1ddbf7f95ec8a51f7262053974a6dd32af22c456
[external/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is an invalid index, this points to a global symbol.
602     // Otherwise, it points to a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj, in order to avoid making the stub class a template
605     // as most of the stub machinery is endianness-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB using KEY.  The caller is responsible for avoiding addition
899   // if a STUB with the same key has already been added.
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // The caller is responsible for avoiding addition if a STUB with the same
919   // address has already been added.
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067   // Write to a map file.
1068   void
1069   do_print_to_mapfile(Mapfile* mapfile) const
1070   { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072  private:
1073   // Implement do_write for a given endianness.
1074   template<bool big_endian>
1075   void inline
1076   do_fixed_endian_write(Output_file*);
1077   
1078   // The object containing the section pointed by this.
1079   Relobj* relobj_;
1080   // The section index of the section pointed by this.
1081   unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section. 
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089         Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096  public:
1097   // Constructor for Arm_exidx_merged_section.
1098   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099   // SECTION_OFFSET_MAP points to a section offset map describing how
1100   // parts of the input section are mapped to output.  DELETED_BYTES is
1101   // the number of bytes deleted from the EXIDX input section.
1102   Arm_exidx_merged_section(
1103       const Arm_exidx_input_section& exidx_input_section,
1104       const Arm_exidx_section_offset_map& section_offset_map,
1105       uint32_t deleted_bytes);
1106
1107   // Build output contents.
1108   void
1109   build_contents(const unsigned char*, section_size_type);
1110
1111   // Return the original EXIDX input section.
1112   const Arm_exidx_input_section&
1113   exidx_input_section() const
1114   { return this->exidx_input_section_; }
1115
1116   // Return the section offset map.
1117   const Arm_exidx_section_offset_map&
1118   section_offset_map() const
1119   { return this->section_offset_map_; }
1120
1121  protected:
1122   // Write merged section into file OF.
1123   void
1124   do_write(Output_file* of);
1125
1126   bool
1127   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128                   section_offset_type*) const;
1129
1130  private:
1131   // Original EXIDX input section.
1132   const Arm_exidx_input_section& exidx_input_section_;
1133   // Section offset map.
1134   const Arm_exidx_section_offset_map& section_offset_map_;
1135   // Merged section contents.  We need to keep build the merged section 
1136   // and save it here to avoid accessing the original EXIDX section when
1137   // we cannot lock the sections' object.
1138   unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146  public:
1147   Arm_input_section(Relobj* relobj, unsigned int shndx)
1148     : Output_relaxed_input_section(relobj, shndx, 1),
1149       original_addralign_(1), original_size_(0), stub_table_(NULL),
1150       original_contents_(NULL)
1151   { }
1152
1153   ~Arm_input_section()
1154   { delete[] this->original_contents_; }
1155
1156   // Initialize.
1157   void
1158   init();
1159   
1160   // Whether this is a stub table owner.
1161   bool
1162   is_stub_table_owner() const
1163   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165   // Return the stub table.
1166   Stub_table<big_endian>*
1167   stub_table() const
1168   { return this->stub_table_; }
1169
1170   // Set the stub_table.
1171   void
1172   set_stub_table(Stub_table<big_endian>* stub_table)
1173   { this->stub_table_ = stub_table; }
1174
1175   // Downcast a base pointer to an Arm_input_section pointer.  This is
1176   // not type-safe but we only use Arm_input_section not the base class.
1177   static Arm_input_section<big_endian>*
1178   as_arm_input_section(Output_relaxed_input_section* poris)
1179   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181   // Return the original size of the section.
1182   uint32_t
1183   original_size() const
1184   { return this->original_size_; }
1185
1186  protected:
1187   // Write data to output file.
1188   void
1189   do_write(Output_file*);
1190
1191   // Return required alignment of this.
1192   uint64_t
1193   do_addralign() const
1194   {
1195     if (this->is_stub_table_owner())
1196       return std::max(this->stub_table_->addralign(),
1197                       static_cast<uint64_t>(this->original_addralign_));
1198     else
1199       return this->original_addralign_;
1200   }
1201
1202   // Finalize data size.
1203   void
1204   set_final_data_size();
1205
1206   // Reset address and file offset.
1207   void
1208   do_reset_address_and_file_offset();
1209
1210   // Output offset.
1211   bool
1212   do_output_offset(const Relobj* object, unsigned int shndx,
1213                    section_offset_type offset,
1214                    section_offset_type* poutput) const
1215   {
1216     if ((object == this->relobj())
1217         && (shndx == this->shndx())
1218         && (offset >= 0)
1219         && (offset <=
1220             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221       {
1222         *poutput = offset;
1223         return true;
1224       }
1225     else
1226       return false;
1227   }
1228
1229  private:
1230   // Copying is not allowed.
1231   Arm_input_section(const Arm_input_section&);
1232   Arm_input_section& operator=(const Arm_input_section&);
1233
1234   // Address alignment of the original input section.
1235   uint32_t original_addralign_;
1236   // Section size of the original input section.
1237   uint32_t original_size_;
1238   // Stub table.
1239   Stub_table<big_endian>* stub_table_;
1240   // Original section contents.  We have to make a copy here since the file
1241   // containing the original section may not be locked when we need to access
1242   // the contents.
1243   unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class.  This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251  public:
1252   Arm_exidx_fixup(Output_section* exidx_output_section,
1253                   bool merge_exidx_entries = true)
1254     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255       last_inlined_entry_(0), last_input_section_(NULL),
1256       section_offset_map_(NULL), first_output_text_section_(NULL),
1257       merge_exidx_entries_(merge_exidx_entries)
1258   { }
1259
1260   ~Arm_exidx_fixup()
1261   { delete this->section_offset_map_; }
1262
1263   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1264   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265   // number of bytes to be deleted in output.  If parts of the input EXIDX
1266   // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1268   // responsible for releasing it.
1269   template<bool big_endian>
1270   uint32_t
1271   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272                         const unsigned char* section_contents,
1273                         section_size_type section_size,
1274                         Arm_exidx_section_offset_map** psection_offset_map);
1275   
1276   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277   // input section, if there is not one already.
1278   void
1279   add_exidx_cantunwind_as_needed();
1280
1281   // Return the output section for the text section which is linked to the
1282   // first exidx input in output.
1283   Output_section*
1284   first_output_text_section() const
1285   { return this->first_output_text_section_; }
1286
1287  private:
1288   // Copying is not allowed.
1289   Arm_exidx_fixup(const Arm_exidx_fixup&);
1290   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292   // Type of EXIDX unwind entry.
1293   enum Unwind_type
1294   {
1295     // No type.
1296     UT_NONE,
1297     // EXIDX_CANTUNWIND.
1298     UT_EXIDX_CANTUNWIND,
1299     // Inlined entry.
1300     UT_INLINED_ENTRY,
1301     // Normal entry.
1302     UT_NORMAL_ENTRY,
1303   };
1304
1305   // Process an EXIDX entry.  We only care about the second word of the
1306   // entry.  Return true if the entry can be deleted.
1307   bool
1308   process_exidx_entry(uint32_t second_word);
1309
1310   // Update the current section offset map during EXIDX section fix-up.
1311   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1312   // reference point, DELETED_BYTES is the number of deleted by in the
1313   // section so far.  If DELETE_ENTRY is true, the reference point and
1314   // all offsets after the previous reference point are discarded.
1315   void
1316   update_offset_map(section_offset_type input_offset,
1317                     section_size_type deleted_bytes, bool delete_entry);
1318
1319   // EXIDX output section.
1320   Output_section* exidx_output_section_;
1321   // Unwind type of the last EXIDX entry processed.
1322   Unwind_type last_unwind_type_;
1323   // Last seen inlined EXIDX entry.
1324   uint32_t last_inlined_entry_;
1325   // Last processed EXIDX input section.
1326   const Arm_exidx_input_section* last_input_section_;
1327   // Section offset map created in process_exidx_section.
1328   Arm_exidx_section_offset_map* section_offset_map_;
1329   // Output section for the text section which is linked to the first exidx
1330   // input in output.
1331   Output_section* first_output_text_section_;
1332
1333   bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class.  This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342  public:
1343   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347                      elfcpp::Elf_Xword flags)
1348     : Output_section(name, type,
1349                      (type == elfcpp::SHT_ARM_EXIDX
1350                       ? flags | elfcpp::SHF_LINK_ORDER
1351                       : flags))
1352   {
1353     if (type == elfcpp::SHT_ARM_EXIDX)
1354       this->set_always_keeps_input_sections();
1355   }
1356
1357   ~Arm_output_section()
1358   { }
1359   
1360   // Group input sections for stub generation.
1361   void
1362   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364   // Downcast a base pointer to an Arm_output_section pointer.  This is
1365   // not type-safe but we only use Arm_output_section not the base class.
1366   static Arm_output_section<big_endian>*
1367   as_arm_output_section(Output_section* os)
1368   { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370   // Append all input text sections in this into LIST.
1371   void
1372   append_text_sections_to_list(Text_section_list* list);
1373
1374   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1375   // is a list of text input sections sorted in ascending order of their
1376   // output addresses.
1377   void
1378   fix_exidx_coverage(Layout* layout,
1379                      const Text_section_list& sorted_text_section,
1380                      Symbol_table* symtab,
1381                      bool merge_exidx_entries,
1382                      const Task* task);
1383
1384   // Link an EXIDX section into its corresponding text section.
1385   void
1386   set_exidx_section_link();
1387
1388  private:
1389   // For convenience.
1390   typedef Output_section::Input_section Input_section;
1391   typedef Output_section::Input_section_list Input_section_list;
1392
1393   // Create a stub group.
1394   void create_stub_group(Input_section_list::const_iterator,
1395                          Input_section_list::const_iterator,
1396                          Input_section_list::const_iterator,
1397                          Target_arm<big_endian>*,
1398                          std::vector<Output_relaxed_input_section*>*,
1399                          const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406  public:
1407   static const section_offset_type invalid_offset =
1408     static_cast<section_offset_type>(-1);
1409
1410   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411                           unsigned int link, uint32_t size,
1412                           uint32_t addralign, uint32_t text_size)
1413     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414       addralign_(addralign), text_size_(text_size), has_errors_(false)
1415   { }
1416
1417   ~Arm_exidx_input_section()
1418   { }
1419         
1420   // Accessors:  This is a read-only class.
1421
1422   // Return the object containing this EXIDX input section.
1423   Relobj*
1424   relobj() const
1425   { return this->relobj_; }
1426
1427   // Return the section index of this EXIDX input section.
1428   unsigned int
1429   shndx() const
1430   { return this->shndx_; }
1431
1432   // Return the section index of linked text section in the same object.
1433   unsigned int
1434   link() const
1435   { return this->link_; }
1436
1437   // Return size of the EXIDX input section.
1438   uint32_t
1439   size() const
1440   { return this->size_; }
1441
1442   // Return address alignment of EXIDX input section.
1443   uint32_t
1444   addralign() const
1445   { return this->addralign_; }
1446
1447   // Return size of the associated text input section.
1448   uint32_t
1449   text_size() const
1450   { return this->text_size_; }
1451
1452   // Whether there are any errors in the EXIDX input section.
1453   bool
1454   has_errors() const
1455   { return this->has_errors_; }
1456
1457   // Set has-errors flag.
1458   void
1459   set_has_errors()
1460   { this->has_errors_ = true; }
1461
1462  private:
1463   // Object containing this.
1464   Relobj* relobj_;
1465   // Section index of this.
1466   unsigned int shndx_;
1467   // text section linked to this in the same object.
1468   unsigned int link_;
1469   // Size of this.  For ARM 32-bit is sufficient.
1470   uint32_t size_;
1471   // Address alignment of this.  For ARM 32-bit is sufficient.
1472   uint32_t addralign_;
1473   // Size of associated text section.
1474   uint32_t text_size_;
1475   // Whether this has any errors.
1476   bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484  public:
1485   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490       stub_tables_(), local_symbol_is_thumb_function_(),
1491       attributes_section_data_(NULL), mapping_symbols_info_(),
1492       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493       output_local_symbol_count_needs_update_(false),
1494       merge_flags_and_attributes_(true)
1495   { }
1496
1497   ~Arm_relobj()
1498   { delete this->attributes_section_data_; }
1499  
1500   // Return the stub table of the SHNDX-th section if there is one.
1501   Stub_table<big_endian>*
1502   stub_table(unsigned int shndx) const
1503   {
1504     gold_assert(shndx < this->stub_tables_.size());
1505     return this->stub_tables_[shndx];
1506   }
1507
1508   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509   void
1510   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511   {
1512     gold_assert(shndx < this->stub_tables_.size());
1513     this->stub_tables_[shndx] = stub_table;
1514   }
1515
1516   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1517   // index.  This is only valid after do_count_local_symbol is called.
1518   bool
1519   local_symbol_is_thumb_function(unsigned int r_sym) const
1520   {
1521     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522     return this->local_symbol_is_thumb_function_[r_sym];
1523   }
1524   
1525   // Scan all relocation sections for stub generation.
1526   void
1527   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528                           const Layout*);
1529
1530   // Convert regular input section with index SHNDX to a relaxed section.
1531   void
1532   convert_input_section_to_relaxed_section(unsigned shndx)
1533   {
1534     // The stubs have relocations and we need to process them after writing
1535     // out the stubs.  So relocation now must follow section write.
1536     this->set_section_offset(shndx, -1ULL);
1537     this->set_relocs_must_follow_section_writes();
1538   }
1539
1540   // Downcast a base pointer to an Arm_relobj pointer.  This is
1541   // not type-safe but we only use Arm_relobj not the base class.
1542   static Arm_relobj<big_endian>*
1543   as_arm_relobj(Relobj* relobj)
1544   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546   // Processor-specific flags in ELF file header.  This is valid only after
1547   // reading symbols.
1548   elfcpp::Elf_Word
1549   processor_specific_flags() const
1550   { return this->processor_specific_flags_; }
1551
1552   // Attribute section data  This is the contents of the .ARM.attribute section
1553   // if there is one.
1554   const Attributes_section_data*
1555   attributes_section_data() const
1556   { return this->attributes_section_data_; }
1557
1558   // Mapping symbol location.
1559   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561   // Functor for STL container.
1562   struct Mapping_symbol_position_less
1563   {
1564     bool
1565     operator()(const Mapping_symbol_position& p1,
1566                const Mapping_symbol_position& p2) const
1567     {
1568       return (p1.first < p2.first
1569               || (p1.first == p2.first && p1.second < p2.second));
1570     }
1571   };
1572   
1573   // We only care about the first character of a mapping symbol, so
1574   // we only store that instead of the whole symbol name.
1575   typedef std::map<Mapping_symbol_position, char,
1576                    Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578   // Whether a section contains any Cortex-A8 workaround.
1579   bool
1580   section_has_cortex_a8_workaround(unsigned int shndx) const
1581   { 
1582     return (this->section_has_cortex_a8_workaround_ != NULL
1583             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584   }
1585   
1586   // Mark a section that has Cortex-A8 workaround.
1587   void
1588   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589   {
1590     if (this->section_has_cortex_a8_workaround_ == NULL)
1591       this->section_has_cortex_a8_workaround_ =
1592         new std::vector<bool>(this->shnum(), false);
1593     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594   }
1595
1596   // Return the EXIDX section of an text section with index SHNDX or NULL
1597   // if the text section has no associated EXIDX section.
1598   const Arm_exidx_input_section*
1599   exidx_input_section_by_link(unsigned int shndx) const
1600   {
1601     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602     return ((p != this->exidx_section_map_.end()
1603              && p->second->link() == shndx)
1604             ? p->second
1605             : NULL);
1606   }
1607
1608   // Return the EXIDX section with index SHNDX or NULL if there is none.
1609   const Arm_exidx_input_section*
1610   exidx_input_section_by_shndx(unsigned shndx) const
1611   {
1612     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613     return ((p != this->exidx_section_map_.end()
1614              && p->second->shndx() == shndx)
1615             ? p->second
1616             : NULL);
1617   }
1618
1619   // Whether output local symbol count needs updating.
1620   bool
1621   output_local_symbol_count_needs_update() const
1622   { return this->output_local_symbol_count_needs_update_; }
1623
1624   // Set output_local_symbol_count_needs_update flag to be true.
1625   void
1626   set_output_local_symbol_count_needs_update()
1627   { this->output_local_symbol_count_needs_update_ = true; }
1628   
1629   // Update output local symbol count at the end of relaxation.
1630   void
1631   update_output_local_symbol_count();
1632
1633   // Whether we want to merge processor-specific flags and attributes.
1634   bool
1635   merge_flags_and_attributes() const
1636   { return this->merge_flags_and_attributes_; }
1637   
1638   // Export list of EXIDX section indices.
1639   void
1640   get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641   {
1642     list->clear();
1643     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644          p != this->exidx_section_map_.end();
1645          ++p)
1646       {
1647         if (p->second->shndx() == p->first)
1648           list->push_back(p->first);
1649       }
1650     // Sort list to make result independent of implementation of map. 
1651     std::sort(list->begin(), list->end());
1652   }
1653
1654  protected:
1655   // Post constructor setup.
1656   void
1657   do_setup()
1658   {
1659     // Call parent's setup method.
1660     Sized_relobj_file<32, big_endian>::do_setup();
1661
1662     // Initialize look-up tables.
1663     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664     this->stub_tables_.swap(empty_stub_table_list);
1665   }
1666
1667   // Count the local symbols.
1668   void
1669   do_count_local_symbols(Stringpool_template<char>*,
1670                          Stringpool_template<char>*);
1671
1672   void
1673   do_relocate_sections(
1674       const Symbol_table* symtab, const Layout* layout,
1675       const unsigned char* pshdrs, Output_file* of,
1676       typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678   // Read the symbol information.
1679   void
1680   do_read_symbols(Read_symbols_data* sd);
1681
1682   // Process relocs for garbage collection.
1683   void
1684   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686  private:
1687
1688   // Whether a section needs to be scanned for relocation stubs.
1689   bool
1690   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691                                     const Relobj::Output_sections&,
1692                                     const Symbol_table*, const unsigned char*);
1693
1694   // Whether a section is a scannable text section.
1695   bool
1696   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697                        const Output_section*, const Symbol_table*);
1698
1699   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700   bool
1701   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702                                         unsigned int, Output_section*,
1703                                         const Symbol_table*);
1704
1705   // Scan a section for the Cortex-A8 erratum.
1706   void
1707   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708                                      unsigned int, Output_section*,
1709                                      Target_arm<big_endian>*);
1710
1711   // Find the linked text section of an EXIDX section by looking at the
1712   // first relocation of the EXIDX section.  PSHDR points to the section
1713   // headers of a relocation section and PSYMS points to the local symbols.
1714   // PSHNDX points to a location storing the text section index if found.
1715   // Return whether we can find the linked section.
1716   bool
1717   find_linked_text_section(const unsigned char* pshdr,
1718                            const unsigned char* psyms, unsigned int* pshndx);
1719
1720   //
1721   // Make a new Arm_exidx_input_section object for EXIDX section with
1722   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1723   // index of the linked text section.
1724   void
1725   make_exidx_input_section(unsigned int shndx,
1726                            const elfcpp::Shdr<32, big_endian>& shdr,
1727                            unsigned int text_shndx,
1728                            const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730   // Return the output address of either a plain input section or a
1731   // relaxed input section.  SHNDX is the section index.
1732   Arm_address
1733   simple_input_section_output_address(unsigned int, Output_section*);
1734
1735   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737     Exidx_section_map;
1738
1739   // List of stub tables.
1740   Stub_table_list stub_tables_;
1741   // Bit vector to tell if a local symbol is a thumb function or not.
1742   // This is only valid after do_count_local_symbol is called.
1743   std::vector<bool> local_symbol_is_thumb_function_;
1744   // processor-specific flags in ELF file header.
1745   elfcpp::Elf_Word processor_specific_flags_;
1746   // Object attributes if there is an .ARM.attributes section or NULL.
1747   Attributes_section_data* attributes_section_data_;
1748   // Mapping symbols information.
1749   Mapping_symbols_info mapping_symbols_info_;
1750   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751   std::vector<bool>* section_has_cortex_a8_workaround_;
1752   // Map a text section to its associated .ARM.exidx section, if there is one.
1753   Exidx_section_map exidx_section_map_;
1754   // Whether output local symbol count needs updating.
1755   bool output_local_symbol_count_needs_update_;
1756   // Whether we merge processor flags and attributes of this object to
1757   // output.
1758   bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766  public:
1767   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768              const elfcpp::Ehdr<32, big_endian>& ehdr)
1769     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770       processor_specific_flags_(0), attributes_section_data_(NULL)
1771   { }
1772  
1773   ~Arm_dynobj()
1774   { delete this->attributes_section_data_; }
1775
1776   // Downcast a base pointer to an Arm_relobj pointer.  This is
1777   // not type-safe but we only use Arm_relobj not the base class.
1778   static Arm_dynobj<big_endian>*
1779   as_arm_dynobj(Dynobj* dynobj)
1780   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782   // Processor-specific flags in ELF file header.  This is valid only after
1783   // reading symbols.
1784   elfcpp::Elf_Word
1785   processor_specific_flags() const
1786   { return this->processor_specific_flags_; }
1787
1788   // Attributes section data.
1789   const Attributes_section_data*
1790   attributes_section_data() const
1791   { return this->attributes_section_data_; }
1792
1793  protected:
1794   // Read the symbol information.
1795   void
1796   do_read_symbols(Read_symbols_data* sd);
1797
1798  private:
1799   // processor-specific flags in ELF file header.
1800   elfcpp::Elf_Word processor_specific_flags_;
1801   // Object attributes if there is an .ARM.attributes section or NULL.
1802   Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810   // Return the addend for a relocation of a particular type.  Depending
1811   // on whether this is a REL or RELA relocation, read the addend from a
1812   // view or from a Reloc object.
1813   elfcpp::Elf_types<32>::Elf_Swxword
1814   operator()(
1815     unsigned int /* r_type */,
1816     const unsigned char* /* view */,
1817     const typename Reloc_types<sh_type,
1818                                32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826   elfcpp::Elf_types<32>::Elf_Swxword
1827   operator()(
1828     unsigned int,
1829     const unsigned char*,
1830     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader.  This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841   elfcpp::Elf_types<32>::Elf_Swxword
1842   operator()(
1843     unsigned int,
1844     const unsigned char*,
1845     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846                                big_endian>::Reloc& reloc) const
1847   { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class.  We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855  public:
1856   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857                   Arm_address destination)
1858     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859   { }
1860
1861   ~Cortex_a8_reloc()
1862   { }
1863
1864   // Accessors:  This is a read-only class.
1865   
1866   // Return the relocation stub associated with this relocation if there is
1867   // one.
1868   const Reloc_stub*
1869   reloc_stub() const
1870   { return this->reloc_stub_; } 
1871   
1872   // Return the relocation type.
1873   unsigned int
1874   r_type() const
1875   { return this->r_type_; }
1876
1877   // Return the destination address of the relocation.  LSB stores the THUMB
1878   // bit.
1879   Arm_address
1880   destination() const
1881   { return this->destination_; }
1882
1883  private:
1884   // Associated relocation stub if there is one, or NULL.
1885   const Reloc_stub* reloc_stub_;
1886   // Relocation type.
1887   unsigned int r_type_;
1888   // Destination address of this relocation.  LSB is used to distinguish
1889   // ARM/THUMB mode.
1890   Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class.  We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899  public:
1900   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902   { }
1903
1904   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1905   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906   // applied in a static link.
1907   void
1908   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1912   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1913   // relocation that needs to be applied in a static link.
1914   void
1915   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916                    Sized_relobj_file<32, big_endian>* relobj,
1917                    unsigned int index)
1918   {
1919     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920                                                 index));
1921   }
1922
1923   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1924   // The first one is initialized to be 1, which is the module index for
1925   // the main executable and the second one 0.  A reloc of the type
1926   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927   // be applied by gold.  GSYM is a global symbol.
1928   void
1929   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931   // Same as the above but for a local symbol in OBJECT with INDEX.
1932   void
1933   add_tls_gd32_with_static_reloc(unsigned int got_type,
1934                                  Sized_relobj_file<32, big_endian>* object,
1935                                  unsigned int index);
1936
1937  protected:
1938   // Write out the GOT table.
1939   void
1940   do_write(Output_file*);
1941
1942  private:
1943   // This class represent dynamic relocations that need to be applied by
1944   // gold because we are using TLS relocations in a static link.
1945   class Static_reloc
1946   {
1947    public:
1948     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950     { this->u_.global.symbol = gsym; }
1951
1952     Static_reloc(unsigned int got_offset, unsigned int r_type,
1953           Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955     {
1956       this->u_.local.relobj = relobj;
1957       this->u_.local.index = index;
1958     }
1959
1960     // Return the GOT offset.
1961     unsigned int
1962     got_offset() const
1963     { return this->got_offset_; }
1964
1965     // Relocation type.
1966     unsigned int
1967     r_type() const
1968     { return this->r_type_; }
1969
1970     // Whether the symbol is global or not.
1971     bool
1972     symbol_is_global() const
1973     { return this->symbol_is_global_; }
1974
1975     // For a relocation against a global symbol, the global symbol.
1976     Symbol*
1977     symbol() const
1978     {
1979       gold_assert(this->symbol_is_global_);
1980       return this->u_.global.symbol;
1981     }
1982
1983     // For a relocation against a local symbol, the defining object.
1984     Sized_relobj_file<32, big_endian>*
1985     relobj() const
1986     {
1987       gold_assert(!this->symbol_is_global_);
1988       return this->u_.local.relobj;
1989     }
1990
1991     // For a relocation against a local symbol, the local symbol index.
1992     unsigned int
1993     index() const
1994     {
1995       gold_assert(!this->symbol_is_global_);
1996       return this->u_.local.index;
1997     }
1998
1999    private:
2000     // GOT offset of the entry to which this relocation is applied.
2001     unsigned int got_offset_;
2002     // Type of relocation.
2003     unsigned int r_type_;
2004     // Whether this relocation is against a global symbol.
2005     bool symbol_is_global_;
2006     // A global or local symbol.
2007     union
2008     {
2009       struct
2010       {
2011         // For a global symbol, the symbol itself.
2012         Symbol* symbol;
2013       } global;
2014       struct
2015       {
2016         // For a local symbol, the object defining object.
2017         Sized_relobj_file<32, big_endian>* relobj;
2018         // For a local symbol, the symbol index.
2019         unsigned int index;
2020       } local;
2021     } u_;
2022   };
2023
2024   // Symbol table of the output object.
2025   Symbol_table* symbol_table_;
2026   // Layout of the output object.
2027   Layout* layout_;
2028   // Static relocs to be applied to the GOT.
2029   std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits.  The default handling of relocatable relocation cannot process these
2034 // relocations.  So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038   public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040  public:
2041   // Return the strategy to use for a local symbol which is a section
2042   // symbol, given the relocation type.
2043   inline Relocatable_relocs::Reloc_strategy
2044   local_section_strategy(unsigned int r_type, Relobj*)
2045   {
2046     if (sh_type == elfcpp::SHT_RELA)
2047       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048     else
2049       {
2050         if (r_type == elfcpp::R_ARM_TARGET1
2051             || r_type == elfcpp::R_ARM_TARGET2)
2052           {
2053             const Target_arm<big_endian>* arm_target =
2054               Target_arm<big_endian>::default_target();
2055             r_type = arm_target->get_real_reloc_type(r_type);
2056           }
2057
2058         switch(r_type)
2059           {
2060           // Relocations that write nothing.  These exclude R_ARM_TARGET1
2061           // and R_ARM_TARGET2.
2062           case elfcpp::R_ARM_NONE:
2063           case elfcpp::R_ARM_V4BX:
2064           case elfcpp::R_ARM_TLS_GOTDESC:
2065           case elfcpp::R_ARM_TLS_CALL:
2066           case elfcpp::R_ARM_TLS_DESCSEQ:
2067           case elfcpp::R_ARM_THM_TLS_CALL:
2068           case elfcpp::R_ARM_GOTRELAX:
2069           case elfcpp::R_ARM_GNU_VTENTRY:
2070           case elfcpp::R_ARM_GNU_VTINHERIT:
2071           case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072           case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074           // These should have been converted to something else above.
2075           case elfcpp::R_ARM_TARGET1:
2076           case elfcpp::R_ARM_TARGET2:
2077             gold_unreachable();
2078           // Relocations that write full 32 bits and
2079           // have alignment of 1.
2080           case elfcpp::R_ARM_ABS32:
2081           case elfcpp::R_ARM_REL32:
2082           case elfcpp::R_ARM_SBREL32:
2083           case elfcpp::R_ARM_GOTOFF32:
2084           case elfcpp::R_ARM_BASE_PREL:
2085           case elfcpp::R_ARM_GOT_BREL:
2086           case elfcpp::R_ARM_BASE_ABS:
2087           case elfcpp::R_ARM_ABS32_NOI:
2088           case elfcpp::R_ARM_REL32_NOI:
2089           case elfcpp::R_ARM_PLT32_ABS:
2090           case elfcpp::R_ARM_GOT_ABS:
2091           case elfcpp::R_ARM_GOT_PREL:
2092           case elfcpp::R_ARM_TLS_GD32:
2093           case elfcpp::R_ARM_TLS_LDM32:
2094           case elfcpp::R_ARM_TLS_LDO32:
2095           case elfcpp::R_ARM_TLS_IE32:
2096           case elfcpp::R_ARM_TLS_LE32:
2097             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
2098           default:
2099             // For all other static relocations, return RELOC_SPECIAL.
2100             return Relocatable_relocs::RELOC_SPECIAL;
2101           }
2102       }
2103   }
2104 };
2105
2106 template<bool big_endian>
2107 class Target_arm : public Sized_target<32, big_endian>
2108 {
2109  public:
2110   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2111     Reloc_section;
2112
2113   // When were are relocating a stub, we pass this as the relocation number.
2114   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2115
2116   Target_arm()
2117     : Sized_target<32, big_endian>(&arm_info),
2118       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2119       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2120       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2121       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2122       should_force_pic_veneer_(false),
2123       arm_input_section_map_(), attributes_section_data_(NULL),
2124       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2125   { }
2126
2127   // Whether we force PCI branch veneers.
2128   bool
2129   should_force_pic_veneer() const
2130   { return this->should_force_pic_veneer_; }
2131
2132   // Set PIC veneer flag.
2133   void
2134   set_should_force_pic_veneer(bool value)
2135   { this->should_force_pic_veneer_ = value; }
2136   
2137   // Whether we use THUMB-2 instructions.
2138   bool
2139   using_thumb2() const
2140   {
2141     Object_attribute* attr =
2142       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2143     int arch = attr->int_value();
2144     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2145   }
2146
2147   // Whether we use THUMB/THUMB-2 instructions only.
2148   bool
2149   using_thumb_only() const
2150   {
2151     Object_attribute* attr =
2152       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2153
2154     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2155         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2156       return true;
2157     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2158         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2159       return false;
2160     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2161     return attr->int_value() == 'M';
2162   }
2163
2164   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2165   bool
2166   may_use_arm_nop() const
2167   {
2168     Object_attribute* attr =
2169       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2170     int arch = attr->int_value();
2171     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2172             || arch == elfcpp::TAG_CPU_ARCH_V6K
2173             || arch == elfcpp::TAG_CPU_ARCH_V7
2174             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2175   }
2176
2177   // Whether we have THUMB-2 NOP.W instruction.
2178   bool
2179   may_use_thumb2_nop() const
2180   {
2181     Object_attribute* attr =
2182       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2183     int arch = attr->int_value();
2184     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2185             || arch == elfcpp::TAG_CPU_ARCH_V7
2186             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2187   }
2188
2189   // Whether we have v4T interworking instructions available.
2190   bool
2191   may_use_v4t_interworking() const
2192   {
2193     Object_attribute* attr =
2194       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195     int arch = attr->int_value();
2196     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2197             && arch != elfcpp::TAG_CPU_ARCH_V4);
2198   }
2199   
2200   // Whether we have v5T interworking instructions available.
2201   bool
2202   may_use_v5t_interworking() const
2203   {
2204     Object_attribute* attr =
2205       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2206     int arch = attr->int_value();
2207     if (parameters->options().fix_arm1176())
2208       return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2209               || arch == elfcpp::TAG_CPU_ARCH_V7
2210               || arch == elfcpp::TAG_CPU_ARCH_V6_M
2211               || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2212               || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2213     else
2214       return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2215               && arch != elfcpp::TAG_CPU_ARCH_V4
2216               && arch != elfcpp::TAG_CPU_ARCH_V4T);
2217   }
2218   
2219   // Process the relocations to determine unreferenced sections for 
2220   // garbage collection.
2221   void
2222   gc_process_relocs(Symbol_table* symtab,
2223                     Layout* layout,
2224                     Sized_relobj_file<32, big_endian>* object,
2225                     unsigned int data_shndx,
2226                     unsigned int sh_type,
2227                     const unsigned char* prelocs,
2228                     size_t reloc_count,
2229                     Output_section* output_section,
2230                     bool needs_special_offset_handling,
2231                     size_t local_symbol_count,
2232                     const unsigned char* plocal_symbols);
2233
2234   // Scan the relocations to look for symbol adjustments.
2235   void
2236   scan_relocs(Symbol_table* symtab,
2237               Layout* layout,
2238               Sized_relobj_file<32, big_endian>* object,
2239               unsigned int data_shndx,
2240               unsigned int sh_type,
2241               const unsigned char* prelocs,
2242               size_t reloc_count,
2243               Output_section* output_section,
2244               bool needs_special_offset_handling,
2245               size_t local_symbol_count,
2246               const unsigned char* plocal_symbols);
2247
2248   // Finalize the sections.
2249   void
2250   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2251
2252   // Return the value to use for a dynamic symbol which requires special
2253   // treatment.
2254   uint64_t
2255   do_dynsym_value(const Symbol*) const;
2256
2257   // Relocate a section.
2258   void
2259   relocate_section(const Relocate_info<32, big_endian>*,
2260                    unsigned int sh_type,
2261                    const unsigned char* prelocs,
2262                    size_t reloc_count,
2263                    Output_section* output_section,
2264                    bool needs_special_offset_handling,
2265                    unsigned char* view,
2266                    Arm_address view_address,
2267                    section_size_type view_size,
2268                    const Reloc_symbol_changes*);
2269
2270   // Scan the relocs during a relocatable link.
2271   void
2272   scan_relocatable_relocs(Symbol_table* symtab,
2273                           Layout* layout,
2274                           Sized_relobj_file<32, big_endian>* object,
2275                           unsigned int data_shndx,
2276                           unsigned int sh_type,
2277                           const unsigned char* prelocs,
2278                           size_t reloc_count,
2279                           Output_section* output_section,
2280                           bool needs_special_offset_handling,
2281                           size_t local_symbol_count,
2282                           const unsigned char* plocal_symbols,
2283                           Relocatable_relocs*);
2284
2285   // Relocate a section during a relocatable link.
2286   void
2287   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2288                            unsigned int sh_type,
2289                            const unsigned char* prelocs,
2290                            size_t reloc_count,
2291                            Output_section* output_section,
2292                            off_t offset_in_output_section,
2293                            const Relocatable_relocs*,
2294                            unsigned char* view,
2295                            Arm_address view_address,
2296                            section_size_type view_size,
2297                            unsigned char* reloc_view,
2298                            section_size_type reloc_view_size);
2299
2300   // Perform target-specific processing in a relocatable link.  This is
2301   // only used if we use the relocation strategy RELOC_SPECIAL.
2302   void
2303   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2304                                unsigned int sh_type,
2305                                const unsigned char* preloc_in,
2306                                size_t relnum,
2307                                Output_section* output_section,
2308                                off_t offset_in_output_section,
2309                                unsigned char* view,
2310                                typename elfcpp::Elf_types<32>::Elf_Addr
2311                                  view_address,
2312                                section_size_type view_size,
2313                                unsigned char* preloc_out);
2314  
2315   // Return whether SYM is defined by the ABI.
2316   bool
2317   do_is_defined_by_abi(const Symbol* sym) const
2318   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2319
2320   // Return whether there is a GOT section.
2321   bool
2322   has_got_section() const
2323   { return this->got_ != NULL; }
2324
2325   // Return the size of the GOT section.
2326   section_size_type
2327   got_size() const
2328   {
2329     gold_assert(this->got_ != NULL);
2330     return this->got_->data_size();
2331   }
2332
2333   // Return the number of entries in the GOT.
2334   unsigned int
2335   got_entry_count() const
2336   {
2337     if (!this->has_got_section())
2338       return 0;
2339     return this->got_size() / 4;
2340   }
2341
2342   // Return the number of entries in the PLT.
2343   unsigned int
2344   plt_entry_count() const;
2345
2346   // Return the offset of the first non-reserved PLT entry.
2347   unsigned int
2348   first_plt_entry_offset() const;
2349
2350   // Return the size of each PLT entry.
2351   unsigned int
2352   plt_entry_size() const;
2353
2354   // Map platform-specific reloc types
2355   static unsigned int
2356   get_real_reloc_type(unsigned int r_type);
2357
2358   //
2359   // Methods to support stub-generations.
2360   //
2361   
2362   // Return the stub factory
2363   const Stub_factory&
2364   stub_factory() const
2365   { return this->stub_factory_; }
2366
2367   // Make a new Arm_input_section object.
2368   Arm_input_section<big_endian>*
2369   new_arm_input_section(Relobj*, unsigned int);
2370
2371   // Find the Arm_input_section object corresponding to the SHNDX-th input
2372   // section of RELOBJ.
2373   Arm_input_section<big_endian>*
2374   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2375
2376   // Make a new Stub_table
2377   Stub_table<big_endian>*
2378   new_stub_table(Arm_input_section<big_endian>*);
2379
2380   // Scan a section for stub generation.
2381   void
2382   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2383                          const unsigned char*, size_t, Output_section*,
2384                          bool, const unsigned char*, Arm_address,
2385                          section_size_type);
2386
2387   // Relocate a stub. 
2388   void
2389   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2390                 Output_section*, unsigned char*, Arm_address,
2391                 section_size_type);
2392  
2393   // Get the default ARM target.
2394   static Target_arm<big_endian>*
2395   default_target()
2396   {
2397     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2398                 && parameters->target().is_big_endian() == big_endian);
2399     return static_cast<Target_arm<big_endian>*>(
2400              parameters->sized_target<32, big_endian>());
2401   }
2402
2403   // Whether NAME belongs to a mapping symbol.
2404   static bool
2405   is_mapping_symbol_name(const char* name)
2406   {
2407     return (name
2408             && name[0] == '$'
2409             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2410             && (name[2] == '\0' || name[2] == '.'));
2411   }
2412
2413   // Whether we work around the Cortex-A8 erratum.
2414   bool
2415   fix_cortex_a8() const
2416   { return this->fix_cortex_a8_; }
2417
2418   // Whether we merge exidx entries in debuginfo.
2419   bool
2420   merge_exidx_entries() const
2421   { return parameters->options().merge_exidx_entries(); }
2422
2423   // Whether we fix R_ARM_V4BX relocation.
2424   // 0 - do not fix
2425   // 1 - replace with MOV instruction (armv4 target)
2426   // 2 - make interworking veneer (>= armv4t targets only)
2427   General_options::Fix_v4bx
2428   fix_v4bx() const
2429   { return parameters->options().fix_v4bx(); }
2430
2431   // Scan a span of THUMB code section for Cortex-A8 erratum.
2432   void
2433   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2434                                   section_size_type, section_size_type,
2435                                   const unsigned char*, Arm_address);
2436
2437   // Apply Cortex-A8 workaround to a branch.
2438   void
2439   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2440                              unsigned char*, Arm_address);
2441
2442  protected:
2443   // Make an ELF object.
2444   Object*
2445   do_make_elf_object(const std::string&, Input_file*, off_t,
2446                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2447
2448   Object*
2449   do_make_elf_object(const std::string&, Input_file*, off_t,
2450                      const elfcpp::Ehdr<32, !big_endian>&)
2451   { gold_unreachable(); }
2452
2453   Object*
2454   do_make_elf_object(const std::string&, Input_file*, off_t,
2455                       const elfcpp::Ehdr<64, false>&)
2456   { gold_unreachable(); }
2457
2458   Object*
2459   do_make_elf_object(const std::string&, Input_file*, off_t,
2460                      const elfcpp::Ehdr<64, true>&)
2461   { gold_unreachable(); }
2462
2463   // Make an output section.
2464   Output_section*
2465   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2466                          elfcpp::Elf_Xword flags)
2467   { return new Arm_output_section<big_endian>(name, type, flags); }
2468
2469   void
2470   do_adjust_elf_header(unsigned char* view, int len) const;
2471
2472   // We only need to generate stubs, and hence perform relaxation if we are
2473   // not doing relocatable linking.
2474   bool
2475   do_may_relax() const
2476   { return !parameters->options().relocatable(); }
2477
2478   bool
2479   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2480
2481   // Determine whether an object attribute tag takes an integer, a
2482   // string or both.
2483   int
2484   do_attribute_arg_type(int tag) const;
2485
2486   // Reorder tags during output.
2487   int
2488   do_attributes_order(int num) const;
2489
2490   // This is called when the target is selected as the default.
2491   void
2492   do_select_as_default_target()
2493   {
2494     // No locking is required since there should only be one default target.
2495     // We cannot have both the big-endian and little-endian ARM targets
2496     // as the default.
2497     gold_assert(arm_reloc_property_table == NULL);
2498     arm_reloc_property_table = new Arm_reloc_property_table();
2499   }
2500
2501   // Virtual function which is set to return true by a target if
2502   // it can use relocation types to determine if a function's
2503   // pointer is taken.
2504   virtual bool
2505   do_can_check_for_function_pointers() const
2506   { return true; }
2507
2508   // Whether a section called SECTION_NAME may have function pointers to
2509   // sections not eligible for safe ICF folding.
2510   virtual bool
2511   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2512   {
2513     return (!is_prefix_of(".ARM.exidx", section_name)
2514             && !is_prefix_of(".ARM.extab", section_name)
2515             && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2516   }
2517   
2518   virtual void
2519   do_define_standard_symbols(Symbol_table*, Layout*);
2520
2521  private:
2522   // The class which scans relocations.
2523   class Scan
2524   {
2525    public:
2526     Scan()
2527       : issued_non_pic_error_(false)
2528     { }
2529
2530     static inline int
2531     get_reference_flags(unsigned int r_type);
2532
2533     inline void
2534     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2535           Sized_relobj_file<32, big_endian>* object,
2536           unsigned int data_shndx,
2537           Output_section* output_section,
2538           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2539           const elfcpp::Sym<32, big_endian>& lsym);
2540
2541     inline void
2542     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2543            Sized_relobj_file<32, big_endian>* object,
2544            unsigned int data_shndx,
2545            Output_section* output_section,
2546            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2547            Symbol* gsym);
2548
2549     inline bool
2550     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2551                                         Sized_relobj_file<32, big_endian>* ,
2552                                         unsigned int ,
2553                                         Output_section* ,
2554                                         const elfcpp::Rel<32, big_endian>& ,
2555                                         unsigned int ,
2556                                         const elfcpp::Sym<32, big_endian>&);
2557
2558     inline bool
2559     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2560                                          Sized_relobj_file<32, big_endian>* ,
2561                                          unsigned int ,
2562                                          Output_section* ,
2563                                          const elfcpp::Rel<32, big_endian>& ,
2564                                          unsigned int , Symbol*);
2565
2566    private:
2567     static void
2568     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2569                             unsigned int r_type);
2570
2571     static void
2572     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2573                              unsigned int r_type, Symbol*);
2574
2575     void
2576     check_non_pic(Relobj*, unsigned int r_type);
2577
2578     // Almost identical to Symbol::needs_plt_entry except that it also
2579     // handles STT_ARM_TFUNC.
2580     static bool
2581     symbol_needs_plt_entry(const Symbol* sym)
2582     {
2583       // An undefined symbol from an executable does not need a PLT entry.
