,
10192       // Pseudo-architecture.
10193       v4t_plus_v6_m
10194     };
10195
10196   // Check we've not got a higher architecture than we know about.
10197
10198   if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
10199     {
10200       gold_error(_("%s: unknown CPU architecture"), name);
10201       return -1;
10202     }
10203
10204   // Override old tag if we have a Tag_also_compatible_with on the output.
10205
10206   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10207       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10208     oldtag = T(V4T_PLUS_V6_M);
10209
10210   // And override the new tag if we have a Tag_also_compatible_with on the
10211   // input.
10212
10213   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10214       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10215     newtag = T(V4T_PLUS_V6_M);
10216
10217   // Architectures before V6KZ add features monotonically.
10218   int tagh = std::max(oldtag, newtag);
10219   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10220     return tagh;
10221
10222   int tagl = std::min(oldtag, newtag);
10223   int result = comb[tagh - T(V6T2)][tagl];
10224
10225   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10226   // as the canonical version.
10227   if (result == T(V4T_PLUS_V6_M))
10228     {
10229       result = T(V4T);
10230       *secondary_compat_out = T(V6_M);
10231     }
10232   else
10233     *secondary_compat_out = -1;
10234
10235   if (result == -1)
10236     {
10237       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10238                  name, oldtag, newtag);
10239       return -1;
10240     }
10241
10242   return result;
10243 #undef T
10244 }
10245
10246 // Helper to print AEABI enum tag value.
10247
10248 template<bool big_endian>
10249 std::string
10250 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10251 {
10252   static const char* aeabi_enum_names[] =
10253     { "", "variable-size", "32-bit", "" };
10254   const size_t aeabi_enum_names_size =
10255     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10256
10257   if (value < aeabi_enum_names_size)
10258     return std::string(aeabi_enum_names[value]);
10259   else
10260     {
10261       char buffer[100];
10262       sprintf(buffer, "<unknown value %u>", value);
10263       return std::string(buffer);
10264     }
10265 }
10266
10267 // Return the string value to store in TAG_CPU_name.
10268
10269 template<bool big_endian>
10270 std::string
10271 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10272 {
10273   static const char* name_table[] = {
10274     // These aren't real CPU names, but we can't guess
10275     // that from the architecture version alone.
10276    "Pre v4",
10277    "ARM v4",
10278    "ARM v4T",
10279    "ARM v5T",
10280    "ARM v5TE",
10281    "ARM v5TEJ",
10282    "ARM v6",
10283    "ARM v6KZ",
10284    "ARM v6T2",
10285    "ARM v6K",
10286    "ARM v7",
10287    "ARM v6-M",
10288    "ARM v6S-M",
10289    "ARM v7E-M"
10290  };
10291  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10292
10293   if (value < name_table_size)
10294     return std::string(name_table[value]);
10295   else
10296     {
10297       char buffer[100];
10298       sprintf(buffer, "<unknown CPU value %u>", value);
10299       return std::string(buffer);
10300     } 
10301 }
10302
10303 // Merge object attributes from input file called NAME with those of the
10304 // output.  The input object attributes are in the object pointed by PASD.
10305
10306 template<bool big_endian>
10307 void
10308 Target_arm<big_endian>::merge_object_attributes(
10309     const char* name,
10310     const Attributes_section_data* pasd)
10311 {
10312   // Return if there is no attributes section data.
10313   if (pasd == NULL)
10314     return;
10315
10316   // If output has no object attributes, just copy.
10317   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10318   if (this->attributes_section_data_ == NULL)
10319     {
10320       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10321       Object_attribute* out_attr =
10322         this->attributes_section_data_->known_attributes(vendor);
10323
10324       // We do not output objects with Tag_MPextension_use_legacy - we move
10325       //  the attribute's value to Tag_MPextension_use.  */
10326       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10327         {
10328           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10329               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10330                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10331             {
10332               gold_error(_("%s has both the current and legacy "
10333                            "Tag_MPextension_use attributes"),
10334                          name);
10335             }
10336
10337           out_attr[elfcpp::Tag_MPextension_use] =
10338             out_attr[elfcpp::Tag_MPextension_use_legacy];
10339           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10340           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10341         }
10342
10343       return;
10344     }
10345
10346   const Object_attribute* in_attr = pasd->known_attributes(vendor);
10347   Object_attribute* out_attr =
10348     this->attributes_section_data_->known_attributes(vendor);
10349
10350   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10351   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10352       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10353     {
10354       // Ignore mismatches if the object doesn't use floating point.  */
10355       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10356         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10357             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10358       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10359                && parameters->options().warn_mismatch())
10360         gold_error(_("%s uses VFP register arguments, output does not"),
10361                    name);
10362     }
10363
10364   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10365     {
10366       // Merge this attribute with existing attributes.
10367       switch (i)
10368         {
10369         case elfcpp::Tag_CPU_raw_name:
10370         case elfcpp::Tag_CPU_name:
10371           // These are merged after Tag_CPU_arch.
10372           break;
10373
10374         case elfcpp::Tag_ABI_optimization_goals:
10375         case elfcpp::Tag_ABI_FP_optimization_goals:
10376           // Use the first value seen.
10377           break;
10378
10379         case elfcpp::Tag_CPU_arch:
10380           {
10381             unsigned int saved_out_attr = out_attr->int_value();
10382             // Merge Tag_CPU_arch and Tag_also_compatible_with.
10383             int secondary_compat =
10384               this->get_secondary_compatible_arch(pasd);
10385             int secondary_compat_out =
10386               this->get_secondary_compatible_arch(
10387                   this->attributes_section_data_);
10388             out_attr[i].set_int_value(
10389                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10390                                      &secondary_compat_out,
10391                                      in_attr[i].int_value(),
10392                                      secondary_compat));
10393             this->set_secondary_compatible_arch(this->attributes_section_data_,
10394                                                 secondary_compat_out);
10395
10396             // Merge Tag_CPU_name and Tag_CPU_raw_name.
10397             if (out_attr[i].int_value() == saved_out_attr)
10398               ; // Leave the names alone.
10399             else if (out_attr[i].int_value() == in_attr[i].int_value())
10400               {
10401                 // The output architecture has been changed to match the
10402                 // input architecture.  Use the input names.
10403                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10404                     in_attr[elfcpp::Tag_CPU_name].string_value());
10405                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10406                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10407               }
10408             else
10409               {
10410                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10411                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10412               }
10413
10414             // If we still don't have a value for Tag_CPU_name,
10415             // make one up now.  Tag_CPU_raw_name remains blank.
10416             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10417               {
10418                 const std::string cpu_name =
10419                   this->tag_cpu_name_value(out_attr[i].int_value());
10420                 // FIXME:  If we see an unknown CPU, this will be set
10421                 // to "<unknown CPU n>", where n is the attribute value.
10422                 // This is different from BFD, which leaves the name alone.
10423                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10424               }
10425           }
10426           break;
10427
10428         case elfcpp::Tag_ARM_ISA_use:
10429         case elfcpp::Tag_THUMB_ISA_use:
10430         case elfcpp::Tag_WMMX_arch:
10431         case elfcpp::Tag_Advanced_SIMD_arch:
10432           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10433         case elfcpp::Tag_ABI_FP_rounding:
10434         case elfcpp::Tag_ABI_FP_exceptions:
10435         case elfcpp::Tag_ABI_FP_user_exceptions:
10436         case elfcpp::Tag_ABI_FP_number_model:
10437         case elfcpp::Tag_VFP_HP_extension:
10438         case elfcpp::Tag_CPU_unaligned_access:
10439         case elfcpp::Tag_T2EE_use:
10440         case elfcpp::Tag_Virtualization_use:
10441         case elfcpp::Tag_MPextension_use:
10442           // Use the largest value specified.
