2010-04-14 Doug Kwan <dougkwan@google.com>
[platform/upstream/binutils.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI.  It is intended for
109 // supporting Android only for the time being.
110 // 
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 //   Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops.  If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked.  The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only.  That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
131 // Instruction template class.  This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136  public:
137   // Types of instruction templates.
138   enum Type
139     {
140       THUMB16_TYPE = 1,
141       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142       // templates with class-specific semantics.  Currently this is used
143       // only by the Cortex_a8_stub class for handling condition codes in
144       // conditional branches.
145       THUMB16_SPECIAL_TYPE,
146       THUMB32_TYPE,
147       ARM_TYPE,
148       DATA_TYPE
149     };
150
151   // Factory methods to create instruction templates in different formats.
152
153   static const Insn_template
154   thumb16_insn(uint32_t data)
155   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
156
157   // A Thumb conditional branch, in which the proper condition is inserted
158   // when we build the stub.
159   static const Insn_template
160   thumb16_bcond_insn(uint32_t data)
161   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
162
163   static const Insn_template
164   thumb32_insn(uint32_t data)
165   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
166
167   static const Insn_template
168   thumb32_b_insn(uint32_t data, int reloc_addend)
169   {
170     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171                          reloc_addend);
172   } 
173
174   static const Insn_template
175   arm_insn(uint32_t data)
176   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178   static const Insn_template
179   arm_rel_insn(unsigned data, int reloc_addend)
180   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182   static const Insn_template
183   data_word(unsigned data, unsigned int r_type, int reloc_addend)
184   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
185
186   // Accessors.  This class is used for read-only objects so no modifiers
187   // are provided.
188
189   uint32_t
190   data() const
191   { return this->data_; }
192
193   // Return the instruction sequence type of this.
194   Type
195   type() const
196   { return this->type_; }
197
198   // Return the ARM relocation type of this.
199   unsigned int
200   r_type() const
201   { return this->r_type_; }
202
203   int32_t
204   reloc_addend() const
205   { return this->reloc_addend_; }
206
207   // Return size of instruction template in bytes.
208   size_t
209   size() const;
210
211   // Return byte-alignment of instruction template.
212   unsigned
213   alignment() const;
214
215  private:
216   // We make the constructor private to ensure that only the factory
217   // methods are used.
218   inline
219   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221   { }
222
223   // Instruction specific data.  This is used to store information like
224   // some of the instruction bits.
225   uint32_t data_;
226   // Instruction template type.
227   Type type_;
228   // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229   unsigned int r_type_;
230   // Relocation addend.
231   int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238   DEF_STUB(long_branch_any_any) \
239   DEF_STUB(long_branch_v4t_arm_thumb) \
240   DEF_STUB(long_branch_thumb_only) \
241   DEF_STUB(long_branch_v4t_thumb_thumb) \
242   DEF_STUB(long_branch_v4t_thumb_arm) \
243   DEF_STUB(short_branch_v4t_thumb_arm) \
244   DEF_STUB(long_branch_any_arm_pic) \
245   DEF_STUB(long_branch_any_thumb_pic) \
246   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247   DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248   DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249   DEF_STUB(long_branch_thumb_only_pic) \
250   DEF_STUB(a8_veneer_b_cond) \
251   DEF_STUB(a8_veneer_b) \
252   DEF_STUB(a8_veneer_bl) \
253   DEF_STUB(a8_veneer_blx) \
254   DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260   {
261     arm_stub_none,
262     DEF_STUBS
263
264     // First reloc stub type.
265     arm_stub_reloc_first = arm_stub_long_branch_any_any,
266     // Last  reloc stub type.
267     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269     // First Cortex-A8 stub type.
270     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271     // Last Cortex-A8 stub type.
272     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273     
274     // Last stub type.
275     arm_stub_type_last = arm_stub_v4_veneer_bx
276   } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class.  Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285  public:
286   Stub_template(Stub_type, const Insn_template*, size_t);
287
288   ~Stub_template()
289   { }
290
291   // Return stub type.
292   Stub_type
293   type() const
294   { return this->type_; }
295
296   // Return an array of instruction templates.
297   const Insn_template*
298   insns() const
299   { return this->insns_; }
300
301   // Return size of template in number of instructions.
302   size_t
303   insn_count() const
304   { return this->insn_count_; }
305
306   // Return size of template in bytes.
307   size_t
308   size() const
309   { return this->size_; }
310
311   // Return alignment of the stub template.
312   unsigned
313   alignment() const
314   { return this->alignment_; }
315   
316   // Return whether entry point is in thumb mode.
317   bool
318   entry_in_thumb_mode() const
319   { return this->entry_in_thumb_mode_; }
320
321   // Return number of relocations in this template.
322   size_t
323   reloc_count() const
324   { return this->relocs_.size(); }
325
326   // Return index of the I-th instruction with relocation.
327   size_t
328   reloc_insn_index(size_t i) const
329   {
330     gold_assert(i < this->relocs_.size());
331     return this->relocs_[i].first;
332   }
333
334   // Return the offset of the I-th instruction with relocation from the
335   // beginning of the stub.
336   section_size_type
337   reloc_offset(size_t i) const
338   {
339     gold_assert(i < this->relocs_.size());
340     return this->relocs_[i].second;
341   }
342
343  private:
344   // This contains information about an instruction template with a relocation
345   // and its offset from start of stub.
346   typedef std::pair<size_t, section_size_type> Reloc;
347
348   // A Stub_template may not be copied.  We want to share templates as much
349   // as possible.
350   Stub_template(const Stub_template&);
351   Stub_template& operator=(const Stub_template&);
352   
353   // Stub type.
354   Stub_type type_;
355   // Points to an array of Insn_templates.
356   const Insn_template* insns_;
357   // Number of Insn_templates in insns_[].
358   size_t insn_count_;
359   // Size of templated instructions in bytes.
360   size_t size_;
361   // Alignment of templated instructions.
362   unsigned alignment_;
363   // Flag to indicate if entry is in thumb mode.
364   bool entry_in_thumb_mode_;
365   // A table of reloc instruction indices and offsets.  We can find these by
366   // looking at the instruction templates but we pre-compute and then stash
367   // them here for speed. 
368   std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs.  This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378  private:
379   static const section_offset_type invalid_offset =
380     static_cast<section_offset_type>(-1);
381
382  public:
383   Stub(const Stub_template* stub_template)
384     : stub_template_(stub_template), offset_(invalid_offset)
385   { }
386
387   virtual
388    ~Stub()
389   { }
390
391   // Return the stub template.
392   const Stub_template*
393   stub_template() const
394   { return this->stub_template_; }
395
396   // Return offset of code stub from beginning of its containing stub table.
397   section_offset_type
398   offset() const
399   {
400     gold_assert(this->offset_ != invalid_offset);
401     return this->offset_;
402   }
403
404   // Set offset of code stub from beginning of its containing stub table.
405   void
406   set_offset(section_offset_type offset)
407   { this->offset_ = offset; }
408   
409   // Return the relocation target address of the i-th relocation in the
410   // stub.  This must be defined in a child class.
411   Arm_address
412   reloc_target(size_t i)
413   { return this->do_reloc_target(i); }
414
415   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416   void
417   write(unsigned char* view, section_size_type view_size, bool big_endian)
418   { this->do_write(view, view_size, big_endian); }
419
420   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421   // for the i-th instruction.
422   uint16_t
423   thumb16_special(size_t i)
424   { return this->do_thumb16_special(i); }
425
426  protected:
427   // This must be defined in the child class.
428   virtual Arm_address
429   do_reloc_target(size_t) = 0;
430
431   // This may be overridden in the child class.
432   virtual void
433   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434   {
435     if (big_endian)
436       this->do_fixed_endian_write<true>(view, view_size);
437     else
438       this->do_fixed_endian_write<false>(view, view_size);
439   }
440   
441   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442   // instruction template.
443   virtual uint16_t
444   do_thumb16_special(size_t)
445   { gold_unreachable(); }
446
447  private:
448   // A template to implement do_write.
449   template<bool big_endian>
450   void inline
451   do_fixed_endian_write(unsigned char*, section_size_type);
452
453   // Its template.
454   const Stub_template* stub_template_;
455   // Offset within the section of containing this stub.
456   section_offset_type offset_;
457 };
458
459 // Reloc stub class.  These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464  public:
465   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466   // We assume we never jump to this address.
467   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469   // Return destination address.
470   Arm_address
471   destination_address() const
472   {
473     gold_assert(this->destination_address_ != this->invalid_address);
474     return this->destination_address_;
475   }
476
477   // Set destination address.
478   void
479   set_destination_address(Arm_address address)
480   {
481     gold_assert(address != this->invalid_address);
482     this->destination_address_ = address;
483   }
484
485   // Reset destination address.
486   void
487   reset_destination_address()
488   { this->destination_address_ = this->invalid_address; }
489
490   // Determine stub type for a branch of a relocation of R_TYPE going
491   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492   // the branch target is a thumb instruction.  TARGET is used for look
493   // up ARM-specific linker settings.
494   static Stub_type
495   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496                       Arm_address branch_target, bool target_is_thumb);
497
498   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499   // and an addend.  Since we treat global and local symbol differently, we
500   // use a Symbol object for a global symbol and a object-index pair for
501   // a local symbol.
502   class Key
503   {
504    public:
505     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507     // and R_SYM must not be invalid_index.
508     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509         unsigned int r_sym, int32_t addend)
510       : stub_type_(stub_type), addend_(addend)
511     {
512       if (symbol != NULL)
513         {
514           this->r_sym_ = Reloc_stub::invalid_index;
515           this->u_.symbol = symbol;
516         }
517       else
518         {
519           gold_assert(relobj != NULL && r_sym != invalid_index);
520           this->r_sym_ = r_sym;
521           this->u_.relobj = relobj;
522         }
523     }
524
525     ~Key()
526     { }
527
528     // Accessors: Keys are meant to be read-only object so no modifiers are
529     // provided.
530
531     // Return stub type.
532     Stub_type
533     stub_type() const
534     { return this->stub_type_; }
535
536     // Return the local symbol index or invalid_index.
537     unsigned int
538     r_sym() const
539     { return this->r_sym_; }
540
541     // Return the symbol if there is one.
542     const Symbol*
543     symbol() const
544     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546     // Return the relobj if there is one.
547     const Relobj*
548     relobj() const
549     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551     // Whether this equals to another key k.
552     bool
553     eq(const Key& k) const 
554     {
555       return ((this->stub_type_ == k.stub_type_)
556               && (this->r_sym_ == k.r_sym_)
557               && ((this->r_sym_ != Reloc_stub::invalid_index)
558                   ? (this->u_.relobj == k.u_.relobj)
559                   : (this->u_.symbol == k.u_.symbol))
560               && (this->addend_ == k.addend_));
561     }
562
563     // Return a hash value.
564     size_t
565     hash_value() const
566     {
567       return (this->stub_type_
568               ^ this->r_sym_
569               ^ gold::string_hash<char>(
570                     (this->r_sym_ != Reloc_stub::invalid_index)
571                     ? this->u_.relobj->name().c_str()
572                     : this->u_.symbol->name())
573               ^ this->addend_);
574     }
575
576     // Functors for STL associative containers.
577     struct hash
578     {
579       size_t
580       operator()(const Key& k) const
581       { return k.hash_value(); }
582     };
583
584     struct equal_to
585     {
586       bool
587       operator()(const Key& k1, const Key& k2) const
588       { return k1.eq(k2); }
589     };
590
591     // Name of key.  This is mainly for debugging.
592     std::string
593     name() const;
594
595    private:
596     // Stub type.
597     Stub_type stub_type_;
598     // If this is a local symbol, this is the index in the defining object.
599     // Otherwise, it is invalid_index for a global symbol.
600     unsigned int r_sym_;
601     // If r_sym_ is invalid index.  This points to a global symbol.
602     // Otherwise, this points a relobj.  We used the unsized and target
603     // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604     // Arm_relobj.  This is done to avoid making the stub class a template
605     // as most of the stub machinery is endianness-neutral.  However, it
606     // may require a bit of casting done by users of this class.
607     union
608     {
609       const Symbol* symbol;
610       const Relobj* relobj;
611     } u_;
612     // Addend associated with a reloc.
613     int32_t addend_;
614   };
615
616  protected:
617   // Reloc_stubs are created via a stub factory.  So these are protected.
618   Reloc_stub(const Stub_template* stub_template)
619     : Stub(stub_template), destination_address_(invalid_address)
620   { }
621
622   ~Reloc_stub()
623   { }
624
625   friend class Stub_factory;
626
627   // Return the relocation target address of the i-th relocation in the
628   // stub.
629   Arm_address
630   do_reloc_target(size_t i)
631   {
632     // All reloc stub have only one relocation.
633     gold_assert(i == 0);
634     return this->destination_address_;
635   }
636
637  private:
638   // Address of destination.
639   Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 // 
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 //    branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 //    branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least.  We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch.  The
654 // condition code is used in a special instruction template.  We also want
655 // to identify input sections needing Cortex-A8 workaround quickly.  We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up.  The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663  public:
664   ~Cortex_a8_stub()
665   { }
666
667   // Return the object of the code section containing the branch being fixed
668   // up.
669   Relobj*
670   relobj() const
671   { return this->relobj_; }
672
673   // Return the section index of the code section containing the branch being
674   // fixed up.
675   unsigned int
676   shndx() const
677   { return this->shndx_; }
678
679   // Return the source address of stub.  This is the address of the original
680   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681   // instruction.
682   Arm_address
683   source_address() const
684   { return this->source_address_; }
685
686   // Return the destination address of the stub.  This is the branch taken
687   // address of the original branch instruction.  LSB is 1 if it is a THUMB
688   // instruction address.
689   Arm_address
690   destination_address() const
691   { return this->destination_address_; }
692
693   // Return the instruction being fixed up.
694   uint32_t
695   original_insn() const
696   { return this->original_insn_; }
697
698  protected:
699   // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701                  unsigned int shndx, Arm_address source_address,
702                  Arm_address destination_address, uint32_t original_insn)
703     : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704       source_address_(source_address | 1U),
705       destination_address_(destination_address),
706       original_insn_(original_insn)
707   { }
708
709   friend class Stub_factory;
710
711   // Return the relocation target address of the i-th relocation in the
712   // stub.
713   Arm_address
714   do_reloc_target(size_t i)
715   {
716     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717       {
718         // The conditional branch veneer has two relocations.
719         gold_assert(i < 2);
720         return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721       }
722     else
723       {
724         // All other Cortex-A8 stubs have only one relocation.
725         gold_assert(i == 0);
726         return this->destination_address_;
727       }
728   }
729
730   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731   uint16_t
732   do_thumb16_special(size_t);
733
734  private:
735   // Object of the code section containing the branch being fixed up.
736   Relobj* relobj_;
737   // Section index of the code section containing the branch begin fixed up.
738   unsigned int shndx_;
739   // Source address of original branch.
740   Arm_address source_address_;
741   // Destination address of the original branch.
742   Arm_address destination_address_;
743   // Original branch instruction.  This is needed for copying the condition
744   // code from a condition branch to its stub.
745   uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751  public:
752   ~Arm_v4bx_stub()
753   { }
754
755   // Return the associated register.
756   uint32_t
757   reg() const
758   { return this->reg_; }
759
760  protected:
761   // Arm V4BX stubs are created via a stub factory.  So these are protected.
762   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763     : Stub(stub_template), reg_(reg)
764   { }
765
766   friend class Stub_factory;
767
768   // Return the relocation target address of the i-th relocation in the
769   // stub.
770   Arm_address
771   do_reloc_target(size_t)
772   { gold_unreachable(); }
773
774   // This may be overridden in the child class.
775   virtual void
776   do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777   {
778     if (big_endian)
779       this->do_fixed_endian_v4bx_write<true>(view, view_size);
780     else
781       this->do_fixed_endian_v4bx_write<false>(view, view_size);
782   }
783
784  private:
785   // A template to implement do_write.
786   template<bool big_endian>
787   void inline
788   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789   {
790     const Insn_template* insns = this->stub_template()->insns();
791     elfcpp::Swap<32, big_endian>::writeval(view,
792                                            (insns[0].data()
793                                            + (this->reg_ << 16)));
794     view += insns[0].size();
795     elfcpp::Swap<32, big_endian>::writeval(view,
796                                            (insns[1].data() + this->reg_));
797     view += insns[1].size();
798     elfcpp::Swap<32, big_endian>::writeval(view,
799                                            (insns[2].data() + this->reg_));
800   }
801
802   // A register index (r0-r14), which is associated with the stub.
803   uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810  public:
811   // Return the unique instance of this class.
812   static const Stub_factory&
813   get_instance()
814   {
815     static Stub_factory singleton;
816     return singleton;
817   }
818
819   // Make a relocation stub.
820   Reloc_stub*
821   make_reloc_stub(Stub_type stub_type) const
822   {
823     gold_assert(stub_type >= arm_stub_reloc_first
824                 && stub_type <= arm_stub_reloc_last);
825     return new Reloc_stub(this->stub_templates_[stub_type]);
826   }
827
828   // Make a Cortex-A8 stub.
829   Cortex_a8_stub*
830   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831                       Arm_address source, Arm_address destination,
832                       uint32_t original_insn) const
833   {
834     gold_assert(stub_type >= arm_stub_cortex_a8_first
835                 && stub_type <= arm_stub_cortex_a8_last);
836     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837                               source, destination, original_insn);
838   }
839
840   // Make an ARM V4BX relocation stub.
841   // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842   Arm_v4bx_stub*
843   make_arm_v4bx_stub(uint32_t reg) const
844   {
845     gold_assert(reg < 0xf);
846     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847                              reg);
848   }
849
850  private:
851   // Constructor and destructor are protected since we only return a single
852   // instance created in Stub_factory::get_instance().
853   
854   Stub_factory();
855
856   // A Stub_factory may not be copied since it is a singleton.
857   Stub_factory(const Stub_factory&);
858   Stub_factory& operator=(Stub_factory&);
859   
860   // Stub templates.  These are initialized in the constructor.
861   const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869  public:
870   Stub_table(Arm_input_section<big_endian>* owner)
871     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873       prev_data_size_(0), prev_addralign_(1)
874   { }
875
876   ~Stub_table()
877   { }
878
879   // Owner of this stub table.
880   Arm_input_section<big_endian>*
881   owner() const
882   { return this->owner_; }
883
884   // Whether this stub table is empty.
885   bool
886   empty() const
887   {
888     return (this->reloc_stubs_.empty()
889             && this->cortex_a8_stubs_.empty()
890             && this->arm_v4bx_stubs_.empty());
891   }
892
893   // Return the current data size.
894   off_t
895   current_data_size() const
896   { return this->current_data_size_for_child(); }
897
898   // Add a STUB with using KEY.  Caller is reponsible for avoid adding
899   // if already a STUB with the same key has been added. 
900   void
901   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902   {
903     const Stub_template* stub_template = stub->stub_template();
904     gold_assert(stub_template->type() == key.stub_type());
905     this->reloc_stubs_[key] = stub;
906
907     // Assign stub offset early.  We can do this because we never remove
908     // reloc stubs and they are in the beginning of the stub table.
909     uint64_t align = stub_template->alignment();
910     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911     stub->set_offset(this->reloc_stubs_size_);
912     this->reloc_stubs_size_ += stub_template->size();
913     this->reloc_stubs_addralign_ =
914       std::max(this->reloc_stubs_addralign_, align);
915   }
916
917   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918   // Caller is reponsible for avoid adding if already a STUB with the same
919   // address has been added. 
920   void
921   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922   {
923     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924     this->cortex_a8_stubs_.insert(value);
925   }
926
927   // Add an ARM V4BX relocation stub. A register index will be retrieved
928   // from the stub.
929   void
930   add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931   {
932     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933     this->arm_v4bx_stubs_[stub->reg()] = stub;
934   }
935
936   // Remove all Cortex-A8 stubs.
937   void
938   remove_all_cortex_a8_stubs();
939
940   // Look up a relocation stub using KEY.  Return NULL if there is none.
941   Reloc_stub*
942   find_reloc_stub(const Reloc_stub::Key& key) const
943   {
944     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946   }
947
948   // Look up an arm v4bx relocation stub using the register index.
949   // Return NULL if there is none.
950   Arm_v4bx_stub*
951   find_arm_v4bx_stub(const uint32_t reg) const
952   {
953     gold_assert(reg < 0xf);
954     return this->arm_v4bx_stubs_[reg];
955   }
956
957   // Relocate stubs in this stub table.
958   void
959   relocate_stubs(const Relocate_info<32, big_endian>*,
960                  Target_arm<big_endian>*, Output_section*,
961                  unsigned char*, Arm_address, section_size_type);
962
963   // Update data size and alignment at the end of a relaxation pass.  Return
964   // true if either data size or alignment is different from that of the
965   // previous relaxation pass.
966   bool
967   update_data_size_and_addralign();
968
969   // Finalize stubs.  Set the offsets of all stubs and mark input sections
970   // needing the Cortex-A8 workaround.
971   void
972   finalize_stubs();
973   
974   // Apply Cortex-A8 workaround to an address range.
975   void
976   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977                                               unsigned char*, Arm_address,
978                                               section_size_type);
979
980  protected:
981   // Write out section contents.
982   void
983   do_write(Output_file*);
984  
985   // Return the required alignment.
986   uint64_t
987   do_addralign() const
988   { return this->prev_addralign_; }
989
990   // Reset address and file offset.
991   void
992   do_reset_address_and_file_offset()
993   { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995   // Set final data size.
996   void
997   set_final_data_size()
998   { this->set_data_size(this->current_data_size()); }
999   
1000  private:
1001   // Relocate one stub.
1002   void
1003   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004                 Target_arm<big_endian>*, Output_section*,
1005                 unsigned char*, Arm_address, section_size_type);
1006
1007   // Unordered map of relocation stubs.
1008   typedef
1009     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010                   Reloc_stub::Key::equal_to>
1011     Reloc_stub_map;
1012
1013   // List of Cortex-A8 stubs ordered by addresses of branches being
1014   // fixed up in output.
1015   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016   // List of Arm V4BX relocation stubs ordered by associated registers.
1017   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019   // Owner of this stub table.
1020   Arm_input_section<big_endian>* owner_;
1021   // The relocation stubs.
1022   Reloc_stub_map reloc_stubs_;
1023   // Size of reloc stubs.
1024   off_t reloc_stubs_size_;
1025   // Maximum address alignment of reloc stubs.
1026   uint64_t reloc_stubs_addralign_;
1027   // The cortex_a8_stubs.
1028   Cortex_a8_stub_list cortex_a8_stubs_;
1029   // The Arm V4BX relocation stubs.
1030   Arm_v4bx_stub_list arm_v4bx_stubs_;
1031   // data size of this in the previous pass.
1032   off_t prev_data_size_;
1033   // address alignment of this in the previous pass.
1034   uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042  public:
1043   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045   { }
1046
1047   // Return the object containing the section pointed by this.
1048   Relobj*
1049   relobj() const
1050   { return this->relobj_; }
1051
1052   // Return the section index of the section pointed by this.
1053   unsigned int
1054   shndx() const
1055   { return this->shndx_; }
1056
1057  protected:
1058   void
1059   do_write(Output_file* of)
1060   {
1061     if (parameters->target().is_big_endian())
1062       this->do_fixed_endian_write<true>(of);
1063     else
1064       this->do_fixed_endian_write<false>(of);
1065   }
1066
1067  private:
1068   // Implement do_write for a given endianness.
1069   template<bool big_endian>
1070   void inline
1071   do_fixed_endian_write(Output_file*);
1072   
1073   // The object containing the section pointed by this.
1074   Relobj* relobj_;
1075   // The section index of the section pointed by this.
1076   unsigned int shndx_;
1077 };
1078
1079 // During EXIDX coverage fix-up, we compact an EXIDX section.  The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section. 
1082
1083 typedef std::map<section_offset_type, section_offset_type>
1084         Arm_exidx_section_offset_map;
1085
1086 // Arm_exidx_merged_section class.  This represents an EXIDX input section
1087 // with some of its entries merged.
1088
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1090 {
1091  public:
1092   // Constructor for Arm_exidx_merged_section.
1093   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094   // SECTION_OFFSET_MAP points to a section offset map describing how
1095   // parts of the input section are mapped to output.  DELETED_BYTES is
1096   // the number of bytes deleted from the EXIDX input section.
1097   Arm_exidx_merged_section(
1098       const Arm_exidx_input_section& exidx_input_section,
1099       const Arm_exidx_section_offset_map& section_offset_map,
1100       uint32_t deleted_bytes);
1101
1102   // Return the original EXIDX input section.
1103   const Arm_exidx_input_section&
1104   exidx_input_section() const
1105   { return this->exidx_input_section_; }
1106
1107   // Return the section offset map.
1108   const Arm_exidx_section_offset_map&
1109   section_offset_map() const
1110   { return this->section_offset_map_; }
1111
1112  protected:
1113   // Write merged section into file OF.
1114   void
1115   do_write(Output_file* of);
1116
1117   bool
1118   do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119                   section_offset_type*) const;
1120
1121  private:
1122   // Original EXIDX input section.
1123   const Arm_exidx_input_section& exidx_input_section_;
1124   // Section offset map.
1125   const Arm_exidx_section_offset_map& section_offset_map_;
1126 };
1127
1128 // A class to wrap an ordinary input section containing executable code.
1129
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1132 {
1133  public:
1134   Arm_input_section(Relobj* relobj, unsigned int shndx)
1135     : Output_relaxed_input_section(relobj, shndx, 1),
1136       original_addralign_(1), original_size_(0), stub_table_(NULL)
1137   { }
1138
1139   ~Arm_input_section()
1140   { }
1141
1142   // Initialize.
1143   void
1144   init();
1145   
1146   // Whether this is a stub table owner.
1147   bool
1148   is_stub_table_owner() const
1149   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151   // Return the stub table.
1152   Stub_table<big_endian>*
1153   stub_table() const
1154   { return this->stub_table_; }
1155
1156   // Set the stub_table.
1157   void
1158   set_stub_table(Stub_table<big_endian>* stub_table)
1159   { this->stub_table_ = stub_table; }
1160
1161   // Downcast a base pointer to an Arm_input_section pointer.  This is
1162   // not type-safe but we only use Arm_input_section not the base class.
1163   static Arm_input_section<big_endian>*
1164   as_arm_input_section(Output_relaxed_input_section* poris)
1165   { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
1167  protected:
1168   // Write data to output file.
1169   void
1170   do_write(Output_file*);
1171
1172   // Return required alignment of this.
1173   uint64_t
1174   do_addralign() const
1175   {
1176     if (this->is_stub_table_owner())
1177       return std::max(this->stub_table_->addralign(),
1178                       this->original_addralign_);
1179     else
1180       return this->original_addralign_;
1181   }
1182
1183   // Finalize data size.
1184   void
1185   set_final_data_size();
1186
1187   // Reset address and file offset.
1188   void
1189   do_reset_address_and_file_offset();
1190
1191   // Output offset.
1192   bool
1193   do_output_offset(const Relobj* object, unsigned int shndx,
1194                    section_offset_type offset,
1195                    section_offset_type* poutput) const
1196   {
1197     if ((object == this->relobj())
1198         && (shndx == this->shndx())
1199         && (offset >= 0)
1200         && (convert_types<uint64_t, section_offset_type>(offset)
1201             <= this->original_size_))
1202       {
1203         *poutput = offset;
1204         return true;
1205       }
1206     else
1207       return false;
1208   }
1209
1210  private:
1211   // Copying is not allowed.
1212   Arm_input_section(const Arm_input_section&);
1213   Arm_input_section& operator=(const Arm_input_section&);
1214
1215   // Address alignment of the original input section.
1216   uint64_t original_addralign_;
1217   // Section size of the original input section.
1218   uint64_t original_size_;
1219   // Stub table.
1220   Stub_table<big_endian>* stub_table_;
1221 };
1222
1223 // Arm_exidx_fixup class.  This is used to define a number of methods
1224 // and keep states for fixing up EXIDX coverage.
1225
1226 class Arm_exidx_fixup
1227 {
1228  public:
1229   Arm_exidx_fixup(Output_section* exidx_output_section)
1230     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1231       last_inlined_entry_(0), last_input_section_(NULL),
1232       section_offset_map_(NULL), first_output_text_section_(NULL)
1233   { }
1234
1235   ~Arm_exidx_fixup()
1236   { delete this->section_offset_map_; }
1237
1238   // Process an EXIDX section for entry merging.  Return  number of bytes to
1239   // be deleted in output.  If parts of the input EXIDX section are merged
1240   // a heap allocated Arm_exidx_section_offset_map is store in the located
1241   // PSECTION_OFFSET_MAP.  The caller owns the map and is reponsible for
1242   // releasing it.
1243   template<bool big_endian>
1244   uint32_t
1245   process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1246                         Arm_exidx_section_offset_map** psection_offset_map);
1247   
1248   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1249   // input section, if there is not one already.
1250   void
1251   add_exidx_cantunwind_as_needed();
1252
1253   // Return the output section for the text section which is linked to the
1254   // first exidx input in output.
1255   Output_section*
1256   first_output_text_section() const
1257   { return this->first_output_text_section_; }
1258
1259  private:
1260   // Copying is not allowed.
1261   Arm_exidx_fixup(const Arm_exidx_fixup&);
1262   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1263
1264   // Type of EXIDX unwind entry.
1265   enum Unwind_type
1266   {
1267     // No type.
1268     UT_NONE,
1269     // EXIDX_CANTUNWIND.
1270     UT_EXIDX_CANTUNWIND,
1271     // Inlined entry.
1272     UT_INLINED_ENTRY,
1273     // Normal entry.
1274     UT_NORMAL_ENTRY,
1275   };
1276
1277   // Process an EXIDX entry.  We only care about the second word of the
1278   // entry.  Return true if the entry can be deleted.
1279   bool
1280   process_exidx_entry(uint32_t second_word);
1281
1282   // Update the current section offset map during EXIDX section fix-up.
1283   // If there is no map, create one.  INPUT_OFFSET is the offset of a
1284   // reference point, DELETED_BYTES is the number of deleted by in the
1285   // section so far.  If DELETE_ENTRY is true, the reference point and
1286   // all offsets after the previous reference point are discarded.
1287   void
1288   update_offset_map(section_offset_type input_offset,
1289                     section_size_type deleted_bytes, bool delete_entry);
1290
1291   // EXIDX output section.
1292   Output_section* exidx_output_section_;
1293   // Unwind type of the last EXIDX entry processed.
1294   Unwind_type last_unwind_type_;
1295   // Last seen inlined EXIDX entry.
1296   uint32_t last_inlined_entry_;
1297   // Last processed EXIDX input section.
1298   const Arm_exidx_input_section* last_input_section_;
1299   // Section offset map created in process_exidx_section.
1300   Arm_exidx_section_offset_map* section_offset_map_;
1301   // Output section for the text section which is linked to the first exidx
1302   // input in output.
1303   Output_section* first_output_text_section_;
1304 };
1305
1306 // Arm output section class.  This is defined mainly to add a number of
1307 // stub generation methods.
1308
1309 template<bool big_endian>
1310 class Arm_output_section : public Output_section
1311 {
1312  public:
1313   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1314
1315   Arm_output_section(const char* name, elfcpp::Elf_Word type,
1316                      elfcpp::Elf_Xword flags)
1317     : Output_section(name, type, flags)
1318   { }
1319
1320   ~Arm_output_section()
1321   { }
1322   
1323   // Group input sections for stub generation.
1324   void
1325   group_sections(section_size_type, bool, Target_arm<big_endian>*);
1326
1327   // Downcast a base pointer to an Arm_output_section pointer.  This is
1328   // not type-safe but we only use Arm_output_section not the base class.
1329   static Arm_output_section<big_endian>*
1330   as_arm_output_section(Output_section* os)
1331   { return static_cast<Arm_output_section<big_endian>*>(os); }
1332
1333   // Append all input text sections in this into LIST.
1334   void
1335   append_text_sections_to_list(Text_section_list* list);
1336
1337   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1338   // is a list of text input sections sorted in ascending order of their
1339   // output addresses.
1340   void
1341   fix_exidx_coverage(Layout* layout,
1342                      const Text_section_list& sorted_text_section,
1343                      Symbol_table* symtab);
1344
1345  private:
1346   // For convenience.
1347   typedef Output_section::Input_section Input_section;
1348   typedef Output_section::Input_section_list Input_section_list;
1349
1350   // Create a stub group.
1351   void create_stub_group(Input_section_list::const_iterator,
1352                          Input_section_list::const_iterator,
1353                          Input_section_list::const_iterator,
1354                          Target_arm<big_endian>*,
1355                          std::vector<Output_relaxed_input_section*>*);
1356 };
1357
1358 // Arm_exidx_input_section class.  This represents an EXIDX input section.
1359
1360 class Arm_exidx_input_section
1361 {
1362  public:
1363   static const section_offset_type invalid_offset =
1364     static_cast<section_offset_type>(-1);
1365
1366   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1367                           unsigned int link, uint32_t size, uint32_t addralign)
1368     : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1369       addralign_(addralign)
1370   { }
1371
1372   ~Arm_exidx_input_section()
1373   { }
1374         
1375   // Accessors:  This is a read-only class.
1376
1377   // Return the object containing this EXIDX input section.
1378   Relobj*
1379   relobj() const
1380   { return this->relobj_; }
1381
1382   // Return the section index of this EXIDX input section.
1383   unsigned int
1384   shndx() const
1385   { return this->shndx_; }
1386
1387   // Return the section index of linked text section in the same object.
1388   unsigned int
1389   link() const
1390   { return this->link_; }
1391
1392   // Return size of the EXIDX input section.
1393   uint32_t
1394   size() const
1395   { return this->size_; }
1396
1397   // Reutnr address alignment of EXIDX input section.
1398   uint32_t
1399   addralign() const
1400   { return this->addralign_; }
1401
1402  private:
1403   // Object containing this.
1404   Relobj* relobj_;
1405   // Section index of this.
1406   unsigned int shndx_;
1407   // text section linked to this in the same object.
1408   unsigned int link_;
1409   // Size of this.  For ARM 32-bit is sufficient.
1410   uint32_t size_;
1411   // Address alignment of this.  For ARM 32-bit is sufficient.
1412   uint32_t addralign_;
1413 };
1414
1415 // Arm_relobj class.
1416
1417 template<bool big_endian>
1418 class Arm_relobj : public Sized_relobj<32, big_endian>
1419 {
1420  public:
1421   static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1422
1423   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1424              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1425     : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1426       stub_tables_(), local_symbol_is_thumb_function_(),
1427       attributes_section_data_(NULL), mapping_symbols_info_(),
1428       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1429       output_local_symbol_count_needs_update_(false),
1430       merge_flags_and_attributes_(true)
1431   { }
1432
1433   ~Arm_relobj()
1434   { delete this->attributes_section_data_; }
1435  
1436   // Return the stub table of the SHNDX-th section if there is one.
1437   Stub_table<big_endian>*
1438   stub_table(unsigned int shndx) const
1439   {
1440     gold_assert(shndx < this->stub_tables_.size());
1441     return this->stub_tables_[shndx];
1442   }
1443
1444   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1445   void
1446   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1447   {
1448     gold_assert(shndx < this->stub_tables_.size());
1449     this->stub_tables_[shndx] = stub_table;
1450   }
1451
1452   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1453   // index.  This is only valid after do_count_local_symbol is called.
1454   bool
1455   local_symbol_is_thumb_function(unsigned int r_sym) const
1456   {
1457     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1458     return this->local_symbol_is_thumb_function_[r_sym];
1459   }
1460   
1461   // Scan all relocation sections for stub generation.
1462   void
1463   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1464                           const Layout*);
1465
1466   // Convert regular input section with index SHNDX to a relaxed section.
1467   void
1468   convert_input_section_to_relaxed_section(unsigned shndx)
1469   {
1470     // The stubs have relocations and we need to process them after writing
1471     // out the stubs.  So relocation now must follow section write.
1472     this->set_section_offset(shndx, -1ULL);
1473     this->set_relocs_must_follow_section_writes();
1474   }
1475
1476   // Downcast a base pointer to an Arm_relobj pointer.  This is
1477   // not type-safe but we only use Arm_relobj not the base class.
1478   static Arm_relobj<big_endian>*
1479   as_arm_relobj(Relobj* relobj)
1480   { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1481
1482   // Processor-specific flags in ELF file header.  This is valid only after
1483   // reading symbols.
1484   elfcpp::Elf_Word
1485   processor_specific_flags() const
1486   { return this->processor_specific_flags_; }
1487
1488   // Attribute section data  This is the contents of the .ARM.attribute section
1489   // if there is one.
1490   const Attributes_section_data*
1491   attributes_section_data() const
1492   { return this->attributes_section_data_; }
1493
1494   // Mapping symbol location.
1495   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1496
1497   // Functor for STL container.
1498   struct Mapping_symbol_position_less
1499   {
1500     bool
1501     operator()(const Mapping_symbol_position& p1,
1502                const Mapping_symbol_position& p2) const
1503     {
1504       return (p1.first < p2.first
1505               || (p1.first == p2.first && p1.second < p2.second));
1506     }
1507   };
1508   
1509   // We only care about the first character of a mapping symbol, so
1510   // we only store that instead of the whole symbol name.
1511   typedef std::map<Mapping_symbol_position, char,
1512                    Mapping_symbol_position_less> Mapping_symbols_info;
1513
1514   // Whether a section contains any Cortex-A8 workaround.
1515   bool
1516   section_has_cortex_a8_workaround(unsigned int shndx) const
1517   { 
1518     return (this->section_has_cortex_a8_workaround_ != NULL
1519             && (*this->section_has_cortex_a8_workaround_)[shndx]);
1520   }
1521   
1522   // Mark a section that has Cortex-A8 workaround.
1523   void
1524   mark_section_for_cortex_a8_workaround(unsigned int shndx)
1525   {
1526     if (this->section_has_cortex_a8_workaround_ == NULL)
1527       this->section_has_cortex_a8_workaround_ =
1528         new std::vector<bool>(this->shnum(), false);
1529     (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1530   }
1531
1532   // Return the EXIDX section of an text section with index SHNDX or NULL
1533   // if the text section has no associated EXIDX section.
1534   const Arm_exidx_input_section*
1535   exidx_input_section_by_link(unsigned int shndx) const
1536   {
1537     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1538     return ((p != this->exidx_section_map_.end()
1539              && p->second->link() == shndx)
1540             ? p->second
1541             : NULL);
1542   }
1543
1544   // Return the EXIDX section with index SHNDX or NULL if there is none.
1545   const Arm_exidx_input_section*
1546   exidx_input_section_by_shndx(unsigned shndx) const
1547   {
1548     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1549     return ((p != this->exidx_section_map_.end()
1550              && p->second->shndx() == shndx)
1551             ? p->second
1552             : NULL);
1553   }
1554
1555   // Whether output local symbol count needs updating.
1556   bool
1557   output_local_symbol_count_needs_update() const
1558   { return this->output_local_symbol_count_needs_update_; }
1559
1560   // Set output_local_symbol_count_needs_update flag to be true.
1561   void
1562   set_output_local_symbol_count_needs_update()
1563   { this->output_local_symbol_count_needs_update_ = true; }
1564   
1565   // Update output local symbol count at the end of relaxation.
1566   void
1567   update_output_local_symbol_count();
1568
1569   // Whether we want to merge processor-specific flags and attributes.
1570   bool
1571   merge_flags_and_attributes() const
1572   { return this->merge_flags_and_attributes_; }
1573   
1574  protected:
1575   // Post constructor setup.
1576   void
1577   do_setup()
1578   {
1579     // Call parent's setup method.
1580     Sized_relobj<32, big_endian>::do_setup();
1581
1582     // Initialize look-up tables.
1583     Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1584     this->stub_tables_.swap(empty_stub_table_list);
1585   }
1586
1587   // Count the local symbols.
1588   void
1589   do_count_local_symbols(Stringpool_template<char>*,
1590                          Stringpool_template<char>*);
1591
1592   void
1593   do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1594                        const unsigned char* pshdrs,
1595                        typename Sized_relobj<32, big_endian>::Views* pivews);
1596
1597   // Read the symbol information.
1598   void
1599   do_read_symbols(Read_symbols_data* sd);
1600
1601   // Process relocs for garbage collection.
1602   void
1603   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1604
1605  private:
1606
1607   // Whether a section needs to be scanned for relocation stubs.
1608   bool
1609   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1610                                     const Relobj::Output_sections&,
1611                                     const Symbol_table *, const unsigned char*);
1612
1613   // Whether a section is a scannable text section.
1614   bool
1615   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1616                        const Output_section*, const Symbol_table *);
1617
1618   // Whether a section needs to be scanned for the Cortex-A8 erratum.
1619   bool
1620   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1621                                         unsigned int, Output_section*,
1622                                         const Symbol_table *);
1623
1624   // Scan a section for the Cortex-A8 erratum.
1625   void
1626   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1627                                      unsigned int, Output_section*,
1628                                      Target_arm<big_endian>*);
1629
1630   // Find the linked text section of an EXIDX section by looking at the
1631   // first reloction of the EXIDX section.  PSHDR points to the section
1632   // headers of a relocation section and PSYMS points to the local symbols.
1633   // PSHNDX points to a location storing the text section index if found.
1634   // Return whether we can find the linked section.
1635   bool
1636   find_linked_text_section(const unsigned char* pshdr,
1637                            const unsigned char* psyms, unsigned int* pshndx);
1638
1639   //
1640   // Make a new Arm_exidx_input_section object for EXIDX section with
1641   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1642   // index of the linked text section.
1643   void
1644   make_exidx_input_section(unsigned int shndx,
1645                            const elfcpp::Shdr<32, big_endian>& shdr,
1646                            unsigned int text_shndx);
1647
1648   // Return the output address of either a plain input section or a
1649   // relaxed input section.  SHNDX is the section index.
1650   Arm_address
1651   simple_input_section_output_address(unsigned int, Output_section*);
1652
1653   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1654   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1655     Exidx_section_map;
1656
1657   // List of stub tables.
1658   Stub_table_list stub_tables_;
1659   // Bit vector to tell if a local symbol is a thumb function or not.
1660   // This is only valid after do_count_local_symbol is called.
1661   std::vector<bool> local_symbol_is_thumb_function_;
1662   // processor-specific flags in ELF file header.
1663   elfcpp::Elf_Word processor_specific_flags_;
1664   // Object attributes if there is an .ARM.attributes section or NULL.
1665   Attributes_section_data* attributes_section_data_;
1666   // Mapping symbols information.
1667   Mapping_symbols_info mapping_symbols_info_;
1668   // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1669   std::vector<bool>* section_has_cortex_a8_workaround_;
1670   // Map a text section to its associated .ARM.exidx section, if there is one.
1671   Exidx_section_map exidx_section_map_;
1672   // Whether output local symbol count needs updating.
1673   bool output_local_symbol_count_needs_update_;
1674   // Whether we merge processor flags and attributes of this object to
1675   // output.
1676   bool merge_flags_and_attributes_;
1677 };
1678
1679 // Arm_dynobj class.