2584       if (sym->is_undefined() && !parameters->options().shared())
2585         return false;
2586
2587       return (!parameters->doing_static_link()
2588               && (sym->type() == elfcpp::STT_FUNC
2589                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2590               && (sym->is_from_dynobj()
2591                   || sym->is_undefined()
2592                   || sym->is_preemptible()));
2593     }
2594
2595     inline bool
2596     possible_function_pointer_reloc(unsigned int r_type);
2597
2598     // Whether we have issued an error about a non-PIC compilation.
2599     bool issued_non_pic_error_;
2600   };
2601
2602   // The class which implements relocation.
2603   class Relocate
2604   {
2605    public:
2606     Relocate()
2607     { }
2608
2609     ~Relocate()
2610     { }
2611
2612     // Return whether the static relocation needs to be applied.
2613     inline bool
2614     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2615                               unsigned int r_type,
2616                               bool is_32bit,
2617                               Output_section* output_section);
2618
2619     // Do a relocation.  Return false if the caller should not issue
2620     // any warnings about this relocation.
2621     inline bool
2622     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2623              Output_section*,  size_t relnum,
2624              const elfcpp::Rel<32, big_endian>&,
2625              unsigned int r_type, const Sized_symbol<32>*,
2626              const Symbol_value<32>*,
2627              unsigned char*, Arm_address,
2628              section_size_type);
2629
2630     // Return whether we want to pass flag NON_PIC_REF for this
2631     // reloc.  This means the relocation type accesses a symbol not via
2632     // GOT or PLT.
2633     static inline bool
2634     reloc_is_non_pic(unsigned int r_type)
2635     {
2636       switch (r_type)
2637         {
2638         // These relocation types reference GOT or PLT entries explicitly.
2639         case elfcpp::R_ARM_GOT_BREL:
2640         case elfcpp::R_ARM_GOT_ABS:
2641         case elfcpp::R_ARM_GOT_PREL:
2642         case elfcpp::R_ARM_GOT_BREL12:
2643         case elfcpp::R_ARM_PLT32_ABS:
2644         case elfcpp::R_ARM_TLS_GD32:
2645         case elfcpp::R_ARM_TLS_LDM32:
2646         case elfcpp::R_ARM_TLS_IE32:
2647         case elfcpp::R_ARM_TLS_IE12GP:
2648
2649         // These relocate types may use PLT entries.
2650         case elfcpp::R_ARM_CALL:
2651         case elfcpp::R_ARM_THM_CALL:
2652         case elfcpp::R_ARM_JUMP24:
2653         case elfcpp::R_ARM_THM_JUMP24:
2654         case elfcpp::R_ARM_THM_JUMP19:
2655         case elfcpp::R_ARM_PLT32:
2656         case elfcpp::R_ARM_THM_XPC22:
2657         case elfcpp::R_ARM_PREL31:
2658         case elfcpp::R_ARM_SBREL31:
2659           return false;
2660
2661         default:
2662           return true;
2663         }
2664     }
2665
2666    private:
2667     // Do a TLS relocation.
2668     inline typename Arm_relocate_functions<big_endian>::Status
2669     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2670                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2671                  const Sized_symbol<32>*, const Symbol_value<32>*,
2672                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2673                  section_size_type);
2674
2675   };
2676
2677   // A class which returns the size required for a relocation type,
2678   // used while scanning relocs during a relocatable link.
2679   class Relocatable_size_for_reloc
2680   {
2681    public:
2682     unsigned int
2683     get_size_for_reloc(unsigned int, Relobj*);
2684   };
2685
2686   // Adjust TLS relocation type based on the options and whether this
2687   // is a local symbol.
2688   static tls::Tls_optimization
2689   optimize_tls_reloc(bool is_final, int r_type);
2690
2691   // Get the GOT section, creating it if necessary.
2692   Arm_output_data_got<big_endian>*
2693   got_section(Symbol_table*, Layout*);
2694
2695   // Get the GOT PLT section.
2696   Output_data_space*
2697   got_plt_section() const
2698   {
2699     gold_assert(this->got_plt_ != NULL);
2700     return this->got_plt_;
2701   }
2702
2703   // Create a PLT entry for a global symbol.
2704   void
2705   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2706
2707   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2708   void
2709   define_tls_base_symbol(Symbol_table*, Layout*);
2710
2711   // Create a GOT entry for the TLS module index.
2712   unsigned int
2713   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2714                       Sized_relobj_file<32, big_endian>* object);
2715
2716   // Get the PLT section.
2717   const Output_data_plt_arm<big_endian>*
2718   plt_section() const
2719   {
2720     gold_assert(this->plt_ != NULL);
2721     return this->plt_;
2722   }
2723
2724   // Get the dynamic reloc section, creating it if necessary.
2725   Reloc_section*
2726   rel_dyn_section(Layout*);
2727
2728   // Get the section to use for TLS_DESC relocations.
2729   Reloc_section*
2730   rel_tls_desc_section(Layout*) const;
2731
2732   // Return true if the symbol may need a COPY relocation.
2733   // References from an executable object to non-function symbols
2734   // defined in a dynamic object may need a COPY relocation.
2735   bool
2736   may_need_copy_reloc(Symbol* gsym)
2737   {
2738     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2739             && gsym->may_need_copy_reloc());
2740   }
2741
2742   // Add a potential copy relocation.
2743   void
2744   copy_reloc(Symbol_table* symtab, Layout* layout,
2745              Sized_relobj_file<32, big_endian>* object,
2746              unsigned int shndx, Output_section* output_section,
2747              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2748   {
2749     this->copy_relocs_.copy_reloc(symtab, layout,
2750                                   symtab->get_sized_symbol<32>(sym),
2751                                   object, shndx, output_section, reloc,
2752                                   this->rel_dyn_section(layout));
2753   }
2754
2755   // Whether two EABI versions are compatible.
2756   static bool
2757   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2758
2759   // Merge processor-specific flags from input object and those in the ELF
2760   // header of the output.
2761   void
2762   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2763
2764   // Get the secondary compatible architecture.
2765   static int
2766   get_secondary_compatible_arch(const Attributes_section_data*);
2767
2768   // Set the secondary compatible architecture.
2769   static void
2770   set_secondary_compatible_arch(Attributes_section_data*, int);
2771
2772   static int
2773   tag_cpu_arch_combine(const char*, int, int*, int, int);
2774
2775   // Helper to print AEABI enum tag value.
2776   static std::string
2777   aeabi_enum_name(unsigned int);
2778
2779   // Return string value for TAG_CPU_name.
2780   static std::string
2781   tag_cpu_name_value(unsigned int);
2782
2783   // Merge object attributes from input object and those in the output.
2784   void
2785   merge_object_attributes(const char*, const Attributes_section_data*);
2786
2787   // Helper to get an AEABI object attribute
2788   Object_attribute*
2789   get_aeabi_object_attribute(int tag) const
2790   {
2791     Attributes_section_data* pasd = this->attributes_section_data_;
2792     gold_assert(pasd != NULL);
2793     Object_attribute* attr =
2794       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2795     gold_assert(attr != NULL);
2796     return attr;
2797   }
2798
2799   //
2800   // Methods to support stub-generations.
2801   //
2802
2803   // Group input sections for stub generation.
2804   void
2805   group_sections(Layout*, section_size_type, bool, const Task*);
2806
2807   // Scan a relocation for stub generation.
2808   void
2809   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2810                       const Sized_symbol<32>*, unsigned int,
2811                       const Symbol_value<32>*,
2812                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2813
2814   // Scan a relocation section for stub.
2815   template<int sh_type>
2816   void
2817   scan_reloc_section_for_stubs(
2818       const Relocate_info<32, big_endian>* relinfo,
2819       const unsigned char* prelocs,
2820       size_t reloc_count,
2821       Output_section* output_section,
2822       bool needs_special_offset_handling,
2823       const unsigned char* view,
2824       elfcpp::Elf_types<32>::Elf_Addr view_address,
2825       section_size_type);
2826
2827   // Fix .ARM.exidx section coverage.
2828   void
2829   fix_exidx_coverage(Layout*, const Input_objects*,
2830                      Arm_output_section<big_endian>*, Symbol_table*,
2831                      const Task*);
2832
2833   // Functors for STL set.
2834   struct output_section_address_less_than
2835   {
2836     bool
2837     operator()(const Output_section* s1, const Output_section* s2) const
2838     { return s1->address() < s2->address(); }
2839   };
2840
2841   // Information about this specific target which we pass to the
2842   // general Target structure.
2843   static const Target::Target_info arm_info;
2844
2845   // The types of GOT entries needed for this platform.
2846   // These values are exposed to the ABI in an incremental link.
2847   // Do not renumber existing values without changing the version
2848   // number of the .gnu_incremental_inputs section.
2849   enum Got_type
2850   {
2851     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2852     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2853     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2854     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2855     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2856   };
2857
2858   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2859
2860   // Map input section to Arm_input_section.
2861   typedef Unordered_map<Section_id,
2862                         Arm_input_section<big_endian>*,
2863                         Section_id_hash>
2864           Arm_input_section_map;
2865     
2866   // Map output addresses to relocs for Cortex-A8 erratum.
2867   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2868           Cortex_a8_relocs_info;
2869
2870   // The GOT section.
2871   Arm_output_data_got<big_endian>* got_;
2872   // The PLT section.
2873   Output_data_plt_arm<big_endian>* plt_;
2874   // The GOT PLT section.
2875   Output_data_space* got_plt_;
2876   // The dynamic reloc section.
2877   Reloc_section* rel_dyn_;
2878   // Relocs saved to avoid a COPY reloc.
2879   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2880   // Space for variables copied with a COPY reloc.
2881   Output_data_space* dynbss_;
2882   // Offset of the GOT entry for the TLS module index.
2883   unsigned int got_mod_index_offset_;
2884   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2885   bool tls_base_symbol_defined_;
2886   // Vector of Stub_tables created.
2887   Stub_table_list stub_tables_;
2888   // Stub factory.
2889   const Stub_factory &stub_factory_;
2890   // Whether we force PIC branch veneers.
2891   bool should_force_pic_veneer_;
2892   // Map for locating Arm_input_sections.
2893   Arm_input_section_map arm_input_section_map_;
2894   // Attributes section data in output.
2895   Attributes_section_data* attributes_section_data_;
2896   // Whether we want to fix code for Cortex-A8 erratum.
2897   bool fix_cortex_a8_;
2898   // Map addresses to relocs for Cortex-A8 erratum.
2899   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2900 };
2901
2902 template<bool big_endian>
2903 const Target::Target_info Target_arm<big_endian>::arm_info =
2904 {
2905   32,                   // size
2906   big_endian,           // is_big_endian
2907   elfcpp::EM_ARM,       // machine_code
2908   false,                // has_make_symbol
2909   false,                // has_resolve
2910   false,                // has_code_fill
2911   true,                 // is_default_stack_executable
2912   false,                // can_icf_inline_merge_sections
2913   '\0',                 // wrap_char
2914   "/usr/lib/libc.so.1", // dynamic_linker
2915   0x8000,               // default_text_segment_address
2916   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2917   0x1000,               // common_pagesize (overridable by -z common-page-size)
2918   elfcpp::SHN_UNDEF,    // small_common_shndx
2919   elfcpp::SHN_UNDEF,    // large_common_shndx
2920   0,                    // small_common_section_flags
2921   0,                    // large_common_section_flags
2922   ".ARM.attributes",    // attributes_section
2923   "aeabi"               // attributes_vendor
2924 };
2925
2926 // Arm relocate functions class
2927 //
2928
2929 template<bool big_endian>
2930 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2931 {
2932  public:
2933   typedef enum
2934   {
2935     STATUS_OKAY,        // No error during relocation.
2936     STATUS_OVERFLOW,    // Relocation overflow.
2937     STATUS_BAD_RELOC    // Relocation cannot be applied.
2938   } Status;
2939
2940  private:
2941   typedef Relocate_functions<32, big_endian> Base;
2942   typedef Arm_relocate_functions<big_endian> This;
2943
2944   // Encoding of imm16 argument for movt and movw ARM instructions
2945   // from ARM ARM:
2946   //     
2947   //     imm16 := imm4 | imm12
2948   //
2949   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2950   // +-------+---------------+-------+-------+-----------------------+
2951   // |       |               |imm4   |       |imm12                  |
2952   // +-------+---------------+-------+-------+-----------------------+
2953
2954   // Extract the relocation addend from VAL based on the ARM
2955   // instruction encoding described above.
2956   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2957   extract_arm_movw_movt_addend(
2958       typename elfcpp::Swap<32, big_endian>::Valtype val)
2959   {
2960     // According to the Elf ABI for ARM Architecture the immediate
2961     // field is sign-extended to form the addend.
2962     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
2963   }
2964
2965   // Insert X into VAL based on the ARM instruction encoding described
2966   // above.
2967   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2968   insert_val_arm_movw_movt(
2969       typename elfcpp::Swap<32, big_endian>::Valtype val,
2970       typename elfcpp::Swap<32, big_endian>::Valtype x)
2971   {
2972     val &= 0xfff0f000;
2973     val |= x & 0x0fff;
2974     val |= (x & 0xf000) << 4;
2975     return val;
2976   }
2977
2978   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2979   // from ARM ARM:
2980   //     
2981   //     imm16 := imm4 | i | imm3 | imm8
2982   //
2983   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
2984   // +---------+-+-----------+-------++-+-----+-------+---------------+
2985   // |         |i|           |imm4   || |imm3 |       |imm8           |
2986   // +---------+-+-----------+-------++-+-----+-------+---------------+
2987
2988   // Extract the relocation addend from VAL based on the Thumb2
2989   // instruction encoding described above.
2990   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2991   extract_thumb_movw_movt_addend(
2992       typename elfcpp::Swap<32, big_endian>::Valtype val)
2993   {
2994     // According to the Elf ABI for ARM Architecture the immediate
2995     // field is sign-extended to form the addend.
2996     return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
2997                                    | ((val >> 15) & 0x0800)
2998                                    | ((val >> 4) & 0x0700)
2999                                    | (val & 0x00ff));
3000   }
3001
3002   // Insert X into VAL based on the Thumb2 instruction encoding
3003   // described above.
3004   static inline typename elfcpp::Swap<32, big_endian>::Valtype
3005   insert_val_thumb_movw_movt(
3006       typename elfcpp::Swap<32, big_endian>::Valtype val,
3007       typename elfcpp::Swap<32, big_endian>::Valtype x)
3008   {
3009     val &= 0xfbf08f00;
3010     val |= (x & 0xf000) << 4;
3011     val |= (x & 0x0800) << 15;
3012     val |= (x & 0x0700) << 4;
3013     val |= (x & 0x00ff);
3014     return val;
3015   }
3016
3017   // Calculate the smallest constant Kn for the specified residual.
3018   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3019   static uint32_t
3020   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3021   {
3022     int32_t msb;
3023
3024     if (residual == 0)
3025       return 0;
3026     // Determine the most significant bit in the residual and
3027     // align the resulting value to a 2-bit boundary.
3028     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3029       ;
3030     // The desired shift is now (msb - 6), or zero, whichever
3031     // is the greater.
3032     return (((msb - 6) < 0) ? 0 : (msb - 6));
3033   }
3034
3035   // Calculate the final residual for the specified group index.
3036   // If the passed group index is less than zero, the method will return
3037   // the value of the specified residual without any change.
3038   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3039   static typename elfcpp::Swap<32, big_endian>::Valtype
3040   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3041                     const int group)
3042   {
3043     for (int n = 0; n <= group; n++)
3044       {
3045         // Calculate which part of the value to mask.
3046         uint32_t shift = calc_grp_kn(residual);
3047         // Calculate the residual for the next time around.
3048         residual &= ~(residual & (0xff << shift));
3049       }
3050
3051     return residual;
3052   }
3053
3054   // Calculate the value of Gn for the specified group index.
3055   // We return it in the form of an encoded constant-and-rotation.
3056   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3057   static typename elfcpp::Swap<32, big_endian>::Valtype
3058   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3059               const int group)
3060   {
3061     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3062     uint32_t shift = 0;
3063
3064     for (int n = 0; n <= group; n++)
3065       {
3066         // Calculate which part of the value to mask.
3067         shift = calc_grp_kn(residual);
3068         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3069         gn = residual & (0xff << shift);
3070         // Calculate the residual for the next time around.
3071         residual &= ~gn;
3072       }
3073     // Return Gn in the form of an encoded constant-and-rotation.
3074     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3075   }
3076
3077  public:
3078   // Handle ARM long branches.
3079   static typename This::Status
3080   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3081                     unsigned char*, const Sized_symbol<32>*,
3082                     const Arm_relobj<big_endian>*, unsigned int,
3083                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
3084
3085   // Handle THUMB long branches.
3086   static typename This::Status
3087   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3088                       unsigned char*, const Sized_symbol<32>*,
3089                       const Arm_relobj<big_endian>*, unsigned int,
3090                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
3091
3092
3093   // Return the branch offset of a 32-bit THUMB branch.
3094   static inline int32_t
3095   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3096   {
3097     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3098     // involving the J1 and J2 bits.
3099     uint32_t s = (upper_insn & (1U << 10)) >> 10;
3100     uint32_t upper = upper_insn & 0x3ffU;
3101     uint32_t lower = lower_insn & 0x7ffU;
3102     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3103     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3104     uint32_t i1 = j1 ^ s ? 0 : 1;
3105     uint32_t i2 = j2 ^ s ? 0 : 1;
3106
3107     return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3108                                    | (upper << 12) | (lower << 1));
3109   }
3110
3111   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3112   // UPPER_INSN is the original upper instruction of the branch.  Caller is
3113   // responsible for overflow checking and BLX offset adjustment.
3114   static inline uint16_t
3115   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3116   {
3117     uint32_t s = offset < 0 ? 1 : 0;
3118     uint32_t bits = static_cast<uint32_t>(offset);
3119     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3120   }
3121
3122   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3123   // LOWER_INSN is the original lower instruction of the branch.  Caller is
3124   // responsible for overflow checking and BLX offset adjustment.
3125   static inline uint16_t
3126   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3127   {
3128     uint32_t s = offset < 0 ? 1 : 0;
3129     uint32_t bits = static_cast<uint32_t>(offset);
3130     return ((lower_insn & ~0x2fffU)
3131             | ((((bits >> 23) & 1) ^ !s) << 13)
3132             | ((((bits >> 22) & 1) ^ !s) << 11)
3133             | ((bits >> 1) & 0x7ffU));
3134   }
3135
3136   // Return the branch offset of a 32-bit THUMB conditional branch.
3137   static inline int32_t
3138   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3139   {
3140     uint32_t s = (upper_insn & 0x0400U) >> 10;
3141     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3142     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3143     uint32_t lower = (lower_insn & 0x07ffU);
3144     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3145
3146     return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
3147   }
3148
3149   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3150   // instruction.  UPPER_INSN is the original upper instruction of the branch.
3151   // Caller is responsible for overflow checking.
3152   static inline uint16_t
3153   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3154   {
3155     uint32_t s = offset < 0 ? 1 : 0;
3156     uint32_t bits = static_cast<uint32_t>(offset);
3157     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3158   }
3159
3160   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3161   // instruction.  LOWER_INSN is the original lower instruction of the branch.
3162   // The caller is responsible for overflow checking.
3163   static inline uint16_t
3164   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3165   {
3166     uint32_t bits = static_cast<uint32_t>(offset);
3167     uint32_t j2 = (bits & 0x00080000U) >> 19;
3168     uint32_t j1 = (bits & 0x00040000U) >> 18;
3169     uint32_t lo = (bits & 0x00000ffeU) >> 1;
3170
3171     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3172   }
3173
3174   // R_ARM_ABS8: S + A
3175   static inline typename This::Status
3176   abs8(unsigned char* view,
3177        const Sized_relobj_file<32, big_endian>* object,
3178        const Symbol_value<32>* psymval)
3179   {
3180     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3181     Valtype* wv = reinterpret_cast<Valtype*>(view);
3182     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3183     int32_t addend = Bits<8>::sign_extend32(val);
3184     Arm_address x = psymval->value(object, addend);
3185     val = Bits<32>::bit_select32(val, x, 0xffU);
3186     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3187
3188     // R_ARM_ABS8 permits signed or unsigned results.
3189     return (Bits<8>::has_signed_unsigned_overflow32(x)
3190             ? This::STATUS_OVERFLOW
3191             : This::STATUS_OKAY);
3192   }
3193
3194   // R_ARM_THM_ABS5: S + A
3195   static inline typename This::Status
3196   thm_abs5(unsigned char* view,
3197        const Sized_relobj_file<32, big_endian>* object,
3198        const Symbol_value<32>* psymval)
3199   {
3200     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3201     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3202     Valtype* wv = reinterpret_cast<Valtype*>(view);
3203     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3204     Reltype addend = (val & 0x7e0U) >> 6;
3205     Reltype x = psymval->value(object, addend);
3206     val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
3207     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3208     return (Bits<5>::has_overflow32(x)
3209             ? This::STATUS_OVERFLOW
3210             : This::STATUS_OKAY);
3211   }
3212
3213   // R_ARM_ABS12: S + A
3214   static inline typename This::Status
3215   abs12(unsigned char* view,
3216         const Sized_relobj_file<32, big_endian>* object,
3217         const Symbol_value<32>* psymval)
3218   {
3219     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3220     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3221     Valtype* wv = reinterpret_cast<Valtype*>(view);
3222     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3223     Reltype addend = val & 0x0fffU;
3224     Reltype x = psymval->value(object, addend);
3225     val = Bits<32>::bit_select32(val, x, 0x0fffU);
3226     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3227     return (Bits<12>::has_overflow32(x)
3228             ? This::STATUS_OVERFLOW
3229             : This::STATUS_OKAY);
3230   }
3231
3232   // R_ARM_ABS16: S + A
3233   static inline typename This::Status
3234   abs16(unsigned char* view,
3235         const Sized_relobj_file<32, big_endian>* object,
3236         const Symbol_value<32>* psymval)
3237   {
3238     typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3239     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240     Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3241     int32_t addend = Bits<16>::sign_extend32(val);
3242     Arm_address x = psymval->value(object, addend);
3243     val = Bits<32>::bit_select32(val, x, 0xffffU);
3244     elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3245
3246     // R_ARM_ABS16 permits signed or unsigned results.
3247     return (Bits<16>::has_signed_unsigned_overflow32(x)
3248             ? This::STATUS_OVERFLOW
3249             : This::STATUS_OKAY);
3250   }
3251
3252   // R_ARM_ABS32: (S + A) | T
3253   static inline typename This::Status
3254   abs32(unsigned char* view,
3255         const Sized_relobj_file<32, big_endian>* object,
3256         const Symbol_value<32>* psymval,
3257         Arm_address thumb_bit)
3258   {
3259     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3260     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3261     Valtype x = psymval->value(object, addend) | thumb_bit;
3262     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3263     return This::STATUS_OKAY;
3264   }
3265
3266   // R_ARM_REL32: (S + A) | T - P
3267   static inline typename This::Status
3268   rel32(unsigned char* view,
3269         const Sized_relobj_file<32, big_endian>* object,
3270         const Symbol_value<32>* psymval,
3271         Arm_address address,
3272         Arm_address thumb_bit)
3273   {
3274     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3275     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3276     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3277     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3278     return This::STATUS_OKAY;
3279   }
3280
3281   // R_ARM_THM_JUMP24: (S + A) | T - P
3282   static typename This::Status
3283   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3284              const Symbol_value<32>* psymval, Arm_address address,
3285              Arm_address thumb_bit);
3286
3287   // R_ARM_THM_JUMP6: S + A â€“ P
3288   static inline typename This::Status
3289   thm_jump6(unsigned char* view,
3290             const Sized_relobj_file<32, big_endian>* object,
3291             const Symbol_value<32>* psymval,
3292             Arm_address address)
3293   {
3294     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3295     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3296     Valtype* wv = reinterpret_cast<Valtype*>(view);
3297     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3298     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3299     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3300     Reltype x = (psymval->value(object, addend) - address);
3301     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3302     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3303     // CZB does only forward jumps.
3304     return ((x > 0x007e)
3305             ? This::STATUS_OVERFLOW
3306             : This::STATUS_OKAY);
3307   }
3308
3309   // R_ARM_THM_JUMP8: S + A â€“ P
3310   static inline typename This::Status
3311   thm_jump8(unsigned char* view,
3312             const Sized_relobj_file<32, big_endian>* object,
3313             const Symbol_value<32>* psymval,
3314             Arm_address address)
3315   {
3316     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3317     Valtype* wv = reinterpret_cast<Valtype*>(view);
3318     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3319     int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
3320     int32_t x = (psymval->value(object, addend) - address);
3321     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3322                                                 | ((x & 0x01fe) >> 1)));
3323     // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3324     return (Bits<9>::has_overflow32(x)
3325             ? This::STATUS_OVERFLOW
3326             : This::STATUS_OKAY);
3327   }
3328
3329   // R_ARM_THM_JUMP11: S + A â€“ P
3330   static inline typename This::Status
3331   thm_jump11(unsigned char* view,
3332             const Sized_relobj_file<32, big_endian>* object,
3333             const Symbol_value<32>* psymval,
3334             Arm_address address)
3335   {
3336     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3337     Valtype* wv = reinterpret_cast<Valtype*>(view);
3338     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3339     int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
3340     int32_t x = (psymval->value(object, addend) - address);
3341     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3342                                                 | ((x & 0x0ffe) >> 1)));
3343     // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3344     return (Bits<12>::has_overflow32(x)
3345             ? This::STATUS_OVERFLOW
3346             : This::STATUS_OKAY);
3347   }
3348
3349   // R_ARM_BASE_PREL: B(S) + A - P
3350   static inline typename This::Status
3351   base_prel(unsigned char* view,
3352             Arm_address origin,
3353             Arm_address address)
3354   {
3355     Base::rel32(view, origin - address);
3356     return STATUS_OKAY;
3357   }
3358
3359   // R_ARM_BASE_ABS: B(S) + A
3360   static inline typename This::Status
3361   base_abs(unsigned char* view,
3362            Arm_address origin)
3363   {
3364     Base::rel32(view, origin);
3365     return STATUS_OKAY;
3366   }
3367
3368   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3369   static inline typename This::Status
3370   got_brel(unsigned char* view,
3371            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3372   {
3373     Base::rel32(view, got_offset);
3374     return This::STATUS_OKAY;
3375   }
3376
3377   // R_ARM_GOT_PREL: GOT(S) + A - P
3378   static inline typename This::Status
3379   got_prel(unsigned char* view,
3380            Arm_address got_entry,
3381            Arm_address address)
3382   {
3383     Base::rel32(view, got_entry - address);
3384     return This::STATUS_OKAY;
3385   }
3386
3387   // R_ARM_PREL: (S + A) | T - P
3388   static inline typename This::Status
3389   prel31(unsigned char* view,
3390          const Sized_relobj_file<32, big_endian>* object,
3391          const Symbol_value<32>* psymval,
3392          Arm_address address,
3393          Arm_address thumb_bit)
3394   {
3395     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3396     Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3397     Valtype addend = Bits<31>::sign_extend32(val);
3398     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3399     val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
3400     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3401     return (Bits<31>::has_overflow32(x)
3402             ? This::STATUS_OVERFLOW
3403             : This::STATUS_OKAY);
3404   }
3405
3406   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3407   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3408   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3409   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3410   static inline typename This::Status
3411   movw(unsigned char* view,
3412        const Sized_relobj_file<32, big_endian>* object,
3413        const Symbol_value<32>* psymval,
3414        Arm_address relative_address_base,
3415        Arm_address thumb_bit,
3416        bool check_overflow)
3417   {
3418     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3419     Valtype* wv = reinterpret_cast<Valtype*>(view);
3420     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3421     Valtype addend = This::extract_arm_movw_movt_addend(val);
3422     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3423                  - relative_address_base);
3424     val = This::insert_val_arm_movw_movt(val, x);
3425     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3426     return ((check_overflow && Bits<16>::has_overflow32(x))
3427             ? This::STATUS_OVERFLOW
3428             : This::STATUS_OKAY);
3429   }
3430
3431   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3432   // R_ARM_MOVT_PREL: S + A - P
3433   // R_ARM_MOVT_BREL: S + A - B(S)
3434   static inline typename This::Status
3435   movt(unsigned char* view,
3436        const Sized_relobj_file<32, big_endian>* object,
3437        const Symbol_value<32>* psymval,
3438        Arm_address relative_address_base)
3439   {
3440     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3441     Valtype* wv = reinterpret_cast<Valtype*>(view);
3442     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3443     Valtype addend = This::extract_arm_movw_movt_addend(val);
3444     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3445     val = This::insert_val_arm_movw_movt(val, x);
3446     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3447     // FIXME: IHI0044D says that we should check for overflow.
3448     return This::STATUS_OKAY;
3449   }
3450
3451   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3452   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3453   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3454   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3455   static inline typename This::Status
3456   thm_movw(unsigned char* view,
3457            const Sized_relobj_file<32, big_endian>* object,
3458            const Symbol_value<32>* psymval,
3459            Arm_address relative_address_base,
3460            Arm_address thumb_bit,
3461            bool check_overflow)
3462   {
3463     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3464     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3465     Valtype* wv = reinterpret_cast<Valtype*>(view);
3466     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3467                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3468     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3469     Reltype x =
3470       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3471     val = This::insert_val_thumb_movw_movt(val, x);
3472     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3473     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3474     return ((check_overflow && Bits<16>::has_overflow32(x))
3475             ? This::STATUS_OVERFLOW
3476             : This::STATUS_OKAY);
3477   }
3478
3479   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3480   // R_ARM_THM_MOVT_PREL: S + A - P
3481   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3482   static inline typename This::Status
3483   thm_movt(unsigned char* view,
3484            const Sized_relobj_file<32, big_endian>* object,
3485            const Symbol_value<32>* psymval,
3486            Arm_address relative_address_base)
3487   {
3488     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3489     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3490     Valtype* wv = reinterpret_cast<Valtype*>(view);
3491     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3492                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3493     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3494     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3495     val = This::insert_val_thumb_movw_movt(val, x);
3496     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3497     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3498     return This::STATUS_OKAY;
3499   }
3500
3501   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3502   static inline typename This::Status
3503   thm_alu11(unsigned char* view,
3504             const Sized_relobj_file<32, big_endian>* object,
3505             const Symbol_value<32>* psymval,
3506             Arm_address address,
3507             Arm_address thumb_bit)
3508   {
3509     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3510     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3511     Valtype* wv = reinterpret_cast<Valtype*>(view);
3512     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3513                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3514
3515     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3516     // -----------------------------------------------------------------------
3517     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3518     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3519     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3520     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3521     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3522     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3523
3524     // Determine a sign for the addend.
3525     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3526                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3527     // Thumb2 addend encoding:
3528     // imm12 := i | imm3 | imm8
3529     int32_t addend = (insn & 0xff)
3530                      | ((insn & 0x00007000) >> 4)
3531                      | ((insn & 0x04000000) >> 15);
3532     // Apply a sign to the added.
3533     addend *= sign;
3534
3535     int32_t x = (psymval->value(object, addend) | thumb_bit)
3536                 - (address & 0xfffffffc);
3537     Reltype val = abs(x);
3538     // Mask out the value and a distinct part of the ADD/SUB opcode
3539     // (bits 7:5 of opword).
3540     insn = (insn & 0xfb0f8f00)
3541            | (val & 0xff)
3542            | ((val & 0x700) << 4)
3543            | ((val & 0x800) << 15);
3544     // Set the opcode according to whether the value to go in the
3545     // place is negative.
3546     if (x < 0)
3547       insn |= 0x00a00000;
3548
3549     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3550     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3551     return ((val > 0xfff) ?
3552             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3553   }
3554
3555   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3556   static inline typename This::Status
3557   thm_pc8(unsigned char* view,
3558           const Sized_relobj_file<32, big_endian>* object,
3559           const Symbol_value<32>* psymval,
3560           Arm_address address)
3561   {
3562     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3563     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3564     Valtype* wv = reinterpret_cast<Valtype*>(view);
3565     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3566     Reltype addend = ((insn & 0x00ff) << 2);
3567     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3568     Reltype val = abs(x);
3569     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3570
3571     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3572     return ((val > 0x03fc)
3573             ? This::STATUS_OVERFLOW
3574             : This::STATUS_OKAY);
3575   }
3576
3577   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3578   static inline typename This::Status
3579   thm_pc12(unsigned char* view,
3580            const Sized_relobj_file<32, big_endian>* object,
3581            const Symbol_value<32>* psymval,
3582            Arm_address address)
3583   {
3584     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3585     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3586     Valtype* wv = reinterpret_cast<Valtype*>(view);
3587     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3588                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3589     // Determine a sign for the addend (positive if the U bit is 1).
3590     const int sign = (insn & 0x00800000) ? 1 : -1;
3591     int32_t addend = (insn & 0xfff);
3592     // Apply a sign to the added.
3593     addend *= sign;
3594
3595     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3596     Reltype val = abs(x);
3597     // Mask out and apply the value and the U bit.
3598     insn = (insn & 0xff7ff000) | (val & 0xfff);
3599     // Set the U bit according to whether the value to go in the
3600     // place is positive.
3601     if (x >= 0)
3602       insn |= 0x00800000;
3603
3604     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3605     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3606     return ((val > 0xfff) ?
3607             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3608   }
3609
3610   // R_ARM_V4BX
3611   static inline typename This::Status
3612   v4bx(const Relocate_info<32, big_endian>* relinfo,
3613        unsigned char* view,
3614        const Arm_relobj<big_endian>* object,
3615        const Arm_address address,
3616        const bool is_interworking)
3617   {
3618
3619     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3620     Valtype* wv = reinterpret_cast<Valtype*>(view);
3621     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3622
3623     // Ensure that we have a BX instruction.
3624     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3625     const uint32_t reg = (val & 0xf);
3626     if (is_interworking && reg != 0xf)
3627       {
3628         Stub_table<big_endian>* stub_table =
3629             object->stub_table(relinfo->data_shndx);
3630         gold_assert(stub_table != NULL);
3631
3632         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3633         gold_assert(stub != NULL);
3634
3635         int32_t veneer_address =
3636             stub_table->address() + stub->offset() - 8 - address;
3637         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3638                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3639         // Replace with a branch to veneer (B <addr>)
3640         val = (val & 0xf0000000) | 0x0a000000
3641               | ((veneer_address >> 2) & 0x00ffffff);
3642       }
3643     else
3644       {
3645         // Preserve Rm (lowest four bits) and the condition code
3646         // (highest four bits). Other bits encode MOV PC,Rm.
3647         val = (val & 0xf000000f) | 0x01a0f000;
3648       }
3649     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3650     return This::STATUS_OKAY;
3651   }
3652
3653   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3654   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3655   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3656   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3657   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3658   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3659   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3660   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3661   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3662   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3663   static inline typename This::Status
3664   arm_grp_alu(unsigned char* view,
3665         const Sized_relobj_file<32, big_endian>* object,
3666         const Symbol_value<32>* psymval,
3667         const int group,
3668         Arm_address address,
3669         Arm_address thumb_bit,
3670         bool check_overflow)
3671   {
3672     gold_assert(group >= 0 && group < 3);
3673     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3674     Valtype* wv = reinterpret_cast<Valtype*>(view);
3675     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3676
3677     // ALU group relocations are allowed only for the ADD/SUB instructions.
3678     // (0x00800000 - ADD, 0x00400000 - SUB)
3679     const Valtype opcode = insn & 0x01e00000;
3680     if (opcode != 0x00800000 && opcode != 0x00400000)
3681       return This::STATUS_BAD_RELOC;
3682
3683     // Determine a sign for the addend.
3684     const int sign = (opcode == 0x00800000) ? 1 : -1;
3685     // shifter = rotate_imm * 2
3686     const uint32_t shifter = (insn & 0xf00) >> 7;
3687     // Initial addend value.
3688     int32_t addend = insn & 0xff;
3689     // Rotate addend right by shifter.
3690     addend = (addend >> shifter) | (addend << (32 - shifter));
3691     // Apply a sign to the added.
3692     addend *= sign;
3693
3694     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3695     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3696     // Check for overflow if required
3697     if (check_overflow
3698         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3699       return This::STATUS_OVERFLOW;
3700
3701     // Mask out the value and the ADD/SUB part of the opcode; take care
3702     // not to destroy the S bit.
3703     insn &= 0xff1ff000;
3704     // Set the opcode according to whether the value to go in the
3705     // place is negative.
3706     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3707     // Encode the offset (encoded Gn).
3708     insn |= gn;
3709
3710     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3711     return This::STATUS_OKAY;
3712   }
3713
3714   // R_ARM_LDR_PC_G0: S + A - P
3715   // R_ARM_LDR_PC_G1: S + A - P
3716   // R_ARM_LDR_PC_G2: S + A - P
3717   // R_ARM_LDR_SB_G0: S + A - B(S)
3718   // R_ARM_LDR_SB_G1: S + A - B(S)
3719   // R_ARM_LDR_SB_G2: S + A - B(S)
3720   static inline typename This::Status
3721   arm_grp_ldr(unsigned char* view,
3722         const Sized_relobj_file<32, big_endian>* object,
3723         const Symbol_value<32>* psymval,
3724         const int group,
3725         Arm_address address)
3726   {
3727     gold_assert(group >= 0 && group < 3);
3728     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3729     Valtype* wv = reinterpret_cast<Valtype*>(view);
3730     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3731
3732     const int sign = (insn & 0x00800000) ? 1 : -1;
3733     int32_t addend = (insn & 0xfff) * sign;
3734     int32_t x = (psymval->value(object, addend) - address);
3735     // Calculate the relevant G(n-1) value to obtain this stage residual.
3736     Valtype residual =
3737         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3738     if (residual >= 0x1000)
3739       return This::STATUS_OVERFLOW;
3740
3741     // Mask out the value and U bit.
3742     insn &= 0xff7ff000;
3743     // Set the U bit for non-negative values.
3744     if (x >= 0)
3745       insn |= 0x00800000;
3746     insn |= residual;
3747
3748     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3749     return This::STATUS_OKAY;
3750   }
3751
3752   // R_ARM_LDRS_PC_G0: S + A - P
3753   // R_ARM_LDRS_PC_G1: S + A - P
3754   // R_ARM_LDRS_PC_G2: S + A - P
3755   // R_ARM_LDRS_SB_G0: S + A - B(S)
3756   // R_ARM_LDRS_SB_G1: S + A - B(S)
3757   // R_ARM_LDRS_SB_G2: S + A - B(S)
3758   static inline typename This::Status
3759   arm_grp_ldrs(unsigned char* view,
3760         const Sized_relobj_file<32, big_endian>* object,
3761         const Symbol_value<32>* psymval,
3762         const int group,
3763         Arm_address address)
3764   {
3765     gold_assert(group >= 0 && group < 3);
3766     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3767     Valtype* wv = reinterpret_cast<Valtype*>(view);
3768     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3769
3770     const int sign = (insn & 0x00800000) ? 1 : -1;
3771     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3772     int32_t x = (psymval->value(object, addend) - address);
3773     // Calculate the relevant G(n-1) value to obtain this stage residual.
3774     Valtype residual =
3775         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3776    if (residual >= 0x100)
3777       return This::STATUS_OVERFLOW;
3778
3779     // Mask out the value and U bit.
3780     insn &= 0xff7ff0f0;
3781     // Set the U bit for non-negative values.
3782     if (x >= 0)
3783       insn |= 0x00800000;
3784     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3785
3786     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3787     return This::STATUS_OKAY;
3788   }
3789
3790   // R_ARM_LDC_PC_G0: S + A - P
3791   // R_ARM_LDC_PC_G1: S + A - P
3792   // R_ARM_LDC_PC_G2: S + A - P
3793   // R_ARM_LDC_SB_G0: S + A - B(S)
3794   // R_ARM_LDC_SB_G1: S + A - B(S)
3795   // R_ARM_LDC_SB_G2: S + A - B(S)
3796   static inline typename This::Status
3797   arm_grp_ldc(unsigned char* view,
3798       const Sized_relobj_file<32, big_endian>* object,
3799       const Symbol_value<32>* psymval,
3800       const int group,
3801       Arm_address address)
3802   {
3803     gold_assert(group >= 0 && group < 3);
3804     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3805     Valtype* wv = reinterpret_cast<Valtype*>(view);
3806     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3807
3808     const int sign = (insn & 0x00800000) ? 1 : -1;
3809     int32_t addend = ((insn & 0xff) << 2) * sign;
3810     int32_t x = (psymval->value(object, addend) - address);
3811     // Calculate the relevant G(n-1) value to obtain this stage residual.
3812     Valtype residual =
3813       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3814     if ((residual & 0x3) != 0 || residual >= 0x400)
3815       return This::STATUS_OVERFLOW;
3816
3817     // Mask out the value and U bit.
3818     insn &= 0xff7fff00;
3819     // Set the U bit for non-negative values.
3820     if (x >= 0)
3821       insn |= 0x00800000;
3822     insn |= (residual >> 2);
3823
3824     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3825     return This::STATUS_OKAY;
3826   }
3827 };
3828
3829 // Relocate ARM long branches.  This handles relocation types
3830 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3831 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3832 // undefined and we do not use PLT in this relocation.  In such a case,
3833 // the branch is converted into an NOP.
3834
3835 template<bool big_endian>
3836 typename Arm_relocate_functions<big_endian>::Status
3837 Arm_relocate_functions<big_endian>::arm_branch_common(
3838     unsigned int r_type,
3839     const Relocate_info<32, big_endian>* relinfo,
3840     unsigned char* view,
3841     const Sized_symbol<32>* gsym,
3842     const Arm_relobj<big_endian>* object,
3843     unsigned int r_sym,
3844     const Symbol_value<32>* psymval,
3845     Arm_address address,
3846     Arm_address thumb_bit,
3847     bool is_weakly_undefined_without_plt)
3848 {
3849   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3850   Valtype* wv = reinterpret_cast<Valtype*>(view);
3851   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3852      
3853   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3854                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3855   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3856   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3857                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3858   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3859   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3860
3861   // Check that the instruction is valid.
3862   if (r_type == elfcpp::R_ARM_CALL)
3863     {
3864       if (!insn_is_uncond_bl && !insn_is_blx)
3865         return This::STATUS_BAD_RELOC;
3866     }
3867   else if (r_type == elfcpp::R_ARM_JUMP24)
3868     {
3869       if (!insn_is_b && !insn_is_cond_bl)
3870         return This::STATUS_BAD_RELOC;
3871     }
3872   else if (r_type == elfcpp::R_ARM_PLT32)
3873     {
3874       if (!insn_is_any_branch)
3875         return This::STATUS_BAD_RELOC;
3876     }
3877   else if (r_type == elfcpp::R_ARM_XPC25)
3878     {
3879       // FIXME: AAELF document IH0044C does not say much about it other
3880       // than it being obsolete.
3881       if (!insn_is_any_branch)
3882         return This::STATUS_BAD_RELOC;
3883     }
3884   else
3885     gold_unreachable();
3886
3887   // A branch to an undefined weak symbol is turned into a jump to
3888   // the next instruction unless a PLT entry will be created.
3889   // Do the same for local undefined symbols.
3890   // The jump to the next instruction is optimized as a NOP depending
3891   // on the architecture.
3892   const Target_arm<big_endian>* arm_target =
3893     Target_arm<big_endian>::default_target();
3894   if (is_weakly_undefined_without_plt)
3895     {
3896       gold_assert(!parameters->options().relocatable());
3897       Valtype cond = val & 0xf0000000U;
3898       if (arm_target->may_use_arm_nop())
3899         val = cond | 0x0320f000;
3900       else
3901         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3902       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3903       return This::STATUS_OKAY;
3904     }
3905  
3906   Valtype addend = Bits<26>::sign_extend32(val << 2);
3907   Valtype branch_target = psymval->value(object, addend);
3908   int32_t branch_offset = branch_target - address;
3909
3910   // We need a stub if the branch offset is too large or if we need
3911   // to switch mode.