10443           if (in_attr[i].int_value() > out_attr[i].int_value())
10444             out_attr[i].set_int_value(in_attr[i].int_value());
10445           break;
10446
10447         case elfcpp::Tag_ABI_align8_preserved:
10448         case elfcpp::Tag_ABI_PCS_RO_data:
10449           // Use the smallest value specified.
10450           if (in_attr[i].int_value() < out_attr[i].int_value())
10451             out_attr[i].set_int_value(in_attr[i].int_value());
10452           break;
10453
10454         case elfcpp::Tag_ABI_align8_needed:
10455           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10456               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10457                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10458                       == 0)))
10459             {
10460               // This error message should be enabled once all non-conforming
10461               // binaries in the toolchain have had the attributes set
10462               // properly.
10463               // gold_error(_("output 8-byte data alignment conflicts with %s"),
10464               //            name);
10465             }
10466           // Fall through.
10467         case elfcpp::Tag_ABI_FP_denormal:
10468         case elfcpp::Tag_ABI_PCS_GOT_use:
10469           {
10470             // These tags have 0 = don't care, 1 = strong requirement,
10471             // 2 = weak requirement.
10472             static const int order_021[3] = {0, 2, 1};
10473
10474             // Use the "greatest" from the sequence 0, 2, 1, or the largest
10475             // value if greater than 2 (for future-proofing).
10476             if ((in_attr[i].int_value() > 2
10477                  && in_attr[i].int_value() > out_attr[i].int_value())
10478                 || (in_attr[i].int_value() <= 2
10479                     && out_attr[i].int_value() <= 2
10480                     && (order_021[in_attr[i].int_value()]
10481                         > order_021[out_attr[i].int_value()])))
10482               out_attr[i].set_int_value(in_attr[i].int_value());
10483           }
10484           break;
10485
10486         case elfcpp::Tag_CPU_arch_profile:
10487           if (out_attr[i].int_value() != in_attr[i].int_value())
10488             {
10489               // 0 will merge with anything.
10490               // 'A' and 'S' merge to 'A'.
10491               // 'R' and 'S' merge to 'R'.
10492               // 'M' and 'A|R|S' is an error.
10493               if (out_attr[i].int_value() == 0
10494                   || (out_attr[i].int_value() == 'S'
10495                       && (in_attr[i].int_value() == 'A'
10496                           || in_attr[i].int_value() == 'R')))
10497                 out_attr[i].set_int_value(in_attr[i].int_value());
10498               else if (in_attr[i].int_value() == 0
10499                        || (in_attr[i].int_value() == 'S'
10500                            && (out_attr[i].int_value() == 'A'
10501                                || out_attr[i].int_value() == 'R')))
10502                 ; // Do nothing.
10503               else if (parameters->options().warn_mismatch())
10504                 {
10505                   gold_error
10506                     (_("conflicting architecture profiles %c/%c"),
10507                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10508                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10509                 }
10510             }
10511           break;
10512         case elfcpp::Tag_VFP_arch:
10513             {
10514               static const struct
10515               {
10516                   int ver;
10517                   int regs;
10518               } vfp_versions[7] =
10519                 {
10520                   {0, 0},
10521                   {1, 16},
10522                   {2, 16},
10523                   {3, 32},
10524                   {3, 16},
10525                   {4, 32},
10526                   {4, 16}
10527                 };
10528
10529               // Values greater than 6 aren't defined, so just pick the
10530               // biggest.
10531               if (in_attr[i].int_value() > 6
10532                   && in_attr[i].int_value() > out_attr[i].int_value())
10533                 {
10534                   *out_attr = *in_attr;
10535                   break;
10536                 }
10537               // The output uses the superset of input features
10538               // (ISA version) and registers.
10539               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10540                                  vfp_versions[out_attr[i].int_value()].ver);
10541               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10542                                   vfp_versions[out_attr[i].int_value()].regs);
10543               // This assumes all possible supersets are also a valid
10544               // options.
10545               int newval;
10546               for (newval = 6; newval > 0; newval--)
10547                 {
10548                   if (regs == vfp_versions[newval].regs
10549                       && ver == vfp_versions[newval].ver)
10550                     break;
10551                 }
10552               out_attr[i].set_int_value(newval);
10553             }
10554           break;
10555         case elfcpp::Tag_PCS_config:
10556           if (out_attr[i].int_value() == 0)
10557             out_attr[i].set_int_value(in_attr[i].int_value());
10558           else if (in_attr[i].int_value() != 0
10559                    && out_attr[i].int_value() != 0
10560                    && parameters->options().warn_mismatch())
10561             {
10562               // It's sometimes ok to mix different configs, so this is only
10563               // a warning.
10564               gold_warning(_("%s: conflicting platform configuration"), name);
10565             }
10566           break;
10567         case elfcpp::Tag_ABI_PCS_R9_use:
10568           if (in_attr[i].int_value() != out_attr[i].int_value()
10569               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10570               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10571               && parameters->options().warn_mismatch())
10572             {
10573               gold_error(_("%s: conflicting use of R9"), name);
10574             }
10575           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10576             out_attr[i].set_int_value(in_attr[i].int_value());
10577           break;
10578         case elfcpp::Tag_ABI_PCS_RW_data:
10579           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10580               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10581                   != elfcpp::AEABI_R9_SB)
10582               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10583                   != elfcpp::AEABI_R9_unused)
10584               && parameters->options().warn_mismatch())
10585             {
10586               gold_error(_("%s: SB relative addressing conflicts with use "
10587                            "of R9"),
10588                            name);
10589             }
10590           // Use the smallest value specified.
10591           if (in_attr[i].int_value() < out_attr[i].int_value())
10592             out_attr[i].set_int_value(in_attr[i].int_value());
10593           break;
10594         case elfcpp::Tag_ABI_PCS_wchar_t:
10595           if (out_attr[i].int_value()
10596               && in_attr[i].int_value()
10597               && out_attr[i].int_value() != in_attr[i].int_value()
10598               && parameters->options().warn_mismatch()
10599               && parameters->options().wchar_size_warning())
10600             {
10601               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10602                              "use %u-byte wchar_t; use of wchar_t values "
10603                              "across objects may fail"),
10604                            name, in_attr[i].int_value(),
10605                            out_attr[i].int_value());
10606             }
10607           else if (in_attr[i].int_value() && !out_attr[i].int_value())
10608             out_attr[i].set_int_value(in_attr[i].int_value());
10609           break;
10610         case elfcpp::Tag_ABI_enum_size:
10611           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10612             {
10613               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10614                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10615                 {
10616                   // The existing object is compatible with anything.
10617                   // Use whatever requirements the new object has.
10618                   out_attr[i].set_int_value(in_attr[i].int_value());
10619                 }
10620               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10621                        && out_attr[i].int_value() != in_attr[i].int_value()
10622                        && parameters->options().warn_mismatch()
10623                        && parameters->options().enum_size_warning())
10624                 {
10625                   unsigned int in_value = in_attr[i].int_value();
10626                   unsigned int out_value = out_attr[i].int_value();
10627                   gold_warning(_("%s uses %s enums yet the output is to use "
10628                                  "%s enums; use of enum values across objects "
10629                                  "may fail"),
10630                                name,
10631                                this->aeabi_enum_name(in_value).c_str(),
10632                                this->aeabi_enum_name(out_value).c_str());
10633                 }
10634             }
10635           break;
10636         case elfcpp::Tag_ABI_VFP_args:
10637           // Already done.