1680
1681 template<bool big_endian>
1682 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1683 {
1684  public:
1685   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1686              const elfcpp::Ehdr<32, big_endian>& ehdr)
1687     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1688       processor_specific_flags_(0), attributes_section_data_(NULL)
1689   { }
1690  
1691   ~Arm_dynobj()
1692   { delete this->attributes_section_data_; }
1693
1694   // Downcast a base pointer to an Arm_relobj pointer.  This is
1695   // not type-safe but we only use Arm_relobj not the base class.
1696   static Arm_dynobj<big_endian>*
1697   as_arm_dynobj(Dynobj* dynobj)
1698   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1699
1700   // Processor-specific flags in ELF file header.  This is valid only after
1701   // reading symbols.
1702   elfcpp::Elf_Word
1703   processor_specific_flags() const
1704   { return this->processor_specific_flags_; }
1705
1706   // Attributes section data.
1707   const Attributes_section_data*
1708   attributes_section_data() const
1709   { return this->attributes_section_data_; }
1710
1711  protected:
1712   // Read the symbol information.
1713   void
1714   do_read_symbols(Read_symbols_data* sd);
1715
1716  private:
1717   // processor-specific flags in ELF file header.
1718   elfcpp::Elf_Word processor_specific_flags_;
1719   // Object attributes if there is an .ARM.attributes section or NULL.
1720   Attributes_section_data* attributes_section_data_;
1721 };
1722
1723 // Functor to read reloc addends during stub generation.
1724
1725 template<int sh_type, bool big_endian>
1726 struct Stub_addend_reader
1727 {
1728   // Return the addend for a relocation of a particular type.  Depending
1729   // on whether this is a REL or RELA relocation, read the addend from a
1730   // view or from a Reloc object.
1731   elfcpp::Elf_types<32>::Elf_Swxword
1732   operator()(
1733     unsigned int /* r_type */,
1734     const unsigned char* /* view */,
1735     const typename Reloc_types<sh_type,
1736                                32, big_endian>::Reloc& /* reloc */) const;
1737 };
1738
1739 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1740
1741 template<bool big_endian>
1742 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1743 {
1744   elfcpp::Elf_types<32>::Elf_Swxword
1745   operator()(
1746     unsigned int,
1747     const unsigned char*,
1748     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1749 };
1750
1751 // Specialized Stub_addend_reader for RELA type relocation sections.
1752 // We currently do not handle RELA type relocation sections but it is trivial
1753 // to implement the addend reader.  This is provided for completeness and to
1754 // make it easier to add support for RELA relocation sections in the future.
1755
1756 template<bool big_endian>
1757 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1758 {
1759   elfcpp::Elf_types<32>::Elf_Swxword
1760   operator()(
1761     unsigned int,
1762     const unsigned char*,
1763     const typename Reloc_types<elfcpp::SHT_RELA, 32,
1764                                big_endian>::Reloc& reloc) const
1765   { return reloc.get_r_addend(); }
1766 };
1767
1768 // Cortex_a8_reloc class.  We keep record of relocation that may need
1769 // the Cortex-A8 erratum workaround.
1770
1771 class Cortex_a8_reloc
1772 {
1773  public:
1774   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1775                   Arm_address destination)
1776     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1777   { }
1778
1779   ~Cortex_a8_reloc()
1780   { }
1781
1782   // Accessors:  This is a read-only class.
1783   
1784   // Return the relocation stub associated with this relocation if there is
1785   // one.
1786   const Reloc_stub*
1787   reloc_stub() const
1788   { return this->reloc_stub_; } 
1789   
1790   // Return the relocation type.
1791   unsigned int
1792   r_type() const
1793   { return this->r_type_; }
1794
1795   // Return the destination address of the relocation.  LSB stores the THUMB
1796   // bit.
1797   Arm_address
1798   destination() const
1799   { return this->destination_; }
1800
1801  private:
1802   // Associated relocation stub if there is one, or NULL.
1803   const Reloc_stub* reloc_stub_;
1804   // Relocation type.
1805   unsigned int r_type_;
1806   // Destination address of this relocation.  LSB is used to distinguish
1807   // ARM/THUMB mode.
1808   Arm_address destination_;
1809 };
1810
1811 // Arm_output_data_got class.  We derive this from Output_data_got to add
1812 // extra methods to handle TLS relocations in a static link.
1813
1814 template<bool big_endian>
1815 class Arm_output_data_got : public Output_data_got<32, big_endian>
1816 {
1817  public:
1818   Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1819     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1820   { }
1821
1822   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1823   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1824   // applied in a static link.
1825   void
1826   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1827   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1828
1829   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1830   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1831   // relocation that needs to be applied in a static link.
1832   void
1833   add_static_reloc(unsigned int got_offset, unsigned int r_type,
1834                    Sized_relobj<32, big_endian>* relobj, unsigned int index)
1835   {
1836     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1837                                                 index));
1838   }
1839
1840   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1841   // The first one is initialized to be 1, which is the module index for
1842   // the main executable and the second one 0.  A reloc of the type
1843   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1844   // be applied by gold.  GSYM is a global symbol.
1845   void
1846   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1847
1848   // Same as the above but for a local symbol in OBJECT with INDEX.
1849   void
1850   add_tls_gd32_with_static_reloc(unsigned int got_type,
1851                                  Sized_relobj<32, big_endian>* object,
1852                                  unsigned int index);
1853
1854  protected:
1855   // Write out the GOT table.
1856   void
1857   do_write(Output_file*);
1858
1859  private:
1860   // This class represent dynamic relocations that need to be applied by
1861   // gold because we are using TLS relocations in a static link.
1862   class Static_reloc
1863   {
1864    public:
1865     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1866       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1867     { this->u_.global.symbol = gsym; }
1868
1869     Static_reloc(unsigned int got_offset, unsigned int r_type,
1870           Sized_relobj<32, big_endian>* relobj, unsigned int index)
1871       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1872     {
1873       this->u_.local.relobj = relobj;
1874       this->u_.local.index = index;
1875     }
1876
1877     // Return the GOT offset.
1878     unsigned int
1879     got_offset() const
1880     { return this->got_offset_; }
1881
1882     // Relocation type.
1883     unsigned int
1884     r_type() const
1885     { return this->r_type_; }
1886
1887     // Whether the symbol is global or not.
1888     bool
1889     symbol_is_global() const
1890     { return this->symbol_is_global_; }
1891
1892     // For a relocation against a global symbol, the global symbol.
1893     Symbol*
1894     symbol() const
1895     {
1896       gold_assert(this->symbol_is_global_);
1897       return this->u_.global.symbol;
1898     }
1899
1900     // For a relocation against a local symbol, the defining object.
1901     Sized_relobj<32, big_endian>*
1902     relobj() const
1903     {
1904       gold_assert(!this->symbol_is_global_);
1905       return this->u_.local.relobj;
1906     }
1907
1908     // For a relocation against a local symbol, the local symbol index.
1909     unsigned int
1910     index() const
1911     {
1912       gold_assert(!this->symbol_is_global_);
1913       return this->u_.local.index;
1914     }
1915
1916    private:
1917     // GOT offset of the entry to which this relocation is applied.
1918     unsigned int got_offset_;
1919     // Type of relocation.
1920     unsigned int r_type_;
1921     // Whether this relocation is against a global symbol.
1922     bool symbol_is_global_;
1923     // A global or local symbol.
1924     union
1925     {
1926       struct
1927       {
1928         // For a global symbol, the symbol itself.
1929         Symbol* symbol;
1930       } global;
1931       struct
1932       {
1933         // For a local symbol, the object defining object.
1934         Sized_relobj<32, big_endian>* relobj;
1935         // For a local symbol, the symbol index.
1936         unsigned int index;
1937       } local;
1938     } u_;
1939   };
1940
1941   // Symbol table of the output object.
1942   Symbol_table* symbol_table_;
1943   // Layout of the output object.
1944   Layout* layout_;
1945   // Static relocs to be applied to the GOT.
1946   std::vector<Static_reloc> static_relocs_;
1947 };
1948
1949 // Utilities for manipulating integers of up to 32-bits
1950
1951 namespace utils
1952 {
1953   // Sign extend an n-bit unsigned integer stored in an uint32_t into
1954   // an int32_t.  NO_BITS must be between 1 to 32.
1955   template<int no_bits>
1956   static inline int32_t
1957   sign_extend(uint32_t bits)
1958   {
1959     gold_assert(no_bits >= 0 && no_bits <= 32);
1960     if (no_bits == 32)
1961       return static_cast<int32_t>(bits);
1962     uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1963     bits &= mask;
1964     uint32_t top_bit = 1U << (no_bits - 1);
1965     int32_t as_signed = static_cast<int32_t>(bits);
1966     return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1967   }
1968
1969   // Detects overflow of an NO_BITS integer stored in a uint32_t.
1970   template<int no_bits>
1971   static inline bool
1972   has_overflow(uint32_t bits)
1973   {
1974     gold_assert(no_bits >= 0 && no_bits <= 32);
1975     if (no_bits == 32)
1976       return false;
1977     int32_t max = (1 << (no_bits - 1)) - 1;
1978     int32_t min = -(1 << (no_bits - 1));
1979     int32_t as_signed = static_cast<int32_t>(bits);
1980     return as_signed > max || as_signed < min;
1981   }
1982
1983   // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1984   // fits in the given number of bits as either a signed or unsigned value.
1985   // For example, has_signed_unsigned_overflow<8> would check
1986   // -128 <= bits <= 255
1987   template<int no_bits>
1988   static inline bool
1989   has_signed_unsigned_overflow(uint32_t bits)
1990   {
1991     gold_assert(no_bits >= 2 && no_bits <= 32);
1992     if (no_bits == 32)
1993       return false;
1994     int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1995     int32_t min = -(1 << (no_bits - 1));
1996     int32_t as_signed = static_cast<int32_t>(bits);
1997     return as_signed > max || as_signed < min;
1998   }
1999
2000   // Select bits from A and B using bits in MASK.  For each n in [0..31],
2001   // the n-th bit in the result is chosen from the n-th bits of A and B.
2002   // A zero selects A and a one selects B.
2003   static inline uint32_t
2004   bit_select(uint32_t a, uint32_t b, uint32_t mask)
2005   { return (a & ~mask) | (b & mask); }
2006 };
2007
2008 template<bool big_endian>
2009 class Target_arm : public Sized_target<32, big_endian>
2010 {
2011  public:
2012   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2013     Reloc_section;
2014
2015   // When were are relocating a stub, we pass this as the relocation number.
2016   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2017
2018   Target_arm()
2019     : Sized_target<32, big_endian>(&arm_info),
2020       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2021       copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
2022       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2023       stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2024       may_use_blx_(false), should_force_pic_veneer_(false),
2025       arm_input_section_map_(), attributes_section_data_(NULL),
2026       fix_cortex_a8_(false), cortex_a8_relocs_info_()
2027   { }
2028
2029   // Whether we can use BLX.
2030   bool
2031   may_use_blx() const
2032   { return this->may_use_blx_; }
2033
2034   // Set use-BLX flag.
2035   void
2036   set_may_use_blx(bool value)
2037   { this->may_use_blx_ = value; }
2038   
2039   // Whether we force PCI branch veneers.
2040   bool
2041   should_force_pic_veneer() const
2042   { return this->should_force_pic_veneer_; }
2043
2044   // Set PIC veneer flag.
2045   void
2046   set_should_force_pic_veneer(bool value)
2047   { this->should_force_pic_veneer_ = value; }
2048   
2049   // Whether we use THUMB-2 instructions.
2050   bool
2051   using_thumb2() const
2052   {
2053     Object_attribute* attr =
2054       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2055     int arch = attr->int_value();
2056     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2057   }
2058
2059   // Whether we use THUMB/THUMB-2 instructions only.
2060   bool
2061   using_thumb_only() const
2062   {
2063     Object_attribute* attr =
2064       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2065
2066     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2067         || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2068       return true;
2069     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2070         && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2071       return false;
2072     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2073     return attr->int_value() == 'M';
2074   }
2075
2076   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2077   bool
2078   may_use_arm_nop() const
2079   {
2080     Object_attribute* attr =
2081       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2082     int arch = attr->int_value();
2083     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2084             || arch == elfcpp::TAG_CPU_ARCH_V6K
2085             || arch == elfcpp::TAG_CPU_ARCH_V7
2086             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2087   }
2088
2089   // Whether we have THUMB-2 NOP.W instruction.
2090   bool
2091   may_use_thumb2_nop() const
2092   {
2093     Object_attribute* attr =
2094       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2095     int arch = attr->int_value();
2096     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2097             || arch == elfcpp::TAG_CPU_ARCH_V7
2098             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2099   }
2100   
2101   // Process the relocations to determine unreferenced sections for 
2102   // garbage collection.
2103   void
2104   gc_process_relocs(Symbol_table* symtab,
2105                     Layout* layout,
2106                     Sized_relobj<32, big_endian>* object,
2107                     unsigned int data_shndx,
2108                     unsigned int sh_type,
2109                     const unsigned char* prelocs,
2110                     size_t reloc_count,
2111                     Output_section* output_section,
2112                     bool needs_special_offset_handling,
2113                     size_t local_symbol_count,
2114                     const unsigned char* plocal_symbols);
2115
2116   // Scan the relocations to look for symbol adjustments.
2117   void
2118   scan_relocs(Symbol_table* symtab,
2119               Layout* layout,
2120               Sized_relobj<32, big_endian>* object,
2121               unsigned int data_shndx,
2122               unsigned int sh_type,
2123               const unsigned char* prelocs,
2124               size_t reloc_count,
2125               Output_section* output_section,
2126               bool needs_special_offset_handling,
2127               size_t local_symbol_count,
2128               const unsigned char* plocal_symbols);
2129
2130   // Finalize the sections.
2131   void
2132   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2133
2134   // Return the value to use for a dynamic symbol which requires special
2135   // treatment.
2136   uint64_t
2137   do_dynsym_value(const Symbol*) const;
2138
2139   // Relocate a section.
2140   void
2141   relocate_section(const Relocate_info<32, big_endian>*,
2142                    unsigned int sh_type,
2143                    const unsigned char* prelocs,
2144                    size_t reloc_count,
2145                    Output_section* output_section,
2146                    bool needs_special_offset_handling,
2147                    unsigned char* view,
2148                    Arm_address view_address,
2149                    section_size_type view_size,
2150                    const Reloc_symbol_changes*);
2151
2152   // Scan the relocs during a relocatable link.
2153   void
2154   scan_relocatable_relocs(Symbol_table* symtab,
2155                           Layout* layout,
2156                           Sized_relobj<32, big_endian>* object,
2157                           unsigned int data_shndx,
2158                           unsigned int sh_type,
2159                           const unsigned char* prelocs,
2160                           size_t reloc_count,
2161                           Output_section* output_section,
2162                           bool needs_special_offset_handling,
2163                           size_t local_symbol_count,
2164                           const unsigned char* plocal_symbols,
2165                           Relocatable_relocs*);
2166
2167   // Relocate a section during a relocatable link.
2168   void
2169   relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2170                            unsigned int sh_type,
2171                            const unsigned char* prelocs,
2172                            size_t reloc_count,
2173                            Output_section* output_section,
2174                            off_t offset_in_output_section,
2175                            const Relocatable_relocs*,
2176                            unsigned char* view,
2177                            Arm_address view_address,
2178                            section_size_type view_size,
2179                            unsigned char* reloc_view,
2180                            section_size_type reloc_view_size);
2181
2182   // Return whether SYM is defined by the ABI.
2183   bool
2184   do_is_defined_by_abi(Symbol* sym) const
2185   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2186
2187   // Return whether there is a GOT section.
2188   bool
2189   has_got_section() const
2190   { return this->got_ != NULL; }
2191
2192   // Return the size of the GOT section.
2193   section_size_type
2194   got_size()
2195   {
2196     gold_assert(this->got_ != NULL);
2197     return this->got_->data_size();
2198   }
2199
2200   // Map platform-specific reloc types
2201   static unsigned int
2202   get_real_reloc_type (unsigned int r_type);
2203
2204   //
2205   // Methods to support stub-generations.
2206   //
2207   
2208   // Return the stub factory
2209   const Stub_factory&
2210   stub_factory() const
2211   { return this->stub_factory_; }
2212
2213   // Make a new Arm_input_section object.
2214   Arm_input_section<big_endian>*
2215   new_arm_input_section(Relobj*, unsigned int);
2216
2217   // Find the Arm_input_section object corresponding to the SHNDX-th input
2218   // section of RELOBJ.
2219   Arm_input_section<big_endian>*
2220   find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2221
2222   // Make a new Stub_table
2223   Stub_table<big_endian>*
2224   new_stub_table(Arm_input_section<big_endian>*);
2225
2226   // Scan a section for stub generation.
2227   void
2228   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2229                          const unsigned char*, size_t, Output_section*,
2230                          bool, const unsigned char*, Arm_address,
2231                          section_size_type);
2232
2233   // Relocate a stub. 
2234   void
2235   relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2236                 Output_section*, unsigned char*, Arm_address,
2237                 section_size_type);
2238  
2239   // Get the default ARM target.
2240   static Target_arm<big_endian>*
2241   default_target()
2242   {
2243     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2244                 && parameters->target().is_big_endian() == big_endian);
2245     return static_cast<Target_arm<big_endian>*>(
2246              parameters->sized_target<32, big_endian>());
2247   }
2248
2249   // Whether NAME belongs to a mapping symbol.
2250   static bool
2251   is_mapping_symbol_name(const char* name)
2252   {
2253     return (name
2254             && name[0] == '$'
2255             && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2256             && (name[2] == '\0' || name[2] == '.'));
2257   }
2258
2259   // Whether we work around the Cortex-A8 erratum.
2260   bool
2261   fix_cortex_a8() const
2262   { return this->fix_cortex_a8_; }
2263
2264   // Whether we fix R_ARM_V4BX relocation.
2265   // 0 - do not fix
2266   // 1 - replace with MOV instruction (armv4 target)
2267   // 2 - make interworking veneer (>= armv4t targets only)
2268   General_options::Fix_v4bx
2269   fix_v4bx() const
2270   { return parameters->options().fix_v4bx(); }
2271
2272   // Scan a span of THUMB code section for Cortex-A8 erratum.
2273   void
2274   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2275                                   section_size_type, section_size_type,
2276                                   const unsigned char*, Arm_address);
2277
2278   // Apply Cortex-A8 workaround to a branch.
2279   void
2280   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2281                              unsigned char*, Arm_address);
2282
2283  protected:
2284   // Make an ELF object.
2285   Object*
2286   do_make_elf_object(const std::string&, Input_file*, off_t,
2287                      const elfcpp::Ehdr<32, big_endian>& ehdr);
2288
2289   Object*
2290   do_make_elf_object(const std::string&, Input_file*, off_t,
2291                      const elfcpp::Ehdr<32, !big_endian>&)
2292   { gold_unreachable(); }
2293
2294   Object*
2295   do_make_elf_object(const std::string&, Input_file*, off_t,
2296                       const elfcpp::Ehdr<64, false>&)
2297   { gold_unreachable(); }
2298
2299   Object*
2300   do_make_elf_object(const std::string&, Input_file*, off_t,
2301                      const elfcpp::Ehdr<64, true>&)
2302   { gold_unreachable(); }
2303
2304   // Make an output section.
2305   Output_section*
2306   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2307                          elfcpp::Elf_Xword flags)
2308   { return new Arm_output_section<big_endian>(name, type, flags); }
2309
2310   void
2311   do_adjust_elf_header(unsigned char* view, int len) const;
2312
2313   // We only need to generate stubs, and hence perform relaxation if we are
2314   // not doing relocatable linking.
2315   bool
2316   do_may_relax() const
2317   { return !parameters->options().relocatable(); }
2318
2319   bool
2320   do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2321
2322   // Determine whether an object attribute tag takes an integer, a
2323   // string or both.
2324   int
2325   do_attribute_arg_type(int tag) const;
2326
2327   // Reorder tags during output.
2328   int
2329   do_attributes_order(int num) const;
2330
2331   // This is called when the target is selected as the default.
2332   void
2333   do_select_as_default_target()
2334   {
2335     // No locking is required since there should only be one default target.
2336     // We cannot have both the big-endian and little-endian ARM targets
2337     // as the default.
2338     gold_assert(arm_reloc_property_table == NULL);
2339     arm_reloc_property_table = new Arm_reloc_property_table();
2340   }
2341
2342  private:
2343   // The class which scans relocations.
2344   class Scan
2345   {
2346    public:
2347     Scan()
2348       : issued_non_pic_error_(false)
2349     { }
2350
2351     inline void
2352     local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2353           Sized_relobj<32, big_endian>* object,
2354           unsigned int data_shndx,
2355           Output_section* output_section,
2356           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2357           const elfcpp::Sym<32, big_endian>& lsym);
2358
2359     inline void
2360     global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2361            Sized_relobj<32, big_endian>* object,
2362            unsigned int data_shndx,
2363            Output_section* output_section,
2364            const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2365            Symbol* gsym);
2366
2367     inline bool
2368     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2369                                         Sized_relobj<32, big_endian>* ,
2370                                         unsigned int ,
2371                                         Output_section* ,
2372                                         const elfcpp::Rel<32, big_endian>& ,
2373                                         unsigned int ,
2374                                         const elfcpp::Sym<32, big_endian>&)
2375     { return false; }
2376
2377     inline bool
2378     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2379                                          Sized_relobj<32, big_endian>* ,
2380                                          unsigned int ,
2381                                          Output_section* ,
2382                                          const elfcpp::Rel<32, big_endian>& ,
2383                                          unsigned int , Symbol*)
2384     { return false; }
2385
2386    private:
2387     static void
2388     unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2389                             unsigned int r_type);
2390
2391     static void
2392     unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2393                              unsigned int r_type, Symbol*);
2394
2395     void
2396     check_non_pic(Relobj*, unsigned int r_type);
2397
2398     // Almost identical to Symbol::needs_plt_entry except that it also
2399     // handles STT_ARM_TFUNC.
2400     static bool
2401     symbol_needs_plt_entry(const Symbol* sym)
2402     {
2403       // An undefined symbol from an executable does not need a PLT entry.
2404       if (sym->is_undefined() && !parameters->options().shared())
2405         return false;
2406
2407       return (!parameters->doing_static_link()
2408               && (sym->type() == elfcpp::STT_FUNC
2409                   || sym->type() == elfcpp::STT_ARM_TFUNC)
2410               && (sym->is_from_dynobj()
2411                   || sym->is_undefined()
2412                   || sym->is_preemptible()));
2413     }
2414
2415     // Whether we have issued an error about a non-PIC compilation.
2416     bool issued_non_pic_error_;
2417   };
2418
2419   // The class which implements relocation.
2420   class Relocate
2421   {
2422    public:
2423     Relocate()
2424     { }
2425
2426     ~Relocate()
2427     { }
2428
2429     // Return whether the static relocation needs to be applied.
2430     inline bool
2431     should_apply_static_reloc(const Sized_symbol<32>* gsym,
2432                               int ref_flags,
2433                               bool is_32bit,
2434                               Output_section* output_section);
2435
2436     // Do a relocation.  Return false if the caller should not issue
2437     // any warnings about this relocation.
2438     inline bool
2439     relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2440              Output_section*,  size_t relnum,
2441              const elfcpp::Rel<32, big_endian>&,
2442              unsigned int r_type, const Sized_symbol<32>*,
2443              const Symbol_value<32>*,
2444              unsigned char*, Arm_address,
2445              section_size_type);
2446
2447     // Return whether we want to pass flag NON_PIC_REF for this
2448     // reloc.  This means the relocation type accesses a symbol not via
2449     // GOT or PLT.
2450     static inline bool
2451     reloc_is_non_pic (unsigned int r_type)
2452     {
2453       switch (r_type)
2454         {
2455         // These relocation types reference GOT or PLT entries explicitly.
2456         case elfcpp::R_ARM_GOT_BREL:
2457         case elfcpp::R_ARM_GOT_ABS:
2458         case elfcpp::R_ARM_GOT_PREL:
2459         case elfcpp::R_ARM_GOT_BREL12:
2460         case elfcpp::R_ARM_PLT32_ABS:
2461         case elfcpp::R_ARM_TLS_GD32:
2462         case elfcpp::R_ARM_TLS_LDM32:
2463         case elfcpp::R_ARM_TLS_IE32:
2464         case elfcpp::R_ARM_TLS_IE12GP:
2465
2466         // These relocate types may use PLT entries.
2467         case elfcpp::R_ARM_CALL:
2468         case elfcpp::R_ARM_THM_CALL:
2469         case elfcpp::R_ARM_JUMP24:
2470         case elfcpp::R_ARM_THM_JUMP24:
2471         case elfcpp::R_ARM_THM_JUMP19:
2472         case elfcpp::R_ARM_PLT32:
2473         case elfcpp::R_ARM_THM_XPC22:
2474         case elfcpp::R_ARM_PREL31:
2475         case elfcpp::R_ARM_SBREL31:
2476           return false;
2477
2478         default:
2479           return true;
2480         }
2481     }
2482
2483    private:
2484     // Do a TLS relocation.
2485     inline typename Arm_relocate_functions<big_endian>::Status
2486     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2487                  size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2488                  const Sized_symbol<32>*, const Symbol_value<32>*,
2489                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2490                  section_size_type);
2491
2492   };
2493
2494   // A class which returns the size required for a relocation type,
2495   // used while scanning relocs during a relocatable link.
2496   class Relocatable_size_for_reloc
2497   {
2498    public:
2499     unsigned int
2500     get_size_for_reloc(unsigned int, Relobj*);
2501   };
2502
2503   // Adjust TLS relocation type based on the options and whether this
2504   // is a local symbol.
2505   static tls::Tls_optimization
2506   optimize_tls_reloc(bool is_final, int r_type);
2507
2508   // Get the GOT section, creating it if necessary.
2509   Arm_output_data_got<big_endian>*
2510   got_section(Symbol_table*, Layout*);
2511
2512   // Get the GOT PLT section.
2513   Output_data_space*
2514   got_plt_section() const
2515   {
2516     gold_assert(this->got_plt_ != NULL);
2517     return this->got_plt_;
2518   }
2519
2520   // Create a PLT entry for a global symbol.
2521   void
2522   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2523
2524   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2525   void
2526   define_tls_base_symbol(Symbol_table*, Layout*);
2527
2528   // Create a GOT entry for the TLS module index.
2529   unsigned int
2530   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2531                       Sized_relobj<32, big_endian>* object);
2532
2533   // Get the PLT section.
2534   const Output_data_plt_arm<big_endian>*
2535   plt_section() const
2536   {
2537     gold_assert(this->plt_ != NULL);
2538     return this->plt_;
2539   }
2540
2541   // Get the dynamic reloc section, creating it if necessary.
2542   Reloc_section*
2543   rel_dyn_section(Layout*);
2544
2545   // Get the section to use for TLS_DESC relocations.
2546   Reloc_section*
2547   rel_tls_desc_section(Layout*) const;
2548
2549   // Return true if the symbol may need a COPY relocation.
2550   // References from an executable object to non-function symbols
2551   // defined in a dynamic object may need a COPY relocation.
2552   bool
2553   may_need_copy_reloc(Symbol* gsym)
2554   {
2555     return (gsym->type() != elfcpp::STT_ARM_TFUNC
2556             && gsym->may_need_copy_reloc());
2557   }
2558
2559   // Add a potential copy relocation.
2560   void
2561   copy_reloc(Symbol_table* symtab, Layout* layout,
2562              Sized_relobj<32, big_endian>* object,
2563              unsigned int shndx, Output_section* output_section,
2564              Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2565   {
2566     this->copy_relocs_.copy_reloc(symtab, layout,
2567                                   symtab->get_sized_symbol<32>(sym),
2568                                   object, shndx, output_section, reloc,
2569                                   this->rel_dyn_section(layout));
2570   }
2571
2572   // Whether two EABI versions are compatible.
2573   static bool
2574   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2575
2576   // Merge processor-specific flags from input object and those in the ELF
2577   // header of the output.
2578   void
2579   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2580
2581   // Get the secondary compatible architecture.
2582   static int
2583   get_secondary_compatible_arch(const Attributes_section_data*);
2584
2585   // Set the secondary compatible architecture.
2586   static void
2587   set_secondary_compatible_arch(Attributes_section_data*, int);
2588
2589   static int
2590   tag_cpu_arch_combine(const char*, int, int*, int, int);
2591
2592   // Helper to print AEABI enum tag value.
2593   static std::string
2594   aeabi_enum_name(unsigned int);
2595
2596   // Return string value for TAG_CPU_name.
2597   static std::string
2598   tag_cpu_name_value(unsigned int);
2599
2600   // Merge object attributes from input object and those in the output.
2601   void
2602   merge_object_attributes(const char*, const Attributes_section_data*);
2603
2604   // Helper to get an AEABI object attribute
2605   Object_attribute*
2606   get_aeabi_object_attribute(int tag) const
2607   {
2608     Attributes_section_data* pasd = this->attributes_section_data_;
2609     gold_assert(pasd != NULL);
2610     Object_attribute* attr =
2611       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2612     gold_assert(attr != NULL);
2613     return attr;
2614   }
2615
2616   //
2617   // Methods to support stub-generations.
2618   //
2619
2620   // Group input sections for stub generation.
2621   void
2622   group_sections(Layout*, section_size_type, bool);
2623
2624   // Scan a relocation for stub generation.
2625   void
2626   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2627                       const Sized_symbol<32>*, unsigned int,
2628                       const Symbol_value<32>*,
2629                       elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2630
2631   // Scan a relocation section for stub.
2632   template<int sh_type>
2633   void
2634   scan_reloc_section_for_stubs(
2635       const Relocate_info<32, big_endian>* relinfo,
2636       const unsigned char* prelocs,
2637       size_t reloc_count,
2638       Output_section* output_section,
2639       bool needs_special_offset_handling,
2640       const unsigned char* view,
2641       elfcpp::Elf_types<32>::Elf_Addr view_address,
2642       section_size_type);
2643
2644   // Fix .ARM.exidx section coverage.
2645   void
2646   fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2647
2648   // Functors for STL set.
2649   struct output_section_address_less_than
2650   {
2651     bool
2652     operator()(const Output_section* s1, const Output_section* s2) const
2653     { return s1->address() < s2->address(); }
2654   };
2655
2656   // Information about this specific target which we pass to the
2657   // general Target structure.
2658   static const Target::Target_info arm_info;
2659
2660   // The types of GOT entries needed for this platform.
2661   enum Got_type
2662   {
2663     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2664     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2665     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2666     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2667     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2668   };
2669
2670   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2671
2672   // Map input section to Arm_input_section.
2673   typedef Unordered_map<Section_id,
2674                         Arm_input_section<big_endian>*,
2675                         Section_id_hash>
2676           Arm_input_section_map;
2677     
2678   // Map output addresses to relocs for Cortex-A8 erratum.
2679   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2680           Cortex_a8_relocs_info;
2681
2682   // The GOT section.
2683   Arm_output_data_got<big_endian>* got_;
2684   // The PLT section.
2685   Output_data_plt_arm<big_endian>* plt_;
2686   // The GOT PLT section.
2687   Output_data_space* got_plt_;
2688   // The dynamic reloc section.
2689   Reloc_section* rel_dyn_;
2690   // Relocs saved to avoid a COPY reloc.
2691   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2692   // Space for variables copied with a COPY reloc.
2693   Output_data_space* dynbss_;
2694   // Offset of the GOT entry for the TLS module index.
2695   unsigned int got_mod_index_offset_;
2696   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2697   bool tls_base_symbol_defined_;
2698   // Vector of Stub_tables created.
2699   Stub_table_list stub_tables_;
2700   // Stub factory.
2701   const Stub_factory &stub_factory_;
2702   // Whether we can use BLX.
2703   bool may_use_blx_;
2704   // Whether we force PIC branch veneers.
2705   bool should_force_pic_veneer_;
2706   // Map for locating Arm_input_sections.
2707   Arm_input_section_map arm_input_section_map_;
2708   // Attributes section data in output.
2709   Attributes_section_data* attributes_section_data_;
2710   // Whether we want to fix code for Cortex-A8 erratum.
2711   bool fix_cortex_a8_;
2712   // Map addresses to relocs for Cortex-A8 erratum.
2713   Cortex_a8_relocs_info cortex_a8_relocs_info_;
2714 };
2715
2716 template<bool big_endian>
2717 const Target::Target_info Target_arm<big_endian>::arm_info =
2718 {
2719   32,                   // size
2720   big_endian,           // is_big_endian
2721   elfcpp::EM_ARM,       // machine_code
2722   false,                // has_make_symbol
2723   false,                // has_resolve
2724   false,                // has_code_fill
2725   true,                 // is_default_stack_executable
2726   '\0',                 // wrap_char
2727   "/usr/lib/libc.so.1", // dynamic_linker
2728   0x8000,               // default_text_segment_address
2729   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2730   0x1000,               // common_pagesize (overridable by -z common-page-size)
2731   elfcpp::SHN_UNDEF,    // small_common_shndx
2732   elfcpp::SHN_UNDEF,    // large_common_shndx
2733   0,                    // small_common_section_flags
2734   0,                    // large_common_section_flags
2735   ".ARM.attributes",    // attributes_section
2736   "aeabi"               // attributes_vendor
2737 };
2738
2739 // Arm relocate functions class
2740 //
2741
2742 template<bool big_endian>
2743 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2744 {
2745  public:
2746   typedef enum
2747   {
2748     STATUS_OKAY,        // No error during relocation.
2749     STATUS_OVERFLOW,    // Relocation oveflow.
2750     STATUS_BAD_RELOC    // Relocation cannot be applied.
2751   } Status;
2752
2753  private:
2754   typedef Relocate_functions<32, big_endian> Base;
2755   typedef Arm_relocate_functions<big_endian> This;
2756
2757   // Encoding of imm16 argument for movt and movw ARM instructions
2758   // from ARM ARM:
2759   //     
2760   //     imm16 := imm4 | imm12
2761   //
2762   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2763   // +-------+---------------+-------+-------+-----------------------+
2764   // |       |               |imm4   |       |imm12                  |
2765   // +-------+---------------+-------+-------+-----------------------+
2766
2767   // Extract the relocation addend from VAL based on the ARM
2768   // instruction encoding described above.
2769   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2770   extract_arm_movw_movt_addend(
2771       typename elfcpp::Swap<32, big_endian>::Valtype val)
2772   {
2773     // According to the Elf ABI for ARM Architecture the immediate
2774     // field is sign-extended to form the addend.
2775     return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2776   }
2777
2778   // Insert X into VAL based on the ARM instruction encoding described
2779   // above.
2780   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2781   insert_val_arm_movw_movt(
2782       typename elfcpp::Swap<32, big_endian>::Valtype val,
2783       typename elfcpp::Swap<32, big_endian>::Valtype x)
2784   {
2785     val &= 0xfff0f000;
2786     val |= x & 0x0fff;
2787     val |= (x & 0xf000) << 4;
2788     return val;
2789   }
2790
2791   // Encoding of imm16 argument for movt and movw Thumb2 instructions
2792   // from ARM ARM:
2793   //     
2794   //     imm16 := imm4 | i | imm3 | imm8
2795   //
2796   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
2797   // +---------+-+-----------+-------++-+-----+-------+---------------+
2798   // |         |i|           |imm4   || |imm3 |       |imm8           |
2799   // +---------+-+-----------+-------++-+-----+-------+---------------+
2800
2801   // Extract the relocation addend from VAL based on the Thumb2
2802   // instruction encoding described above.
2803   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2804   extract_thumb_movw_movt_addend(
2805       typename elfcpp::Swap<32, big_endian>::Valtype val)
2806   {
2807     // According to the Elf ABI for ARM Architecture the immediate
2808     // field is sign-extended to form the addend.
2809     return utils::sign_extend<16>(((val >> 4) & 0xf000)
2810                                   | ((val >> 15) & 0x0800)
2811                                   | ((val >> 4) & 0x0700)
2812                                   | (val & 0x00ff));
2813   }
2814
2815   // Insert X into VAL based on the Thumb2 instruction encoding
2816   // described above.
2817   static inline typename elfcpp::Swap<32, big_endian>::Valtype
2818   insert_val_thumb_movw_movt(
2819       typename elfcpp::Swap<32, big_endian>::Valtype val,
2820       typename elfcpp::Swap<32, big_endian>::Valtype x)
2821   {
2822     val &= 0xfbf08f00;
2823     val |= (x & 0xf000) << 4;
2824     val |= (x & 0x0800) << 15;
2825     val |= (x & 0x0700) << 4;
2826     val |= (x & 0x00ff);
2827     return val;
2828   }
2829
2830   // Calculate the smallest constant Kn for the specified residual.
2831   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2832   static uint32_t
2833   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2834   {
2835     int32_t msb;
2836
2837     if (residual == 0)
2838       return 0;
2839     // Determine the most significant bit in the residual and
2840     // align the resulting value to a 2-bit boundary.
2841     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2842       ;
2843     // The desired shift is now (msb - 6), or zero, whichever
2844     // is the greater.
2845     return (((msb - 6) < 0) ? 0 : (msb - 6));
2846   }
2847
2848   // Calculate the final residual for the specified group index.
2849   // If the passed group index is less than zero, the method will return
2850   // the value of the specified residual without any change.
2851   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2852   static typename elfcpp::Swap<32, big_endian>::Valtype
2853   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2854                     const int group)
2855   {
2856     for (int n = 0; n <= group; n++)
2857       {
2858         // Calculate which part of the value to mask.
2859         uint32_t shift = calc_grp_kn(residual);
2860         // Calculate the residual for the next time around.
2861         residual &= ~(residual & (0xff << shift));
2862       }
2863
2864     return residual;
2865   }
2866
2867   // Calculate the value of Gn for the specified group index.
2868   // We return it in the form of an encoded constant-and-rotation.
2869   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2870   static typename elfcpp::Swap<32, big_endian>::Valtype
2871   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2872               const int group)
2873   {
2874     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2875     uint32_t shift = 0;
2876
2877     for (int n = 0; n <= group; n++)
2878       {
2879         // Calculate which part of the value to mask.
2880         shift = calc_grp_kn(residual);
2881         // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2882         gn = residual & (0xff << shift);
2883         // Calculate the residual for the next time around.
2884         residual &= ~gn;
2885       }
2886     // Return Gn in the form of an encoded constant-and-rotation.
2887     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2888   }
2889
2890  public:
2891   // Handle ARM long branches.
2892   static typename This::Status
2893   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2894                     unsigned char *, const Sized_symbol<32>*,
2895                     const Arm_relobj<big_endian>*, unsigned int,
2896                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
2897
2898   // Handle THUMB long branches.
2899   static typename This::Status
2900   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2901                       unsigned char *, const Sized_symbol<32>*,
2902                       const Arm_relobj<big_endian>*, unsigned int,
2903                       const Symbol_value<32>*, Arm_address, Arm_address, bool);
2904
2905
2906   // Return the branch offset of a 32-bit THUMB branch.
2907   static inline int32_t
2908   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2909   {
2910     // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2911     // involving the J1 and J2 bits.
2912     uint32_t s = (upper_insn & (1U << 10)) >> 10;
2913     uint32_t upper = upper_insn & 0x3ffU;
2914     uint32_t lower = lower_insn & 0x7ffU;
2915     uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
2916     uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
2917     uint32_t i1 = j1 ^ s ? 0 : 1;
2918     uint32_t i2 = j2 ^ s ? 0 : 1;
2919
2920     return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
2921                                   | (upper << 12) | (lower << 1));
2922   }
2923
2924   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2925   // UPPER_INSN is the original upper instruction of the branch.  Caller is
2926   // responsible for overflow checking and BLX offset adjustment.
2927   static inline uint16_t
2928   thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
2929   {
2930     uint32_t s = offset < 0 ? 1 : 0;
2931     uint32_t bits = static_cast<uint32_t>(offset);
2932     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
2933   }
2934
2935   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2936   // LOWER_INSN is the original lower instruction of the branch.  Caller is
2937   // responsible for overflow checking and BLX offset adjustment.
2938   static inline uint16_t
2939   thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
2940   {
2941     uint32_t s = offset < 0 ? 1 : 0;
2942     uint32_t bits = static_cast<uint32_t>(offset);
2943     return ((lower_insn & ~0x2fffU)
2944             | ((((bits >> 23) & 1) ^ !s) << 13)
2945             | ((((bits >> 22) & 1) ^ !s) << 11)
2946             | ((bits >> 1) & 0x7ffU));
2947   }
2948
2949   // Return the branch offset of a 32-bit THUMB conditional branch.
2950   static inline int32_t
2951   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2952   {
2953     uint32_t s = (upper_insn & 0x0400U) >> 10;
2954     uint32_t j1 = (lower_insn & 0x2000U) >> 13;
2955     uint32_t j2 = (lower_insn & 0x0800U) >> 11;
2956     uint32_t lower = (lower_insn & 0x07ffU);
2957     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
2958
2959     return utils::sign_extend<21>((upper << 12) | (lower << 1));
2960   }
2961
2962   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2963   // instruction.  UPPER_INSN is the original upper instruction of the branch.
2964   // Caller is responsible for overflow checking.
2965   static inline uint16_t
2966   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
2967   {
2968     uint32_t s = offset < 0 ? 1 : 0;
2969     uint32_t bits = static_cast<uint32_t>(offset);
2970     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
2971   }
2972
2973   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2974   // instruction.  LOWER_INSN is the original lower instruction of the branch.
2975   // Caller is reponsible for overflow checking.
2976   static inline uint16_t
2977   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
2978   {
2979     uint32_t bits = static_cast<uint32_t>(offset);
2980     uint32_t j2 = (bits & 0x00080000U) >> 19;
2981     uint32_t j1 = (bits & 0x00040000U) >> 18;
2982     uint32_t lo = (bits & 0x00000ffeU) >> 1;
2983
2984     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
2985   }
2986
2987   // R_ARM_ABS8: S + A
2988   static inline typename This::Status
2989   abs8(unsigned char *view,
2990        const Sized_relobj<32, big_endian>* object,
2991        const Symbol_value<32>* psymval)
2992   {
2993     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
2994     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2995     Valtype* wv = reinterpret_cast<Valtype*>(view);
2996     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
2997     Reltype addend = utils::sign_extend<8>(val);
2998     Reltype x = psymval->value(object, addend);
2999     val = utils::bit_select(val, x, 0xffU);
3000     elfcpp::Swap<8, big_endian>::writeval(wv, val);
3001
3002     // R_ARM_ABS8 permits signed or unsigned results.
3003     int signed_x = static_cast<int32_t>(x);
3004     return ((signed_x < -128 || signed_x > 255)
3005             ? This::STATUS_OVERFLOW
3006             : This::STATUS_OKAY);
3007   }
3008
3009   // R_ARM_THM_ABS5: S + A
3010   static inline typename This::Status
3011   thm_abs5(unsigned char *view,
3012        const Sized_relobj<32, big_endian>* object,
3013        const Symbol_value<32>* psymval)
3014   {
3015     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3016     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3017     Valtype* wv = reinterpret_cast<Valtype*>(view);
3018     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3019     Reltype addend = (val & 0x7e0U) >> 6;
3020     Reltype x = psymval->value(object, addend);
3021     val = utils::bit_select(val, x << 6, 0x7e0U);
3022     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3023
3024     // R_ARM_ABS16 permits signed or unsigned results.