3912   bool may_use_blx = arm_target->may_use_v5t_interworking();
3913   Reloc_stub* stub = NULL;
3914
3915   if (!parameters->options().relocatable()
3916       && (Bits<26>::has_overflow32(branch_offset)
3917           || ((thumb_bit != 0)
3918               && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3919     {
3920       Valtype unadjusted_branch_target = psymval->value(object, 0);
3921
3922       Stub_type stub_type =
3923         Reloc_stub::stub_type_for_reloc(r_type, address,
3924                                         unadjusted_branch_target,
3925                                         (thumb_bit != 0));
3926       if (stub_type != arm_stub_none)
3927         {
3928           Stub_table<big_endian>* stub_table =
3929             object->stub_table(relinfo->data_shndx);
3930           gold_assert(stub_table != NULL);
3931
3932           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3933           stub = stub_table->find_reloc_stub(stub_key);
3934           gold_assert(stub != NULL);
3935           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3936           branch_target = stub_table->address() + stub->offset() + addend;
3937           branch_offset = branch_target - address;
3938           gold_assert(!Bits<26>::has_overflow32(branch_offset));
3939         }
3940     }
3941
3942   // At this point, if we still need to switch mode, the instruction
3943   // must either be a BLX or a BL that can be converted to a BLX.
3944   if (thumb_bit != 0)
3945     {
3946       // Turn BL to BLX.
3947       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3948       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3949     }
3950
3951   val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
3952   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3953   return (Bits<26>::has_overflow32(branch_offset)
3954           ? This::STATUS_OVERFLOW
3955           : This::STATUS_OKAY);
3956 }
3957
3958 // Relocate THUMB long branches.  This handles relocation types
3959 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3960 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3961 // undefined and we do not use PLT in this relocation.  In such a case,
3962 // the branch is converted into an NOP.
3963
3964 template<bool big_endian>
3965 typename Arm_relocate_functions<big_endian>::Status
3966 Arm_relocate_functions<big_endian>::thumb_branch_common(
3967     unsigned int r_type,
3968     const Relocate_info<32, big_endian>* relinfo,
3969     unsigned char* view,
3970     const Sized_symbol<32>* gsym,
3971     const Arm_relobj<big_endian>* object,
3972     unsigned int r_sym,
3973     const Symbol_value<32>* psymval,
3974     Arm_address address,
3975     Arm_address thumb_bit,
3976     bool is_weakly_undefined_without_plt)
3977 {
3978   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3979   Valtype* wv = reinterpret_cast<Valtype*>(view);
3980   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3981   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3982
3983   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3984   // into account.
3985   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3986   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3987      
3988   // Check that the instruction is valid.
3989   if (r_type == elfcpp::R_ARM_THM_CALL)
3990     {
3991       if (!is_bl_insn && !is_blx_insn)
3992         return This::STATUS_BAD_RELOC;
3993     }
3994   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3995     {
3996       // This cannot be a BLX.
3997       if (!is_bl_insn)
3998         return This::STATUS_BAD_RELOC;
3999     }
4000   else if (r_type == elfcpp::R_ARM_THM_XPC22)
4001     {
4002       // Check for Thumb to Thumb call.
4003       if (!is_blx_insn)
4004         return This::STATUS_BAD_RELOC;
4005       if (thumb_bit != 0)
4006         {
4007           gold_warning(_("%s: Thumb BLX instruction targets "
4008                          "thumb function '%s'."),
4009                          object->name().c_str(),
4010                          (gsym ? gsym->name() : "(local)")); 
4011           // Convert BLX to BL.
4012           lower_insn |= 0x1000U;
4013         }
4014     }
4015   else
4016     gold_unreachable();
4017
4018   // A branch to an undefined weak symbol is turned into a jump to
4019   // the next instruction unless a PLT entry will be created.
4020   // The jump to the next instruction is optimized as a NOP.W for
4021   // Thumb-2 enabled architectures.
4022   const Target_arm<big_endian>* arm_target =
4023     Target_arm<big_endian>::default_target();
4024   if (is_weakly_undefined_without_plt)
4025     {
4026       gold_assert(!parameters->options().relocatable());
4027       if (arm_target->may_use_thumb2_nop())
4028         {
4029           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4030           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4031         }
4032       else
4033         {
4034           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4035           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4036         }
4037       return This::STATUS_OKAY;
4038     }
4039  
4040   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4041   Arm_address branch_target = psymval->value(object, addend);
4042
4043   // For BLX, bit 1 of target address comes from bit 1 of base address.
4044   bool may_use_blx = arm_target->may_use_v5t_interworking();
4045   if (thumb_bit == 0 && may_use_blx)
4046     branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4047
4048   int32_t branch_offset = branch_target - address;
4049
4050   // We need a stub if the branch offset is too large or if we need
4051   // to switch mode.
4052   bool thumb2 = arm_target->using_thumb2();
4053   if (!parameters->options().relocatable()
4054       && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4055           || (thumb2 && Bits<25>::has_overflow32(branch_offset))
4056           || ((thumb_bit == 0)
4057               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4058                   || r_type == elfcpp::R_ARM_THM_JUMP24))))
4059     {
4060       Arm_address unadjusted_branch_target = psymval->value(object, 0);
4061
4062       Stub_type stub_type =
4063         Reloc_stub::stub_type_for_reloc(r_type, address,
4064                                         unadjusted_branch_target,
4065                                         (thumb_bit != 0));
4066
4067       if (stub_type != arm_stub_none)
4068         {
4069           Stub_table<big_endian>* stub_table =
4070             object->stub_table(relinfo->data_shndx);
4071           gold_assert(stub_table != NULL);
4072
4073           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4074           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4075           gold_assert(stub != NULL);
4076           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4077           branch_target = stub_table->address() + stub->offset() + addend;
4078           if (thumb_bit == 0 && may_use_blx) 
4079             branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
4080           branch_offset = branch_target - address;
4081         }
4082     }
4083
4084   // At this point, if we still need to switch mode, the instruction
4085   // must either be a BLX or a BL that can be converted to a BLX.
4086   if (thumb_bit == 0)
4087     {
4088       gold_assert(may_use_blx
4089                   && (r_type == elfcpp::R_ARM_THM_CALL
4090                       || r_type == elfcpp::R_ARM_THM_XPC22));
4091       // Make sure this is a BLX.
4092       lower_insn &= ~0x1000U;
4093     }
4094   else
4095     {
4096       // Make sure this is a BL.
4097       lower_insn |= 0x1000U;
4098     }
4099
4100   // For a BLX instruction, make sure that the relocation is rounded up
4101   // to a word boundary.  This follows the semantics of the instruction
4102   // which specifies that bit 1 of the target address will come from bit
4103   // 1 of the base address.
4104   if ((lower_insn & 0x5000U) == 0x4000U)
4105     gold_assert((branch_offset & 3) == 0);
4106
4107   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4108   // We use the Thumb-2 encoding, which is safe even if dealing with
4109   // a Thumb-1 instruction by virtue of our overflow check above.  */
4110   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4111   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4112
4113   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4114   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4115
4116   gold_assert(!Bits<25>::has_overflow32(branch_offset));
4117
4118   return ((thumb2
4119            ? Bits<25>::has_overflow32(branch_offset)
4120            : Bits<23>::has_overflow32(branch_offset))
4121           ? This::STATUS_OVERFLOW
4122           : This::STATUS_OKAY);
4123 }
4124
4125 // Relocate THUMB-2 long conditional branches.
4126 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4127 // undefined and we do not use PLT in this relocation.  In such a case,
4128 // the branch is converted into an NOP.
4129
4130 template<bool big_endian>
4131 typename Arm_relocate_functions<big_endian>::Status
4132 Arm_relocate_functions<big_endian>::thm_jump19(
4133     unsigned char* view,
4134     const Arm_relobj<big_endian>* object,
4135     const Symbol_value<32>* psymval,
4136     Arm_address address,
4137     Arm_address thumb_bit)
4138 {
4139   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4140   Valtype* wv = reinterpret_cast<Valtype*>(view);
4141   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4142   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4143   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4144
4145   Arm_address branch_target = psymval->value(object, addend);
4146   int32_t branch_offset = branch_target - address;
4147
4148   // ??? Should handle interworking?  GCC might someday try to
4149   // use this for tail calls.
4150   // FIXME: We do support thumb entry to PLT yet.
4151   if (thumb_bit == 0)
4152     {
4153       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4154       return This::STATUS_BAD_RELOC;
4155     }
4156
4157   // Put RELOCATION back into the insn.
4158   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4159   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4160
4161   // Put the relocated value back in the object file:
4162   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4163   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4164
4165   return (Bits<21>::has_overflow32(branch_offset)
4166           ? This::STATUS_OVERFLOW
4167           : This::STATUS_OKAY);
4168 }
4169
4170 // Get the GOT section, creating it if necessary.
4171
4172 template<bool big_endian>
4173 Arm_output_data_got<big_endian>*
4174 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4175 {
4176   if (this->got_ == NULL)
4177     {
4178       gold_assert(symtab != NULL && layout != NULL);
4179
4180       // When using -z now, we can treat .got as a relro section.
4181       // Without -z now, it is modified after program startup by lazy
4182       // PLT relocations.
4183       bool is_got_relro = parameters->options().now();
4184       Output_section_order got_order = (is_got_relro
4185                                         ? ORDER_RELRO_LAST
4186                                         : ORDER_DATA);
4187
4188       // Unlike some targets (.e.g x86), ARM does not use separate .got and
4189       // .got.plt sections in output.  The output .got section contains both
4190       // PLT and non-PLT GOT entries.
4191       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4192
4193       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4194                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4195                                       this->got_, got_order, is_got_relro);
4196
4197       // The old GNU linker creates a .got.plt section.  We just
4198       // create another set of data in the .got section.  Note that we
4199       // always create a PLT if we create a GOT, although the PLT
4200       // might be empty.
4201       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4202       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4203                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4204                                       this->got_plt_, got_order, is_got_relro);
4205
4206       // The first three entries are reserved.
4207       this->got_plt_->set_current_data_size(3 * 4);
4208
4209       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4210       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4211                                     Symbol_table::PREDEFINED,
4212                                     this->got_plt_,
4213                                     0, 0, elfcpp::STT_OBJECT,
4214                                     elfcpp::STB_LOCAL,
4215                                     elfcpp::STV_HIDDEN, 0,
4216                                     false, false);
4217     }
4218   return this->got_;
4219 }
4220
4221 // Get the dynamic reloc section, creating it if necessary.
4222
4223 template<bool big_endian>
4224 typename Target_arm<big_endian>::Reloc_section*
4225 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4226 {
4227   if (this->rel_dyn_ == NULL)
4228     {
4229       gold_assert(layout != NULL);
4230       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4231       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4232                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
4233                                       ORDER_DYNAMIC_RELOCS, false);
4234     }
4235   return this->rel_dyn_;
4236 }
4237
4238 // Insn_template methods.
4239
4240 // Return byte size of an instruction template.
4241
4242 size_t
4243 Insn_template::size() const
4244 {
4245   switch (this->type())
4246     {
4247     case THUMB16_TYPE:
4248     case THUMB16_SPECIAL_TYPE:
4249       return 2;
4250     case ARM_TYPE:
4251     case THUMB32_TYPE:
4252     case DATA_TYPE:
4253       return 4;
4254     default:
4255       gold_unreachable();
4256     }
4257 }
4258
4259 // Return alignment of an instruction template.
4260
4261 unsigned
4262 Insn_template::alignment() const
4263 {
4264   switch (this->type())
4265     {
4266     case THUMB16_TYPE:
4267     case THUMB16_SPECIAL_TYPE:
4268     case THUMB32_TYPE:
4269       return 2;
4270     case ARM_TYPE:
4271     case DATA_TYPE:
4272       return 4;
4273     default:
4274       gold_unreachable();
4275     }
4276 }
4277
4278 // Stub_template methods.
4279
4280 Stub_template::Stub_template(
4281     Stub_type type, const Insn_template* insns,
4282      size_t insn_count)
4283   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4284     entry_in_thumb_mode_(false), relocs_()
4285 {
4286   off_t offset = 0;
4287
4288   // Compute byte size and alignment of stub template.
4289   for (size_t i = 0; i < insn_count; i++)
4290     {
4291       unsigned insn_alignment = insns[i].alignment();
4292       size_t insn_size = insns[i].size();
4293       gold_assert((offset & (insn_alignment - 1)) == 0);
4294       this->alignment_ = std::max(this->alignment_, insn_alignment);
4295       switch (insns[i].type())
4296         {
4297         case Insn_template::THUMB16_TYPE:
4298         case Insn_template::THUMB16_SPECIAL_TYPE:
4299           if (i == 0)
4300             this->entry_in_thumb_mode_ = true;
4301           break;
4302
4303         case Insn_template::THUMB32_TYPE:
4304           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4305             this->relocs_.push_back(Reloc(i, offset));
4306           if (i == 0)
4307             this->entry_in_thumb_mode_ = true;
4308           break;
4309
4310         case Insn_template::ARM_TYPE:
4311           // Handle cases where the target is encoded within the
4312           // instruction.
4313           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4314             this->relocs_.push_back(Reloc(i, offset));
4315           break;
4316
4317         case Insn_template::DATA_TYPE:
4318           // Entry point cannot be data.
4319           gold_assert(i != 0);
4320           this->relocs_.push_back(Reloc(i, offset));
4321           break;
4322
4323         default:
4324           gold_unreachable();
4325         }
4326       offset += insn_size; 
4327     }
4328   this->size_ = offset;
4329 }
4330
4331 // Stub methods.
4332
4333 // Template to implement do_write for a specific target endianness.
4334
4335 template<bool big_endian>
4336 void inline
4337 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4338 {
4339   const Stub_template* stub_template = this->stub_template();
4340   const Insn_template* insns = stub_template->insns();
4341
4342   // FIXME:  We do not handle BE8 encoding yet.
4343   unsigned char* pov = view;
4344   for (size_t i = 0; i < stub_template->insn_count(); i++)
4345     {
4346       switch (insns[i].type())
4347         {
4348         case Insn_template::THUMB16_TYPE:
4349           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4350           break;
4351         case Insn_template::THUMB16_SPECIAL_TYPE:
4352           elfcpp::Swap<16, big_endian>::writeval(
4353               pov,
4354               this->thumb16_special(i));
4355           break;
4356         case Insn_template::THUMB32_TYPE:
4357           {
4358             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4359             uint32_t lo = insns[i].data() & 0xffff;
4360             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4361             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4362           }
4363           break;
4364         case Insn_template::ARM_TYPE:
4365         case Insn_template::DATA_TYPE:
4366           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4367           break;
4368         default:
4369           gold_unreachable();
4370         }
4371       pov += insns[i].size();
4372     }
4373   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4374
4375
4376 // Reloc_stub::Key methods.
4377
4378 // Dump a Key as a string for debugging.
4379
4380 std::string
4381 Reloc_stub::Key::name() const
4382 {
4383   if (this->r_sym_ == invalid_index)
4384     {
4385       // Global symbol key name
4386       // <stub-type>:<symbol name>:<addend>.
4387       const std::string sym_name = this->u_.symbol->name();
4388       // We need to print two hex number and two colons.  So just add 100 bytes
4389       // to the symbol name size.
4390       size_t len = sym_name.size() + 100;
4391       char* buffer = new char[len];
4392       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4393                        sym_name.c_str(), this->addend_);
4394       gold_assert(c > 0 && c < static_cast<int>(len));
4395       delete[] buffer;
4396       return std::string(buffer);
4397     }
4398   else
4399     {
4400       // local symbol key name
4401       // <stub-type>:<object>:<r_sym>:<addend>.
4402       const size_t len = 200;
4403       char buffer[len];
4404       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4405                        this->u_.relobj, this->r_sym_, this->addend_);
4406       gold_assert(c > 0 && c < static_cast<int>(len));
4407       return std::string(buffer);
4408     }
4409 }
4410
4411 // Reloc_stub methods.
4412
4413 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4414 // LOCATION to DESTINATION.
4415 // This code is based on the arm_type_of_stub function in
4416 // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4417 // class simple.
4418
4419 Stub_type
4420 Reloc_stub::stub_type_for_reloc(
4421    unsigned int r_type,
4422    Arm_address location,
4423    Arm_address destination,
4424    bool target_is_thumb)
4425 {
4426   Stub_type stub_type = arm_stub_none;
4427
4428   // This is a bit ugly but we want to avoid using a templated class for
4429   // big and little endianities.
4430   bool may_use_blx;
4431   bool should_force_pic_veneer;
4432   bool thumb2;
4433   bool thumb_only;
4434   if (parameters->target().is_big_endian())
4435     {
4436       const Target_arm<true>* big_endian_target =
4437         Target_arm<true>::default_target();
4438       may_use_blx = big_endian_target->may_use_v5t_interworking();
4439       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4440       thumb2 = big_endian_target->using_thumb2();
4441       thumb_only = big_endian_target->using_thumb_only();
4442     }
4443   else
4444     {
4445       const Target_arm<false>* little_endian_target =
4446         Target_arm<false>::default_target();
4447       may_use_blx = little_endian_target->may_use_v5t_interworking();
4448       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4449       thumb2 = little_endian_target->using_thumb2();
4450       thumb_only = little_endian_target->using_thumb_only();
4451     }
4452
4453   int64_t branch_offset;
4454   bool output_is_position_independent =
4455       parameters->options().output_is_position_independent();
4456   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4457     {
4458       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4459       // base address (instruction address + 4).
4460       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4461         destination = Bits<32>::bit_select32(destination, location, 0x2);
4462       branch_offset = static_cast<int64_t>(destination) - location;
4463         
4464       // Handle cases where:
4465       // - this call goes too far (different Thumb/Thumb2 max
4466       //   distance)
4467       // - it's a Thumb->Arm call and blx is not available, or it's a
4468       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4469       if ((!thumb2
4470             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4471                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4472           || (thumb2
4473               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4474                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4475           || ((!target_is_thumb)
4476               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4477                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4478         {
4479           if (target_is_thumb)
4480             {
4481               // Thumb to thumb.
4482               if (!thumb_only)
4483                 {
4484                   stub_type = (output_is_position_independent
4485                                || should_force_pic_veneer)
4486                     // PIC stubs.
4487                     ? ((may_use_blx
4488                         && (r_type == elfcpp::R_ARM_THM_CALL))
4489                        // V5T and above. Stub starts with ARM code, so
4490                        // we must be able to switch mode before
4491                        // reaching it, which is only possible for 'bl'
4492                        // (ie R_ARM_THM_CALL relocation).
4493                        ? arm_stub_long_branch_any_thumb_pic
4494                        // On V4T, use Thumb code only.
4495                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4496
4497                     // non-PIC stubs.
4498                     : ((may_use_blx
4499                         && (r_type == elfcpp::R_ARM_THM_CALL))
4500                        ? arm_stub_long_branch_any_any // V5T and above.
4501                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4502                 }
4503               else
4504                 {
4505                   stub_type = (output_is_position_independent
4506                                || should_force_pic_veneer)
4507                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4508                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4509                 }
4510             }
4511           else
4512             {
4513               // Thumb to arm.
4514              
4515               // FIXME: We should check that the input section is from an
4516               // object that has interwork enabled.
4517
4518               stub_type = (output_is_position_independent
4519                            || should_force_pic_veneer)
4520                 // PIC stubs.
4521                 ? ((may_use_blx
4522                     && (r_type == elfcpp::R_ARM_THM_CALL))
4523                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4524                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4525
4526                 // non-PIC stubs.
4527                 : ((may_use_blx
4528                     && (r_type == elfcpp::R_ARM_THM_CALL))
4529                    ? arm_stub_long_branch_any_any       // V5T and above.
4530                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4531
4532               // Handle v4t short branches.
4533               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4534                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4535                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4536                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4537             }
4538         }
4539     }
4540   else if (r_type == elfcpp::R_ARM_CALL
4541            || r_type == elfcpp::R_ARM_JUMP24
4542            || r_type == elfcpp::R_ARM_PLT32)
4543     {
4544       branch_offset = static_cast<int64_t>(destination) - location;
4545       if (target_is_thumb)
4546         {
4547           // Arm to thumb.
4548
4549           // FIXME: We should check that the input section is from an
4550           // object that has interwork enabled.
4551
4552           // We have an extra 2-bytes reach because of
4553           // the mode change (bit 24 (H) of BLX encoding).
4554           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4555               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4556               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4557               || (r_type == elfcpp::R_ARM_JUMP24)
4558               || (r_type == elfcpp::R_ARM_PLT32))
4559             {
4560               stub_type = (output_is_position_independent
4561                            || should_force_pic_veneer)
4562                 // PIC stubs.
4563                 ? (may_use_blx
4564                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4565                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4566
4567                 // non-PIC stubs.
4568                 : (may_use_blx
4569                    ? arm_stub_long_branch_any_any       // V5T and above.
4570                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4571             }
4572         }
4573       else
4574         {
4575           // Arm to arm.
4576           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4577               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4578             {
4579               stub_type = (output_is_position_independent
4580                            || should_force_pic_veneer)
4581                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4582                 : arm_stub_long_branch_any_any;         /// non-PIC.
4583             }
4584         }
4585     }
4586
4587   return stub_type;
4588 }
4589
4590 // Cortex_a8_stub methods.
4591
4592 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4593 // I is the position of the instruction template in the stub template.
4594
4595 uint16_t
4596 Cortex_a8_stub::do_thumb16_special(size_t i)
4597 {
4598   // The only use of this is to copy condition code from a conditional
4599   // branch being worked around to the corresponding conditional branch in
4600   // to the stub.
4601   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4602               && i == 0);
4603   uint16_t data = this->stub_template()->insns()[i].data();
4604   gold_assert((data & 0xff00U) == 0xd000U);
4605   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4606   return data;
4607 }
4608
4609 // Stub_factory methods.
4610
4611 Stub_factory::Stub_factory()
4612 {
4613   // The instruction template sequences are declared as static
4614   // objects and initialized first time the constructor runs.
4615  
4616   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4617   // to reach the stub if necessary.
4618   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4619     {
4620       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4621       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4622                                                 // dcd   R_ARM_ABS32(X)
4623     };
4624   
4625   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4626   // available.
4627   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4628     {
4629       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4630       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4631       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4632                                                 // dcd   R_ARM_ABS32(X)
4633     };
4634   
4635   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4636   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4637     {
4638       Insn_template::thumb16_insn(0xb401),      // push {r0}
4639       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4640       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4641       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4642       Insn_template::thumb16_insn(0x4760),      // bx   ip
4643       Insn_template::thumb16_insn(0xbf00),      // nop
4644       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4645                                                 // dcd  R_ARM_ABS32(X)
4646     };
4647   
4648   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4649   // allowed.
4650   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4651     {
4652       Insn_template::thumb16_insn(0x4778),      // bx   pc
4653       Insn_template::thumb16_insn(0x46c0),      // nop
4654       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4655       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4656       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4657                                                 // dcd  R_ARM_ABS32(X)
4658     };
4659   
4660   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4661   // available.
4662   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4663     {
4664       Insn_template::thumb16_insn(0x4778),      // bx   pc
4665       Insn_template::thumb16_insn(0x46c0),      // nop
4666       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4667       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4668                                                 // dcd   R_ARM_ABS32(X)
4669     };
4670   
4671   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4672   // one, when the destination is close enough.
4673   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4674     {
4675       Insn_template::thumb16_insn(0x4778),              // bx   pc
4676       Insn_template::thumb16_insn(0x46c0),              // nop
4677       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4678     };
4679   
4680   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4681   // blx to reach the stub if necessary.
4682   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4683     {
4684       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4685       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4686       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4687                                                 // dcd   R_ARM_REL32(X-4)
4688     };
4689   
4690   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4691   // blx to reach the stub if necessary.  We can not add into pc;
4692   // it is not guaranteed to mode switch (different in ARMv6 and
4693   // ARMv7).
4694   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4695     {
4696       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4697       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4698       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4699       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4700                                                 // dcd   R_ARM_REL32(X)
4701     };
4702   
4703   // V4T ARM -> ARM long branch stub, PIC.
4704   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4705     {
4706       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4707       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4708       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4709       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4710                                                 // dcd   R_ARM_REL32(X)
4711     };
4712   
4713   // V4T Thumb -> ARM long branch stub, PIC.
4714   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4715     {
4716       Insn_template::thumb16_insn(0x4778),      // bx   pc
4717       Insn_template::thumb16_insn(0x46c0),      // nop
4718       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4719       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4720       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4721                                                 // dcd  R_ARM_REL32(X)
4722     };
4723   
4724   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4725   // architectures.
4726   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4727     {
4728       Insn_template::thumb16_insn(0xb401),      // push {r0}
4729       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4730       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4731       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4732       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4733       Insn_template::thumb16_insn(0x4760),      // bx   ip
4734       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4735                                                 // dcd  R_ARM_REL32(X)
4736     };
4737   
4738   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4739   // allowed.
4740   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4741     {
4742       Insn_template::thumb16_insn(0x4778),      // bx   pc
4743       Insn_template::thumb16_insn(0x46c0),      // nop
4744       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4745       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4746       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4747       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4748                                                 // dcd  R_ARM_REL32(X)
4749     };
4750   
4751   // Cortex-A8 erratum-workaround stubs.
4752   
4753   // Stub used for conditional branches (which may be beyond +/-1MB away,
4754   // so we can't use a conditional branch to reach this stub).
4755   
4756   // original code:
4757   //
4758   //    b<cond> X
4759   // after:
4760   //
4761   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4762     {
4763       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4764       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4765       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4766                                                         //      b.w X
4767     };
4768   
4769   // Stub used for b.w and bl.w instructions.
4770   
4771   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4772     {
4773       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4774     };
4775   
4776   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4777     {
4778       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4779     };
4780   
4781   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4782   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4783   // the real destination using an ARM-mode branch.
4784   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4785     {
4786       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4787     };
4788
4789   // Stub used to provide an interworking for R_ARM_V4BX relocation
4790   // (bx r[n] instruction).
4791   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4792     {
4793       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4794       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4795       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4796     };
4797
4798   // Fill in the stub template look-up table.  Stub templates are constructed
4799   // per instance of Stub_factory for fast look-up without locking
4800   // in a thread-enabled environment.
4801
4802   this->stub_templates_[arm_stub_none] =
4803     new Stub_template(arm_stub_none, NULL, 0);
4804
4805 #define DEF_STUB(x)     \
4806   do \
4807     { \
4808       size_t array_size \
4809         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4810       Stub_type type = arm_stub_##x; \
4811       this->stub_templates_[type] = \
4812         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4813     } \
4814   while (0);
4815
4816   DEF_STUBS
4817 #undef DEF_STUB
4818 }
4819
4820 // Stub_table methods.
4821
4822 // Remove all Cortex-A8 stub.
4823
4824 template<bool big_endian>
4825 void
4826 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4827 {
4828   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4829        p != this->cortex_a8_stubs_.end();
4830        ++p)
4831     delete p->second;
4832   this->cortex_a8_stubs_.clear();
4833 }
4834
4835 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4836
4837 template<bool big_endian>
4838 void
4839 Stub_table<big_endian>::relocate_stub(
4840     Stub* stub,
4841     const Relocate_info<32, big_endian>* relinfo,
4842     Target_arm<big_endian>* arm_target,
4843     Output_section* output_section,
4844     unsigned char* view,
4845     Arm_address address,
4846     section_size_type view_size)
4847 {
4848   const Stub_template* stub_template = stub->stub_template();
4849   if (stub_template->reloc_count() != 0)
4850     {
4851       // Adjust view to cover the stub only.
4852       section_size_type offset = stub->offset();
4853       section_size_type stub_size = stub_template->size();
4854       gold_assert(offset + stub_size <= view_size);
4855
4856       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4857                                 address + offset, stub_size);
4858     }
4859 }
4860
4861 // Relocate all stubs in this stub table.
4862
4863 template<bool big_endian>
4864 void
4865 Stub_table<big_endian>::relocate_stubs(
4866     const Relocate_info<32, big_endian>* relinfo,
4867     Target_arm<big_endian>* arm_target,
4868     Output_section* output_section,
4869     unsigned char* view,
4870     Arm_address address,
4871     section_size_type view_size)
4872 {
4873   // If we are passed a view bigger than the stub table's.  we need to
4874   // adjust the view.
4875   gold_assert(address == this->address()
4876               && (view_size
4877                   == static_cast<section_size_type>(this->data_size())));
4878
4879   // Relocate all relocation stubs.
4880   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4881       p != this->reloc_stubs_.end();
4882       ++p)
4883     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4884                         address, view_size);
4885
4886   // Relocate all Cortex-A8 stubs.
4887   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4888        p != this->cortex_a8_stubs_.end();
4889        ++p)
4890     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4891                         address, view_size);
4892
4893   // Relocate all ARM V4BX stubs.
4894   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4895        p != this->arm_v4bx_stubs_.end();
4896        ++p)
4897     {
4898       if (*p != NULL)
4899         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4900                             address, view_size);
4901     }
4902 }
4903
4904 // Write out the stubs to file.
4905
4906 template<bool big_endian>
4907 void
4908 Stub_table<big_endian>::do_write(Output_file* of)
4909 {
4910   off_t offset = this->offset();
4911   const section_size_type oview_size =
4912     convert_to_section_size_type(this->data_size());
4913   unsigned char* const oview = of->get_output_view(offset, oview_size);
4914
4915   // Write relocation stubs.
4916   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4917       p != this->reloc_stubs_.end();
4918       ++p)
4919     {
4920       Reloc_stub* stub = p->second;
4921       Arm_address address = this->address() + stub->offset();
4922       gold_assert(address
4923                   == align_address(address,
4924                                    stub->stub_template()->alignment()));
4925       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4926                   big_endian);
4927     }
4928
4929   // Write Cortex-A8 stubs.
4930   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4931        p != this->cortex_a8_stubs_.end();
4932        ++p)
4933     {
4934       Cortex_a8_stub* stub = p->second;
4935       Arm_address address = this->address() + stub->offset();
4936       gold_assert(address
4937                   == align_address(address,
4938                                    stub->stub_template()->alignment()));
4939       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4940                   big_endian);
4941     }
4942
4943   // Write ARM V4BX relocation stubs.
4944   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4945        p != this->arm_v4bx_stubs_.end();
4946        ++p)
4947     {
4948       if (*p == NULL)
4949         continue;
4950
4951       Arm_address address = this->address() + (*p)->offset();
4952       gold_assert(address
4953                   == align_address(address,
4954                                    (*p)->stub_template()->alignment()));
4955       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4956                   big_endian);
4957     }
4958
4959   of->write_output_view(this->offset(), oview_size, oview);
4960 }
4961
4962 // Update the data size and address alignment of the stub table at the end
4963 // of a relaxation pass.   Return true if either the data size or the
4964 // alignment changed in this relaxation pass.
4965
4966 template<bool big_endian>
4967 bool
4968 Stub_table<big_endian>::update_data_size_and_addralign()
4969 {
4970   // Go over all stubs in table to compute data size and address alignment.
4971   off_t size = this->reloc_stubs_size_;
4972   unsigned addralign = this->reloc_stubs_addralign_;
4973
4974   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4975        p != this->cortex_a8_stubs_.end();
4976        ++p)
4977     {
4978       const Stub_template* stub_template = p->second->stub_template();
4979       addralign = std::max(addralign, stub_template->alignment());
4980       size = (align_address(size, stub_template->alignment())
4981               + stub_template->size());
4982     }
4983
4984   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4985        p != this->arm_v4bx_stubs_.end();
4986        ++p)
4987     {
4988       if (*p == NULL)
4989         continue;
4990
4991       const Stub_template* stub_template = (*p)->stub_template();
4992       addralign = std::max(addralign, stub_template->alignment());
4993       size = (align_address(size, stub_template->alignment())
4994               + stub_template->size());
4995     }
4996
4997   // Check if either data size or alignment changed in this pass.
4998   // Update prev_data_size_ and prev_addralign_.  These will be used
4999   // as the current data size and address alignment for the next pass.
5000   bool changed = size != this->prev_data_size_;
5001   this->prev_data_size_ = size; 
5002
5003   if (addralign != this->prev_addralign_)
5004     changed = true;
5005   this->prev_addralign_ = addralign;
5006
5007   return changed;
5008 }
5009
5010 // Finalize the stubs.  This sets the offsets of the stubs within the stub
5011 // table.  It also marks all input sections needing Cortex-A8 workaround.
5012
5013 template<bool big_endian>
5014 void
5015 Stub_table<big_endian>::finalize_stubs()
5016 {
5017   off_t off = this->reloc_stubs_size_;
5018   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5019        p != this->cortex_a8_stubs_.end();
5020        ++p)
5021     {
5022       Cortex_a8_stub* stub = p->second;
5023       const Stub_template* stub_template = stub->stub_template();
5024       uint64_t stub_addralign = stub_template->alignment();
5025       off = align_address(off, stub_addralign);
5026       stub->set_offset(off);
5027       off += stub_template->size();
5028
5029       // Mark input section so that we can determine later if a code section
5030       // needs the Cortex-A8 workaround quickly.
5031       Arm_relobj<big_endian>* arm_relobj =
5032         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5033       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5034     }
5035
5036   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5037       p != this->arm_v4bx_stubs_.end();
5038       ++p)
5039     {
5040       if (*p == NULL)
5041         continue;
5042
5043       const Stub_template* stub_template = (*p)->stub_template();
5044       uint64_t stub_addralign = stub_template->alignment();
5045       off = align_address(off, stub_addralign);
5046       (*p)->set_offset(off);
5047       off += stub_template->size();
5048     }
5049
5050   gold_assert(off <= this->prev_data_size_);
5051 }
5052
5053 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5054 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5055 // of the address range seen by the linker.
5056
5057 template<bool big_endian>
5058 void
5059 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5060     Target_arm<big_endian>* arm_target,
5061     unsigned char* view,
5062     Arm_address view_address,
5063     section_size_type view_size)
5064 {
5065   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5066   for (Cortex_a8_stub_list::const_iterator p =
5067          this->cortex_a8_stubs_.lower_bound(view_address);
5068        ((p != this->cortex_a8_stubs_.end())
5069         && (p->first < (view_address + view_size)));
5070        ++p)
5071     {
5072       // We do not store the THUMB bit in the LSB of either the branch address
5073       // or the stub offset.  There is no need to strip the LSB.
5074       Arm_address branch_address = p->first;
5075       const Cortex_a8_stub* stub = p->second;
5076       Arm_address stub_address = this->address() + stub->offset();
5077
5078       // Offset of the branch instruction relative to this view.
5079       section_size_type offset =
5080         convert_to_section_size_type(branch_address - view_address);
5081       gold_assert((offset + 4) <= view_size);
5082
5083       arm_target->apply_cortex_a8_workaround(stub, stub_address,
5084                                              view + offset, branch_address);
5085     }
5086 }
5087
5088 // Arm_input_section methods.
5089
5090 // Initialize an Arm_input_section.
5091
5092 template<bool big_endian>
5093 void
5094 Arm_input_section<big_endian>::init()
5095 {
5096   Relobj* relobj = this->relobj();
5097   unsigned int shndx = this->shndx();
5098
5099   // We have to cache original size, alignment and contents to avoid locking
5100   // the original file.
5101   this->original_addralign_ =
5102     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5103
5104   // This is not efficient but we expect only a small number of relaxed
5105   // input sections for stubs.
5106   section_size_type section_size;
5107   const unsigned char* section_contents =
5108     relobj->section_contents(shndx, &section_size, false);
5109   this->original_size_ =
5110     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5111
5112   gold_assert(this->original_contents_ == NULL);
5113   this->original_contents_ = new unsigned char[section_size];
5114   memcpy(this->original_contents_, section_contents, section_size);
5115
5116   // We want to make this look like the original input section after
5117   // output sections are finalized.
5118   Output_section* os = relobj->output_section(shndx);
5119   off_t offset = relobj->output_section_offset(shndx);
5120   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5121   this->set_address(os->address() + offset);
5122   this->set_file_offset(os->offset() + offset);
5123
5124   this->set_current_data_size(this->original_size_);
5125   this->finalize_data_size();
5126 }
5127
5128 template<bool big_endian>
5129 void
5130 Arm_input_section<big_endian>::do_write(Output_file* of)
5131 {
5132   // We have to write out the original section content.
5133   gold_assert(this->original_contents_ != NULL);
5134   of->write(this->offset(), this->original_contents_,
5135             this->original_size_); 
5136
5137   // If this owns a stub table and it is not empty, write it.
5138   if (this->is_stub_table_owner() && !this->stub_table_->empty())
5139     this->stub_table_->write(of);
5140 }
5141
5142 // Finalize data size.
5143
5144 template<bool big_endian>
5145 void
5146 Arm_input_section<big_endian>::set_final_data_size()
5147 {
5148   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5149
5150   if (this->is_stub_table_owner())
5151     {
5152       this->stub_table_->finalize_data_size();
5153       off = align_address(off, this->stub_table_->addralign());
5154       off += this->stub_table_->data_size();
5155     }
5156   this->set_data_size(off);
5157 }
5158
5159 // Reset address and file offset.
5160
5161 template<bool big_endian>
5162 void
5163 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5164 {
5165   // Size of the original input section contents.
5166   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5167
5168   // If this is a stub table owner, account for the stub table size.
5169   if (this->is_stub_table_owner())
5170     {
5171       Stub_table<big_endian>* stub_table = this->stub_table_;
5172
5173       // Reset the stub table's address and file offset.  The
5174       // current data size for child will be updated after that.
5175       stub_table_->reset_address_and_file_offset();
5176       off = align_address(off, stub_table_->addralign());
5177       off += stub_table->current_data_size();
5178     }
5179
5180   this->set_current_data_size(off);
5181 }
5182
5183 // Arm_exidx_cantunwind methods.
5184
5185 // Write this to Output file OF for a fixed endianness.
5186
5187 template<bool big_endian>
5188 void
5189 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5190 {
5191   off_t offset = this->offset();
5192   const section_size_type oview_size = 8;
5193   unsigned char* const oview = of->get_output_view(offset, oview_size);
5194   
5195   typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5196
5197   Output_section* os = this->relobj_->output_section(this->shndx_);
5198   gold_assert(os != NULL);
5199
5200   Arm_relobj<big_endian>* arm_relobj =
5201     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5202   Arm_address output_offset =
5203     arm_relobj->get_output_section_offset(this->shndx_);
5204   Arm_address section_start;
5205   section_size_type section_size;
5206
5207   // Find out the end of the text section referred by this.
5208   if (output_offset != Arm_relobj<big_endian>::invalid_address)
5209     {
5210       section_start = os->address() + output_offset;
5211       const Arm_exidx_input_section* exidx_input_section =
5212         arm_relobj->exidx_input_section_by_link(this->shndx_);
5213       gold_assert(exidx_input_section != NULL);
5214       section_size =
5215         convert_to_section_size_type(exidx_input_section->text_size());
5216     }
5217   else
5218     {
5219       // Currently this only happens for a relaxed section.
5220       const Output_relaxed_input_section* poris =
5221         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5222       gold_assert(poris != NULL);
5223       section_start = poris->address();
5224       section_size = convert_to_section_size_type(poris->data_size());
5225     }
5226
5227   // We always append this to the end of an EXIDX section.
5228   Arm_address output_address = section_start + section_size;
5229
5230   // Write out the entry.  The first word either points to the beginning
5231   // or after the end of a text section.  The second word is the special
5232   // EXIDX_CANTUNWIND value.
5233   uint32_t prel31_offset = output_address - this->address();
5234   if (Bits<31>::has_overflow32(offset))
5235     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5236   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5237                                                    prel31_offset & 0x7fffffffU);
5238   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5239                                                    elfcpp::EXIDX_CANTUNWIND);
5240
5241   of->write_output_view(this->offset(), oview_size, oview);
5242 }
5243
5244 // Arm_exidx_merged_section methods.
5245
5246 // Constructor for Arm_exidx_merged_section.
5247 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5248 // SECTION_OFFSET_MAP points to a section offset map describing how
5249 // parts of the input section are mapped to output.  DELETED_BYTES is
5250 // the number of bytes deleted from the EXIDX input section.
5251
5252 Arm_exidx_merged_section::Arm_exidx_merged_section(
5253     const Arm_exidx_input_section& exidx_input_section,
5254     const Arm_exidx_section_offset_map& section_offset_map,
5255     uint32_t deleted_bytes)
5256   : Output_relaxed_input_section(exidx_input_section.relobj(),
5257                                  exidx_input_section.shndx(),
5258                                  exidx_input_section.addralign()),
5259     exidx_input_section_(exidx_input_section),
5260     section_offset_map_(section_offset_map)
5261 {
5262   // If we retain or discard the whole EXIDX input section,  we would
5263   // not be here.
5264   gold_assert(deleted_bytes != 0
5265               && deleted_bytes != this->exidx_input_section_.size());
5266
5267   // Fix size here so that we do not need to implement set_final_data_size.
5268   uint32_t size = exidx_input_section.size() - deleted_bytes;
5269   this->set_data_size(size);
5270   this->fix_data_size();
5271
5272   // Allocate buffer for section contents and build contents.
5273   this->section_contents_ = new unsigned char[size];
5274 }
5275
5276 // Build the contents of a merged EXIDX output section.
5277
5278 void
5279 Arm_exidx_merged_section::build_contents(
5280     const unsigned char* original_contents,
5281     section_size_type original_size)
5282 {
5283   // Go over spans of input offsets and write only those that are not
5284   // discarded.
5285   section_offset_type in_start = 0;
5286   section_offset_type out_start = 0;
5287   section_offset_type in_max =
5288     convert_types<section_offset_type>(original_size);
5289   section_offset_type out_max =
5290     convert_types<section_offset_type>(this->data_size());
5291   for (Arm_exidx_section_offset_map::const_iterator p =
5292         this->section_offset_map_.begin();
5293       p != this->section_offset_map_.end();
5294       ++p)
5295     {
5296       section_offset_type in_end = p->first;
5297       gold_assert(in_end >= in_start);
5298       section_offset_type out_end = p->second;
5299       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5300       if (out_end != -1)
5301         {
5302           size_t out_chunk_size =
5303             convert_types<size_t>(out_end - out_start + 1);
5304
5305           gold_assert(out_chunk_size == in_chunk_size
5306                       && in_end < in_max && out_end < out_max);
5307
5308           memcpy(this->section_contents_ + out_start,
5309                  original_contents + in_start,
5310                  out_chunk_size);
5311           out_start += out_chunk_size;
5312         }
5313       in_start += in_chunk_size;
5314     }
5315 }
5316
5317 // Given an input OBJECT, an input section index SHNDX within that
5318 // object, and an OFFSET relative to the start of that input
5319 // section, return whether or not the corresponding offset within
5320 // the output section is known.  If this function returns true, it
5321 // sets *POUTPUT to the output offset.  The value -1 indicates that
5322 // this input offset is being discarded.
5323
5324 bool
5325 Arm_exidx_merged_section::do_output_offset(
5326     const Relobj* relobj,
5327     unsigned int shndx,
5328     section_offset_type offset,
5329     section_offset_type* poutput) const
5330 {
5331   // We only handle offsets for the original EXIDX input section.
5332   if (relobj != this->exidx_input_section_.relobj()
5333       || shndx != this->exidx_input_section_.shndx())
5334     return false;
5335
5336   section_offset_type section_size =
5337     convert_types<section_offset_type>(this->exidx_input_section_.size());
5338   if (offset < 0 || offset >= section_size)
5339     // Input offset is out of valid range.
5340     *poutput = -1;
5341   else
5342     {
5343       // We need to look up the section offset map to determine the output
5344       // offset.  Find the reference point in map that is first offset
5345       // bigger than or equal to this offset.
5346       Arm_exidx_section_offset_map::const_iterator p =
5347         this->section_offset_map_.lower_bound(offset);
5348
5349       // The section offset maps are build such that this should not happen if
5350       // input offset is in the valid range.
5351       gold_assert(p != this->section_offset_map_.end());
5352
5353       // We need to check if this is dropped.
5354      section_offset_type ref = p->first;
5355      section_offset_type mapped_ref = p->second;
5356
5357       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5358         // Offset is present in output.