10638           break;
10639         case elfcpp::Tag_ABI_WMMX_args:
10640           if (in_attr[i].int_value() != out_attr[i].int_value()
10641               && parameters->options().warn_mismatch())
10642             {
10643               gold_error(_("%s uses iWMMXt register arguments, output does "
10644                            "not"),
10645                          name);
10646             }
10647           break;
10648         case Object_attribute::Tag_compatibility:
10649           // Merged in target-independent code.
10650           break;
10651         case elfcpp::Tag_ABI_HardFP_use:
10652           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10653           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10654               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10655             out_attr[i].set_int_value(3);
10656           else if (in_attr[i].int_value() > out_attr[i].int_value())
10657             out_attr[i].set_int_value(in_attr[i].int_value());
10658           break;
10659         case elfcpp::Tag_ABI_FP_16bit_format:
10660           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10661             {
10662               if (in_attr[i].int_value() != out_attr[i].int_value()
10663                   && parameters->options().warn_mismatch())
10664                 gold_error(_("fp16 format mismatch between %s and output"),
10665                            name);
10666             }
10667           if (in_attr[i].int_value() != 0)
10668             out_attr[i].set_int_value(in_attr[i].int_value());
10669           break;
10670
10671         case elfcpp::Tag_DIV_use:
10672           // This tag is set to zero if we can use UDIV and SDIV in Thumb
10673           // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10674           // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10675           // CPU.  We will merge as follows: If the input attribute's value
10676           // is one then the output attribute's value remains unchanged.  If
10677           // the input attribute's value is zero or two then if the output
10678           // attribute's value is one the output value is set to the input
10679           // value, otherwise the output value must be the same as the
10680           // inputs.  */ 
10681           if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) 
10682             { 
10683               if (in_attr[i].int_value() != out_attr[i].int_value())
10684                 {
10685                   gold_error(_("DIV usage mismatch between %s and output"),
10686                              name);
10687                 }
10688             } 
10689
10690           if (in_attr[i].int_value() != 1)
10691             out_attr[i].set_int_value(in_attr[i].int_value()); 
10692           
10693           break;
10694
10695         case elfcpp::Tag_MPextension_use_legacy:
10696           // We don't output objects with Tag_MPextension_use_legacy - we
10697           // move the value to Tag_MPextension_use.
10698           if (in_attr[i].int_value() != 0
10699               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10700             {
10701               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10702                   != in_attr[i].int_value())
10703                 {
10704                   gold_error(_("%s has has both the current and legacy "
10705                                "Tag_MPextension_use attributes"), 
10706                              name);
10707                 }
10708             }
10709
10710           if (in_attr[i].int_value()
10711               > out_attr[elfcpp::Tag_MPextension_use].int_value())
10712             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10713
10714           break;
10715
10716         case elfcpp::Tag_nodefaults:
10717           // This tag is set if it exists, but the value is unused (and is
10718           // typically zero).  We don't actually need to do anything here -
10719           // the merge happens automatically when the type flags are merged
10720           // below.
10721           break;
10722         case elfcpp::Tag_also_compatible_with:
10723           // Already done in Tag_CPU_arch.
10724           break;
10725         case elfcpp::Tag_conformance:
10726           // Keep the attribute if it matches.  Throw it away otherwise.
10727           // No attribute means no claim to conform.
10728           if (in_attr[i].string_value() != out_attr[i].string_value())
10729             out_attr[i].set_string_value("");
10730           break;
10731
10732         default:
10733           {
10734             const char* err_object = NULL;
10735
10736             // The "known_obj_attributes" table does contain some undefined
10737             // attributes.  Ensure that there are unused.
10738             if (out_attr[i].int_value() != 0
10739                 || out_attr[i].string_value() != "")
10740               err_object = "output";
10741             else if (in_attr[i].int_value() != 0
10742                      || in_attr[i].string_value() != "")
10743               err_object = name;
10744
10745             if (err_object != NULL
10746                 && parameters->options().warn_mismatch())
10747               {
10748                 // Attribute numbers >=64 (mod 128) can be safely ignored.
10749                 if ((i & 127) < 64)
10750                   gold_error(_("%s: unknown mandatory EABI object attribute "
10751                                "%d"),
10752                              err_object, i);
10753                 else
10754                   gold_warning(_("%s: unknown EABI object attribute %d"),
10755                                err_object, i);
10756               }
10757
10758             // Only pass on attributes that match in both inputs.
10759             if (!in_attr[i].matches(out_attr[i]))
10760               {
10761                 out_attr[i].set_int_value(0);
10762                 out_attr[i].set_string_value("");
10763               }
10764           }
10765         }
10766
10767       // If out_attr was copied from in_attr then it won't have a type yet.
10768       if (in_attr[i].type() && !out_attr[i].type())
10769         out_attr[i].set_type(in_attr[i].type());
10770     }
10771
10772   // Merge Tag_compatibility attributes and any common GNU ones.
10773   this->attributes_section_data_->merge(name, pasd);
10774
10775   // Check for any attributes not known on ARM.
10776   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10777   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10778   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10779   Other_attributes* out_other_attributes =
10780     this->attributes_section_data_->other_attributes(vendor);
10781   Other_attributes::iterator out_iter = out_other_attributes->begin();
10782
10783   while (in_iter != in_other_attributes->end()
10784          || out_iter != out_other_attributes->end())
10785     {
10786       const char* err_object = NULL;
10787       int err_tag = 0;
10788
10789       // The tags for each list are in numerical order.
10790       // If the tags are equal, then merge.
10791       if (out_iter != out_other_attributes->end()
10792           && (in_iter == in_other_attributes->end()
10793               || in_iter->first > out_iter->first))
10794         {
10795           // This attribute only exists in output.  We can't merge, and we
10796           // don't know what the tag means, so delete it.
10797           err_object = "output";
10798           err_tag = out_iter->first;
10799           int saved_tag = out_iter->first;
10800           delete out_iter->second;
10801           out_other_attributes->erase(out_iter); 
10802           out_iter = out_other_attributes->upper_bound(saved_tag);
10803         }
10804       else if (in_iter != in_other_attributes->end()
10805                && (out_iter != out_other_attributes->end()
10806                    || in_iter->first < out_iter->first))
10807         {
10808           // This attribute only exists in input. We can't merge, and we
10809           // don't know what the tag means, so ignore it.
10810           err_object = name;
10811           err_tag = in_iter->first;
10812           ++in_iter;
10813         }
10814       else // The tags are equal.
10815         {
10816           // As present, all attributes in the list are unknown, and
10817           // therefore can't be merged meaningfully.
10818           err_object = "output";
10819           err_tag = out_iter->first;
10820
10821           //  Only pass on attributes that match in both inputs.
10822           if (!in_iter->second->matches(*(out_iter->second)))
10823             {
10824               // No match.  Delete the attribute.
10825               int saved_tag = out_iter->first;
10826               delete out_iter->second;
10827               out_other_attributes->erase(out_iter);
10828               out_iter = out_other_attributes->upper_bound(saved_tag);
10829             }
10830           else
10831             {
10832               // Matched.  Keep the attribute and move to the next.
10833               ++out_iter;
10834               ++in_iter;
10835             }
10836         }
10837
10838       if (err_object && parameters->options().warn_mismatch())
10839         {
10840           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10841           if ((err_tag & 127) < 64)
10842             {
10843               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10844                          err_object, err_tag);
10845             }
10846           else
10847             {
10848               gold_warning(_("%s: unknown EABI object attribute %d"),
10849                            err_object, err_tag);
10850             }
10851         }
10852     }
10853 }
10854
10855 // Stub-generation methods for Target_arm.