3025     int signed_x = static_cast<int32_t>(x);
3026     return ((signed_x < -32768 || signed_x > 65535)
3027             ? This::STATUS_OVERFLOW
3028             : This::STATUS_OKAY);
3029   }
3030
3031   // R_ARM_ABS12: S + A
3032   static inline typename This::Status
3033   abs12(unsigned char *view,
3034         const Sized_relobj<32, big_endian>* object,
3035         const Symbol_value<32>* psymval)
3036   {
3037     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3038     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3039     Valtype* wv = reinterpret_cast<Valtype*>(view);
3040     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3041     Reltype addend = val & 0x0fffU;
3042     Reltype x = psymval->value(object, addend);
3043     val = utils::bit_select(val, x, 0x0fffU);
3044     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3045     return (utils::has_overflow<12>(x)
3046             ? This::STATUS_OVERFLOW
3047             : This::STATUS_OKAY);
3048   }
3049
3050   // R_ARM_ABS16: S + A
3051   static inline typename This::Status
3052   abs16(unsigned char *view,
3053         const Sized_relobj<32, big_endian>* object,
3054         const Symbol_value<32>* psymval)
3055   {
3056     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3057     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3058     Valtype* wv = reinterpret_cast<Valtype*>(view);
3059     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3060     Reltype addend = utils::sign_extend<16>(val);
3061     Reltype x = psymval->value(object, addend);
3062     val = utils::bit_select(val, x, 0xffffU);
3063     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3064     return (utils::has_signed_unsigned_overflow<16>(x)
3065             ? This::STATUS_OVERFLOW
3066             : This::STATUS_OKAY);
3067   }
3068
3069   // R_ARM_ABS32: (S + A) | T
3070   static inline typename This::Status
3071   abs32(unsigned char *view,
3072         const Sized_relobj<32, big_endian>* object,
3073         const Symbol_value<32>* psymval,
3074         Arm_address thumb_bit)
3075   {
3076     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3077     Valtype* wv = reinterpret_cast<Valtype*>(view);
3078     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3079     Valtype x = psymval->value(object, addend) | thumb_bit;
3080     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3081     return This::STATUS_OKAY;
3082   }
3083
3084   // R_ARM_REL32: (S + A) | T - P
3085   static inline typename This::Status
3086   rel32(unsigned char *view,
3087         const Sized_relobj<32, big_endian>* object,
3088         const Symbol_value<32>* psymval,
3089         Arm_address address,
3090         Arm_address thumb_bit)
3091   {
3092     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3093     Valtype* wv = reinterpret_cast<Valtype*>(view);
3094     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3095     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3096     elfcpp::Swap<32, big_endian>::writeval(wv, x);
3097     return This::STATUS_OKAY;
3098   }
3099
3100   // R_ARM_THM_JUMP24: (S + A) | T - P
3101   static typename This::Status
3102   thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3103              const Symbol_value<32>* psymval, Arm_address address,
3104              Arm_address thumb_bit);
3105
3106   // R_ARM_THM_JUMP6: S + A â€“ P
3107   static inline typename This::Status
3108   thm_jump6(unsigned char *view,
3109             const Sized_relobj<32, big_endian>* object,
3110             const Symbol_value<32>* psymval,
3111             Arm_address address)
3112   {
3113     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3114     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3115     Valtype* wv = reinterpret_cast<Valtype*>(view);
3116     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3117     // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3118     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3119     Reltype x = (psymval->value(object, addend) - address);
3120     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3121     elfcpp::Swap<16, big_endian>::writeval(wv, val);
3122     // CZB does only forward jumps.
3123     return ((x > 0x007e)
3124             ? This::STATUS_OVERFLOW
3125             : This::STATUS_OKAY);
3126   }
3127
3128   // R_ARM_THM_JUMP8: S + A â€“ P
3129   static inline typename This::Status
3130   thm_jump8(unsigned char *view,
3131             const Sized_relobj<32, big_endian>* object,
3132             const Symbol_value<32>* psymval,
3133             Arm_address address)
3134   {
3135     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3136     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3137     Valtype* wv = reinterpret_cast<Valtype*>(view);
3138     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3139     Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3140     Reltype x = (psymval->value(object, addend) - address);
3141     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3142     return (utils::has_overflow<8>(x)
3143             ? This::STATUS_OVERFLOW
3144             : This::STATUS_OKAY);
3145   }
3146
3147   // R_ARM_THM_JUMP11: S + A â€“ P
3148   static inline typename This::Status
3149   thm_jump11(unsigned char *view,
3150             const Sized_relobj<32, big_endian>* object,
3151             const Symbol_value<32>* psymval,
3152             Arm_address address)
3153   {
3154     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3155     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3156     Valtype* wv = reinterpret_cast<Valtype*>(view);
3157     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3158     Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3159     Reltype x = (psymval->value(object, addend) - address);
3160     elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3161     return (utils::has_overflow<11>(x)
3162             ? This::STATUS_OVERFLOW
3163             : This::STATUS_OKAY);
3164   }
3165
3166   // R_ARM_BASE_PREL: B(S) + A - P
3167   static inline typename This::Status
3168   base_prel(unsigned char* view,
3169             Arm_address origin,
3170             Arm_address address)
3171   {
3172     Base::rel32(view, origin - address);
3173     return STATUS_OKAY;
3174   }
3175
3176   // R_ARM_BASE_ABS: B(S) + A
3177   static inline typename This::Status
3178   base_abs(unsigned char* view,
3179            Arm_address origin)
3180   {
3181     Base::rel32(view, origin);
3182     return STATUS_OKAY;
3183   }
3184
3185   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3186   static inline typename This::Status
3187   got_brel(unsigned char* view,
3188            typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3189   {
3190     Base::rel32(view, got_offset);
3191     return This::STATUS_OKAY;
3192   }
3193
3194   // R_ARM_GOT_PREL: GOT(S) + A - P
3195   static inline typename This::Status
3196   got_prel(unsigned char *view,
3197            Arm_address got_entry,
3198            Arm_address address)
3199   {
3200     Base::rel32(view, got_entry - address);
3201     return This::STATUS_OKAY;
3202   }
3203
3204   // R_ARM_PREL: (S + A) | T - P
3205   static inline typename This::Status
3206   prel31(unsigned char *view,
3207          const Sized_relobj<32, big_endian>* object,
3208          const Symbol_value<32>* psymval,
3209          Arm_address address,
3210          Arm_address thumb_bit)
3211   {
3212     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3213     Valtype* wv = reinterpret_cast<Valtype*>(view);
3214     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3215     Valtype addend = utils::sign_extend<31>(val);
3216     Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3217     val = utils::bit_select(val, x, 0x7fffffffU);
3218     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3219     return (utils::has_overflow<31>(x) ?
3220             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3221   }
3222
3223   // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3224   // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3225   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3226   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3227   static inline typename This::Status
3228   movw(unsigned char* view,
3229        const Sized_relobj<32, big_endian>* object,
3230        const Symbol_value<32>* psymval,
3231        Arm_address relative_address_base,
3232        Arm_address thumb_bit,
3233        bool check_overflow)
3234   {
3235     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3236     Valtype* wv = reinterpret_cast<Valtype*>(view);
3237     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3238     Valtype addend = This::extract_arm_movw_movt_addend(val);
3239     Valtype x = ((psymval->value(object, addend) | thumb_bit)
3240                  - relative_address_base);
3241     val = This::insert_val_arm_movw_movt(val, x);
3242     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3243     return ((check_overflow && utils::has_overflow<16>(x))
3244             ? This::STATUS_OVERFLOW
3245             : This::STATUS_OKAY);
3246   }
3247
3248   // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3249   // R_ARM_MOVT_PREL: S + A - P
3250   // R_ARM_MOVT_BREL: S + A - B(S)
3251   static inline typename This::Status
3252   movt(unsigned char* view,
3253        const Sized_relobj<32, big_endian>* object,
3254        const Symbol_value<32>* psymval,
3255        Arm_address relative_address_base)
3256   {
3257     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3258     Valtype* wv = reinterpret_cast<Valtype*>(view);
3259     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3260     Valtype addend = This::extract_arm_movw_movt_addend(val);
3261     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3262     val = This::insert_val_arm_movw_movt(val, x);
3263     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3264     // FIXME: IHI0044D says that we should check for overflow.
3265     return This::STATUS_OKAY;
3266   }
3267
3268   // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3269   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3270   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3271   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3272   static inline typename This::Status
3273   thm_movw(unsigned char *view,
3274            const Sized_relobj<32, big_endian>* object,
3275            const Symbol_value<32>* psymval,
3276            Arm_address relative_address_base,
3277            Arm_address thumb_bit,
3278            bool check_overflow)
3279   {
3280     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282     Valtype* wv = reinterpret_cast<Valtype*>(view);
3283     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3284                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3285     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3286     Reltype x =
3287       (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3288     val = This::insert_val_thumb_movw_movt(val, x);
3289     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3290     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3291     return ((check_overflow && utils::has_overflow<16>(x))
3292             ? This::STATUS_OVERFLOW
3293             : This::STATUS_OKAY);
3294   }
3295
3296   // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3297   // R_ARM_THM_MOVT_PREL: S + A - P
3298   // R_ARM_THM_MOVT_BREL: S + A - B(S)
3299   static inline typename This::Status
3300   thm_movt(unsigned char* view,
3301            const Sized_relobj<32, big_endian>* object,
3302            const Symbol_value<32>* psymval,
3303            Arm_address relative_address_base)
3304   {
3305     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3306     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3307     Valtype* wv = reinterpret_cast<Valtype*>(view);
3308     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3309                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3310     Reltype addend = This::extract_thumb_movw_movt_addend(val);
3311     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3312     val = This::insert_val_thumb_movw_movt(val, x);
3313     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3314     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3315     return This::STATUS_OKAY;
3316   }
3317
3318   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3319   static inline typename This::Status
3320   thm_alu11(unsigned char* view,
3321             const Sized_relobj<32, big_endian>* object,
3322             const Symbol_value<32>* psymval,
3323             Arm_address address,
3324             Arm_address thumb_bit)
3325   {
3326     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3327     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3328     Valtype* wv = reinterpret_cast<Valtype*>(view);
3329     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3330                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3331
3332     //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3333     // -----------------------------------------------------------------------
3334     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3335     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3336     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3337     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3338     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3339     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3340
3341     // Determine a sign for the addend.
3342     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3343                       || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3344     // Thumb2 addend encoding:
3345     // imm12 := i | imm3 | imm8
3346     int32_t addend = (insn & 0xff)
3347                      | ((insn & 0x00007000) >> 4)
3348                      | ((insn & 0x04000000) >> 15);
3349     // Apply a sign to the added.
3350     addend *= sign;
3351
3352     int32_t x = (psymval->value(object, addend) | thumb_bit)
3353                 - (address & 0xfffffffc);
3354     Reltype val = abs(x);
3355     // Mask out the value and a distinct part of the ADD/SUB opcode
3356     // (bits 7:5 of opword).
3357     insn = (insn & 0xfb0f8f00)
3358            | (val & 0xff)
3359            | ((val & 0x700) << 4)
3360            | ((val & 0x800) << 15);
3361     // Set the opcode according to whether the value to go in the
3362     // place is negative.
3363     if (x < 0)
3364       insn |= 0x00a00000;
3365
3366     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3367     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3368     return ((val > 0xfff) ?
3369             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3370   }
3371
3372   // R_ARM_THM_PC8: S + A - Pa (Thumb)
3373   static inline typename This::Status
3374   thm_pc8(unsigned char* view,
3375           const Sized_relobj<32, big_endian>* object,
3376           const Symbol_value<32>* psymval,
3377           Arm_address address)
3378   {
3379     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3380     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3381     Valtype* wv = reinterpret_cast<Valtype*>(view);
3382     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3383     Reltype addend = ((insn & 0x00ff) << 2);
3384     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3385     Reltype val = abs(x);
3386     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3387
3388     elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3389     return ((val > 0x03fc)
3390             ? This::STATUS_OVERFLOW
3391             : This::STATUS_OKAY);
3392   }
3393
3394   // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3395   static inline typename This::Status
3396   thm_pc12(unsigned char* view,
3397            const Sized_relobj<32, big_endian>* object,
3398            const Symbol_value<32>* psymval,
3399            Arm_address address)
3400   {
3401     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403     Valtype* wv = reinterpret_cast<Valtype*>(view);
3404     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405                    | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406     // Determine a sign for the addend (positive if the U bit is 1).
3407     const int sign = (insn & 0x00800000) ? 1 : -1;
3408     int32_t addend = (insn & 0xfff);
3409     // Apply a sign to the added.
3410     addend *= sign;
3411
3412     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3413     Reltype val = abs(x);
3414     // Mask out and apply the value and the U bit.
3415     insn = (insn & 0xff7ff000) | (val & 0xfff);
3416     // Set the U bit according to whether the value to go in the
3417     // place is positive.
3418     if (x >= 0)
3419       insn |= 0x00800000;
3420
3421     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3422     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3423     return ((val > 0xfff) ?
3424             This::STATUS_OVERFLOW : This::STATUS_OKAY);
3425   }
3426
3427   // R_ARM_V4BX
3428   static inline typename This::Status
3429   v4bx(const Relocate_info<32, big_endian>* relinfo,
3430        unsigned char *view,
3431        const Arm_relobj<big_endian>* object,
3432        const Arm_address address,
3433        const bool is_interworking)
3434   {
3435
3436     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3437     Valtype* wv = reinterpret_cast<Valtype*>(view);
3438     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3439
3440     // Ensure that we have a BX instruction.
3441     gold_assert((val & 0x0ffffff0) == 0x012fff10);
3442     const uint32_t reg = (val & 0xf);
3443     if (is_interworking && reg != 0xf)
3444       {
3445         Stub_table<big_endian>* stub_table =
3446             object->stub_table(relinfo->data_shndx);
3447         gold_assert(stub_table != NULL);
3448
3449         Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3450         gold_assert(stub != NULL);
3451
3452         int32_t veneer_address =
3453             stub_table->address() + stub->offset() - 8 - address;
3454         gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3455                     && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3456         // Replace with a branch to veneer (B <addr>)
3457         val = (val & 0xf0000000) | 0x0a000000
3458               | ((veneer_address >> 2) & 0x00ffffff);
3459       }
3460     else
3461       {
3462         // Preserve Rm (lowest four bits) and the condition code
3463         // (highest four bits). Other bits encode MOV PC,Rm.
3464         val = (val & 0xf000000f) | 0x01a0f000;
3465       }
3466     elfcpp::Swap<32, big_endian>::writeval(wv, val);
3467     return This::STATUS_OKAY;
3468   }
3469
3470   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3471   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3472   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3473   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3474   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3475   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3476   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3477   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3478   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3479   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3480   static inline typename This::Status
3481   arm_grp_alu(unsigned char* view,
3482         const Sized_relobj<32, big_endian>* object,
3483         const Symbol_value<32>* psymval,
3484         const int group,
3485         Arm_address address,
3486         Arm_address thumb_bit,
3487         bool check_overflow)
3488   {
3489     gold_assert(group >= 0 && group < 3);
3490     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3491     Valtype* wv = reinterpret_cast<Valtype*>(view);
3492     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3493
3494     // ALU group relocations are allowed only for the ADD/SUB instructions.
3495     // (0x00800000 - ADD, 0x00400000 - SUB)
3496     const Valtype opcode = insn & 0x01e00000;
3497     if (opcode != 0x00800000 && opcode != 0x00400000)
3498       return This::STATUS_BAD_RELOC;
3499
3500     // Determine a sign for the addend.
3501     const int sign = (opcode == 0x00800000) ? 1 : -1;
3502     // shifter = rotate_imm * 2
3503     const uint32_t shifter = (insn & 0xf00) >> 7;
3504     // Initial addend value.
3505     int32_t addend = insn & 0xff;
3506     // Rotate addend right by shifter.
3507     addend = (addend >> shifter) | (addend << (32 - shifter));
3508     // Apply a sign to the added.
3509     addend *= sign;
3510
3511     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3512     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3513     // Check for overflow if required
3514     if (check_overflow
3515         && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3516       return This::STATUS_OVERFLOW;
3517
3518     // Mask out the value and the ADD/SUB part of the opcode; take care
3519     // not to destroy the S bit.
3520     insn &= 0xff1ff000;
3521     // Set the opcode according to whether the value to go in the
3522     // place is negative.
3523     insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3524     // Encode the offset (encoded Gn).
3525     insn |= gn;
3526
3527     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3528     return This::STATUS_OKAY;
3529   }
3530
3531   // R_ARM_LDR_PC_G0: S + A - P
3532   // R_ARM_LDR_PC_G1: S + A - P
3533   // R_ARM_LDR_PC_G2: S + A - P
3534   // R_ARM_LDR_SB_G0: S + A - B(S)
3535   // R_ARM_LDR_SB_G1: S + A - B(S)
3536   // R_ARM_LDR_SB_G2: S + A - B(S)
3537   static inline typename This::Status
3538   arm_grp_ldr(unsigned char* view,
3539         const Sized_relobj<32, big_endian>* object,
3540         const Symbol_value<32>* psymval,
3541         const int group,
3542         Arm_address address)
3543   {
3544     gold_assert(group >= 0 && group < 3);
3545     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3546     Valtype* wv = reinterpret_cast<Valtype*>(view);
3547     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3548
3549     const int sign = (insn & 0x00800000) ? 1 : -1;
3550     int32_t addend = (insn & 0xfff) * sign;
3551     int32_t x = (psymval->value(object, addend) - address);
3552     // Calculate the relevant G(n-1) value to obtain this stage residual.
3553     Valtype residual =
3554         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3555     if (residual >= 0x1000)
3556       return This::STATUS_OVERFLOW;
3557
3558     // Mask out the value and U bit.
3559     insn &= 0xff7ff000;
3560     // Set the U bit for non-negative values.
3561     if (x >= 0)
3562       insn |= 0x00800000;
3563     insn |= residual;
3564
3565     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3566     return This::STATUS_OKAY;
3567   }
3568
3569   // R_ARM_LDRS_PC_G0: S + A - P
3570   // R_ARM_LDRS_PC_G1: S + A - P
3571   // R_ARM_LDRS_PC_G2: S + A - P
3572   // R_ARM_LDRS_SB_G0: S + A - B(S)
3573   // R_ARM_LDRS_SB_G1: S + A - B(S)
3574   // R_ARM_LDRS_SB_G2: S + A - B(S)
3575   static inline typename This::Status
3576   arm_grp_ldrs(unsigned char* view,
3577         const Sized_relobj<32, big_endian>* object,
3578         const Symbol_value<32>* psymval,
3579         const int group,
3580         Arm_address address)
3581   {
3582     gold_assert(group >= 0 && group < 3);
3583     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3584     Valtype* wv = reinterpret_cast<Valtype*>(view);
3585     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3586
3587     const int sign = (insn & 0x00800000) ? 1 : -1;
3588     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3589     int32_t x = (psymval->value(object, addend) - address);
3590     // Calculate the relevant G(n-1) value to obtain this stage residual.
3591     Valtype residual =
3592         Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3593    if (residual >= 0x100)
3594       return This::STATUS_OVERFLOW;
3595
3596     // Mask out the value and U bit.
3597     insn &= 0xff7ff0f0;
3598     // Set the U bit for non-negative values.
3599     if (x >= 0)
3600       insn |= 0x00800000;
3601     insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3602
3603     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3604     return This::STATUS_OKAY;
3605   }
3606
3607   // R_ARM_LDC_PC_G0: S + A - P
3608   // R_ARM_LDC_PC_G1: S + A - P
3609   // R_ARM_LDC_PC_G2: S + A - P
3610   // R_ARM_LDC_SB_G0: S + A - B(S)
3611   // R_ARM_LDC_SB_G1: S + A - B(S)
3612   // R_ARM_LDC_SB_G2: S + A - B(S)
3613   static inline typename This::Status
3614   arm_grp_ldc(unsigned char* view,
3615       const Sized_relobj<32, big_endian>* object,
3616       const Symbol_value<32>* psymval,
3617       const int group,
3618       Arm_address address)
3619   {
3620     gold_assert(group >= 0 && group < 3);
3621     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3622     Valtype* wv = reinterpret_cast<Valtype*>(view);
3623     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3624
3625     const int sign = (insn & 0x00800000) ? 1 : -1;
3626     int32_t addend = ((insn & 0xff) << 2) * sign;
3627     int32_t x = (psymval->value(object, addend) - address);
3628     // Calculate the relevant G(n-1) value to obtain this stage residual.
3629     Valtype residual =
3630       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3631     if ((residual & 0x3) != 0 || residual >= 0x400)
3632       return This::STATUS_OVERFLOW;
3633
3634     // Mask out the value and U bit.
3635     insn &= 0xff7fff00;
3636     // Set the U bit for non-negative values.
3637     if (x >= 0)
3638       insn |= 0x00800000;
3639     insn |= (residual >> 2);
3640
3641     elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3642     return This::STATUS_OKAY;
3643   }
3644 };
3645
3646 // Relocate ARM long branches.  This handles relocation types
3647 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3648 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3649 // undefined and we do not use PLT in this relocation.  In such a case,
3650 // the branch is converted into an NOP.
3651
3652 template<bool big_endian>
3653 typename Arm_relocate_functions<big_endian>::Status
3654 Arm_relocate_functions<big_endian>::arm_branch_common(
3655     unsigned int r_type,
3656     const Relocate_info<32, big_endian>* relinfo,
3657     unsigned char *view,
3658     const Sized_symbol<32>* gsym,
3659     const Arm_relobj<big_endian>* object,
3660     unsigned int r_sym,
3661     const Symbol_value<32>* psymval,
3662     Arm_address address,
3663     Arm_address thumb_bit,
3664     bool is_weakly_undefined_without_plt)
3665 {
3666   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667   Valtype* wv = reinterpret_cast<Valtype*>(view);
3668   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3669      
3670   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3671                     && ((val & 0x0f000000UL) == 0x0a000000UL);
3672   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3673   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3674                           && ((val & 0x0f000000UL) == 0x0b000000UL);
3675   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3676   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3677
3678   // Check that the instruction is valid.
3679   if (r_type == elfcpp::R_ARM_CALL)
3680     {
3681       if (!insn_is_uncond_bl && !insn_is_blx)
3682         return This::STATUS_BAD_RELOC;
3683     }
3684   else if (r_type == elfcpp::R_ARM_JUMP24)
3685     {
3686       if (!insn_is_b && !insn_is_cond_bl)
3687         return This::STATUS_BAD_RELOC;
3688     }
3689   else if (r_type == elfcpp::R_ARM_PLT32)
3690     {
3691       if (!insn_is_any_branch)
3692         return This::STATUS_BAD_RELOC;
3693     }
3694   else if (r_type == elfcpp::R_ARM_XPC25)
3695     {
3696       // FIXME: AAELF document IH0044C does not say much about it other
3697       // than it being obsolete.
3698       if (!insn_is_any_branch)
3699         return This::STATUS_BAD_RELOC;
3700     }
3701   else
3702     gold_unreachable();
3703
3704   // A branch to an undefined weak symbol is turned into a jump to
3705   // the next instruction unless a PLT entry will be created.
3706   // Do the same for local undefined symbols.
3707   // The jump to the next instruction is optimized as a NOP depending
3708   // on the architecture.
3709   const Target_arm<big_endian>* arm_target =
3710     Target_arm<big_endian>::default_target();
3711   if (is_weakly_undefined_without_plt)
3712     {
3713       Valtype cond = val & 0xf0000000U;
3714       if (arm_target->may_use_arm_nop())
3715         val = cond | 0x0320f000;
3716       else
3717         val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3718       elfcpp::Swap<32, big_endian>::writeval(wv, val);
3719       return This::STATUS_OKAY;
3720     }
3721  
3722   Valtype addend = utils::sign_extend<26>(val << 2);
3723   Valtype branch_target = psymval->value(object, addend);
3724   int32_t branch_offset = branch_target - address;
3725
3726   // We need a stub if the branch offset is too large or if we need
3727   // to switch mode.
3728   bool may_use_blx = arm_target->may_use_blx();
3729   Reloc_stub* stub = NULL;
3730   if (utils::has_overflow<26>(branch_offset)
3731       || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
3732     {
3733       Valtype unadjusted_branch_target = psymval->value(object, 0);
3734
3735       Stub_type stub_type =
3736         Reloc_stub::stub_type_for_reloc(r_type, address,
3737                                         unadjusted_branch_target,
3738                                         (thumb_bit != 0));
3739       if (stub_type != arm_stub_none)
3740         {
3741           Stub_table<big_endian>* stub_table =
3742             object->stub_table(relinfo->data_shndx);
3743           gold_assert(stub_table != NULL);
3744
3745           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3746           stub = stub_table->find_reloc_stub(stub_key);
3747           gold_assert(stub != NULL);
3748           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3749           branch_target = stub_table->address() + stub->offset() + addend;
3750           branch_offset = branch_target - address;
3751           gold_assert(!utils::has_overflow<26>(branch_offset));
3752         }
3753     }
3754
3755   // At this point, if we still need to switch mode, the instruction
3756   // must either be a BLX or a BL that can be converted to a BLX.
3757   if (thumb_bit != 0)
3758     {
3759       // Turn BL to BLX.
3760       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3761       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3762     }
3763
3764   val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3765   elfcpp::Swap<32, big_endian>::writeval(wv, val);
3766   return (utils::has_overflow<26>(branch_offset)
3767           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3768 }
3769
3770 // Relocate THUMB long branches.  This handles relocation types
3771 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3772 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3773 // undefined and we do not use PLT in this relocation.  In such a case,
3774 // the branch is converted into an NOP.
3775
3776 template<bool big_endian>
3777 typename Arm_relocate_functions<big_endian>::Status
3778 Arm_relocate_functions<big_endian>::thumb_branch_common(
3779     unsigned int r_type,
3780     const Relocate_info<32, big_endian>* relinfo,
3781     unsigned char *view,
3782     const Sized_symbol<32>* gsym,
3783     const Arm_relobj<big_endian>* object,
3784     unsigned int r_sym,
3785     const Symbol_value<32>* psymval,
3786     Arm_address address,
3787     Arm_address thumb_bit,
3788     bool is_weakly_undefined_without_plt)
3789 {
3790   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3791   Valtype* wv = reinterpret_cast<Valtype*>(view);
3792   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3793   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3794
3795   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3796   // into account.
3797   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3798   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3799      
3800   // Check that the instruction is valid.
3801   if (r_type == elfcpp::R_ARM_THM_CALL)
3802     {
3803       if (!is_bl_insn && !is_blx_insn)
3804         return This::STATUS_BAD_RELOC;
3805     }
3806   else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3807     {
3808       // This cannot be a BLX.
3809       if (!is_bl_insn)
3810         return This::STATUS_BAD_RELOC;
3811     }
3812   else if (r_type == elfcpp::R_ARM_THM_XPC22)
3813     {
3814       // Check for Thumb to Thumb call.
3815       if (!is_blx_insn)
3816         return This::STATUS_BAD_RELOC;
3817       if (thumb_bit != 0)
3818         {
3819           gold_warning(_("%s: Thumb BLX instruction targets "
3820                          "thumb function '%s'."),
3821                          object->name().c_str(),
3822                          (gsym ? gsym->name() : "(local)")); 
3823           // Convert BLX to BL.
3824           lower_insn |= 0x1000U;
3825         }
3826     }
3827   else
3828     gold_unreachable();
3829
3830   // A branch to an undefined weak symbol is turned into a jump to
3831   // the next instruction unless a PLT entry will be created.
3832   // The jump to the next instruction is optimized as a NOP.W for
3833   // Thumb-2 enabled architectures.
3834   const Target_arm<big_endian>* arm_target =
3835     Target_arm<big_endian>::default_target();
3836   if (is_weakly_undefined_without_plt)
3837     {
3838       if (arm_target->may_use_thumb2_nop())
3839         {
3840           elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3841           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3842         }
3843       else
3844         {
3845           elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3846           elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3847         }
3848       return This::STATUS_OKAY;
3849     }
3850  
3851   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3852   Arm_address branch_target = psymval->value(object, addend);
3853
3854   // For BLX, bit 1 of target address comes from bit 1 of base address.
3855   bool may_use_blx = arm_target->may_use_blx();
3856   if (thumb_bit == 0 && may_use_blx)
3857     branch_target = utils::bit_select(branch_target, address, 0x2);
3858
3859   int32_t branch_offset = branch_target - address;
3860
3861   // We need a stub if the branch offset is too large or if we need
3862   // to switch mode.
3863   bool thumb2 = arm_target->using_thumb2();
3864   if ((!thumb2 && utils::has_overflow<23>(branch_offset))
3865       || (thumb2 && utils::has_overflow<25>(branch_offset))
3866       || ((thumb_bit == 0)
3867           && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3868               || r_type == elfcpp::R_ARM_THM_JUMP24)))
3869     {
3870       Arm_address unadjusted_branch_target = psymval->value(object, 0);
3871
3872       Stub_type stub_type =
3873         Reloc_stub::stub_type_for_reloc(r_type, address,
3874                                         unadjusted_branch_target,
3875                                         (thumb_bit != 0));
3876
3877       if (stub_type != arm_stub_none)
3878         {
3879           Stub_table<big_endian>* stub_table =
3880             object->stub_table(relinfo->data_shndx);
3881           gold_assert(stub_table != NULL);
3882
3883           Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3884           Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
3885           gold_assert(stub != NULL);
3886           thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3887           branch_target = stub_table->address() + stub->offset() + addend;
3888           if (thumb_bit == 0 && may_use_blx) 
3889             branch_target = utils::bit_select(branch_target, address, 0x2);
3890           branch_offset = branch_target - address;
3891         }
3892     }
3893
3894   // At this point, if we still need to switch mode, the instruction
3895   // must either be a BLX or a BL that can be converted to a BLX.
3896   if (thumb_bit == 0)
3897     {
3898       gold_assert(may_use_blx
3899                   && (r_type == elfcpp::R_ARM_THM_CALL
3900                       || r_type == elfcpp::R_ARM_THM_XPC22));
3901       // Make sure this is a BLX.
3902       lower_insn &= ~0x1000U;
3903     }
3904   else
3905     {
3906       // Make sure this is a BL.
3907       lower_insn |= 0x1000U;
3908     }
3909
3910   // For a BLX instruction, make sure that the relocation is rounded up
3911   // to a word boundary.  This follows the semantics of the instruction
3912   // which specifies that bit 1 of the target address will come from bit
3913   // 1 of the base address.
3914   if ((lower_insn & 0x5000U) == 0x4000U)
3915     gold_assert((branch_offset & 3) == 0);
3916
3917   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
3918   // We use the Thumb-2 encoding, which is safe even if dealing with
3919   // a Thumb-1 instruction by virtue of our overflow check above.  */
3920   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
3921   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
3922
3923   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3924   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3925
3926   gold_assert(!utils::has_overflow<25>(branch_offset));
3927
3928   return ((thumb2
3929            ? utils::has_overflow<25>(branch_offset)
3930            : utils::has_overflow<23>(branch_offset))
3931           ? This::STATUS_OVERFLOW
3932           : This::STATUS_OKAY);
3933 }
3934
3935 // Relocate THUMB-2 long conditional branches.
3936 // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3937 // undefined and we do not use PLT in this relocation.  In such a case,
3938 // the branch is converted into an NOP.
3939
3940 template<bool big_endian>
3941 typename Arm_relocate_functions<big_endian>::Status
3942 Arm_relocate_functions<big_endian>::thm_jump19(
3943     unsigned char *view,
3944     const Arm_relobj<big_endian>* object,
3945     const Symbol_value<32>* psymval,
3946     Arm_address address,
3947     Arm_address thumb_bit)
3948 {
3949   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3950   Valtype* wv = reinterpret_cast<Valtype*>(view);
3951   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3952   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3953   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
3954
3955   Arm_address branch_target = psymval->value(object, addend);
3956   int32_t branch_offset = branch_target - address;
3957
3958   // ??? Should handle interworking?  GCC might someday try to
3959   // use this for tail calls.
3960   // FIXME: We do support thumb entry to PLT yet.
3961   if (thumb_bit == 0)
3962     {
3963       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3964       return This::STATUS_BAD_RELOC;
3965     }
3966
3967   // Put RELOCATION back into the insn.
3968   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
3969   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
3970
3971   // Put the relocated value back in the object file:
3972   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3973   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3974
3975   return (utils::has_overflow<21>(branch_offset)
3976           ? This::STATUS_OVERFLOW
3977           : This::STATUS_OKAY);
3978 }
3979
3980 // Get the GOT section, creating it if necessary.
3981
3982 template<bool big_endian>
3983 Arm_output_data_got<big_endian>*
3984 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
3985 {
3986   if (this->got_ == NULL)
3987     {
3988       gold_assert(symtab != NULL && layout != NULL);
3989
3990       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
3991
3992       Output_section* os;
3993       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3994                                            (elfcpp::SHF_ALLOC
3995                                             | elfcpp::SHF_WRITE),
3996                                            this->got_, false, false, false,
3997                                            true);
3998       // The old GNU linker creates a .got.plt section.  We just
3999       // create another set of data in the .got section.  Note that we
4000       // always create a PLT if we create a GOT, although the PLT
4001       // might be empty.
4002       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4003       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4004                                            (elfcpp::SHF_ALLOC
4005                                             | elfcpp::SHF_WRITE),
4006                                            this->got_plt_, false, false,
4007                                            false, false);
4008
4009       // The first three entries are reserved.
4010       this->got_plt_->set_current_data_size(3 * 4);
4011
4012       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4013       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4014                                     Symbol_table::PREDEFINED,
4015                                     this->got_plt_,
4016                                     0, 0, elfcpp::STT_OBJECT,
4017                                     elfcpp::STB_LOCAL,
4018                                     elfcpp::STV_HIDDEN, 0,
4019                                     false, false);
4020     }
4021   return this->got_;
4022 }
4023
4024 // Get the dynamic reloc section, creating it if necessary.
4025
4026 template<bool big_endian>
4027 typename Target_arm<big_endian>::Reloc_section*
4028 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4029 {
4030   if (this->rel_dyn_ == NULL)
4031     {
4032       gold_assert(layout != NULL);
4033       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4034       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4035                                       elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4036                                       false, false, false);
4037     }
4038   return this->rel_dyn_;
4039 }
4040
4041 // Insn_template methods.
4042
4043 // Return byte size of an instruction template.
4044
4045 size_t
4046 Insn_template::size() const
4047 {
4048   switch (this->type())
4049     {
4050     case THUMB16_TYPE:
4051     case THUMB16_SPECIAL_TYPE:
4052       return 2;
4053     case ARM_TYPE:
4054     case THUMB32_TYPE:
4055     case DATA_TYPE:
4056       return 4;
4057     default:
4058       gold_unreachable();
4059     }
4060 }
4061
4062 // Return alignment of an instruction template.
4063
4064 unsigned
4065 Insn_template::alignment() const
4066 {
4067   switch (this->type())
4068     {
4069     case THUMB16_TYPE:
4070     case THUMB16_SPECIAL_TYPE:
4071     case THUMB32_TYPE:
4072       return 2;
4073     case ARM_TYPE:
4074     case DATA_TYPE:
4075       return 4;
4076     default:
4077       gold_unreachable();
4078     }
4079 }
4080
4081 // Stub_template methods.
4082
4083 Stub_template::Stub_template(
4084     Stub_type type, const Insn_template* insns,
4085      size_t insn_count)
4086   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4087     entry_in_thumb_mode_(false), relocs_()
4088 {
4089   off_t offset = 0;
4090
4091   // Compute byte size and alignment of stub template.
4092   for (size_t i = 0; i < insn_count; i++)
4093     {
4094       unsigned insn_alignment = insns[i].alignment();
4095       size_t insn_size = insns[i].size();
4096       gold_assert((offset & (insn_alignment - 1)) == 0);
4097       this->alignment_ = std::max(this->alignment_, insn_alignment);
4098       switch (insns[i].type())
4099         {
4100         case Insn_template::THUMB16_TYPE:
4101         case Insn_template::THUMB16_SPECIAL_TYPE:
4102           if (i == 0)
4103             this->entry_in_thumb_mode_ = true;
4104           break;
4105
4106         case Insn_template::THUMB32_TYPE:
4107           if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4108             this->relocs_.push_back(Reloc(i, offset));
4109           if (i == 0)
4110             this->entry_in_thumb_mode_ = true;
4111           break;
4112
4113         case Insn_template::ARM_TYPE:
4114           // Handle cases where the target is encoded within the
4115           // instruction.
4116           if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4117             this->relocs_.push_back(Reloc(i, offset));
4118           break;
4119
4120         case Insn_template::DATA_TYPE:
4121           // Entry point cannot be data.
4122           gold_assert(i != 0);
4123           this->relocs_.push_back(Reloc(i, offset));
4124           break;
4125
4126         default:
4127           gold_unreachable();
4128         }
4129       offset += insn_size; 
4130     }
4131   this->size_ = offset;
4132 }
4133
4134 // Stub methods.
4135
4136 // Template to implement do_write for a specific target endianness.
4137
4138 template<bool big_endian>
4139 void inline
4140 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4141 {
4142   const Stub_template* stub_template = this->stub_template();
4143   const Insn_template* insns = stub_template->insns();
4144
4145   // FIXME:  We do not handle BE8 encoding yet.
4146   unsigned char* pov = view;
4147   for (size_t i = 0; i < stub_template->insn_count(); i++)
4148     {
4149       switch (insns[i].type())
4150         {
4151         case Insn_template::THUMB16_TYPE:
4152           elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4153           break;
4154         case Insn_template::THUMB16_SPECIAL_TYPE:
4155           elfcpp::Swap<16, big_endian>::writeval(
4156               pov,
4157               this->thumb16_special(i));
4158           break;
4159         case Insn_template::THUMB32_TYPE:
4160           {
4161             uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4162             uint32_t lo = insns[i].data() & 0xffff;
4163             elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4164             elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4165           }
4166           break;
4167         case Insn_template::ARM_TYPE:
4168         case Insn_template::DATA_TYPE:
4169           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4170           break;
4171         default:
4172           gold_unreachable();
4173         }
4174       pov += insns[i].size();
4175     }
4176   gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4177
4178
4179 // Reloc_stub::Key methods.
4180
4181 // Dump a Key as a string for debugging.
4182
4183 std::string
4184 Reloc_stub::Key::name() const
4185 {
4186   if (this->r_sym_ == invalid_index)
4187     {
4188       // Global symbol key name
4189       // <stub-type>:<symbol name>:<addend>.
4190       const std::string sym_name = this->u_.symbol->name();
4191       // We need to print two hex number and two colons.  So just add 100 bytes
4192       // to the symbol name size.
4193       size_t len = sym_name.size() + 100;
4194       char* buffer = new char[len];
4195       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4196                        sym_name.c_str(), this->addend_);
4197       gold_assert(c > 0 && c < static_cast<int>(len));
4198       delete[] buffer;
4199       return std::string(buffer);
4200     }
4201   else
4202     {
4203       // local symbol key name
4204       // <stub-type>:<object>:<r_sym>:<addend>.
4205       const size_t len = 200;
4206       char buffer[len];
4207       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4208                        this->u_.relobj, this->r_sym_, this->addend_);
4209       gold_assert(c > 0 && c < static_cast<int>(len));
4210       return std::string(buffer);
4211     }
4212 }
4213
4214 // Reloc_stub methods.
4215
4216 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4217 // LOCATION to DESTINATION.
4218 // This code is based on the arm_type_of_stub function in
4219 // bfd/elf32-arm.c.  We have changed the interface a liitle to keep the Stub
4220 // class simple.
4221
4222 Stub_type
4223 Reloc_stub::stub_type_for_reloc(
4224    unsigned int r_type,
4225    Arm_address location,
4226    Arm_address destination,
4227    bool target_is_thumb)
4228 {
4229   Stub_type stub_type = arm_stub_none;
4230
4231   // This is a bit ugly but we want to avoid using a templated class for
4232   // big and little endianities.
4233   bool may_use_blx;
4234   bool should_force_pic_veneer;
4235   bool thumb2;
4236   bool thumb_only;
4237   if (parameters->target().is_big_endian())
4238     {
4239       const Target_arm<true>* big_endian_target =
4240         Target_arm<true>::default_target();
4241       may_use_blx = big_endian_target->may_use_blx();
4242       should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4243       thumb2 = big_endian_target->using_thumb2();
4244       thumb_only = big_endian_target->using_thumb_only();
4245     }
4246   else
4247     {
4248       const Target_arm<false>* little_endian_target =
4249         Target_arm<false>::default_target();
4250       may_use_blx = little_endian_target->may_use_blx();
4251       should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4252       thumb2 = little_endian_target->using_thumb2();
4253       thumb_only = little_endian_target->using_thumb_only();
4254     }
4255
4256   int64_t branch_offset;
4257   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4258     {
4259       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4260       // base address (instruction address + 4).
4261       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4262         destination = utils::bit_select(destination, location, 0x2);
4263       branch_offset = static_cast<int64_t>(destination) - location;
4264         
4265       // Handle cases where:
4266       // - this call goes too far (different Thumb/Thumb2 max
4267       //   distance)
4268       // - it's a Thumb->Arm call and blx is not available, or it's a
4269       //   Thumb->Arm branch (not bl). A stub is needed in this case.
4270       if ((!thumb2
4271             && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4272                 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4273           || (thumb2
4274               && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4275                   || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4276           || ((!target_is_thumb)
4277               && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4278                   || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4279         {
4280           if (target_is_thumb)
4281             {
4282               // Thumb to thumb.
4283               if (!thumb_only)
4284                 {
4285                   stub_type = (parameters->options().shared()
4286                                || should_force_pic_veneer)
4287                     // PIC stubs.
4288                     ? ((may_use_blx
4289                         && (r_type == elfcpp::R_ARM_THM_CALL))
4290                        // V5T and above. Stub starts with ARM code, so
4291                        // we must be able to switch mode before
4292                        // reaching it, which is only possible for 'bl'
4293                        // (ie R_ARM_THM_CALL relocation).
4294                        ? arm_stub_long_branch_any_thumb_pic
4295                        // On V4T, use Thumb code only.
4296                        : arm_stub_long_branch_v4t_thumb_thumb_pic)
4297
4298                     // non-PIC stubs.
4299                     : ((may_use_blx
4300                         && (r_type == elfcpp::R_ARM_THM_CALL))
4301                        ? arm_stub_long_branch_any_any // V5T and above.
4302                        : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4303                 }
4304               else
4305                 {
4306                   stub_type = (parameters->options().shared()
4307                                || should_force_pic_veneer)
4308                     ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4309                     : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4310                 }
4311             }
4312           else
4313             {
4314               // Thumb to arm.
4315              
4316               // FIXME: We should check that the input section is from an
4317               // object that has interwork enabled.
4318
4319               stub_type = (parameters->options().shared()
4320                            || should_force_pic_veneer)
4321                 // PIC stubs.