5359         *poutput = mapped_ref + (offset - ref);
5360       else
5361         // Offset is discarded owing to EXIDX entry merging.
5362         *poutput = -1;
5363     }
5364   
5365   return true;
5366 }
5367
5368 // Write this to output file OF.
5369
5370 void
5371 Arm_exidx_merged_section::do_write(Output_file* of)
5372 {
5373   off_t offset = this->offset();
5374   const section_size_type oview_size = this->data_size();
5375   unsigned char* const oview = of->get_output_view(offset, oview_size);
5376   
5377   Output_section* os = this->relobj()->output_section(this->shndx());
5378   gold_assert(os != NULL);
5379
5380   memcpy(oview, this->section_contents_, oview_size);
5381   of->write_output_view(this->offset(), oview_size, oview);
5382 }
5383
5384 // Arm_exidx_fixup methods.
5385
5386 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5387 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5388 // points to the end of the last seen EXIDX section.
5389
5390 void
5391 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5392 {
5393   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5394       && this->last_input_section_ != NULL)
5395     {
5396       Relobj* relobj = this->last_input_section_->relobj();
5397       unsigned int text_shndx = this->last_input_section_->link();
5398       Arm_exidx_cantunwind* cantunwind =
5399         new Arm_exidx_cantunwind(relobj, text_shndx);
5400       this->exidx_output_section_->add_output_section_data(cantunwind);
5401       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5402     }
5403 }
5404
5405 // Process an EXIDX section entry in input.  Return whether this entry
5406 // can be deleted in the output.  SECOND_WORD in the second word of the
5407 // EXIDX entry.
5408
5409 bool
5410 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5411 {
5412   bool delete_entry;
5413   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5414     {
5415       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5416       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5417       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5418     }
5419   else if ((second_word & 0x80000000) != 0)
5420     {
5421       // Inlined unwinding data.  Merge if equal to previous.
5422       delete_entry = (merge_exidx_entries_
5423                       && this->last_unwind_type_ == UT_INLINED_ENTRY
5424                       && this->last_inlined_entry_ == second_word);
5425       this->last_unwind_type_ = UT_INLINED_ENTRY;
5426       this->last_inlined_entry_ = second_word;
5427     }
5428   else
5429     {
5430       // Normal table entry.  In theory we could merge these too,
5431       // but duplicate entries are likely to be much less common.
5432       delete_entry = false;
5433       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5434     }
5435   return delete_entry;
5436 }
5437
5438 // Update the current section offset map during EXIDX section fix-up.
5439 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5440 // reference point, DELETED_BYTES is the number of deleted by in the
5441 // section so far.  If DELETE_ENTRY is true, the reference point and
5442 // all offsets after the previous reference point are discarded.
5443
5444 void
5445 Arm_exidx_fixup::update_offset_map(
5446     section_offset_type input_offset,
5447     section_size_type deleted_bytes,
5448     bool delete_entry)
5449 {
5450   if (this->section_offset_map_ == NULL)
5451     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5452   section_offset_type output_offset;
5453   if (delete_entry)
5454     output_offset = Arm_exidx_input_section::invalid_offset;
5455   else
5456     output_offset = input_offset - deleted_bytes;
5457   (*this->section_offset_map_)[input_offset] = output_offset;
5458 }
5459
5460 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5461 // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5462 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5463 // If some entries are merged, also store a pointer to a newly created
5464 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5465 // owns the map and is responsible for releasing it after use.
5466
5467 template<bool big_endian>
5468 uint32_t
5469 Arm_exidx_fixup::process_exidx_section(
5470     const Arm_exidx_input_section* exidx_input_section,
5471     const unsigned char* section_contents,
5472     section_size_type section_size,
5473     Arm_exidx_section_offset_map** psection_offset_map)
5474 {
5475   Relobj* relobj = exidx_input_section->relobj();
5476   unsigned shndx = exidx_input_section->shndx();
5477
5478   if ((section_size % 8) != 0)
5479     {
5480       // Something is wrong with this section.  Better not touch it.
5481       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5482                  relobj->name().c_str(), shndx);
5483       this->last_input_section_ = exidx_input_section;
5484       this->last_unwind_type_ = UT_NONE;
5485       return 0;
5486     }
5487   
5488   uint32_t deleted_bytes = 0;
5489   bool prev_delete_entry = false;
5490   gold_assert(this->section_offset_map_ == NULL);
5491
5492   for (section_size_type i = 0; i < section_size; i += 8)
5493     {
5494       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5495       const Valtype* wv =
5496           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5497       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5498
5499       bool delete_entry = this->process_exidx_entry(second_word);
5500
5501       // Entry deletion causes changes in output offsets.  We use a std::map
5502       // to record these.  And entry (x, y) means input offset x
5503       // is mapped to output offset y.  If y is invalid_offset, then x is
5504       // dropped in the output.  Because of the way std::map::lower_bound
5505       // works, we record the last offset in a region w.r.t to keeping or
5506       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5507       // the output offset y0 of it is determined by the output offset y1 of
5508       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5509       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5510       // y0 is also -1.
5511       if (delete_entry != prev_delete_entry && i != 0)
5512         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5513
5514       // Update total deleted bytes for this entry.
5515       if (delete_entry)
5516         deleted_bytes += 8;
5517
5518       prev_delete_entry = delete_entry;
5519     }
5520   
5521   // If section offset map is not NULL, make an entry for the end of
5522   // section.
5523   if (this->section_offset_map_ != NULL)
5524     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5525
5526   *psection_offset_map = this->section_offset_map_;
5527   this->section_offset_map_ = NULL;
5528   this->last_input_section_ = exidx_input_section;
5529   
5530   // Set the first output text section so that we can link the EXIDX output
5531   // section to it.  Ignore any EXIDX input section that is completely merged.
5532   if (this->first_output_text_section_ == NULL
5533       && deleted_bytes != section_size)
5534     {
5535       unsigned int link = exidx_input_section->link();
5536       Output_section* os = relobj->output_section(link);
5537       gold_assert(os != NULL);
5538       this->first_output_text_section_ = os;
5539     }
5540
5541   return deleted_bytes;
5542 }
5543
5544 // Arm_output_section methods.
5545
5546 // Create a stub group for input sections from BEGIN to END.  OWNER
5547 // points to the input section to be the owner a new stub table.
5548
5549 template<bool big_endian>
5550 void
5551 Arm_output_section<big_endian>::create_stub_group(
5552   Input_section_list::const_iterator begin,
5553   Input_section_list::const_iterator end,
5554   Input_section_list::const_iterator owner,
5555   Target_arm<big_endian>* target,
5556   std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5557   const Task* task)
5558 {
5559   // We use a different kind of relaxed section in an EXIDX section.
5560   // The static casting from Output_relaxed_input_section to
5561   // Arm_input_section is invalid in an EXIDX section.  We are okay
5562   // because we should not be calling this for an EXIDX section. 
5563   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5564
5565   // Currently we convert ordinary input sections into relaxed sections only
5566   // at this point but we may want to support creating relaxed input section
5567   // very early.  So we check here to see if owner is already a relaxed
5568   // section.
5569   
5570   Arm_input_section<big_endian>* arm_input_section;
5571   if (owner->is_relaxed_input_section())
5572     {
5573       arm_input_section =
5574         Arm_input_section<big_endian>::as_arm_input_section(
5575           owner->relaxed_input_section());
5576     }
5577   else
5578     {
5579       gold_assert(owner->is_input_section());
5580       // Create a new relaxed input section.  We need to lock the original
5581       // file.
5582       Task_lock_obj<Object> tl(task, owner->relobj());
5583       arm_input_section =
5584         target->new_arm_input_section(owner->relobj(), owner->shndx());
5585       new_relaxed_sections->push_back(arm_input_section);
5586     }
5587
5588   // Create a stub table.
5589   Stub_table<big_endian>* stub_table =
5590     target->new_stub_table(arm_input_section);
5591
5592   arm_input_section->set_stub_table(stub_table);
5593   
5594   Input_section_list::const_iterator p = begin;
5595   Input_section_list::const_iterator prev_p;
5596
5597   // Look for input sections or relaxed input sections in [begin ... end].
5598   do
5599     {
5600       if (p->is_input_section() || p->is_relaxed_input_section())
5601         {
5602           // The stub table information for input sections live
5603           // in their objects.
5604           Arm_relobj<big_endian>* arm_relobj =
5605             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5606           arm_relobj->set_stub_table(p->shndx(), stub_table);
5607         }
5608       prev_p = p++;
5609     }
5610   while (prev_p != end);
5611 }
5612
5613 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5614 // of stub groups.  We grow a stub group by adding input section until the
5615 // size is just below GROUP_SIZE.  The last input section will be converted
5616 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5617 // input section after the stub table, effectively double the group size.
5618 // 
5619 // This is similar to the group_sections() function in elf32-arm.c but is
5620 // implemented differently.
5621
5622 template<bool big_endian>
5623 void
5624 Arm_output_section<big_endian>::group_sections(
5625     section_size_type group_size,
5626     bool stubs_always_after_branch,
5627     Target_arm<big_endian>* target,
5628     const Task* task)
5629 {
5630   // We only care about sections containing code.
5631   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5632     return;
5633
5634   // States for grouping.
5635   typedef enum
5636   {
5637     // No group is being built.
5638     NO_GROUP,
5639     // A group is being built but the stub table is not found yet.
5640     // We keep group a stub group until the size is just under GROUP_SIZE.
5641     // The last input section in the group will be used as the stub table.
5642     FINDING_STUB_SECTION,
5643     // A group is being built and we have already found a stub table.
5644     // We enter this state to grow a stub group by adding input section
5645     // after the stub table.  This effectively doubles the group size.
5646     HAS_STUB_SECTION
5647   } State;
5648
5649   // Any newly created relaxed sections are stored here.
5650   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5651
5652   State state = NO_GROUP;
5653   section_size_type off = 0;
5654   section_size_type group_begin_offset = 0;
5655   section_size_type group_end_offset = 0;
5656   section_size_type stub_table_end_offset = 0;
5657   Input_section_list::const_iterator group_begin =
5658     this->input_sections().end();
5659   Input_section_list::const_iterator stub_table =
5660     this->input_sections().end();
5661   Input_section_list::const_iterator group_end = this->input_sections().end();
5662   for (Input_section_list::const_iterator p = this->input_sections().begin();
5663        p != this->input_sections().end();
5664        ++p)
5665     {
5666       section_size_type section_begin_offset =
5667         align_address(off, p->addralign());
5668       section_size_type section_end_offset =
5669         section_begin_offset + p->data_size(); 
5670       
5671       // Check to see if we should group the previously seen sections.
5672       switch (state)
5673         {
5674         case NO_GROUP:
5675           break;
5676
5677         case FINDING_STUB_SECTION:
5678           // Adding this section makes the group larger than GROUP_SIZE.
5679           if (section_end_offset - group_begin_offset >= group_size)
5680             {
5681               if (stubs_always_after_branch)
5682                 {       
5683                   gold_assert(group_end != this->input_sections().end());
5684                   this->create_stub_group(group_begin, group_end, group_end,
5685                                           target, &new_relaxed_sections,
5686                                           task);
5687                   state = NO_GROUP;
5688                 }
5689               else
5690                 {
5691                   // But wait, there's more!  Input sections up to
5692                   // stub_group_size bytes after the stub table can be
5693                   // handled by it too.
5694                   state = HAS_STUB_SECTION;
5695                   stub_table = group_end;
5696                   stub_table_end_offset = group_end_offset;
5697                 }
5698             }
5699             break;
5700
5701         case HAS_STUB_SECTION:
5702           // Adding this section makes the post stub-section group larger
5703           // than GROUP_SIZE.
5704           if (section_end_offset - stub_table_end_offset >= group_size)
5705            {
5706              gold_assert(group_end != this->input_sections().end());
5707              this->create_stub_group(group_begin, group_end, stub_table,
5708                                      target, &new_relaxed_sections, task);
5709              state = NO_GROUP;
5710            }
5711            break;
5712
5713           default:
5714             gold_unreachable();
5715         }       
5716
5717       // If we see an input section and currently there is no group, start
5718       // a new one.  Skip any empty sections.  We look at the data size
5719       // instead of calling p->relobj()->section_size() to avoid locking.
5720       if ((p->is_input_section() || p->is_relaxed_input_section())
5721           && (p->data_size() != 0))
5722         {
5723           if (state == NO_GROUP)
5724             {
5725               state = FINDING_STUB_SECTION;
5726               group_begin = p;
5727               group_begin_offset = section_begin_offset;
5728             }
5729
5730           // Keep track of the last input section seen.
5731           group_end = p;
5732           group_end_offset = section_end_offset;
5733         }
5734
5735       off = section_end_offset;
5736     }
5737
5738   // Create a stub group for any ungrouped sections.
5739   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5740     {
5741       gold_assert(group_end != this->input_sections().end());
5742       this->create_stub_group(group_begin, group_end,
5743                               (state == FINDING_STUB_SECTION
5744                                ? group_end
5745                                : stub_table),
5746                                target, &new_relaxed_sections, task);
5747     }
5748
5749   // Convert input section into relaxed input section in a batch.
5750   if (!new_relaxed_sections.empty())
5751     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5752
5753   // Update the section offsets
5754   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5755     {
5756       Arm_relobj<big_endian>* arm_relobj =
5757         Arm_relobj<big_endian>::as_arm_relobj(
5758           new_relaxed_sections[i]->relobj());
5759       unsigned int shndx = new_relaxed_sections[i]->shndx();
5760       // Tell Arm_relobj that this input section is converted.
5761       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5762     }
5763 }
5764
5765 // Append non empty text sections in this to LIST in ascending
5766 // order of their position in this.
5767
5768 template<bool big_endian>
5769 void
5770 Arm_output_section<big_endian>::append_text_sections_to_list(
5771     Text_section_list* list)
5772 {
5773   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5774
5775   for (Input_section_list::const_iterator p = this->input_sections().begin();
5776        p != this->input_sections().end();
5777        ++p)
5778     {
5779       // We only care about plain or relaxed input sections.  We also
5780       // ignore any merged sections.
5781       if (p->is_input_section() || p->is_relaxed_input_section())
5782         list->push_back(Text_section_list::value_type(p->relobj(),
5783                                                       p->shndx()));
5784     }
5785 }
5786
5787 template<bool big_endian>
5788 void
5789 Arm_output_section<big_endian>::fix_exidx_coverage(
5790     Layout* layout,
5791     const Text_section_list& sorted_text_sections,
5792     Symbol_table* symtab,
5793     bool merge_exidx_entries,
5794     const Task* task)
5795 {
5796   // We should only do this for the EXIDX output section.
5797   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5798
5799   // We don't want the relaxation loop to undo these changes, so we discard
5800   // the current saved states and take another one after the fix-up.
5801   this->discard_states();
5802
5803   // Remove all input sections.
5804   uint64_t address = this->address();
5805   typedef std::list<Output_section::Input_section> Input_section_list;
5806   Input_section_list input_sections;
5807   this->reset_address_and_file_offset();
5808   this->get_input_sections(address, std::string(""), &input_sections);
5809
5810   if (!this->input_sections().empty())
5811     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5812   
5813   // Go through all the known input sections and record them.
5814   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5815   typedef Unordered_map<Section_id, const Output_section::Input_section*,
5816                         Section_id_hash> Text_to_exidx_map;
5817   Text_to_exidx_map text_to_exidx_map;
5818   for (Input_section_list::const_iterator p = input_sections.begin();
5819        p != input_sections.end();
5820        ++p)
5821     {
5822       // This should never happen.  At this point, we should only see
5823       // plain EXIDX input sections.
5824       gold_assert(!p->is_relaxed_input_section());
5825       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5826     }
5827
5828   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5829
5830   // Go over the sorted text sections.
5831   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5832   Section_id_set processed_input_sections;
5833   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5834        p != sorted_text_sections.end();
5835        ++p)
5836     {
5837       Relobj* relobj = p->first;
5838       unsigned int shndx = p->second;
5839
5840       Arm_relobj<big_endian>* arm_relobj =
5841          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5842       const Arm_exidx_input_section* exidx_input_section =
5843          arm_relobj->exidx_input_section_by_link(shndx);
5844
5845       // If this text section has no EXIDX section or if the EXIDX section
5846       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5847       // of the last seen EXIDX section.
5848       if (exidx_input_section == NULL || exidx_input_section->has_errors())
5849         {
5850           exidx_fixup.add_exidx_cantunwind_as_needed();
5851           continue;
5852         }
5853
5854       Relobj* exidx_relobj = exidx_input_section->relobj();
5855       unsigned int exidx_shndx = exidx_input_section->shndx();
5856       Section_id sid(exidx_relobj, exidx_shndx);
5857       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5858       if (iter == text_to_exidx_map.end())
5859         {
5860           // This is odd.  We have not seen this EXIDX input section before.
5861           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5862           // issue a warning instead.  We assume the user knows what he
5863           // or she is doing.  Otherwise, this is an error.
5864           if (layout->script_options()->saw_sections_clause())
5865             gold_warning(_("unwinding may not work because EXIDX input section"
5866                            " %u of %s is not in EXIDX output section"),
5867                          exidx_shndx, exidx_relobj->name().c_str());
5868           else
5869             gold_error(_("unwinding may not work because EXIDX input section"
5870                          " %u of %s is not in EXIDX output section"),
5871                        exidx_shndx, exidx_relobj->name().c_str());
5872
5873           exidx_fixup.add_exidx_cantunwind_as_needed();
5874           continue;
5875         }
5876
5877       // We need to access the contents of the EXIDX section, lock the
5878       // object here.
5879       Task_lock_obj<Object> tl(task, exidx_relobj);
5880       section_size_type exidx_size;
5881       const unsigned char* exidx_contents =
5882         exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); 
5883
5884       // Fix up coverage and append input section to output data list.
5885       Arm_exidx_section_offset_map* section_offset_map = NULL;
5886       uint32_t deleted_bytes =
5887         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5888                                                       exidx_contents,
5889                                                       exidx_size,
5890                                                       &section_offset_map);
5891
5892       if (deleted_bytes == exidx_input_section->size())
5893         {
5894           // The whole EXIDX section got merged.  Remove it from output.
5895           gold_assert(section_offset_map == NULL);
5896           exidx_relobj->set_output_section(exidx_shndx, NULL);
5897
5898           // All local symbols defined in this input section will be dropped.
5899           // We need to adjust output local symbol count.
5900           arm_relobj->set_output_local_symbol_count_needs_update();
5901         }
5902       else if (deleted_bytes > 0)
5903         {
5904           // Some entries are merged.  We need to convert this EXIDX input
5905           // section into a relaxed section.
5906           gold_assert(section_offset_map != NULL);
5907
5908           Arm_exidx_merged_section* merged_section =
5909             new Arm_exidx_merged_section(*exidx_input_section,
5910                                          *section_offset_map, deleted_bytes);
5911           merged_section->build_contents(exidx_contents, exidx_size);
5912
5913           const std::string secname = exidx_relobj->section_name(exidx_shndx);
5914           this->add_relaxed_input_section(layout, merged_section, secname);
5915           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5916
5917           // All local symbols defined in discarded portions of this input
5918           // section will be dropped.  We need to adjust output local symbol
5919           // count.
5920           arm_relobj->set_output_local_symbol_count_needs_update();
5921         }
5922       else
5923         {
5924           // Just add back the EXIDX input section.
5925           gold_assert(section_offset_map == NULL);
5926           const Output_section::Input_section* pis = iter->second;
5927           gold_assert(pis->is_input_section());
5928           this->add_script_input_section(*pis);
5929         }
5930
5931       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5932     }
5933
5934   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5935   exidx_fixup.add_exidx_cantunwind_as_needed();
5936
5937   // Remove any known EXIDX input sections that are not processed.
5938   for (Input_section_list::const_iterator p = input_sections.begin();
5939        p != input_sections.end();
5940        ++p)
5941     {
5942       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5943           == processed_input_sections.end())
5944         {
5945           // We discard a known EXIDX section because its linked
5946           // text section has been folded by ICF.  We also discard an
5947           // EXIDX section with error, the output does not matter in this
5948           // case.  We do this to avoid triggering asserts.
5949           Arm_relobj<big_endian>* arm_relobj =
5950             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5951           const Arm_exidx_input_section* exidx_input_section =
5952             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5953           gold_assert(exidx_input_section != NULL);
5954           if (!exidx_input_section->has_errors())
5955             {
5956               unsigned int text_shndx = exidx_input_section->link();
5957               gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5958             }
5959
5960           // Remove this from link.  We also need to recount the
5961           // local symbols.
5962           p->relobj()->set_output_section(p->shndx(), NULL);
5963           arm_relobj->set_output_local_symbol_count_needs_update();
5964         }
5965     }
5966     
5967   // Link exidx output section to the first seen output section and
5968   // set correct entry size.
5969   this->set_link_section(exidx_fixup.first_output_text_section());
5970   this->set_entsize(8);
5971
5972   // Make changes permanent.
5973   this->save_states();
5974   this->set_section_offsets_need_adjustment();
5975 }
5976
5977 // Link EXIDX output sections to text output sections.
5978
5979 template<bool big_endian>
5980 void
5981 Arm_output_section<big_endian>::set_exidx_section_link()
5982 {
5983   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5984   if (!this->input_sections().empty())
5985     {
5986       Input_section_list::const_iterator p = this->input_sections().begin();
5987       Arm_relobj<big_endian>* arm_relobj =
5988         Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5989       unsigned exidx_shndx = p->shndx();
5990       const Arm_exidx_input_section* exidx_input_section =
5991         arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5992       gold_assert(exidx_input_section != NULL);
5993       unsigned int text_shndx = exidx_input_section->link();
5994       Output_section* os = arm_relobj->output_section(text_shndx);
5995       this->set_link_section(os);
5996     }
5997 }
5998
5999 // Arm_relobj methods.
6000
6001 // Determine if an input section is scannable for stub processing.  SHDR is
6002 // the header of the section and SHNDX is the section index.  OS is the output
6003 // section for the input section and SYMTAB is the global symbol table used to
6004 // look up ICF information.
6005
6006 template<bool big_endian>
6007 bool
6008 Arm_relobj<big_endian>::section_is_scannable(
6009     const elfcpp::Shdr<32, big_endian>& shdr,
6010     unsigned int shndx,
6011     const Output_section* os,
6012     const Symbol_table* symtab)
6013 {
6014   // Skip any empty sections, unallocated sections or sections whose
6015   // type are not SHT_PROGBITS.
6016   if (shdr.get_sh_size() == 0
6017       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6018       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6019     return false;
6020
6021   // Skip any discarded or ICF'ed sections.
6022   if (os == NULL || symtab->is_section_folded(this, shndx))
6023     return false;
6024
6025   // If this requires special offset handling, check to see if it is
6026   // a relaxed section.  If this is not, then it is a merged section that
6027   // we cannot handle.
6028   if (this->is_output_section_offset_invalid(shndx))
6029     {
6030       const Output_relaxed_input_section* poris =
6031         os->find_relaxed_input_section(this, shndx);
6032       if (poris == NULL)
6033         return false;
6034     }
6035
6036   return true;
6037 }
6038
6039 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6040 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6041
6042 template<bool big_endian>
6043 bool
6044 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6045     const elfcpp::Shdr<32, big_endian>& shdr,
6046     const Relobj::Output_sections& out_sections,
6047     const Symbol_table* symtab,
6048     const unsigned char* pshdrs)
6049 {
6050   unsigned int sh_type = shdr.get_sh_type();
6051   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6052     return false;
6053
6054   // Ignore empty section.
6055   off_t sh_size = shdr.get_sh_size();
6056   if (sh_size == 0)
6057     return false;
6058
6059   // Ignore reloc section with unexpected symbol table.  The
6060   // error will be reported in the final link.
6061   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6062     return false;
6063
6064   unsigned int reloc_size;
6065   if (sh_type == elfcpp::SHT_REL)
6066     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6067   else
6068     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6069
6070   // Ignore reloc section with unexpected entsize or uneven size.
6071   // The error will be reported in the final link.
6072   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6073     return false;
6074
6075   // Ignore reloc section with bad info.  This error will be
6076   // reported in the final link.
6077   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6078   if (index >= this->shnum())
6079     return false;
6080
6081   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6082   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6083   return this->section_is_scannable(text_shdr, index,
6084                                    out_sections[index], symtab);
6085 }
6086
6087 // Return the output address of either a plain input section or a relaxed
6088 // input section.  SHNDX is the section index.  We define and use this
6089 // instead of calling Output_section::output_address because that is slow
6090 // for large output.
6091
6092 template<bool big_endian>
6093 Arm_address
6094 Arm_relobj<big_endian>::simple_input_section_output_address(
6095     unsigned int shndx,
6096     Output_section* os)
6097 {
6098   if (this->is_output_section_offset_invalid(shndx))
6099     {
6100       const Output_relaxed_input_section* poris =
6101         os->find_relaxed_input_section(this, shndx);
6102       // We do not handle merged sections here.
6103       gold_assert(poris != NULL);
6104       return poris->address();
6105     }
6106   else
6107     return os->address() + this->get_output_section_offset(shndx);
6108 }
6109
6110 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6111 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6112
6113 template<bool big_endian>
6114 bool
6115 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6116     const elfcpp::Shdr<32, big_endian>& shdr,
6117     unsigned int shndx,
6118     Output_section* os,
6119     const Symbol_table* symtab)
6120 {
6121   if (!this->section_is_scannable(shdr, shndx, os, symtab))
6122     return false;
6123
6124   // If the section does not cross any 4K-boundaries, it does not need to
6125   // be scanned.
6126   Arm_address address = this->simple_input_section_output_address(shndx, os);
6127   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6128     return false;
6129
6130   return true;
6131 }
6132
6133 // Scan a section for Cortex-A8 workaround.
6134
6135 template<bool big_endian>
6136 void
6137 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6138     const elfcpp::Shdr<32, big_endian>& shdr,
6139     unsigned int shndx,
6140     Output_section* os,
6141     Target_arm<big_endian>* arm_target)
6142 {
6143   // Look for the first mapping symbol in this section.  It should be
6144   // at (shndx, 0).
6145   Mapping_symbol_position section_start(shndx, 0);
6146   typename Mapping_symbols_info::const_iterator p =
6147     this->mapping_symbols_info_.lower_bound(section_start);
6148
6149   // There are no mapping symbols for this section.  Treat it as a data-only
6150   // section.  Issue a warning if section is marked as containing
6151   // instructions.
6152   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6153     {
6154       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6155         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6156                        "erratum because it has no mapping symbols."),
6157                      shndx, this->name().c_str());
6158       return;
6159     }
6160
6161   Arm_address output_address =
6162     this->simple_input_section_output_address(shndx, os);
6163
6164   // Get the section contents.
6165   section_size_type input_view_size = 0;
6166   const unsigned char* input_view =
6167     this->section_contents(shndx, &input_view_size, false);
6168
6169   // We need to go through the mapping symbols to determine what to
6170   // scan.  There are two reasons.  First, we should look at THUMB code and
6171   // THUMB code only.  Second, we only want to look at the 4K-page boundary
6172   // to speed up the scanning.
6173   
6174   while (p != this->mapping_symbols_info_.end()
6175         && p->first.first == shndx)
6176     {
6177       typename Mapping_symbols_info::const_iterator next =
6178         this->mapping_symbols_info_.upper_bound(p->first);
6179
6180       // Only scan part of a section with THUMB code.
6181       if (p->second == 't')
6182         {
6183           // Determine the end of this range.
6184           section_size_type span_start =
6185             convert_to_section_size_type(p->first.second);
6186           section_size_type span_end;
6187           if (next != this->mapping_symbols_info_.end()
6188               && next->first.first == shndx)
6189             span_end = convert_to_section_size_type(next->first.second);
6190           else
6191             span_end = convert_to_section_size_type(shdr.get_sh_size());
6192           
6193           if (((span_start + output_address) & ~0xfffUL)
6194               != ((span_end + output_address - 1) & ~0xfffUL))
6195             {
6196               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6197                                                           span_start, span_end,
6198                                                           input_view,
6199                                                           output_address);
6200             }
6201         }
6202
6203       p = next; 
6204     }
6205 }
6206
6207 // Scan relocations for stub generation.
6208
6209 template<bool big_endian>
6210 void
6211 Arm_relobj<big_endian>::scan_sections_for_stubs(
6212     Target_arm<big_endian>* arm_target,
6213     const Symbol_table* symtab,
6214     const Layout* layout)
6215 {
6216   unsigned int shnum = this->shnum();
6217   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6218
6219   // Read the section headers.
6220   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6221                                                shnum * shdr_size,
6222                                                true, true);
6223
6224   // To speed up processing, we set up hash tables for fast lookup of
6225   // input offsets to output addresses.
6226   this->initialize_input_to_output_maps();
6227
6228   const Relobj::Output_sections& out_sections(this->output_sections());
6229
6230   Relocate_info<32, big_endian> relinfo;
6231   relinfo.symtab = symtab;
6232   relinfo.layout = layout;
6233   relinfo.object = this;
6234
6235   // Do relocation stubs scanning.
6236   const unsigned char* p = pshdrs + shdr_size;
6237   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6238     {
6239       const elfcpp::Shdr<32, big_endian> shdr(p);
6240       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6241                                                   pshdrs))
6242         {
6243           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6244           Arm_address output_offset = this->get_output_section_offset(index);
6245           Arm_address output_address;
6246           if (output_offset != invalid_address)
6247             output_address = out_sections[index]->address() + output_offset;
6248           else
6249             {
6250               // Currently this only happens for a relaxed section.
6251               const Output_relaxed_input_section* poris =
6252               out_sections[index]->find_relaxed_input_section(this, index);
6253               gold_assert(poris != NULL);
6254               output_address = poris->address();
6255             }
6256
6257           // Get the relocations.
6258           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6259                                                         shdr.get_sh_size(),
6260                                                         true, false);
6261
6262           // Get the section contents.  This does work for the case in which
6263           // we modify the contents of an input section.  We need to pass the
6264           // output view under such circumstances.
6265           section_size_type input_view_size = 0;
6266           const unsigned char* input_view =
6267             this->section_contents(index, &input_view_size, false);
6268
6269           relinfo.reloc_shndx = i;
6270           relinfo.data_shndx = index;
6271           unsigned int sh_type = shdr.get_sh_type();
6272           unsigned int reloc_size;
6273           if (sh_type == elfcpp::SHT_REL)
6274             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6275           else
6276             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6277
6278           Output_section* os = out_sections[index];
6279           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6280                                              shdr.get_sh_size() / reloc_size,
6281                                              os,
6282                                              output_offset == invalid_address,
6283                                              input_view, output_address,
6284                                              input_view_size);
6285         }
6286     }
6287
6288   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6289   // after its relocation section, if there is one, is processed for
6290   // relocation stubs.  Merging this loop with the one above would have been
6291   // complicated since we would have had to make sure that relocation stub
6292   // scanning is done first.
6293   if (arm_target->fix_cortex_a8())
6294     {
6295       const unsigned char* p = pshdrs + shdr_size;
6296       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6297         {
6298           const elfcpp::Shdr<32, big_endian> shdr(p);
6299           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6300                                                           out_sections[i],
6301                                                           symtab))
6302             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6303                                                      arm_target);
6304         }
6305     }
6306
6307   // After we've done the relocations, we release the hash tables,
6308   // since we no longer need them.
6309   this->free_input_to_output_maps();
6310 }
6311
6312 // Count the local symbols.  The ARM backend needs to know if a symbol
6313 // is a THUMB function or not.  For global symbols, it is easy because
6314 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6315 // harder because we cannot access this information.   So we override the
6316 // do_count_local_symbol in parent and scan local symbols to mark
6317 // THUMB functions.  This is not the most efficient way but I do not want to
6318 // slow down other ports by calling a per symbol target hook inside
6319 // Sized_relobj_file<size, big_endian>::do_count_local_symbols. 
6320
6321 template<bool big_endian>
6322 void
6323 Arm_relobj<big_endian>::do_count_local_symbols(
6324     Stringpool_template<char>* pool,
6325     Stringpool_template<char>* dynpool)
6326 {
6327   // We need to fix-up the values of any local symbols whose type are
6328   // STT_ARM_TFUNC.
6329   
6330   // Ask parent to count the local symbols.
6331   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6332   const unsigned int loccount = this->local_symbol_count();
6333   if (loccount == 0)
6334     return;
6335
6336   // Initialize the thumb function bit-vector.
6337   std::vector<bool> empty_vector(loccount, false);
6338   this->local_symbol_is_thumb_function_.swap(empty_vector);
6339
6340   // Read the symbol table section header.
6341   const unsigned int symtab_shndx = this->symtab_shndx();
6342   elfcpp::Shdr<32, big_endian>
6343       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6344   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6345
6346   // Read the local symbols.
6347   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6348   gold_assert(loccount == symtabshdr.get_sh_info());
6349   off_t locsize = loccount * sym_size;
6350   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6351                                               locsize, true, true);
6352
6353   // For mapping symbol processing, we need to read the symbol names.
6354   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6355   if (strtab_shndx >= this->shnum())
6356     {
6357       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6358       return;
6359     }
6360
6361   elfcpp::Shdr<32, big_endian>
6362     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6363   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6364     {
6365       this->error(_("symbol table name section has wrong type: %u"),
6366                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6367       return;
6368     }
6369   const char* pnames =
6370     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6371                                                  strtabshdr.get_sh_size(),
6372                                                  false, false));
6373
6374   // Loop over the local symbols and mark any local symbols pointing
6375   // to THUMB functions.
6376
6377   // Skip the first dummy symbol.
6378   psyms += sym_size;
6379   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6380     this->local_values();
6381   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6382     {
6383       elfcpp::Sym<32, big_endian> sym(psyms);
6384       elfcpp::STT st_type = sym.get_st_type();
6385       Symbol_value<32>& lv((*plocal_values)[i]);
6386       Arm_address input_value = lv.input_value();
6387
6388       // Check to see if this is a mapping symbol.
6389       const char* sym_name = pnames + sym.get_st_name();
6390       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6391         {
6392           bool is_ordinary;
6393           unsigned int input_shndx =
6394             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6395           gold_assert(is_ordinary);
6396
6397           // Strip of LSB in case this is a THUMB symbol.
6398           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6399           this->mapping_symbols_info_[msp] = sym_name[1];
6400         }
6401
6402       if (st_type == elfcpp::STT_ARM_TFUNC
6403           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6404         {
6405           // This is a THUMB function.  Mark this and canonicalize the
6406           // symbol value by setting LSB.
6407           this->local_symbol_is_thumb_function_[i] = true;
6408           if ((input_value & 1) == 0)
6409             lv.set_input_value(input_value | 1);
6410         }
6411     }
6412 }
6413
6414 // Relocate sections.
6415 template<bool big_endian>
6416 void
6417 Arm_relobj<big_endian>::do_relocate_sections(
6418     const Symbol_table* symtab,
6419     const Layout* layout,
6420     const unsigned char* pshdrs,
6421     Output_file* of,
6422     typename Sized_relobj_file<32, big_endian>::Views* pviews)
6423 {
6424   // Call parent to relocate sections.
6425   Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6426                                                           pshdrs, of, pviews); 
6427
6428   // We do not generate stubs if doing a relocatable link.
6429   if (parameters->options().relocatable())
6430     return;
6431
6432   // Relocate stub tables.
6433   unsigned int shnum = this->shnum();
6434
6435   Target_arm<big_endian>* arm_target =
6436     Target_arm<big_endian>::default_target();
6437
6438   Relocate_info<32, big_endian> relinfo;
6439   relinfo.symtab = symtab;
6440   relinfo.layout = layout;
6441   relinfo.object = this;
6442
6443   for (unsigned int i = 1; i < shnum; ++i)
6444     {
6445       Arm_input_section<big_endian>* arm_input_section =
6446         arm_target->find_arm_input_section(this, i);
6447
6448       if (arm_input_section != NULL
6449           && arm_input_section->is_stub_table_owner()
6450           && !arm_input_section->stub_table()->empty())
6451         {
6452           // We cannot discard a section if it owns a stub table.
6453           Output_section* os = this->output_section(i);
6454           gold_assert(os != NULL);
6455
6456           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6457           relinfo.reloc_shdr = NULL;
6458           relinfo.data_shndx = i;
6459           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6460
6461           gold_assert((*pviews)[i].view != NULL);
6462
6463           // We are passed the output section view.  Adjust it to cover the
6464           // stub table only.
6465           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6466           gold_assert((stub_table->address() >= (*pviews)[i].address)
6467                       && ((stub_table->address() + stub_table->data_size())
6468                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6469
6470           off_t offset = stub_table->address() - (*pviews)[i].address;
6471           unsigned char* view = (*pviews)[i].view + offset;
6472           Arm_address address = stub_table->address();
6473           section_size_type view_size = stub_table->data_size();
6474  
6475           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6476                                      view_size);
6477         }
6478
6479       // Apply Cortex A8 workaround if applicable.
6480       if (this->section_has_cortex_a8_workaround(i))
6481         {
6482           unsigned char* view = (*pviews)[i].view;
6483           Arm_address view_address = (*pviews)[i].address;
6484           section_size_type view_size = (*pviews)[i].view_size;
6485           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6486
6487           // Adjust view to cover section.
6488           Output_section* os = this->output_section(i);
6489           gold_assert(os != NULL);
6490           Arm_address section_address =
6491             this->simple_input_section_output_address(i, os);
6492           uint64_t section_size = this->section_size(i);
6493
6494           gold_assert(section_address >= view_address
6495                       && ((section_address + section_size)
6496                           <= (view_address + view_size)));
6497
6498           unsigned char* section_view = view + (section_address - view_address);
6499
6500           // Apply the Cortex-A8 workaround to the output address range
6501           // corresponding to this input section.
6502           stub_table->apply_cortex_a8_workaround_to_address_range(
6503               arm_target,
6504               section_view,
6505               section_address,
6506               section_size);
6507         }
6508     }
6509 }
6510
6511 // Find the linked text section of an EXIDX section by looking at the first
6512 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6513 // must be linked to its associated code section via the sh_link field of
6514 // its section header.  However, some tools are broken and the link is not
6515 // always set.  LD just drops such an EXIDX section silently, causing the
6516 // associated code not unwindabled.   Here we try a little bit harder to
6517 // discover the linked code section.
6518 //
6519 // PSHDR points to the section header of a relocation section of an EXIDX
6520 // section.  If we can find a linked text section, return true and
6521 // store the text section index in the location PSHNDX.  Otherwise
6522 // return false.
6523
6524 template<bool big_endian>
6525 bool
6526 Arm_relobj<big_endian>::find_linked_text_section(
6527     const unsigned char* pshdr,
6528     const unsigned char* psyms,
6529     unsigned int* pshndx)
6530 {
6531   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6532   
6533   // If there is no relocation, we cannot find the linked text section.
6534   size_t reloc_size;
6535   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6536       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6537   else
6538       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6539   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6540  
6541   // Get the relocations.
6542   const unsigned char* prelocs =
6543       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6544
6545   // Find the REL31 relocation for the first word of the first EXIDX entry.
6546   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6547     {
6548       Arm_address r_offset;
6549       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6550       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6551         {
6552           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6553           r_info = reloc.get_r_info();
6554           r_offset = reloc.get_r_offset();
6555         }
6556       else
6557         {
6558           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6559           r_info = reloc.get_r_info();
6560           r_offset = reloc.get_r_offset();
6561         }
6562
6563       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6564       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6565         continue;
6566
6567       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6568       if (r_sym == 0
6569           || r_sym >= this->local_symbol_count()
6570           || r_offset != 0)
6571         continue;
6572
6573       // This is the relocation for the first word of the first EXIDX entry.
6574       // We expect to see a local section symbol.
6575       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6576       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6577       if (sym.get_st_type() == elfcpp::STT_SECTION)
6578         {
6579           bool is_ordinary;
6580           *pshndx =
6581             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6582           gold_assert(is_ordinary);
6583           return true;
6584         }
6585       else
6586         return false;
6587     }
6588
6589   return false;
6590 }
6591
6592 // Make an EXIDX input section object for an EXIDX section whose index is
6593 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6594 // is the section index of the linked text section.
6595
6596 template<bool big_endian>
6597 void
6598 Arm_relobj<big_endian>::make_exidx_input_section(
6599     unsigned int shndx,
6600     const elfcpp::Shdr<32, big_endian>& shdr,
6601     unsigned int text_shndx,
6602     const elfcpp::Shdr<32, big_endian>& text_shdr)
6603 {
6604   // Create an Arm_exidx_input_section object for this EXIDX section.
6605   Arm_exidx_input_section* exidx_input_section =
6606     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6607                                 shdr.get_sh_addralign(),
6608                                 text_shdr.get_sh_size());
6609
6610   gold_assert(this->exidx_section_map_[shndx] == NULL);
6611   this->exidx_section_map_[shndx] = exidx_input_section;
6612
6613   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6614     {
6615       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6616                  this->section_name(shndx).c_str(), shndx, text_shndx,
6617                  this->name().c_str());
6618       exidx_input_section->set_has_errors();
6619     } 
6620   else if (this->exidx_section_map_[text_shndx] != NULL)
6621     {
6622       unsigned other_exidx_shndx =
6623         this->exidx_section_map_[text_shndx]->shndx();
6624       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6625                    "%s(%u) in %s"),
6626                  this->section_name(shndx).c_str(), shndx,
6627                  this->section_name(other_exidx_shndx).c_str(),
6628                  other_exidx_shndx, this->section_name(text_shndx).c_str(),
6629                  text_shndx, this->name().c_str());
6630       exidx_input_section->set_has_errors();
6631     }
6632   else
6633      this->exidx_section_map_[text_shndx] = exidx_input_section;
6634
6635   // Check section flags of text section.
6636   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6637     {
6638       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6639                    " in %s"),
6640                  this->section_name(shndx).c_str(), shndx,
6641                  this->section_name(text_shndx).c_str(), text_shndx,
6642                  this->name().c_str());
6643       exidx_input_section->set_has_errors();
6644     }
6645   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6646     // I would like to make this an error but currently ld just ignores
6647     // this.
6648     gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6649                    "%s(%u) in %s"),
6650                  this->section_name(shndx).c_str(), shndx,
6651                  this->section_name(text_shndx).c_str(), text_shndx,
6652                  this->name().c_str());
6653 }
6654
6655 // Read the symbol information.
6656
6657 template<bool big_endian>
6658 void
6659 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6660 {
6661   // Call parent class to read symbol information.
6662   Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6663
6664   // If this input file is a binary file, it has no processor
6665   // specific flags and attributes section.
6666   Input_file::Format format = this->input_file()->format();
6667   if (format != Input_file::FORMAT_ELF)
6668     {
6669       gold_assert(format == Input_file::FORMAT_BINARY);
6670       this->merge_flags_and_attributes_ = false;
6671       return;
6672     }
6673
6674   // Read processor-specific flags in ELF file header.
6675   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6676                                               elfcpp::Elf_sizes<32>::ehdr_size,
6677                                               true, false);
6678   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6679   this->processor_specific_flags_ = ehdr.get_e_flags();
6680
6681   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6682   // sections.
6683   std::vector<unsigned int> deferred_exidx_sections;
6684   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6685   const unsigned char* pshdrs = sd->section_headers->data();
6686   const unsigned char* ps = pshdrs + shdr_size;
6687   bool must_merge_flags_and_attributes = false;
6688   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6689     {
6690       elfcpp::Shdr<32, big_endian> shdr(ps);
6691
6692       // Sometimes an object has no contents except the section name string
6693       // table and an empty symbol table with the undefined symbol.  We
6694       // don't want to merge processor-specific flags from such an object.
6695       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6696         {
6697           // Symbol table is not empty.
6698           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6699              elfcpp::Elf_sizes<32>::sym_size;
6700           if (shdr.get_sh_size() > sym_size)
6701             must_merge_flags_and_attributes = true;
6702         }
6703       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6704         // If this is neither an empty symbol table nor a string table,
6705         // be conservative.