10856
10857 // Make a new Arm_input_section object.
10858
10859 template<bool big_endian>
10860 Arm_input_section<big_endian>*
10861 Target_arm<big_endian>::new_arm_input_section(
10862     Relobj* relobj,
10863     unsigned int shndx)
10864 {
10865   Section_id sid(relobj, shndx);
10866
10867   Arm_input_section<big_endian>* arm_input_section =
10868     new Arm_input_section<big_endian>(relobj, shndx);
10869   arm_input_section->init();
10870
10871   // Register new Arm_input_section in map for look-up.
10872   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10873     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10874
10875   // Make sure that it we have not created another Arm_input_section
10876   // for this input section already.
10877   gold_assert(ins.second);
10878
10879   return arm_input_section; 
10880 }
10881
10882 // Find the Arm_input_section object corresponding to the SHNDX-th input
10883 // section of RELOBJ.
10884
10885 template<bool big_endian>
10886 Arm_input_section<big_endian>*
10887 Target_arm<big_endian>::find_arm_input_section(
10888     Relobj* relobj,
10889     unsigned int shndx) const
10890 {
10891   Section_id sid(relobj, shndx);
10892   typename Arm_input_section_map::const_iterator p =
10893     this->arm_input_section_map_.find(sid);
10894   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10895 }
10896
10897 // Make a new stub table.
10898
10899 template<bool big_endian>
10900 Stub_table<big_endian>*
10901 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10902 {
10903   Stub_table<big_endian>* stub_table =
10904     new Stub_table<big_endian>(owner);
10905   this->stub_tables_.push_back(stub_table);
10906
10907   stub_table->set_address(owner->address() + owner->data_size());
10908   stub_table->set_file_offset(owner->offset() + owner->data_size());
10909   stub_table->finalize_data_size();
10910
10911   return stub_table;
10912 }
10913
10914 // Scan a relocation for stub generation.
10915
10916 template<bool big_endian>
10917 void
10918 Target_arm<big_endian>::scan_reloc_for_stub(
10919     const Relocate_info<32, big_endian>* relinfo,
10920     unsigned int r_type,
10921     const Sized_symbol<32>* gsym,
10922     unsigned int r_sym,
10923     const Symbol_value<32>* psymval,
10924     elfcpp::Elf_types<32>::Elf_Swxword addend,
10925     Arm_address address)
10926 {
10927   typedef typename Target_arm<big_endian>::Relocate Relocate;
10928
10929   const Arm_relobj<big_endian>* arm_relobj =
10930     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10931
10932   bool target_is_thumb;
10933   Symbol_value<32> symval;
10934   if (gsym != NULL)
10935     {
10936       // This is a global symbol.  Determine if we use PLT and if the
10937       // final target is THUMB.
10938       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10939         {
10940           // This uses a PLT, change the symbol value.
10941           symval.set_output_value(this->plt_section()->address()
10942                                   + gsym->plt_offset());
10943           psymval = &symval;
10944           target_is_thumb = false;
10945         }
10946       else if (gsym->is_undefined())
10947         // There is no need to generate a stub symbol is undefined.
10948         return;
10949       else
10950         {
10951           target_is_thumb =
10952             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10953              || (gsym->type() == elfcpp::STT_FUNC
10954                  && !gsym->is_undefined()
10955                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10956         }
10957     }
10958   else
10959     {
10960       // This is a local symbol.  Determine if the final target is THUMB.
10961       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10962     }
10963
10964   // Strip LSB if this points to a THUMB target.
10965   const Arm_reloc_property* reloc_property =
10966     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10967   gold_assert(reloc_property != NULL);
10968   if (target_is_thumb
10969       && reloc_property->uses_thumb_bit()
10970       && ((psymval->value(arm_relobj, 0) & 1) != 0))
10971     {
10972       Arm_address stripped_value =
10973         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10974       symval.set_output_value(stripped_value);
10975       psymval = &symval;
10976     } 
10977
10978   // Get the symbol value.
10979   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10980
10981   // Owing to pipelining, the PC relative branches below actually skip
10982   // two instructions when the branch offset is 0.
10983   Arm_address destination;
10984   switch (r_type)
10985     {
10986     case elfcpp::R_ARM_CALL:
10987     case elfcpp::R_ARM_JUMP24:
10988     case elfcpp::R_ARM_PLT32:
10989       // ARM branches.
10990       destination = value + addend + 8;
10991       break;
10992     case elfcpp::R_ARM_THM_CALL:
10993     case elfcpp::R_ARM_THM_XPC22:
10994     case elfcpp::R_ARM_THM_JUMP24:
10995     case elfcpp::R_ARM_THM_JUMP19:
10996       // THUMB branches.
10997       destination = value + addend + 4;
10998       break;
10999     default:
11000       gold_unreachable();
11001     }
11002
11003   Reloc_stub* stub = NULL;
11004   Stub_type stub_type =
11005     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11006                                     target_is_thumb);
11007   if (stub_type != arm_stub_none)
11008     {
11009       // Try looking up an existing stub from a stub table.
11010       Stub_table<big_endian>* stub_table = 
11011         arm_relobj->stub_table(relinfo->data_shndx);
11012       gold_assert(stub_table != NULL);
11013    
11014       // Locate stub by destination.
11015       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11016
11017       // Create a stub if there is not one already
11018       stub = stub_table->find_reloc_stub(stub_key);
11019       if (stub == NULL)
11020         {
11021           // create a new stub and add it to stub table.
11022           stub = this->stub_factory().make_reloc_stub(stub_type);
11023           stub_table->add_reloc_stub(stub, stub_key);
11024         }
11025
11026       // Record the destination address.
11027       stub->set_destination_address(destination
11028                                     | (target_is_thumb ? 1 : 0));
11029     }
11030
11031   // For Cortex-A8, we need to record a relocation at 4K page boundary.
11032   if (this->fix_cortex_a8_
11033       && (r_type == elfcpp::R_ARM_THM_JUMP24
11034           || r_type == elfcpp::R_ARM_THM_JUMP19
11035           || r_type == elfcpp::R_ARM_THM_CALL
11036           || r_type == elfcpp::R_ARM_THM_XPC22)
11037       && (address & 0xfffU) == 0xffeU)
11038     {
11039       // Found a candidate.  Note we haven't checked the destination is
11040       // within 4K here: if we do so (and don't create a record) we can't
11041       // tell that a branch should have been relocated when scanning later.
11042       this->cortex_a8_relocs_info_[address] =
11043         new Cortex_a8_reloc(stub, r_type,
11044                             destination | (target_is_thumb ? 1 : 0));
11045     }
11046 }
11047
11048 // This function scans a relocation sections for stub generation.
11049 // The template parameter Relocate must be a class type which provides
11050 // a single function, relocate(), which implements the machine
11051 // specific part of a relocation.
11052
11053 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11054 // SHT_REL or SHT_RELA.
11055
11056 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11057 // of relocs.  OUTPUT_SECTION is the output section.
11058 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11059 // mapped to output offsets.
11060
11061 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11062 // VIEW_SIZE is the size.  These refer to the input section, unless
11063 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11064 // the output section.