4322                 ? ((may_use_blx
4323                     && (r_type == elfcpp::R_ARM_THM_CALL))
4324                    ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4325                    : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4326
4327                 // non-PIC stubs.
4328                 : ((may_use_blx
4329                     && (r_type == elfcpp::R_ARM_THM_CALL))
4330                    ? arm_stub_long_branch_any_any       // V5T and above.
4331                    : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4332
4333               // Handle v4t short branches.
4334               if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4335                   && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4336                   && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4337                 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4338             }
4339         }
4340     }
4341   else if (r_type == elfcpp::R_ARM_CALL
4342            || r_type == elfcpp::R_ARM_JUMP24
4343            || r_type == elfcpp::R_ARM_PLT32)
4344     {
4345       branch_offset = static_cast<int64_t>(destination) - location;
4346       if (target_is_thumb)
4347         {
4348           // Arm to thumb.
4349
4350           // FIXME: We should check that the input section is from an
4351           // object that has interwork enabled.
4352
4353           // We have an extra 2-bytes reach because of
4354           // the mode change (bit 24 (H) of BLX encoding).
4355           if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4356               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4357               || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4358               || (r_type == elfcpp::R_ARM_JUMP24)
4359               || (r_type == elfcpp::R_ARM_PLT32))
4360             {
4361               stub_type = (parameters->options().shared()
4362                            || should_force_pic_veneer)
4363                 // PIC stubs.
4364                 ? (may_use_blx
4365                    ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4366                    : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4367
4368                 // non-PIC stubs.
4369                 : (may_use_blx
4370                    ? arm_stub_long_branch_any_any       // V5T and above.
4371                    : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4372             }
4373         }
4374       else
4375         {
4376           // Arm to arm.
4377           if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4378               || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4379             {
4380               stub_type = (parameters->options().shared()
4381                            || should_force_pic_veneer)
4382                 ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4383                 : arm_stub_long_branch_any_any;         /// non-PIC.
4384             }
4385         }
4386     }
4387
4388   return stub_type;
4389 }
4390
4391 // Cortex_a8_stub methods.
4392
4393 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4394 // I is the position of the instruction template in the stub template.
4395
4396 uint16_t
4397 Cortex_a8_stub::do_thumb16_special(size_t i)
4398 {
4399   // The only use of this is to copy condition code from a conditional
4400   // branch being worked around to the corresponding conditional branch in
4401   // to the stub.
4402   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4403               && i == 0);
4404   uint16_t data = this->stub_template()->insns()[i].data();
4405   gold_assert((data & 0xff00U) == 0xd000U);
4406   data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4407   return data;
4408 }
4409
4410 // Stub_factory methods.
4411
4412 Stub_factory::Stub_factory()
4413 {
4414   // The instruction template sequences are declared as static
4415   // objects and initialized first time the constructor runs.
4416  
4417   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4418   // to reach the stub if necessary.
4419   static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4420     {
4421       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4422       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4423                                                 // dcd   R_ARM_ABS32(X)
4424     };
4425   
4426   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4427   // available.
4428   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4429     {
4430       Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4431       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4432       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4433                                                 // dcd   R_ARM_ABS32(X)
4434     };
4435   
4436   // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4437   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4438     {
4439       Insn_template::thumb16_insn(0xb401),      // push {r0}
4440       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4441       Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4442       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4443       Insn_template::thumb16_insn(0x4760),      // bx   ip
4444       Insn_template::thumb16_insn(0xbf00),      // nop
4445       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4446                                                 // dcd  R_ARM_ABS32(X)
4447     };
4448   
4449   // V4T Thumb -> Thumb long branch stub. Using the stack is not
4450   // allowed.
4451   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4452     {
4453       Insn_template::thumb16_insn(0x4778),      // bx   pc
4454       Insn_template::thumb16_insn(0x46c0),      // nop
4455       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4456       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4457       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4458                                                 // dcd  R_ARM_ABS32(X)
4459     };
4460   
4461   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4462   // available.
4463   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4464     {
4465       Insn_template::thumb16_insn(0x4778),      // bx   pc
4466       Insn_template::thumb16_insn(0x46c0),      // nop
4467       Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4468       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4469                                                 // dcd   R_ARM_ABS32(X)
4470     };
4471   
4472   // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4473   // one, when the destination is close enough.
4474   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4475     {
4476       Insn_template::thumb16_insn(0x4778),              // bx   pc
4477       Insn_template::thumb16_insn(0x46c0),              // nop
4478       Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4479     };
4480   
4481   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4482   // blx to reach the stub if necessary.
4483   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4484     {
4485       Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4486       Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4487       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4488                                                 // dcd   R_ARM_REL32(X-4)
4489     };
4490   
4491   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4492   // blx to reach the stub if necessary.  We can not add into pc;
4493   // it is not guaranteed to mode switch (different in ARMv6 and
4494   // ARMv7).
4495   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4496     {
4497       Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4498       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4499       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4500       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4501                                                 // dcd   R_ARM_REL32(X)
4502     };
4503   
4504   // V4T ARM -> ARM long branch stub, PIC.
4505   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4506     {
4507       Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4508       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4509       Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4510       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4511                                                 // dcd   R_ARM_REL32(X)
4512     };
4513   
4514   // V4T Thumb -> ARM long branch stub, PIC.
4515   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4516     {
4517       Insn_template::thumb16_insn(0x4778),      // bx   pc
4518       Insn_template::thumb16_insn(0x46c0),      // nop
4519       Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4520       Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4521       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4522                                                 // dcd  R_ARM_REL32(X)
4523     };
4524   
4525   // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4526   // architectures.
4527   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4528     {
4529       Insn_template::thumb16_insn(0xb401),      // push {r0}
4530       Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4531       Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4532       Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4533       Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4534       Insn_template::thumb16_insn(0x4760),      // bx   ip
4535       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4536                                                 // dcd  R_ARM_REL32(X)
4537     };
4538   
4539   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4540   // allowed.
4541   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4542     {
4543       Insn_template::thumb16_insn(0x4778),      // bx   pc
4544       Insn_template::thumb16_insn(0x46c0),      // nop
4545       Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4546       Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4547       Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4548       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4549                                                 // dcd  R_ARM_REL32(X)
4550     };
4551   
4552   // Cortex-A8 erratum-workaround stubs.
4553   
4554   // Stub used for conditional branches (which may be beyond +/-1MB away,
4555   // so we can't use a conditional branch to reach this stub).
4556   
4557   // original code:
4558   //
4559   //    b<cond> X
4560   // after:
4561   //
4562   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4563     {
4564       Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4565       Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4566       Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4567                                                         //      b.w X
4568     };
4569   
4570   // Stub used for b.w and bl.w instructions.
4571   
4572   static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4573     {
4574       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4575     };
4576   
4577   static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4578     {
4579       Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4580     };
4581   
4582   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4583   // instruction (which switches to ARM mode) to point to this stub.  Jump to
4584   // the real destination using an ARM-mode branch.
4585   static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4586     {
4587       Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4588     };
4589
4590   // Stub used to provide an interworking for R_ARM_V4BX relocation
4591   // (bx r[n] instruction).
4592   static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4593     {
4594       Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4595       Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4596       Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4597     };
4598
4599   // Fill in the stub template look-up table.  Stub templates are constructed
4600   // per instance of Stub_factory for fast look-up without locking
4601   // in a thread-enabled environment.
4602
4603   this->stub_templates_[arm_stub_none] =
4604     new Stub_template(arm_stub_none, NULL, 0);
4605
4606 #define DEF_STUB(x)     \
4607   do \
4608     { \
4609       size_t array_size \
4610         = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4611       Stub_type type = arm_stub_##x; \
4612       this->stub_templates_[type] = \
4613         new Stub_template(type, elf32_arm_stub_##x, array_size); \
4614     } \
4615   while (0);
4616
4617   DEF_STUBS
4618 #undef DEF_STUB
4619 }
4620
4621 // Stub_table methods.
4622
4623 // Removel all Cortex-A8 stub.
4624
4625 template<bool big_endian>
4626 void
4627 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4628 {
4629   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4630        p != this->cortex_a8_stubs_.end();
4631        ++p)
4632     delete p->second;
4633   this->cortex_a8_stubs_.clear();
4634 }
4635
4636 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4637
4638 template<bool big_endian>
4639 void
4640 Stub_table<big_endian>::relocate_stub(
4641     Stub* stub,
4642     const Relocate_info<32, big_endian>* relinfo,
4643     Target_arm<big_endian>* arm_target,
4644     Output_section* output_section,
4645     unsigned char* view,
4646     Arm_address address,
4647     section_size_type view_size)
4648 {
4649   const Stub_template* stub_template = stub->stub_template();
4650   if (stub_template->reloc_count() != 0)
4651     {
4652       // Adjust view to cover the stub only.
4653       section_size_type offset = stub->offset();
4654       section_size_type stub_size = stub_template->size();
4655       gold_assert(offset + stub_size <= view_size);
4656
4657       arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4658                                 address + offset, stub_size);
4659     }
4660 }
4661
4662 // Relocate all stubs in this stub table.
4663
4664 template<bool big_endian>
4665 void
4666 Stub_table<big_endian>::relocate_stubs(
4667     const Relocate_info<32, big_endian>* relinfo,
4668     Target_arm<big_endian>* arm_target,
4669     Output_section* output_section,
4670     unsigned char* view,
4671     Arm_address address,
4672     section_size_type view_size)
4673 {
4674   // If we are passed a view bigger than the stub table's.  we need to
4675   // adjust the view.
4676   gold_assert(address == this->address()
4677               && (view_size
4678                   == static_cast<section_size_type>(this->data_size())));
4679
4680   // Relocate all relocation stubs.
4681   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4682       p != this->reloc_stubs_.end();
4683       ++p)
4684     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4685                         address, view_size);
4686
4687   // Relocate all Cortex-A8 stubs.
4688   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4689        p != this->cortex_a8_stubs_.end();
4690        ++p)
4691     this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4692                         address, view_size);
4693
4694   // Relocate all ARM V4BX stubs.
4695   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4696        p != this->arm_v4bx_stubs_.end();
4697        ++p)
4698     {
4699       if (*p != NULL)
4700         this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4701                             address, view_size);
4702     }
4703 }
4704
4705 // Write out the stubs to file.
4706
4707 template<bool big_endian>
4708 void
4709 Stub_table<big_endian>::do_write(Output_file* of)
4710 {
4711   off_t offset = this->offset();
4712   const section_size_type oview_size =
4713     convert_to_section_size_type(this->data_size());
4714   unsigned char* const oview = of->get_output_view(offset, oview_size);
4715
4716   // Write relocation stubs.
4717   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4718       p != this->reloc_stubs_.end();
4719       ++p)
4720     {
4721       Reloc_stub* stub = p->second;
4722       Arm_address address = this->address() + stub->offset();
4723       gold_assert(address
4724                   == align_address(address,
4725                                    stub->stub_template()->alignment()));
4726       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4727                   big_endian);
4728     }
4729
4730   // Write Cortex-A8 stubs.
4731   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4732        p != this->cortex_a8_stubs_.end();
4733        ++p)
4734     {
4735       Cortex_a8_stub* stub = p->second;
4736       Arm_address address = this->address() + stub->offset();
4737       gold_assert(address
4738                   == align_address(address,
4739                                    stub->stub_template()->alignment()));
4740       stub->write(oview + stub->offset(), stub->stub_template()->size(),
4741                   big_endian);
4742     }
4743
4744   // Write ARM V4BX relocation stubs.
4745   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4746        p != this->arm_v4bx_stubs_.end();
4747        ++p)
4748     {
4749       if (*p == NULL)
4750         continue;
4751
4752       Arm_address address = this->address() + (*p)->offset();
4753       gold_assert(address
4754                   == align_address(address,
4755                                    (*p)->stub_template()->alignment()));
4756       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4757                   big_endian);
4758     }
4759
4760   of->write_output_view(this->offset(), oview_size, oview);
4761 }
4762
4763 // Update the data size and address alignment of the stub table at the end
4764 // of a relaxation pass.   Return true if either the data size or the
4765 // alignment changed in this relaxation pass.
4766
4767 template<bool big_endian>
4768 bool
4769 Stub_table<big_endian>::update_data_size_and_addralign()
4770 {
4771   // Go over all stubs in table to compute data size and address alignment.
4772   off_t size = this->reloc_stubs_size_;
4773   unsigned addralign = this->reloc_stubs_addralign_;
4774
4775   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4776        p != this->cortex_a8_stubs_.end();
4777        ++p)
4778     {
4779       const Stub_template* stub_template = p->second->stub_template();
4780       addralign = std::max(addralign, stub_template->alignment());
4781       size = (align_address(size, stub_template->alignment())
4782               + stub_template->size());
4783     }
4784
4785   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4786        p != this->arm_v4bx_stubs_.end();
4787        ++p)
4788     {
4789       if (*p == NULL)
4790         continue;
4791
4792       const Stub_template* stub_template = (*p)->stub_template();
4793       addralign = std::max(addralign, stub_template->alignment());
4794       size = (align_address(size, stub_template->alignment())
4795               + stub_template->size());
4796     }
4797
4798   // Check if either data size or alignment changed in this pass.
4799   // Update prev_data_size_ and prev_addralign_.  These will be used
4800   // as the current data size and address alignment for the next pass.
4801   bool changed = size != this->prev_data_size_;
4802   this->prev_data_size_ = size; 
4803
4804   if (addralign != this->prev_addralign_)
4805     changed = true;
4806   this->prev_addralign_ = addralign;
4807
4808   return changed;
4809 }
4810
4811 // Finalize the stubs.  This sets the offsets of the stubs within the stub
4812 // table.  It also marks all input sections needing Cortex-A8 workaround.
4813
4814 template<bool big_endian>
4815 void
4816 Stub_table<big_endian>::finalize_stubs()
4817 {
4818   off_t off = this->reloc_stubs_size_;
4819   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4820        p != this->cortex_a8_stubs_.end();
4821        ++p)
4822     {
4823       Cortex_a8_stub* stub = p->second;
4824       const Stub_template* stub_template = stub->stub_template();
4825       uint64_t stub_addralign = stub_template->alignment();
4826       off = align_address(off, stub_addralign);
4827       stub->set_offset(off);
4828       off += stub_template->size();
4829
4830       // Mark input section so that we can determine later if a code section
4831       // needs the Cortex-A8 workaround quickly.
4832       Arm_relobj<big_endian>* arm_relobj =
4833         Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4834       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4835     }
4836
4837   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4838       p != this->arm_v4bx_stubs_.end();
4839       ++p)
4840     {
4841       if (*p == NULL)
4842         continue;
4843
4844       const Stub_template* stub_template = (*p)->stub_template();
4845       uint64_t stub_addralign = stub_template->alignment();
4846       off = align_address(off, stub_addralign);
4847       (*p)->set_offset(off);
4848       off += stub_template->size();
4849     }
4850
4851   gold_assert(off <= this->prev_data_size_);
4852 }
4853
4854 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4855 // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
4856 // of the address range seen by the linker.
4857
4858 template<bool big_endian>
4859 void
4860 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4861     Target_arm<big_endian>* arm_target,
4862     unsigned char* view,
4863     Arm_address view_address,
4864     section_size_type view_size)
4865 {
4866   // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4867   for (Cortex_a8_stub_list::const_iterator p =
4868          this->cortex_a8_stubs_.lower_bound(view_address);
4869        ((p != this->cortex_a8_stubs_.end())
4870         && (p->first < (view_address + view_size)));
4871        ++p)
4872     {
4873       // We do not store the THUMB bit in the LSB of either the branch address
4874       // or the stub offset.  There is no need to strip the LSB.
4875       Arm_address branch_address = p->first;
4876       const Cortex_a8_stub* stub = p->second;
4877       Arm_address stub_address = this->address() + stub->offset();
4878
4879       // Offset of the branch instruction relative to this view.
4880       section_size_type offset =
4881         convert_to_section_size_type(branch_address - view_address);
4882       gold_assert((offset + 4) <= view_size);
4883
4884       arm_target->apply_cortex_a8_workaround(stub, stub_address,
4885                                              view + offset, branch_address);
4886     }
4887 }
4888
4889 // Arm_input_section methods.
4890
4891 // Initialize an Arm_input_section.
4892
4893 template<bool big_endian>
4894 void
4895 Arm_input_section<big_endian>::init()
4896 {
4897   Relobj* relobj = this->relobj();
4898   unsigned int shndx = this->shndx();
4899
4900   // Cache these to speed up size and alignment queries.  It is too slow
4901   // to call section_addraglin and section_size every time.
4902   this->original_addralign_ = relobj->section_addralign(shndx);
4903   this->original_size_ = relobj->section_size(shndx);
4904
4905   // We want to make this look like the original input section after
4906   // output sections are finalized.
4907   Output_section* os = relobj->output_section(shndx);
4908   off_t offset = relobj->output_section_offset(shndx);
4909   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
4910   this->set_address(os->address() + offset);
4911   this->set_file_offset(os->offset() + offset);
4912
4913   this->set_current_data_size(this->original_size_);
4914   this->finalize_data_size();
4915 }
4916
4917 template<bool big_endian>
4918 void
4919 Arm_input_section<big_endian>::do_write(Output_file* of)
4920 {
4921   // We have to write out the original section content.
4922   section_size_type section_size;
4923   const unsigned char* section_contents =
4924     this->relobj()->section_contents(this->shndx(), &section_size, false); 
4925   of->write(this->offset(), section_contents, section_size); 
4926
4927   // If this owns a stub table and it is not empty, write it.
4928   if (this->is_stub_table_owner() && !this->stub_table_->empty())
4929     this->stub_table_->write(of);
4930 }
4931
4932 // Finalize data size.
4933
4934 template<bool big_endian>
4935 void
4936 Arm_input_section<big_endian>::set_final_data_size()
4937 {
4938   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4939
4940   if (this->is_stub_table_owner())
4941     {
4942       // The stub table comes after the original section contents.
4943       off = align_address(off, this->stub_table_->addralign());
4944       this->stub_table_->set_address_and_file_offset(this->address() + off,
4945                                                      this->offset() + off);
4946       off += this->stub_table_->data_size();
4947     }
4948   this->set_data_size(off);
4949 }
4950
4951 // Reset address and file offset.
4952
4953 template<bool big_endian>
4954 void
4955 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
4956 {
4957   // Size of the original input section contents.
4958   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4959
4960   // If this is a stub table owner, account for the stub table size.
4961   if (this->is_stub_table_owner())
4962     {
4963       Stub_table<big_endian>* stub_table = this->stub_table_;
4964
4965       // Reset the stub table's address and file offset.  The
4966       // current data size for child will be updated after that.
4967       stub_table_->reset_address_and_file_offset();
4968       off = align_address(off, stub_table_->addralign());
4969       off += stub_table->current_data_size();
4970     }
4971
4972   this->set_current_data_size(off);
4973 }
4974
4975 // Arm_exidx_cantunwind methods.
4976
4977 // Write this to Output file OF for a fixed endianness.
4978
4979 template<bool big_endian>
4980 void
4981 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
4982 {
4983   off_t offset = this->offset();
4984   const section_size_type oview_size = 8;
4985   unsigned char* const oview = of->get_output_view(offset, oview_size);
4986   
4987   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4988   Valtype* wv = reinterpret_cast<Valtype*>(oview);
4989
4990   Output_section* os = this->relobj_->output_section(this->shndx_);
4991   gold_assert(os != NULL);
4992
4993   Arm_relobj<big_endian>* arm_relobj =
4994     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
4995   Arm_address output_offset =
4996     arm_relobj->get_output_section_offset(this->shndx_);
4997   Arm_address section_start;
4998   if (output_offset != Arm_relobj<big_endian>::invalid_address)
4999     section_start = os->address() + output_offset;
5000   else
5001     {
5002       // Currently this only happens for a relaxed section.
5003       const Output_relaxed_input_section* poris =
5004         os->find_relaxed_input_section(this->relobj_, this->shndx_);
5005       gold_assert(poris != NULL);
5006       section_start = poris->address();
5007     }
5008
5009   // We always append this to the end of an EXIDX section.
5010   Arm_address output_address =
5011     section_start + this->relobj_->section_size(this->shndx_);
5012
5013   // Write out the entry.  The first word either points to the beginning
5014   // or after the end of a text section.  The second word is the special
5015   // EXIDX_CANTUNWIND value.
5016   uint32_t prel31_offset = output_address - this->address();
5017   if (utils::has_overflow<31>(offset))
5018     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5019   elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5020   elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5021
5022   of->write_output_view(this->offset(), oview_size, oview);
5023 }
5024
5025 // Arm_exidx_merged_section methods.
5026
5027 // Constructor for Arm_exidx_merged_section.
5028 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5029 // SECTION_OFFSET_MAP points to a section offset map describing how
5030 // parts of the input section are mapped to output.  DELETED_BYTES is
5031 // the number of bytes deleted from the EXIDX input section.
5032
5033 Arm_exidx_merged_section::Arm_exidx_merged_section(
5034     const Arm_exidx_input_section& exidx_input_section,
5035     const Arm_exidx_section_offset_map& section_offset_map,
5036     uint32_t deleted_bytes)
5037   : Output_relaxed_input_section(exidx_input_section.relobj(),
5038                                  exidx_input_section.shndx(),
5039                                  exidx_input_section.addralign()),
5040     exidx_input_section_(exidx_input_section),
5041     section_offset_map_(section_offset_map)
5042 {
5043   // Fix size here so that we do not need to implement set_final_data_size.
5044   this->set_data_size(exidx_input_section.size() - deleted_bytes);
5045   this->fix_data_size();
5046 }
5047
5048 // Given an input OBJECT, an input section index SHNDX within that
5049 // object, and an OFFSET relative to the start of that input
5050 // section, return whether or not the corresponding offset within
5051 // the output section is known.  If this function returns true, it
5052 // sets *POUTPUT to the output offset.  The value -1 indicates that
5053 // this input offset is being discarded.
5054
5055 bool
5056 Arm_exidx_merged_section::do_output_offset(
5057     const Relobj* relobj,
5058     unsigned int shndx,
5059     section_offset_type offset,
5060     section_offset_type* poutput) const
5061 {
5062   // We only handle offsets for the original EXIDX input section.
5063   if (relobj != this->exidx_input_section_.relobj()
5064       || shndx != this->exidx_input_section_.shndx())
5065     return false;
5066
5067   section_offset_type section_size =
5068     convert_types<section_offset_type>(this->exidx_input_section_.size());
5069   if (offset < 0 || offset >= section_size)
5070     // Input offset is out of valid range.
5071     *poutput = -1;
5072   else
5073     {
5074       // We need to look up the section offset map to determine the output
5075       // offset.  Find the reference point in map that is first offset
5076       // bigger than or equal to this offset.
5077       Arm_exidx_section_offset_map::const_iterator p =
5078         this->section_offset_map_.lower_bound(offset);
5079
5080       // The section offset maps are build such that this should not happen if
5081       // input offset is in the valid range.
5082       gold_assert(p != this->section_offset_map_.end());
5083
5084       // We need to check if this is dropped.
5085      section_offset_type ref = p->first;
5086      section_offset_type mapped_ref = p->second;
5087
5088       if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5089         // Offset is present in output.
5090         *poutput = mapped_ref + (offset - ref);
5091       else
5092         // Offset is discarded owing to EXIDX entry merging.
5093         *poutput = -1;
5094     }
5095   
5096   return true;
5097 }
5098
5099 // Write this to output file OF.
5100
5101 void
5102 Arm_exidx_merged_section::do_write(Output_file* of)
5103 {
5104   // If we retain or discard the whole EXIDX input section,  we would
5105   // not be here.
5106   gold_assert(this->data_size() != this->exidx_input_section_.size()
5107               && this->data_size() != 0);
5108
5109   off_t offset = this->offset();
5110   const section_size_type oview_size = this->data_size();
5111   unsigned char* const oview = of->get_output_view(offset, oview_size);
5112   
5113   Output_section* os = this->relobj()->output_section(this->shndx());
5114   gold_assert(os != NULL);
5115
5116   // Get contents of EXIDX input section.
5117   section_size_type section_size;
5118   const unsigned char* section_contents =
5119     this->relobj()->section_contents(this->shndx(), &section_size, false); 
5120   gold_assert(section_size == this->exidx_input_section_.size());
5121
5122   // Go over spans of input offsets and write only those that are not
5123   // discarded.
5124   section_offset_type in_start = 0;
5125   section_offset_type out_start = 0;
5126   for(Arm_exidx_section_offset_map::const_iterator p =
5127         this->section_offset_map_.begin();
5128       p != this->section_offset_map_.end();
5129       ++p)
5130     {
5131       section_offset_type in_end = p->first;
5132       gold_assert(in_end >= in_start);
5133       section_offset_type out_end = p->second;
5134       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5135       if (out_end != -1)
5136         {
5137           size_t out_chunk_size =
5138             convert_types<size_t>(out_end - out_start + 1);
5139           gold_assert(out_chunk_size == in_chunk_size);
5140           memcpy(oview + out_start, section_contents + in_start,
5141                  out_chunk_size);
5142           out_start += out_chunk_size;
5143         }
5144       in_start += in_chunk_size;
5145     }
5146
5147   gold_assert(convert_to_section_size_type(out_start) == oview_size);
5148   of->write_output_view(this->offset(), oview_size, oview);
5149 }
5150
5151 // Arm_exidx_fixup methods.
5152
5153 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5154 // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5155 // points to the end of the last seen EXIDX section.
5156
5157 void
5158 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5159 {
5160   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5161       && this->last_input_section_ != NULL)
5162     {
5163       Relobj* relobj = this->last_input_section_->relobj();
5164       unsigned int text_shndx = this->last_input_section_->link();
5165       Arm_exidx_cantunwind* cantunwind =
5166         new Arm_exidx_cantunwind(relobj, text_shndx);
5167       this->exidx_output_section_->add_output_section_data(cantunwind);
5168       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5169     }
5170 }
5171
5172 // Process an EXIDX section entry in input.  Return whether this entry
5173 // can be deleted in the output.  SECOND_WORD in the second word of the
5174 // EXIDX entry.
5175
5176 bool
5177 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5178 {
5179   bool delete_entry;
5180   if (second_word == elfcpp::EXIDX_CANTUNWIND)
5181     {
5182       // Merge if previous entry is also an EXIDX_CANTUNWIND.
5183       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5184       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5185     }
5186   else if ((second_word & 0x80000000) != 0)
5187     {
5188       // Inlined unwinding data.  Merge if equal to previous.
5189       delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
5190                       && this->last_inlined_entry_ == second_word);
5191       this->last_unwind_type_ = UT_INLINED_ENTRY;
5192       this->last_inlined_entry_ = second_word;
5193     }
5194   else
5195     {
5196       // Normal table entry.  In theory we could merge these too,
5197       // but duplicate entries are likely to be much less common.
5198       delete_entry = false;
5199       this->last_unwind_type_ = UT_NORMAL_ENTRY;
5200     }
5201   return delete_entry;
5202 }
5203
5204 // Update the current section offset map during EXIDX section fix-up.
5205 // If there is no map, create one.  INPUT_OFFSET is the offset of a
5206 // reference point, DELETED_BYTES is the number of deleted by in the
5207 // section so far.  If DELETE_ENTRY is true, the reference point and
5208 // all offsets after the previous reference point are discarded.
5209
5210 void
5211 Arm_exidx_fixup::update_offset_map(
5212     section_offset_type input_offset,
5213     section_size_type deleted_bytes,
5214     bool delete_entry)
5215 {
5216   if (this->section_offset_map_ == NULL)
5217     this->section_offset_map_ = new Arm_exidx_section_offset_map();
5218   section_offset_type output_offset;
5219   if (delete_entry)
5220     output_offset = Arm_exidx_input_section::invalid_offset;
5221   else
5222     output_offset = input_offset - deleted_bytes;
5223   (*this->section_offset_map_)[input_offset] = output_offset;
5224 }
5225
5226 // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5227 // bytes deleted.  If some entries are merged, also store a pointer to a newly
5228 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The
5229 // caller owns the map and is responsible for releasing it after use.
5230
5231 template<bool big_endian>
5232 uint32_t
5233 Arm_exidx_fixup::process_exidx_section(
5234     const Arm_exidx_input_section* exidx_input_section,
5235     Arm_exidx_section_offset_map** psection_offset_map)
5236 {
5237   Relobj* relobj = exidx_input_section->relobj();
5238   unsigned shndx = exidx_input_section->shndx();
5239   section_size_type section_size;
5240   const unsigned char* section_contents =
5241     relobj->section_contents(shndx, &section_size, false);
5242
5243   if ((section_size % 8) != 0)
5244     {
5245       // Something is wrong with this section.  Better not touch it.
5246       gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5247                  relobj->name().c_str(), shndx);
5248       this->last_input_section_ = exidx_input_section;
5249       this->last_unwind_type_ = UT_NONE;
5250       return 0;
5251     }
5252   
5253   uint32_t deleted_bytes = 0;
5254   bool prev_delete_entry = false;
5255   gold_assert(this->section_offset_map_ == NULL);
5256
5257   for (section_size_type i = 0; i < section_size; i += 8)
5258     {
5259       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5260       const Valtype* wv =
5261           reinterpret_cast<const Valtype*>(section_contents + i + 4);
5262       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5263
5264       bool delete_entry = this->process_exidx_entry(second_word);
5265
5266       // Entry deletion causes changes in output offsets.  We use a std::map
5267       // to record these.  And entry (x, y) means input offset x
5268       // is mapped to output offset y.  If y is invalid_offset, then x is
5269       // dropped in the output.  Because of the way std::map::lower_bound
5270       // works, we record the last offset in a region w.r.t to keeping or
5271       // dropping.  If there is no entry (x0, y0) for an input offset x0,
5272       // the output offset y0 of it is determined by the output offset y1 of
5273       // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5274       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Othewise, y1
5275       // y0 is also -1.
5276       if (delete_entry != prev_delete_entry && i != 0)
5277         this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5278
5279       // Update total deleted bytes for this entry.
5280       if (delete_entry)
5281         deleted_bytes += 8;
5282
5283       prev_delete_entry = delete_entry;
5284     }
5285   
5286   // If section offset map is not NULL, make an entry for the end of
5287   // section.
5288   if (this->section_offset_map_ != NULL)
5289     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5290
5291   *psection_offset_map = this->section_offset_map_;
5292   this->section_offset_map_ = NULL;
5293   this->last_input_section_ = exidx_input_section;
5294   
5295   // Set the first output text section so that we can link the EXIDX output
5296   // section to it.  Ignore any EXIDX input section that is completely merged.
5297   if (this->first_output_text_section_ == NULL
5298       && deleted_bytes != section_size)
5299     {
5300       unsigned int link = exidx_input_section->link();
5301       Output_section* os = relobj->output_section(link);
5302       gold_assert(os != NULL);
5303       this->first_output_text_section_ = os;
5304     }
5305
5306   return deleted_bytes;
5307 }
5308
5309 // Arm_output_section methods.
5310
5311 // Create a stub group for input sections from BEGIN to END.  OWNER
5312 // points to the input section to be the owner a new stub table.
5313
5314 template<bool big_endian>
5315 void
5316 Arm_output_section<big_endian>::create_stub_group(
5317   Input_section_list::const_iterator begin,
5318   Input_section_list::const_iterator end,
5319   Input_section_list::const_iterator owner,
5320   Target_arm<big_endian>* target,
5321   std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5322 {
5323   // We use a different kind of relaxed section in an EXIDX section.
5324   // The static casting from Output_relaxed_input_section to
5325   // Arm_input_section is invalid in an EXIDX section.  We are okay
5326   // because we should not be calling this for an EXIDX section. 
5327   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5328
5329   // Currently we convert ordinary input sections into relaxed sections only
5330   // at this point but we may want to support creating relaxed input section
5331   // very early.  So we check here to see if owner is already a relaxed
5332   // section.
5333   
5334   Arm_input_section<big_endian>* arm_input_section;
5335   if (owner->is_relaxed_input_section())
5336     {
5337       arm_input_section =
5338         Arm_input_section<big_endian>::as_arm_input_section(
5339           owner->relaxed_input_section());
5340     }
5341   else
5342     {
5343       gold_assert(owner->is_input_section());
5344       // Create a new relaxed input section.
5345       arm_input_section =
5346         target->new_arm_input_section(owner->relobj(), owner->shndx());
5347       new_relaxed_sections->push_back(arm_input_section);
5348     }
5349
5350   // Create a stub table.
5351   Stub_table<big_endian>* stub_table =
5352     target->new_stub_table(arm_input_section);
5353
5354   arm_input_section->set_stub_table(stub_table);
5355   
5356   Input_section_list::const_iterator p = begin;
5357   Input_section_list::const_iterator prev_p;
5358
5359   // Look for input sections or relaxed input sections in [begin ... end].
5360   do
5361     {
5362       if (p->is_input_section() || p->is_relaxed_input_section())
5363         {
5364           // The stub table information for input sections live
5365           // in their objects.
5366           Arm_relobj<big_endian>* arm_relobj =
5367             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5368           arm_relobj->set_stub_table(p->shndx(), stub_table);
5369         }
5370       prev_p = p++;
5371     }
5372   while (prev_p != end);
5373 }
5374
5375 // Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5376 // of stub groups.  We grow a stub group by adding input section until the
5377 // size is just below GROUP_SIZE.  The last input section will be converted
5378 // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5379 // input section after the stub table, effectively double the group size.
5380 // 
5381 // This is similar to the group_sections() function in elf32-arm.c but is
5382 // implemented differently.
5383
5384 template<bool big_endian>
5385 void
5386 Arm_output_section<big_endian>::group_sections(
5387     section_size_type group_size,
5388     bool stubs_always_after_branch,
5389     Target_arm<big_endian>* target)
5390 {
5391   // We only care about sections containing code.
5392   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5393     return;
5394
5395   // States for grouping.
5396   typedef enum
5397   {
5398     // No group is being built.
5399     NO_GROUP,
5400     // A group is being built but the stub table is not found yet.
5401     // We keep group a stub group until the size is just under GROUP_SIZE.
5402     // The last input section in the group will be used as the stub table.
5403     FINDING_STUB_SECTION,
5404     // A group is being built and we have already found a stub table.
5405     // We enter this state to grow a stub group by adding input section
5406     // after the stub table.  This effectively doubles the group size.
5407     HAS_STUB_SECTION
5408   } State;
5409
5410   // Any newly created relaxed sections are stored here.
5411   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5412
5413   State state = NO_GROUP;
5414   section_size_type off = 0;
5415   section_size_type group_begin_offset = 0;
5416   section_size_type group_end_offset = 0;
5417   section_size_type stub_table_end_offset = 0;
5418   Input_section_list::const_iterator group_begin =
5419     this->input_sections().end();
5420   Input_section_list::const_iterator stub_table =
5421     this->input_sections().end();
5422   Input_section_list::const_iterator group_end = this->input_sections().end();
5423   for (Input_section_list::const_iterator p = this->input_sections().begin();
5424        p != this->input_sections().end();
5425        ++p)
5426     {
5427       section_size_type section_begin_offset =
5428         align_address(off, p->addralign());
5429       section_size_type section_end_offset =
5430         section_begin_offset + p->data_size(); 
5431       
5432       // Check to see if we should group the previously seens sections.
5433       switch (state)
5434         {
5435         case NO_GROUP:
5436           break;
5437
5438         case FINDING_STUB_SECTION:
5439           // Adding this section makes the group larger than GROUP_SIZE.
5440           if (section_end_offset - group_begin_offset >= group_size)
5441             {
5442               if (stubs_always_after_branch)
5443                 {       
5444                   gold_assert(group_end != this->input_sections().end());
5445                   this->create_stub_group(group_begin, group_end, group_end,
5446                                           target, &new_relaxed_sections);
5447                   state = NO_GROUP;
5448                 }
5449               else
5450                 {
5451                   // But wait, there's more!  Input sections up to
5452                   // stub_group_size bytes after the stub table can be
5453                   // handled by it too.
5454                   state = HAS_STUB_SECTION;
5455                   stub_table = group_end;
5456                   stub_table_end_offset = group_end_offset;
5457                 }
5458             }
5459             break;
5460
5461         case HAS_STUB_SECTION:
5462           // Adding this section makes the post stub-section group larger
5463           // than GROUP_SIZE.
5464           if (section_end_offset - stub_table_end_offset >= group_size)
5465            {
5466              gold_assert(group_end != this->input_sections().end());
5467              this->create_stub_group(group_begin, group_end, stub_table,
5468                                      target, &new_relaxed_sections);
5469              state = NO_GROUP;
5470            }
5471            break;
5472
5473           default:
5474             gold_unreachable();
5475         }       
5476
5477       // If we see an input section and currently there is no group, start
5478       // a new one.  Skip any empty sections.
5479       if ((p->is_input_section() || p->is_relaxed_input_section())
5480           && (p->relobj()->section_size(p->shndx()) != 0))
5481         {
5482           if (state == NO_GROUP)
5483             {
5484               state = FINDING_STUB_SECTION;
5485               group_begin = p;
5486               group_begin_offset = section_begin_offset;
5487             }
5488
5489           // Keep track of the last input section seen.
5490           group_end = p;
5491           group_end_offset = section_end_offset;
5492         }
5493
5494       off = section_end_offset;
5495     }
5496
5497   // Create a stub group for any ungrouped sections.
5498   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5499     {
5500       gold_assert(group_end != this->input_sections().end());
5501       this->create_stub_group(group_begin, group_end,
5502                               (state == FINDING_STUB_SECTION
5503                                ? group_end
5504                                : stub_table),
5505                                target, &new_relaxed_sections);
5506     }
5507
5508   // Convert input section into relaxed input section in a batch.
5509   if (!new_relaxed_sections.empty())
5510     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5511
5512   // Update the section offsets
5513   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5514     {
5515       Arm_relobj<big_endian>* arm_relobj =
5516         Arm_relobj<big_endian>::as_arm_relobj(
5517           new_relaxed_sections[i]->relobj());
5518       unsigned int shndx = new_relaxed_sections[i]->shndx();
5519       // Tell Arm_relobj that this input section is converted.
5520       arm_relobj->convert_input_section_to_relaxed_section(shndx);
5521     }
5522 }
5523
5524 // Append non empty text sections in this to LIST in ascending
5525 // order of their position in this.
5526
5527 template<bool big_endian>
5528 void
5529 Arm_output_section<big_endian>::append_text_sections_to_list(
5530     Text_section_list* list)
5531 {
5532   // We only care about text sections.
5533   if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5534     return;
5535
5536   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5537
5538   for (Input_section_list::const_iterator p = this->input_sections().begin();
5539        p != this->input_sections().end();
5540        ++p)
5541     {
5542       // We only care about plain or relaxed input sections.  We also
5543       // ignore any merged sections.
5544       if ((p->is_input_section() || p->is_relaxed_input_section())
5545           && p->data_size() != 0)
5546         list->push_back(Text_section_list::value_type(p->relobj(),
5547                                                       p->shndx()));
5548     }
5549 }
5550
5551 template<bool big_endian>
5552 void
5553 Arm_output_section<big_endian>::fix_exidx_coverage(
5554     Layout* layout,
5555     const Text_section_list& sorted_text_sections,
5556     Symbol_table* symtab)
5557 {
5558   // We should only do this for the EXIDX output section.
5559   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5560
5561   // We don't want the relaxation loop to undo these changes, so we discard
5562   // the current saved states and take another one after the fix-up.
5563   this->discard_states();
5564
5565   // Remove all input sections.
5566   uint64_t address = this->address();
5567   typedef std::list<Simple_input_section> Simple_input_section_list;
5568   Simple_input_section_list input_sections;
5569   this->reset_address_and_file_offset();
5570   this->get_input_sections(address, std::string(""), &input_sections);
5571
5572   if (!this->input_sections().empty())
5573     gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5574   
5575   // Go through all the known input sections and record them.
5576   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5577   Section_id_set known_input_sections;
5578   for (Simple_input_section_list::const_iterator p = input_sections.begin();
5579        p != input_sections.end();
5580        ++p)
5581     {
5582       // This should never happen.  At this point, we should only see
5583       // plain EXIDX input sections.
5584       gold_assert(!p->is_relaxed_input_section());
5585       known_input_sections.insert(Section_id(p->relobj(), p->shndx()));
5586     }
5587
5588   Arm_exidx_fixup exidx_fixup(this);
5589
5590   // Go over the sorted text sections.
5591   Section_id_set processed_input_sections;
5592   for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5593        p != sorted_text_sections.end();
5594        ++p)
5595     {
5596       Relobj* relobj = p->first;
5597       unsigned int shndx = p->second;
5598
5599       Arm_relobj<big_endian>* arm_relobj =
5600          Arm_relobj<big_endian>::as_arm_relobj(relobj);
5601       const Arm_exidx_input_section* exidx_input_section =
5602          arm_relobj->exidx_input_section_by_link(shndx);
5603
5604       // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5605       // entry pointing to the end of the last seen EXIDX section.
5606       if (exidx_input_section == NULL)
5607         {
5608           exidx_fixup.add_exidx_cantunwind_as_needed();
5609           continue;
5610         }
5611
5612       Relobj* exidx_relobj = exidx_input_section->relobj();
5613       unsigned int exidx_shndx = exidx_input_section->shndx();
5614       Section_id sid(exidx_relobj, exidx_shndx);
5615       if (known_input_sections.find(sid) == known_input_sections.end())
5616         {
5617           // This is odd.  We have not seen this EXIDX input section before.
5618           // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5619           // issue a warning instead.  We assume the user knows what he
5620           // or she is doing.  Otherwise, this is an error.
5621           if (layout->script_options()->saw_sections_clause())
5622             gold_warning(_("unwinding may not work because EXIDX input section"
5623                            " %u of %s is not in EXIDX output section"),
5624                          exidx_shndx, exidx_relobj->name().c_str());
5625           else
5626             gold_error(_("unwinding may not work because EXIDX input section"
5627                          " %u of %s is not in EXIDX output section"),
5628                        exidx_shndx, exidx_relobj->name().c_str());
5629
5630           exidx_fixup.add_exidx_cantunwind_as_needed();
5631           continue;
5632         }
5633
5634       // Fix up coverage and append input section to output data list.
5635       Arm_exidx_section_offset_map* section_offset_map = NULL;
5636       uint32_t deleted_bytes =
5637         exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5638                                                       &section_offset_map);
5639
5640       if (deleted_bytes == exidx_input_section->size())
5641         {
5642           // The whole EXIDX section got merged.  Remove it from output.
5643           gold_assert(section_offset_map == NULL);
5644           exidx_relobj->set_output_section(exidx_shndx, NULL);
5645
5646           // All local symbols defined in this input section will be dropped.
5647           // We need to adjust output local symbol count.
5648           arm_relobj->set_output_local_symbol_count_needs_update();
5649         }
5650       else if (deleted_bytes > 0)
5651         {
5652           // Some entries are merged.  We need to convert this EXIDX input
5653           // section into a relaxed section.