6706         must_merge_flags_and_attributes = true;
6707
6708       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6709         {
6710           gold_assert(this->attributes_section_data_ == NULL);
6711           section_offset_type section_offset = shdr.get_sh_offset();
6712           section_size_type section_size =
6713             convert_to_section_size_type(shdr.get_sh_size());
6714           const unsigned char* view =
6715              this->get_view(section_offset, section_size, true, false);
6716           this->attributes_section_data_ =
6717             new Attributes_section_data(view, section_size);
6718         }
6719       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6720         {
6721           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6722           if (text_shndx == elfcpp::SHN_UNDEF)
6723             deferred_exidx_sections.push_back(i);
6724           else
6725             {
6726               elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6727                                                      + text_shndx * shdr_size);
6728               this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6729             }
6730           // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6731           if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6732             gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6733                          this->section_name(i).c_str(), this->name().c_str());
6734         }
6735     }
6736
6737   // This is rare.
6738   if (!must_merge_flags_and_attributes)
6739     {
6740       gold_assert(deferred_exidx_sections.empty());
6741       this->merge_flags_and_attributes_ = false;
6742       return;
6743     }
6744
6745   // Some tools are broken and they do not set the link of EXIDX sections. 
6746   // We look at the first relocation to figure out the linked sections.
6747   if (!deferred_exidx_sections.empty())
6748     {
6749       // We need to go over the section headers again to find the mapping
6750       // from sections being relocated to their relocation sections.  This is
6751       // a bit inefficient as we could do that in the loop above.  However,
6752       // we do not expect any deferred EXIDX sections normally.  So we do not
6753       // want to slow down the most common path.
6754       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6755       Reloc_map reloc_map;
6756       ps = pshdrs + shdr_size;
6757       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6758         {
6759           elfcpp::Shdr<32, big_endian> shdr(ps);
6760           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6761           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6762             {
6763               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6764               if (info_shndx >= this->shnum())
6765                 gold_error(_("relocation section %u has invalid info %u"),
6766                            i, info_shndx);
6767               Reloc_map::value_type value(info_shndx, i);
6768               std::pair<Reloc_map::iterator, bool> result =
6769                 reloc_map.insert(value);
6770               if (!result.second)
6771                 gold_error(_("section %u has multiple relocation sections "
6772                              "%u and %u"),
6773                            info_shndx, i, reloc_map[info_shndx]);
6774             }
6775         }
6776
6777       // Read the symbol table section header.
6778       const unsigned int symtab_shndx = this->symtab_shndx();
6779       elfcpp::Shdr<32, big_endian>
6780           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6781       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6782
6783       // Read the local symbols.
6784       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6785       const unsigned int loccount = this->local_symbol_count();
6786       gold_assert(loccount == symtabshdr.get_sh_info());
6787       off_t locsize = loccount * sym_size;
6788       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6789                                                   locsize, true, true);
6790
6791       // Process the deferred EXIDX sections. 
6792       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6793         {
6794           unsigned int shndx = deferred_exidx_sections[i];
6795           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6796           unsigned int text_shndx = elfcpp::SHN_UNDEF;
6797           Reloc_map::const_iterator it = reloc_map.find(shndx);
6798           if (it != reloc_map.end())
6799             find_linked_text_section(pshdrs + it->second * shdr_size,
6800                                      psyms, &text_shndx);
6801           elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6802                                                  + text_shndx * shdr_size);
6803           this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6804         }
6805     }
6806 }
6807
6808 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6809 // sections for unwinding.  These sections are referenced implicitly by 
6810 // text sections linked in the section headers.  If we ignore these implicit
6811 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6812 // will be garbage-collected incorrectly.  Hence we override the same function
6813 // in the base class to handle these implicit references.
6814
6815 template<bool big_endian>
6816 void
6817 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6818                                              Layout* layout,
6819                                              Read_relocs_data* rd)
6820 {
6821   // First, call base class method to process relocations in this object.
6822   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6823
6824   // If --gc-sections is not specified, there is nothing more to do.
6825   // This happens when --icf is used but --gc-sections is not.
6826   if (!parameters->options().gc_sections())
6827     return;
6828   
6829   unsigned int shnum = this->shnum();
6830   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6831   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6832                                                shnum * shdr_size,
6833                                                true, true);
6834
6835   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6836   // to these from the linked text sections.
6837   const unsigned char* ps = pshdrs + shdr_size;
6838   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6839     {
6840       elfcpp::Shdr<32, big_endian> shdr(ps);
6841       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6842         {
6843           // Found an .ARM.exidx section, add it to the set of reachable
6844           // sections from its linked text section.
6845           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6846           symtab->gc()->add_reference(this, text_shndx, this, i);
6847         }
6848     }
6849 }
6850
6851 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6852 // symbols  will be removed in output.  Adjust output local symbol count
6853 // accordingly.  We can only changed the static output local symbol count.  It
6854 // is too late to change the dynamic symbols.
6855
6856 template<bool big_endian>
6857 void
6858 Arm_relobj<big_endian>::update_output_local_symbol_count()
6859 {
6860   // Caller should check that this needs updating.  We want caller checking
6861   // because output_local_symbol_count_needs_update() is most likely inlined.
6862   gold_assert(this->output_local_symbol_count_needs_update_);
6863
6864   gold_assert(this->symtab_shndx() != -1U);
6865   if (this->symtab_shndx() == 0)
6866     {
6867       // This object has no symbols.  Weird but legal.
6868       return;
6869     }
6870
6871   // Read the symbol table section header.
6872   const unsigned int symtab_shndx = this->symtab_shndx();
6873   elfcpp::Shdr<32, big_endian>
6874     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6875   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6876
6877   // Read the local symbols.
6878   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6879   const unsigned int loccount = this->local_symbol_count();
6880   gold_assert(loccount == symtabshdr.get_sh_info());
6881   off_t locsize = loccount * sym_size;
6882   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6883                                               locsize, true, true);
6884
6885   // Loop over the local symbols.
6886
6887   typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6888      Output_sections;
6889   const Output_sections& out_sections(this->output_sections());
6890   unsigned int shnum = this->shnum();
6891   unsigned int count = 0;
6892   // Skip the first, dummy, symbol.
6893   psyms += sym_size;
6894   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6895     {
6896       elfcpp::Sym<32, big_endian> sym(psyms);
6897
6898       Symbol_value<32>& lv((*this->local_values())[i]);
6899
6900       // This local symbol was already discarded by do_count_local_symbols.
6901       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6902         continue;
6903
6904       bool is_ordinary;
6905       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6906                                                   &is_ordinary);
6907
6908       if (shndx < shnum)
6909         {
6910           Output_section* os = out_sections[shndx];
6911
6912           // This local symbol no longer has an output section.  Discard it.
6913           if (os == NULL)
6914             {
6915               lv.set_no_output_symtab_entry();
6916               continue;
6917             }
6918
6919           // Currently we only discard parts of EXIDX input sections.
6920           // We explicitly check for a merged EXIDX input section to avoid
6921           // calling Output_section_data::output_offset unless necessary.
6922           if ((this->get_output_section_offset(shndx) == invalid_address)
6923               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6924             {
6925               section_offset_type output_offset =
6926                 os->output_offset(this, shndx, lv.input_value());
6927               if (output_offset == -1)
6928                 {
6929                   // This symbol is defined in a part of an EXIDX input section
6930                   // that is discarded due to entry merging.
6931                   lv.set_no_output_symtab_entry();
6932                   continue;
6933                 }       
6934             }
6935         }
6936
6937       ++count;
6938     }
6939
6940   this->set_output_local_symbol_count(count);
6941   this->output_local_symbol_count_needs_update_ = false;
6942 }
6943
6944 // Arm_dynobj methods.
6945
6946 // Read the symbol information.
6947
6948 template<bool big_endian>
6949 void
6950 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6951 {
6952   // Call parent class to read symbol information.
6953   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6954
6955   // Read processor-specific flags in ELF file header.
6956   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6957                                               elfcpp::Elf_sizes<32>::ehdr_size,
6958                                               true, false);
6959   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6960   this->processor_specific_flags_ = ehdr.get_e_flags();
6961
6962   // Read the attributes section if there is one.
6963   // We read from the end because gas seems to put it near the end of
6964   // the section headers.
6965   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6966   const unsigned char* ps =
6967     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6968   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6969     {
6970       elfcpp::Shdr<32, big_endian> shdr(ps);
6971       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6972         {
6973           section_offset_type section_offset = shdr.get_sh_offset();
6974           section_size_type section_size =
6975             convert_to_section_size_type(shdr.get_sh_size());
6976           const unsigned char* view =
6977             this->get_view(section_offset, section_size, true, false);
6978           this->attributes_section_data_ =
6979             new Attributes_section_data(view, section_size);
6980           break;
6981         }
6982     }
6983 }
6984
6985 // Stub_addend_reader methods.
6986
6987 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6988
6989 template<bool big_endian>
6990 elfcpp::Elf_types<32>::Elf_Swxword
6991 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6992     unsigned int r_type,
6993     const unsigned char* view,
6994     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6995 {
6996   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
6997   
6998   switch (r_type)
6999     {
7000     case elfcpp::R_ARM_CALL:
7001     case elfcpp::R_ARM_JUMP24:
7002     case elfcpp::R_ARM_PLT32:
7003       {
7004         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7005         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7006         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7007         return Bits<26>::sign_extend32(val << 2);
7008       }
7009
7010     case elfcpp::R_ARM_THM_CALL:
7011     case elfcpp::R_ARM_THM_JUMP24:
7012     case elfcpp::R_ARM_THM_XPC22:
7013       {
7014         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7015         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7016         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7017         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7018         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7019       }
7020
7021     case elfcpp::R_ARM_THM_JUMP19:
7022       {
7023         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7024         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7025         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7026         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7027         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7028       }
7029
7030     default:
7031       gold_unreachable();
7032     }
7033 }
7034
7035 // Arm_output_data_got methods.
7036
7037 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7038 // The first one is initialized to be 1, which is the module index for
7039 // the main executable and the second one 0.  A reloc of the type
7040 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7041 // be applied by gold.  GSYM is a global symbol.
7042 //
7043 template<bool big_endian>
7044 void
7045 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7046     unsigned int got_type,
7047     Symbol* gsym)
7048 {
7049   if (gsym->has_got_offset(got_type))
7050     return;
7051
7052   // We are doing a static link.  Just mark it as belong to module 1,
7053   // the executable.
7054   unsigned int got_offset = this->add_constant(1);
7055   gsym->set_got_offset(got_type, got_offset); 
7056   got_offset = this->add_constant(0);
7057   this->static_relocs_.push_back(Static_reloc(got_offset,
7058                                               elfcpp::R_ARM_TLS_DTPOFF32,
7059                                               gsym));
7060 }
7061
7062 // Same as the above but for a local symbol.
7063
7064 template<bool big_endian>
7065 void
7066 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7067   unsigned int got_type,
7068   Sized_relobj_file<32, big_endian>* object,
7069   unsigned int index)
7070 {
7071   if (object->local_has_got_offset(index, got_type))
7072     return;
7073
7074   // We are doing a static link.  Just mark it as belong to module 1,
7075   // the executable.
7076   unsigned int got_offset = this->add_constant(1);
7077   object->set_local_got_offset(index, got_type, got_offset);
7078   got_offset = this->add_constant(0);
7079   this->static_relocs_.push_back(Static_reloc(got_offset, 
7080                                               elfcpp::R_ARM_TLS_DTPOFF32, 
7081                                               object, index));
7082 }
7083
7084 template<bool big_endian>
7085 void
7086 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7087 {
7088   // Call parent to write out GOT.
7089   Output_data_got<32, big_endian>::do_write(of);
7090
7091   // We are done if there is no fix up.
7092   if (this->static_relocs_.empty())
7093     return;
7094
7095   gold_assert(parameters->doing_static_link());
7096
7097   const off_t offset = this->offset();
7098   const section_size_type oview_size =
7099     convert_to_section_size_type(this->data_size());
7100   unsigned char* const oview = of->get_output_view(offset, oview_size);
7101
7102   Output_segment* tls_segment = this->layout_->tls_segment();
7103   gold_assert(tls_segment != NULL);
7104   
7105   // The thread pointer $tp points to the TCB, which is followed by the
7106   // TLS.  So we need to adjust $tp relative addressing by this amount.
7107   Arm_address aligned_tcb_size =
7108     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7109
7110   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7111     {
7112       Static_reloc& reloc(this->static_relocs_[i]);
7113       
7114       Arm_address value;
7115       if (!reloc.symbol_is_global())
7116         {
7117           Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7118           const Symbol_value<32>* psymval =
7119             reloc.relobj()->local_symbol(reloc.index());
7120
7121           // We are doing static linking.  Issue an error and skip this
7122           // relocation if the symbol is undefined or in a discarded_section.
7123           bool is_ordinary;
7124           unsigned int shndx = psymval->input_shndx(&is_ordinary);
7125           if ((shndx == elfcpp::SHN_UNDEF)
7126               || (is_ordinary
7127                   && shndx != elfcpp::SHN_UNDEF
7128                   && !object->is_section_included(shndx)
7129                   && !this->symbol_table_->is_section_folded(object, shndx)))
7130             {
7131               gold_error(_("undefined or discarded local symbol %u from "
7132                            " object %s in GOT"),
7133                          reloc.index(), reloc.relobj()->name().c_str());
7134               continue;
7135             }
7136           
7137           value = psymval->value(object, 0);
7138         }
7139       else
7140         {
7141           const Symbol* gsym = reloc.symbol();
7142           gold_assert(gsym != NULL);
7143           if (gsym->is_forwarder())
7144             gsym = this->symbol_table_->resolve_forwards(gsym);
7145
7146           // We are doing static linking.  Issue an error and skip this
7147           // relocation if the symbol is undefined or in a discarded_section
7148           // unless it is a weakly_undefined symbol.
7149           if ((gsym->is_defined_in_discarded_section()
7150                || gsym->is_undefined())
7151               && !gsym->is_weak_undefined())
7152             {
7153               gold_error(_("undefined or discarded symbol %s in GOT"),
7154                          gsym->name());
7155               continue;
7156             }
7157
7158           if (!gsym->is_weak_undefined())
7159             {
7160               const Sized_symbol<32>* sym =
7161                 static_cast<const Sized_symbol<32>*>(gsym);
7162               value = sym->value();
7163             }
7164           else
7165               value = 0;
7166         }
7167
7168       unsigned got_offset = reloc.got_offset();
7169       gold_assert(got_offset < oview_size);
7170
7171       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7172       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7173       Valtype x;
7174       switch (reloc.r_type())
7175         {
7176         case elfcpp::R_ARM_TLS_DTPOFF32:
7177           x = value;
7178           break;
7179         case elfcpp::R_ARM_TLS_TPOFF32:
7180           x = value + aligned_tcb_size;
7181           break;
7182         default:
7183           gold_unreachable();
7184         }
7185       elfcpp::Swap<32, big_endian>::writeval(wv, x);
7186     }
7187
7188   of->write_output_view(offset, oview_size, oview);
7189 }
7190
7191 // A class to handle the PLT data.
7192
7193 template<bool big_endian>
7194 class Output_data_plt_arm : public Output_section_data
7195 {
7196  public:
7197   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7198     Reloc_section;
7199
7200   Output_data_plt_arm(Layout*, Output_data_space*);
7201
7202   // Add an entry to the PLT.
7203   void
7204   add_entry(Symbol* gsym);
7205
7206   // Return the .rel.plt section data.
7207   const Reloc_section*
7208   rel_plt() const
7209   { return this->rel_; }
7210
7211   // Return the number of PLT entries.
7212   unsigned int
7213   entry_count() const
7214   { return this->count_; }
7215
7216   // Return the offset of the first non-reserved PLT entry.
7217   static unsigned int
7218   first_plt_entry_offset()
7219   { return sizeof(first_plt_entry); }
7220
7221   // Return the size of a PLT entry.
7222   static unsigned int
7223   get_plt_entry_size()
7224   { return sizeof(plt_entry); }
7225
7226  protected:
7227   void
7228   do_adjust_output_section(Output_section* os);
7229
7230   // Write to a map file.
7231   void
7232   do_print_to_mapfile(Mapfile* mapfile) const
7233   { mapfile->print_output_data(this, _("** PLT")); }
7234
7235  private:
7236   // Template for the first PLT entry.
7237   static const uint32_t first_plt_entry[5];
7238
7239   // Template for subsequent PLT entries. 
7240   static const uint32_t plt_entry[3];
7241
7242   // Set the final size.
7243   void
7244   set_final_data_size()
7245   {
7246     this->set_data_size(sizeof(first_plt_entry)
7247                         + this->count_ * sizeof(plt_entry));
7248   }
7249
7250   // Write out the PLT data.
7251   void
7252   do_write(Output_file*);
7253
7254   // The reloc section.
7255   Reloc_section* rel_;
7256   // The .got.plt section.
7257   Output_data_space* got_plt_;
7258   // The number of PLT entries.
7259   unsigned int count_;
7260 };
7261
7262 // Create the PLT section.  The ordinary .got section is an argument,
7263 // since we need to refer to the start.  We also create our own .got
7264 // section just for PLT entries.
7265
7266 template<bool big_endian>
7267 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7268                                                      Output_data_space* got_plt)
7269   : Output_section_data(4), got_plt_(got_plt), count_(0)
7270 {
7271   this->rel_ = new Reloc_section(false);
7272   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7273                                   elfcpp::SHF_ALLOC, this->rel_,
7274                                   ORDER_DYNAMIC_PLT_RELOCS, false);
7275 }
7276
7277 template<bool big_endian>
7278 void
7279 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7280 {
7281   os->set_entsize(0);
7282 }
7283
7284 // Add an entry to the PLT.
7285
7286 template<bool big_endian>
7287 void
7288 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7289 {
7290   gold_assert(!gsym->has_plt_offset());
7291
7292   // Note that when setting the PLT offset we skip the initial
7293   // reserved PLT entry.
7294   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7295                        + sizeof(first_plt_entry));
7296
7297   ++this->count_;
7298
7299   section_offset_type got_offset = this->got_plt_->current_data_size();
7300
7301   // Every PLT entry needs a GOT entry which points back to the PLT
7302   // entry (this will be changed by the dynamic linker, normally
7303   // lazily when the function is called).
7304   this->got_plt_->set_current_data_size(got_offset + 4);
7305
7306   // Every PLT entry needs a reloc.
7307   gsym->set_needs_dynsym_entry();
7308   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7309                          got_offset);
7310
7311   // Note that we don't need to save the symbol.  The contents of the
7312   // PLT are independent of which symbols are used.  The symbols only
7313   // appear in the relocations.
7314 }
7315
7316 // ARM PLTs.
7317 // FIXME:  This is not very flexible.  Right now this has only been tested
7318 // on armv5te.  If we are to support additional architecture features like
7319 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7320
7321 // The first entry in the PLT.
7322 template<bool big_endian>
7323 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7324 {
7325   0xe52de004,   // str   lr, [sp, #-4]!
7326   0xe59fe004,   // ldr   lr, [pc, #4]
7327   0xe08fe00e,   // add   lr, pc, lr 
7328   0xe5bef008,   // ldr   pc, [lr, #8]!
7329   0x00000000,   // &GOT[0] - .
7330 };
7331
7332 // Subsequent entries in the PLT.
7333
7334 template<bool big_endian>
7335 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7336 {
7337   0xe28fc600,   // add   ip, pc, #0xNN00000
7338   0xe28cca00,   // add   ip, ip, #0xNN000
7339   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7340 };
7341
7342 // Write out the PLT.  This uses the hand-coded instructions above,
7343 // and adjusts them as needed.  This is all specified by the arm ELF
7344 // Processor Supplement.
7345
7346 template<bool big_endian>
7347 void
7348 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7349 {
7350   const off_t offset = this->offset();
7351   const section_size_type oview_size =
7352     convert_to_section_size_type(this->data_size());
7353   unsigned char* const oview = of->get_output_view(offset, oview_size);
7354
7355   const off_t got_file_offset = this->got_plt_->offset();
7356   const section_size_type got_size =
7357     convert_to_section_size_type(this->got_plt_->data_size());
7358   unsigned char* const got_view = of->get_output_view(got_file_offset,
7359                                                       got_size);
7360   unsigned char* pov = oview;
7361
7362   Arm_address plt_address = this->address();
7363   Arm_address got_address = this->got_plt_->address();
7364
7365   // Write first PLT entry.  All but the last word are constants.
7366   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7367                                       / sizeof(plt_entry[0]));
7368   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7369     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7370   // Last word in first PLT entry is &GOT[0] - .
7371   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7372                                          got_address - (plt_address + 16));
7373   pov += sizeof(first_plt_entry);
7374
7375   unsigned char* got_pov = got_view;
7376
7377   memset(got_pov, 0, 12);
7378   got_pov += 12;
7379
7380   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7381   unsigned int plt_offset = sizeof(first_plt_entry);
7382   unsigned int plt_rel_offset = 0;
7383   unsigned int got_offset = 12;
7384   const unsigned int count = this->count_;
7385   for (unsigned int i = 0;
7386        i < count;
7387        ++i,
7388          pov += sizeof(plt_entry),
7389          got_pov += 4,
7390          plt_offset += sizeof(plt_entry),
7391          plt_rel_offset += rel_size,
7392          got_offset += 4)
7393     {
7394       // Set and adjust the PLT entry itself.
7395       int32_t offset = ((got_address + got_offset)
7396                          - (plt_address + plt_offset + 8));
7397
7398       gold_assert(offset >= 0 && offset < 0x0fffffff);
7399       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7400       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7401       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7402       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7403       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7404       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7405
7406       // Set the entry in the GOT.
7407       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7408     }
7409
7410   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7411   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7412
7413   of->write_output_view(offset, oview_size, oview);
7414   of->write_output_view(got_file_offset, got_size, got_view);
7415 }
7416
7417 // Create a PLT entry for a global symbol.
7418
7419 template<bool big_endian>
7420 void
7421 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7422                                        Symbol* gsym)
7423 {
7424   if (gsym->has_plt_offset())
7425     return;
7426
7427   if (this->plt_ == NULL)
7428     {
7429       // Create the GOT sections first.
7430       this->got_section(symtab, layout);
7431
7432       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7433       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7434                                       (elfcpp::SHF_ALLOC
7435                                        | elfcpp::SHF_EXECINSTR),
7436                                       this->plt_, ORDER_PLT, false);
7437     }
7438   this->plt_->add_entry(gsym);
7439 }
7440
7441 // Return the number of entries in the PLT.
7442
7443 template<bool big_endian>
7444 unsigned int
7445 Target_arm<big_endian>::plt_entry_count() const
7446 {
7447   if (this->plt_ == NULL)
7448     return 0;
7449   return this->plt_->entry_count();
7450 }
7451
7452 // Return the offset of the first non-reserved PLT entry.
7453
7454 template<bool big_endian>
7455 unsigned int
7456 Target_arm<big_endian>::first_plt_entry_offset() const
7457 {
7458   return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7459 }
7460
7461 // Return the size of each PLT entry.
7462
7463 template<bool big_endian>
7464 unsigned int
7465 Target_arm<big_endian>::plt_entry_size() const
7466 {
7467   return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7468 }
7469
7470 // Get the section to use for TLS_DESC relocations.
7471
7472 template<bool big_endian>
7473 typename Target_arm<big_endian>::Reloc_section*
7474 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7475 {
7476   return this->plt_section()->rel_tls_desc(layout);
7477 }
7478
7479 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7480
7481 template<bool big_endian>
7482 void
7483 Target_arm<big_endian>::define_tls_base_symbol(
7484     Symbol_table* symtab,
7485     Layout* layout)
7486 {
7487   if (this->tls_base_symbol_defined_)
7488     return;
7489
7490   Output_segment* tls_segment = layout->tls_segment();
7491   if (tls_segment != NULL)
7492     {
7493       bool is_exec = parameters->options().output_is_executable();
7494       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7495                                        Symbol_table::PREDEFINED,
7496                                        tls_segment, 0, 0,
7497                                        elfcpp::STT_TLS,
7498                                        elfcpp::STB_LOCAL,
7499                                        elfcpp::STV_HIDDEN, 0,
7500                                        (is_exec
7501                                         ? Symbol::SEGMENT_END
7502                                         : Symbol::SEGMENT_START),
7503                                        true);
7504     }
7505   this->tls_base_symbol_defined_ = true;
7506 }
7507
7508 // Create a GOT entry for the TLS module index.
7509
7510 template<bool big_endian>
7511 unsigned int
7512 Target_arm<big_endian>::got_mod_index_entry(
7513     Symbol_table* symtab,
7514     Layout* layout,
7515     Sized_relobj_file<32, big_endian>* object)
7516 {
7517   if (this->got_mod_index_offset_ == -1U)
7518     {
7519       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7520       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7521       unsigned int got_offset;
7522       if (!parameters->doing_static_link())
7523         {
7524           got_offset = got->add_constant(0);
7525           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7526           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7527                              got_offset);
7528         }
7529       else
7530         {
7531           // We are doing a static link.  Just mark it as belong to module 1,
7532           // the executable.
7533           got_offset = got->add_constant(1);
7534         }
7535
7536       got->add_constant(0);
7537       this->got_mod_index_offset_ = got_offset;
7538     }
7539   return this->got_mod_index_offset_;
7540 }
7541
7542 // Optimize the TLS relocation type based on what we know about the
7543 // symbol.  IS_FINAL is true if the final address of this symbol is
7544 // known at link time.
7545
7546 template<bool big_endian>
7547 tls::Tls_optimization
7548 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7549 {
7550   // FIXME: Currently we do not do any TLS optimization.
7551   return tls::TLSOPT_NONE;
7552 }
7553
7554 // Get the Reference_flags for a particular relocation.
7555
7556 template<bool big_endian>
7557 int
7558 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7559 {
7560   switch (r_type)
7561     {
7562     case elfcpp::R_ARM_NONE:
7563     case elfcpp::R_ARM_V4BX:
7564     case elfcpp::R_ARM_GNU_VTENTRY:
7565     case elfcpp::R_ARM_GNU_VTINHERIT:
7566       // No symbol reference.
7567       return 0;
7568
7569     case elfcpp::R_ARM_ABS32:
7570     case elfcpp::R_ARM_ABS16:
7571     case elfcpp::R_ARM_ABS12:
7572     case elfcpp::R_ARM_THM_ABS5:
7573     case elfcpp::R_ARM_ABS8:
7574     case elfcpp::R_ARM_BASE_ABS:
7575     case elfcpp::R_ARM_MOVW_ABS_NC:
7576     case elfcpp::R_ARM_MOVT_ABS:
7577     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7578     case elfcpp::R_ARM_THM_MOVT_ABS:
7579     case elfcpp::R_ARM_ABS32_NOI:
7580       return Symbol::ABSOLUTE_REF;
7581
7582     case elfcpp::R_ARM_REL32:
7583     case elfcpp::R_ARM_LDR_PC_G0:
7584     case elfcpp::R_ARM_SBREL32:
7585     case elfcpp::R_ARM_THM_PC8:
7586     case elfcpp::R_ARM_BASE_PREL:
7587     case elfcpp::R_ARM_MOVW_PREL_NC:
7588     case elfcpp::R_ARM_MOVT_PREL:
7589     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7590     case elfcpp::R_ARM_THM_MOVT_PREL:
7591     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7592     case elfcpp::R_ARM_THM_PC12:
7593     case elfcpp::R_ARM_REL32_NOI:
7594     case elfcpp::R_ARM_ALU_PC_G0_NC:
7595     case elfcpp::R_ARM_ALU_PC_G0:
7596     case elfcpp::R_ARM_ALU_PC_G1_NC:
7597     case elfcpp::R_ARM_ALU_PC_G1:
7598     case elfcpp::R_ARM_ALU_PC_G2:
7599     case elfcpp::R_ARM_LDR_PC_G1:
7600     case elfcpp::R_ARM_LDR_PC_G2:
7601     case elfcpp::R_ARM_LDRS_PC_G0:
7602     case elfcpp::R_ARM_LDRS_PC_G1:
7603     case elfcpp::R_ARM_LDRS_PC_G2:
7604     case elfcpp::R_ARM_LDC_PC_G0:
7605     case elfcpp::R_ARM_LDC_PC_G1:
7606     case elfcpp::R_ARM_LDC_PC_G2:
7607     case elfcpp::R_ARM_ALU_SB_G0_NC:
7608     case elfcpp::R_ARM_ALU_SB_G0:
7609     case elfcpp::R_ARM_ALU_SB_G1_NC:
7610     case elfcpp::R_ARM_ALU_SB_G1:
7611     case elfcpp::R_ARM_ALU_SB_G2:
7612     case elfcpp::R_ARM_LDR_SB_G0:
7613     case elfcpp::R_ARM_LDR_SB_G1:
7614     case elfcpp::R_ARM_LDR_SB_G2:
7615     case elfcpp::R_ARM_LDRS_SB_G0:
7616     case elfcpp::R_ARM_LDRS_SB_G1:
7617     case elfcpp::R_ARM_LDRS_SB_G2:
7618     case elfcpp::R_ARM_LDC_SB_G0:
7619     case elfcpp::R_ARM_LDC_SB_G1:
7620     case elfcpp::R_ARM_LDC_SB_G2:
7621     case elfcpp::R_ARM_MOVW_BREL_NC:
7622     case elfcpp::R_ARM_MOVT_BREL:
7623     case elfcpp::R_ARM_MOVW_BREL:
7624     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7625     case elfcpp::R_ARM_THM_MOVT_BREL:
7626     case elfcpp::R_ARM_THM_MOVW_BREL:
7627     case elfcpp::R_ARM_GOTOFF32:
7628     case elfcpp::R_ARM_GOTOFF12:
7629     case elfcpp::R_ARM_SBREL31:
7630       return Symbol::RELATIVE_REF;
7631
7632     case elfcpp::R_ARM_PLT32:
7633     case elfcpp::R_ARM_CALL:
7634     case elfcpp::R_ARM_JUMP24:
7635     case elfcpp::R_ARM_THM_CALL:
7636     case elfcpp::R_ARM_THM_JUMP24:
7637     case elfcpp::R_ARM_THM_JUMP19:
7638     case elfcpp::R_ARM_THM_JUMP6:
7639     case elfcpp::R_ARM_THM_JUMP11:
7640     case elfcpp::R_ARM_THM_JUMP8:
7641     // R_ARM_PREL31 is not used to relocate call/jump instructions but
7642     // in unwind tables. It may point to functions via PLTs.
7643     // So we treat it like call/jump relocations above.
7644     case elfcpp::R_ARM_PREL31:
7645       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7646
7647     case elfcpp::R_ARM_GOT_BREL:
7648     case elfcpp::R_ARM_GOT_ABS:
7649     case elfcpp::R_ARM_GOT_PREL:
7650       // Absolute in GOT.
7651       return Symbol::ABSOLUTE_REF;
7652
7653     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7654     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7655     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7656     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7657     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7658       return Symbol::TLS_REF;
7659
7660     case elfcpp::R_ARM_TARGET1:
7661     case elfcpp::R_ARM_TARGET2:
7662     case elfcpp::R_ARM_COPY:
7663     case elfcpp::R_ARM_GLOB_DAT:
7664     case elfcpp::R_ARM_JUMP_SLOT:
7665     case elfcpp::R_ARM_RELATIVE:
7666     case elfcpp::R_ARM_PC24:
7667     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7668     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7669     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7670     default:
7671       // Not expected.  We will give an error later.
7672       return 0;
7673     }
7674 }
7675
7676 // Report an unsupported relocation against a local symbol.
7677
7678 template<bool big_endian>
7679 void
7680 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7681     Sized_relobj_file<32, big_endian>* object,
7682     unsigned int r_type)
7683 {
7684   gold_error(_("%s: unsupported reloc %u against local symbol"),
7685              object->name().c_str(), r_type);
7686 }
7687
7688 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7689 // dynamic linker does not support it, issue an error.  The GNU linker
7690 // only issues a non-PIC error for an allocated read-only section.
7691 // Here we know the section is allocated, but we don't know that it is
7692 // read-only.  But we check for all the relocation types which the
7693 // glibc dynamic linker supports, so it seems appropriate to issue an
7694 // error even if the section is not read-only.
7695
7696 template<bool big_endian>
7697 void
7698 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7699                                             unsigned int r_type)
7700 {
7701   switch (r_type)
7702     {
7703     // These are the relocation types supported by glibc for ARM.
7704     case elfcpp::R_ARM_RELATIVE:
7705     case elfcpp::R_ARM_COPY:
7706     case elfcpp::R_ARM_GLOB_DAT:
7707     case elfcpp::R_ARM_JUMP_SLOT:
7708     case elfcpp::R_ARM_ABS32:
7709     case elfcpp::R_ARM_ABS32_NOI:
7710     case elfcpp::R_ARM_PC24:
7711     // FIXME: The following 3 types are not supported by Android's dynamic
7712     // linker.
7713     case elfcpp::R_ARM_TLS_DTPMOD32:
7714     case elfcpp::R_ARM_TLS_DTPOFF32:
7715     case elfcpp::R_ARM_TLS_TPOFF32:
7716       return;
7717
7718     default:
7719       {
7720         // This prevents us from issuing more than one error per reloc
7721         // section.  But we can still wind up issuing more than one
7722         // error per object file.
7723         if (this->issued_non_pic_error_)
7724           return;
7725         const Arm_reloc_property* reloc_property =
7726           arm_reloc_property_table->get_reloc_property(r_type);
7727         gold_assert(reloc_property != NULL);
7728         object->error(_("requires unsupported dynamic reloc %s; "
7729                       "recompile with -fPIC"),
7730                       reloc_property->name().c_str());
7731         this->issued_non_pic_error_ = true;
7732         return;
7733       }
7734
7735     case elfcpp::R_ARM_NONE:
7736       gold_unreachable();
7737     }
7738 }
7739
7740 // Scan a relocation for a local symbol.
7741 // FIXME: This only handles a subset of relocation types used by Android
7742 // on ARM v5te devices.
7743
7744 template<bool big_endian>
7745 inline void
7746 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7747                                     Layout* layout,
7748                                     Target_arm* target,
7749                                     Sized_relobj_file<32, big_endian>* object,
7750                                     unsigned int data_shndx,
7751                                     Output_section* output_section,
7752                                     const elfcpp::Rel<32, big_endian>& reloc,
7753                                     unsigned int r_type,
7754                                     const elfcpp::Sym<32, big_endian>& lsym)
7755 {
7756   r_type = get_real_reloc_type(r_type);
7757   switch (r_type)
7758     {
7759     case elfcpp::R_ARM_NONE:
7760     case elfcpp::R_ARM_V4BX:
7761     case elfcpp::R_ARM_GNU_VTENTRY:
7762     case elfcpp::R_ARM_GNU_VTINHERIT:
7763       break;
7764
7765     case elfcpp::R_ARM_ABS32:
7766     case elfcpp::R_ARM_ABS32_NOI:
7767       // If building a shared library (or a position-independent
7768       // executable), we need to create a dynamic relocation for
7769       // this location. The relocation applied at link time will
7770       // apply the link-time value, so we flag the location with
7771       // an R_ARM_RELATIVE relocation so the dynamic loader can
7772       // relocate it easily.
7773       if (parameters->options().output_is_position_independent())
7774         {
7775           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7776           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7777           // If we are to add more other reloc types than R_ARM_ABS32,
7778           // we need to add check_non_pic(object, r_type) here.
7779           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7780                                       output_section, data_shndx,
7781                                       reloc.get_r_offset());
7782         }
7783       break;
7784
7785     case elfcpp::R_ARM_ABS16:
7786     case elfcpp::R_ARM_ABS12:
7787     case elfcpp::R_ARM_THM_ABS5:
7788     case elfcpp::R_ARM_ABS8:
7789     case elfcpp::R_ARM_BASE_ABS:
7790     case elfcpp::R_ARM_MOVW_ABS_NC:
7791     case elfcpp::R_ARM_MOVT_ABS:
7792     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7793     case elfcpp::R_ARM_THM_MOVT_ABS:
7794       // If building a shared library (or a position-independent
7795       // executable), we need to create a dynamic relocation for
7796       // this location. Because the addend needs to remain in the
7797       // data section, we need to be careful not to apply this
7798       // relocation statically.
7799       if (parameters->options().output_is_position_independent())
7800         {
7801           check_non_pic(object, r_type);
7802           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7803           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7804           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7805             rel_dyn->add_local(object, r_sym, r_type, output_section,
7806                                data_shndx, reloc.get_r_offset());
7807           else
7808             {
7809               gold_assert(lsym.get_st_value() == 0);
7810               unsigned int shndx = lsym.get_st_shndx();
7811               bool is_ordinary;
7812               shndx = object->adjust_sym_shndx(r_sym, shndx,
7813                                                &is_ordinary);
7814               if (!is_ordinary)
7815                 object->error(_("section symbol %u has bad shndx %u"),
7816                               r_sym, shndx);
7817               else
7818                 rel_dyn->add_local_section(object, shndx,
7819                                            r_type, output_section,
7820                                            data_shndx, reloc.get_r_offset());
7821             }
7822         }
7823       break;
7824
7825     case elfcpp::R_ARM_REL32:
7826     case elfcpp::R_ARM_LDR_PC_G0:
7827     case elfcpp::R_ARM_SBREL32:
7828     case elfcpp::R_ARM_THM_CALL:
7829     case elfcpp::R_ARM_THM_PC8:
7830     case elfcpp::R_ARM_BASE_PREL:
7831     case elfcpp::R_ARM_PLT32:
7832     case elfcpp::R_ARM_CALL:
7833     case elfcpp::R_ARM_JUMP24:
7834     case elfcpp::R_ARM_THM_JUMP24:
7835     case elfcpp::R_ARM_SBREL31:
7836     case elfcpp::R_ARM_PREL31:
7837     case elfcpp::R_ARM_MOVW_PREL_NC:
7838     case elfcpp::R_ARM_MOVT_PREL:
7839     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7840     case elfcpp::R_ARM_THM_MOVT_PREL:
7841     case elfcpp::R_ARM_THM_JUMP19:
7842     case elfcpp::R_ARM_THM_JUMP6:
7843     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7844     case elfcpp::R_ARM_THM_PC12:
7845     case elfcpp::R_ARM_REL32_NOI:
7846     case elfcpp::R_ARM_ALU_PC_G0_NC:
7847     case elfcpp::R_ARM_ALU_PC_G0:
7848     case elfcpp::R_ARM_ALU_PC_G1_NC:
7849     case elfcpp::R_ARM_ALU_PC_G1:
7850     case elfcpp::R_ARM_ALU_PC_G2:
7851     case elfcpp::R_ARM_LDR_PC_G1:
7852     case elfcpp::R_ARM_LDR_PC_G2:
7853     case elfcpp::R_ARM_LDRS_PC_G0:
7854     case elfcpp::R_ARM_LDRS_PC_G1:
7855     case elfcpp::R_ARM_LDRS_PC_G2:
7856     case elfcpp::R_ARM_LDC_PC_G0:
7857     case elfcpp::R_ARM_LDC_PC_G1:
7858     case elfcpp::R_ARM_LDC_PC_G2:
7859     case elfcpp::R_ARM_ALU_SB_G0_NC:
7860     case elfcpp::R_ARM_ALU_SB_G0:
7861     case elfcpp::R_ARM_ALU_SB_G1_NC:
7862     case elfcpp::R_ARM_ALU_SB_G1:
7863     case elfcpp::R_ARM_ALU_SB_G2:
7864     case elfcpp::R_ARM_LDR_SB_G0:
7865     case elfcpp::R_ARM_LDR_SB_G1:
7866     case elfcpp::R_ARM_LDR_SB_G2:
7867     case elfcpp::R_ARM_LDRS_SB_G0:
7868     case elfcpp::R_ARM_LDRS_SB_G1:
7869     case elfcpp::R_ARM_LDRS_SB_G2:
7870     case elfcpp::R_ARM_LDC_SB_G0:
7871     case elfcpp::R_ARM_LDC_SB_G1:
7872     case elfcpp::R_ARM_LDC_SB_G2:
7873     case elfcpp::R_ARM_MOVW_BREL_NC:
7874     case elfcpp::R_ARM_MOVT_BREL:
7875     case elfcpp::R_ARM_MOVW_BREL:
7876     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7877     case elfcpp::R_ARM_THM_MOVT_BREL:
7878     case elfcpp::R_ARM_THM_MOVW_BREL:
7879     case elfcpp::R_ARM_THM_JUMP11:
7880     case elfcpp::R_ARM_THM_JUMP8:
7881       // We don't need to do anything for a relative addressing relocation
7882       // against a local symbol if it does not reference the GOT.
7883       break;
7884
7885     case elfcpp::R_ARM_GOTOFF32:
7886     case elfcpp::R_ARM_GOTOFF12:
7887       // We need a GOT section:
7888       target->got_section(symtab, layout);
7889       break;
7890
7891     case elfcpp::R_ARM_GOT_BREL:
7892     case elfcpp::R_ARM_GOT_PREL:
7893       {
7894         // The symbol requires a GOT entry.
7895         Arm_output_data_got<big_endian>* got =
7896           target->got_section(symtab, layout);
7897         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7898         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7899           {
7900             // If we are generating a shared object, we need to add a
7901             // dynamic RELATIVE relocation for this symbol's GOT entry.
7902             if (parameters->options().output_is_position_independent())
7903               {
7904                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7905                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7906                 rel_dyn->add_local_relative(
7907                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7908                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7909               }
7910           }
7911       }
7912       break;
7913
7914     case elfcpp::R_ARM_TARGET1:
7915     case elfcpp::R_ARM_TARGET2:
7916       // This should have been mapped to another type already.
7917       // Fall through.
7918     case elfcpp::R_ARM_COPY:
7919     case elfcpp::R_ARM_GLOB_DAT:
7920     case elfcpp::R_ARM_JUMP_SLOT:
7921     case elfcpp::R_ARM_RELATIVE:
7922       // These are relocations which should only be seen by the
7923       // dynamic linker, and should never be seen here.
7924       gold_error(_("%s: unexpected reloc %u in object file"),
7925                  object->name().c_str(), r_type);
7926       break;
7927
7928
7929       // These are initial TLS relocs, which are expected when
7930       // linking.
7931     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7932     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7933     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7934     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7935     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7936       {
7937         bool output_is_shared = parameters->options().shared();
7938         const tls::Tls_optimization optimized_type
7939             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7940                                                          r_type);
7941         switch (r_type)
7942           {
7943           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7944             if (optimized_type == tls::TLSOPT_NONE)
7945               {
7946                 // Create a pair of GOT entries for the module index and
7947                 // dtv-relative offset.
7948                 Arm_output_data_got<big_endian>* got
7949                     = target->got_section(symtab, layout);
7950                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7951                 unsigned int shndx = lsym.get_st_shndx();
7952                 bool is_ordinary;
7953                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7954                 if (!is_ordinary)
7955                   {
7956                     object->error(_("local symbol %u has bad shndx %u"),
7957                                   r_sym, shndx);
7958                     break;
7959                   }
7960
7961                 if (!parameters->doing_static_link())
7962                   got->add_local_pair_with_rel(object, r_sym, shndx,
7963                                                GOT_TYPE_TLS_PAIR,
7964                                                target->rel_dyn_section(layout),
7965                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7966                 else
7967                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7968                                                       object, r_sym);
7969               }
7970             else
7971               // FIXME: TLS optimization not supported yet.
7972               gold_unreachable();
7973             break;
7974
7975           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7976             if (optimized_type == tls::TLSOPT_NONE)
7977               {
7978                 // Create a GOT entry for the module index.
7979                 target->got_mod_index_entry(symtab, layout, object);
7980               }
7981             else
7982               // FIXME: TLS optimization not supported yet.
7983               gold_unreachable();
7984             break;
7985
7986           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7987             break;
7988
7989           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7990             layout->set_has_static_tls();
7991             if (optimized_type == tls::TLSOPT_NONE)
7992               {
7993                 // Create a GOT entry for the tp-relative offset.