11065
11066 template<bool big_endian>
11067 template<int sh_type>
11068 void inline
11069 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11070     const Relocate_info<32, big_endian>* relinfo,
11071     const unsigned char* prelocs,
11072     size_t reloc_count,
11073     Output_section* output_section,
11074     bool needs_special_offset_handling,
11075     const unsigned char* view,
11076     elfcpp::Elf_types<32>::Elf_Addr view_address,
11077     section_size_type)
11078 {
11079   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11080   const int reloc_size =
11081     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11082
11083   Arm_relobj<big_endian>* arm_object =
11084     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11085   unsigned int local_count = arm_object->local_symbol_count();
11086
11087   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11088
11089   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11090     {
11091       Reltype reloc(prelocs);
11092
11093       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11094       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11095       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11096
11097       r_type = this->get_real_reloc_type(r_type);
11098
11099       // Only a few relocation types need stubs.
11100       if ((r_type != elfcpp::R_ARM_CALL)
11101          && (r_type != elfcpp::R_ARM_JUMP24)
11102          && (r_type != elfcpp::R_ARM_PLT32)
11103          && (r_type != elfcpp::R_ARM_THM_CALL)
11104          && (r_type != elfcpp::R_ARM_THM_XPC22)
11105          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11106          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11107          && (r_type != elfcpp::R_ARM_V4BX))
11108         continue;
11109
11110       section_offset_type offset =
11111         convert_to_section_size_type(reloc.get_r_offset());
11112
11113       if (needs_special_offset_handling)
11114         {
11115           offset = output_section->output_offset(relinfo->object,
11116                                                  relinfo->data_shndx,
11117                                                  offset);
11118           if (offset == -1)
11119             continue;
11120         }
11121
11122       // Create a v4bx stub if --fix-v4bx-interworking is used.
11123       if (r_type == elfcpp::R_ARM_V4BX)
11124         {
11125           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11126             {
11127               // Get the BX instruction.
11128               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11129               const Valtype* wv =
11130                 reinterpret_cast<const Valtype*>(view + offset);
11131               elfcpp::Elf_types<32>::Elf_Swxword insn =
11132                 elfcpp::Swap<32, big_endian>::readval(wv);
11133               const uint32_t reg = (insn & 0xf);
11134
11135               if (reg < 0xf)
11136                 {
11137                   // Try looking up an existing stub from a stub table.
11138                   Stub_table<big_endian>* stub_table =
11139                     arm_object->stub_table(relinfo->data_shndx);
11140                   gold_assert(stub_table != NULL);
11141
11142                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11143                     {
11144                       // create a new stub and add it to stub table.
11145                       Arm_v4bx_stub* stub =
11146                         this->stub_factory().make_arm_v4bx_stub(reg);
11147                       gold_assert(stub != NULL);
11148                       stub_table->add_arm_v4bx_stub(stub);
11149                     }
11150                 }
11151             }
11152           continue;
11153         }
11154
11155       // Get the addend.
11156       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11157       elfcpp::Elf_types<32>::Elf_Swxword addend =
11158         stub_addend_reader(r_type, view + offset, reloc);
11159
11160       const Sized_symbol<32>* sym;
11161
11162       Symbol_value<32> symval;
11163       const Symbol_value<32> *psymval;
11164       bool is_defined_in_discarded_section;
11165       unsigned int shndx;
11166       if (r_sym < local_count)
11167         {
11168           sym = NULL;
11169           psymval = arm_object->local_symbol(r_sym);
11170
11171           // If the local symbol belongs to a section we are discarding,
11172           // and that section is a debug section, try to find the
11173           // corresponding kept section and map this symbol to its
11174           // counterpart in the kept section.  The symbol must not 
11175           // correspond to a section we are folding.
11176           bool is_ordinary;
11177           shndx = psymval->input_shndx(&is_ordinary);
11178           is_defined_in_discarded_section =
11179             (is_ordinary
11180              && shndx != elfcpp::SHN_UNDEF
11181              && !arm_object->is_section_included(shndx)
11182              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11183
11184           // We need to compute the would-be final value of this local
11185           // symbol.
11186           if (!is_defined_in_discarded_section)
11187             {
11188               typedef Sized_relobj<32, big_endian> ObjType;
11189               typename ObjType::Compute_final_local_value_status status =
11190                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11191                                                       relinfo->symtab); 
11192               if (status == ObjType::CFLV_OK)
11193                 {
11194                   // Currently we cannot handle a branch to a target in
11195                   // a merged section.  If this is the case, issue an error
11196                   // and also free the merge symbol value.
11197                   if (!symval.has_output_value())
11198                     {
11199                       const std::string& section_name =
11200                         arm_object->section_name(shndx);
11201                       arm_object->error(_("cannot handle branch to local %u "
11202                                           "in a merged section %s"),
11203                                         r_sym, section_name.c_str());
11204                     }
11205                   psymval = &symval;
11206                 }
11207               else
11208                 {
11209                   // We cannot determine the final value.
11210                   continue;  
11211                 }
11212             }
11213         }
11214       else
11215         {
11216           const Symbol* gsym;
11217           gsym = arm_object->global_symbol(r_sym);
11218           gold_assert(gsym != NULL);
11219           if (gsym->is_forwarder())
11220             gsym = relinfo->symtab->resolve_forwards(gsym);
11221
11222           sym = static_cast<const Sized_symbol<32>*>(gsym);
11223           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11224             symval.set_output_symtab_index(sym->symtab_index());
11225           else
11226             symval.set_no_output_symtab_entry();
11227
11228           // We need to compute the would-be final value of this global
11229           // symbol.
11230           const Symbol_table* symtab = relinfo->symtab;
11231           const Sized_symbol<32>* sized_symbol =
11232             symtab->get_sized_symbol<32>(gsym);
11233           Symbol_table::Compute_final_value_status status;
11234           Arm_address value =
11235             symtab->compute_final_value<32>(sized_symbol, &status);
11236
11237           // Skip this if the symbol has not output section.
11238           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11239             continue;
11240           symval.set_output_value(value);
11241
11242           if (gsym->type() == elfcpp::STT_TLS)
11243             symval.set_is_tls_symbol();
11244           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11245             symval.set_is_ifunc_symbol();
11246           psymval = &symval;
11247
11248           is_defined_in_discarded_section =
11249             (gsym->is_defined_in_discarded_section()
11250              && gsym->is_undefined());
11251           shndx = 0;
11252         }
11253
11254       Symbol_value<32> symval2;
11255       if (is_defined_in_discarded_section)
11256         {
11257           if (comdat_behavior == CB_UNDETERMINED)
11258             {
11259               std::string name = arm_object->section_name(relinfo->data_shndx);
11260               comdat_behavior = get_comdat_behavior(name.c_str());
11261             }
11262           if (comdat_behavior == CB_PRETEND)
11263             {
11264               // FIXME: This case does not work for global symbols.
11265               // We have no place to store the original section index.
11266               // Fortunately this does not matter for comdat sections,
11267               // only for sections explicitly discarded by a linker
11268               // script.
11269               bool found;
11270               typename elfcpp::Elf_types<32>::Elf_Addr value =
11271                 arm_object->map_to_kept_section(shndx, &found);
11272               if (found)
11273                 symval2.set_output_value(value + psymval->input_value());
11274               else
11275                 symval2.set_output_value(0);
11276             }
11277           else
11278             {
11279               if (comdat_behavior == CB_WARNING)
11280                 gold_warning_at_location(relinfo, i, offset,
11281                                          _("relocation refers to discarded "
11282                                            "section"));
11283               symval2.set_output_value(0);
11284             }
11285           symval2.set_no_output_symtab_entry();
11286           psymval = &symval2;
11287         }
11288
11289       // If symbol is a section symbol, we don't know the actual type of
11290       // destination.  Give up.
11291       if (psymval->is_section_symbol())
11292         continue;
11293
11294       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11295                                 addend, view_address + offset);
11296     }
11297 }
11298
11299 // Scan an input section for stub generation.