5654           gold_assert(section_offset_map != NULL);
5655           Arm_exidx_merged_section* merged_section =
5656             new Arm_exidx_merged_section(*exidx_input_section,
5657                                          *section_offset_map, deleted_bytes);
5658           this->add_relaxed_input_section(merged_section);
5659           arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5660
5661           // All local symbols defined in discarded portions of this input
5662           // section will be dropped.  We need to adjust output local symbol
5663           // count.
5664           arm_relobj->set_output_local_symbol_count_needs_update();
5665         }
5666       else
5667         {
5668           // Just add back the EXIDX input section.
5669           gold_assert(section_offset_map == NULL);
5670           Output_section::Simple_input_section sis(exidx_relobj, exidx_shndx);
5671           this->add_simple_input_section(sis, exidx_input_section->size(),
5672                                          exidx_input_section->addralign());
5673         }
5674
5675       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
5676     }
5677
5678   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5679   exidx_fixup.add_exidx_cantunwind_as_needed();
5680
5681   // Remove any known EXIDX input sections that are not processed.
5682   for (Simple_input_section_list::const_iterator p = input_sections.begin();
5683        p != input_sections.end();
5684        ++p)
5685     {
5686       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5687           == processed_input_sections.end())
5688         {
5689           // We only discard a known EXIDX section because its linked
5690           // text section has been folded by ICF.
5691           Arm_relobj<big_endian>* arm_relobj =
5692             Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5693           const Arm_exidx_input_section* exidx_input_section =
5694             arm_relobj->exidx_input_section_by_shndx(p->shndx());
5695           gold_assert(exidx_input_section != NULL);
5696           unsigned int text_shndx = exidx_input_section->link();
5697           gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5698
5699           // Remove this from link.  We also need to recount the
5700           // local symbols.
5701           p->relobj()->set_output_section(p->shndx(), NULL);
5702           arm_relobj->set_output_local_symbol_count_needs_update();
5703         }
5704     }
5705     
5706   // Link exidx output section to the first seen output section and
5707   // set correct entry size.
5708   this->set_link_section(exidx_fixup.first_output_text_section());
5709   this->set_entsize(8);
5710
5711   // Make changes permanent.
5712   this->save_states();
5713   this->set_section_offsets_need_adjustment();
5714 }
5715
5716 // Arm_relobj methods.
5717
5718 // Determine if an input section is scannable for stub processing.  SHDR is
5719 // the header of the section and SHNDX is the section index.  OS is the output
5720 // section for the input section and SYMTAB is the global symbol table used to
5721 // look up ICF information.
5722
5723 template<bool big_endian>
5724 bool
5725 Arm_relobj<big_endian>::section_is_scannable(
5726     const elfcpp::Shdr<32, big_endian>& shdr,
5727     unsigned int shndx,
5728     const Output_section* os,
5729     const Symbol_table *symtab)
5730 {
5731   // Skip any empty sections, unallocated sections or sections whose
5732   // type are not SHT_PROGBITS.
5733   if (shdr.get_sh_size() == 0
5734       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5735       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5736     return false;
5737
5738   // Skip any discarded or ICF'ed sections.
5739   if (os == NULL || symtab->is_section_folded(this, shndx))
5740     return false;
5741
5742   // If this requires special offset handling, check to see if it is
5743   // a relaxed section.  If this is not, then it is a merged section that
5744   // we cannot handle.
5745   if (this->is_output_section_offset_invalid(shndx))
5746     {
5747       const Output_relaxed_input_section* poris =
5748         os->find_relaxed_input_section(this, shndx);
5749       if (poris == NULL)
5750         return false;
5751     }
5752
5753   return true;
5754 }
5755
5756 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5757 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5758
5759 template<bool big_endian>
5760 bool
5761 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5762     const elfcpp::Shdr<32, big_endian>& shdr,
5763     const Relobj::Output_sections& out_sections,
5764     const Symbol_table *symtab,
5765     const unsigned char* pshdrs)
5766 {
5767   unsigned int sh_type = shdr.get_sh_type();
5768   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5769     return false;
5770
5771   // Ignore empty section.
5772   off_t sh_size = shdr.get_sh_size();
5773   if (sh_size == 0)
5774     return false;
5775
5776   // Ignore reloc section with unexpected symbol table.  The
5777   // error will be reported in the final link.
5778   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5779     return false;
5780
5781   unsigned int reloc_size;
5782   if (sh_type == elfcpp::SHT_REL)
5783     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5784   else
5785     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5786
5787   // Ignore reloc section with unexpected entsize or uneven size.
5788   // The error will be reported in the final link.
5789   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5790     return false;
5791
5792   // Ignore reloc section with bad info.  This error will be
5793   // reported in the final link.
5794   unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5795   if (index >= this->shnum())
5796     return false;
5797
5798   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5799   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5800   return this->section_is_scannable(text_shdr, index,
5801                                    out_sections[index], symtab);
5802 }
5803
5804 // Return the output address of either a plain input section or a relaxed
5805 // input section.  SHNDX is the section index.  We define and use this
5806 // instead of calling Output_section::output_address because that is slow
5807 // for large output.
5808
5809 template<bool big_endian>
5810 Arm_address
5811 Arm_relobj<big_endian>::simple_input_section_output_address(
5812     unsigned int shndx,
5813     Output_section* os)
5814 {
5815   if (this->is_output_section_offset_invalid(shndx))
5816     {
5817       const Output_relaxed_input_section* poris =
5818         os->find_relaxed_input_section(this, shndx);
5819       // We do not handle merged sections here.
5820       gold_assert(poris != NULL);
5821       return poris->address();
5822     }
5823   else
5824     return os->address() + this->get_output_section_offset(shndx);
5825 }
5826
5827 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5828 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5829
5830 template<bool big_endian>
5831 bool
5832 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5833     const elfcpp::Shdr<32, big_endian>& shdr,
5834     unsigned int shndx,
5835     Output_section* os,
5836     const Symbol_table* symtab)
5837 {
5838   if (!this->section_is_scannable(shdr, shndx, os, symtab))
5839     return false;
5840
5841   // If the section does not cross any 4K-boundaries, it does not need to
5842   // be scanned.
5843   Arm_address address = this->simple_input_section_output_address(shndx, os);
5844   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5845     return false;
5846
5847   return true;
5848 }
5849
5850 // Scan a section for Cortex-A8 workaround.
5851
5852 template<bool big_endian>
5853 void
5854 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5855     const elfcpp::Shdr<32, big_endian>& shdr,
5856     unsigned int shndx,
5857     Output_section* os,
5858     Target_arm<big_endian>* arm_target)
5859 {
5860   // Look for the first mapping symbol in this section.  It should be
5861   // at (shndx, 0).
5862   Mapping_symbol_position section_start(shndx, 0);
5863   typename Mapping_symbols_info::const_iterator p =
5864     this->mapping_symbols_info_.lower_bound(section_start);
5865
5866   // There are no mapping symbols for this section.  Treat it as a data-only
5867   // section.  Issue a warning if section is marked as containing
5868   // instructions.
5869   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
5870     {
5871       if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
5872         gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
5873                        "erratum because it has no mapping symbols."),
5874                      shndx, this->name().c_str());
5875       return;
5876     }
5877
5878   Arm_address output_address =
5879     this->simple_input_section_output_address(shndx, os);
5880
5881   // Get the section contents.
5882   section_size_type input_view_size = 0;
5883   const unsigned char* input_view =
5884     this->section_contents(shndx, &input_view_size, false);
5885
5886   // We need to go through the mapping symbols to determine what to
5887   // scan.  There are two reasons.  First, we should look at THUMB code and
5888   // THUMB code only.  Second, we only want to look at the 4K-page boundary
5889   // to speed up the scanning.
5890   
5891   while (p != this->mapping_symbols_info_.end()
5892         && p->first.first == shndx)
5893     {
5894       typename Mapping_symbols_info::const_iterator next =
5895         this->mapping_symbols_info_.upper_bound(p->first);
5896
5897       // Only scan part of a section with THUMB code.
5898       if (p->second == 't')
5899         {
5900           // Determine the end of this range.
5901           section_size_type span_start =
5902             convert_to_section_size_type(p->first.second);
5903           section_size_type span_end;
5904           if (next != this->mapping_symbols_info_.end()
5905               && next->first.first == shndx)
5906             span_end = convert_to_section_size_type(next->first.second);
5907           else
5908             span_end = convert_to_section_size_type(shdr.get_sh_size());
5909           
5910           if (((span_start + output_address) & ~0xfffUL)
5911               != ((span_end + output_address - 1) & ~0xfffUL))
5912             {
5913               arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
5914                                                           span_start, span_end,
5915                                                           input_view,
5916                                                           output_address);
5917             }
5918         }
5919
5920       p = next; 
5921     }
5922 }
5923
5924 // Scan relocations for stub generation.
5925
5926 template<bool big_endian>
5927 void
5928 Arm_relobj<big_endian>::scan_sections_for_stubs(
5929     Target_arm<big_endian>* arm_target,
5930     const Symbol_table* symtab,
5931     const Layout* layout)
5932 {
5933   unsigned int shnum = this->shnum();
5934   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5935
5936   // Read the section headers.
5937   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
5938                                                shnum * shdr_size,
5939                                                true, true);
5940
5941   // To speed up processing, we set up hash tables for fast lookup of
5942   // input offsets to output addresses.
5943   this->initialize_input_to_output_maps();
5944
5945   const Relobj::Output_sections& out_sections(this->output_sections());
5946
5947   Relocate_info<32, big_endian> relinfo;
5948   relinfo.symtab = symtab;
5949   relinfo.layout = layout;
5950   relinfo.object = this;
5951
5952   // Do relocation stubs scanning.
5953   const unsigned char* p = pshdrs + shdr_size;
5954   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5955     {
5956       const elfcpp::Shdr<32, big_endian> shdr(p);
5957       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
5958                                                   pshdrs))
5959         {
5960           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5961           Arm_address output_offset = this->get_output_section_offset(index);
5962           Arm_address output_address;
5963           if (output_offset != invalid_address)
5964             output_address = out_sections[index]->address() + output_offset;
5965           else
5966             {
5967               // Currently this only happens for a relaxed section.
5968               const Output_relaxed_input_section* poris =
5969               out_sections[index]->find_relaxed_input_section(this, index);
5970               gold_assert(poris != NULL);
5971               output_address = poris->address();
5972             }
5973
5974           // Get the relocations.
5975           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
5976                                                         shdr.get_sh_size(),
5977                                                         true, false);
5978
5979           // Get the section contents.  This does work for the case in which
5980           // we modify the contents of an input section.  We need to pass the
5981           // output view under such circumstances.
5982           section_size_type input_view_size = 0;
5983           const unsigned char* input_view =
5984             this->section_contents(index, &input_view_size, false);
5985
5986           relinfo.reloc_shndx = i;
5987           relinfo.data_shndx = index;
5988           unsigned int sh_type = shdr.get_sh_type();
5989           unsigned int reloc_size;
5990           if (sh_type == elfcpp::SHT_REL)
5991             reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5992           else
5993             reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5994
5995           Output_section* os = out_sections[index];
5996           arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
5997                                              shdr.get_sh_size() / reloc_size,
5998                                              os,
5999                                              output_offset == invalid_address,
6000                                              input_view, output_address,
6001                                              input_view_size);
6002         }
6003     }
6004
6005   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6006   // after its relocation section, if there is one, is processed for
6007   // relocation stubs.  Merging this loop with the one above would have been
6008   // complicated since we would have had to make sure that relocation stub
6009   // scanning is done first.
6010   if (arm_target->fix_cortex_a8())
6011     {
6012       const unsigned char* p = pshdrs + shdr_size;
6013       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6014         {
6015           const elfcpp::Shdr<32, big_endian> shdr(p);
6016           if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6017                                                           out_sections[i],
6018                                                           symtab))
6019             this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6020                                                      arm_target);
6021         }
6022     }
6023
6024   // After we've done the relocations, we release the hash tables,
6025   // since we no longer need them.
6026   this->free_input_to_output_maps();
6027 }
6028
6029 // Count the local symbols.  The ARM backend needs to know if a symbol
6030 // is a THUMB function or not.  For global symbols, it is easy because
6031 // the Symbol object keeps the ELF symbol type.  For local symbol it is
6032 // harder because we cannot access this information.   So we override the
6033 // do_count_local_symbol in parent and scan local symbols to mark
6034 // THUMB functions.  This is not the most efficient way but I do not want to
6035 // slow down other ports by calling a per symbol targer hook inside
6036 // Sized_relobj<size, big_endian>::do_count_local_symbols. 
6037
6038 template<bool big_endian>
6039 void
6040 Arm_relobj<big_endian>::do_count_local_symbols(
6041     Stringpool_template<char>* pool,
6042     Stringpool_template<char>* dynpool)
6043 {
6044   // We need to fix-up the values of any local symbols whose type are
6045   // STT_ARM_TFUNC.
6046   
6047   // Ask parent to count the local symbols.
6048   Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6049   const unsigned int loccount = this->local_symbol_count();
6050   if (loccount == 0)
6051     return;
6052
6053   // Intialize the thumb function bit-vector.
6054   std::vector<bool> empty_vector(loccount, false);
6055   this->local_symbol_is_thumb_function_.swap(empty_vector);
6056
6057   // Read the symbol table section header.
6058   const unsigned int symtab_shndx = this->symtab_shndx();
6059   elfcpp::Shdr<32, big_endian>
6060       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6061   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6062
6063   // Read the local symbols.
6064   const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6065   gold_assert(loccount == symtabshdr.get_sh_info());
6066   off_t locsize = loccount * sym_size;
6067   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6068                                               locsize, true, true);
6069
6070   // For mapping symbol processing, we need to read the symbol names.
6071   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6072   if (strtab_shndx >= this->shnum())
6073     {
6074       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6075       return;
6076     }
6077
6078   elfcpp::Shdr<32, big_endian>
6079     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6080   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6081     {
6082       this->error(_("symbol table name section has wrong type: %u"),
6083                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
6084       return;
6085     }
6086   const char* pnames =
6087     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6088                                                  strtabshdr.get_sh_size(),
6089                                                  false, false));
6090
6091   // Loop over the local symbols and mark any local symbols pointing
6092   // to THUMB functions.
6093
6094   // Skip the first dummy symbol.
6095   psyms += sym_size;
6096   typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6097     this->local_values();
6098   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6099     {
6100       elfcpp::Sym<32, big_endian> sym(psyms);
6101       elfcpp::STT st_type = sym.get_st_type();
6102       Symbol_value<32>& lv((*plocal_values)[i]);
6103       Arm_address input_value = lv.input_value();
6104
6105       // Check to see if this is a mapping symbol.
6106       const char* sym_name = pnames + sym.get_st_name();
6107       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6108         {
6109           bool is_ordinary;
6110           unsigned int input_shndx =
6111             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6112           gold_assert(is_ordinary);
6113
6114           // Strip of LSB in case this is a THUMB symbol.
6115           Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6116           this->mapping_symbols_info_[msp] = sym_name[1];
6117         }
6118
6119       if (st_type == elfcpp::STT_ARM_TFUNC
6120           || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6121         {
6122           // This is a THUMB function.  Mark this and canonicalize the
6123           // symbol value by setting LSB.
6124           this->local_symbol_is_thumb_function_[i] = true;
6125           if ((input_value & 1) == 0)
6126             lv.set_input_value(input_value | 1);
6127         }
6128     }
6129 }
6130
6131 // Relocate sections.
6132 template<bool big_endian>
6133 void
6134 Arm_relobj<big_endian>::do_relocate_sections(
6135     const Symbol_table* symtab,
6136     const Layout* layout,
6137     const unsigned char* pshdrs,
6138     typename Sized_relobj<32, big_endian>::Views* pviews)
6139 {
6140   // Call parent to relocate sections.
6141   Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6142                                                      pviews); 
6143
6144   // We do not generate stubs if doing a relocatable link.
6145   if (parameters->options().relocatable())
6146     return;
6147
6148   // Relocate stub tables.
6149   unsigned int shnum = this->shnum();
6150
6151   Target_arm<big_endian>* arm_target =
6152     Target_arm<big_endian>::default_target();
6153
6154   Relocate_info<32, big_endian> relinfo;
6155   relinfo.symtab = symtab;
6156   relinfo.layout = layout;
6157   relinfo.object = this;
6158
6159   for (unsigned int i = 1; i < shnum; ++i)
6160     {
6161       Arm_input_section<big_endian>* arm_input_section =
6162         arm_target->find_arm_input_section(this, i);
6163
6164       if (arm_input_section != NULL
6165           && arm_input_section->is_stub_table_owner()
6166           && !arm_input_section->stub_table()->empty())
6167         {
6168           // We cannot discard a section if it owns a stub table.
6169           Output_section* os = this->output_section(i);
6170           gold_assert(os != NULL);
6171
6172           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6173           relinfo.reloc_shdr = NULL;
6174           relinfo.data_shndx = i;
6175           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6176
6177           gold_assert((*pviews)[i].view != NULL);
6178
6179           // We are passed the output section view.  Adjust it to cover the
6180           // stub table only.
6181           Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6182           gold_assert((stub_table->address() >= (*pviews)[i].address)
6183                       && ((stub_table->address() + stub_table->data_size())
6184                           <= (*pviews)[i].address + (*pviews)[i].view_size));
6185
6186           off_t offset = stub_table->address() - (*pviews)[i].address;
6187           unsigned char* view = (*pviews)[i].view + offset;
6188           Arm_address address = stub_table->address();
6189           section_size_type view_size = stub_table->data_size();
6190  
6191           stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6192                                      view_size);
6193         }
6194
6195       // Apply Cortex A8 workaround if applicable.
6196       if (this->section_has_cortex_a8_workaround(i))
6197         {
6198           unsigned char* view = (*pviews)[i].view;
6199           Arm_address view_address = (*pviews)[i].address;
6200           section_size_type view_size = (*pviews)[i].view_size;
6201           Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6202
6203           // Adjust view to cover section.
6204           Output_section* os = this->output_section(i);
6205           gold_assert(os != NULL);
6206           Arm_address section_address =
6207             this->simple_input_section_output_address(i, os);
6208           uint64_t section_size = this->section_size(i);
6209
6210           gold_assert(section_address >= view_address
6211                       && ((section_address + section_size)
6212                           <= (view_address + view_size)));
6213
6214           unsigned char* section_view = view + (section_address - view_address);
6215
6216           // Apply the Cortex-A8 workaround to the output address range
6217           // corresponding to this input section.
6218           stub_table->apply_cortex_a8_workaround_to_address_range(
6219               arm_target,
6220               section_view,
6221               section_address,
6222               section_size);
6223         }
6224     }
6225 }
6226
6227 // Find the linked text section of an EXIDX section by looking the the first
6228 // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6229 // must be linked to to its associated code section via the sh_link field of
6230 // its section header.  However, some tools are broken and the link is not
6231 // always set.  LD just drops such an EXIDX section silently, causing the
6232 // associated code not unwindabled.   Here we try a little bit harder to
6233 // discover the linked code section.
6234 //
6235 // PSHDR points to the section header of a relocation section of an EXIDX
6236 // section.  If we can find a linked text section, return true and
6237 // store the text section index in the location PSHNDX.  Otherwise
6238 // return false.
6239
6240 template<bool big_endian>
6241 bool
6242 Arm_relobj<big_endian>::find_linked_text_section(
6243     const unsigned char* pshdr,
6244     const unsigned char* psyms,
6245     unsigned int* pshndx)
6246 {
6247   elfcpp::Shdr<32, big_endian> shdr(pshdr);
6248   
6249   // If there is no relocation, we cannot find the linked text section.
6250   size_t reloc_size;
6251   if (shdr.get_sh_type() == elfcpp::SHT_REL)
6252       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6253   else
6254       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6255   size_t reloc_count = shdr.get_sh_size() / reloc_size;
6256  
6257   // Get the relocations.
6258   const unsigned char* prelocs =
6259       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
6260
6261   // Find the REL31 relocation for the first word of the first EXIDX entry.
6262   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6263     {
6264       Arm_address r_offset;
6265       typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6266       if (shdr.get_sh_type() == elfcpp::SHT_REL)
6267         {
6268           typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6269           r_info = reloc.get_r_info();
6270           r_offset = reloc.get_r_offset();
6271         }
6272       else
6273         {
6274           typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6275           r_info = reloc.get_r_info();
6276           r_offset = reloc.get_r_offset();
6277         }
6278
6279       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6280       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6281         continue;
6282
6283       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6284       if (r_sym == 0
6285           || r_sym >= this->local_symbol_count()
6286           || r_offset != 0)
6287         continue;
6288
6289       // This is the relocation for the first word of the first EXIDX entry.
6290       // We expect to see a local section symbol.
6291       const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6292       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6293       if (sym.get_st_type() == elfcpp::STT_SECTION)
6294         {
6295           bool is_ordinary;
6296           *pshndx =
6297             this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6298           gold_assert(is_ordinary);
6299           return true;
6300         }
6301       else
6302         return false;
6303     }
6304
6305   return false;
6306 }
6307
6308 // Make an EXIDX input section object for an EXIDX section whose index is
6309 // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6310 // is the section index of the linked text section.
6311
6312 template<bool big_endian>
6313 void
6314 Arm_relobj<big_endian>::make_exidx_input_section(
6315     unsigned int shndx,
6316     const elfcpp::Shdr<32, big_endian>& shdr,
6317     unsigned int text_shndx)
6318 {
6319   // Issue an error and ignore this EXIDX section if it points to a text
6320   // section already has an EXIDX section.
6321   if (this->exidx_section_map_[text_shndx] != NULL)
6322     {
6323       gold_error(_("EXIDX sections %u and %u both link to text section %u "
6324                    "in %s"),
6325                  shndx, this->exidx_section_map_[text_shndx]->shndx(),
6326                  text_shndx, this->name().c_str());
6327       return;
6328     }
6329
6330   // Create an Arm_exidx_input_section object for this EXIDX section.
6331   Arm_exidx_input_section* exidx_input_section =
6332     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6333                                 shdr.get_sh_addralign());
6334   this->exidx_section_map_[text_shndx] = exidx_input_section;
6335
6336   // Also map the EXIDX section index to this.
6337   gold_assert(this->exidx_section_map_[shndx] == NULL);
6338   this->exidx_section_map_[shndx] = exidx_input_section;
6339 }
6340
6341 // Read the symbol information.
6342
6343 template<bool big_endian>
6344 void
6345 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6346 {
6347   // Call parent class to read symbol information.
6348   Sized_relobj<32, big_endian>::do_read_symbols(sd);
6349
6350   // If this input file is a binary file, it has no processor
6351   // specific flags and attributes section.
6352   Input_file::Format format = this->input_file()->format();
6353   if (format != Input_file::FORMAT_ELF)
6354     {
6355       gold_assert(format == Input_file::FORMAT_BINARY);
6356       this->merge_flags_and_attributes_ = false;
6357       return;
6358     }
6359
6360   // Read processor-specific flags in ELF file header.
6361   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6362                                               elfcpp::Elf_sizes<32>::ehdr_size,
6363                                               true, false);
6364   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6365   this->processor_specific_flags_ = ehdr.get_e_flags();
6366
6367   // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6368   // sections.
6369   std::vector<unsigned int> deferred_exidx_sections;
6370   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6371   const unsigned char* pshdrs = sd->section_headers->data();
6372   const unsigned char *ps = pshdrs + shdr_size;
6373   bool must_merge_flags_and_attributes = false;
6374   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6375     {
6376       elfcpp::Shdr<32, big_endian> shdr(ps);
6377
6378       // Sometimes an object has no contents except the section name string
6379       // table and an empty symbol table with the undefined symbol.  We
6380       // don't want to merge processor-specific flags from such an object.
6381       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6382         {
6383           // Symbol table is not empty.
6384           const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6385              elfcpp::Elf_sizes<32>::sym_size;
6386           if (shdr.get_sh_size() > sym_size)
6387             must_merge_flags_and_attributes = true;
6388         }
6389       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6390         // If this is neither an empty symbol table nor a string table,
6391         // be conservative.
6392         must_merge_flags_and_attributes = true;
6393
6394       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6395         {
6396           gold_assert(this->attributes_section_data_ == NULL);
6397           section_offset_type section_offset = shdr.get_sh_offset();
6398           section_size_type section_size =
6399             convert_to_section_size_type(shdr.get_sh_size());
6400           File_view* view = this->get_lasting_view(section_offset,
6401                                                    section_size, true, false);
6402           this->attributes_section_data_ =
6403             new Attributes_section_data(view->data(), section_size);
6404         }
6405       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6406         {
6407           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6408           if (text_shndx >= this->shnum())
6409             gold_error(_("EXIDX section %u linked to invalid section %u"),
6410                        i, text_shndx);
6411           else if (text_shndx == elfcpp::SHN_UNDEF)
6412             deferred_exidx_sections.push_back(i);
6413           else
6414             this->make_exidx_input_section(i, shdr, text_shndx);
6415         }
6416     }
6417
6418   // This is rare.
6419   if (!must_merge_flags_and_attributes)
6420     {
6421       this->merge_flags_and_attributes_ = false;
6422       return;
6423     }
6424
6425   // Some tools are broken and they do not set the link of EXIDX sections. 
6426   // We look at the first relocation to figure out the linked sections.
6427   if (!deferred_exidx_sections.empty())
6428     {
6429       // We need to go over the section headers again to find the mapping
6430       // from sections being relocated to their relocation sections.  This is
6431       // a bit inefficient as we could do that in the loop above.  However,
6432       // we do not expect any deferred EXIDX sections normally.  So we do not
6433       // want to slow down the most common path.
6434       typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6435       Reloc_map reloc_map;
6436       ps = pshdrs + shdr_size;
6437       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6438         {
6439           elfcpp::Shdr<32, big_endian> shdr(ps);
6440           elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6441           if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6442             {
6443               unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6444               if (info_shndx >= this->shnum())
6445                 gold_error(_("relocation section %u has invalid info %u"),
6446                            i, info_shndx);
6447               Reloc_map::value_type value(info_shndx, i);
6448               std::pair<Reloc_map::iterator, bool> result =
6449                 reloc_map.insert(value);
6450               if (!result.second)
6451                 gold_error(_("section %u has multiple relocation sections "
6452                              "%u and %u"),
6453                            info_shndx, i, reloc_map[info_shndx]);
6454             }
6455         }
6456
6457       // Read the symbol table section header.
6458       const unsigned int symtab_shndx = this->symtab_shndx();
6459       elfcpp::Shdr<32, big_endian>
6460           symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6461       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6462
6463       // Read the local symbols.
6464       const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6465       const unsigned int loccount = this->local_symbol_count();
6466       gold_assert(loccount == symtabshdr.get_sh_info());
6467       off_t locsize = loccount * sym_size;
6468       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6469                                                   locsize, true, true);
6470
6471       // Process the deferred EXIDX sections. 
6472       for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6473         {
6474           unsigned int shndx = deferred_exidx_sections[i];
6475           elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6476           unsigned int text_shndx;
6477           Reloc_map::const_iterator it = reloc_map.find(shndx);
6478           if (it != reloc_map.end()
6479               && find_linked_text_section(pshdrs + it->second * shdr_size,
6480                                           psyms, &text_shndx))
6481             this->make_exidx_input_section(shndx, shdr, text_shndx);
6482           else
6483             gold_error(_("EXIDX section %u has no linked text section."),
6484                        shndx);
6485         }
6486     }
6487 }
6488
6489 // Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6490 // sections for unwinding.  These sections are referenced implicitly by 
6491 // text sections linked in the section headers.  If we ignore these implict
6492 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6493 // will be garbage-collected incorrectly.  Hence we override the same function
6494 // in the base class to handle these implicit references.
6495
6496 template<bool big_endian>
6497 void
6498 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6499                                              Layout* layout,
6500                                              Read_relocs_data* rd)
6501 {
6502   // First, call base class method to process relocations in this object.
6503   Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6504
6505   // If --gc-sections is not specified, there is nothing more to do.
6506   // This happens when --icf is used but --gc-sections is not.
6507   if (!parameters->options().gc_sections())
6508     return;
6509   
6510   unsigned int shnum = this->shnum();
6511   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6512   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6513                                                shnum * shdr_size,
6514                                                true, true);
6515
6516   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6517   // to these from the linked text sections.
6518   const unsigned char* ps = pshdrs + shdr_size;
6519   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6520     {
6521       elfcpp::Shdr<32, big_endian> shdr(ps);
6522       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6523         {
6524           // Found an .ARM.exidx section, add it to the set of reachable
6525           // sections from its linked text section.
6526           unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6527           symtab->gc()->add_reference(this, text_shndx, this, i);
6528         }
6529     }
6530 }
6531
6532 // Update output local symbol count.  Owing to EXIDX entry merging, some local
6533 // symbols  will be removed in output.  Adjust output local symbol count
6534 // accordingly.  We can only changed the static output local symbol count.  It
6535 // is too late to change the dynamic symbols.
6536
6537 template<bool big_endian>
6538 void
6539 Arm_relobj<big_endian>::update_output_local_symbol_count()
6540 {
6541   // Caller should check that this needs updating.  We want caller checking
6542   // because output_local_symbol_count_needs_update() is most likely inlined.
6543   gold_assert(this->output_local_symbol_count_needs_update_);
6544
6545   gold_assert(this->symtab_shndx() != -1U);
6546   if (this->symtab_shndx() == 0)
6547     {
6548       // This object has no symbols.  Weird but legal.
6549       return;
6550     }
6551
6552   // Read the symbol table section header.
6553   const unsigned int symtab_shndx = this->symtab_shndx();
6554   elfcpp::Shdr<32, big_endian>
6555     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6556   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6557
6558   // Read the local symbols.
6559   const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6560   const unsigned int loccount = this->local_symbol_count();
6561   gold_assert(loccount == symtabshdr.get_sh_info());
6562   off_t locsize = loccount * sym_size;
6563   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6564                                               locsize, true, true);
6565
6566   // Loop over the local symbols.
6567
6568   typedef typename Sized_relobj<32, big_endian>::Output_sections
6569      Output_sections;
6570   const Output_sections& out_sections(this->output_sections());
6571   unsigned int shnum = this->shnum();
6572   unsigned int count = 0;
6573   // Skip the first, dummy, symbol.
6574   psyms += sym_size;
6575   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6576     {
6577       elfcpp::Sym<32, big_endian> sym(psyms);
6578
6579       Symbol_value<32>& lv((*this->local_values())[i]);
6580
6581       // This local symbol was already discarded by do_count_local_symbols.
6582       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6583         continue;
6584
6585       bool is_ordinary;
6586       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6587                                                   &is_ordinary);
6588
6589       if (shndx < shnum)
6590         {
6591           Output_section* os = out_sections[shndx];
6592
6593           // This local symbol no longer has an output section.  Discard it.
6594           if (os == NULL)
6595             {
6596               lv.set_no_output_symtab_entry();
6597               continue;
6598             }
6599
6600           // Currently we only discard parts of EXIDX input sections.
6601           // We explicitly check for a merged EXIDX input section to avoid
6602           // calling Output_section_data::output_offset unless necessary.
6603           if ((this->get_output_section_offset(shndx) == invalid_address)
6604               && (this->exidx_input_section_by_shndx(shndx) != NULL))
6605             {
6606               section_offset_type output_offset =
6607                 os->output_offset(this, shndx, lv.input_value());
6608               if (output_offset == -1)
6609                 {
6610                   // This symbol is defined in a part of an EXIDX input section
6611                   // that is discarded due to entry merging.
6612                   lv.set_no_output_symtab_entry();
6613                   continue;
6614                 }       
6615             }
6616         }
6617
6618       ++count;
6619     }
6620
6621   this->set_output_local_symbol_count(count);
6622   this->output_local_symbol_count_needs_update_ = false;
6623 }
6624
6625 // Arm_dynobj methods.
6626
6627 // Read the symbol information.
6628
6629 template<bool big_endian>
6630 void
6631 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6632 {
6633   // Call parent class to read symbol information.
6634   Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6635
6636   // Read processor-specific flags in ELF file header.
6637   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6638                                               elfcpp::Elf_sizes<32>::ehdr_size,
6639                                               true, false);
6640   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6641   this->processor_specific_flags_ = ehdr.get_e_flags();
6642
6643   // Read the attributes section if there is one.
6644   // We read from the end because gas seems to put it near the end of
6645   // the section headers.
6646   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6647   const unsigned char *ps =
6648     sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6649   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6650     {
6651       elfcpp::Shdr<32, big_endian> shdr(ps);
6652       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6653         {
6654           section_offset_type section_offset = shdr.get_sh_offset();
6655           section_size_type section_size =
6656             convert_to_section_size_type(shdr.get_sh_size());
6657           File_view* view = this->get_lasting_view(section_offset,
6658                                                    section_size, true, false);
6659           this->attributes_section_data_ =
6660             new Attributes_section_data(view->data(), section_size);
6661           break;
6662         }
6663     }
6664 }
6665
6666 // Stub_addend_reader methods.
6667
6668 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6669
6670 template<bool big_endian>
6671 elfcpp::Elf_types<32>::Elf_Swxword
6672 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6673     unsigned int r_type,
6674     const unsigned char* view,
6675     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6676 {
6677   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6678   
6679   switch (r_type)
6680     {
6681     case elfcpp::R_ARM_CALL:
6682     case elfcpp::R_ARM_JUMP24:
6683     case elfcpp::R_ARM_PLT32:
6684       {
6685         typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6686         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6687         Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6688         return utils::sign_extend<26>(val << 2);
6689       }
6690
6691     case elfcpp::R_ARM_THM_CALL:
6692     case elfcpp::R_ARM_THM_JUMP24:
6693     case elfcpp::R_ARM_THM_XPC22:
6694       {
6695         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6696         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6697         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6698         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6699         return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6700       }
6701
6702     case elfcpp::R_ARM_THM_JUMP19:
6703       {
6704         typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6705         const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6706         Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6707         Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6708         return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6709       }
6710
6711     default:
6712       gold_unreachable();
6713     }
6714 }
6715
6716 // Arm_output_data_got methods.
6717
6718 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
6719 // The first one is initialized to be 1, which is the module index for
6720 // the main executable and the second one 0.  A reloc of the type
6721 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6722 // be applied by gold.  GSYM is a global symbol.
6723 //
6724 template<bool big_endian>
6725 void
6726 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6727     unsigned int got_type,
6728     Symbol* gsym)
6729 {
6730   if (gsym->has_got_offset(got_type))
6731     return;
6732
6733   // We are doing a static link.  Just mark it as belong to module 1,
6734   // the executable.
6735   unsigned int got_offset = this->add_constant(1);
6736   gsym->set_got_offset(got_type, got_offset); 
6737   got_offset = this->add_constant(0);
6738   this->static_relocs_.push_back(Static_reloc(got_offset,
6739                                               elfcpp::R_ARM_TLS_DTPOFF32,
6740                                               gsym));
6741 }
6742
6743 // Same as the above but for a local symbol.
6744
6745 template<bool big_endian>
6746 void
6747 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6748   unsigned int got_type,
6749   Sized_relobj<32, big_endian>* object,
6750   unsigned int index)
6751 {
6752   if (object->local_has_got_offset(index, got_type))
6753     return;
6754
6755   // We are doing a static link.  Just mark it as belong to module 1,
6756   // the executable.
6757   unsigned int got_offset = this->add_constant(1);
6758   object->set_local_got_offset(index, got_type, got_offset);
6759   got_offset = this->add_constant(0);
6760   this->static_relocs_.push_back(Static_reloc(got_offset, 
6761                                               elfcpp::R_ARM_TLS_DTPOFF32, 
6762                                               object, index));
6763 }
6764
6765 template<bool big_endian>
6766 void
6767 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6768 {
6769   // Call parent to write out GOT.
6770   Output_data_got<32, big_endian>::do_write(of);
6771
6772   // We are done if there is no fix up.
6773   if (this->static_relocs_.empty())
6774     return;
6775
6776   gold_assert(parameters->doing_static_link());
6777
6778   const off_t offset = this->offset();
6779   const section_size_type oview_size =
6780     convert_to_section_size_type(this->data_size());
6781   unsigned char* const oview = of->get_output_view(offset, oview_size);
6782
6783   Output_segment* tls_segment = this->layout_->tls_segment();
6784   gold_assert(tls_segment != NULL);
6785   
6786   // The thread pointer $tp points to the TCB, which is followed by the
6787   // TLS.  So we need to adjust $tp relative addressing by this amount.
6788   Arm_address aligned_tcb_size =
6789     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6790
6791   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6792     {
6793       Static_reloc& reloc(this->static_relocs_[i]);
6794       
6795       Arm_address value;
6796       if (!reloc.symbol_is_global())
6797         {
6798           Sized_relobj<32, big_endian>* object = reloc.relobj();
6799           const Symbol_value<32>* psymval =
6800             reloc.relobj()->local_symbol(reloc.index());
6801
6802           // We are doing static linking.  Issue an error and skip this
6803           // relocation if the symbol is undefined or in a discarded_section.
6804           bool is_ordinary;
6805           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6806           if ((shndx == elfcpp::SHN_UNDEF)
6807               || (is_ordinary
6808                   && shndx != elfcpp::SHN_UNDEF
6809                   && !object->is_section_included(shndx)
6810                   && !this->symbol_table_->is_section_folded(object, shndx)))
6811             {
6812               gold_error(_("undefined or discarded local symbol %u from "
6813                            " object %s in GOT"),
6814                          reloc.index(), reloc.relobj()->name().c_str());
6815               continue;
6816             }
6817           
6818           value = psymval->value(object, 0);
6819         }
6820       else
6821         {
6822           const Symbol* gsym = reloc.symbol();
6823           gold_assert(gsym != NULL);
6824           if (gsym->is_forwarder())
6825             gsym = this->symbol_table_->resolve_forwards(gsym);
6826
6827           // We are doing static linking.  Issue an error and skip this
6828           // relocation if the symbol is undefined or in a discarded_section
6829           // unless it is a weakly_undefined symbol.
6830           if ((gsym->is_defined_in_discarded_section()
6831                || gsym->is_undefined())
6832               && !gsym->is_weak_undefined())
6833             {
6834               gold_error(_("undefined or discarded symbol %s in GOT"),
6835                          gsym->name());
6836               continue;
6837             }
6838
6839           if (!gsym->is_weak_undefined())
6840             {
6841               const Sized_symbol<32>* sym =
6842                 static_cast<const Sized_symbol<32>*>(gsym);
6843               value = sym->value();
6844             }
6845           else
6846               value = 0;
6847         }
6848
6849       unsigned got_offset = reloc.got_offset();
6850       gold_assert(got_offset < oview_size);
6851
6852       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6853       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6854       Valtype x;
6855       switch (reloc.r_type())
6856         {
6857         case elfcpp::R_ARM_TLS_DTPOFF32:
6858           x = value;
6859           break;
6860         case elfcpp::R_ARM_TLS_TPOFF32:
6861           x = value + aligned_tcb_size;
6862           break;
6863         default:
6864           gold_unreachable();
6865         }
6866       elfcpp::Swap<32, big_endian>::writeval(wv, x);
6867     }
6868
6869   of->write_output_view(offset, oview_size, oview);
6870 }
6871
6872 // A class to handle the PLT data.
6873
6874 template<bool big_endian>
6875 class Output_data_plt_arm : public Output_section_data
6876 {
6877  public:
6878   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6879     Reloc_section;
6880
6881   Output_data_plt_arm(Layout*, Output_data_space*);
6882
6883   // Add an entry to the PLT.
6884   void
6885   add_entry(Symbol* gsym);
6886
6887   // Return the .rel.plt section data.
6888   const Reloc_section*
6889   rel_plt() const
6890   { return this->rel_; }
6891
6892  protected:
6893   void
6894   do_adjust_output_section(Output_section* os);
6895
6896   // Write to a map file.
6897   void
6898   do_print_to_mapfile(Mapfile* mapfile) const
6899   { mapfile->print_output_data(this, _("** PLT")); }
6900
6901  private:
6902   // Template for the first PLT entry.
6903   static const uint32_t first_plt_entry[5];
6904
6905   // Template for subsequent PLT entries. 
6906   static const uint32_t plt_entry[3];
6907
6908   // Set the final size.
6909   void
6910   set_final_data_size()
6911   {
6912     this->set_data_size(sizeof(first_plt_entry)
6913                         + this->count_ * sizeof(plt_entry));
6914   }
6915
6916   // Write out the PLT data.
6917   void
6918   do_write(Output_file*);
6919
6920   // The reloc section.
6921   Reloc_section* rel_;
6922   // The .got.plt section.
6923   Output_data_space* got_plt_;
6924   // The number of PLT entries.
6925   unsigned int count_;
6926 };
6927
6928 // Create the PLT section.  The ordinary .got section is an argument,
6929 // since we need to refer to the start.  We also create our own .got
6930 // section just for PLT entries.
6931
6932 template<bool big_endian>
6933 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
6934                                                      Output_data_space* got_plt)
6935   : Output_section_data(4), got_plt_(got_plt), count_(0)
6936 {
6937   this->rel_ = new Reloc_section(false);
6938   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
6939                                   elfcpp::SHF_ALLOC, this->rel_, true, false,
6940                                   false, false);
6941 }
6942
6943 template<bool big_endian>
6944 void
6945 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
6946 {
6947   os->set_entsize(0);
6948 }
6949
6950 // Add an entry to the PLT.
6951
6952 template<bool big_endian>
6953 void
6954 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
6955 {
6956   gold_assert(!gsym->has_plt_offset());
6957
6958   // Note that when setting the PLT offset we skip the initial
6959   // reserved PLT entry.
6960   gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
6961                        + sizeof(first_plt_entry));
6962
6963   ++this->count_;
6964
6965   section_offset_type got_offset = this->got_plt_->current_data_size();
6966
6967   // Every PLT entry needs a GOT entry which points back to the PLT
6968   // entry (this will be changed by the dynamic linker, normally
6969   // lazily when the function is called).
6970   this->got_plt_->set_current_data_size(got_offset + 4);
6971
6972   // Every PLT entry needs a reloc.
6973   gsym->set_needs_dynsym_entry();
6974   this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
6975                          got_offset);
6976
6977   // Note that we don't need to save the symbol.  The contents of the
6978   // PLT are independent of which symbols are used.  The symbols only
6979   // appear in the relocations.
6980 }
6981
6982 // ARM PLTs.
6983 // FIXME:  This is not very flexible.  Right now this has only been tested
6984 // on armv5te.  If we are to support additional architecture features like
6985 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6986
6987 // The first entry in the PLT.
6988 template<bool big_endian>
6989 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
6990 {
6991   0xe52de004,   // str   lr, [sp, #-4]!
6992   0xe59fe004,   // ldr   lr, [pc, #4]
6993   0xe08fe00e,   // add   lr, pc, lr 
6994   0xe5bef008,   // ldr   pc, [lr, #8]!
6995   0x00000000,   // &GOT[0] - .
6996 };
6997
6998 // Subsequent entries in the PLT.
6999
7000 template<bool big_endian>
7001 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7002 {
7003   0xe28fc600,   // add   ip, pc, #0xNN00000
7004   0xe28cca00,   // add   ip, ip, #0xNN000
7005   0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7006 };
7007
7008 // Write out the PLT.  This uses the hand-coded instructions above,
7009 // and adjusts them as needed.  This is all specified by the arm ELF
7010 // Processor Supplement.