7994                 Arm_output_data_got<big_endian>* got
7995                   = target->got_section(symtab, layout);
7996                 unsigned int r_sym =
7997                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
7998                 if (!parameters->doing_static_link())
7999                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8000                                             target->rel_dyn_section(layout),
8001                                             elfcpp::R_ARM_TLS_TPOFF32);
8002                 else if (!object->local_has_got_offset(r_sym,
8003                                                        GOT_TYPE_TLS_OFFSET))
8004                   {
8005                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8006                     unsigned int got_offset =
8007                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8008                     got->add_static_reloc(got_offset,
8009                                           elfcpp::R_ARM_TLS_TPOFF32, object,
8010                                           r_sym);
8011                   }
8012               }
8013             else
8014               // FIXME: TLS optimization not supported yet.
8015               gold_unreachable();
8016             break;
8017
8018           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8019             layout->set_has_static_tls();
8020             if (output_is_shared)
8021               {
8022                 // We need to create a dynamic relocation.
8023                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8024                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8025                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8026                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8027                                    output_section, data_shndx,
8028                                    reloc.get_r_offset());
8029               }
8030             break;
8031
8032           default:
8033             gold_unreachable();
8034           }
8035       }
8036       break;
8037
8038     case elfcpp::R_ARM_PC24:
8039     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8040     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8041     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8042     default:
8043       unsupported_reloc_local(object, r_type);
8044       break;
8045     }
8046 }
8047
8048 // Report an unsupported relocation against a global symbol.
8049
8050 template<bool big_endian>
8051 void
8052 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8053     Sized_relobj_file<32, big_endian>* object,
8054     unsigned int r_type,
8055     Symbol* gsym)
8056 {
8057   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8058              object->name().c_str(), r_type, gsym->demangled_name().c_str());
8059 }
8060
8061 template<bool big_endian>
8062 inline bool
8063 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8064     unsigned int r_type)
8065 {
8066   switch (r_type)
8067     {
8068     case elfcpp::R_ARM_PC24:
8069     case elfcpp::R_ARM_THM_CALL:
8070     case elfcpp::R_ARM_PLT32:
8071     case elfcpp::R_ARM_CALL:
8072     case elfcpp::R_ARM_JUMP24:
8073     case elfcpp::R_ARM_THM_JUMP24:
8074     case elfcpp::R_ARM_SBREL31:
8075     case elfcpp::R_ARM_PREL31:
8076     case elfcpp::R_ARM_THM_JUMP19:
8077     case elfcpp::R_ARM_THM_JUMP6:
8078     case elfcpp::R_ARM_THM_JUMP11:
8079     case elfcpp::R_ARM_THM_JUMP8:
8080       // All the relocations above are branches except SBREL31 and PREL31.
8081       return false;
8082
8083     default:
8084       // Be conservative and assume this is a function pointer.
8085       return true;
8086     }
8087 }
8088
8089 template<bool big_endian>
8090 inline bool
8091 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8092   Symbol_table*,
8093   Layout*,
8094   Target_arm<big_endian>* target,
8095   Sized_relobj_file<32, big_endian>*,
8096   unsigned int,
8097   Output_section*,
8098   const elfcpp::Rel<32, big_endian>&,
8099   unsigned int r_type,
8100   const elfcpp::Sym<32, big_endian>&)
8101 {
8102   r_type = target->get_real_reloc_type(r_type);
8103   return possible_function_pointer_reloc(r_type);
8104 }
8105
8106 template<bool big_endian>
8107 inline bool
8108 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8109   Symbol_table*,
8110   Layout*,
8111   Target_arm<big_endian>* target,
8112   Sized_relobj_file<32, big_endian>*,
8113   unsigned int,
8114   Output_section*,
8115   const elfcpp::Rel<32, big_endian>&,
8116   unsigned int r_type,
8117   Symbol* gsym)
8118 {
8119   // GOT is not a function.
8120   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8121     return false;
8122
8123   r_type = target->get_real_reloc_type(r_type);
8124   return possible_function_pointer_reloc(r_type);
8125 }
8126
8127 // Scan a relocation for a global symbol.
8128
8129 template<bool big_endian>
8130 inline void
8131 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8132                                      Layout* layout,
8133                                      Target_arm* target,
8134                                      Sized_relobj_file<32, big_endian>* object,
8135                                      unsigned int data_shndx,
8136                                      Output_section* output_section,
8137                                      const elfcpp::Rel<32, big_endian>& reloc,
8138                                      unsigned int r_type,
8139                                      Symbol* gsym)
8140 {
8141   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8142   // section.  We check here to avoid creating a dynamic reloc against
8143   // _GLOBAL_OFFSET_TABLE_.
8144   if (!target->has_got_section()
8145       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8146     target->got_section(symtab, layout);
8147
8148   r_type = get_real_reloc_type(r_type);
8149   switch (r_type)
8150     {
8151     case elfcpp::R_ARM_NONE:
8152     case elfcpp::R_ARM_V4BX:
8153     case elfcpp::R_ARM_GNU_VTENTRY:
8154     case elfcpp::R_ARM_GNU_VTINHERIT:
8155       break;
8156
8157     case elfcpp::R_ARM_ABS32:
8158     case elfcpp::R_ARM_ABS16:
8159     case elfcpp::R_ARM_ABS12:
8160     case elfcpp::R_ARM_THM_ABS5:
8161     case elfcpp::R_ARM_ABS8:
8162     case elfcpp::R_ARM_BASE_ABS:
8163     case elfcpp::R_ARM_MOVW_ABS_NC:
8164     case elfcpp::R_ARM_MOVT_ABS:
8165     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8166     case elfcpp::R_ARM_THM_MOVT_ABS:
8167     case elfcpp::R_ARM_ABS32_NOI:
8168       // Absolute addressing relocations.
8169       {
8170         // Make a PLT entry if necessary.
8171         if (this->symbol_needs_plt_entry(gsym))
8172           {
8173             target->make_plt_entry(symtab, layout, gsym);
8174             // Since this is not a PC-relative relocation, we may be
8175             // taking the address of a function. In that case we need to
8176             // set the entry in the dynamic symbol table to the address of
8177             // the PLT entry.
8178             if (gsym->is_from_dynobj() && !parameters->options().shared())
8179               gsym->set_needs_dynsym_value();
8180           }
8181         // Make a dynamic relocation if necessary.
8182         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8183           {
8184             if (gsym->may_need_copy_reloc())
8185               {
8186                 target->copy_reloc(symtab, layout, object,
8187                                    data_shndx, output_section, gsym, reloc);
8188               }
8189             else if ((r_type == elfcpp::R_ARM_ABS32
8190                       || r_type == elfcpp::R_ARM_ABS32_NOI)
8191                      && gsym->can_use_relative_reloc(false))
8192               {
8193                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8194                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8195                                              output_section, object,
8196                                              data_shndx, reloc.get_r_offset());
8197               }
8198             else
8199               {
8200                 check_non_pic(object, r_type);
8201                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8202                 rel_dyn->add_global(gsym, r_type, output_section, object,
8203                                     data_shndx, reloc.get_r_offset());
8204               }
8205           }
8206       }
8207       break;
8208
8209     case elfcpp::R_ARM_GOTOFF32:
8210     case elfcpp::R_ARM_GOTOFF12:
8211       // We need a GOT section.
8212       target->got_section(symtab, layout);
8213       break;
8214       
8215     case elfcpp::R_ARM_REL32:
8216     case elfcpp::R_ARM_LDR_PC_G0:
8217     case elfcpp::R_ARM_SBREL32:
8218     case elfcpp::R_ARM_THM_PC8:
8219     case elfcpp::R_ARM_BASE_PREL:
8220     case elfcpp::R_ARM_MOVW_PREL_NC:
8221     case elfcpp::R_ARM_MOVT_PREL:
8222     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8223     case elfcpp::R_ARM_THM_MOVT_PREL:
8224     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8225     case elfcpp::R_ARM_THM_PC12:
8226     case elfcpp::R_ARM_REL32_NOI:
8227     case elfcpp::R_ARM_ALU_PC_G0_NC:
8228     case elfcpp::R_ARM_ALU_PC_G0:
8229     case elfcpp::R_ARM_ALU_PC_G1_NC:
8230     case elfcpp::R_ARM_ALU_PC_G1:
8231     case elfcpp::R_ARM_ALU_PC_G2:
8232     case elfcpp::R_ARM_LDR_PC_G1:
8233     case elfcpp::R_ARM_LDR_PC_G2:
8234     case elfcpp::R_ARM_LDRS_PC_G0:
8235     case elfcpp::R_ARM_LDRS_PC_G1:
8236     case elfcpp::R_ARM_LDRS_PC_G2:
8237     case elfcpp::R_ARM_LDC_PC_G0:
8238     case elfcpp::R_ARM_LDC_PC_G1:
8239     case elfcpp::R_ARM_LDC_PC_G2:
8240     case elfcpp::R_ARM_ALU_SB_G0_NC:
8241     case elfcpp::R_ARM_ALU_SB_G0:
8242     case elfcpp::R_ARM_ALU_SB_G1_NC:
8243     case elfcpp::R_ARM_ALU_SB_G1:
8244     case elfcpp::R_ARM_ALU_SB_G2:
8245     case elfcpp::R_ARM_LDR_SB_G0:
8246     case elfcpp::R_ARM_LDR_SB_G1:
8247     case elfcpp::R_ARM_LDR_SB_G2:
8248     case elfcpp::R_ARM_LDRS_SB_G0:
8249     case elfcpp::R_ARM_LDRS_SB_G1:
8250     case elfcpp::R_ARM_LDRS_SB_G2:
8251     case elfcpp::R_ARM_LDC_SB_G0:
8252     case elfcpp::R_ARM_LDC_SB_G1:
8253     case elfcpp::R_ARM_LDC_SB_G2:
8254     case elfcpp::R_ARM_MOVW_BREL_NC:
8255     case elfcpp::R_ARM_MOVT_BREL:
8256     case elfcpp::R_ARM_MOVW_BREL:
8257     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8258     case elfcpp::R_ARM_THM_MOVT_BREL:
8259     case elfcpp::R_ARM_THM_MOVW_BREL:
8260       // Relative addressing relocations.
8261       {
8262         // Make a dynamic relocation if necessary.
8263         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8264           {
8265             if (target->may_need_copy_reloc(gsym))
8266               {
8267                 target->copy_reloc(symtab, layout, object,
8268                                    data_shndx, output_section, gsym, reloc);
8269               }
8270             else
8271               {
8272                 check_non_pic(object, r_type);
8273                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8274                 rel_dyn->add_global(gsym, r_type, output_section, object,
8275                                     data_shndx, reloc.get_r_offset());
8276               }
8277           }
8278       }
8279       break;
8280
8281     case elfcpp::R_ARM_THM_CALL:
8282     case elfcpp::R_ARM_PLT32:
8283     case elfcpp::R_ARM_CALL:
8284     case elfcpp::R_ARM_JUMP24:
8285     case elfcpp::R_ARM_THM_JUMP24:
8286     case elfcpp::R_ARM_SBREL31:
8287     case elfcpp::R_ARM_PREL31:
8288     case elfcpp::R_ARM_THM_JUMP19:
8289     case elfcpp::R_ARM_THM_JUMP6:
8290     case elfcpp::R_ARM_THM_JUMP11:
8291     case elfcpp::R_ARM_THM_JUMP8:
8292       // All the relocation above are branches except for the PREL31 ones.
8293       // A PREL31 relocation can point to a personality function in a shared
8294       // library.  In that case we want to use a PLT because we want to
8295       // call the personality routine and the dynamic linkers we care about
8296       // do not support dynamic PREL31 relocations. An REL31 relocation may
8297       // point to a function whose unwinding behaviour is being described but
8298       // we will not mistakenly generate a PLT for that because we should use
8299       // a local section symbol.
8300
8301       // If the symbol is fully resolved, this is just a relative
8302       // local reloc.  Otherwise we need a PLT entry.
8303       if (gsym->final_value_is_known())
8304         break;
8305       // If building a shared library, we can also skip the PLT entry
8306       // if the symbol is defined in the output file and is protected
8307       // or hidden.
8308       if (gsym->is_defined()
8309           && !gsym->is_from_dynobj()
8310           && !gsym->is_preemptible())
8311         break;
8312       target->make_plt_entry(symtab, layout, gsym);
8313       break;
8314
8315     case elfcpp::R_ARM_GOT_BREL:
8316     case elfcpp::R_ARM_GOT_ABS:
8317     case elfcpp::R_ARM_GOT_PREL:
8318       {
8319         // The symbol requires a GOT entry.
8320         Arm_output_data_got<big_endian>* got =
8321           target->got_section(symtab, layout);
8322         if (gsym->final_value_is_known())
8323           got->add_global(gsym, GOT_TYPE_STANDARD);
8324         else
8325           {
8326             // If this symbol is not fully resolved, we need to add a
8327             // GOT entry with a dynamic relocation.
8328             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8329             if (gsym->is_from_dynobj()
8330                 || gsym->is_undefined()
8331                 || gsym->is_preemptible()
8332                 || (gsym->visibility() == elfcpp::STV_PROTECTED
8333                     && parameters->options().shared()))
8334               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8335                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8336             else
8337               {
8338                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8339                   rel_dyn->add_global_relative(
8340                       gsym, elfcpp::R_ARM_RELATIVE, got,
8341                       gsym->got_offset(GOT_TYPE_STANDARD));
8342               }
8343           }
8344       }
8345       break;
8346
8347     case elfcpp::R_ARM_TARGET1:
8348     case elfcpp::R_ARM_TARGET2:
8349       // These should have been mapped to other types already.
8350       // Fall through.
8351     case elfcpp::R_ARM_COPY:
8352     case elfcpp::R_ARM_GLOB_DAT:
8353     case elfcpp::R_ARM_JUMP_SLOT:
8354     case elfcpp::R_ARM_RELATIVE:
8355       // These are relocations which should only be seen by the
8356       // dynamic linker, and should never be seen here.
8357       gold_error(_("%s: unexpected reloc %u in object file"),
8358                  object->name().c_str(), r_type);
8359       break;
8360
8361       // These are initial tls relocs, which are expected when
8362       // linking.
8363     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8364     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8365     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8366     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8367     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8368       {
8369         const bool is_final = gsym->final_value_is_known();
8370         const tls::Tls_optimization optimized_type
8371             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8372         switch (r_type)
8373           {
8374           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8375             if (optimized_type == tls::TLSOPT_NONE)
8376               {
8377                 // Create a pair of GOT entries for the module index and
8378                 // dtv-relative offset.
8379                 Arm_output_data_got<big_endian>* got
8380                     = target->got_section(symtab, layout);
8381                 if (!parameters->doing_static_link())
8382                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8383                                                 target->rel_dyn_section(layout),
8384                                                 elfcpp::R_ARM_TLS_DTPMOD32,
8385                                                 elfcpp::R_ARM_TLS_DTPOFF32);
8386                 else
8387                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8388               }
8389             else
8390               // FIXME: TLS optimization not supported yet.
8391               gold_unreachable();
8392             break;
8393
8394           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8395             if (optimized_type == tls::TLSOPT_NONE)
8396               {
8397                 // Create a GOT entry for the module index.
8398                 target->got_mod_index_entry(symtab, layout, object);
8399               }
8400             else
8401               // FIXME: TLS optimization not supported yet.
8402               gold_unreachable();
8403             break;
8404
8405           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8406             break;
8407
8408           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8409             layout->set_has_static_tls();
8410             if (optimized_type == tls::TLSOPT_NONE)
8411               {
8412                 // Create a GOT entry for the tp-relative offset.
8413                 Arm_output_data_got<big_endian>* got
8414                   = target->got_section(symtab, layout);
8415                 if (!parameters->doing_static_link())
8416                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8417                                            target->rel_dyn_section(layout),
8418                                            elfcpp::R_ARM_TLS_TPOFF32);
8419                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8420                   {
8421                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8422                     unsigned int got_offset =
8423                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8424                     got->add_static_reloc(got_offset,
8425                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
8426                   }
8427               }
8428             else
8429               // FIXME: TLS optimization not supported yet.
8430               gold_unreachable();
8431             break;
8432
8433           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8434             layout->set_has_static_tls();
8435             if (parameters->options().shared())
8436               {
8437                 // We need to create a dynamic relocation.
8438                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8439                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8440                                     output_section, object,
8441                                     data_shndx, reloc.get_r_offset());
8442               }
8443             break;
8444
8445           default:
8446             gold_unreachable();
8447           }
8448       }
8449       break;
8450
8451     case elfcpp::R_ARM_PC24:
8452     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8453     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8454     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8455     default:
8456       unsupported_reloc_global(object, r_type, gsym);
8457       break;
8458     }
8459 }
8460
8461 // Process relocations for gc.
8462
8463 template<bool big_endian>
8464 void
8465 Target_arm<big_endian>::gc_process_relocs(
8466     Symbol_table* symtab,
8467     Layout* layout,
8468     Sized_relobj_file<32, big_endian>* object,
8469     unsigned int data_shndx,
8470     unsigned int,
8471     const unsigned char* prelocs,
8472     size_t reloc_count,
8473     Output_section* output_section,
8474     bool needs_special_offset_handling,
8475     size_t local_symbol_count,
8476     const unsigned char* plocal_symbols)
8477 {
8478   typedef Target_arm<big_endian> Arm;
8479   typedef typename Target_arm<big_endian>::Scan Scan;
8480
8481   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8482                           typename Target_arm::Relocatable_size_for_reloc>(
8483     symtab,
8484     layout,
8485     this,
8486     object,
8487     data_shndx,
8488     prelocs,
8489     reloc_count,
8490     output_section,
8491     needs_special_offset_handling,
8492     local_symbol_count,
8493     plocal_symbols);
8494 }
8495
8496 // Scan relocations for a section.
8497
8498 template<bool big_endian>
8499 void
8500 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8501                                     Layout* layout,
8502                                     Sized_relobj_file<32, big_endian>* object,
8503                                     unsigned int data_shndx,
8504                                     unsigned int sh_type,
8505                                     const unsigned char* prelocs,
8506                                     size_t reloc_count,
8507                                     Output_section* output_section,
8508                                     bool needs_special_offset_handling,
8509                                     size_t local_symbol_count,
8510                                     const unsigned char* plocal_symbols)
8511 {
8512   typedef typename Target_arm<big_endian>::Scan Scan;
8513   if (sh_type == elfcpp::SHT_RELA)
8514     {
8515       gold_error(_("%s: unsupported RELA reloc section"),
8516                  object->name().c_str());
8517       return;
8518     }
8519
8520   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8521     symtab,
8522     layout,
8523     this,
8524     object,
8525     data_shndx,
8526     prelocs,
8527     reloc_count,
8528     output_section,
8529     needs_special_offset_handling,
8530     local_symbol_count,
8531     plocal_symbols);
8532 }
8533
8534 // Finalize the sections.
8535
8536 template<bool big_endian>
8537 void
8538 Target_arm<big_endian>::do_finalize_sections(
8539     Layout* layout,
8540     const Input_objects* input_objects,
8541     Symbol_table*)
8542 {
8543   bool merged_any_attributes = false;
8544   // Merge processor-specific flags.
8545   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8546        p != input_objects->relobj_end();
8547        ++p)
8548     {
8549       Arm_relobj<big_endian>* arm_relobj =
8550         Arm_relobj<big_endian>::as_arm_relobj(*p);
8551       if (arm_relobj->merge_flags_and_attributes())
8552         {
8553           this->merge_processor_specific_flags(
8554               arm_relobj->name(),
8555               arm_relobj->processor_specific_flags());
8556           this->merge_object_attributes(arm_relobj->name().c_str(),
8557                                         arm_relobj->attributes_section_data());
8558           merged_any_attributes = true;
8559         }
8560     } 
8561
8562   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8563        p != input_objects->dynobj_end();
8564        ++p)
8565     {
8566       Arm_dynobj<big_endian>* arm_dynobj =
8567         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8568       this->merge_processor_specific_flags(
8569           arm_dynobj->name(),
8570           arm_dynobj->processor_specific_flags());
8571       this->merge_object_attributes(arm_dynobj->name().c_str(),
8572                                     arm_dynobj->attributes_section_data());
8573       merged_any_attributes = true;
8574     }
8575
8576   // Create an empty uninitialized attribute section if we still don't have it
8577   // at this moment.  This happens if there is no attributes sections in all
8578   // inputs.
8579   if (this->attributes_section_data_ == NULL)
8580     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8581
8582   const Object_attribute* cpu_arch_attr =
8583     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8584   // Check if we need to use Cortex-A8 workaround.
8585   if (parameters->options().user_set_fix_cortex_a8())
8586     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8587   else
8588     {
8589       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8590       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8591       // profile.  
8592       const Object_attribute* cpu_arch_profile_attr =
8593         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8594       this->fix_cortex_a8_ =
8595         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8596          && (cpu_arch_profile_attr->int_value() == 'A'
8597              || cpu_arch_profile_attr->int_value() == 0));
8598     }
8599   
8600   // Check if we can use V4BX interworking.
8601   // The V4BX interworking stub contains BX instruction,
8602   // which is not specified for some profiles.
8603   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8604       && !this->may_use_v4t_interworking())
8605     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8606                  "the target profile does not support BX instruction"));
8607
8608   // Fill in some more dynamic tags.
8609   const Reloc_section* rel_plt = (this->plt_ == NULL
8610                                   ? NULL
8611                                   : this->plt_->rel_plt());
8612   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8613                                   this->rel_dyn_, true, false);
8614
8615   // Emit any relocs we saved in an attempt to avoid generating COPY
8616   // relocs.
8617   if (this->copy_relocs_.any_saved_relocs())
8618     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8619
8620   // Handle the .ARM.exidx section.
8621   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8622
8623   if (!parameters->options().relocatable())
8624     {
8625       if (exidx_section != NULL
8626           && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8627         {
8628           // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8629           // the .ARM.exidx section.
8630           if (!layout->script_options()->saw_phdrs_clause())
8631             {
8632               gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8633                                                       0)
8634                           == NULL);
8635               Output_segment*  exidx_segment =
8636                 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8637               exidx_segment->add_output_section_to_nonload(exidx_section,
8638                                                            elfcpp::PF_R);
8639             }
8640         }
8641     }
8642
8643   // Create an .ARM.attributes section if we have merged any attributes
8644   // from inputs.
8645   if (merged_any_attributes)
8646     {
8647       Output_attributes_section_data* attributes_section =
8648       new Output_attributes_section_data(*this->attributes_section_data_);
8649       layout->add_output_section_data(".ARM.attributes",
8650                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8651                                       attributes_section, ORDER_INVALID,
8652                                       false);
8653     }
8654
8655   // Fix up links in section EXIDX headers.
8656   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8657        p != layout->section_list().end();
8658        ++p)
8659     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8660       {
8661         Arm_output_section<big_endian>* os =
8662           Arm_output_section<big_endian>::as_arm_output_section(*p);
8663         os->set_exidx_section_link();
8664       }
8665 }
8666
8667 // Return whether a direct absolute static relocation needs to be applied.
8668 // In cases where Scan::local() or Scan::global() has created
8669 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8670 // of the relocation is carried in the data, and we must not
8671 // apply the static relocation.
8672
8673 template<bool big_endian>
8674 inline bool
8675 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8676     const Sized_symbol<32>* gsym,
8677     unsigned int r_type,
8678     bool is_32bit,
8679     Output_section* output_section)
8680 {
8681   // If the output section is not allocated, then we didn't call
8682   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8683   // the reloc here.
8684   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8685       return true;
8686
8687   int ref_flags = Scan::get_reference_flags(r_type);
8688
8689   // For local symbols, we will have created a non-RELATIVE dynamic
8690   // relocation only if (a) the output is position independent,
8691   // (b) the relocation is absolute (not pc- or segment-relative), and
8692   // (c) the relocation is not 32 bits wide.
8693   if (gsym == NULL)
8694     return !(parameters->options().output_is_position_independent()
8695              && (ref_flags & Symbol::ABSOLUTE_REF)
8696              && !is_32bit);
8697
8698   // For global symbols, we use the same helper routines used in the
8699   // scan pass.  If we did not create a dynamic relocation, or if we
8700   // created a RELATIVE dynamic relocation, we should apply the static
8701   // relocation.
8702   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8703   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8704                  && gsym->can_use_relative_reloc(ref_flags
8705                                                  & Symbol::FUNCTION_CALL);
8706   return !has_dyn || is_rel;
8707 }
8708
8709 // Perform a relocation.
8710
8711 template<bool big_endian>
8712 inline bool
8713 Target_arm<big_endian>::Relocate::relocate(
8714     const Relocate_info<32, big_endian>* relinfo,
8715     Target_arm* target,
8716     Output_section* output_section,
8717     size_t relnum,
8718     const elfcpp::Rel<32, big_endian>& rel,
8719     unsigned int r_type,
8720     const Sized_symbol<32>* gsym,
8721     const Symbol_value<32>* psymval,
8722     unsigned char* view,
8723     Arm_address address,
8724     section_size_type view_size)
8725 {
8726   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8727
8728   r_type = get_real_reloc_type(r_type);
8729   const Arm_reloc_property* reloc_property =
8730     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8731   if (reloc_property == NULL)
8732     {
8733       std::string reloc_name =
8734         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8735       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8736                              _("cannot relocate %s in object file"),
8737                              reloc_name.c_str());
8738       return true;
8739     }
8740
8741   const Arm_relobj<big_endian>* object =
8742     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8743
8744   // If the final branch target of a relocation is THUMB instruction, this
8745   // is 1.  Otherwise it is 0.
8746   Arm_address thumb_bit = 0;
8747   Symbol_value<32> symval;
8748   bool is_weakly_undefined_without_plt = false;
8749   bool have_got_offset = false;
8750   unsigned int got_offset = 0;
8751
8752   // If the relocation uses the GOT entry of a symbol instead of the symbol
8753   // itself, we don't care about whether the symbol is defined or what kind
8754   // of symbol it is.
8755   if (reloc_property->uses_got_entry())
8756     {
8757       // Get the GOT offset.
8758       // The GOT pointer points to the end of the GOT section.
8759       // We need to subtract the size of the GOT section to get
8760       // the actual offset to use in the relocation.
8761       // TODO: We should move GOT offset computing code in TLS relocations
8762       // to here.
8763       switch (r_type)
8764         {
8765         case elfcpp::R_ARM_GOT_BREL:
8766         case elfcpp::R_ARM_GOT_PREL:
8767           if (gsym != NULL)
8768             {
8769               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8770               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8771                             - target->got_size());
8772             }
8773           else
8774             {
8775               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8776               gold_assert(object->local_has_got_offset(r_sym,
8777                                                        GOT_TYPE_STANDARD));
8778               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8779                             - target->got_size());
8780             }
8781           have_got_offset = true;
8782           break;
8783
8784         default:
8785           break;
8786         }
8787     }
8788   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8789     {
8790       if (gsym != NULL)
8791         {
8792           // This is a global symbol.  Determine if we use PLT and if the
8793           // final target is THUMB.
8794           if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8795             {
8796               // This uses a PLT, change the symbol value.
8797               symval.set_output_value(target->plt_section()->address()
8798                                       + gsym->plt_offset());
8799               psymval = &symval;
8800             }
8801           else if (gsym->is_weak_undefined())
8802             {
8803               // This is a weakly undefined symbol and we do not use PLT
8804               // for this relocation.  A branch targeting this symbol will
8805               // be converted into an NOP.
8806               is_weakly_undefined_without_plt = true;
8807             }
8808           else if (gsym->is_undefined() && reloc_property->uses_symbol())
8809             {
8810               // This relocation uses the symbol value but the symbol is
8811               // undefined.  Exit early and have the caller reporting an
8812               // error.
8813               return true;
8814             }
8815           else
8816             {
8817               // Set thumb bit if symbol:
8818               // -Has type STT_ARM_TFUNC or
8819               // -Has type STT_FUNC, is defined and with LSB in value set.
8820               thumb_bit =
8821                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8822                  || (gsym->type() == elfcpp::STT_FUNC
8823                      && !gsym->is_undefined()
8824                      && ((psymval->value(object, 0) & 1) != 0)))
8825                 ? 1
8826                 : 0);
8827             }
8828         }
8829       else
8830         {
8831           // This is a local symbol.  Determine if the final target is THUMB.
8832           // We saved this information when all the local symbols were read.
8833           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8834           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8835           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8836         }
8837     }
8838   else
8839     {
8840       // This is a fake relocation synthesized for a stub.  It does not have
8841       // a real symbol.  We just look at the LSB of the symbol value to
8842       // determine if the target is THUMB or not.
8843       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8844     }
8845
8846   // Strip LSB if this points to a THUMB target.
8847   if (thumb_bit != 0
8848       && reloc_property->uses_thumb_bit() 
8849       && ((psymval->value(object, 0) & 1) != 0))
8850     {
8851       Arm_address stripped_value =
8852         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8853       symval.set_output_value(stripped_value);
8854       psymval = &symval;
8855     } 
8856
8857   // To look up relocation stubs, we need to pass the symbol table index of
8858   // a local symbol.
8859   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8860
8861   // Get the addressing origin of the output segment defining the
8862   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8863   Arm_address sym_origin = 0;
8864   if (reloc_property->uses_symbol_base())
8865     {
8866       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8867         // R_ARM_BASE_ABS with the NULL symbol will give the
8868         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8869         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8870         sym_origin = target->got_plt_section()->address();
8871       else if (gsym == NULL)
8872         sym_origin = 0;
8873       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8874         sym_origin = gsym->output_segment()->vaddr();
8875       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8876         sym_origin = gsym->output_data()->address();
8877
8878       // TODO: Assumes the segment base to be zero for the global symbols
8879       // till the proper support for the segment-base-relative addressing
8880       // will be implemented.  This is consistent with GNU ld.
8881     }
8882
8883   // For relative addressing relocation, find out the relative address base.
8884   Arm_address relative_address_base = 0;
8885   switch(reloc_property->relative_address_base())
8886     {
8887     case Arm_reloc_property::RAB_NONE:
8888     // Relocations with relative address bases RAB_TLS and RAB_tp are
8889     // handled by relocate_tls.  So we do not need to do anything here.
8890     case Arm_reloc_property::RAB_TLS:
8891     case Arm_reloc_property::RAB_tp:
8892       break;
8893     case Arm_reloc_property::RAB_B_S:
8894       relative_address_base = sym_origin;
8895       break;
8896     case Arm_reloc_property::RAB_GOT_ORG:
8897       relative_address_base = target->got_plt_section()->address();
8898       break;
8899     case Arm_reloc_property::RAB_P:
8900       relative_address_base = address;
8901       break;
8902     case Arm_reloc_property::RAB_Pa:
8903       relative_address_base = address & 0xfffffffcU;
8904       break;
8905     default:
8906       gold_unreachable(); 
8907     }
8908     
8909   typename Arm_relocate_functions::Status reloc_status =
8910         Arm_relocate_functions::STATUS_OKAY;
8911   bool check_overflow = reloc_property->checks_overflow();
8912   switch (r_type)
8913     {
8914     case elfcpp::R_ARM_NONE:
8915       break;
8916
8917     case elfcpp::R_ARM_ABS8:
8918       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8919         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8920       break;
8921
8922     case elfcpp::R_ARM_ABS12:
8923       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8924         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8925       break;
8926
8927     case elfcpp::R_ARM_ABS16:
8928       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8929         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8930       break;
8931
8932     case elfcpp::R_ARM_ABS32:
8933       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8934         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8935                                                      thumb_bit);
8936       break;
8937
8938     case elfcpp::R_ARM_ABS32_NOI:
8939       if (should_apply_static_reloc(gsym, r_type, true, output_section))
8940         // No thumb bit for this relocation: (S + A)
8941         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8942                                                      0);
8943       break;
8944
8945     case elfcpp::R_ARM_MOVW_ABS_NC:
8946       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8947         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8948                                                     0, thumb_bit,
8949                                                     check_overflow);
8950       break;
8951
8952     case elfcpp::R_ARM_MOVT_ABS:
8953       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8954         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8955       break;
8956
8957     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8958       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8959         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8960                                                         0, thumb_bit, false);
8961       break;
8962
8963     case elfcpp::R_ARM_THM_MOVT_ABS:
8964       if (should_apply_static_reloc(gsym, r_type, false, output_section))
8965         reloc_status = Arm_relocate_functions::thm_movt(view, object,
8966                                                         psymval, 0);
8967       break;
8968
8969     case elfcpp::R_ARM_MOVW_PREL_NC:
8970     case elfcpp::R_ARM_MOVW_BREL_NC:
8971     case elfcpp::R_ARM_MOVW_BREL:
8972       reloc_status =
8973         Arm_relocate_functions::movw(view, object, psymval,
8974                                      relative_address_base, thumb_bit,
8975                                      check_overflow);
8976       break;
8977
8978     case elfcpp::R_ARM_MOVT_PREL:
8979     case elfcpp::R_ARM_MOVT_BREL:
8980       reloc_status =
8981         Arm_relocate_functions::movt(view, object, psymval,
8982                                      relative_address_base);
8983       break;
8984
8985     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8986     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8987     case elfcpp::R_ARM_THM_MOVW_BREL:
8988       reloc_status =
8989         Arm_relocate_functions::thm_movw(view, object, psymval,
8990                                          relative_address_base,
8991                                          thumb_bit, check_overflow);
8992       break;
8993
8994     case elfcpp::R_ARM_THM_MOVT_PREL:
8995     case elfcpp::R_ARM_THM_MOVT_BREL:
8996       reloc_status =
8997         Arm_relocate_functions::thm_movt(view, object, psymval,
8998                                          relative_address_base);
8999       break;
9000         
9001     case elfcpp::R_ARM_REL32:
9002       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9003                                                    address, thumb_bit);
9004       break;
9005
9006     case elfcpp::R_ARM_THM_ABS5:
9007       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9008         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9009       break;
9010
9011     // Thumb long branches.
9012     case elfcpp::R_ARM_THM_CALL:
9013     case elfcpp::R_ARM_THM_XPC22:
9014     case elfcpp::R_ARM_THM_JUMP24:
9015       reloc_status =
9016         Arm_relocate_functions::thumb_branch_common(
9017             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9018             thumb_bit, is_weakly_undefined_without_plt);
9019       break;
9020
9021     case elfcpp::R_ARM_GOTOFF32:
9022       {
9023         Arm_address got_origin;
9024         got_origin = target->got_plt_section()->address();
9025         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9026                                                      got_origin, thumb_bit);
9027       }
9028       break;
9029
9030     case elfcpp::R_ARM_BASE_PREL:
9031       gold_assert(gsym != NULL);
9032       reloc_status =
9033           Arm_relocate_functions::base_prel(view, sym_origin, address);
9034       break;
9035
9036     case elfcpp::R_ARM_BASE_ABS:
9037       if (should_apply_static_reloc(gsym, r_type, false, output_section))
9038         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9039       break;
9040
9041     case elfcpp::R_ARM_GOT_BREL:
9042       gold_assert(have_got_offset);
9043       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9044       break;
9045
9046     case elfcpp::R_ARM_GOT_PREL:
9047       gold_assert(have_got_offset);
9048       // Get the address origin for GOT PLT, which is allocated right
9049       // after the GOT section, to calculate an absolute address of
9050       // the symbol GOT entry (got_origin + got_offset).
9051       Arm_address got_origin;
9052       got_origin = target->got_plt_section()->address();
9053       reloc_status = Arm_relocate_functions::got_prel(view,
9054                                                       got_origin + got_offset,
9055                                                       address);
9056       break;
9057
9058     case elfcpp::R_ARM_PLT32:
9059     case elfcpp::R_ARM_CALL:
9060     case elfcpp::R_ARM_JUMP24:
9061     case elfcpp::R_ARM_XPC25:
9062       gold_assert(gsym == NULL
9063                   || gsym->has_plt_offset()
9064                   || gsym->final_value_is_known()
9065                   || (gsym->is_defined()
9066                       && !gsym->is_from_dynobj()
9067                       && !gsym->is_preemptible()));
9068       reloc_status =
9069         Arm_relocate_functions::arm_branch_common(
9070             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9071             thumb_bit, is_weakly_undefined_without_plt);
9072       break;
9073
9074     case elfcpp::R_ARM_THM_JUMP19:
9075       reloc_status =
9076         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9077                                            thumb_bit);
9078       break;
9079
9080     case elfcpp::R_ARM_THM_JUMP6:
9081       reloc_status =
9082         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9083       break;
9084
9085     case elfcpp::R_ARM_THM_JUMP8:
9086       reloc_status =
9087         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9088       break;
9089
9090     case elfcpp::R_ARM_THM_JUMP11:
9091       reloc_status =
9092         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9093       break;
9094
9095     case elfcpp::R_ARM_PREL31:
9096       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9097                                                     address, thumb_bit);
9098       break;
9099
9100     case elfcpp::R_ARM_V4BX:
9101       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9102         {
9103           const bool is_v4bx_interworking =
9104               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9105           reloc_status =
9106             Arm_relocate_functions::v4bx(relinfo, view, object, address,
9107                                          is_v4bx_interworking);
9108         }
9109       break;
9110
9111     case elfcpp::R_ARM_THM_PC8:
9112       reloc_status =
9113         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9114       break;
9115
9116     case elfcpp::R_ARM_THM_PC12:
9117       reloc_status =
9118         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9119       break;
9120
9121     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9122       reloc_status =
9123         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9124                                           thumb_bit);
9125       break;
9126
9127     case elfcpp::R_ARM_ALU_PC_G0_NC:
9128     case elfcpp::R_ARM_ALU_PC_G0:
9129     case elfcpp::R_ARM_ALU_PC_G1_NC:
9130     case elfcpp::R_ARM_ALU_PC_G1:
9131     case elfcpp::R_ARM_ALU_PC_G2:
9132     case elfcpp::R_ARM_ALU_SB_G0_NC:
9133     case elfcpp::R_ARM_ALU_SB_G0:
9134     case elfcpp::R_ARM_ALU_SB_G1_NC:
9135     case elfcpp::R_ARM_ALU_SB_G1:
9136     case elfcpp::R_ARM_ALU_SB_G2:
9137       reloc_status =
9138         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9139                                             reloc_property->group_index(),
9140                                             relative_address_base,
9141                                             thumb_bit, check_overflow);
9142       break;
9143
9144     case elfcpp::R_ARM_LDR_PC_G0:
9145     case elfcpp::R_ARM_LDR_PC_G1:
9146     case elfcpp::R_ARM_LDR_PC_G2:
9147     case elfcpp::R_ARM_LDR_SB_G0:
9148     case elfcpp::R_ARM_LDR_SB_G1:
9149     case elfcpp::R_ARM_LDR_SB_G2:
9150       reloc_status =
9151           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9152                                               reloc_property->group_index(),
9153                                               relative_address_base);
9154       break;
9155
9156     case elfcpp::R_ARM_LDRS_PC_G0:
9157     case elfcpp::R_ARM_LDRS_PC_G1:
9158     case elfcpp::R_ARM_LDRS_PC_G2:
9159     case elfcpp::R_ARM_LDRS_SB_G0:
9160     case elfcpp::R_ARM_LDRS_SB_G1:
9161     case elfcpp::R_ARM_LDRS_SB_G2:
9162       reloc_status =
9163           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9164                                                reloc_property->group_index(),
9165                                                relative_address_base);
9166       break;
9167
9168     case elfcpp::R_ARM_LDC_PC_G0:
9169     case elfcpp::R_ARM_LDC_PC_G1:
9170     case elfcpp::R_ARM_LDC_PC_G2:
9171     case elfcpp::R_ARM_LDC_SB_G0:
9172     case elfcpp::R_ARM_LDC_SB_G1:
9173     case elfcpp::R_ARM_LDC_SB_G2:
9174       reloc_status =
9175           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9176                                               reloc_property->group_index(),
9177                                               relative_address_base);
9178       break;
9179
9180       // These are initial tls relocs, which are expected when
9181       // linking.
9182     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9183     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9184     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9185     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9186     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9187       reloc_status =
9188         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9189                            view, address, view_size);
9190       break;
9191
9192     // The known and unknown unsupported and/or deprecated relocations.
9193     case elfcpp::R_ARM_PC24:
9194     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9195     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9196     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9197     default:
9198       // Just silently leave the method. We should get an appropriate error
9199       // message in the scan methods.
9200       break;
9201     }
9202
9203   // Report any errors.
9204   switch (reloc_status)
9205     {
9206     case Arm_relocate_functions::STATUS_OKAY:
9207       break;
9208     case Arm_relocate_functions::STATUS_OVERFLOW:
9209       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9210                              _("relocation overflow in %s"),
9211                              reloc_property->name().c_str());
9212       break;
9213     case Arm_relocate_functions::STATUS_BAD_RELOC:
9214       gold_error_at_location(
9215         relinfo,
9216         relnum,
9217         rel.get_r_offset(),
9218         _("unexpected opcode while processing relocation %s"),
9219         reloc_property->name().c_str());
9220       break;
9221     default:
9222       gold_unreachable();
9223     }
9224
9225   return true;
9226 }
9227
9228 // Perform a TLS relocation.
9229
9230 template<bool big_endian>
9231 inline typename Arm_relocate_functions<big_endian>::Status
9232 Target_arm<big_endian>::Relocate::relocate_tls(
9233     const Relocate_info<32, big_endian>* relinfo,
9234     Target_arm<big_endian>* target,
9235     size_t relnum,
9236     const elfcpp::Rel<32, big_endian>& rel,
9237     unsigned int r_type,
9238     const Sized_symbol<32>* gsym,
9239     const Symbol_value<32>* psymval,
9240     unsigned char* view,
9241     elfcpp::Elf_types<32>::Elf_Addr address,
9242     section_size_type /*view_size*/ )
9243 {
9244   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9245   typedef Relocate_functions<32, big_endian> RelocFuncs;
9246   Output_segment* tls_segment = relinfo->layout->tls_segment();
9247
9248   const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9249
9250   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9251
9252   const bool is_final = (gsym == NULL
9253                          ? !parameters->options().shared()
9254                          : gsym->final_value_is_known());
9255   const tls::Tls_optimization optimized_type
9256       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9257   switch (r_type)
9258     {
9259     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9260         {
9261           unsigned int got_type = GOT_TYPE_TLS_PAIR;
9262           unsigned int got_offset;
9263           if (gsym != NULL)
9264             {
9265               gold_assert(gsym->has_got_offset(got_type));
9266               got_offset = gsym->got_offset(got_type) - target->got_size();
9267             }
9268           else
9269             {
9270               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9271               gold_assert(object->local_has_got_offset(r_sym, got_type));
9272               got_offset = (object->local_got_offset(r_sym, got_type)
9273                             - target->got_size());
9274             }
9275           if (optimized_type == tls::TLSOPT_NONE)
9276             {
9277               Arm_address got_entry =
9278                 target->got_plt_section()->address() + got_offset;
9279               
9280               // Relocate the field with the PC relative offset of the pair of
9281               // GOT entries.
9282               RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9283               return ArmRelocFuncs::STATUS_OKAY;
9284             }
9285         }
9286       break;
9287
9288     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9289       if (optimized_type == tls::TLSOPT_NONE)
9290         {
9291           // Relocate the field with the offset of the GOT entry for
9292           // the module index.
9293           unsigned int got_offset;
9294           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9295                         - target->got_size());
9296           Arm_address got_entry =
9297             target->got_plt_section()->address() + got_offset;
9298
9299           // Relocate the field with the PC relative offset of the pair of
9300           // GOT entries.
9301           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9302           return ArmRelocFuncs::STATUS_OKAY;
9303         }
9304       break;
9305
9306     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9307       RelocFuncs::rel32_unaligned(view, value);
9308       return ArmRelocFuncs::STATUS_OKAY;
9309
9310     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9311       if (optimized_type == tls::TLSOPT_NONE)
9312         {
9313           // Relocate the field with the offset of the GOT entry for
9314           // the tp-relative offset of the symbol.
9315           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9316           unsigned int got_offset;
9317           if (gsym != NULL)
9318             {
9319               gold_assert(gsym->has_got_offset(got_type));
9320               got_offset = gsym->got_offset(got_type);
9321             }
9322           else
9323             {
9324               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9325               gold_assert(object->local_has_got_offset(r_sym, got_type));
9326               got_offset = object->local_got_offset(r_sym, got_type);
9327             }
9328
9329           // All GOT offsets are relative to the end of the GOT.