11300
11301 template<bool big_endian>
11302 void
11303 Target_arm<big_endian>::scan_section_for_stubs(
11304     const Relocate_info<32, big_endian>* relinfo,
11305     unsigned int sh_type,
11306     const unsigned char* prelocs,
11307     size_t reloc_count,
11308     Output_section* output_section,
11309     bool needs_special_offset_handling,
11310     const unsigned char* view,
11311     Arm_address view_address,
11312     section_size_type view_size)
11313 {
11314   if (sh_type == elfcpp::SHT_REL)
11315     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11316         relinfo,
11317         prelocs,
11318         reloc_count,
11319         output_section,
11320         needs_special_offset_handling,
11321         view,
11322         view_address,
11323         view_size);
11324   else if (sh_type == elfcpp::SHT_RELA)
11325     // We do not support RELA type relocations yet.  This is provided for
11326     // completeness.
11327     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11328         relinfo,
11329         prelocs,
11330         reloc_count,
11331         output_section,
11332         needs_special_offset_handling,
11333         view,
11334         view_address,
11335         view_size);
11336   else
11337     gold_unreachable();
11338 }
11339
11340 // Group input sections for stub generation.
11341 //
11342 // We group input sections in an output section so that the total size,
11343 // including any padding space due to alignment is smaller than GROUP_SIZE
11344 // unless the only input section in group is bigger than GROUP_SIZE already.
11345 // Then an ARM stub table is created to follow the last input section
11346 // in group.  For each group an ARM stub table is created an is placed
11347 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11348 // extend the group after the stub table.
11349
11350 template<bool big_endian>
11351 void
11352 Target_arm<big_endian>::group_sections(
11353     Layout* layout,
11354     section_size_type group_size,
11355     bool stubs_always_after_branch,
11356     const Task* task)
11357 {
11358   // Group input sections and insert stub table
11359   Layout::Section_list section_list;
11360   layout->get_allocated_sections(&section_list);
11361   for (Layout::Section_list::const_iterator p = section_list.begin();
11362        p != section_list.end();
11363        ++p)
11364     {
11365       Arm_output_section<big_endian>* output_section =
11366         Arm_output_section<big_endian>::as_arm_output_section(*p);
11367       output_section->group_sections(group_size, stubs_always_after_branch,
11368                                      this, task);
11369     }
11370 }
11371
11372 // Relaxation hook.  This is where we do stub generation.
11373
11374 template<bool big_endian>
11375 bool
11376 Target_arm<big_endian>::do_relax(
11377     int pass,
11378     const Input_objects* input_objects,
11379     Symbol_table* symtab,
11380     Layout* layout,
11381     const Task* task)
11382 {
11383   // No need to generate stubs if this is a relocatable link.
11384   gold_assert(!parameters->options().relocatable());
11385
11386   // If this is the first pass, we need to group input sections into
11387   // stub groups.
11388   bool done_exidx_fixup = false;
11389   typedef typename Stub_table_list::iterator Stub_table_iterator;
11390   if (pass == 1)
11391     {
11392       // Determine the stub group size.  The group size is the absolute
11393       // value of the parameter --stub-group-size.  If --stub-group-size
11394       // is passed a negative value, we restrict stubs to be always after
11395       // the stubbed branches.
11396       int32_t stub_group_size_param =
11397         parameters->options().stub_group_size();
11398       bool stubs_always_after_branch = stub_group_size_param < 0;
11399       section_size_type stub_group_size = abs(stub_group_size_param);
11400
11401       if (stub_group_size == 1)
11402         {
11403           // Default value.
11404           // Thumb branch range is +-4MB has to be used as the default
11405           // maximum size (a given section can contain both ARM and Thumb
11406           // code, so the worst case has to be taken into account).  If we are
11407           // fixing cortex-a8 errata, the branch range has to be even smaller,
11408           // since wide conditional branch has a range of +-1MB only.
11409           //
11410           // This value is 48K less than that, which allows for 4096
11411           // 12-byte stubs.  If we exceed that, then we will fail to link.
11412           // The user will have to relink with an explicit group size
11413           // option.
11414             stub_group_size = 4145152;
11415         }
11416
11417       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11418       // page as the first half of a 32-bit branch straddling two 4K pages.
11419       // This is a crude way of enforcing that.  In addition, long conditional
11420       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11421       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11422       // cortex-A8 stubs from long conditional branches.
11423       if (this->fix_cortex_a8_)
11424         {
11425           stubs_always_after_branch = true;
11426           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11427           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11428         }
11429
11430       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11431      
11432       // Also fix .ARM.exidx section coverage.
11433       Arm_output_section<big_endian>* exidx_output_section = NULL;
11434       for (Layout::Section_list::const_iterator p =
11435              layout->section_list().begin();
11436            p != layout->section_list().end();
11437            ++p)
11438         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11439           {
11440             if (exidx_output_section == NULL)
11441               exidx_output_section =
11442                 Arm_output_section<big_endian>::as_arm_output_section(*p);
11443             else
11444               // We cannot handle this now.
11445               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11446                            "non-relocatable link"),
11447                           exidx_output_section->name(),
11448                           (*p)->name());
11449           }
11450
11451       if (exidx_output_section != NULL)
11452         {
11453           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11454                                    symtab, task);
11455           done_exidx_fixup = true;
11456         }
11457     }
11458   else
11459     {
11460       // If this is not the first pass, addresses and file offsets have
11461       // been reset at this point, set them here.
11462       for (Stub_table_iterator sp = this->stub_tables_.begin();
11463            sp != this->stub_tables_.end();
11464            ++sp)
11465         {
11466           Arm_input_section<big_endian>* owner = (*sp)->owner();
11467           off_t off = align_address(owner->original_size(),
11468                                     (*sp)->addralign());
11469           (*sp)->set_address_and_file_offset(owner->address() + off,
11470                                              owner->offset() + off);
11471         }
11472     }
11473
11474   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11475   // beginning of each relaxation pass, just blow away all the stubs.
11476   // Alternatively, we could selectively remove only the stubs and reloc
11477   // information for code sections that have moved since the last pass.
11478   // That would require more book-keeping.
11479   if (this->fix_cortex_a8_)
11480     {
11481       // Clear all Cortex-A8 reloc information.
11482       for (typename Cortex_a8_relocs_info::const_iterator p =
11483              this->cortex_a8_relocs_info_.begin();
11484            p != this->cortex_a8_relocs_info_.end();
11485            ++p)
11486         delete p->second;
11487       this->cortex_a8_relocs_info_.clear();
11488
11489       // Remove all Cortex-A8 stubs.
11490       for (Stub_table_iterator sp = this->stub_tables_.begin();
11491            sp != this->stub_tables_.end();
11492            ++sp)
11493         (*sp)->remove_all_cortex_a8_stubs();
11494     }
11495   
11496   // Scan relocs for relocation stubs
11497   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11498        op != input_objects->relobj_end();
11499        ++op)
11500     {
11501       Arm_relobj<big_endian>* arm_relobj =
11502         Arm_relobj<big_endian>::as_arm_relobj(*op);
11503       // Lock the object so we can read from it.  This is only called
11504       // single-threaded from Layout::finalize, so it is OK to lock.
11505       Task_lock_obj<Object> tl(task, arm_relobj);
11506       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11507     }
11508
11509   // Check all stub tables to see if any of them have their data sizes
11510   // or addresses alignments changed.  These are the only things that
11511   // matter.