7011
7012 template<bool big_endian>
7013 void
7014 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7015 {
7016   const off_t offset = this->offset();
7017   const section_size_type oview_size =
7018     convert_to_section_size_type(this->data_size());
7019   unsigned char* const oview = of->get_output_view(offset, oview_size);
7020
7021   const off_t got_file_offset = this->got_plt_->offset();
7022   const section_size_type got_size =
7023     convert_to_section_size_type(this->got_plt_->data_size());
7024   unsigned char* const got_view = of->get_output_view(got_file_offset,
7025                                                       got_size);
7026   unsigned char* pov = oview;
7027
7028   Arm_address plt_address = this->address();
7029   Arm_address got_address = this->got_plt_->address();
7030
7031   // Write first PLT entry.  All but the last word are constants.
7032   const size_t num_first_plt_words = (sizeof(first_plt_entry)
7033                                       / sizeof(plt_entry[0]));
7034   for (size_t i = 0; i < num_first_plt_words - 1; i++)
7035     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7036   // Last word in first PLT entry is &GOT[0] - .
7037   elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7038                                          got_address - (plt_address + 16));
7039   pov += sizeof(first_plt_entry);
7040
7041   unsigned char* got_pov = got_view;
7042
7043   memset(got_pov, 0, 12);
7044   got_pov += 12;
7045
7046   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7047   unsigned int plt_offset = sizeof(first_plt_entry);
7048   unsigned int plt_rel_offset = 0;
7049   unsigned int got_offset = 12;
7050   const unsigned int count = this->count_;
7051   for (unsigned int i = 0;
7052        i < count;
7053        ++i,
7054          pov += sizeof(plt_entry),
7055          got_pov += 4,
7056          plt_offset += sizeof(plt_entry),
7057          plt_rel_offset += rel_size,
7058          got_offset += 4)
7059     {
7060       // Set and adjust the PLT entry itself.
7061       int32_t offset = ((got_address + got_offset)
7062                          - (plt_address + plt_offset + 8));
7063
7064       gold_assert(offset >= 0 && offset < 0x0fffffff);
7065       uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7066       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7067       uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7068       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7069       uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7070       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7071
7072       // Set the entry in the GOT.
7073       elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7074     }
7075
7076   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7077   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7078
7079   of->write_output_view(offset, oview_size, oview);
7080   of->write_output_view(got_file_offset, got_size, got_view);
7081 }
7082
7083 // Create a PLT entry for a global symbol.
7084
7085 template<bool big_endian>
7086 void
7087 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7088                                        Symbol* gsym)
7089 {
7090   if (gsym->has_plt_offset())
7091     return;
7092
7093   if (this->plt_ == NULL)
7094     {
7095       // Create the GOT sections first.
7096       this->got_section(symtab, layout);
7097
7098       this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7099       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7100                                       (elfcpp::SHF_ALLOC
7101                                        | elfcpp::SHF_EXECINSTR),
7102                                       this->plt_, false, false, false, false);
7103     }
7104   this->plt_->add_entry(gsym);
7105 }
7106
7107 // Get the section to use for TLS_DESC relocations.
7108
7109 template<bool big_endian>
7110 typename Target_arm<big_endian>::Reloc_section*
7111 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7112 {
7113   return this->plt_section()->rel_tls_desc(layout);
7114 }
7115
7116 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7117
7118 template<bool big_endian>
7119 void
7120 Target_arm<big_endian>::define_tls_base_symbol(
7121     Symbol_table* symtab,
7122     Layout* layout)
7123 {
7124   if (this->tls_base_symbol_defined_)
7125     return;
7126
7127   Output_segment* tls_segment = layout->tls_segment();
7128   if (tls_segment != NULL)
7129     {
7130       bool is_exec = parameters->options().output_is_executable();
7131       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7132                                        Symbol_table::PREDEFINED,
7133                                        tls_segment, 0, 0,
7134                                        elfcpp::STT_TLS,
7135                                        elfcpp::STB_LOCAL,
7136                                        elfcpp::STV_HIDDEN, 0,
7137                                        (is_exec
7138                                         ? Symbol::SEGMENT_END
7139                                         : Symbol::SEGMENT_START),
7140                                        true);
7141     }
7142   this->tls_base_symbol_defined_ = true;
7143 }
7144
7145 // Create a GOT entry for the TLS module index.
7146
7147 template<bool big_endian>
7148 unsigned int
7149 Target_arm<big_endian>::got_mod_index_entry(
7150     Symbol_table* symtab,
7151     Layout* layout,
7152     Sized_relobj<32, big_endian>* object)
7153 {
7154   if (this->got_mod_index_offset_ == -1U)
7155     {
7156       gold_assert(symtab != NULL && layout != NULL && object != NULL);
7157       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7158       unsigned int got_offset;
7159       if (!parameters->doing_static_link())
7160         {
7161           got_offset = got->add_constant(0);
7162           Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7163           rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7164                              got_offset);
7165         }
7166       else
7167         {
7168           // We are doing a static link.  Just mark it as belong to module 1,
7169           // the executable.
7170           got_offset = got->add_constant(1);
7171         }
7172
7173       got->add_constant(0);
7174       this->got_mod_index_offset_ = got_offset;
7175     }
7176   return this->got_mod_index_offset_;
7177 }
7178
7179 // Optimize the TLS relocation type based on what we know about the
7180 // symbol.  IS_FINAL is true if the final address of this symbol is
7181 // known at link time.
7182
7183 template<bool big_endian>
7184 tls::Tls_optimization
7185 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7186 {
7187   // FIXME: Currently we do not do any TLS optimization.
7188   return tls::TLSOPT_NONE;
7189 }
7190
7191 // Report an unsupported relocation against a local symbol.
7192
7193 template<bool big_endian>
7194 void
7195 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7196     Sized_relobj<32, big_endian>* object,
7197     unsigned int r_type)
7198 {
7199   gold_error(_("%s: unsupported reloc %u against local symbol"),
7200              object->name().c_str(), r_type);
7201 }
7202
7203 // We are about to emit a dynamic relocation of type R_TYPE.  If the
7204 // dynamic linker does not support it, issue an error.  The GNU linker
7205 // only issues a non-PIC error for an allocated read-only section.
7206 // Here we know the section is allocated, but we don't know that it is
7207 // read-only.  But we check for all the relocation types which the
7208 // glibc dynamic linker supports, so it seems appropriate to issue an
7209 // error even if the section is not read-only.
7210
7211 template<bool big_endian>
7212 void
7213 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7214                                             unsigned int r_type)
7215 {
7216   switch (r_type)
7217     {
7218     // These are the relocation types supported by glibc for ARM.
7219     case elfcpp::R_ARM_RELATIVE:
7220     case elfcpp::R_ARM_COPY:
7221     case elfcpp::R_ARM_GLOB_DAT:
7222     case elfcpp::R_ARM_JUMP_SLOT:
7223     case elfcpp::R_ARM_ABS32:
7224     case elfcpp::R_ARM_ABS32_NOI:
7225     case elfcpp::R_ARM_PC24:
7226     // FIXME: The following 3 types are not supported by Android's dynamic
7227     // linker.
7228     case elfcpp::R_ARM_TLS_DTPMOD32:
7229     case elfcpp::R_ARM_TLS_DTPOFF32:
7230     case elfcpp::R_ARM_TLS_TPOFF32:
7231       return;
7232
7233     default:
7234       {
7235         // This prevents us from issuing more than one error per reloc
7236         // section.  But we can still wind up issuing more than one
7237         // error per object file.
7238         if (this->issued_non_pic_error_)
7239           return;
7240         const Arm_reloc_property* reloc_property =
7241           arm_reloc_property_table->get_reloc_property(r_type);
7242         gold_assert(reloc_property != NULL);
7243         object->error(_("requires unsupported dynamic reloc %s; "
7244                       "recompile with -fPIC"),
7245                       reloc_property->name().c_str());
7246         this->issued_non_pic_error_ = true;
7247         return;
7248       }
7249
7250     case elfcpp::R_ARM_NONE:
7251       gold_unreachable();
7252     }
7253 }
7254
7255 // Scan a relocation for a local symbol.
7256 // FIXME: This only handles a subset of relocation types used by Android
7257 // on ARM v5te devices.
7258
7259 template<bool big_endian>
7260 inline void
7261 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7262                                     Layout* layout,
7263                                     Target_arm* target,
7264                                     Sized_relobj<32, big_endian>* object,
7265                                     unsigned int data_shndx,
7266                                     Output_section* output_section,
7267                                     const elfcpp::Rel<32, big_endian>& reloc,
7268                                     unsigned int r_type,
7269                                     const elfcpp::Sym<32, big_endian>& lsym)
7270 {
7271   r_type = get_real_reloc_type(r_type);
7272   switch (r_type)
7273     {
7274     case elfcpp::R_ARM_NONE:
7275     case elfcpp::R_ARM_V4BX:
7276     case elfcpp::R_ARM_GNU_VTENTRY:
7277     case elfcpp::R_ARM_GNU_VTINHERIT:
7278       break;
7279
7280     case elfcpp::R_ARM_ABS32:
7281     case elfcpp::R_ARM_ABS32_NOI:
7282       // If building a shared library (or a position-independent
7283       // executable), we need to create a dynamic relocation for
7284       // this location. The relocation applied at link time will
7285       // apply the link-time value, so we flag the location with
7286       // an R_ARM_RELATIVE relocation so the dynamic loader can
7287       // relocate it easily.
7288       if (parameters->options().output_is_position_independent())
7289         {
7290           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7291           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7292           // If we are to add more other reloc types than R_ARM_ABS32,
7293           // we need to add check_non_pic(object, r_type) here.
7294           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7295                                       output_section, data_shndx,
7296                                       reloc.get_r_offset());
7297         }
7298       break;
7299
7300     case elfcpp::R_ARM_ABS16:
7301     case elfcpp::R_ARM_ABS12:
7302     case elfcpp::R_ARM_THM_ABS5:
7303     case elfcpp::R_ARM_ABS8:
7304     case elfcpp::R_ARM_BASE_ABS:
7305     case elfcpp::R_ARM_MOVW_ABS_NC:
7306     case elfcpp::R_ARM_MOVT_ABS:
7307     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7308     case elfcpp::R_ARM_THM_MOVT_ABS:
7309       // If building a shared library (or a position-independent
7310       // executable), we need to create a dynamic relocation for
7311       // this location. Because the addend needs to remain in the
7312       // data section, we need to be careful not to apply this
7313       // relocation statically.
7314       if (parameters->options().output_is_position_independent())
7315         {
7316           check_non_pic(object, r_type);
7317           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7318           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7319           if (lsym.get_st_type() != elfcpp::STT_SECTION)
7320             rel_dyn->add_local(object, r_sym, r_type, output_section,
7321                                data_shndx, reloc.get_r_offset());
7322           else
7323             {
7324               gold_assert(lsym.get_st_value() == 0);
7325               unsigned int shndx = lsym.get_st_shndx();
7326               bool is_ordinary;
7327               shndx = object->adjust_sym_shndx(r_sym, shndx,
7328                                                &is_ordinary);
7329               if (!is_ordinary)
7330                 object->error(_("section symbol %u has bad shndx %u"),
7331                               r_sym, shndx);
7332               else
7333                 rel_dyn->add_local_section(object, shndx,
7334                                            r_type, output_section,
7335                                            data_shndx, reloc.get_r_offset());
7336             }
7337         }
7338       break;
7339
7340     case elfcpp::R_ARM_PC24:
7341     case elfcpp::R_ARM_REL32:
7342     case elfcpp::R_ARM_LDR_PC_G0:
7343     case elfcpp::R_ARM_SBREL32:
7344     case elfcpp::R_ARM_THM_CALL:
7345     case elfcpp::R_ARM_THM_PC8:
7346     case elfcpp::R_ARM_BASE_PREL:
7347     case elfcpp::R_ARM_PLT32:
7348     case elfcpp::R_ARM_CALL:
7349     case elfcpp::R_ARM_JUMP24:
7350     case elfcpp::R_ARM_THM_JUMP24:
7351     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7352     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7353     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7354     case elfcpp::R_ARM_SBREL31:
7355     case elfcpp::R_ARM_PREL31:
7356     case elfcpp::R_ARM_MOVW_PREL_NC:
7357     case elfcpp::R_ARM_MOVT_PREL:
7358     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7359     case elfcpp::R_ARM_THM_MOVT_PREL:
7360     case elfcpp::R_ARM_THM_JUMP19:
7361     case elfcpp::R_ARM_THM_JUMP6:
7362     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7363     case elfcpp::R_ARM_THM_PC12:
7364     case elfcpp::R_ARM_REL32_NOI:
7365     case elfcpp::R_ARM_ALU_PC_G0_NC:
7366     case elfcpp::R_ARM_ALU_PC_G0:
7367     case elfcpp::R_ARM_ALU_PC_G1_NC:
7368     case elfcpp::R_ARM_ALU_PC_G1:
7369     case elfcpp::R_ARM_ALU_PC_G2:
7370     case elfcpp::R_ARM_LDR_PC_G1:
7371     case elfcpp::R_ARM_LDR_PC_G2:
7372     case elfcpp::R_ARM_LDRS_PC_G0:
7373     case elfcpp::R_ARM_LDRS_PC_G1:
7374     case elfcpp::R_ARM_LDRS_PC_G2:
7375     case elfcpp::R_ARM_LDC_PC_G0:
7376     case elfcpp::R_ARM_LDC_PC_G1:
7377     case elfcpp::R_ARM_LDC_PC_G2:
7378     case elfcpp::R_ARM_ALU_SB_G0_NC:
7379     case elfcpp::R_ARM_ALU_SB_G0:
7380     case elfcpp::R_ARM_ALU_SB_G1_NC:
7381     case elfcpp::R_ARM_ALU_SB_G1:
7382     case elfcpp::R_ARM_ALU_SB_G2:
7383     case elfcpp::R_ARM_LDR_SB_G0:
7384     case elfcpp::R_ARM_LDR_SB_G1:
7385     case elfcpp::R_ARM_LDR_SB_G2:
7386     case elfcpp::R_ARM_LDRS_SB_G0:
7387     case elfcpp::R_ARM_LDRS_SB_G1:
7388     case elfcpp::R_ARM_LDRS_SB_G2:
7389     case elfcpp::R_ARM_LDC_SB_G0:
7390     case elfcpp::R_ARM_LDC_SB_G1:
7391     case elfcpp::R_ARM_LDC_SB_G2:
7392     case elfcpp::R_ARM_MOVW_BREL_NC:
7393     case elfcpp::R_ARM_MOVT_BREL:
7394     case elfcpp::R_ARM_MOVW_BREL:
7395     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7396     case elfcpp::R_ARM_THM_MOVT_BREL:
7397     case elfcpp::R_ARM_THM_MOVW_BREL:
7398     case elfcpp::R_ARM_THM_JUMP11:
7399     case elfcpp::R_ARM_THM_JUMP8:
7400       // We don't need to do anything for a relative addressing relocation
7401       // against a local symbol if it does not reference the GOT.
7402       break;
7403
7404     case elfcpp::R_ARM_GOTOFF32:
7405     case elfcpp::R_ARM_GOTOFF12:
7406       // We need a GOT section:
7407       target->got_section(symtab, layout);
7408       break;
7409
7410     case elfcpp::R_ARM_GOT_BREL:
7411     case elfcpp::R_ARM_GOT_PREL:
7412       {
7413         // The symbol requires a GOT entry.
7414         Arm_output_data_got<big_endian>* got =
7415           target->got_section(symtab, layout);
7416         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7417         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7418           {
7419             // If we are generating a shared object, we need to add a
7420             // dynamic RELATIVE relocation for this symbol's GOT entry.
7421             if (parameters->options().output_is_position_independent())
7422               {
7423                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7424                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7425                 rel_dyn->add_local_relative(
7426                     object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7427                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7428               }
7429           }
7430       }
7431       break;
7432
7433     case elfcpp::R_ARM_TARGET1:
7434     case elfcpp::R_ARM_TARGET2:
7435       // This should have been mapped to another type already.
7436       // Fall through.
7437     case elfcpp::R_ARM_COPY:
7438     case elfcpp::R_ARM_GLOB_DAT:
7439     case elfcpp::R_ARM_JUMP_SLOT:
7440     case elfcpp::R_ARM_RELATIVE:
7441       // These are relocations which should only be seen by the
7442       // dynamic linker, and should never be seen here.
7443       gold_error(_("%s: unexpected reloc %u in object file"),
7444                  object->name().c_str(), r_type);
7445       break;
7446
7447
7448       // These are initial TLS relocs, which are expected when
7449       // linking.
7450     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7451     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7452     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7453     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7454     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7455       {
7456         bool output_is_shared = parameters->options().shared();
7457         const tls::Tls_optimization optimized_type
7458             = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7459                                                          r_type);
7460         switch (r_type)
7461           {
7462           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7463             if (optimized_type == tls::TLSOPT_NONE)
7464               {
7465                 // Create a pair of GOT entries for the module index and
7466                 // dtv-relative offset.
7467                 Arm_output_data_got<big_endian>* got
7468                     = target->got_section(symtab, layout);
7469                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7470                 unsigned int shndx = lsym.get_st_shndx();
7471                 bool is_ordinary;
7472                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7473                 if (!is_ordinary)
7474                   {
7475                     object->error(_("local symbol %u has bad shndx %u"),
7476                                   r_sym, shndx);
7477                     break;
7478                   }
7479
7480                 if (!parameters->doing_static_link())
7481                   got->add_local_pair_with_rel(object, r_sym, shndx,
7482                                                GOT_TYPE_TLS_PAIR,
7483                                                target->rel_dyn_section(layout),
7484                                                elfcpp::R_ARM_TLS_DTPMOD32, 0);
7485                 else
7486                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7487                                                       object, r_sym);
7488               }
7489             else
7490               // FIXME: TLS optimization not supported yet.
7491               gold_unreachable();
7492             break;
7493
7494           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7495             if (optimized_type == tls::TLSOPT_NONE)
7496               {
7497                 // Create a GOT entry for the module index.
7498                 target->got_mod_index_entry(symtab, layout, object);
7499               }
7500             else
7501               // FIXME: TLS optimization not supported yet.
7502               gold_unreachable();
7503             break;
7504
7505           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7506             break;
7507
7508           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7509             layout->set_has_static_tls();
7510             if (optimized_type == tls::TLSOPT_NONE)
7511               {
7512                 // Create a GOT entry for the tp-relative offset.
7513                 Arm_output_data_got<big_endian>* got
7514                   = target->got_section(symtab, layout);
7515                 unsigned int r_sym =
7516                    elfcpp::elf_r_sym<32>(reloc.get_r_info());
7517                 if (!parameters->doing_static_link())
7518                     got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7519                                             target->rel_dyn_section(layout),
7520                                             elfcpp::R_ARM_TLS_TPOFF32);
7521                 else if (!object->local_has_got_offset(r_sym,
7522                                                        GOT_TYPE_TLS_OFFSET))
7523                   {
7524                     got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7525                     unsigned int got_offset =
7526                       object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7527                     got->add_static_reloc(got_offset,
7528                                           elfcpp::R_ARM_TLS_TPOFF32, object,
7529                                           r_sym);
7530                   }
7531               }
7532             else
7533               // FIXME: TLS optimization not supported yet.
7534               gold_unreachable();
7535             break;
7536
7537           case elfcpp::R_ARM_TLS_LE32:          // Local-exec
7538             layout->set_has_static_tls();
7539             if (output_is_shared)
7540               {
7541                 // We need to create a dynamic relocation.
7542                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7543                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7544                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7545                 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7546                                    output_section, data_shndx,
7547                                    reloc.get_r_offset());
7548               }
7549             break;
7550
7551           default:
7552             gold_unreachable();
7553           }
7554       }
7555       break;
7556
7557     default:
7558       unsupported_reloc_local(object, r_type);
7559       break;
7560     }
7561 }
7562
7563 // Report an unsupported relocation against a global symbol.
7564
7565 template<bool big_endian>
7566 void
7567 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7568     Sized_relobj<32, big_endian>* object,
7569     unsigned int r_type,
7570     Symbol* gsym)
7571 {
7572   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7573              object->name().c_str(), r_type, gsym->demangled_name().c_str());
7574 }
7575
7576 // Scan a relocation for a global symbol.
7577
7578 template<bool big_endian>
7579 inline void
7580 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7581                                      Layout* layout,
7582                                      Target_arm* target,
7583                                      Sized_relobj<32, big_endian>* object,
7584                                      unsigned int data_shndx,
7585                                      Output_section* output_section,
7586                                      const elfcpp::Rel<32, big_endian>& reloc,
7587                                      unsigned int r_type,
7588                                      Symbol* gsym)
7589 {
7590   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7591   // section.  We check here to avoid creating a dynamic reloc against
7592   // _GLOBAL_OFFSET_TABLE_.
7593   if (!target->has_got_section()
7594       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7595     target->got_section(symtab, layout);
7596
7597   r_type = get_real_reloc_type(r_type);
7598   switch (r_type)
7599     {
7600     case elfcpp::R_ARM_NONE:
7601     case elfcpp::R_ARM_V4BX:
7602     case elfcpp::R_ARM_GNU_VTENTRY:
7603     case elfcpp::R_ARM_GNU_VTINHERIT:
7604       break;
7605
7606     case elfcpp::R_ARM_ABS32:
7607     case elfcpp::R_ARM_ABS16:
7608     case elfcpp::R_ARM_ABS12:
7609     case elfcpp::R_ARM_THM_ABS5:
7610     case elfcpp::R_ARM_ABS8:
7611     case elfcpp::R_ARM_BASE_ABS:
7612     case elfcpp::R_ARM_MOVW_ABS_NC:
7613     case elfcpp::R_ARM_MOVT_ABS:
7614     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7615     case elfcpp::R_ARM_THM_MOVT_ABS:
7616     case elfcpp::R_ARM_ABS32_NOI:
7617       // Absolute addressing relocations.
7618       {
7619         // Make a PLT entry if necessary.
7620         if (this->symbol_needs_plt_entry(gsym))
7621           {
7622             target->make_plt_entry(symtab, layout, gsym);
7623             // Since this is not a PC-relative relocation, we may be
7624             // taking the address of a function. In that case we need to
7625             // set the entry in the dynamic symbol table to the address of
7626             // the PLT entry.
7627             if (gsym->is_from_dynobj() && !parameters->options().shared())
7628               gsym->set_needs_dynsym_value();
7629           }
7630         // Make a dynamic relocation if necessary.
7631         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7632           {
7633             if (gsym->may_need_copy_reloc())
7634               {
7635                 target->copy_reloc(symtab, layout, object,
7636                                    data_shndx, output_section, gsym, reloc);
7637               }
7638             else if ((r_type == elfcpp::R_ARM_ABS32
7639                       || r_type == elfcpp::R_ARM_ABS32_NOI)
7640                      && gsym->can_use_relative_reloc(false))
7641               {
7642                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7643                 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7644                                              output_section, object,
7645                                              data_shndx, reloc.get_r_offset());
7646               }
7647             else
7648               {
7649                 check_non_pic(object, r_type);
7650                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7651                 rel_dyn->add_global(gsym, r_type, output_section, object,
7652                                     data_shndx, reloc.get_r_offset());
7653               }
7654           }
7655       }
7656       break;
7657
7658     case elfcpp::R_ARM_GOTOFF32:
7659     case elfcpp::R_ARM_GOTOFF12:
7660       // We need a GOT section.
7661       target->got_section(symtab, layout);
7662       break;
7663       
7664     case elfcpp::R_ARM_REL32:
7665     case elfcpp::R_ARM_LDR_PC_G0:
7666     case elfcpp::R_ARM_SBREL32:
7667     case elfcpp::R_ARM_THM_PC8:
7668     case elfcpp::R_ARM_BASE_PREL:
7669     case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7670     case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7671     case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7672     case elfcpp::R_ARM_MOVW_PREL_NC:
7673     case elfcpp::R_ARM_MOVT_PREL:
7674     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7675     case elfcpp::R_ARM_THM_MOVT_PREL:
7676     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7677     case elfcpp::R_ARM_THM_PC12:
7678     case elfcpp::R_ARM_REL32_NOI:
7679     case elfcpp::R_ARM_ALU_PC_G0_NC:
7680     case elfcpp::R_ARM_ALU_PC_G0:
7681     case elfcpp::R_ARM_ALU_PC_G1_NC:
7682     case elfcpp::R_ARM_ALU_PC_G1:
7683     case elfcpp::R_ARM_ALU_PC_G2:
7684     case elfcpp::R_ARM_LDR_PC_G1:
7685     case elfcpp::R_ARM_LDR_PC_G2:
7686     case elfcpp::R_ARM_LDRS_PC_G0:
7687     case elfcpp::R_ARM_LDRS_PC_G1:
7688     case elfcpp::R_ARM_LDRS_PC_G2:
7689     case elfcpp::R_ARM_LDC_PC_G0:
7690     case elfcpp::R_ARM_LDC_PC_G1:
7691     case elfcpp::R_ARM_LDC_PC_G2:
7692     case elfcpp::R_ARM_ALU_SB_G0_NC:
7693     case elfcpp::R_ARM_ALU_SB_G0:
7694     case elfcpp::R_ARM_ALU_SB_G1_NC:
7695     case elfcpp::R_ARM_ALU_SB_G1:
7696     case elfcpp::R_ARM_ALU_SB_G2:
7697     case elfcpp::R_ARM_LDR_SB_G0:
7698     case elfcpp::R_ARM_LDR_SB_G1:
7699     case elfcpp::R_ARM_LDR_SB_G2:
7700     case elfcpp::R_ARM_LDRS_SB_G0:
7701     case elfcpp::R_ARM_LDRS_SB_G1:
7702     case elfcpp::R_ARM_LDRS_SB_G2:
7703     case elfcpp::R_ARM_LDC_SB_G0:
7704     case elfcpp::R_ARM_LDC_SB_G1:
7705     case elfcpp::R_ARM_LDC_SB_G2:
7706     case elfcpp::R_ARM_MOVW_BREL_NC:
7707     case elfcpp::R_ARM_MOVT_BREL:
7708     case elfcpp::R_ARM_MOVW_BREL:
7709     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7710     case elfcpp::R_ARM_THM_MOVT_BREL:
7711     case elfcpp::R_ARM_THM_MOVW_BREL:
7712       // Relative addressing relocations.
7713       {
7714         // Make a dynamic relocation if necessary.
7715         int flags = Symbol::NON_PIC_REF;
7716         if (gsym->needs_dynamic_reloc(flags))
7717           {
7718             if (target->may_need_copy_reloc(gsym))
7719               {
7720                 target->copy_reloc(symtab, layout, object,
7721                                    data_shndx, output_section, gsym, reloc);
7722               }
7723             else
7724               {
7725                 check_non_pic(object, r_type);
7726                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7727                 rel_dyn->add_global(gsym, r_type, output_section, object,
7728                                     data_shndx, reloc.get_r_offset());
7729               }
7730           }
7731       }
7732       break;
7733
7734     case elfcpp::R_ARM_PC24:
7735     case elfcpp::R_ARM_THM_CALL:
7736     case elfcpp::R_ARM_PLT32:
7737     case elfcpp::R_ARM_CALL:
7738     case elfcpp::R_ARM_JUMP24:
7739     case elfcpp::R_ARM_THM_JUMP24:
7740     case elfcpp::R_ARM_SBREL31:
7741     case elfcpp::R_ARM_PREL31:
7742     case elfcpp::R_ARM_THM_JUMP19:
7743     case elfcpp::R_ARM_THM_JUMP6:
7744     case elfcpp::R_ARM_THM_JUMP11:
7745     case elfcpp::R_ARM_THM_JUMP8:
7746       // All the relocation above are branches except for the PREL31 ones.
7747       // A PREL31 relocation can point to a personality function in a shared
7748       // library.  In that case we want to use a PLT because we want to
7749       // call the personality routine and the dyanmic linkers we care about
7750       // do not support dynamic PREL31 relocations. An REL31 relocation may
7751       // point to a function whose unwinding behaviour is being described but
7752       // we will not mistakenly generate a PLT for that because we should use
7753       // a local section symbol.
7754
7755       // If the symbol is fully resolved, this is just a relative
7756       // local reloc.  Otherwise we need a PLT entry.
7757       if (gsym->final_value_is_known())
7758         break;
7759       // If building a shared library, we can also skip the PLT entry
7760       // if the symbol is defined in the output file and is protected
7761       // or hidden.
7762       if (gsym->is_defined()
7763           && !gsym->is_from_dynobj()
7764           && !gsym->is_preemptible())
7765         break;
7766       target->make_plt_entry(symtab, layout, gsym);
7767       break;
7768
7769     case elfcpp::R_ARM_GOT_BREL:
7770     case elfcpp::R_ARM_GOT_ABS:
7771     case elfcpp::R_ARM_GOT_PREL:
7772       {
7773         // The symbol requires a GOT entry.
7774         Arm_output_data_got<big_endian>* got =
7775           target->got_section(symtab, layout);
7776         if (gsym->final_value_is_known())
7777           got->add_global(gsym, GOT_TYPE_STANDARD);
7778         else
7779           {
7780             // If this symbol is not fully resolved, we need to add a
7781             // GOT entry with a dynamic relocation.
7782             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7783             if (gsym->is_from_dynobj()
7784                 || gsym->is_undefined()
7785                 || gsym->is_preemptible())
7786               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7787                                        rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7788             else
7789               {
7790                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7791                   rel_dyn->add_global_relative(
7792                       gsym, elfcpp::R_ARM_RELATIVE, got,
7793                       gsym->got_offset(GOT_TYPE_STANDARD));
7794               }
7795           }
7796       }
7797       break;
7798
7799     case elfcpp::R_ARM_TARGET1:
7800     case elfcpp::R_ARM_TARGET2:
7801       // These should have been mapped to other types already.
7802       // Fall through.
7803     case elfcpp::R_ARM_COPY:
7804     case elfcpp::R_ARM_GLOB_DAT:
7805     case elfcpp::R_ARM_JUMP_SLOT:
7806     case elfcpp::R_ARM_RELATIVE:
7807       // These are relocations which should only be seen by the
7808       // dynamic linker, and should never be seen here.
7809       gold_error(_("%s: unexpected reloc %u in object file"),
7810                  object->name().c_str(), r_type);
7811       break;
7812
7813       // These are initial tls relocs, which are expected when
7814       // linking.
7815     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7816     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7817     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7818     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7819     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7820       {
7821         const bool is_final = gsym->final_value_is_known();
7822         const tls::Tls_optimization optimized_type
7823             = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7824         switch (r_type)
7825           {
7826           case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7827             if (optimized_type == tls::TLSOPT_NONE)
7828               {
7829                 // Create a pair of GOT entries for the module index and
7830                 // dtv-relative offset.
7831                 Arm_output_data_got<big_endian>* got
7832                     = target->got_section(symtab, layout);
7833                 if (!parameters->doing_static_link())
7834                   got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7835                                                 target->rel_dyn_section(layout),
7836                                                 elfcpp::R_ARM_TLS_DTPMOD32,
7837                                                 elfcpp::R_ARM_TLS_DTPOFF32);
7838                 else
7839                   got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
7840               }
7841             else
7842               // FIXME: TLS optimization not supported yet.
7843               gold_unreachable();
7844             break;
7845
7846           case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
7847             if (optimized_type == tls::TLSOPT_NONE)
7848               {
7849                 // Create a GOT entry for the module index.
7850                 target->got_mod_index_entry(symtab, layout, object);
7851               }
7852             else
7853               // FIXME: TLS optimization not supported yet.
7854               gold_unreachable();
7855             break;
7856
7857           case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
7858             break;
7859
7860           case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
7861             layout->set_has_static_tls();
7862             if (optimized_type == tls::TLSOPT_NONE)
7863               {
7864                 // Create a GOT entry for the tp-relative offset.
7865                 Arm_output_data_got<big_endian>* got
7866                   = target->got_section(symtab, layout);
7867                 if (!parameters->doing_static_link())
7868                   got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7869                                            target->rel_dyn_section(layout),
7870                                            elfcpp::R_ARM_TLS_TPOFF32);
7871                 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7872                   {
7873                     got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7874                     unsigned int got_offset =
7875                        gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7876                     got->add_static_reloc(got_offset,
7877                                           elfcpp::R_ARM_TLS_TPOFF32, gsym);
7878                   }
7879               }
7880             else
7881               // FIXME: TLS optimization not supported yet.
7882               gold_unreachable();
7883             break;
7884
7885           case elfcpp::R_ARM_TLS_LE32:  // Local-exec
7886             layout->set_has_static_tls();
7887             if (parameters->options().shared())
7888               {
7889                 // We need to create a dynamic relocation.
7890                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7891                 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
7892                                     output_section, object,
7893                                     data_shndx, reloc.get_r_offset());
7894               }
7895             break;
7896
7897           default:
7898             gold_unreachable();
7899           }
7900       }
7901       break;
7902
7903     default:
7904       unsupported_reloc_global(object, r_type, gsym);
7905       break;
7906     }
7907 }
7908
7909 // Process relocations for gc.
7910
7911 template<bool big_endian>
7912 void
7913 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
7914                                           Layout* layout,
7915                                           Sized_relobj<32, big_endian>* object,
7916                                           unsigned int data_shndx,
7917                                           unsigned int,
7918                                           const unsigned char* prelocs,
7919                                           size_t reloc_count,
7920                                           Output_section* output_section,
7921                                           bool needs_special_offset_handling,
7922                                           size_t local_symbol_count,
7923                                           const unsigned char* plocal_symbols)
7924 {
7925   typedef Target_arm<big_endian> Arm;
7926   typedef typename Target_arm<big_endian>::Scan Scan;
7927
7928   gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
7929     symtab,
7930     layout,
7931     this,
7932     object,
7933     data_shndx,
7934     prelocs,
7935     reloc_count,
7936     output_section,
7937     needs_special_offset_handling,
7938     local_symbol_count,
7939     plocal_symbols);
7940 }
7941
7942 // Scan relocations for a section.
7943
7944 template<bool big_endian>
7945 void
7946 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
7947                                     Layout* layout,
7948                                     Sized_relobj<32, big_endian>* object,
7949                                     unsigned int data_shndx,
7950                                     unsigned int sh_type,
7951                                     const unsigned char* prelocs,
7952                                     size_t reloc_count,
7953                                     Output_section* output_section,
7954                                     bool needs_special_offset_handling,
7955                                     size_t local_symbol_count,
7956                                     const unsigned char* plocal_symbols)
7957 {
7958   typedef typename Target_arm<big_endian>::Scan Scan;
7959   if (sh_type == elfcpp::SHT_RELA)
7960     {
7961       gold_error(_("%s: unsupported RELA reloc section"),
7962                  object->name().c_str());
7963       return;
7964     }
7965
7966   gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
7967     symtab,
7968     layout,
7969     this,
7970     object,
7971     data_shndx,
7972     prelocs,
7973     reloc_count,
7974     output_section,
7975     needs_special_offset_handling,
7976     local_symbol_count,
7977     plocal_symbols);
7978 }
7979
7980 // Finalize the sections.
7981
7982 template<bool big_endian>
7983 void
7984 Target_arm<big_endian>::do_finalize_sections(
7985     Layout* layout,
7986     const Input_objects* input_objects,
7987     Symbol_table* symtab)
7988 {
7989   // Create an empty uninitialized attribute section if we still don't have it
7990   // at this moment.
7991   if (this->attributes_section_data_ == NULL)
7992     this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
7993
7994   // Merge processor-specific flags.
7995   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7996        p != input_objects->relobj_end();
7997        ++p)
7998     {
7999       Arm_relobj<big_endian>* arm_relobj =
8000         Arm_relobj<big_endian>::as_arm_relobj(*p);
8001       if (arm_relobj->merge_flags_and_attributes())
8002         {
8003           this->merge_processor_specific_flags(
8004               arm_relobj->name(),
8005               arm_relobj->processor_specific_flags());
8006           this->merge_object_attributes(arm_relobj->name().c_str(),
8007                                         arm_relobj->attributes_section_data());
8008         }
8009     } 
8010
8011   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8012        p != input_objects->dynobj_end();
8013        ++p)
8014     {
8015       Arm_dynobj<big_endian>* arm_dynobj =
8016         Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8017       this->merge_processor_specific_flags(
8018           arm_dynobj->name(),
8019           arm_dynobj->processor_specific_flags());
8020       this->merge_object_attributes(arm_dynobj->name().c_str(),
8021                                     arm_dynobj->attributes_section_data());
8022     }
8023
8024   // Check BLX use.
8025   const Object_attribute* cpu_arch_attr =
8026     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8027   if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8028     this->set_may_use_blx(true);
8029  
8030   // Check if we need to use Cortex-A8 workaround.
8031   if (parameters->options().user_set_fix_cortex_a8())
8032     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8033   else
8034     {
8035       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8036       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8037       // profile.  
8038       const Object_attribute* cpu_arch_profile_attr =
8039         this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8040       this->fix_cortex_a8_ =
8041         (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8042          && (cpu_arch_profile_attr->int_value() == 'A'
8043              || cpu_arch_profile_attr->int_value() == 0));
8044     }
8045   
8046   // Check if we can use V4BX interworking.
8047   // The V4BX interworking stub contains BX instruction,
8048   // which is not specified for some profiles.
8049   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8050       && !this->may_use_blx())
8051     gold_error(_("unable to provide V4BX reloc interworking fix up; "
8052                  "the target profile does not support BX instruction"));
8053
8054   // Fill in some more dynamic tags.
8055   const Reloc_section* rel_plt = (this->plt_ == NULL
8056                                   ? NULL
8057                                   : this->plt_->rel_plt());
8058   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8059                                   this->rel_dyn_, true, false);
8060
8061   // Emit any relocs we saved in an attempt to avoid generating COPY
8062   // relocs.
8063   if (this->copy_relocs_.any_saved_relocs())
8064     this->copy_relocs_.emit(this->rel_dyn_section(layout));
8065
8066   // Handle the .ARM.exidx section.
8067   Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8068   if (exidx_section != NULL
8069       && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8070       && !parameters->options().relocatable())
8071     {
8072       // Create __exidx_start and __exdix_end symbols.
8073       symtab->define_in_output_data("__exidx_start", NULL,
8074                                     Symbol_table::PREDEFINED,
8075                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8076                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8077                                     false, true);
8078       symtab->define_in_output_data("__exidx_end", NULL,
8079                                     Symbol_table::PREDEFINED,
8080                                     exidx_section, 0, 0, elfcpp::STT_OBJECT,
8081                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8082                                     true, true);
8083
8084       // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8085       // the .ARM.exidx section.
8086       if (!layout->script_options()->saw_phdrs_clause())
8087         {
8088           gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8089                       == NULL);
8090           Output_segment*  exidx_segment =
8091             layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8092           exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8093                                             false);
8094         }
8095     }
8096
8097   // Create an .ARM.attributes section unless we have no regular input
8098   // object.  In that case the output will be empty.
8099   if (input_objects->number_of_relobjs() != 0)
8100     {
8101       Output_attributes_section_data* attributes_section =
8102       new Output_attributes_section_data(*this->attributes_section_data_);
8103       layout->add_output_section_data(".ARM.attributes",
8104                                       elfcpp::SHT_ARM_ATTRIBUTES, 0,
8105                                       attributes_section, false, false, false,
8106                                       false);
8107     }
8108 }
8109
8110 // Return whether a direct absolute static relocation needs to be applied.
8111 // In cases where Scan::local() or Scan::global() has created
8112 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8113 // of the relocation is carried in the data, and we must not
8114 // apply the static relocation.
8115
8116 template<bool big_endian>
8117 inline bool
8118 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8119     const Sized_symbol<32>* gsym,
8120     int ref_flags,
8121     bool is_32bit,
8122     Output_section* output_section)
8123 {
8124   // If the output section is not allocated, then we didn't call
8125   // scan_relocs, we didn't create a dynamic reloc, and we must apply
8126   // the reloc here.
8127   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8128       return true;
8129
8130   // For local symbols, we will have created a non-RELATIVE dynamic
8131   // relocation only if (a) the output is position independent,
8132   // (b) the relocation is absolute (not pc- or segment-relative), and
8133   // (c) the relocation is not 32 bits wide.
8134   if (gsym == NULL)
8135     return !(parameters->options().output_is_position_independent()
8136              && (ref_flags & Symbol::ABSOLUTE_REF)
8137              && !is_32bit);
8138
8139   // For global symbols, we use the same helper routines used in the
8140   // scan pass.  If we did not create a dynamic relocation, or if we
8141   // created a RELATIVE dynamic relocation, we should apply the static
8142   // relocation.
8143   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8144   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8145                  && gsym->can_use_relative_reloc(ref_flags
8146                                                  & Symbol::FUNCTION_CALL);
8147   return !has_dyn || is_rel;
8148 }
8149
8150 // Perform a relocation.
8151
8152 template<bool big_endian>
8153 inline bool
8154 Target_arm<big_endian>::Relocate::relocate(
8155     const Relocate_info<32, big_endian>* relinfo,
8156     Target_arm* target,
8157     Output_section *output_section,
8158     size_t relnum,
8159     const elfcpp::Rel<32, big_endian>& rel,
8160     unsigned int r_type,
8161     const Sized_symbol<32>* gsym,
8162     const Symbol_value<32>* psymval,
8163     unsigned char* view,
8164     Arm_address address,
8165     section_size_type view_size)
8166 {
8167   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8168
8169   r_type = get_real_reloc_type(r_type);
8170   const Arm_reloc_property* reloc_property =
8171     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8172   if (reloc_property == NULL)
8173     {
8174       std::string reloc_name =
8175         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8176       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8177                              _("cannot relocate %s in object file"),
8178                              reloc_name.c_str());
8179       return true;
8180     }
8181
8182   const Arm_relobj<big_endian>* object =
8183     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8184
8185   // If the final branch target of a relocation is THUMB instruction, this
8186   // is 1.  Otherwise it is 0.
8187   Arm_address thumb_bit = 0;
8188   Symbol_value<32> symval;
8189   bool is_weakly_undefined_without_plt = false;
8190   if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8191     {
8192       if (gsym != NULL)
8193         {
8194           // This is a global symbol.  Determine if we use PLT and if the
8195           // final target is THUMB.
8196           if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8197             {
8198               // This uses a PLT, change the symbol value.
8199               symval.set_output_value(target->plt_section()->address()
8200                                       + gsym->plt_offset());
8201               psymval = &symval;
8202             }
8203           else if (gsym->is_weak_undefined())
8204             {
8205               // This is a weakly undefined symbol and we do not use PLT
8206               // for this relocation.  A branch targeting this symbol will
8207               // be converted into an NOP.
8208               is_weakly_undefined_without_plt = true;
8209             }
8210           else
8211             {
8212               // Set thumb bit if symbol:
8213               // -Has type STT_ARM_TFUNC or
8214               // -Has type STT_FUNC, is defined and with LSB in value set.