9330           got_offset -= target->got_size();
9331
9332           Arm_address got_entry =
9333             target->got_plt_section()->address() + got_offset;
9334
9335           // Relocate the field with the PC relative offset of the GOT entry.
9336           RelocFuncs::pcrel32_unaligned(view, got_entry, address);
9337           return ArmRelocFuncs::STATUS_OKAY;
9338         }
9339       break;
9340
9341     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9342       // If we're creating a shared library, a dynamic relocation will
9343       // have been created for this location, so do not apply it now.
9344       if (!parameters->options().shared())
9345         {
9346           gold_assert(tls_segment != NULL);
9347
9348           // $tp points to the TCB, which is followed by the TLS, so we
9349           // need to add TCB size to the offset.
9350           Arm_address aligned_tcb_size =
9351             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9352           RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
9353
9354         }
9355       return ArmRelocFuncs::STATUS_OKAY;
9356     
9357     default:
9358       gold_unreachable();
9359     }
9360
9361   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9362                          _("unsupported reloc %u"),
9363                          r_type);
9364   return ArmRelocFuncs::STATUS_BAD_RELOC;
9365 }
9366
9367 // Relocate section data.
9368
9369 template<bool big_endian>
9370 void
9371 Target_arm<big_endian>::relocate_section(
9372     const Relocate_info<32, big_endian>* relinfo,
9373     unsigned int sh_type,
9374     const unsigned char* prelocs,
9375     size_t reloc_count,
9376     Output_section* output_section,
9377     bool needs_special_offset_handling,
9378     unsigned char* view,
9379     Arm_address address,
9380     section_size_type view_size,
9381     const Reloc_symbol_changes* reloc_symbol_changes)
9382 {
9383   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9384   gold_assert(sh_type == elfcpp::SHT_REL);
9385
9386   // See if we are relocating a relaxed input section.  If so, the view
9387   // covers the whole output section and we need to adjust accordingly.
9388   if (needs_special_offset_handling)
9389     {
9390       const Output_relaxed_input_section* poris =
9391         output_section->find_relaxed_input_section(relinfo->object,
9392                                                    relinfo->data_shndx);
9393       if (poris != NULL)
9394         {
9395           Arm_address section_address = poris->address();
9396           section_size_type section_size = poris->data_size();
9397
9398           gold_assert((section_address >= address)
9399                       && ((section_address + section_size)
9400                           <= (address + view_size)));
9401
9402           off_t offset = section_address - address;
9403           view += offset;
9404           address += offset;
9405           view_size = section_size;
9406         }
9407     }
9408
9409   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9410                          Arm_relocate>(
9411     relinfo,
9412     this,
9413     prelocs,
9414     reloc_count,
9415     output_section,
9416     needs_special_offset_handling,
9417     view,
9418     address,
9419     view_size,
9420     reloc_symbol_changes);
9421 }
9422
9423 // Return the size of a relocation while scanning during a relocatable
9424 // link.
9425
9426 template<bool big_endian>
9427 unsigned int
9428 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9429     unsigned int r_type,
9430     Relobj* object)
9431 {
9432   r_type = get_real_reloc_type(r_type);
9433   const Arm_reloc_property* arp =
9434       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9435   if (arp != NULL)
9436     return arp->size();
9437   else
9438     {
9439       std::string reloc_name =
9440         arm_reloc_property_table->reloc_name_in_error_message(r_type);
9441       gold_error(_("%s: unexpected %s in object file"),
9442                  object->name().c_str(), reloc_name.c_str());
9443       return 0;
9444     }
9445 }
9446
9447 // Scan the relocs during a relocatable link.
9448
9449 template<bool big_endian>
9450 void
9451 Target_arm<big_endian>::scan_relocatable_relocs(
9452     Symbol_table* symtab,
9453     Layout* layout,
9454     Sized_relobj_file<32, big_endian>* object,
9455     unsigned int data_shndx,
9456     unsigned int sh_type,
9457     const unsigned char* prelocs,
9458     size_t reloc_count,
9459     Output_section* output_section,
9460     bool needs_special_offset_handling,
9461     size_t local_symbol_count,
9462     const unsigned char* plocal_symbols,
9463     Relocatable_relocs* rr)
9464 {
9465   gold_assert(sh_type == elfcpp::SHT_REL);
9466
9467   typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9468     Relocatable_size_for_reloc> Scan_relocatable_relocs;
9469
9470   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9471       Scan_relocatable_relocs>(
9472     symtab,
9473     layout,
9474     object,
9475     data_shndx,
9476     prelocs,
9477     reloc_count,
9478     output_section,
9479     needs_special_offset_handling,
9480     local_symbol_count,
9481     plocal_symbols,
9482     rr);
9483 }
9484
9485 // Relocate a section during a relocatable link.
9486
9487 template<bool big_endian>
9488 void
9489 Target_arm<big_endian>::relocate_for_relocatable(
9490     const Relocate_info<32, big_endian>* relinfo,
9491     unsigned int sh_type,
9492     const unsigned char* prelocs,
9493     size_t reloc_count,
9494     Output_section* output_section,
9495     off_t offset_in_output_section,
9496     const Relocatable_relocs* rr,
9497     unsigned char* view,
9498     Arm_address view_address,
9499     section_size_type view_size,
9500     unsigned char* reloc_view,
9501     section_size_type reloc_view_size)
9502 {
9503   gold_assert(sh_type == elfcpp::SHT_REL);
9504
9505   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9506     relinfo,
9507     prelocs,
9508     reloc_count,
9509     output_section,
9510     offset_in_output_section,
9511     rr,
9512     view,
9513     view_address,
9514     view_size,
9515     reloc_view,
9516     reloc_view_size);
9517 }
9518
9519 // Perform target-specific processing in a relocatable link.  This is
9520 // only used if we use the relocation strategy RELOC_SPECIAL.
9521
9522 template<bool big_endian>
9523 void
9524 Target_arm<big_endian>::relocate_special_relocatable(
9525     const Relocate_info<32, big_endian>* relinfo,
9526     unsigned int sh_type,
9527     const unsigned char* preloc_in,
9528     size_t relnum,
9529     Output_section* output_section,
9530     off_t offset_in_output_section,
9531     unsigned char* view,
9532     elfcpp::Elf_types<32>::Elf_Addr view_address,
9533     section_size_type,
9534     unsigned char* preloc_out)
9535 {
9536   // We can only handle REL type relocation sections.
9537   gold_assert(sh_type == elfcpp::SHT_REL);
9538
9539   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9540   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9541     Reltype_write;
9542   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9543
9544   const Arm_relobj<big_endian>* object =
9545     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9546   const unsigned int local_count = object->local_symbol_count();
9547
9548   Reltype reloc(preloc_in);
9549   Reltype_write reloc_write(preloc_out);
9550
9551   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9552   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9553   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9554
9555   const Arm_reloc_property* arp =
9556     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9557   gold_assert(arp != NULL);
9558
9559   // Get the new symbol index.
9560   // We only use RELOC_SPECIAL strategy in local relocations.
9561   gold_assert(r_sym < local_count);
9562
9563   // We are adjusting a section symbol.  We need to find
9564   // the symbol table index of the section symbol for
9565   // the output section corresponding to input section
9566   // in which this symbol is defined.
9567   bool is_ordinary;
9568   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9569   gold_assert(is_ordinary);
9570   Output_section* os = object->output_section(shndx);
9571   gold_assert(os != NULL);
9572   gold_assert(os->needs_symtab_index());
9573   unsigned int new_symndx = os->symtab_index();
9574
9575   // Get the new offset--the location in the output section where
9576   // this relocation should be applied.
9577
9578   Arm_address offset = reloc.get_r_offset();
9579   Arm_address new_offset;
9580   if (offset_in_output_section != invalid_address)
9581     new_offset = offset + offset_in_output_section;
9582   else
9583     {
9584       section_offset_type sot_offset =
9585           convert_types<section_offset_type, Arm_address>(offset);
9586       section_offset_type new_sot_offset =
9587           output_section->output_offset(object, relinfo->data_shndx,
9588                                         sot_offset);
9589       gold_assert(new_sot_offset != -1);
9590       new_offset = new_sot_offset;
9591     }
9592
9593   // In an object file, r_offset is an offset within the section.
9594   // In an executable or dynamic object, generated by
9595   // --emit-relocs, r_offset is an absolute address.
9596   if (!parameters->options().relocatable())
9597     {
9598       new_offset += view_address;
9599       if (offset_in_output_section != invalid_address)
9600         new_offset -= offset_in_output_section;
9601     }
9602
9603   reloc_write.put_r_offset(new_offset);
9604   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9605
9606   // Handle the reloc addend.
9607   // The relocation uses a section symbol in the input file.
9608   // We are adjusting it to use a section symbol in the output
9609   // file.  The input section symbol refers to some address in
9610   // the input section.  We need the relocation in the output
9611   // file to refer to that same address.  This adjustment to
9612   // the addend is the same calculation we use for a simple
9613   // absolute relocation for the input section symbol.
9614
9615   const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9616
9617   // Handle THUMB bit.
9618   Symbol_value<32> symval;
9619   Arm_address thumb_bit =
9620      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9621   if (thumb_bit != 0
9622       && arp->uses_thumb_bit() 
9623       && ((psymval->value(object, 0) & 1) != 0))
9624     {
9625       Arm_address stripped_value =
9626         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9627       symval.set_output_value(stripped_value);
9628       psymval = &symval;
9629     } 
9630
9631   unsigned char* paddend = view + offset;
9632   typename Arm_relocate_functions<big_endian>::Status reloc_status =
9633         Arm_relocate_functions<big_endian>::STATUS_OKAY;
9634   switch (r_type)
9635     {
9636     case elfcpp::R_ARM_ABS8:
9637       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9638                                                               psymval);
9639       break;
9640
9641     case elfcpp::R_ARM_ABS12:
9642       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9643                                                                psymval);
9644       break;
9645
9646     case elfcpp::R_ARM_ABS16:
9647       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9648                                                                psymval);
9649       break;
9650
9651     case elfcpp::R_ARM_THM_ABS5:
9652       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9653                                                                   object,
9654                                                                   psymval);
9655       break;
9656
9657     case elfcpp::R_ARM_MOVW_ABS_NC:
9658     case elfcpp::R_ARM_MOVW_PREL_NC:
9659     case elfcpp::R_ARM_MOVW_BREL_NC:
9660     case elfcpp::R_ARM_MOVW_BREL:
9661       reloc_status = Arm_relocate_functions<big_endian>::movw(
9662           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9663       break;
9664
9665     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9666     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9667     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9668     case elfcpp::R_ARM_THM_MOVW_BREL:
9669       reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9670           paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9671       break;
9672
9673     case elfcpp::R_ARM_THM_CALL:
9674     case elfcpp::R_ARM_THM_XPC22:
9675     case elfcpp::R_ARM_THM_JUMP24:
9676       reloc_status =
9677         Arm_relocate_functions<big_endian>::thumb_branch_common(
9678             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9679             false);
9680       break;
9681
9682     case elfcpp::R_ARM_PLT32:
9683     case elfcpp::R_ARM_CALL:
9684     case elfcpp::R_ARM_JUMP24:
9685     case elfcpp::R_ARM_XPC25:
9686       reloc_status =
9687         Arm_relocate_functions<big_endian>::arm_branch_common(
9688             r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9689             false);
9690       break;
9691
9692     case elfcpp::R_ARM_THM_JUMP19:
9693       reloc_status =
9694         Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9695                                                        psymval, 0, thumb_bit);
9696       break;
9697
9698     case elfcpp::R_ARM_THM_JUMP6:
9699       reloc_status =
9700         Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9701                                                       0);
9702       break;
9703
9704     case elfcpp::R_ARM_THM_JUMP8:
9705       reloc_status =
9706         Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9707                                                       0);
9708       break;
9709
9710     case elfcpp::R_ARM_THM_JUMP11:
9711       reloc_status =
9712         Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9713                                                        0);
9714       break;
9715
9716     case elfcpp::R_ARM_PREL31:
9717       reloc_status =
9718         Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9719                                                    thumb_bit);
9720       break;
9721
9722     case elfcpp::R_ARM_THM_PC8:
9723       reloc_status =
9724         Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9725                                                     0);
9726       break;
9727
9728     case elfcpp::R_ARM_THM_PC12:
9729       reloc_status =
9730         Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9731                                                      0);
9732       break;
9733
9734     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9735       reloc_status =
9736         Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9737                                                       0, thumb_bit);
9738       break;
9739
9740     // These relocation truncate relocation results so we cannot handle them
9741     // in a relocatable link.
9742     case elfcpp::R_ARM_MOVT_ABS:
9743     case elfcpp::R_ARM_THM_MOVT_ABS:
9744     case elfcpp::R_ARM_MOVT_PREL:
9745     case elfcpp::R_ARM_MOVT_BREL:
9746     case elfcpp::R_ARM_THM_MOVT_PREL:
9747     case elfcpp::R_ARM_THM_MOVT_BREL:
9748     case elfcpp::R_ARM_ALU_PC_G0_NC:
9749     case elfcpp::R_ARM_ALU_PC_G0:
9750     case elfcpp::R_ARM_ALU_PC_G1_NC:
9751     case elfcpp::R_ARM_ALU_PC_G1:
9752     case elfcpp::R_ARM_ALU_PC_G2:
9753     case elfcpp::R_ARM_ALU_SB_G0_NC:
9754     case elfcpp::R_ARM_ALU_SB_G0:
9755     case elfcpp::R_ARM_ALU_SB_G1_NC:
9756     case elfcpp::R_ARM_ALU_SB_G1:
9757     case elfcpp::R_ARM_ALU_SB_G2:
9758     case elfcpp::R_ARM_LDR_PC_G0:
9759     case elfcpp::R_ARM_LDR_PC_G1:
9760     case elfcpp::R_ARM_LDR_PC_G2:
9761     case elfcpp::R_ARM_LDR_SB_G0:
9762     case elfcpp::R_ARM_LDR_SB_G1:
9763     case elfcpp::R_ARM_LDR_SB_G2:
9764     case elfcpp::R_ARM_LDRS_PC_G0:
9765     case elfcpp::R_ARM_LDRS_PC_G1:
9766     case elfcpp::R_ARM_LDRS_PC_G2:
9767     case elfcpp::R_ARM_LDRS_SB_G0:
9768     case elfcpp::R_ARM_LDRS_SB_G1:
9769     case elfcpp::R_ARM_LDRS_SB_G2:
9770     case elfcpp::R_ARM_LDC_PC_G0:
9771     case elfcpp::R_ARM_LDC_PC_G1:
9772     case elfcpp::R_ARM_LDC_PC_G2:
9773     case elfcpp::R_ARM_LDC_SB_G0:
9774     case elfcpp::R_ARM_LDC_SB_G1:
9775     case elfcpp::R_ARM_LDC_SB_G2:
9776       gold_error(_("cannot handle %s in a relocatable link"),
9777                  arp->name().c_str());
9778       break;
9779
9780     default:
9781       gold_unreachable();
9782     }
9783
9784   // Report any errors.
9785   switch (reloc_status)
9786     {
9787     case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9788       break;
9789     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9790       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9791                              _("relocation overflow in %s"),
9792                              arp->name().c_str());
9793       break;
9794     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9795       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9796         _("unexpected opcode while processing relocation %s"),
9797         arp->name().c_str());
9798       break;
9799     default:
9800       gold_unreachable();
9801     }
9802 }
9803
9804 // Return the value to use for a dynamic symbol which requires special
9805 // treatment.  This is how we support equality comparisons of function
9806 // pointers across shared library boundaries, as described in the
9807 // processor specific ABI supplement.
9808
9809 template<bool big_endian>
9810 uint64_t
9811 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9812 {
9813   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9814   return this->plt_section()->address() + gsym->plt_offset();
9815 }
9816
9817 // Map platform-specific relocs to real relocs
9818 //
9819 template<bool big_endian>
9820 unsigned int
9821 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9822 {
9823   switch (r_type)
9824     {
9825     case elfcpp::R_ARM_TARGET1:
9826       // This is either R_ARM_ABS32 or R_ARM_REL32;
9827       return elfcpp::R_ARM_ABS32;
9828
9829     case elfcpp::R_ARM_TARGET2:
9830       // This can be any reloc type but usually is R_ARM_GOT_PREL
9831       return elfcpp::R_ARM_GOT_PREL;
9832
9833     default:
9834       return r_type;
9835     }
9836 }
9837
9838 // Whether if two EABI versions V1 and V2 are compatible.
9839
9840 template<bool big_endian>
9841 bool
9842 Target_arm<big_endian>::are_eabi_versions_compatible(
9843     elfcpp::Elf_Word v1,
9844     elfcpp::Elf_Word v2)
9845 {
9846   // v4 and v5 are the same spec before and after it was released,
9847   // so allow mixing them.
9848   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9849       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9850       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9851     return true;
9852
9853   return v1 == v2;
9854 }
9855
9856 // Combine FLAGS from an input object called NAME and the processor-specific
9857 // flags in the ELF header of the output.  Much of this is adapted from the
9858 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9859 // in bfd/elf32-arm.c.
9860
9861 template<bool big_endian>
9862 void
9863 Target_arm<big_endian>::merge_processor_specific_flags(
9864     const std::string& name,
9865     elfcpp::Elf_Word flags)
9866 {
9867   if (this->are_processor_specific_flags_set())
9868     {
9869       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9870
9871       // Nothing to merge if flags equal to those in output.
9872       if (flags == out_flags)
9873         return;
9874
9875       // Complain about various flag mismatches.
9876       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9877       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9878       if (!this->are_eabi_versions_compatible(version1, version2)
9879           && parameters->options().warn_mismatch())
9880         gold_error(_("Source object %s has EABI version %d but output has "
9881                      "EABI version %d."),
9882                    name.c_str(),
9883                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9884                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9885     }
9886   else
9887     {
9888       // If the input is the default architecture and had the default
9889       // flags then do not bother setting the flags for the output
9890       // architecture, instead allow future merges to do this.  If no
9891       // future merges ever set these flags then they will retain their
9892       // uninitialised values, which surprise surprise, correspond
9893       // to the default values.
9894       if (flags == 0)
9895         return;
9896
9897       // This is the first time, just copy the flags.
9898       // We only copy the EABI version for now.
9899       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9900     }
9901 }
9902
9903 // Adjust ELF file header.
9904 template<bool big_endian>
9905 void
9906 Target_arm<big_endian>::do_adjust_elf_header(
9907     unsigned char* view,
9908     int len) const
9909 {
9910   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9911
9912   elfcpp::Ehdr<32, big_endian> ehdr(view);
9913   unsigned char e_ident[elfcpp::EI_NIDENT];
9914   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9915
9916   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9917       == elfcpp::EF_ARM_EABI_UNKNOWN)
9918     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9919   else
9920     e_ident[elfcpp::EI_OSABI] = 0;
9921   e_ident[elfcpp::EI_ABIVERSION] = 0;
9922
9923   // FIXME: Do EF_ARM_BE8 adjustment.
9924
9925   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9926   oehdr.put_e_ident(e_ident);
9927 }
9928
9929 // do_make_elf_object to override the same function in the base class.
9930 // We need to use a target-specific sub-class of
9931 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9932 // Hence we need to have our own ELF object creation.
9933
9934 template<bool big_endian>
9935 Object*
9936 Target_arm<big_endian>::do_make_elf_object(
9937     const std::string& name,
9938     Input_file* input_file,
9939     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9940 {
9941   int et = ehdr.get_e_type();
9942   // ET_EXEC files are valid input for --just-symbols/-R,
9943   // and we treat them as relocatable objects.
9944   if (et == elfcpp::ET_REL
9945       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9946     {
9947       Arm_relobj<big_endian>* obj =
9948         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9949       obj->setup();
9950       return obj;
9951     }
9952   else if (et == elfcpp::ET_DYN)
9953     {
9954       Sized_dynobj<32, big_endian>* obj =
9955         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9956       obj->setup();
9957       return obj;
9958     }
9959   else
9960     {
9961       gold_error(_("%s: unsupported ELF file type %d"),
9962                  name.c_str(), et);
9963       return NULL;
9964     }
9965 }
9966
9967 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9968 // Returns -1 if no architecture could be read.
9969 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9970
9971 template<bool big_endian>
9972 int
9973 Target_arm<big_endian>::get_secondary_compatible_arch(
9974     const Attributes_section_data* pasd)
9975 {
9976   const Object_attribute* known_attributes =
9977     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9978
9979   // Note: the tag and its argument below are uleb128 values, though
9980   // currently-defined values fit in one byte for each.
9981   const std::string& sv =
9982     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9983   if (sv.size() == 2
9984       && sv.data()[0] == elfcpp::Tag_CPU_arch
9985       && (sv.data()[1] & 128) != 128)
9986    return sv.data()[1];
9987
9988   // This tag is "safely ignorable", so don't complain if it looks funny.
9989   return -1;
9990 }
9991
9992 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9993 // The tag is removed if ARCH is -1.
9994 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9995
9996 template<bool big_endian>
9997 void
9998 Target_arm<big_endian>::set_secondary_compatible_arch(
9999     Attributes_section_data* pasd,
10000     int arch)
10001 {
10002   Object_attribute* known_attributes =
10003     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10004
10005   if (arch == -1)
10006     {
10007       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10008       return;
10009     }
10010
10011   // Note: the tag and its argument below are uleb128 values, though
10012   // currently-defined values fit in one byte for each.
10013   char sv[3];
10014   sv[0] = elfcpp::Tag_CPU_arch;
10015   gold_assert(arch != 0);
10016   sv[1] = arch;
10017   sv[2] = '\0';
10018
10019   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10020 }
10021
10022 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10023 // into account.
10024 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10025
10026 template<bool big_endian>
10027 int
10028 Target_arm<big_endian>::tag_cpu_arch_combine(
10029     const char* name,
10030     int oldtag,
10031     int* secondary_compat_out,
10032     int newtag,
10033     int secondary_compat)
10034 {
10035 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10036   static const int v6t2[] =
10037     {
10038       T(V6T2),   // PRE_V4.
10039       T(V6T2),   // V4.
10040       T(V6T2),   // V4T.
10041       T(V6T2),   // V5T.
10042       T(V6T2),   // V5TE.
10043       T(V6T2),   // V5TEJ.
10044       T(V6T2),   // V6.
10045       T(V7),     // V6KZ.
10046       T(V6T2)    // V6T2.
10047     };
10048   static const int v6k[] =
10049     {
10050       T(V6K),    // PRE_V4.
10051       T(V6K),    // V4.
10052       T(V6K),    // V4T.
10053       T(V6K),    // V5T.
10054       T(V6K),    // V5TE.
10055       T(V6K),    // V5TEJ.
10056       T(V6K),    // V6.
10057       T(V6KZ),   // V6KZ.
10058       T(V7),     // V6T2.
10059       T(V6K)     // V6K.
10060     };
10061   static const int v7[] =
10062     {
10063       T(V7),     // PRE_V4.
10064       T(V7),     // V4.
10065       T(V7),     // V4T.
10066       T(V7),     // V5T.
10067       T(V7),     // V5TE.
10068       T(V7),     // V5TEJ.
10069       T(V7),     // V6.
10070       T(V7),     // V6KZ.
10071       T(V7),     // V6T2.
10072       T(V7),     // V6K.
10073       T(V7)      // V7.
10074     };
10075   static const int v6_m[] =
10076     {
10077       -1,        // PRE_V4.
10078       -1,        // V4.
10079       T(V6K),    // V4T.
10080       T(V6K),    // V5T.
10081       T(V6K),    // V5TE.
10082       T(V6K),    // V5TEJ.
10083       T(V6K),    // V6.
10084       T(V6KZ),   // V6KZ.
10085       T(V7),     // V6T2.
10086       T(V6K),    // V6K.
10087       T(V7),     // V7.
10088       T(V6_M)    // V6_M.
10089     };
10090   static const int v6s_m[] =
10091     {
10092       -1,        // PRE_V4.
10093       -1,        // V4.
10094       T(V6K),    // V4T.
10095       T(V6K),    // V5T.
10096       T(V6K),    // V5TE.
10097       T(V6K),    // V5TEJ.
10098       T(V6K),    // V6.
10099       T(V6KZ),   // V6KZ.
10100       T(V7),     // V6T2.
10101       T(V6K),    // V6K.
10102       T(V7),     // V7.
10103       T(V6S_M),  // V6_M.
10104       T(V6S_M)   // V6S_M.
10105     };
10106   static const int v7e_m[] =
10107     {
10108       -1,       // PRE_V4.
10109       -1,       // V4.
10110       T(V7E_M), // V4T.
10111       T(V7E_M), // V5T.
10112       T(V7E_M), // V5TE.
10113       T(V7E_M), // V5TEJ.
10114       T(V7E_M), // V6.
10115       T(V7E_M), // V6KZ.
10116       T(V7E_M), // V6T2.
10117       T(V7E_M), // V6K.
10118       T(V7E_M), // V7.
10119       T(V7E_M), // V6_M.
10120       T(V7E_M), // V6S_M.
10121       T(V7E_M)  // V7E_M.
10122     };
10123   static const int v4t_plus_v6_m[] =
10124     {
10125       -1,               // PRE_V4.
10126       -1,               // V4.
10127       T(V4T),           // V4T.
10128       T(V5T),           // V5T.
10129       T(V5TE),          // V5TE.
10130       T(V5TEJ),         // V5TEJ.
10131       T(V6),            // V6.
10132       T(V6KZ),          // V6KZ.
10133       T(V6T2),          // V6T2.
10134       T(V6K),           // V6K.
10135       T(V7),            // V7.
10136       T(V6_M),          // V6_M.
10137       T(V6S_M),         // V6S_M.
10138       T(V7E_M),         // V7E_M.
10139       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10140     };
10141   static const int* comb[] =
10142     {
10143       v6t2,
10144       v6k,
10145       v7,
10146       v6_m,
10147       v6s_m,
10148       v7e_m,
10149       // Pseudo-architecture.
10150       v4t_plus_v6_m
10151     };
10152
10153   // Check we've not got a higher architecture than we know about.
10154
10155   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10156     {
10157       gold_error(_("%s: unknown CPU architecture"), name);
10158       return -1;
10159     }
10160
10161   // Override old tag if we have a Tag_also_compatible_with on the output.
10162
10163   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10164       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10165     oldtag = T(V4T_PLUS_V6_M);
10166
10167   // And override the new tag if we have a Tag_also_compatible_with on the
10168   // input.
10169
10170   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10171       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10172     newtag = T(V4T_PLUS_V6_M);
10173
10174   // Architectures before V6KZ add features monotonically.
10175   int tagh = std::max(oldtag, newtag);
10176   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10177     return tagh;
10178
10179   int tagl = std::min(oldtag, newtag);
10180   int result = comb[tagh - T(V6T2)][tagl];
10181
10182   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10183   // as the canonical version.
10184   if (result == T(V4T_PLUS_V6_M))
10185     {
10186       result = T(V4T);
10187       *secondary_compat_out = T(V6_M);
10188     }
10189   else
10190     *secondary_compat_out = -1;
10191
10192   if (result == -1)
10193     {
10194       gold_error(_("%s: conflicting CPU architectures %d/%d"),
10195                  name, oldtag, newtag);
10196       return -1;
10197     }
10198
10199   return result;
10200 #undef T
10201 }
10202
10203 // Helper to print AEABI enum tag value.
10204
10205 template<bool big_endian>
10206 std::string
10207 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10208 {
10209   static const char* aeabi_enum_names[] =
10210     { "", "variable-size", "32-bit", "" };
10211   const size_t aeabi_enum_names_size =
10212     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10213
10214   if (value < aeabi_enum_names_size)
10215     return std::string(aeabi_enum_names[value]);
10216   else
10217     {
10218       char buffer[100];
10219       sprintf(buffer, "<unknown value %u>", value);
10220       return std::string(buffer);
10221     }
10222 }
10223
10224 // Return the string value to store in TAG_CPU_name.
10225
10226 template<bool big_endian>
10227 std::string
10228 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10229 {
10230   static const char* name_table[] = {
10231     // These aren't real CPU names, but we can't guess
10232     // that from the architecture version alone.
10233    "Pre v4",
10234    "ARM v4",
10235    "ARM v4T",
10236    "ARM v5T",
10237    "ARM v5TE",
10238    "ARM v5TEJ",
10239    "ARM v6",
10240    "ARM v6KZ",
10241    "ARM v6T2",
10242    "ARM v6K",
10243    "ARM v7",
10244    "ARM v6-M",
10245    "ARM v6S-M",
10246    "ARM v7E-M"
10247  };
10248  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10249
10250   if (value < name_table_size)
10251     return std::string(name_table[value]);
10252   else
10253     {
10254       char buffer[100];
10255       sprintf(buffer, "<unknown CPU value %u>", value);
10256       return std::string(buffer);
10257     } 
10258 }
10259
10260 // Merge object attributes from input file called NAME with those of the
10261 // output.  The input object attributes are in the object pointed by PASD.
10262
10263 template<bool big_endian>
10264 void
10265 Target_arm<big_endian>::merge_object_attributes(
10266     const char* name,
10267     const Attributes_section_data* pasd)
10268 {
10269   // Return if there is no attributes section data.
10270   if (pasd == NULL)
10271     return;
10272
10273   // If output has no object attributes, just copy.
10274   const int vendor = Object_attribute::OBJ_ATTR_PROC;
10275   if (this->attributes_section_data_ == NULL)
10276     {
10277       this->attributes_section_data_ = new Attributes_section_data(*pasd);
10278       Object_attribute* out_attr =
10279         this->attributes_section_data_->known_attributes(vendor);
10280
10281       // We do not output objects with Tag_MPextension_use_legacy - we move
10282       //  the attribute's value to Tag_MPextension_use.  */
10283       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10284         {
10285           if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10286               && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10287                 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10288             {
10289               gold_error(_("%s has both the current and legacy "
10290                            "Tag_MPextension_use attributes"),
10291                          name);
10292             }
10293
10294           out_attr[elfcpp::Tag_MPextension_use] =
10295             out_attr[elfcpp::Tag_MPextension_use_legacy];
10296           out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10297           out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10298         }
10299
10300       return;
10301     }
10302
10303   const Object_attribute* in_attr = pasd->known_attributes(vendor);
10304   Object_attribute* out_attr =
10305     this->attributes_section_data_->known_attributes(vendor);
10306
10307   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10308   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10309       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10310     {
10311       // Ignore mismatches if the object doesn't use floating point.  */
10312       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10313         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10314             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10315       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10316                && parameters->options().warn_mismatch())
10317         gold_error(_("%s uses VFP register arguments, output does not"),
10318                    name);
10319     }
10320
10321   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10322     {
10323       // Merge this attribute with existing attributes.
10324       switch (i)
10325         {
10326         case elfcpp::Tag_CPU_raw_name:
10327         case elfcpp::Tag_CPU_name:
10328           // These are merged after Tag_CPU_arch.
10329           break;
10330
10331         case elfcpp::Tag_ABI_optimization_goals:
10332         case elfcpp::Tag_ABI_FP_optimization_goals:
10333           // Use the first value seen.
10334           break;
10335
10336         case elfcpp::Tag_CPU_arch:
10337           {
10338             unsigned int saved_out_attr = out_attr->int_value();
10339             // Merge Tag_CPU_arch and Tag_also_compatible_with.
10340             int secondary_compat =
10341               this->get_secondary_compatible_arch(pasd);
10342             int secondary_compat_out =
10343               this->get_secondary_compatible_arch(
10344                   this->attributes_section_data_);
10345             out_attr[i].set_int_value(
10346                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10347                                      &secondary_compat_out,
10348                                      in_attr[i].int_value(),
10349                                      secondary_compat));
10350             this->set_secondary_compatible_arch(this->attributes_section_data_,
10351                                                 secondary_compat_out);
10352
10353             // Merge Tag_CPU_name and Tag_CPU_raw_name.
10354             if (out_attr[i].int_value() == saved_out_attr)
10355               ; // Leave the names alone.
10356             else if (out_attr[i].int_value() == in_attr[i].int_value())
10357               {
10358                 // The output architecture has been changed to match the
10359                 // input architecture.  Use the input names.
10360                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10361                     in_attr[elfcpp::Tag_CPU_name].string_value());
10362                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10363                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10364               }
10365             else
10366               {
10367                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10368                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10369               }
10370
10371             // If we still don't have a value for Tag_CPU_name,
10372             // make one up now.  Tag_CPU_raw_name remains blank.
10373             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10374               {
10375                 const std::string cpu_name =
10376                   this->tag_cpu_name_value(out_attr[i].int_value());
10377                 // FIXME:  If we see an unknown CPU, this will be set
10378                 // to "<unknown CPU n>", where n is the attribute value.
10379                 // This is different from BFD, which leaves the name alone.
10380                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10381               }
10382           }
10383           break;
10384
10385         case elfcpp::Tag_ARM_ISA_use:
10386         case elfcpp::Tag_THUMB_ISA_use:
10387         case elfcpp::Tag_WMMX_arch:
10388         case elfcpp::Tag_Advanced_SIMD_arch:
10389           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10390         case elfcpp::Tag_ABI_FP_rounding:
10391         case elfcpp::Tag_ABI_FP_exceptions:
10392         case elfcpp::Tag_ABI_FP_user_exceptions:
10393         case elfcpp::Tag_ABI_FP_number_model:
10394         case elfcpp::Tag_VFP_HP_extension:
10395         case elfcpp::Tag_CPU_unaligned_access:
10396         case elfcpp::Tag_T2EE_use:
10397         case elfcpp::Tag_Virtualization_use:
10398         case elfcpp::Tag_MPextension_use:
10399           // Use the largest value specified.
10400           if (in_attr[i].int_value() > out_attr[i].int_value())
10401             out_attr[i].set_int_value(in_attr[i].int_value());
10402           break;
10403
10404         case elfcpp::Tag_ABI_align8_preserved:
10405         case elfcpp::Tag_ABI_PCS_RO_data:
10406           // Use the smallest value specified.
10407           if (in_attr[i].int_value() < out_attr[i].int_value())
10408             out_attr[i].set_int_value(in_attr[i].int_value());
10409           break;
10410
10411         case elfcpp::Tag_ABI_align8_needed:
10412           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10413               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10414                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10415                       == 0)))
10416             {
10417               // This error message should be enabled once all non-conforming
10418               // binaries in the toolchain have had the attributes set
10419               // properly.
10420               // gold_error(_("output 8-byte data alignment conflicts with %s"),
10421               //            name);
10422             }
10423           // Fall through.
10424         case elfcpp::Tag_ABI_FP_denormal:
10425         case elfcpp::Tag_ABI_PCS_GOT_use:
10426           {
10427             // These tags have 0 = don't care, 1 = strong requirement,
10428             // 2 = weak requirement.
10429             static const int order_021[3] = {0, 2, 1};
10430
10431             // Use the "greatest" from the sequence 0, 2, 1, or the largest
10432             // value if greater than 2 (for future-proofing).
10433             if ((in_attr[i].int_value() > 2
10434                  && in_attr[i].int_value() > out_attr[i].int_value())
10435                 || (in_attr[i].int_value() <= 2
10436                     && out_attr[i].int_value() <= 2
10437                     && (order_021[in_attr[i].int_value()]
10438                         > order_021[out_attr[i].int_value()])))
10439               out_attr[i].set_int_value(in_attr[i].int_value());
10440           }
10441           break;
10442
10443         case elfcpp::Tag_CPU_arch_profile:
10444           if (out_attr[i].int_value() != in_attr[i].int_value())
10445             {
10446               // 0 will merge with anything.
10447               // 'A' and 'S' merge to 'A'.
10448               // 'R' and 'S' merge to 'R'.
10449               // 'M' and 'A|R|S' is an error.
10450               if (out_attr[i].int_value() == 0
10451                   || (out_attr[i].int_value() == 'S'
10452                       && (in_attr[i].int_value() == 'A'
10453                           || in_attr[i].int_value() == 'R')))
10454                 out_attr[i].set_int_value(in_attr[i].int_value());
10455               else if (in_attr[i].int_value() == 0
10456                        || (in_attr[i].int_value() == 'S'
10457                            && (out_attr[i].int_value() == 'A'
10458                                || out_attr[i].int_value() == 'R')))
10459                 ; // Do nothing.
10460               else if (parameters->options().warn_mismatch())
10461                 {
10462                   gold_error
10463                     (_("conflicting architecture profiles %c/%c"),
10464                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10465                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10466                 }
10467             }
10468           break;
10469         case elfcpp::Tag_VFP_arch:
10470             {
10471               static const struct
10472               {
10473                   int ver;
10474                   int regs;
10475               } vfp_versions[7] =
10476                 {
10477                   {0, 0},
10478                   {1, 16},
10479                   {2, 16},
10480                   {3, 32},
10481                   {3, 16},
10482                   {4, 32},
10483                   {4, 16}
10484                 };
10485
10486               // Values greater than 6 aren't defined, so just pick the
10487               // biggest.
10488               if (in_attr[i].int_value() > 6
10489                   && in_attr[i].int_value() > out_attr[i].int_value())
10490                 {
10491                   *out_attr = *in_attr;
10492                   break;
10493                 }
10494               // The output uses the superset of input features
10495               // (ISA version) and registers.
10496               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10497                                  vfp_versions[out_attr[i].int_value()].ver);
10498               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10499                                   vfp_versions[out_attr[i].int_value()].regs);
10500               // This assumes all possible supersets are also a valid
10501               // options.
10502               int newval;
10503               for (newval = 6; newval > 0; newval--)
10504                 {
10505                   if (regs == vfp_versions[newval].regs
10506                       && ver == vfp_versions[newval].ver)
10507                     break;
10508                 }
10509               out_attr[i].set_int_value(newval);
10510             }
10511           break;
10512         case elfcpp::Tag_PCS_config:
10513           if (out_attr[i].int_value() == 0)
10514             out_attr[i].set_int_value(in_attr[i].int_value());
10515           else if (in_attr[i].int_value() != 0
10516                    && out_attr[i].int_value() != 0
10517                    && parameters->options().warn_mismatch())
10518             {
10519               // It's sometimes ok to mix different configs, so this is only
10520               // a warning.
10521               gold_warning(_("%s: conflicting platform configuration"), name);
10522             }
10523           break;
10524         case elfcpp::Tag_ABI_PCS_R9_use:
10525           if (in_attr[i].int_value() != out_attr[i].int_value()
10526               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10527               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10528               && parameters->options().warn_mismatch())
10529             {
10530               gold_error(_("%s: conflicting use of R9"), name);
10531             }
10532           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10533             out_attr[i].set_int_value(in_attr[i].int_value());
10534           break;
10535         case elfcpp::Tag_ABI_PCS_RW_data:
10536           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10537               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10538                   != elfcpp::AEABI_R9_SB)
10539               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10540                   != elfcpp::AEABI_R9_unused)
10541               && parameters->options().warn_mismatch())
10542             {
10543               gold_error(_("%s: SB relative addressing conflicts with use "
10544                            "of R9"),
10545                            name);
10546             }
10547           // Use the smallest value specified.
10548           if (in_attr[i].int_value() < out_attr[i].int_value())
10549             out_attr[i].set_int_value(in_attr[i].int_value());
10550           break;
10551         case elfcpp::Tag_ABI_PCS_wchar_t:
10552           if (out_attr[i].int_value()
10553               && in_attr[i].int_value()
10554               && out_attr[i].int_value() != in_attr[i].int_value()
10555               && parameters->options().warn_mismatch()
10556               && parameters->options().wchar_size_warning())
10557             {
10558               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10559                              "use %u-byte wchar_t; use of wchar_t values "
10560                              "across objects may fail"),
10561                            name, in_attr[i].int_value(),
10562                            out_attr[i].int_value());
10563             }
10564           else if (in_attr[i].int_value() && !out_attr[i].int_value())
10565             out_attr[i].set_int_value(in_attr[i].int_value());
10566           break;
10567         case elfcpp::Tag_ABI_enum_size:
10568           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10569             {
10570               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10571                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10572                 {
10573                   // The existing object is compatible with anything.
10574                   // Use whatever requirements the new object has.
10575                   out_attr[i].set_int_value(in_attr[i].int_value());
10576                 }
10577               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10578                        && out_attr[i].int_value() != in_attr[i].int_value()
10579                        && parameters->options().warn_mismatch()
10580                        && parameters->options().enum_size_warning())
10581                 {
10582                   unsigned int in_value = in_attr[i].int_value();
10583                   unsigned int out_value = out_attr[i].int_value();
10584                   gold_warning(_("%s uses %s enums yet the output is to use "
10585                                  "%s enums; use of enum values across objects "
10586                                  "may fail"),
10587                                name,
10588                                this->aeabi_enum_name(in_value).c_str(),
10589                                this->aeabi_enum_name(out_value).c_str());
10590                 }
10591             }
10592           break;
10593         case elfcpp::Tag_ABI_VFP_args:
10594           // Already done.
10595           break;
10596         case elfcpp::Tag_ABI_WMMX_args:
10597           if (in_attr[i].int_value() != out_attr[i].int_value()
10598               && parameters->options().warn_mismatch())
10599             {
10600               gold_error(_("%s uses iWMMXt register arguments, output does "
10601                            "not"),
10602                          name);
10603             }
10604           break;
10605         case Object_attribute::Tag_compatibility:
10606           // Merged in target-independent code.
10607           break;
10608         case elfcpp::Tag_ABI_HardFP_use:
10609           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10610           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10611               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10612             out_attr[i].set_int_value(3);
10613           else if (in_attr[i].int_value() > out_attr[i].int_value())
10614             out_attr[i].set_int_value(in_attr[i].int_value());
10615           break;
10616         case elfcpp::Tag_ABI_FP_16bit_format:
10617           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10618             {
10619               if (in_attr[i].int_value() != out_attr[i].int_value()
10620                   && parameters->options().warn_mismatch())
10621                 gold_error(_("fp16 format mismatch between %s and output"),
10622                            name);
10623             }
10624           if (in_attr[i].int_value() != 0)
10625             out_attr[i].set_int_value(in_attr[i].int_value());
10626           break;
10627
10628         case elfcpp::Tag_DIV_use:
10629           // This tag is set to zero if we can use UDIV and SDIV in Thumb
10630           // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10631           // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10632           // CPU.  We will merge as follows: If the input attribute's value
10633           // is one then the output attribute's value remains unchanged.  If
10634           // the input attribute's value is zero or two then if the output
10635           // attribute's value is one the output value is set to the input
10636           // value, otherwise the output value must be the same as the
10637           // inputs.  */ 
10638           if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) 
10639             { 
10640               if (in_attr[i].int_value() != out_attr[i].int_value())
10641                 {
10642                   gold_error(_("DIV usage mismatch between %s and output"),
10643                              name);
10644                 }
10645             } 
10646
10647           if (in_attr[i].int_value() != 1)
10648             out_attr[i].set_int_value(in_attr[i].int_value()); 
10649           
10650           break;
10651
10652         case elfcpp::Tag_MPextension_use_legacy:
10653           // We don't output objects with Tag_MPextension_use_legacy - we
10654           // move the value to Tag_MPextension_use.
10655           if (in_attr[i].int_value() != 0
10656               && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10657             {
10658               if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10659                   != in_attr[i].int_value())
10660                 {
10661                   gold_error(_("%s has has both the current and legacy "
10662                                "Tag_MPextension_use attributes"), 
10663                              name);
10664                 }
10665             }
10666
10667           if (in_attr[i].int_value()
10668               > out_attr[elfcpp::Tag_MPextension_use].int_value())
10669             out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10670
10671           break;
10672
10673         case elfcpp::Tag_nodefaults:
10674           // This tag is set if it exists, but the value is unused (and is
10675           // typically zero).  We don't actually need to do anything here -
10676           // the merge happens automatically when the type flags are merged
10677           // below.
10678           break;
10679         case elfcpp::Tag_also_compatible_with:
10680           // Already done in Tag_CPU_arch.