11512   bool any_stub_table_changed = false;
11513   Unordered_set<const Output_section*> sections_needing_adjustment;
11514   for (Stub_table_iterator sp = this->stub_tables_.begin();
11515        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11516        ++sp)
11517     {
11518       if ((*sp)->update_data_size_and_addralign())
11519         {
11520           // Update data size of stub table owner.
11521           Arm_input_section<big_endian>* owner = (*sp)->owner();
11522           uint64_t address = owner->address();
11523           off_t offset = owner->offset();
11524           owner->reset_address_and_file_offset();
11525           owner->set_address_and_file_offset(address, offset);
11526
11527           sections_needing_adjustment.insert(owner->output_section());
11528           any_stub_table_changed = true;
11529         }
11530     }
11531
11532   // Output_section_data::output_section() returns a const pointer but we
11533   // need to update output sections, so we record all output sections needing
11534   // update above and scan the sections here to find out what sections need
11535   // to be updated.
11536   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11537       p != layout->section_list().end();
11538       ++p)
11539     {
11540       if (sections_needing_adjustment.find(*p)
11541           != sections_needing_adjustment.end())
11542         (*p)->set_section_offsets_need_adjustment();
11543     }
11544
11545   // Stop relaxation if no EXIDX fix-up and no stub table change.
11546   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11547
11548   // Finalize the stubs in the last relaxation pass.
11549   if (!continue_relaxation)
11550     {
11551       for (Stub_table_iterator sp = this->stub_tables_.begin();
11552            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11553             ++sp)
11554         (*sp)->finalize_stubs();
11555
11556       // Update output local symbol counts of objects if necessary.
11557       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11558            op != input_objects->relobj_end();
11559            ++op)
11560         {
11561           Arm_relobj<big_endian>* arm_relobj =
11562             Arm_relobj<big_endian>::as_arm_relobj(*op);
11563
11564           // Update output local symbol counts.  We need to discard local
11565           // symbols defined in parts of input sections that are discarded by
11566           // relaxation.
11567           if (arm_relobj->output_local_symbol_count_needs_update())
11568             {
11569               // We need to lock the object's file to update it.
11570               Task_lock_obj<Object> tl(task, arm_relobj);
11571               arm_relobj->update_output_local_symbol_count();
11572             }
11573         }
11574     }
11575
11576   return continue_relaxation;
11577 }
11578
11579 // Relocate a stub.
11580
11581 template<bool big_endian>
11582 void
11583 Target_arm<big_endian>::relocate_stub(
11584     Stub* stub,
11585     const Relocate_info<32, big_endian>* relinfo,
11586     Output_section* output_section,
11587     unsigned char* view,
11588     Arm_address address,
11589     section_size_type view_size)
11590 {
11591   Relocate relocate;
11592   const Stub_template* stub_template = stub->stub_template();
11593   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11594     {
11595       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11596       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11597
11598       unsigned int r_type = insn->r_type();
11599       section_size_type reloc_offset = stub_template->reloc_offset(i);
11600       section_size_type reloc_size = insn->size();
11601       gold_assert(reloc_offset + reloc_size <= view_size);
11602
11603       // This is the address of the stub destination.
11604       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11605       Symbol_value<32> symval;
11606       symval.set_output_value(target);
11607
11608       // Synthesize a fake reloc just in case.  We don't have a symbol so
11609       // we use 0.
11610       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11611       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11612       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11613       reloc_write.put_r_offset(reloc_offset);
11614       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11615       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11616
11617       relocate.relocate(relinfo, this, output_section,
11618                         this->fake_relnum_for_stubs, rel, r_type,
11619                         NULL, &symval, view + reloc_offset,
11620                         address + reloc_offset, reloc_size);
11621     }
11622 }
11623
11624 // Determine whether an object attribute tag takes an integer, a
11625 // string or both.
11626
11627 template<bool big_endian>
11628 int
11629 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11630 {
11631   if (tag == Object_attribute::Tag_compatibility)
11632     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11633             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11634   else if (tag == elfcpp::Tag_nodefaults)
11635     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11636             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11637   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11638     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11639   else if (tag < 32)
11640     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11641   else
11642     return ((tag & 1) != 0
11643             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11644             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11645 }
11646
11647 // Reorder attributes.
11648 //
11649 // The ABI defines that Tag_conformance should be emitted first, and that
11650 // Tag_nodefaults should be second (if either is defined).  This sets those
11651 // two positions, and bumps up the position of all the remaining tags to
11652 // compensate.
11653
11654 template<bool big_endian>
11655 int
11656 Target_arm<big_endian>::do_attributes_order(int num) const
11657 {
11658   // Reorder the known object attributes in output.  We want to move
11659   // Tag_conformance to position 4 and Tag_conformance to position 5
11660   // and shift everything between 4 .. Tag_conformance - 1 to make room.
11661   if (num == 4)
11662     return elfcpp::Tag_conformance;
11663   if (num == 5)
11664     return elfcpp::Tag_nodefaults;
11665   if ((num - 2) < elfcpp::Tag_nodefaults)
11666     return num - 2;
11667   if ((num - 1) < elfcpp::Tag_conformance)
11668     return num - 1;
11669   return num;
11670 }
11671
11672 // Scan a span of THUMB code for Cortex-A8 erratum.
11673
11674 template<bool big_endian>
11675 void
11676 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11677     Arm_relobj<big_endian>* arm_relobj,
11678     unsigned int shndx,
11679     section_size_type span_start,
11680     section_size_type span_end,
11681     const unsigned char* view,
11682     Arm_address address)
11683 {
11684   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11685   //
11686   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11687   // The branch target is in the same 4KB region as the
11688   // first half of the branch.
11689   // The instruction before the branch is a 32-bit
11690   // length non-branch instruction.
11691   section_size_type i = span_start;
11692   bool last_was_32bit = false;
11693   bool last_was_branch = false;
11694   while (i < span_end)
11695     {
11696       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11697       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11698       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11699       bool is_blx = false, is_b = false;
11700       bool is_bl = false, is_bcc = false;
11701
11702       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11703       if (insn_32bit)
11704         {
11705           // Load the rest of the insn (in manual-friendly order).
11706           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11707
11708           // Encoding T4: B<c>.W.
11709           is_b = (insn & 0xf800d000U) == 0xf0009000U;
11710           // Encoding T1: BL<c>.W.
11711           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11712           // Encoding T2: BLX<c>.W.
11713           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11714           // Encoding T3: B<c>.W (not permitted in IT block).
11715           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11716                     && (insn & 0x07f00000U) != 0x03800000U);
11717         }
11718
11719       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11720                            
11721       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11722       // page boundary and it follows 32-bit non-branch instruction,
11723       // we need to work around.
11724       if (is_32bit_branch
11725           && ((address + i) & 0xfffU) == 0xffeU
11726           && last_was_32bit
11727           && !last_was_branch)
11728         {
11729           // Check to see if there is a relocation stub for this branch.
11730           bool force_target_arm = false;
11731           bool force_target_thumb = false;
11732           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11733           Cortex_a8_relocs_info::const_iterator p =
11734             this->cortex_a8_relocs_info_.find(address + i);
11735
11736           if (p != this->cortex_a8_relocs_info_.end())
11737             {
11738               cortex_a8_reloc = p->second;
11739               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11740
11741               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11742                   && !target_is_thumb)
11743                 force_target_arm = true;
11744               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11745                        && target_is_thumb)
11746                 force_target_thumb = true;
11747             }
11748
11749           off_t offset;
11750           Stub_type stub_type = arm_stub_none;
11751
11752           // Check if we have an offending branch instruction.