8215               thumb_bit =
8216                 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8217                  || (gsym->type() == elfcpp::STT_FUNC
8218                      && !gsym->is_undefined()
8219                      && ((psymval->value(object, 0) & 1) != 0)))
8220                 ? 1
8221                 : 0);
8222             }
8223         }
8224       else
8225         {
8226           // This is a local symbol.  Determine if the final target is THUMB.
8227           // We saved this information when all the local symbols were read.
8228           elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8229           unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8230           thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8231         }
8232     }
8233   else
8234     {
8235       // This is a fake relocation synthesized for a stub.  It does not have
8236       // a real symbol.  We just look at the LSB of the symbol value to
8237       // determine if the target is THUMB or not.
8238       thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8239     }
8240
8241   // Strip LSB if this points to a THUMB target.
8242   if (thumb_bit != 0
8243       && reloc_property->uses_thumb_bit() 
8244       && ((psymval->value(object, 0) & 1) != 0))
8245     {
8246       Arm_address stripped_value =
8247         psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8248       symval.set_output_value(stripped_value);
8249       psymval = &symval;
8250     } 
8251
8252   // Get the GOT offset if needed.
8253   // The GOT pointer points to the end of the GOT section.
8254   // We need to subtract the size of the GOT section to get
8255   // the actual offset to use in the relocation.
8256   bool have_got_offset = false;
8257   unsigned int got_offset = 0;
8258   switch (r_type)
8259     {
8260     case elfcpp::R_ARM_GOT_BREL:
8261     case elfcpp::R_ARM_GOT_PREL:
8262       if (gsym != NULL)
8263         {
8264           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8265           got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8266                         - target->got_size());
8267         }
8268       else
8269         {
8270           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8271           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8272           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8273                         - target->got_size());
8274         }
8275       have_got_offset = true;
8276       break;
8277
8278     default:
8279       break;
8280     }
8281
8282   // To look up relocation stubs, we need to pass the symbol table index of
8283   // a local symbol.
8284   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8285
8286   // Get the addressing origin of the output segment defining the
8287   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8288   Arm_address sym_origin = 0;
8289   if (reloc_property->uses_symbol_base())
8290     {
8291       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8292         // R_ARM_BASE_ABS with the NULL symbol will give the
8293         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8294         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8295         sym_origin = target->got_plt_section()->address();
8296       else if (gsym == NULL)
8297         sym_origin = 0;
8298       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8299         sym_origin = gsym->output_segment()->vaddr();
8300       else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8301         sym_origin = gsym->output_data()->address();
8302
8303       // TODO: Assumes the segment base to be zero for the global symbols
8304       // till the proper support for the segment-base-relative addressing
8305       // will be implemented.  This is consistent with GNU ld.
8306     }
8307
8308   // For relative addressing relocation, find out the relative address base.
8309   Arm_address relative_address_base = 0;
8310   switch(reloc_property->relative_address_base())
8311     {
8312     case Arm_reloc_property::RAB_NONE:
8313     // Relocations with relative address bases RAB_TLS and RAB_tp are
8314     // handled by relocate_tls.  So we do not need to do anything here.
8315     case Arm_reloc_property::RAB_TLS:
8316     case Arm_reloc_property::RAB_tp:
8317       break;
8318     case Arm_reloc_property::RAB_B_S:
8319       relative_address_base = sym_origin;
8320       break;
8321     case Arm_reloc_property::RAB_GOT_ORG:
8322       relative_address_base = target->got_plt_section()->address();
8323       break;
8324     case Arm_reloc_property::RAB_P:
8325       relative_address_base = address;
8326       break;
8327     case Arm_reloc_property::RAB_Pa:
8328       relative_address_base = address & 0xfffffffcU;
8329       break;
8330     default:
8331       gold_unreachable(); 
8332     }
8333     
8334   typename Arm_relocate_functions::Status reloc_status =
8335         Arm_relocate_functions::STATUS_OKAY;
8336   bool check_overflow = reloc_property->checks_overflow();
8337   switch (r_type)
8338     {
8339     case elfcpp::R_ARM_NONE:
8340       break;
8341
8342     case elfcpp::R_ARM_ABS8:
8343       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8344                                     output_section))
8345         reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8346       break;
8347
8348     case elfcpp::R_ARM_ABS12:
8349       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8350                                     output_section))
8351         reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8352       break;
8353
8354     case elfcpp::R_ARM_ABS16:
8355       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8356                                     output_section))
8357         reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8358       break;
8359
8360     case elfcpp::R_ARM_ABS32:
8361       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8362                                     output_section))
8363         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8364                                                      thumb_bit);
8365       break;
8366
8367     case elfcpp::R_ARM_ABS32_NOI:
8368       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8369                                     output_section))
8370         // No thumb bit for this relocation: (S + A)
8371         reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8372                                                      0);
8373       break;
8374
8375     case elfcpp::R_ARM_MOVW_ABS_NC:
8376       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8377                                     output_section))
8378         reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8379                                                     0, thumb_bit,
8380                                                     check_overflow);
8381       break;
8382
8383     case elfcpp::R_ARM_MOVT_ABS:
8384       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8385                                     output_section))
8386         reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8387       break;
8388
8389     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8390       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8391                                     output_section))
8392         reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8393                                                         0, thumb_bit, false);
8394       break;
8395
8396     case elfcpp::R_ARM_THM_MOVT_ABS:
8397       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8398                                     output_section))
8399         reloc_status = Arm_relocate_functions::thm_movt(view, object,
8400                                                         psymval, 0);
8401       break;
8402
8403     case elfcpp::R_ARM_MOVW_PREL_NC:
8404     case elfcpp::R_ARM_MOVW_BREL_NC:
8405     case elfcpp::R_ARM_MOVW_BREL:
8406       reloc_status =
8407         Arm_relocate_functions::movw(view, object, psymval,
8408                                      relative_address_base, thumb_bit,
8409                                      check_overflow);
8410       break;
8411
8412     case elfcpp::R_ARM_MOVT_PREL:
8413     case elfcpp::R_ARM_MOVT_BREL:
8414       reloc_status =
8415         Arm_relocate_functions::movt(view, object, psymval,
8416                                      relative_address_base);
8417       break;
8418
8419     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8420     case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8421     case elfcpp::R_ARM_THM_MOVW_BREL:
8422       reloc_status =
8423         Arm_relocate_functions::thm_movw(view, object, psymval,
8424                                          relative_address_base,
8425                                          thumb_bit, check_overflow);
8426       break;
8427
8428     case elfcpp::R_ARM_THM_MOVT_PREL:
8429     case elfcpp::R_ARM_THM_MOVT_BREL:
8430       reloc_status =
8431         Arm_relocate_functions::thm_movt(view, object, psymval,
8432                                          relative_address_base);
8433       break;
8434         
8435     case elfcpp::R_ARM_REL32:
8436       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8437                                                    address, thumb_bit);
8438       break;
8439
8440     case elfcpp::R_ARM_THM_ABS5:
8441       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8442                                     output_section))
8443         reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8444       break;
8445
8446     // Thumb long branches.
8447     case elfcpp::R_ARM_THM_CALL:
8448     case elfcpp::R_ARM_THM_XPC22:
8449     case elfcpp::R_ARM_THM_JUMP24:
8450       reloc_status =
8451         Arm_relocate_functions::thumb_branch_common(
8452             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8453             thumb_bit, is_weakly_undefined_without_plt);
8454       break;
8455
8456     case elfcpp::R_ARM_GOTOFF32:
8457       {
8458         Arm_address got_origin;
8459         got_origin = target->got_plt_section()->address();
8460         reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8461                                                      got_origin, thumb_bit);
8462       }
8463       break;
8464
8465     case elfcpp::R_ARM_BASE_PREL:
8466       gold_assert(gsym != NULL);
8467       reloc_status =
8468           Arm_relocate_functions::base_prel(view, sym_origin, address);
8469       break;
8470
8471     case elfcpp::R_ARM_BASE_ABS:
8472       {
8473         if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8474                                       output_section))
8475           break;
8476
8477         reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8478       }
8479       break;
8480
8481     case elfcpp::R_ARM_GOT_BREL:
8482       gold_assert(have_got_offset);
8483       reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8484       break;
8485
8486     case elfcpp::R_ARM_GOT_PREL:
8487       gold_assert(have_got_offset);
8488       // Get the address origin for GOT PLT, which is allocated right
8489       // after the GOT section, to calculate an absolute address of
8490       // the symbol GOT entry (got_origin + got_offset).
8491       Arm_address got_origin;
8492       got_origin = target->got_plt_section()->address();
8493       reloc_status = Arm_relocate_functions::got_prel(view,
8494                                                       got_origin + got_offset,
8495                                                       address);
8496       break;
8497
8498     case elfcpp::R_ARM_PLT32:
8499     case elfcpp::R_ARM_CALL:
8500     case elfcpp::R_ARM_JUMP24:
8501     case elfcpp::R_ARM_XPC25:
8502       gold_assert(gsym == NULL
8503                   || gsym->has_plt_offset()
8504                   || gsym->final_value_is_known()
8505                   || (gsym->is_defined()
8506                       && !gsym->is_from_dynobj()
8507                       && !gsym->is_preemptible()));
8508       reloc_status =
8509         Arm_relocate_functions::arm_branch_common(
8510             r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8511             thumb_bit, is_weakly_undefined_without_plt);
8512       break;
8513
8514     case elfcpp::R_ARM_THM_JUMP19:
8515       reloc_status =
8516         Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8517                                            thumb_bit);
8518       break;
8519
8520     case elfcpp::R_ARM_THM_JUMP6:
8521       reloc_status =
8522         Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8523       break;
8524
8525     case elfcpp::R_ARM_THM_JUMP8:
8526       reloc_status =
8527         Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8528       break;
8529
8530     case elfcpp::R_ARM_THM_JUMP11:
8531       reloc_status =
8532         Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8533       break;
8534
8535     case elfcpp::R_ARM_PREL31:
8536       reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8537                                                     address, thumb_bit);
8538       break;
8539
8540     case elfcpp::R_ARM_V4BX:
8541       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8542         {
8543           const bool is_v4bx_interworking =
8544               (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8545           reloc_status =
8546             Arm_relocate_functions::v4bx(relinfo, view, object, address,
8547                                          is_v4bx_interworking);
8548         }
8549       break;
8550
8551     case elfcpp::R_ARM_THM_PC8:
8552       reloc_status =
8553         Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8554       break;
8555
8556     case elfcpp::R_ARM_THM_PC12:
8557       reloc_status =
8558         Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8559       break;
8560
8561     case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8562       reloc_status =
8563         Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8564                                           thumb_bit);
8565       break;
8566
8567     case elfcpp::R_ARM_ALU_PC_G0_NC:
8568     case elfcpp::R_ARM_ALU_PC_G0:
8569     case elfcpp::R_ARM_ALU_PC_G1_NC:
8570     case elfcpp::R_ARM_ALU_PC_G1:
8571     case elfcpp::R_ARM_ALU_PC_G2:
8572     case elfcpp::R_ARM_ALU_SB_G0_NC:
8573     case elfcpp::R_ARM_ALU_SB_G0:
8574     case elfcpp::R_ARM_ALU_SB_G1_NC:
8575     case elfcpp::R_ARM_ALU_SB_G1:
8576     case elfcpp::R_ARM_ALU_SB_G2:
8577       reloc_status =
8578         Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8579                                             reloc_property->group_index(),
8580                                             relative_address_base,
8581                                             thumb_bit, check_overflow);
8582       break;
8583
8584     case elfcpp::R_ARM_LDR_PC_G0:
8585     case elfcpp::R_ARM_LDR_PC_G1:
8586     case elfcpp::R_ARM_LDR_PC_G2:
8587     case elfcpp::R_ARM_LDR_SB_G0:
8588     case elfcpp::R_ARM_LDR_SB_G1:
8589     case elfcpp::R_ARM_LDR_SB_G2:
8590       reloc_status =
8591           Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8592                                               reloc_property->group_index(),
8593                                               relative_address_base);
8594       break;
8595
8596     case elfcpp::R_ARM_LDRS_PC_G0:
8597     case elfcpp::R_ARM_LDRS_PC_G1:
8598     case elfcpp::R_ARM_LDRS_PC_G2:
8599     case elfcpp::R_ARM_LDRS_SB_G0:
8600     case elfcpp::R_ARM_LDRS_SB_G1:
8601     case elfcpp::R_ARM_LDRS_SB_G2:
8602       reloc_status =
8603           Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8604                                                reloc_property->group_index(),
8605                                                relative_address_base);
8606       break;
8607
8608     case elfcpp::R_ARM_LDC_PC_G0:
8609     case elfcpp::R_ARM_LDC_PC_G1:
8610     case elfcpp::R_ARM_LDC_PC_G2:
8611     case elfcpp::R_ARM_LDC_SB_G0:
8612     case elfcpp::R_ARM_LDC_SB_G1:
8613     case elfcpp::R_ARM_LDC_SB_G2:
8614       reloc_status =
8615           Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8616                                               reloc_property->group_index(),
8617                                               relative_address_base);
8618       break;
8619
8620       // These are initial tls relocs, which are expected when
8621       // linking.
8622     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8623     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8624     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8625     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8626     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8627       reloc_status =
8628         this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8629                            view, address, view_size);
8630       break;
8631
8632     default:
8633       gold_unreachable();
8634     }
8635
8636   // Report any errors.
8637   switch (reloc_status)
8638     {
8639     case Arm_relocate_functions::STATUS_OKAY:
8640       break;
8641     case Arm_relocate_functions::STATUS_OVERFLOW:
8642       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8643                              _("relocation overflow in %s"),
8644                              reloc_property->name().c_str());
8645       break;
8646     case Arm_relocate_functions::STATUS_BAD_RELOC:
8647       gold_error_at_location(
8648         relinfo,
8649         relnum,
8650         rel.get_r_offset(),
8651         _("unexpected opcode while processing relocation %s"),
8652         reloc_property->name().c_str());
8653       break;
8654     default:
8655       gold_unreachable();
8656     }
8657
8658   return true;
8659 }
8660
8661 // Perform a TLS relocation.
8662
8663 template<bool big_endian>
8664 inline typename Arm_relocate_functions<big_endian>::Status
8665 Target_arm<big_endian>::Relocate::relocate_tls(
8666     const Relocate_info<32, big_endian>* relinfo,
8667     Target_arm<big_endian>* target,
8668     size_t relnum,
8669     const elfcpp::Rel<32, big_endian>& rel,
8670     unsigned int r_type,
8671     const Sized_symbol<32>* gsym,
8672     const Symbol_value<32>* psymval,
8673     unsigned char* view,
8674     elfcpp::Elf_types<32>::Elf_Addr address,
8675     section_size_type /*view_size*/ )
8676 {
8677   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8678   typedef Relocate_functions<32, big_endian> RelocFuncs;
8679   Output_segment* tls_segment = relinfo->layout->tls_segment();
8680
8681   const Sized_relobj<32, big_endian>* object = relinfo->object;
8682
8683   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8684
8685   const bool is_final = (gsym == NULL
8686                          ? !parameters->options().shared()
8687                          : gsym->final_value_is_known());
8688   const tls::Tls_optimization optimized_type
8689       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8690   switch (r_type)
8691     {
8692     case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8693         {
8694           unsigned int got_type = GOT_TYPE_TLS_PAIR;
8695           unsigned int got_offset;
8696           if (gsym != NULL)
8697             {
8698               gold_assert(gsym->has_got_offset(got_type));
8699               got_offset = gsym->got_offset(got_type) - target->got_size();
8700             }
8701           else
8702             {
8703               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8704               gold_assert(object->local_has_got_offset(r_sym, got_type));
8705               got_offset = (object->local_got_offset(r_sym, got_type)
8706                             - target->got_size());
8707             }
8708           if (optimized_type == tls::TLSOPT_NONE)
8709             {
8710               Arm_address got_entry =
8711                 target->got_plt_section()->address() + got_offset;
8712               
8713               // Relocate the field with the PC relative offset of the pair of
8714               // GOT entries.
8715               RelocFuncs::pcrel32(view, got_entry, address);
8716               return ArmRelocFuncs::STATUS_OKAY;
8717             }
8718         }
8719       break;
8720
8721     case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8722       if (optimized_type == tls::TLSOPT_NONE)
8723         {
8724           // Relocate the field with the offset of the GOT entry for
8725           // the module index.
8726           unsigned int got_offset;
8727           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8728                         - target->got_size());
8729           Arm_address got_entry =
8730             target->got_plt_section()->address() + got_offset;
8731
8732           // Relocate the field with the PC relative offset of the pair of
8733           // GOT entries.
8734           RelocFuncs::pcrel32(view, got_entry, address);
8735           return ArmRelocFuncs::STATUS_OKAY;
8736         }
8737       break;
8738
8739     case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8740       RelocFuncs::rel32(view, value);
8741       return ArmRelocFuncs::STATUS_OKAY;
8742
8743     case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8744       if (optimized_type == tls::TLSOPT_NONE)
8745         {
8746           // Relocate the field with the offset of the GOT entry for
8747           // the tp-relative offset of the symbol.
8748           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8749           unsigned int got_offset;
8750           if (gsym != NULL)
8751             {
8752               gold_assert(gsym->has_got_offset(got_type));
8753               got_offset = gsym->got_offset(got_type);
8754             }
8755           else
8756             {
8757               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8758               gold_assert(object->local_has_got_offset(r_sym, got_type));
8759               got_offset = object->local_got_offset(r_sym, got_type);
8760             }
8761
8762           // All GOT offsets are relative to the end of the GOT.
8763           got_offset -= target->got_size();
8764
8765           Arm_address got_entry =
8766             target->got_plt_section()->address() + got_offset;
8767
8768           // Relocate the field with the PC relative offset of the GOT entry.
8769           RelocFuncs::pcrel32(view, got_entry, address);
8770           return ArmRelocFuncs::STATUS_OKAY;
8771         }
8772       break;
8773
8774     case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8775       // If we're creating a shared library, a dynamic relocation will
8776       // have been created for this location, so do not apply it now.
8777       if (!parameters->options().shared())
8778         {
8779           gold_assert(tls_segment != NULL);
8780
8781           // $tp points to the TCB, which is followed by the TLS, so we
8782           // need to add TCB size to the offset.
8783           Arm_address aligned_tcb_size =
8784             align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8785           RelocFuncs::rel32(view, value + aligned_tcb_size);
8786
8787         }
8788       return ArmRelocFuncs::STATUS_OKAY;
8789     
8790     default:
8791       gold_unreachable();
8792     }
8793
8794   gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8795                          _("unsupported reloc %u"),
8796                          r_type);
8797   return ArmRelocFuncs::STATUS_BAD_RELOC;
8798 }
8799
8800 // Relocate section data.
8801
8802 template<bool big_endian>
8803 void
8804 Target_arm<big_endian>::relocate_section(
8805     const Relocate_info<32, big_endian>* relinfo,
8806     unsigned int sh_type,
8807     const unsigned char* prelocs,
8808     size_t reloc_count,
8809     Output_section* output_section,
8810     bool needs_special_offset_handling,
8811     unsigned char* view,
8812     Arm_address address,
8813     section_size_type view_size,
8814     const Reloc_symbol_changes* reloc_symbol_changes)
8815 {
8816   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8817   gold_assert(sh_type == elfcpp::SHT_REL);
8818
8819   // See if we are relocating a relaxed input section.  If so, the view
8820   // covers the whole output section and we need to adjust accordingly.
8821   if (needs_special_offset_handling)
8822     {
8823       const Output_relaxed_input_section* poris =
8824         output_section->find_relaxed_input_section(relinfo->object,
8825                                                    relinfo->data_shndx);
8826       if (poris != NULL)
8827         {
8828           Arm_address section_address = poris->address();
8829           section_size_type section_size = poris->data_size();
8830
8831           gold_assert((section_address >= address)
8832                       && ((section_address + section_size)
8833                           <= (address + view_size)));
8834
8835           off_t offset = section_address - address;
8836           view += offset;
8837           address += offset;
8838           view_size = section_size;
8839         }
8840     }
8841
8842   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8843                          Arm_relocate>(
8844     relinfo,
8845     this,
8846     prelocs,
8847     reloc_count,
8848     output_section,
8849     needs_special_offset_handling,
8850     view,
8851     address,
8852     view_size,
8853     reloc_symbol_changes);
8854 }
8855
8856 // Return the size of a relocation while scanning during a relocatable
8857 // link.
8858
8859 template<bool big_endian>
8860 unsigned int
8861 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8862     unsigned int r_type,
8863     Relobj* object)
8864 {
8865   r_type = get_real_reloc_type(r_type);
8866   const Arm_reloc_property* arp =
8867       arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8868   if (arp != NULL)
8869     return arp->size();
8870   else
8871     {
8872       std::string reloc_name =
8873         arm_reloc_property_table->reloc_name_in_error_message(r_type);
8874       gold_error(_("%s: unexpected %s in object file"),
8875                  object->name().c_str(), reloc_name.c_str());
8876       return 0;
8877     }
8878 }
8879
8880 // Scan the relocs during a relocatable link.
8881
8882 template<bool big_endian>
8883 void
8884 Target_arm<big_endian>::scan_relocatable_relocs(
8885     Symbol_table* symtab,
8886     Layout* layout,
8887     Sized_relobj<32, big_endian>* object,
8888     unsigned int data_shndx,
8889     unsigned int sh_type,
8890     const unsigned char* prelocs,
8891     size_t reloc_count,
8892     Output_section* output_section,
8893     bool needs_special_offset_handling,
8894     size_t local_symbol_count,
8895     const unsigned char* plocal_symbols,
8896     Relocatable_relocs* rr)
8897 {
8898   gold_assert(sh_type == elfcpp::SHT_REL);
8899
8900   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
8901     Relocatable_size_for_reloc> Scan_relocatable_relocs;
8902
8903   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
8904       Scan_relocatable_relocs>(
8905     symtab,
8906     layout,
8907     object,
8908     data_shndx,
8909     prelocs,
8910     reloc_count,
8911     output_section,
8912     needs_special_offset_handling,
8913     local_symbol_count,
8914     plocal_symbols,
8915     rr);
8916 }
8917
8918 // Relocate a section during a relocatable link.
8919
8920 template<bool big_endian>
8921 void
8922 Target_arm<big_endian>::relocate_for_relocatable(
8923     const Relocate_info<32, big_endian>* relinfo,
8924     unsigned int sh_type,
8925     const unsigned char* prelocs,
8926     size_t reloc_count,
8927     Output_section* output_section,
8928     off_t offset_in_output_section,
8929     const Relocatable_relocs* rr,
8930     unsigned char* view,
8931     Arm_address view_address,
8932     section_size_type view_size,
8933     unsigned char* reloc_view,
8934     section_size_type reloc_view_size)
8935 {
8936   gold_assert(sh_type == elfcpp::SHT_REL);
8937
8938   gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
8939     relinfo,
8940     prelocs,
8941     reloc_count,
8942     output_section,
8943     offset_in_output_section,
8944     rr,
8945     view,
8946     view_address,
8947     view_size,
8948     reloc_view,
8949     reloc_view_size);
8950 }
8951
8952 // Return the value to use for a dynamic symbol which requires special
8953 // treatment.  This is how we support equality comparisons of function
8954 // pointers across shared library boundaries, as described in the
8955 // processor specific ABI supplement.
8956
8957 template<bool big_endian>
8958 uint64_t
8959 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
8960 {
8961   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8962   return this->plt_section()->address() + gsym->plt_offset();
8963 }
8964
8965 // Map platform-specific relocs to real relocs
8966 //
8967 template<bool big_endian>
8968 unsigned int
8969 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
8970 {
8971   switch (r_type)
8972     {
8973     case elfcpp::R_ARM_TARGET1:
8974       // This is either R_ARM_ABS32 or R_ARM_REL32;
8975       return elfcpp::R_ARM_ABS32;
8976
8977     case elfcpp::R_ARM_TARGET2:
8978       // This can be any reloc type but ususally is R_ARM_GOT_PREL
8979       return elfcpp::R_ARM_GOT_PREL;
8980
8981     default:
8982       return r_type;
8983     }
8984 }
8985
8986 // Whether if two EABI versions V1 and V2 are compatible.
8987
8988 template<bool big_endian>
8989 bool
8990 Target_arm<big_endian>::are_eabi_versions_compatible(
8991     elfcpp::Elf_Word v1,
8992     elfcpp::Elf_Word v2)
8993 {
8994   // v4 and v5 are the same spec before and after it was released,
8995   // so allow mixing them.
8996   if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
8997       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
8998     return true;
8999
9000   return v1 == v2;
9001 }
9002
9003 // Combine FLAGS from an input object called NAME and the processor-specific
9004 // flags in the ELF header of the output.  Much of this is adapted from the
9005 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9006 // in bfd/elf32-arm.c.
9007
9008 template<bool big_endian>
9009 void
9010 Target_arm<big_endian>::merge_processor_specific_flags(
9011     const std::string& name,
9012     elfcpp::Elf_Word flags)
9013 {
9014   if (this->are_processor_specific_flags_set())
9015     {
9016       elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9017
9018       // Nothing to merge if flags equal to those in output.
9019       if (flags == out_flags)
9020         return;
9021
9022       // Complain about various flag mismatches.
9023       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9024       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9025       if (!this->are_eabi_versions_compatible(version1, version2)
9026           && parameters->options().warn_mismatch())
9027         gold_error(_("Source object %s has EABI version %d but output has "
9028                      "EABI version %d."),
9029                    name.c_str(),
9030                    (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9031                    (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9032     }
9033   else
9034     {
9035       // If the input is the default architecture and had the default
9036       // flags then do not bother setting the flags for the output
9037       // architecture, instead allow future merges to do this.  If no
9038       // future merges ever set these flags then they will retain their
9039       // uninitialised values, which surprise surprise, correspond
9040       // to the default values.
9041       if (flags == 0)
9042         return;
9043
9044       // This is the first time, just copy the flags.
9045       // We only copy the EABI version for now.
9046       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9047     }
9048 }
9049
9050 // Adjust ELF file header.
9051 template<bool big_endian>
9052 void
9053 Target_arm<big_endian>::do_adjust_elf_header(
9054     unsigned char* view,
9055     int len) const
9056 {
9057   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9058
9059   elfcpp::Ehdr<32, big_endian> ehdr(view);
9060   unsigned char e_ident[elfcpp::EI_NIDENT];
9061   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9062
9063   if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9064       == elfcpp::EF_ARM_EABI_UNKNOWN)
9065     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9066   else
9067     e_ident[elfcpp::EI_OSABI] = 0;
9068   e_ident[elfcpp::EI_ABIVERSION] = 0;
9069
9070   // FIXME: Do EF_ARM_BE8 adjustment.
9071
9072   elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9073   oehdr.put_e_ident(e_ident);
9074 }
9075
9076 // do_make_elf_object to override the same function in the base class.
9077 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9078 // to store ARM specific information.  Hence we need to have our own
9079 // ELF object creation.
9080
9081 template<bool big_endian>
9082 Object*
9083 Target_arm<big_endian>::do_make_elf_object(
9084     const std::string& name,
9085     Input_file* input_file,
9086     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9087 {
9088   int et = ehdr.get_e_type();
9089   if (et == elfcpp::ET_REL)
9090     {
9091       Arm_relobj<big_endian>* obj =
9092         new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9093       obj->setup();
9094       return obj;
9095     }
9096   else if (et == elfcpp::ET_DYN)
9097     {
9098       Sized_dynobj<32, big_endian>* obj =
9099         new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9100       obj->setup();
9101       return obj;
9102     }
9103   else
9104     {
9105       gold_error(_("%s: unsupported ELF file type %d"),
9106                  name.c_str(), et);
9107       return NULL;
9108     }
9109 }
9110
9111 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9112 // Returns -1 if no architecture could be read.
9113 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9114
9115 template<bool big_endian>
9116 int
9117 Target_arm<big_endian>::get_secondary_compatible_arch(
9118     const Attributes_section_data* pasd)
9119 {
9120   const Object_attribute *known_attributes =
9121     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9122
9123   // Note: the tag and its argument below are uleb128 values, though
9124   // currently-defined values fit in one byte for each.
9125   const std::string& sv =
9126     known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9127   if (sv.size() == 2
9128       && sv.data()[0] == elfcpp::Tag_CPU_arch
9129       && (sv.data()[1] & 128) != 128)
9130    return sv.data()[1];
9131
9132   // This tag is "safely ignorable", so don't complain if it looks funny.
9133   return -1;
9134 }
9135
9136 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9137 // The tag is removed if ARCH is -1.
9138 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9139
9140 template<bool big_endian>
9141 void
9142 Target_arm<big_endian>::set_secondary_compatible_arch(
9143     Attributes_section_data* pasd,
9144     int arch)
9145 {
9146   Object_attribute *known_attributes =
9147     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9148
9149   if (arch == -1)
9150     {
9151       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9152       return;
9153     }
9154
9155   // Note: the tag and its argument below are uleb128 values, though
9156   // currently-defined values fit in one byte for each.
9157   char sv[3];
9158   sv[0] = elfcpp::Tag_CPU_arch;
9159   gold_assert(arch != 0);
9160   sv[1] = arch;
9161   sv[2] = '\0';
9162
9163   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9164 }
9165
9166 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9167 // into account.
9168 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9169
9170 template<bool big_endian>
9171 int
9172 Target_arm<big_endian>::tag_cpu_arch_combine(
9173     const char* name,
9174     int oldtag,
9175     int* secondary_compat_out,
9176     int newtag,
9177     int secondary_compat)
9178 {
9179 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9180   static const int v6t2[] =
9181     {
9182       T(V6T2),   // PRE_V4.
9183       T(V6T2),   // V4.
9184       T(V6T2),   // V4T.
9185       T(V6T2),   // V5T.
9186       T(V6T2),   // V5TE.
9187       T(V6T2),   // V5TEJ.
9188       T(V6T2),   // V6.
9189       T(V7),     // V6KZ.
9190       T(V6T2)    // V6T2.
9191     };
9192   static const int v6k[] =
9193     {
9194       T(V6K),    // PRE_V4.
9195       T(V6K),    // V4.
9196       T(V6K),    // V4T.
9197       T(V6K),    // V5T.
9198       T(V6K),    // V5TE.
9199       T(V6K),    // V5TEJ.
9200       T(V6K),    // V6.
9201       T(V6KZ),   // V6KZ.
9202       T(V7),     // V6T2.
9203       T(V6K)     // V6K.
9204     };
9205   static const int v7[] =
9206     {
9207       T(V7),     // PRE_V4.
9208       T(V7),     // V4.
9209       T(V7),     // V4T.
9210       T(V7),     // V5T.
9211       T(V7),     // V5TE.
9212       T(V7),     // V5TEJ.
9213       T(V7),     // V6.
9214       T(V7),     // V6KZ.
9215       T(V7),     // V6T2.
9216       T(V7),     // V6K.
9217       T(V7)      // V7.
9218     };
9219   static const int v6_m[] =
9220     {
9221       -1,        // PRE_V4.
9222       -1,        // V4.
9223       T(V6K),    // V4T.
9224       T(V6K),    // V5T.
9225       T(V6K),    // V5TE.
9226       T(V6K),    // V5TEJ.
9227       T(V6K),    // V6.
9228       T(V6KZ),   // V6KZ.
9229       T(V7),     // V6T2.
9230       T(V6K),    // V6K.
9231       T(V7),     // V7.
9232       T(V6_M)    // V6_M.
9233     };
9234   static const int v6s_m[] =
9235     {
9236       -1,        // PRE_V4.
9237       -1,        // V4.
9238       T(V6K),    // V4T.
9239       T(V6K),    // V5T.
9240       T(V6K),    // V5TE.
9241       T(V6K),    // V5TEJ.
9242       T(V6K),    // V6.
9243       T(V6KZ),   // V6KZ.
9244       T(V7),     // V6T2.
9245       T(V6K),    // V6K.
9246       T(V7),     // V7.
9247       T(V6S_M),  // V6_M.
9248       T(V6S_M)   // V6S_M.
9249     };
9250   static const int v7e_m[] =
9251     {
9252       -1,       // PRE_V4.
9253       -1,       // V4.
9254       T(V7E_M), // V4T.
9255       T(V7E_M), // V5T.
9256       T(V7E_M), // V5TE.
9257       T(V7E_M), // V5TEJ.
9258       T(V7E_M), // V6.
9259       T(V7E_M), // V6KZ.
9260       T(V7E_M), // V6T2.
9261       T(V7E_M), // V6K.
9262       T(V7E_M), // V7.
9263       T(V7E_M), // V6_M.
9264       T(V7E_M), // V6S_M.
9265       T(V7E_M)  // V7E_M.
9266     };
9267   static const int v4t_plus_v6_m[] =
9268     {
9269       -1,               // PRE_V4.
9270       -1,               // V4.
9271       T(V4T),           // V4T.
9272       T(V5T),           // V5T.
9273       T(V5TE),          // V5TE.
9274       T(V5TEJ),         // V5TEJ.
9275       T(V6),            // V6.
9276       T(V6KZ),          // V6KZ.
9277       T(V6T2),          // V6T2.
9278       T(V6K),           // V6K.
9279       T(V7),            // V7.
9280       T(V6_M),          // V6_M.
9281       T(V6S_M),         // V6S_M.
9282       T(V7E_M),         // V7E_M.
9283       T(V4T_PLUS_V6_M)  // V4T plus V6_M.
9284     };
9285   static const int *comb[] =
9286     {
9287       v6t2,
9288       v6k,
9289       v7,
9290       v6_m,
9291       v6s_m,
9292       v7e_m,
9293       // Pseudo-architecture.
9294       v4t_plus_v6_m
9295     };
9296
9297   // Check we've not got a higher architecture than we know about.
9298
9299   if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9300     {
9301       gold_error(_("%s: unknown CPU architecture"), name);
9302       return -1;
9303     }
9304
9305   // Override old tag if we have a Tag_also_compatible_with on the output.
9306
9307   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9308       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9309     oldtag = T(V4T_PLUS_V6_M);
9310
9311   // And override the new tag if we have a Tag_also_compatible_with on the
9312   // input.
9313
9314   if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9315       || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9316     newtag = T(V4T_PLUS_V6_M);
9317
9318   // Architectures before V6KZ add features monotonically.
9319   int tagh = std::max(oldtag, newtag);
9320   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9321     return tagh;
9322
9323   int tagl = std::min(oldtag, newtag);
9324   int result = comb[tagh - T(V6T2)][tagl];
9325
9326   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9327   // as the canonical version.
9328   if (result == T(V4T_PLUS_V6_M))
9329     {
9330       result = T(V4T);
9331       *secondary_compat_out = T(V6_M);
9332     }
9333   else
9334     *secondary_compat_out = -1;
9335
9336   if (result == -1)
9337     {
9338       gold_error(_("%s: conflicting CPU architectures %d/%d"),
9339                  name, oldtag, newtag);
9340       return -1;
9341     }
9342
9343   return result;
9344 #undef T
9345 }
9346
9347 // Helper to print AEABI enum tag value.
9348
9349 template<bool big_endian>
9350 std::string
9351 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9352 {
9353   static const char *aeabi_enum_names[] =
9354     { "", "variable-size", "32-bit", "" };
9355   const size_t aeabi_enum_names_size =
9356     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9357
9358   if (value < aeabi_enum_names_size)
9359     return std::string(aeabi_enum_names[value]);
9360   else
9361     {
9362       char buffer[100];
9363       sprintf(buffer, "<unknown value %u>", value);
9364       return std::string(buffer);
9365     }
9366 }
9367
9368 // Return the string value to store in TAG_CPU_name.
9369
9370 template<bool big_endian>
9371 std::string
9372 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9373 {
9374   static const char *name_table[] = {
9375     // These aren't real CPU names, but we can't guess
9376     // that from the architecture version alone.
9377    "Pre v4",
9378    "ARM v4",
9379    "ARM v4T",
9380    "ARM v5T",
9381    "ARM v5TE",
9382    "ARM v5TEJ",
9383    "ARM v6",
9384    "ARM v6KZ",
9385    "ARM v6T2",
9386    "ARM v6K",
9387    "ARM v7",
9388    "ARM v6-M",
9389    "ARM v6S-M",
9390    "ARM v7E-M"
9391  };
9392  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9393
9394   if (value < name_table_size)
9395     return std::string(name_table[value]);
9396   else
9397     {
9398       char buffer[100];
9399       sprintf(buffer, "<unknown CPU value %u>", value);
9400       return std::string(buffer);
9401     } 
9402 }
9403
9404 // Merge object attributes from input file called NAME with those of the
9405 // output.  The input object attributes are in the object pointed by PASD.
9406
9407 template<bool big_endian>
9408 void
9409 Target_arm<big_endian>::merge_object_attributes(
9410     const char* name,
9411     const Attributes_section_data* pasd)
9412 {
9413   // Return if there is no attributes section data.
9414   if (pasd == NULL)
9415     return;
9416
9417   // If output has no object attributes, just copy.
9418   if (this->attributes_section_data_ == NULL)
9419     {
9420       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9421       return;
9422     }
9423
9424   const int vendor = Object_attribute::OBJ_ATTR_PROC;
9425   const Object_attribute* in_attr = pasd->known_attributes(vendor);
9426   Object_attribute* out_attr =
9427     this->attributes_section_data_->known_attributes(vendor);
9428
9429   // This needs to happen before Tag_ABI_FP_number_model is merged.  */
9430   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9431       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9432     {
9433       // Ignore mismatches if the object doesn't use floating point.  */
9434       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9435         out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9436             in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9437       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9438                && parameters->options().warn_mismatch())
9439         gold_error(_("%s uses VFP register arguments, output does not"),
9440                    name);
9441     }
9442
9443   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9444     {
9445       // Merge this attribute with existing attributes.
9446       switch (i)
9447         {
9448         case elfcpp::Tag_CPU_raw_name:
9449         case elfcpp::Tag_CPU_name:
9450           // These are merged after Tag_CPU_arch.
9451           break;
9452
9453         case elfcpp::Tag_ABI_optimization_goals:
9454         case elfcpp::Tag_ABI_FP_optimization_goals:
9455           // Use the first value seen.
9456           break;
9457
9458         case elfcpp::Tag_CPU_arch:
9459           {
9460             unsigned int saved_out_attr = out_attr->int_value();
9461             // Merge Tag_CPU_arch and Tag_also_compatible_with.
9462             int secondary_compat =
9463               this->get_secondary_compatible_arch(pasd);
9464             int secondary_compat_out =
9465               this->get_secondary_compatible_arch(
9466                   this->attributes_section_data_);
9467             out_attr[i].set_int_value(
9468                 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9469                                      &secondary_compat_out,
9470                                      in_attr[i].int_value(),
9471                                      secondary_compat));
9472             this->set_secondary_compatible_arch(this->attributes_section_data_,
9473                                                 secondary_compat_out);
9474
9475             // Merge Tag_CPU_name and Tag_CPU_raw_name.
9476             if (out_attr[i].int_value() == saved_out_attr)
9477               ; // Leave the names alone.
9478             else if (out_attr[i].int_value() == in_attr[i].int_value())
9479               {
9480                 // The output architecture has been changed to match the
9481                 // input architecture.  Use the input names.
9482                 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9483                     in_attr[elfcpp::Tag_CPU_name].string_value());
9484                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9485                     in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9486               }
9487             else
9488               {
9489                 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9490                 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9491               }
9492
9493             // If we still don't have a value for Tag_CPU_name,
9494             // make one up now.  Tag_CPU_raw_name remains blank.
9495             if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9496               {
9497                 const std::string cpu_name =
9498                   this->tag_cpu_name_value(out_attr[i].int_value());
9499                 // FIXME:  If we see an unknown CPU, this will be set
9500                 // to "<unknown CPU n>", where n is the attribute value.
9501                 // This is different from BFD, which leaves the name alone.
9502                 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9503               }
9504           }
9505           break;
9506
9507         case elfcpp::Tag_ARM_ISA_use:
9508         case elfcpp::Tag_THUMB_ISA_use:
9509         case elfcpp::Tag_WMMX_arch:
9510         case elfcpp::Tag_Advanced_SIMD_arch:
9511           // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9512         case elfcpp::Tag_ABI_FP_rounding:
9513         case elfcpp::Tag_ABI_FP_exceptions:
9514         case elfcpp::Tag_ABI_FP_user_exceptions:
9515         case elfcpp::Tag_ABI_FP_number_model:
9516         case elfcpp::Tag_VFP_HP_extension:
9517         case elfcpp::Tag_CPU_unaligned_access:
9518         case elfcpp::Tag_T2EE_use:
9519         case elfcpp::Tag_Virtualization_use:
9520         case elfcpp::Tag_MPextension_use:
9521           // Use the largest value specified.
9522           if (in_attr[i].int_value() > out_attr[i].int_value())
9523             out_attr[i].set_int_value(in_attr[i].int_value());
9524           break;
9525
9526         case elfcpp::Tag_ABI_align8_preserved:
9527         case elfcpp::Tag_ABI_PCS_RO_data:
9528           // Use the smallest value specified.
9529           if (in_attr[i].int_value() < out_attr[i].int_value())
9530             out_attr[i].set_int_value(in_attr[i].int_value());
9531           break;
9532
9533         case elfcpp::Tag_ABI_align8_needed:
9534           if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9535               && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9536                   || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9537                       == 0)))
9538             {
9539               // This error message should be enabled once all non-conformant
9540               // binaries in the toolchain have had the attributes set
9541               // properly.
9542               // gold_error(_("output 8-byte data alignment conflicts with %s"),
9543               //            name);
9544             }
9545           // Fall through.
9546         case elfcpp::Tag_ABI_FP_denormal:
9547         case elfcpp::Tag_ABI_PCS_GOT_use:
9548           {
9549             // These tags have 0 = don't care, 1 = strong requirement,
9550             // 2 = weak requirement.
9551             static const int order_021[3] = {0, 2, 1};
9552
9553             // Use the "greatest" from the sequence 0, 2, 1, or the largest
9554             // value if greater than 2 (for future-proofing).
9555             if ((in_attr[i].int_value() > 2
9556                  && in_attr[i].int_value() > out_attr[i].int_value())
9557                 || (in_attr[i].int_value() <= 2
9558                     && out_attr[i].int_value() <= 2
9559                     && (order_021[in_attr[i].int_value()]
9560                         > order_021[out_attr[i].int_value()])))
9561               out_attr[i].set_int_value(in_attr[i].int_value());
9562           }
9563           break;
9564
9565         case elfcpp::Tag_CPU_arch_profile:
9566           if (out_attr[i].int_value() != in_attr[i].int_value())
9567             {
9568               // 0 will merge with anything.
9569               // 'A' and 'S' merge to 'A'.
9570               // 'R' and 'S' merge to 'R'.
9571               // 'M' and 'A|R|S' is an error.
9572               if (out_attr[i].int_value() == 0
9573                   || (out_attr[i].int_value() == 'S'
9574                       && (in_attr[i].int_value() == 'A'
9575                           || in_attr[i].int_value() == 'R')))
9576                 out_attr[i].set_int_value(in_attr[i].int_value());
9577               else if (in_attr[i].int_value() == 0
9578                        || (in_attr[i].int_value() == 'S'
9579                            && (out_attr[i].int_value() == 'A'
9580                                || out_attr[i].int_value() == 'R')))
9581                 ; // Do nothing.