10681           break;
10682         case elfcpp::Tag_conformance:
10683           // Keep the attribute if it matches.  Throw it away otherwise.
10684           // No attribute means no claim to conform.
10685           if (in_attr[i].string_value() != out_attr[i].string_value())
10686             out_attr[i].set_string_value("");
10687           break;
10688
10689         default:
10690           {
10691             const char* err_object = NULL;
10692
10693             // The "known_obj_attributes" table does contain some undefined
10694             // attributes.  Ensure that there are unused.
10695             if (out_attr[i].int_value() != 0
10696                 || out_attr[i].string_value() != "")
10697               err_object = "output";
10698             else if (in_attr[i].int_value() != 0
10699                      || in_attr[i].string_value() != "")
10700               err_object = name;
10701
10702             if (err_object != NULL
10703                 && parameters->options().warn_mismatch())
10704               {
10705                 // Attribute numbers >=64 (mod 128) can be safely ignored.
10706                 if ((i & 127) < 64)
10707                   gold_error(_("%s: unknown mandatory EABI object attribute "
10708                                "%d"),
10709                              err_object, i);
10710                 else
10711                   gold_warning(_("%s: unknown EABI object attribute %d"),
10712                                err_object, i);
10713               }
10714
10715             // Only pass on attributes that match in both inputs.
10716             if (!in_attr[i].matches(out_attr[i]))
10717               {
10718                 out_attr[i].set_int_value(0);
10719                 out_attr[i].set_string_value("");
10720               }
10721           }
10722         }
10723
10724       // If out_attr was copied from in_attr then it won't have a type yet.
10725       if (in_attr[i].type() && !out_attr[i].type())
10726         out_attr[i].set_type(in_attr[i].type());
10727     }
10728
10729   // Merge Tag_compatibility attributes and any common GNU ones.
10730   this->attributes_section_data_->merge(name, pasd);
10731
10732   // Check for any attributes not known on ARM.
10733   typedef Vendor_object_attributes::Other_attributes Other_attributes;
10734   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10735   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10736   Other_attributes* out_other_attributes =
10737     this->attributes_section_data_->other_attributes(vendor);
10738   Other_attributes::iterator out_iter = out_other_attributes->begin();
10739
10740   while (in_iter != in_other_attributes->end()
10741          || out_iter != out_other_attributes->end())
10742     {
10743       const char* err_object = NULL;
10744       int err_tag = 0;
10745
10746       // The tags for each list are in numerical order.
10747       // If the tags are equal, then merge.
10748       if (out_iter != out_other_attributes->end()
10749           && (in_iter == in_other_attributes->end()
10750               || in_iter->first > out_iter->first))
10751         {
10752           // This attribute only exists in output.  We can't merge, and we
10753           // don't know what the tag means, so delete it.
10754           err_object = "output";
10755           err_tag = out_iter->first;
10756           int saved_tag = out_iter->first;
10757           delete out_iter->second;
10758           out_other_attributes->erase(out_iter); 
10759           out_iter = out_other_attributes->upper_bound(saved_tag);
10760         }
10761       else if (in_iter != in_other_attributes->end()
10762                && (out_iter != out_other_attributes->end()
10763                    || in_iter->first < out_iter->first))
10764         {
10765           // This attribute only exists in input. We can't merge, and we
10766           // don't know what the tag means, so ignore it.
10767           err_object = name;
10768           err_tag = in_iter->first;
10769           ++in_iter;
10770         }
10771       else // The tags are equal.
10772         {
10773           // As present, all attributes in the list are unknown, and
10774           // therefore can't be merged meaningfully.
10775           err_object = "output";
10776           err_tag = out_iter->first;
10777
10778           //  Only pass on attributes that match in both inputs.
10779           if (!in_iter->second->matches(*(out_iter->second)))
10780             {
10781               // No match.  Delete the attribute.
10782               int saved_tag = out_iter->first;
10783               delete out_iter->second;
10784               out_other_attributes->erase(out_iter);
10785               out_iter = out_other_attributes->upper_bound(saved_tag);
10786             }
10787           else
10788             {
10789               // Matched.  Keep the attribute and move to the next.
10790               ++out_iter;
10791               ++in_iter;
10792             }
10793         }
10794
10795       if (err_object && parameters->options().warn_mismatch())
10796         {
10797           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10798           if ((err_tag & 127) < 64)
10799             {
10800               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10801                          err_object, err_tag);
10802             }
10803           else
10804             {
10805               gold_warning(_("%s: unknown EABI object attribute %d"),
10806                            err_object, err_tag);
10807             }
10808         }
10809     }
10810 }
10811
10812 // Stub-generation methods for Target_arm.
10813
10814 // Make a new Arm_input_section object.
10815
10816 template<bool big_endian>
10817 Arm_input_section<big_endian>*
10818 Target_arm<big_endian>::new_arm_input_section(
10819     Relobj* relobj,
10820     unsigned int shndx)
10821 {
10822   Section_id sid(relobj, shndx);
10823
10824   Arm_input_section<big_endian>* arm_input_section =
10825     new Arm_input_section<big_endian>(relobj, shndx);
10826   arm_input_section->init();
10827
10828   // Register new Arm_input_section in map for look-up.
10829   std::pair<typename Arm_input_section_map::iterator, bool> ins =
10830     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10831
10832   // Make sure that it we have not created another Arm_input_section
10833   // for this input section already.
10834   gold_assert(ins.second);
10835
10836   return arm_input_section; 
10837 }
10838
10839 // Find the Arm_input_section object corresponding to the SHNDX-th input
10840 // section of RELOBJ.
10841
10842 template<bool big_endian>
10843 Arm_input_section<big_endian>*
10844 Target_arm<big_endian>::find_arm_input_section(
10845     Relobj* relobj,
10846     unsigned int shndx) const
10847 {
10848   Section_id sid(relobj, shndx);
10849   typename Arm_input_section_map::const_iterator p =
10850     this->arm_input_section_map_.find(sid);
10851   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10852 }
10853
10854 // Make a new stub table.
10855
10856 template<bool big_endian>
10857 Stub_table<big_endian>*
10858 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10859 {
10860   Stub_table<big_endian>* stub_table =
10861     new Stub_table<big_endian>(owner);
10862   this->stub_tables_.push_back(stub_table);
10863
10864   stub_table->set_address(owner->address() + owner->data_size());
10865   stub_table->set_file_offset(owner->offset() + owner->data_size());
10866   stub_table->finalize_data_size();
10867
10868   return stub_table;
10869 }
10870
10871 // Scan a relocation for stub generation.
10872
10873 template<bool big_endian>
10874 void
10875 Target_arm<big_endian>::scan_reloc_for_stub(
10876     const Relocate_info<32, big_endian>* relinfo,
10877     unsigned int r_type,
10878     const Sized_symbol<32>* gsym,
10879     unsigned int r_sym,
10880     const Symbol_value<32>* psymval,
10881     elfcpp::Elf_types<32>::Elf_Swxword addend,
10882     Arm_address address)
10883 {
10884   typedef typename Target_arm<big_endian>::Relocate Relocate;
10885
10886   const Arm_relobj<big_endian>* arm_relobj =
10887     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10888
10889   bool target_is_thumb;
10890   Symbol_value<32> symval;
10891   if (gsym != NULL)
10892     {
10893       // This is a global symbol.  Determine if we use PLT and if the
10894       // final target is THUMB.
10895       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10896         {
10897           // This uses a PLT, change the symbol value.
10898           symval.set_output_value(this->plt_section()->address()
10899                                   + gsym->plt_offset());
10900           psymval = &symval;
10901           target_is_thumb = false;
10902         }
10903       else if (gsym->is_undefined())
10904         // There is no need to generate a stub symbol is undefined.
10905         return;
10906       else
10907         {
10908           target_is_thumb =
10909             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10910              || (gsym->type() == elfcpp::STT_FUNC
10911                  && !gsym->is_undefined()
10912                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10913         }
10914     }
10915   else
10916     {
10917       // This is a local symbol.  Determine if the final target is THUMB.
10918       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10919     }
10920
10921   // Strip LSB if this points to a THUMB target.
10922   const Arm_reloc_property* reloc_property =
10923     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10924   gold_assert(reloc_property != NULL);
10925   if (target_is_thumb
10926       && reloc_property->uses_thumb_bit()
10927       && ((psymval->value(arm_relobj, 0) & 1) != 0))
10928     {
10929       Arm_address stripped_value =
10930         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10931       symval.set_output_value(stripped_value);
10932       psymval = &symval;
10933     } 
10934
10935   // Get the symbol value.
10936   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10937
10938   // Owing to pipelining, the PC relative branches below actually skip
10939   // two instructions when the branch offset is 0.
10940   Arm_address destination;
10941   switch (r_type)
10942     {
10943     case elfcpp::R_ARM_CALL:
10944     case elfcpp::R_ARM_JUMP24:
10945     case elfcpp::R_ARM_PLT32:
10946       // ARM branches.
10947       destination = value + addend + 8;
10948       break;
10949     case elfcpp::R_ARM_THM_CALL:
10950     case elfcpp::R_ARM_THM_XPC22:
10951     case elfcpp::R_ARM_THM_JUMP24:
10952     case elfcpp::R_ARM_THM_JUMP19:
10953       // THUMB branches.
10954       destination = value + addend + 4;
10955       break;
10956     default:
10957       gold_unreachable();
10958     }
10959
10960   Reloc_stub* stub = NULL;
10961   Stub_type stub_type =
10962     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10963                                     target_is_thumb);
10964   if (stub_type != arm_stub_none)
10965     {
10966       // Try looking up an existing stub from a stub table.
10967       Stub_table<big_endian>* stub_table = 
10968         arm_relobj->stub_table(relinfo->data_shndx);
10969       gold_assert(stub_table != NULL);
10970    
10971       // Locate stub by destination.
10972       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10973
10974       // Create a stub if there is not one already
10975       stub = stub_table->find_reloc_stub(stub_key);
10976       if (stub == NULL)
10977         {
10978           // create a new stub and add it to stub table.
10979           stub = this->stub_factory().make_reloc_stub(stub_type);
10980           stub_table->add_reloc_stub(stub, stub_key);
10981         }
10982
10983       // Record the destination address.
10984       stub->set_destination_address(destination
10985                                     | (target_is_thumb ? 1 : 0));
10986     }
10987
10988   // For Cortex-A8, we need to record a relocation at 4K page boundary.
10989   if (this->fix_cortex_a8_
10990       && (r_type == elfcpp::R_ARM_THM_JUMP24
10991           || r_type == elfcpp::R_ARM_THM_JUMP19
10992           || r_type == elfcpp::R_ARM_THM_CALL
10993           || r_type == elfcpp::R_ARM_THM_XPC22)
10994       && (address & 0xfffU) == 0xffeU)
10995     {
10996       // Found a candidate.  Note we haven't checked the destination is
10997       // within 4K here: if we do so (and don't create a record) we can't
10998       // tell that a branch should have been relocated when scanning later.
10999       this->cortex_a8_relocs_info_[address] =
11000         new Cortex_a8_reloc(stub, r_type,
11001                             destination | (target_is_thumb ? 1 : 0));
11002     }
11003 }
11004
11005 // This function scans a relocation sections for stub generation.
11006 // The template parameter Relocate must be a class type which provides
11007 // a single function, relocate(), which implements the machine
11008 // specific part of a relocation.
11009
11010 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11011 // SHT_REL or SHT_RELA.
11012
11013 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
11014 // of relocs.  OUTPUT_SECTION is the output section.
11015 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11016 // mapped to output offsets.
11017
11018 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11019 // VIEW_SIZE is the size.  These refer to the input section, unless
11020 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11021 // the output section.
11022
11023 template<bool big_endian>
11024 template<int sh_type>
11025 void inline
11026 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11027     const Relocate_info<32, big_endian>* relinfo,
11028     const unsigned char* prelocs,
11029     size_t reloc_count,
11030     Output_section* output_section,
11031     bool needs_special_offset_handling,
11032     const unsigned char* view,
11033     elfcpp::Elf_types<32>::Elf_Addr view_address,
11034     section_size_type)
11035 {
11036   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11037   const int reloc_size =
11038     Reloc_types<sh_type, 32, big_endian>::reloc_size;
11039
11040   Arm_relobj<big_endian>* arm_object =
11041     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11042   unsigned int local_count = arm_object->local_symbol_count();
11043
11044   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11045
11046   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11047     {
11048       Reltype reloc(prelocs);
11049
11050       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11051       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11052       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11053
11054       r_type = this->get_real_reloc_type(r_type);
11055
11056       // Only a few relocation types need stubs.
11057       if ((r_type != elfcpp::R_ARM_CALL)
11058          && (r_type != elfcpp::R_ARM_JUMP24)
11059          && (r_type != elfcpp::R_ARM_PLT32)
11060          && (r_type != elfcpp::R_ARM_THM_CALL)
11061          && (r_type != elfcpp::R_ARM_THM_XPC22)
11062          && (r_type != elfcpp::R_ARM_THM_JUMP24)
11063          && (r_type != elfcpp::R_ARM_THM_JUMP19)
11064          && (r_type != elfcpp::R_ARM_V4BX))
11065         continue;
11066
11067       section_offset_type offset =
11068         convert_to_section_size_type(reloc.get_r_offset());
11069
11070       if (needs_special_offset_handling)
11071         {
11072           offset = output_section->output_offset(relinfo->object,
11073                                                  relinfo->data_shndx,
11074                                                  offset);
11075           if (offset == -1)
11076             continue;
11077         }
11078
11079       // Create a v4bx stub if --fix-v4bx-interworking is used.
11080       if (r_type == elfcpp::R_ARM_V4BX)
11081         {
11082           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11083             {
11084               // Get the BX instruction.
11085               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11086               const Valtype* wv =
11087                 reinterpret_cast<const Valtype*>(view + offset);
11088               elfcpp::Elf_types<32>::Elf_Swxword insn =
11089                 elfcpp::Swap<32, big_endian>::readval(wv);
11090               const uint32_t reg = (insn & 0xf);
11091
11092               if (reg < 0xf)
11093                 {
11094                   // Try looking up an existing stub from a stub table.
11095                   Stub_table<big_endian>* stub_table =
11096                     arm_object->stub_table(relinfo->data_shndx);
11097                   gold_assert(stub_table != NULL);
11098
11099                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11100                     {
11101                       // create a new stub and add it to stub table.
11102                       Arm_v4bx_stub* stub =
11103                         this->stub_factory().make_arm_v4bx_stub(reg);
11104                       gold_assert(stub != NULL);
11105                       stub_table->add_arm_v4bx_stub(stub);
11106                     }
11107                 }
11108             }
11109           continue;
11110         }
11111
11112       // Get the addend.
11113       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11114       elfcpp::Elf_types<32>::Elf_Swxword addend =
11115         stub_addend_reader(r_type, view + offset, reloc);
11116
11117       const Sized_symbol<32>* sym;
11118
11119       Symbol_value<32> symval;
11120       const Symbol_value<32> *psymval;
11121       bool is_defined_in_discarded_section;
11122       unsigned int shndx;
11123       if (r_sym < local_count)
11124         {
11125           sym = NULL;
11126           psymval = arm_object->local_symbol(r_sym);
11127
11128           // If the local symbol belongs to a section we are discarding,
11129           // and that section is a debug section, try to find the
11130           // corresponding kept section and map this symbol to its
11131           // counterpart in the kept section.  The symbol must not 
11132           // correspond to a section we are folding.
11133           bool is_ordinary;
11134           shndx = psymval->input_shndx(&is_ordinary);
11135           is_defined_in_discarded_section =
11136             (is_ordinary
11137              && shndx != elfcpp::SHN_UNDEF
11138              && !arm_object->is_section_included(shndx)
11139              && !relinfo->symtab->is_section_folded(arm_object, shndx));
11140
11141           // We need to compute the would-be final value of this local
11142           // symbol.
11143           if (!is_defined_in_discarded_section)
11144             {
11145               typedef Sized_relobj_file<32, big_endian> ObjType;
11146               typename ObjType::Compute_final_local_value_status status =
11147                 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11148                                                       relinfo->symtab); 
11149               if (status == ObjType::CFLV_OK)
11150                 {
11151                   // Currently we cannot handle a branch to a target in
11152                   // a merged section.  If this is the case, issue an error
11153                   // and also free the merge symbol value.
11154                   if (!symval.has_output_value())
11155                     {
11156                       const std::string& section_name =
11157                         arm_object->section_name(shndx);
11158                       arm_object->error(_("cannot handle branch to local %u "
11159                                           "in a merged section %s"),
11160                                         r_sym, section_name.c_str());
11161                     }
11162                   psymval = &symval;
11163                 }
11164               else
11165                 {
11166                   // We cannot determine the final value.
11167                   continue;  
11168                 }
11169             }
11170         }
11171       else
11172         {
11173           const Symbol* gsym;
11174           gsym = arm_object->global_symbol(r_sym);
11175           gold_assert(gsym != NULL);
11176           if (gsym->is_forwarder())
11177             gsym = relinfo->symtab->resolve_forwards(gsym);
11178
11179           sym = static_cast<const Sized_symbol<32>*>(gsym);
11180           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11181             symval.set_output_symtab_index(sym->symtab_index());
11182           else
11183             symval.set_no_output_symtab_entry();
11184
11185           // We need to compute the would-be final value of this global
11186           // symbol.
11187           const Symbol_table* symtab = relinfo->symtab;
11188           const Sized_symbol<32>* sized_symbol =
11189             symtab->get_sized_symbol<32>(gsym);
11190           Symbol_table::Compute_final_value_status status;
11191           Arm_address value =
11192             symtab->compute_final_value<32>(sized_symbol, &status);
11193
11194           // Skip this if the symbol has not output section.
11195           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11196             continue;
11197           symval.set_output_value(value);
11198
11199           if (gsym->type() == elfcpp::STT_TLS)
11200             symval.set_is_tls_symbol();
11201           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11202             symval.set_is_ifunc_symbol();
11203           psymval = &symval;
11204
11205           is_defined_in_discarded_section =
11206             (gsym->is_defined_in_discarded_section()
11207              && gsym->is_undefined());
11208           shndx = 0;
11209         }
11210
11211       Symbol_value<32> symval2;
11212       if (is_defined_in_discarded_section)
11213         {
11214           if (comdat_behavior == CB_UNDETERMINED)
11215             {
11216               std::string name = arm_object->section_name(relinfo->data_shndx);
11217               comdat_behavior = get_comdat_behavior(name.c_str());
11218             }
11219           if (comdat_behavior == CB_PRETEND)
11220             {
11221               // FIXME: This case does not work for global symbols.
11222               // We have no place to store the original section index.
11223               // Fortunately this does not matter for comdat sections,
11224               // only for sections explicitly discarded by a linker
11225               // script.
11226               bool found;
11227               typename elfcpp::Elf_types<32>::Elf_Addr value =
11228                 arm_object->map_to_kept_section(shndx, &found);
11229               if (found)
11230                 symval2.set_output_value(value + psymval->input_value());
11231               else
11232                 symval2.set_output_value(0);
11233             }
11234           else
11235             {
11236               if (comdat_behavior == CB_WARNING)
11237                 gold_warning_at_location(relinfo, i, offset,
11238                                          _("relocation refers to discarded "
11239                                            "section"));
11240               symval2.set_output_value(0);
11241             }
11242           symval2.set_no_output_symtab_entry();
11243           psymval = &symval2;
11244         }
11245
11246       // If symbol is a section symbol, we don't know the actual type of
11247       // destination.  Give up.
11248       if (psymval->is_section_symbol())
11249         continue;
11250
11251       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11252                                 addend, view_address + offset);
11253     }
11254 }
11255
11256 // Scan an input section for stub generation.
11257
11258 template<bool big_endian>
11259 void
11260 Target_arm<big_endian>::scan_section_for_stubs(
11261     const Relocate_info<32, big_endian>* relinfo,
11262     unsigned int sh_type,
11263     const unsigned char* prelocs,
11264     size_t reloc_count,
11265     Output_section* output_section,
11266     bool needs_special_offset_handling,
11267     const unsigned char* view,
11268     Arm_address view_address,
11269     section_size_type view_size)
11270 {
11271   if (sh_type == elfcpp::SHT_REL)
11272     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11273         relinfo,
11274         prelocs,
11275         reloc_count,
11276         output_section,
11277         needs_special_offset_handling,
11278         view,
11279         view_address,
11280         view_size);
11281   else if (sh_type == elfcpp::SHT_RELA)
11282     // We do not support RELA type relocations yet.  This is provided for
11283     // completeness.
11284     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11285         relinfo,
11286         prelocs,
11287         reloc_count,
11288         output_section,
11289         needs_special_offset_handling,
11290         view,
11291         view_address,
11292         view_size);
11293   else
11294     gold_unreachable();
11295 }
11296
11297 // Group input sections for stub generation.
11298 //
11299 // We group input sections in an output section so that the total size,
11300 // including any padding space due to alignment is smaller than GROUP_SIZE
11301 // unless the only input section in group is bigger than GROUP_SIZE already.
11302 // Then an ARM stub table is created to follow the last input section
11303 // in group.  For each group an ARM stub table is created an is placed
11304 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11305 // extend the group after the stub table.
11306
11307 template<bool big_endian>
11308 void
11309 Target_arm<big_endian>::group_sections(
11310     Layout* layout,
11311     section_size_type group_size,
11312     bool stubs_always_after_branch,
11313     const Task* task)
11314 {
11315   // Group input sections and insert stub table
11316   Layout::Section_list section_list;
11317   layout->get_allocated_sections(&section_list);
11318   for (Layout::Section_list::const_iterator p = section_list.begin();
11319        p != section_list.end();
11320        ++p)
11321     {
11322       Arm_output_section<big_endian>* output_section =
11323         Arm_output_section<big_endian>::as_arm_output_section(*p);
11324       output_section->group_sections(group_size, stubs_always_after_branch,
11325                                      this, task);
11326     }
11327 }
11328
11329 // Relaxation hook.  This is where we do stub generation.
11330
11331 template<bool big_endian>
11332 bool
11333 Target_arm<big_endian>::do_relax(
11334     int pass,
11335     const Input_objects* input_objects,
11336     Symbol_table* symtab,
11337     Layout* layout,
11338     const Task* task)
11339 {
11340   // No need to generate stubs if this is a relocatable link.
11341   gold_assert(!parameters->options().relocatable());
11342
11343   // If this is the first pass, we need to group input sections into
11344   // stub groups.
11345   bool done_exidx_fixup = false;
11346   typedef typename Stub_table_list::iterator Stub_table_iterator;
11347   if (pass == 1)
11348     {
11349       // Determine the stub group size.  The group size is the absolute
11350       // value of the parameter --stub-group-size.  If --stub-group-size
11351       // is passed a negative value, we restrict stubs to be always after
11352       // the stubbed branches.
11353       int32_t stub_group_size_param =
11354         parameters->options().stub_group_size();
11355       bool stubs_always_after_branch = stub_group_size_param < 0;
11356       section_size_type stub_group_size = abs(stub_group_size_param);
11357
11358       if (stub_group_size == 1)
11359         {
11360           // Default value.
11361           // Thumb branch range is +-4MB has to be used as the default
11362           // maximum size (a given section can contain both ARM and Thumb
11363           // code, so the worst case has to be taken into account).  If we are
11364           // fixing cortex-a8 errata, the branch range has to be even smaller,
11365           // since wide conditional branch has a range of +-1MB only.
11366           //
11367           // This value is 48K less than that, which allows for 4096
11368           // 12-byte stubs.  If we exceed that, then we will fail to link.
11369           // The user will have to relink with an explicit group size
11370           // option.
11371             stub_group_size = 4145152;
11372         }
11373
11374       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11375       // page as the first half of a 32-bit branch straddling two 4K pages.
11376       // This is a crude way of enforcing that.  In addition, long conditional
11377       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11378       // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11379       // cortex-A8 stubs from long conditional branches.
11380       if (this->fix_cortex_a8_)
11381         {
11382           stubs_always_after_branch = true;
11383           const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11384           stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11385         }
11386
11387       group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11388      
11389       // Also fix .ARM.exidx section coverage.
11390       Arm_output_section<big_endian>* exidx_output_section = NULL;
11391       for (Layout::Section_list::const_iterator p =
11392              layout->section_list().begin();
11393            p != layout->section_list().end();
11394            ++p)
11395         if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11396           {
11397             if (exidx_output_section == NULL)
11398               exidx_output_section =
11399                 Arm_output_section<big_endian>::as_arm_output_section(*p);
11400             else
11401               // We cannot handle this now.
11402               gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11403                            "non-relocatable link"),
11404                           exidx_output_section->name(),
11405                           (*p)->name());
11406           }
11407
11408       if (exidx_output_section != NULL)
11409         {
11410           this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11411                                    symtab, task);
11412           done_exidx_fixup = true;
11413         }
11414     }
11415   else
11416     {
11417       // If this is not the first pass, addresses and file offsets have
11418       // been reset at this point, set them here.
11419       for (Stub_table_iterator sp = this->stub_tables_.begin();
11420            sp != this->stub_tables_.end();
11421            ++sp)
11422         {
11423           Arm_input_section<big_endian>* owner = (*sp)->owner();
11424           off_t off = align_address(owner->original_size(),
11425                                     (*sp)->addralign());
11426           (*sp)->set_address_and_file_offset(owner->address() + off,
11427                                              owner->offset() + off);
11428         }
11429     }
11430
11431   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11432   // beginning of each relaxation pass, just blow away all the stubs.
11433   // Alternatively, we could selectively remove only the stubs and reloc
11434   // information for code sections that have moved since the last pass.
11435   // That would require more book-keeping.
11436   if (this->fix_cortex_a8_)
11437     {
11438       // Clear all Cortex-A8 reloc information.
11439       for (typename Cortex_a8_relocs_info::const_iterator p =
11440              this->cortex_a8_relocs_info_.begin();
11441            p != this->cortex_a8_relocs_info_.end();
11442            ++p)
11443         delete p->second;
11444       this->cortex_a8_relocs_info_.clear();
11445
11446       // Remove all Cortex-A8 stubs.
11447       for (Stub_table_iterator sp = this->stub_tables_.begin();
11448            sp != this->stub_tables_.end();
11449            ++sp)
11450         (*sp)->remove_all_cortex_a8_stubs();
11451     }
11452   
11453   // Scan relocs for relocation stubs
11454   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11455        op != input_objects->relobj_end();
11456        ++op)
11457     {
11458       Arm_relobj<big_endian>* arm_relobj =
11459         Arm_relobj<big_endian>::as_arm_relobj(*op);
11460       // Lock the object so we can read from it.  This is only called
11461       // single-threaded from Layout::finalize, so it is OK to lock.
11462       Task_lock_obj<Object> tl(task, arm_relobj);
11463       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11464     }
11465
11466   // Check all stub tables to see if any of them have their data sizes
11467   // or addresses alignments changed.  These are the only things that
11468   // matter.
11469   bool any_stub_table_changed = false;
11470   Unordered_set<const Output_section*> sections_needing_adjustment;
11471   for (Stub_table_iterator sp = this->stub_tables_.begin();
11472        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11473        ++sp)
11474     {
11475       if ((*sp)->update_data_size_and_addralign())
11476         {
11477           // Update data size of stub table owner.
11478           Arm_input_section<big_endian>* owner = (*sp)->owner();
11479           uint64_t address = owner->address();
11480           off_t offset = owner->offset();
11481           owner->reset_address_and_file_offset();
11482           owner->set_address_and_file_offset(address, offset);
11483
11484           sections_needing_adjustment.insert(owner->output_section());
11485           any_stub_table_changed = true;
11486         }
11487     }
11488
11489   // Output_section_data::output_section() returns a const pointer but we
11490   // need to update output sections, so we record all output sections needing
11491   // update above and scan the sections here to find out what sections need
11492   // to be updated.
11493   for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11494       p != layout->section_list().end();
11495       ++p)
11496     {
11497       if (sections_needing_adjustment.find(*p)
11498           != sections_needing_adjustment.end())
11499         (*p)->set_section_offsets_need_adjustment();
11500     }
11501
11502   // Stop relaxation if no EXIDX fix-up and no stub table change.
11503   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11504
11505   // Finalize the stubs in the last relaxation pass.
11506   if (!continue_relaxation)
11507     {
11508       for (Stub_table_iterator sp = this->stub_tables_.begin();
11509            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11510             ++sp)
11511         (*sp)->finalize_stubs();
11512
11513       // Update output local symbol counts of objects if necessary.
11514       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11515            op != input_objects->relobj_end();
11516            ++op)
11517         {
11518           Arm_relobj<big_endian>* arm_relobj =
11519             Arm_relobj<big_endian>::as_arm_relobj(*op);
11520
11521           // Update output local symbol counts.  We need to discard local
11522           // symbols defined in parts of input sections that are discarded by
11523           // relaxation.
11524           if (arm_relobj->output_local_symbol_count_needs_update())
11525             {
11526               // We need to lock the object's file to update it.
11527               Task_lock_obj<Object> tl(task, arm_relobj);
11528               arm_relobj->update_output_local_symbol_count();
11529             }
11530         }
11531     }
11532
11533   return continue_relaxation;
11534 }
11535
11536 // Relocate a stub.
11537
11538 template<bool big_endian>
11539 void
11540 Target_arm<big_endian>::relocate_stub(
11541     Stub* stub,
11542     const Relocate_info<32, big_endian>* relinfo,
11543     Output_section* output_section,
11544     unsigned char* view,
11545     Arm_address address,
11546     section_size_type view_size)
11547 {
11548   Relocate relocate;
11549   const Stub_template* stub_template = stub->stub_template();
11550   for (size_t i = 0; i < stub_template->reloc_count(); i++)
11551     {
11552       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11553       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11554
11555       unsigned int r_type = insn->r_type();
11556       section_size_type reloc_offset = stub_template->reloc_offset(i);
11557       section_size_type reloc_size = insn->size();
11558       gold_assert(reloc_offset + reloc_size <= view_size);
11559
11560       // This is the address of the stub destination.
11561       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11562       Symbol_value<32> symval;
11563       symval.set_output_value(target);
11564
11565       // Synthesize a fake reloc just in case.  We don't have a symbol so
11566       // we use 0.
11567       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11568       memset(reloc_buffer, 0, sizeof(reloc_buffer));
11569       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11570       reloc_write.put_r_offset(reloc_offset);
11571       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11572       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11573
11574       relocate.relocate(relinfo, this, output_section,
11575                         this->fake_relnum_for_stubs, rel, r_type,
11576                         NULL, &symval, view + reloc_offset,
11577                         address + reloc_offset, reloc_size);
11578     }
11579 }
11580
11581 // Determine whether an object attribute tag takes an integer, a
11582 // string or both.
11583
11584 template<bool big_endian>
11585 int
11586 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11587 {
11588   if (tag == Object_attribute::Tag_compatibility)
11589     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11590             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11591   else if (tag == elfcpp::Tag_nodefaults)
11592     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11593             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11594   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11595     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11596   else if (tag < 32)
11597     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11598   else
11599     return ((tag & 1) != 0
11600             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11601             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11602 }
11603
11604 // Reorder attributes.
11605 //
11606 // The ABI defines that Tag_conformance should be emitted first, and that
11607 // Tag_nodefaults should be second (if either is defined).  This sets those
11608 // two positions, and bumps up the position of all the remaining tags to
11609 // compensate.
11610
11611 template<bool big_endian>
11612 int
11613 Target_arm<big_endian>::do_attributes_order(int num) const
11614 {
11615   // Reorder the known object attributes in output.  We want to move
11616   // Tag_conformance to position 4 and Tag_conformance to position 5
11617   // and shift everything between 4 .. Tag_conformance - 1 to make room.
11618   if (num == 4)
11619     return elfcpp::Tag_conformance;
11620   if (num == 5)
11621     return elfcpp::Tag_nodefaults;
11622   if ((num - 2) < elfcpp::Tag_nodefaults)
11623     return num - 2;
11624   if ((num - 1) < elfcpp::Tag_conformance)
11625     return num - 1;
11626   return num;
11627 }
11628
11629 // Scan a span of THUMB code for Cortex-A8 erratum.
11630
11631 template<bool big_endian>
11632 void
11633 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11634     Arm_relobj<big_endian>* arm_relobj,
11635     unsigned int shndx,
11636     section_size_type span_start,
11637     section_size_type span_end,
11638     const unsigned char* view,
11639     Arm_address address)
11640 {
11641   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11642   //
11643   // The opcode is BLX.W, BL.W, B.W, Bcc.W
11644   // The branch target is in the same 4KB region as the
11645   // first half of the branch.
11646   // The instruction before the branch is a 32-bit
11647   // length non-branch instruction.
11648   section_size_type i = span_start;
11649   bool last_was_32bit = false;
11650   bool last_was_branch = false;
11651   while (i < span_end)
11652     {
11653       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11654       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11655       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11656       bool is_blx = false, is_b = false;
11657       bool is_bl = false, is_bcc = false;
11658
11659       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11660       if (insn_32bit)
11661         {
11662           // Load the rest of the insn (in manual-friendly order).
11663           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11664
11665           // Encoding T4: B<c>.W.
11666           is_b = (insn & 0xf800d000U) == 0xf0009000U;
11667           // Encoding T1: BL<c>.W.
11668           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11669           // Encoding T2: BLX<c>.W.
11670           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11671           // Encoding T3: B<c>.W (not permitted in IT block).
11672           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11673                     && (insn & 0x07f00000U) != 0x03800000U);
11674         }
11675
11676       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11677                            
11678       // If this instruction is a 32-bit THUMB branch that crosses a 4K
11679       // page boundary and it follows 32-bit non-branch instruction,
11680       // we need to work around.
11681       if (is_32bit_branch
11682           && ((address + i) & 0xfffU) == 0xffeU
11683           && last_was_32bit
11684           && !last_was_branch)
11685         {
11686           // Check to see if there is a relocation stub for this branch.
11687           bool force_target_arm = false;
11688           bool force_target_thumb = false;
11689           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11690           Cortex_a8_relocs_info::const_iterator p =
11691             this->cortex_a8_relocs_info_.find(address + i);
11692
11693           if (p != this->cortex_a8_relocs_info_.end())
11694             {
11695               cortex_a8_reloc = p->second;
11696               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11697
11698               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11699                   && !target_is_thumb)
11700                 force_target_arm = true;
11701               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11702                        && target_is_thumb)
11703                 force_target_thumb = true;
11704             }
11705
11706           off_t offset;
11707           Stub_type stub_type = arm_stub_none;
11708
11709           // Check if we have an offending branch instruction.
11710           uint16_t upper_insn = (insn >> 16) & 0xffffU;
11711           uint16_t lower_insn = insn & 0xffffU;
11712           typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11713
11714           if (cortex_a8_reloc != NULL
11715               && cortex_a8_reloc->reloc_stub() != NULL)
11716             // We've already made a stub for this instruction, e.g.
11717             // it's a long branch or a Thumb->ARM stub.  Assume that
11718             // stub will suffice to work around the A8 erratum (see
11719             // setting of always_after_branch above).
11720             ;
11721           else if (is_bcc)
11722             {
11723               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11724                                                               lower_insn);
11725               stub_type = arm_stub_a8_veneer_b_cond;
11726             }
11727           else if (is_b || is_bl || is_blx)
11728             {
11729               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11730                                                          lower_insn);
11731               if (is_blx)
11732                 offset &= ~3;
11733
11734               stub_type = (is_blx
11735                            ? arm_stub_a8_veneer_blx
11736                            : (is_bl
11737                               ? arm_stub_a8_veneer_bl
11738                               : arm_stub_a8_veneer_b));
11739             }
11740
11741           if (stub_type != arm_stub_none)
11742             {
11743               Arm_address pc_for_insn = address + i + 4;
11744
11745               // The original instruction is a BL, but the target is
11746               // an ARM instruction.  If we were not making a stub,
11747               // the BL would have been converted to a BLX.  Use the
11748               // BLX stub instead in that case.
11749               if (this->may_use_v5t_interworking() && force_target_arm
11750                   && stub_type == arm_stub_a8_veneer_bl)
11751                 {
11752                   stub_type = arm_stub_a8_veneer_blx;
11753                   is_blx = true;
11754                   is_bl = false;
11755                 }
11756               // Conversely, if the original instruction was
11757               // BLX but the target is Thumb mode, use the BL stub.
11758               else if (force_target_thumb
11759                        && stub_type == arm_stub_a8_veneer_blx)
11760                 {
11761                   stub_type = arm_stub_a8_veneer_bl;
11762                   is_blx = false;
11763                   is_bl = true;
11764                 }
11765
11766               if (is_blx)
11767                 pc_for_insn &= ~3;
11768
11769               // If we found a relocation, use the proper destination,
11770               // not the offset in the (unrelocated) instruction.
11771               // Note this is always done if we switched the stub type above.
11772               if (cortex_a8_reloc != NULL)
11773                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11774
11775               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11776
11777               // Add a new stub if destination address in in the same page.
11778               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11779                 {
11780                   Cortex_a8_stub* stub =
11781                     this->stub_factory_.make_cortex_a8_stub(stub_type,
11782                                                             arm_relobj, shndx,
11783                                                             address + i,
11784                                                             target, insn);
11785                   Stub_table<big_endian>* stub_table =
11786                     arm_relobj->stub_table(shndx);
11787                   gold_assert(stub_table != NULL);
11788                   stub_table->add_cortex_a8_stub(address + i, stub);
11789                 }
11790             }
11791         }
11792
11793       i += insn_32bit ? 4 : 2;
11794       last_was_32bit = insn_32bit;
11795       last_was_branch = is_32bit_branch;
11796     }
11797 }
11798
11799 // Apply the Cortex-A8 workaround.
11800
11801 template<bool big_endian>
11802 void
11803 Target_arm<big_endian>::apply_cortex_a8_workaround(
11804     const Cortex_a8_stub* stub,
11805     Arm_address stub_address,
11806     unsigned char* insn_view,
11807     Arm_address insn_address)
11808 {
11809   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11810   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11811   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11812   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11813   off_t branch_offset = stub_address - (insn_address + 4);
11814
11815   typedef class Arm_relocate_functions<big_endian> RelocFuncs;
11816   switch (stub->stub_template()->type())
11817     {
11818     case arm_stub_a8_veneer_b_cond:
11819       // For a conditional branch, we re-write it to be an unconditional
11820       // branch to the stub.  We use the THUMB-2 encoding here.
11821       upper_insn = 0xf000U;
11822       lower_insn = 0xb800U;
11823       // Fall through
11824     case arm_stub_a8_veneer_b:
11825     case arm_stub_a8_veneer_bl:
11826     case arm_stub_a8_veneer_blx:
11827       if ((lower_insn & 0x5000U) == 0x4000U)
11828         // For a BLX instruction, make sure that the relocation is
11829         // rounded up to a word boundary.  This follows the semantics of
11830         // the instruction which specifies that bit 1 of the target
11831         // address will come from bit 1 of the base address.
11832         branch_offset = (branch_offset + 2) & ~3;
11833
11834       // Put BRANCH_OFFSET back into the insn.
11835       gold_assert(!Bits<25>::has_overflow32(branch_offset));
11836       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11837       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11838       break;
11839
11840     default:
11841       gold_unreachable();
11842     }
11843
11844   // Put the relocated value back in the object file:
11845   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11846   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11847 }
11848
11849 template<bool big_endian>
11850 class Target_selector_arm : public Target_selector
11851 {
11852  public:
11853   Target_selector_arm()
11854     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11855                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11856                       (big_endian ? "armelfb" : "armelf"))
11857   { }
11858
11859   Target*
11860   do_instantiate_target()
11861   { return new Target_arm<big_endian>(); }
11862 };
11863
11864 // Fix .ARM.exidx section coverage.
11865
11866 template<bool big_endian>
11867 void
11868 Target_arm<big_endian>::fix_exidx_coverage(
11869     Layout* layout,
11870     const Input_objects* input_objects,
11871     Arm_output_section<big_endian>* exidx_section,
11872     Symbol_table* symtab,
11873     const Task* task)
11874 {
11875   // We need to look at all the input sections in output in ascending
11876   // order of of output address.  We do that by building a sorted list
11877   // of output sections by addresses.  Then we looks at the output sections
11878   // in order.  The input sections in an output section are already sorted
11879   // by addresses within the output section.
11880
11881   typedef std::set<Output_section*, output_section_address_less_than>
11882       Sorted_output_section_list;
11883   Sorted_output_section_list sorted_output_sections;
11884
11885   // Find out all the output sections of input sections pointed by
11886   // EXIDX input sections.
11887   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11888        p != input_objects->relobj_end();
11889        ++p)
11890     {
11891       Arm_relobj<big_endian>* arm_relobj =
11892         Arm_relobj<big_endian>::as_arm_relobj(*p);
11893       std::vector<unsigned int> shndx_list;
11894       arm_relobj->get_exidx_shndx_list(&shndx_list);
11895       for (size_t i = 0; i < shndx_list.size(); ++i)
11896         {
11897           const Arm_exidx_input_section* exidx_input_section =
11898             arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11899           gold_assert(exidx_input_section != NULL);
11900           if (!exidx_input_section->has_errors())
11901             {
11902               unsigned int text_shndx = exidx_input_section->link();
11903               Output_section* os = arm_relobj->output_section(text_shndx);
11904               if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11905                 sorted_output_sections.insert(os);
11906             }
11907         }
11908     }
11909
11910   // Go over the output sections in ascending order of output addresses.
11911   typedef typename Arm_output_section<big_endian>::Text_section_list
11912       Text_section_list;
11913   Text_section_list sorted_text_sections;
11914   for (typename Sorted_output_section_list::iterator p =
11915         sorted_output_sections.begin();
11916       p != sorted_output_sections.end();
11917       ++p)
11918     {
11919       Arm_output_section<big_endian>* arm_output_section =
11920         Arm_output_section<big_endian>::as_arm_output_section(*p);
11921       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11922     } 
11923
11924   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11925                                     merge_exidx_entries(), task);
11926 }
11927
11928 template<bool big_endian>
11929 void
11930 Target_arm<big_endian>::do_define_standard_symbols(
11931     Symbol_table* symtab,
11932     Layout* layout)
11933 {
11934   // Handle the .ARM.exidx section.
11935   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11936
11937   if (exidx_section != NULL)
11938     {
11939       // Create __exidx_start and __exidx_end symbols.
11940       symtab->define_in_output_data("__exidx_start",
11941                                     NULL, // version
11942                                     Symbol_table::PREDEFINED,
11943                                     exidx_section,
11944                                     0, // value
11945                                     0, // symsize
11946                                     elfcpp::STT_NOTYPE,
11947                                     elfcpp::STB_GLOBAL,
11948                                     elfcpp::STV_HIDDEN,
11949                                     0, // nonvis
11950                                     false, // offset_is_from_end
11951                                     true); // only_if_ref
11952
11953       symtab->define_in_output_data("__exidx_end",
11954                                     NULL, // version
11955                                     Symbol_table::PREDEFINED,
11956                                     exidx_section,
11957                                     0, // value
11958                                     0, // symsize
11959                                     elfcpp::STT_NOTYPE,
11960                                     elfcpp::STB_GLOBAL,
11961                                     elfcpp::STV_HIDDEN,
11962                                     0, // nonvis
11963                                     true, // offset_is_from_end
11964                                     true); // only_if_ref
11965     }
11966   else
11967     {
11968       // Define __exidx_start and __exidx_end even when .ARM.exidx
11969       // section is missing to match ld's behaviour.
11970       symtab->define_as_constant("__exidx_start", NULL,
11971                                  Symbol_table::PREDEFINED,
11972                                  0, 0, elfcpp::STT_OBJECT,
11973                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
11974                                  true, false);
11975       symtab->define_as_constant("__exidx_end", NULL,
11976                                  Symbol_table::PREDEFINED,
11977                                  0, 0, elfcpp::STT_OBJECT,
11978                                  elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
11979                                  true, false);
11980     }
11981 }
11982
11983 Target_selector_arm<false> target_selector_arm;
11984 Target_selector_arm<true> target_selector_armbe;
11985
11986 } // End anonymous namespace.