11753           uint16_t upper_insn = (insn >> 16) & 0xffffU;
11754           uint16_t lower_insn = insn & 0xffffU;
11755           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11756
11757           if (cortex_a8_reloc != NULL
11758               && cortex_a8_reloc->reloc_stub() != NULL)
11759             // We've already made a stub for this instruction, e.g.
11760             // it's a long branch or a Thumb->ARM stub.  Assume that
11761             // stub will suffice to work around the A8 erratum (see
11762             // setting of always_after_branch above).
11763             ;
11764           else if (is_bcc)
11765             {
11766               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11767                                                               lower_insn);
11768               stub_type = arm_stub_a8_veneer_b_cond;
11769             }
11770           else if (is_b || is_bl || is_blx)
11771             {
11772               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11773                                                          lower_insn);
11774               if (is_blx)
11775                 offset &= ~3;
11776
11777               stub_type = (is_blx
11778                            ? arm_stub_a8_veneer_blx
11779                            : (is_bl
11780                               ? arm_stub_a8_veneer_bl
11781                               : arm_stub_a8_veneer_b));
11782             }
11783
11784           if (stub_type != arm_stub_none)
11785             {
11786               Arm_address pc_for_insn = address + i + 4;
11787
11788               // The original instruction is a BL, but the target is
11789               // an ARM instruction.  If we were not making a stub,
11790               // the BL would have been converted to a BLX.  Use the
11791               // BLX stub instead in that case.
11792               if (this->may_use_blx() && force_target_arm
11793                   && stub_type == arm_stub_a8_veneer_bl)
11794                 {
11795                   stub_type = arm_stub_a8_veneer_blx;
11796                   is_blx = true;
11797                   is_bl = false;
11798                 }
11799               // Conversely, if the original instruction was
11800               // BLX but the target is Thumb mode, use the BL stub.
11801               else if (force_target_thumb
11802                        && stub_type == arm_stub_a8_veneer_blx)
11803                 {
11804                   stub_type = arm_stub_a8_veneer_bl;
11805                   is_blx = false;
11806                   is_bl = true;
11807                 }
11808
11809               if (is_blx)
11810                 pc_for_insn &= ~3;
11811
11812               // If we found a relocation, use the proper destination,
11813               // not the offset in the (unrelocated) instruction.
11814               // Note this is always done if we switched the stub type above.
11815               if (cortex_a8_reloc != NULL)
11816                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11817
11818               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11819
11820               // Add a new stub if destination address in in the same page.
11821               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11822                 {
11823                   Cortex_a8_stub* stub =
11824                     this->stub_factory_.make_cortex_a8_stub(stub_type,
11825                                                             arm_relobj, shndx,
11826                                                             address + i,
11827                                                             target, insn);
11828                   Stub_table<big_endian>* stub_table =
11829                     arm_relobj->stub_table(shndx);
11830                   gold_assert(stub_table != NULL);
11831                   stub_table->add_cortex_a8_stub(address + i, stub);
11832                 }
11833             }
11834         }
11835
11836       i += insn_32bit ? 4 : 2;
11837       last_was_32bit = insn_32bit;
11838       last_was_branch = is_32bit_branch;
11839     }
11840 }
11841
11842 // Apply the Cortex-A8 workaround.
11843
11844 template<bool big_endian>
11845 void
11846 Target_arm<big_endian>::apply_cortex_a8_workaround(
11847     const Cortex_a8_stub* stub,
11848     Arm_address stub_address,
11849     unsigned char* insn_view,
11850     Arm_address insn_address)
11851 {
11852   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11853   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11854   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11855   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11856   off_t branch_offset = stub_address - (insn_address + 4);
11857
11858   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11859   switch (stub->stub_template()->type())
11860     {
11861     case arm_stub_a8_veneer_b_cond:
11862       // For a conditional branch, we re-write it to be an unconditional
11863       // branch to the stub.  We use the THUMB-2 encoding here.
11864       upper_insn = 0xf000U;
11865       lower_insn = 0xb800U;
11866       // Fall through
11867     case arm_stub_a8_veneer_b:
11868     case arm_stub_a8_veneer_bl:
11869     case arm_stub_a8_veneer_blx:
11870       if ((lower_insn & 0x5000U) == 0x4000U)
11871         // For a BLX instruction, make sure that the relocation is
11872         // rounded up to a word boundary.  This follows the semantics of
11873         // the instruction which specifies that bit 1 of the target
11874         // address will come from bit 1 of the base address.
11875         branch_offset = (branch_offset + 2) & ~3;
11876
11877       // Put BRANCH_OFFSET back into the insn.
11878       gold_assert(!utils::has_overflow<25>(branch_offset));
11879       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11880       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11881       break;
11882
11883     default:
11884       gold_unreachable();
11885     }
11886
11887   // Put the relocated value back in the object file:
11888   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11889   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11890 }
11891
11892 template<bool big_endian>
11893 class Target_selector_arm : public Target_selector
11894 {
11895  public:
11896   Target_selector_arm()
11897     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11898                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11899   { }
11900
11901   Target*
11902   do_instantiate_target()
11903   { return new Target_arm<big_endian>(); }
11904 };
11905
11906 // Fix .ARM.exidx section coverage.
11907
11908 template<bool big_endian>
11909 void
11910 Target_arm<big_endian>::fix_exidx_coverage(
11911     Layout* layout,
11912     const Input_objects* input_objects,
11913     Arm_output_section<big_endian>* exidx_section,
11914     Symbol_table* symtab,
11915     const Task* task)
11916 {
11917   // We need to look at all the input sections in output in ascending
11918   // order of of output address.  We do that by building a sorted list
11919   // of output sections by addresses.  Then we looks at the output sections
11920   // in order.  The input sections in an output section are already sorted
11921   // by addresses within the output section.
11922
11923   typedef std::set<Output_section*, output_section_address_less_than>
11924       Sorted_output_section_list;
11925   Sorted_output_section_list sorted_output_sections;
11926
11927   // Find out all the output sections of input sections pointed by
11928   // EXIDX input sections.
11929   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11930        p != input_objects->relobj_end();
11931        ++p)
11932     {
11933       Arm_relobj<big_endian>* arm_relobj =
11934         Arm_relobj<big_endian>::as_arm_relobj(*p);
11935       std::vector<unsigned int> shndx_list;
11936       arm_relobj->get_exidx_shndx_list(&shndx_list);
11937       for (size_t i = 0; i < shndx_list.size(); ++i)
11938         {
11939           const Arm_exidx_input_section* exidx_input_section =
11940             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11941           gold_assert(exidx_input_section != NULL);
11942           if (!exidx_input_section->has_errors())
11943             {
11944               unsigned int text_shndx = exidx_input_section->link();
11945               Output_section* os = arm_relobj->output_section(text_shndx);
11946               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11947                 sorted_output_sections.insert(os);
11948             }
11949         }
11950     }
11951
11952   // Go over the output sections in ascending order of output addresses.
11953   typedef typename Arm_output_section<big_endian>::Text_section_list
11954       Text_section_list;
11955   Text_section_list sorted_text_sections;
11956   for (typename Sorted_output_section_list::iterator p =
11957         sorted_output_sections.begin();
11958       p != sorted_output_sections.end();
11959       ++p)
11960     {
11961       Arm_output_section<big_endian>* arm_output_section =
11962         Arm_output_section<big_endian>::as_arm_output_section(*p);
11963       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11964     } 
11965
11966   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11967                                     merge_exidx_entries(), task);
11968 }
11969
11970 Target_selector_arm<false> target_selector_arm;
11971 Target_selector_arm<true> target_selector_armbe;
11972
11973 } // End anonymous namespace.