9582               else if (parameters->options().warn_mismatch())
9583                 {
9584                   gold_error
9585                     (_("conflicting architecture profiles %c/%c"),
9586                      in_attr[i].int_value() ? in_attr[i].int_value() : '0',
9587                      out_attr[i].int_value() ? out_attr[i].int_value() : '0');
9588                 }
9589             }
9590           break;
9591         case elfcpp::Tag_VFP_arch:
9592             {
9593               static const struct
9594               {
9595                   int ver;
9596                   int regs;
9597               } vfp_versions[7] =
9598                 {
9599                   {0, 0},
9600                   {1, 16},
9601                   {2, 16},
9602                   {3, 32},
9603                   {3, 16},
9604                   {4, 32},
9605                   {4, 16}
9606                 };
9607
9608               // Values greater than 6 aren't defined, so just pick the
9609               // biggest.
9610               if (in_attr[i].int_value() > 6
9611                   && in_attr[i].int_value() > out_attr[i].int_value())
9612                 {
9613                   *out_attr = *in_attr;
9614                   break;
9615                 }
9616               // The output uses the superset of input features
9617               // (ISA version) and registers.
9618               int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
9619                                  vfp_versions[out_attr[i].int_value()].ver);
9620               int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
9621                                   vfp_versions[out_attr[i].int_value()].regs);
9622               // This assumes all possible supersets are also a valid
9623               // options.
9624               int newval;
9625               for (newval = 6; newval > 0; newval--)
9626                 {
9627                   if (regs == vfp_versions[newval].regs
9628                       && ver == vfp_versions[newval].ver)
9629                     break;
9630                 }
9631               out_attr[i].set_int_value(newval);
9632             }
9633           break;
9634         case elfcpp::Tag_PCS_config:
9635           if (out_attr[i].int_value() == 0)
9636             out_attr[i].set_int_value(in_attr[i].int_value());
9637           else if (in_attr[i].int_value() != 0
9638                    && out_attr[i].int_value() != 0
9639                    && parameters->options().warn_mismatch())
9640             {
9641               // It's sometimes ok to mix different configs, so this is only
9642               // a warning.
9643               gold_warning(_("%s: conflicting platform configuration"), name);
9644             }
9645           break;
9646         case elfcpp::Tag_ABI_PCS_R9_use:
9647           if (in_attr[i].int_value() != out_attr[i].int_value()
9648               && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
9649               && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
9650               && parameters->options().warn_mismatch())
9651             {
9652               gold_error(_("%s: conflicting use of R9"), name);
9653             }
9654           if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
9655             out_attr[i].set_int_value(in_attr[i].int_value());
9656           break;
9657         case elfcpp::Tag_ABI_PCS_RW_data:
9658           if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9659               && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9660                   != elfcpp::AEABI_R9_SB)
9661               && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9662                   != elfcpp::AEABI_R9_unused)
9663               && parameters->options().warn_mismatch())
9664             {
9665               gold_error(_("%s: SB relative addressing conflicts with use "
9666                            "of R9"),
9667                            name);
9668             }
9669           // Use the smallest value specified.
9670           if (in_attr[i].int_value() < out_attr[i].int_value())
9671             out_attr[i].set_int_value(in_attr[i].int_value());
9672           break;
9673         case elfcpp::Tag_ABI_PCS_wchar_t:
9674           // FIXME: Make it possible to turn off this warning.
9675           if (out_attr[i].int_value()
9676               && in_attr[i].int_value()
9677               && out_attr[i].int_value() != in_attr[i].int_value()
9678               && parameters->options().warn_mismatch())
9679             {
9680               gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9681                              "use %u-byte wchar_t; use of wchar_t values "
9682                              "across objects may fail"),
9683                            name, in_attr[i].int_value(),
9684                            out_attr[i].int_value());
9685             }
9686           else if (in_attr[i].int_value() && !out_attr[i].int_value())
9687             out_attr[i].set_int_value(in_attr[i].int_value());
9688           break;
9689         case elfcpp::Tag_ABI_enum_size:
9690           if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
9691             {
9692               if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
9693                   || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
9694                 {
9695                   // The existing object is compatible with anything.
9696                   // Use whatever requirements the new object has.
9697                   out_attr[i].set_int_value(in_attr[i].int_value());
9698                 }
9699               // FIXME: Make it possible to turn off this warning.
9700               else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
9701                        && out_attr[i].int_value() != in_attr[i].int_value()
9702                        && parameters->options().warn_mismatch())
9703                 {
9704                   unsigned int in_value = in_attr[i].int_value();
9705                   unsigned int out_value = out_attr[i].int_value();
9706                   gold_warning(_("%s uses %s enums yet the output is to use "
9707                                  "%s enums; use of enum values across objects "
9708                                  "may fail"),
9709                                name,
9710                                this->aeabi_enum_name(in_value).c_str(),
9711                                this->aeabi_enum_name(out_value).c_str());
9712                 }
9713             }
9714           break;
9715         case elfcpp::Tag_ABI_VFP_args:
9716           // Aready done.
9717           break;
9718         case elfcpp::Tag_ABI_WMMX_args:
9719           if (in_attr[i].int_value() != out_attr[i].int_value()
9720               && parameters->options().warn_mismatch())
9721             {
9722               gold_error(_("%s uses iWMMXt register arguments, output does "
9723                            "not"),
9724                          name);
9725             }
9726           break;
9727         case Object_attribute::Tag_compatibility:
9728           // Merged in target-independent code.
9729           break;
9730         case elfcpp::Tag_ABI_HardFP_use:
9731           // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9732           if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
9733               || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
9734             out_attr[i].set_int_value(3);
9735           else if (in_attr[i].int_value() > out_attr[i].int_value())
9736             out_attr[i].set_int_value(in_attr[i].int_value());
9737           break;
9738         case elfcpp::Tag_ABI_FP_16bit_format:
9739           if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9740             {
9741               if (in_attr[i].int_value() != out_attr[i].int_value()
9742                   && parameters->options().warn_mismatch())
9743                 gold_error(_("fp16 format mismatch between %s and output"),
9744                            name);
9745             }
9746           if (in_attr[i].int_value() != 0)
9747             out_attr[i].set_int_value(in_attr[i].int_value());
9748           break;
9749
9750         case elfcpp::Tag_nodefaults:
9751           // This tag is set if it exists, but the value is unused (and is
9752           // typically zero).  We don't actually need to do anything here -
9753           // the merge happens automatically when the type flags are merged
9754           // below.
9755           break;
9756         case elfcpp::Tag_also_compatible_with:
9757           // Already done in Tag_CPU_arch.
9758           break;
9759         case elfcpp::Tag_conformance:
9760           // Keep the attribute if it matches.  Throw it away otherwise.
9761           // No attribute means no claim to conform.
9762           if (in_attr[i].string_value() != out_attr[i].string_value())
9763             out_attr[i].set_string_value("");
9764           break;
9765
9766         default:
9767           {
9768             const char* err_object = NULL;
9769
9770             // The "known_obj_attributes" table does contain some undefined
9771             // attributes.  Ensure that there are unused.
9772             if (out_attr[i].int_value() != 0
9773                 || out_attr[i].string_value() != "")
9774               err_object = "output";
9775             else if (in_attr[i].int_value() != 0
9776                      || in_attr[i].string_value() != "")
9777               err_object = name;
9778
9779             if (err_object != NULL
9780                 && parameters->options().warn_mismatch())
9781               {
9782                 // Attribute numbers >=64 (mod 128) can be safely ignored.
9783                 if ((i & 127) < 64)
9784                   gold_error(_("%s: unknown mandatory EABI object attribute "
9785                                "%d"),
9786                              err_object, i);
9787                 else
9788                   gold_warning(_("%s: unknown EABI object attribute %d"),
9789                                err_object, i);
9790               }
9791
9792             // Only pass on attributes that match in both inputs.
9793             if (!in_attr[i].matches(out_attr[i]))
9794               {
9795                 out_attr[i].set_int_value(0);
9796                 out_attr[i].set_string_value("");
9797               }
9798           }
9799         }
9800
9801       // If out_attr was copied from in_attr then it won't have a type yet.
9802       if (in_attr[i].type() && !out_attr[i].type())
9803         out_attr[i].set_type(in_attr[i].type());
9804     }
9805
9806   // Merge Tag_compatibility attributes and any common GNU ones.
9807   this->attributes_section_data_->merge(name, pasd);
9808
9809   // Check for any attributes not known on ARM.
9810   typedef Vendor_object_attributes::Other_attributes Other_attributes;
9811   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
9812   Other_attributes::const_iterator in_iter = in_other_attributes->begin();
9813   Other_attributes* out_other_attributes =
9814     this->attributes_section_data_->other_attributes(vendor);
9815   Other_attributes::iterator out_iter = out_other_attributes->begin();
9816
9817   while (in_iter != in_other_attributes->end()
9818          || out_iter != out_other_attributes->end())
9819     {
9820       const char* err_object = NULL;
9821       int err_tag = 0;
9822
9823       // The tags for each list are in numerical order.
9824       // If the tags are equal, then merge.
9825       if (out_iter != out_other_attributes->end()
9826           && (in_iter == in_other_attributes->end()
9827               || in_iter->first > out_iter->first))
9828         {
9829           // This attribute only exists in output.  We can't merge, and we
9830           // don't know what the tag means, so delete it.
9831           err_object = "output";
9832           err_tag = out_iter->first;
9833           int saved_tag = out_iter->first;
9834           delete out_iter->second;
9835           out_other_attributes->erase(out_iter); 
9836           out_iter = out_other_attributes->upper_bound(saved_tag);
9837         }
9838       else if (in_iter != in_other_attributes->end()
9839                && (out_iter != out_other_attributes->end()
9840                    || in_iter->first < out_iter->first))
9841         {
9842           // This attribute only exists in input. We can't merge, and we
9843           // don't know what the tag means, so ignore it.
9844           err_object = name;
9845           err_tag = in_iter->first;
9846           ++in_iter;
9847         }
9848       else // The tags are equal.
9849         {
9850           // As present, all attributes in the list are unknown, and
9851           // therefore can't be merged meaningfully.
9852           err_object = "output";
9853           err_tag = out_iter->first;
9854
9855           //  Only pass on attributes that match in both inputs.
9856           if (!in_iter->second->matches(*(out_iter->second)))
9857             {
9858               // No match.  Delete the attribute.
9859               int saved_tag = out_iter->first;
9860               delete out_iter->second;
9861               out_other_attributes->erase(out_iter);
9862               out_iter = out_other_attributes->upper_bound(saved_tag);
9863             }
9864           else
9865             {
9866               // Matched.  Keep the attribute and move to the next.
9867               ++out_iter;
9868               ++in_iter;
9869             }
9870         }
9871
9872       if (err_object && parameters->options().warn_mismatch())
9873         {
9874           // Attribute numbers >=64 (mod 128) can be safely ignored.  */
9875           if ((err_tag & 127) < 64)
9876             {
9877               gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9878                          err_object, err_tag);
9879             }
9880           else
9881             {
9882               gold_warning(_("%s: unknown EABI object attribute %d"),
9883                            err_object, err_tag);
9884             }
9885         }
9886     }
9887 }
9888
9889 // Stub-generation methods for Target_arm.
9890
9891 // Make a new Arm_input_section object.
9892
9893 template<bool big_endian>
9894 Arm_input_section<big_endian>*
9895 Target_arm<big_endian>::new_arm_input_section(
9896     Relobj* relobj,
9897     unsigned int shndx)
9898 {
9899   Section_id sid(relobj, shndx);
9900
9901   Arm_input_section<big_endian>* arm_input_section =
9902     new Arm_input_section<big_endian>(relobj, shndx);
9903   arm_input_section->init();
9904
9905   // Register new Arm_input_section in map for look-up.
9906   std::pair<typename Arm_input_section_map::iterator, bool> ins =
9907     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
9908
9909   // Make sure that it we have not created another Arm_input_section
9910   // for this input section already.
9911   gold_assert(ins.second);
9912
9913   return arm_input_section; 
9914 }
9915
9916 // Find the Arm_input_section object corresponding to the SHNDX-th input
9917 // section of RELOBJ.
9918
9919 template<bool big_endian>
9920 Arm_input_section<big_endian>*
9921 Target_arm<big_endian>::find_arm_input_section(
9922     Relobj* relobj,
9923     unsigned int shndx) const
9924 {
9925   Section_id sid(relobj, shndx);
9926   typename Arm_input_section_map::const_iterator p =
9927     this->arm_input_section_map_.find(sid);
9928   return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
9929 }
9930
9931 // Make a new stub table.
9932
9933 template<bool big_endian>
9934 Stub_table<big_endian>*
9935 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
9936 {
9937   Stub_table<big_endian>* stub_table =
9938     new Stub_table<big_endian>(owner);
9939   this->stub_tables_.push_back(stub_table);
9940
9941   stub_table->set_address(owner->address() + owner->data_size());
9942   stub_table->set_file_offset(owner->offset() + owner->data_size());
9943   stub_table->finalize_data_size();
9944
9945   return stub_table;
9946 }
9947
9948 // Scan a relocation for stub generation.
9949
9950 template<bool big_endian>
9951 void
9952 Target_arm<big_endian>::scan_reloc_for_stub(
9953     const Relocate_info<32, big_endian>* relinfo,
9954     unsigned int r_type,
9955     const Sized_symbol<32>* gsym,
9956     unsigned int r_sym,
9957     const Symbol_value<32>* psymval,
9958     elfcpp::Elf_types<32>::Elf_Swxword addend,
9959     Arm_address address)
9960 {
9961   typedef typename Target_arm<big_endian>::Relocate Relocate;
9962
9963   const Arm_relobj<big_endian>* arm_relobj =
9964     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9965
9966   bool target_is_thumb;
9967   Symbol_value<32> symval;
9968   if (gsym != NULL)
9969     {
9970       // This is a global symbol.  Determine if we use PLT and if the
9971       // final target is THUMB.
9972       if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
9973         {
9974           // This uses a PLT, change the symbol value.
9975           symval.set_output_value(this->plt_section()->address()
9976                                   + gsym->plt_offset());
9977           psymval = &symval;
9978           target_is_thumb = false;
9979         }
9980       else if (gsym->is_undefined())
9981         // There is no need to generate a stub symbol is undefined.
9982         return;
9983       else
9984         {
9985           target_is_thumb =
9986             ((gsym->type() == elfcpp::STT_ARM_TFUNC)
9987              || (gsym->type() == elfcpp::STT_FUNC
9988                  && !gsym->is_undefined()
9989                  && ((psymval->value(arm_relobj, 0) & 1) != 0)));
9990         }
9991     }
9992   else
9993     {
9994       // This is a local symbol.  Determine if the final target is THUMB.
9995       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
9996     }
9997
9998   // Strip LSB if this points to a THUMB target.
9999   const Arm_reloc_property* reloc_property =
10000     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10001   gold_assert(reloc_property != NULL);
10002   if (target_is_thumb
10003       && reloc_property->uses_thumb_bit()
10004       && ((psymval->value(arm_relobj, 0) & 1) != 0))
10005     {
10006       Arm_address stripped_value =
10007         psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10008       symval.set_output_value(stripped_value);
10009       psymval = &symval;
10010     } 
10011
10012   // Get the symbol value.
10013   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10014
10015   // Owing to pipelining, the PC relative branches below actually skip
10016   // two instructions when the branch offset is 0.
10017   Arm_address destination;
10018   switch (r_type)
10019     {
10020     case elfcpp::R_ARM_CALL:
10021     case elfcpp::R_ARM_JUMP24:
10022     case elfcpp::R_ARM_PLT32:
10023       // ARM branches.
10024       destination = value + addend + 8;
10025       break;
10026     case elfcpp::R_ARM_THM_CALL:
10027     case elfcpp::R_ARM_THM_XPC22:
10028     case elfcpp::R_ARM_THM_JUMP24:
10029     case elfcpp::R_ARM_THM_JUMP19:
10030       // THUMB branches.
10031       destination = value + addend + 4;
10032       break;
10033     default:
10034       gold_unreachable();
10035     }
10036
10037   Reloc_stub* stub = NULL;
10038   Stub_type stub_type =
10039     Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10040                                     target_is_thumb);
10041   if (stub_type != arm_stub_none)
10042     {
10043       // Try looking up an existing stub from a stub table.
10044       Stub_table<big_endian>* stub_table = 
10045         arm_relobj->stub_table(relinfo->data_shndx);
10046       gold_assert(stub_table != NULL);
10047    
10048       // Locate stub by destination.
10049       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10050
10051       // Create a stub if there is not one already
10052       stub = stub_table->find_reloc_stub(stub_key);
10053       if (stub == NULL)
10054         {
10055           // create a new stub and add it to stub table.
10056           stub = this->stub_factory().make_reloc_stub(stub_type);
10057           stub_table->add_reloc_stub(stub, stub_key);
10058         }
10059
10060       // Record the destination address.
10061       stub->set_destination_address(destination
10062                                     | (target_is_thumb ? 1 : 0));
10063     }
10064
10065   // For Cortex-A8, we need to record a relocation at 4K page boundary.
10066   if (this->fix_cortex_a8_
10067       && (r_type == elfcpp::R_ARM_THM_JUMP24
10068           || r_type == elfcpp::R_ARM_THM_JUMP19
10069           || r_type == elfcpp::R_ARM_THM_CALL
10070           || r_type == elfcpp::R_ARM_THM_XPC22)
10071       && (address & 0xfffU) == 0xffeU)
10072     {
10073       // Found a candidate.  Note we haven't checked the destination is
10074       // within 4K here: if we do so (and don't create a record) we can't
10075       // tell that a branch should have been relocated when scanning later.
10076       this->cortex_a8_relocs_info_[address] =
10077         new Cortex_a8_reloc(stub, r_type,
10078                             destination | (target_is_thumb ? 1 : 0));
10079     }
10080 }
10081
10082 // This function scans a relocation sections for stub generation.
10083 // The template parameter Relocate must be a class type which provides
10084 // a single function, relocate(), which implements the machine
10085 // specific part of a relocation.
10086
10087 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
10088 // SHT_REL or SHT_RELA.
10089
10090 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
10091 // of relocs.  OUTPUT_SECTION is the output section.
10092 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10093 // mapped to output offsets.
10094
10095 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10096 // VIEW_SIZE is the size.  These refer to the input section, unless
10097 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10098 // the output section.
10099
10100 template<bool big_endian>
10101 template<int sh_type>
10102 void inline
10103 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10104     const Relocate_info<32, big_endian>* relinfo,
10105     const unsigned char* prelocs,
10106     size_t reloc_count,
10107     Output_section* output_section,
10108     bool needs_special_offset_handling,
10109     const unsigned char* view,
10110     elfcpp::Elf_types<32>::Elf_Addr view_address,
10111     section_size_type)
10112 {
10113   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10114   const int reloc_size =
10115     Reloc_types<sh_type, 32, big_endian>::reloc_size;
10116
10117   Arm_relobj<big_endian>* arm_object =
10118     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10119   unsigned int local_count = arm_object->local_symbol_count();
10120
10121   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10122
10123   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10124     {
10125       Reltype reloc(prelocs);
10126
10127       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10128       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10129       unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10130
10131       r_type = this->get_real_reloc_type(r_type);
10132
10133       // Only a few relocation types need stubs.
10134       if ((r_type != elfcpp::R_ARM_CALL)
10135          && (r_type != elfcpp::R_ARM_JUMP24)
10136          && (r_type != elfcpp::R_ARM_PLT32)
10137          && (r_type != elfcpp::R_ARM_THM_CALL)
10138          && (r_type != elfcpp::R_ARM_THM_XPC22)
10139          && (r_type != elfcpp::R_ARM_THM_JUMP24)
10140          && (r_type != elfcpp::R_ARM_THM_JUMP19)
10141          && (r_type != elfcpp::R_ARM_V4BX))
10142         continue;
10143
10144       section_offset_type offset =
10145         convert_to_section_size_type(reloc.get_r_offset());
10146
10147       if (needs_special_offset_handling)
10148         {
10149           offset = output_section->output_offset(relinfo->object,
10150                                                  relinfo->data_shndx,
10151                                                  offset);
10152           if (offset == -1)
10153             continue;
10154         }
10155
10156       // Create a v4bx stub if --fix-v4bx-interworking is used.
10157       if (r_type == elfcpp::R_ARM_V4BX)
10158         {
10159           if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10160             {
10161               // Get the BX instruction.
10162               typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10163               const Valtype* wv =
10164                 reinterpret_cast<const Valtype*>(view + offset);
10165               elfcpp::Elf_types<32>::Elf_Swxword insn =
10166                 elfcpp::Swap<32, big_endian>::readval(wv);
10167               const uint32_t reg = (insn & 0xf);
10168
10169               if (reg < 0xf)
10170                 {
10171                   // Try looking up an existing stub from a stub table.
10172                   Stub_table<big_endian>* stub_table =
10173                     arm_object->stub_table(relinfo->data_shndx);
10174                   gold_assert(stub_table != NULL);
10175
10176                   if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10177                     {
10178                       // create a new stub and add it to stub table.
10179                       Arm_v4bx_stub* stub =
10180                         this->stub_factory().make_arm_v4bx_stub(reg);
10181                       gold_assert(stub != NULL);
10182                       stub_table->add_arm_v4bx_stub(stub);
10183                     }
10184                 }
10185             }
10186           continue;
10187         }
10188
10189       // Get the addend.
10190       Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10191       elfcpp::Elf_types<32>::Elf_Swxword addend =
10192         stub_addend_reader(r_type, view + offset, reloc);
10193
10194       const Sized_symbol<32>* sym;
10195
10196       Symbol_value<32> symval;
10197       const Symbol_value<32> *psymval;
10198       if (r_sym < local_count)
10199         {
10200           sym = NULL;
10201           psymval = arm_object->local_symbol(r_sym);
10202
10203           // If the local symbol belongs to a section we are discarding,
10204           // and that section is a debug section, try to find the
10205           // corresponding kept section and map this symbol to its
10206           // counterpart in the kept section.  The symbol must not 
10207           // correspond to a section we are folding.
10208           bool is_ordinary;
10209           unsigned int shndx = psymval->input_shndx(&is_ordinary);
10210           if (is_ordinary
10211               && shndx != elfcpp::SHN_UNDEF
10212               && !arm_object->is_section_included(shndx) 
10213               && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10214             {
10215               if (comdat_behavior == CB_UNDETERMINED)
10216                 {
10217                   std::string name =
10218                     arm_object->section_name(relinfo->data_shndx);
10219                   comdat_behavior = get_comdat_behavior(name.c_str());
10220                 }
10221               if (comdat_behavior == CB_PRETEND)
10222                 {
10223                   bool found;
10224                   typename elfcpp::Elf_types<32>::Elf_Addr value =
10225                     arm_object->map_to_kept_section(shndx, &found);
10226                   if (found)
10227                     symval.set_output_value(value + psymval->input_value());
10228                   else
10229                     symval.set_output_value(0);
10230                 }
10231               else
10232                 {
10233                   symval.set_output_value(0);
10234                 }
10235               symval.set_no_output_symtab_entry();
10236               psymval = &symval;
10237             }
10238         }
10239       else
10240         {
10241           const Symbol* gsym = arm_object->global_symbol(r_sym);
10242           gold_assert(gsym != NULL);
10243           if (gsym->is_forwarder())
10244             gsym = relinfo->symtab->resolve_forwards(gsym);
10245
10246           sym = static_cast<const Sized_symbol<32>*>(gsym);
10247           if (sym->has_symtab_index())
10248             symval.set_output_symtab_index(sym->symtab_index());
10249           else
10250             symval.set_no_output_symtab_entry();
10251
10252           // We need to compute the would-be final value of this global
10253           // symbol.
10254           const Symbol_table* symtab = relinfo->symtab;
10255           const Sized_symbol<32>* sized_symbol =
10256             symtab->get_sized_symbol<32>(gsym);
10257           Symbol_table::Compute_final_value_status status;
10258           Arm_address value =
10259             symtab->compute_final_value<32>(sized_symbol, &status);
10260
10261           // Skip this if the symbol has not output section.
10262           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10263             continue;
10264
10265           symval.set_output_value(value);
10266           psymval = &symval;
10267         }
10268
10269       // If symbol is a section symbol, we don't know the actual type of
10270       // destination.  Give up.
10271       if (psymval->is_section_symbol())
10272         continue;
10273
10274       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10275                                 addend, view_address + offset);
10276     }
10277 }
10278
10279 // Scan an input section for stub generation.
10280
10281 template<bool big_endian>
10282 void
10283 Target_arm<big_endian>::scan_section_for_stubs(
10284     const Relocate_info<32, big_endian>* relinfo,
10285     unsigned int sh_type,
10286     const unsigned char* prelocs,
10287     size_t reloc_count,
10288     Output_section* output_section,
10289     bool needs_special_offset_handling,
10290     const unsigned char* view,
10291     Arm_address view_address,
10292     section_size_type view_size)
10293 {
10294   if (sh_type == elfcpp::SHT_REL)
10295     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10296         relinfo,
10297         prelocs,
10298         reloc_count,
10299         output_section,
10300         needs_special_offset_handling,
10301         view,
10302         view_address,
10303         view_size);
10304   else if (sh_type == elfcpp::SHT_RELA)
10305     // We do not support RELA type relocations yet.  This is provided for
10306     // completeness.
10307     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10308         relinfo,
10309         prelocs,
10310         reloc_count,
10311         output_section,
10312         needs_special_offset_handling,
10313         view,
10314         view_address,
10315         view_size);
10316   else
10317     gold_unreachable();
10318 }
10319
10320 // Group input sections for stub generation.
10321 //
10322 // We goup input sections in an output sections so that the total size,
10323 // including any padding space due to alignment is smaller than GROUP_SIZE
10324 // unless the only input section in group is bigger than GROUP_SIZE already.
10325 // Then an ARM stub table is created to follow the last input section
10326 // in group.  For each group an ARM stub table is created an is placed
10327 // after the last group.  If STUB_ALWATS_AFTER_BRANCH is false, we further
10328 // extend the group after the stub table.
10329
10330 template<bool big_endian>
10331 void
10332 Target_arm<big_endian>::group_sections(
10333     Layout* layout,
10334     section_size_type group_size,
10335     bool stubs_always_after_branch)
10336 {
10337   // Group input sections and insert stub table
10338   Layout::Section_list section_list;
10339   layout->get_allocated_sections(&section_list);
10340   for (Layout::Section_list::const_iterator p = section_list.begin();
10341        p != section_list.end();
10342        ++p)
10343     {
10344       Arm_output_section<big_endian>* output_section =
10345         Arm_output_section<big_endian>::as_arm_output_section(*p);
10346       output_section->group_sections(group_size, stubs_always_after_branch,
10347                                      this);
10348     }
10349 }
10350
10351 // Relaxation hook.  This is where we do stub generation.
10352
10353 template<bool big_endian>
10354 bool
10355 Target_arm<big_endian>::do_relax(
10356     int pass,
10357     const Input_objects* input_objects,
10358     Symbol_table* symtab,
10359     Layout* layout)
10360 {
10361   // No need to generate stubs if this is a relocatable link.
10362   gold_assert(!parameters->options().relocatable());
10363
10364   // If this is the first pass, we need to group input sections into
10365   // stub groups.
10366   bool done_exidx_fixup = false;
10367   if (pass == 1)
10368     {
10369       // Determine the stub group size.  The group size is the absolute
10370       // value of the parameter --stub-group-size.  If --stub-group-size
10371       // is passed a negative value, we restict stubs to be always after
10372       // the stubbed branches.
10373       int32_t stub_group_size_param =
10374         parameters->options().stub_group_size();
10375       bool stubs_always_after_branch = stub_group_size_param < 0;
10376       section_size_type stub_group_size = abs(stub_group_size_param);
10377
10378       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10379       // page as the first half of a 32-bit branch straddling two 4K pages.
10380       // This is a crude way of enforcing that.
10381       if (this->fix_cortex_a8_)
10382         stubs_always_after_branch = true;
10383
10384       if (stub_group_size == 1)
10385         {
10386           // Default value.
10387           // Thumb branch range is +-4MB has to be used as the default
10388           // maximum size (a given section can contain both ARM and Thumb
10389           // code, so the worst case has to be taken into account).  If we are
10390           // fixing cortex-a8 errata, the branch range has to be even smaller,
10391           // since wide conditional branch has a range of +-1MB only.
10392           //
10393           // This value is 24K less than that, which allows for 2025
10394           // 12-byte stubs.  If we exceed that, then we will fail to link.
10395           // The user will have to relink with an explicit group size
10396           // option.
10397           if (this->fix_cortex_a8_)
10398             stub_group_size = 1024276;
10399           else
10400             stub_group_size = 4170000;
10401         }
10402
10403       group_sections(layout, stub_group_size, stubs_always_after_branch);
10404      
10405       // Also fix .ARM.exidx section coverage.
10406       Output_section* os = layout->find_output_section(".ARM.exidx");
10407       if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10408         {
10409           Arm_output_section<big_endian>* exidx_output_section =
10410             Arm_output_section<big_endian>::as_arm_output_section(os);
10411           this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10412           done_exidx_fixup = true;
10413         }
10414     }
10415
10416   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
10417   // beginning of each relaxation pass, just blow away all the stubs.
10418   // Alternatively, we could selectively remove only the stubs and reloc
10419   // information for code sections that have moved since the last pass.
10420   // That would require more book-keeping.
10421   typedef typename Stub_table_list::iterator Stub_table_iterator;
10422   if (this->fix_cortex_a8_)
10423     {
10424       // Clear all Cortex-A8 reloc information.
10425       for (typename Cortex_a8_relocs_info::const_iterator p =
10426              this->cortex_a8_relocs_info_.begin();
10427            p != this->cortex_a8_relocs_info_.end();
10428            ++p)
10429         delete p->second;
10430       this->cortex_a8_relocs_info_.clear();
10431
10432       // Remove all Cortex-A8 stubs.
10433       for (Stub_table_iterator sp = this->stub_tables_.begin();
10434            sp != this->stub_tables_.end();
10435            ++sp)
10436         (*sp)->remove_all_cortex_a8_stubs();
10437     }
10438   
10439   // Scan relocs for relocation stubs
10440   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10441        op != input_objects->relobj_end();
10442        ++op)
10443     {
10444       Arm_relobj<big_endian>* arm_relobj =
10445         Arm_relobj<big_endian>::as_arm_relobj(*op);
10446       arm_relobj->scan_sections_for_stubs(this, symtab, layout);
10447     }
10448
10449   // Check all stub tables to see if any of them have their data sizes
10450   // or addresses alignments changed.  These are the only things that
10451   // matter.
10452   bool any_stub_table_changed = false;
10453   Unordered_set<const Output_section*> sections_needing_adjustment;
10454   for (Stub_table_iterator sp = this->stub_tables_.begin();
10455        (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10456        ++sp)
10457     {
10458       if ((*sp)->update_data_size_and_addralign())
10459         {
10460           // Update data size of stub table owner.
10461           Arm_input_section<big_endian>* owner = (*sp)->owner();
10462           uint64_t address = owner->address();
10463           off_t offset = owner->offset();
10464           owner->reset_address_and_file_offset();
10465           owner->set_address_and_file_offset(address, offset);
10466
10467           sections_needing_adjustment.insert(owner->output_section());
10468           any_stub_table_changed = true;
10469         }
10470     }
10471
10472   // Output_section_data::output_section() returns a const pointer but we
10473   // need to update output sections, so we record all output sections needing
10474   // update above and scan the sections here to find out what sections need
10475   // to be updated.
10476   for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10477       p != layout->section_list().end();
10478       ++p)
10479     {
10480       if (sections_needing_adjustment.find(*p)
10481           != sections_needing_adjustment.end())
10482         (*p)->set_section_offsets_need_adjustment();
10483     }
10484
10485   // Stop relaxation if no EXIDX fix-up and no stub table change.
10486   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10487
10488   // Finalize the stubs in the last relaxation pass.
10489   if (!continue_relaxation)
10490     {
10491       for (Stub_table_iterator sp = this->stub_tables_.begin();
10492            (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10493             ++sp)
10494         (*sp)->finalize_stubs();
10495
10496       // Update output local symbol counts of objects if necessary.
10497       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10498            op != input_objects->relobj_end();
10499            ++op)
10500         {
10501           Arm_relobj<big_endian>* arm_relobj =
10502             Arm_relobj<big_endian>::as_arm_relobj(*op);
10503
10504           // Update output local symbol counts.  We need to discard local
10505           // symbols defined in parts of input sections that are discarded by
10506           // relaxation.
10507           if (arm_relobj->output_local_symbol_count_needs_update())
10508             arm_relobj->update_output_local_symbol_count();
10509         }
10510     }
10511
10512   return continue_relaxation;
10513 }
10514
10515 // Relocate a stub.
10516
10517 template<bool big_endian>
10518 void
10519 Target_arm<big_endian>::relocate_stub(
10520     Stub* stub,
10521     const Relocate_info<32, big_endian>* relinfo,
10522     Output_section* output_section,
10523     unsigned char* view,
10524     Arm_address address,
10525     section_size_type view_size)
10526 {
10527   Relocate relocate;
10528   const Stub_template* stub_template = stub->stub_template();
10529   for (size_t i = 0; i < stub_template->reloc_count(); i++)
10530     {
10531       size_t reloc_insn_index = stub_template->reloc_insn_index(i);
10532       const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
10533
10534       unsigned int r_type = insn->r_type();
10535       section_size_type reloc_offset = stub_template->reloc_offset(i);
10536       section_size_type reloc_size = insn->size();
10537       gold_assert(reloc_offset + reloc_size <= view_size);
10538
10539       // This is the address of the stub destination.
10540       Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
10541       Symbol_value<32> symval;
10542       symval.set_output_value(target);
10543
10544       // Synthesize a fake reloc just in case.  We don't have a symbol so
10545       // we use 0.
10546       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
10547       memset(reloc_buffer, 0, sizeof(reloc_buffer));
10548       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
10549       reloc_write.put_r_offset(reloc_offset);
10550       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
10551       elfcpp::Rel<32, big_endian> rel(reloc_buffer);
10552
10553       relocate.relocate(relinfo, this, output_section,
10554                         this->fake_relnum_for_stubs, rel, r_type,
10555                         NULL, &symval, view + reloc_offset,
10556                         address + reloc_offset, reloc_size);
10557     }
10558 }
10559
10560 // Determine whether an object attribute tag takes an integer, a
10561 // string or both.
10562
10563 template<bool big_endian>
10564 int
10565 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
10566 {
10567   if (tag == Object_attribute::Tag_compatibility)
10568     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10569             | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
10570   else if (tag == elfcpp::Tag_nodefaults)
10571     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10572             | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
10573   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
10574     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
10575   else if (tag < 32)
10576     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
10577   else
10578     return ((tag & 1) != 0
10579             ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10580             : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10581 }
10582
10583 // Reorder attributes.
10584 //
10585 // The ABI defines that Tag_conformance should be emitted first, and that
10586 // Tag_nodefaults should be second (if either is defined).  This sets those
10587 // two positions, and bumps up the position of all the remaining tags to
10588 // compensate.
10589
10590 template<bool big_endian>
10591 int
10592 Target_arm<big_endian>::do_attributes_order(int num) const
10593 {
10594   // Reorder the known object attributes in output.  We want to move
10595   // Tag_conformance to position 4 and Tag_conformance to position 5
10596   // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10597   if (num == 4)
10598     return elfcpp::Tag_conformance;
10599   if (num == 5)
10600     return elfcpp::Tag_nodefaults;
10601   if ((num - 2) < elfcpp::Tag_nodefaults)
10602     return num - 2;
10603   if ((num - 1) < elfcpp::Tag_conformance)
10604     return num - 1;
10605   return num;
10606 }
10607
10608 // Scan a span of THUMB code for Cortex-A8 erratum.
10609
10610 template<bool big_endian>
10611 void
10612 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
10613     Arm_relobj<big_endian>* arm_relobj,
10614     unsigned int shndx,
10615     section_size_type span_start,
10616     section_size_type span_end,
10617     const unsigned char* view,
10618     Arm_address address)
10619 {
10620   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10621   //
10622   // The opcode is BLX.W, BL.W, B.W, Bcc.W
10623   // The branch target is in the same 4KB region as the
10624   // first half of the branch.
10625   // The instruction before the branch is a 32-bit
10626   // length non-branch instruction.
10627   section_size_type i = span_start;
10628   bool last_was_32bit = false;
10629   bool last_was_branch = false;
10630   while (i < span_end)
10631     {
10632       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10633       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
10634       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
10635       bool is_blx = false, is_b = false;
10636       bool is_bl = false, is_bcc = false;
10637
10638       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
10639       if (insn_32bit)
10640         {
10641           // Load the rest of the insn (in manual-friendly order).
10642           insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
10643
10644           // Encoding T4: B<c>.W.
10645           is_b = (insn & 0xf800d000U) == 0xf0009000U;
10646           // Encoding T1: BL<c>.W.
10647           is_bl = (insn & 0xf800d000U) == 0xf000d000U;
10648           // Encoding T2: BLX<c>.W.
10649           is_blx = (insn & 0xf800d000U) == 0xf000c000U;
10650           // Encoding T3: B<c>.W (not permitted in IT block).
10651           is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
10652                     && (insn & 0x07f00000U) != 0x03800000U);
10653         }
10654
10655       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
10656                            
10657       // If this instruction is a 32-bit THUMB branch that crosses a 4K
10658       // page boundary and it follows 32-bit non-branch instruction,
10659       // we need to work around.
10660       if (is_32bit_branch
10661           && ((address + i) & 0xfffU) == 0xffeU
10662           && last_was_32bit
10663           && !last_was_branch)
10664         {
10665           // Check to see if there is a relocation stub for this branch.
10666           bool force_target_arm = false;
10667           bool force_target_thumb = false;
10668           const Cortex_a8_reloc* cortex_a8_reloc = NULL;
10669           Cortex_a8_relocs_info::const_iterator p =
10670             this->cortex_a8_relocs_info_.find(address + i);
10671
10672           if (p != this->cortex_a8_relocs_info_.end())
10673             {
10674               cortex_a8_reloc = p->second;
10675               bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
10676
10677               if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10678                   && !target_is_thumb)
10679                 force_target_arm = true;
10680               else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10681                        && target_is_thumb)
10682                 force_target_thumb = true;
10683             }
10684
10685           off_t offset;
10686           Stub_type stub_type = arm_stub_none;
10687
10688           // Check if we have an offending branch instruction.
10689           uint16_t upper_insn = (insn >> 16) & 0xffffU;
10690           uint16_t lower_insn = insn & 0xffffU;
10691           typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10692
10693           if (cortex_a8_reloc != NULL
10694               && cortex_a8_reloc->reloc_stub() != NULL)
10695             // We've already made a stub for this instruction, e.g.
10696             // it's a long branch or a Thumb->ARM stub.  Assume that
10697             // stub will suffice to work around the A8 erratum (see
10698             // setting of always_after_branch above).
10699             ;
10700           else if (is_bcc)
10701             {
10702               offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
10703                                                               lower_insn);
10704               stub_type = arm_stub_a8_veneer_b_cond;
10705             }
10706           else if (is_b || is_bl || is_blx)
10707             {
10708               offset = RelocFuncs::thumb32_branch_offset(upper_insn,
10709                                                          lower_insn);
10710               if (is_blx)
10711                 offset &= ~3;
10712
10713               stub_type = (is_blx
10714                            ? arm_stub_a8_veneer_blx
10715                            : (is_bl
10716                               ? arm_stub_a8_veneer_bl
10717                               : arm_stub_a8_veneer_b));
10718             }
10719
10720           if (stub_type != arm_stub_none)
10721             {
10722               Arm_address pc_for_insn = address + i + 4;
10723
10724               // The original instruction is a BL, but the target is
10725               // an ARM instruction.  If we were not making a stub,
10726               // the BL would have been converted to a BLX.  Use the
10727               // BLX stub instead in that case.
10728               if (this->may_use_blx() && force_target_arm
10729                   && stub_type == arm_stub_a8_veneer_bl)
10730                 {
10731                   stub_type = arm_stub_a8_veneer_blx;
10732                   is_blx = true;
10733                   is_bl = false;
10734                 }
10735               // Conversely, if the original instruction was
10736               // BLX but the target is Thumb mode, use the BL stub.
10737               else if (force_target_thumb
10738                        && stub_type == arm_stub_a8_veneer_blx)
10739                 {
10740                   stub_type = arm_stub_a8_veneer_bl;
10741                   is_blx = false;
10742                   is_bl = true;
10743                 }
10744
10745               if (is_blx)
10746                 pc_for_insn &= ~3;
10747
10748               // If we found a relocation, use the proper destination,
10749               // not the offset in the (unrelocated) instruction.
10750               // Note this is always done if we switched the stub type above.
10751               if (cortex_a8_reloc != NULL)
10752                 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
10753
10754               Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
10755
10756               // Add a new stub if destination address in in the same page.
10757               if (((address + i) & ~0xfffU) == (target & ~0xfffU))
10758                 {
10759                   Cortex_a8_stub* stub =
10760                     this->stub_factory_.make_cortex_a8_stub(stub_type,
10761                                                             arm_relobj, shndx,
10762                                                             address + i,
10763                                                             target, insn);
10764                   Stub_table<big_endian>* stub_table =
10765                     arm_relobj->stub_table(shndx);
10766                   gold_assert(stub_table != NULL);
10767                   stub_table->add_cortex_a8_stub(address + i, stub);
10768                 }
10769             }
10770         }
10771
10772       i += insn_32bit ? 4 : 2;
10773       last_was_32bit = insn_32bit;
10774       last_was_branch = is_32bit_branch;
10775     }
10776 }
10777
10778 // Apply the Cortex-A8 workaround.
10779
10780 template<bool big_endian>
10781 void
10782 Target_arm<big_endian>::apply_cortex_a8_workaround(
10783     const Cortex_a8_stub* stub,
10784     Arm_address stub_address,
10785     unsigned char* insn_view,
10786     Arm_address insn_address)
10787 {
10788   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10789   Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
10790   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
10791   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
10792   off_t branch_offset = stub_address - (insn_address + 4);
10793
10794   typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10795   switch (stub->stub_template()->type())
10796     {
10797     case arm_stub_a8_veneer_b_cond:
10798       gold_assert(!utils::has_overflow<21>(branch_offset));
10799       upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
10800                                                          branch_offset);
10801       lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
10802                                                          branch_offset);
10803       break;
10804
10805     case arm_stub_a8_veneer_b:
10806     case arm_stub_a8_veneer_bl:
10807     case arm_stub_a8_veneer_blx:
10808       if ((lower_insn & 0x5000U) == 0x4000U)
10809         // For a BLX instruction, make sure that the relocation is
10810         // rounded up to a word boundary.  This follows the semantics of
10811         // the instruction which specifies that bit 1 of the target
10812         // address will come from bit 1 of the base address.
10813         branch_offset = (branch_offset + 2) & ~3;
10814
10815       // Put BRANCH_OFFSET back into the insn.
10816       gold_assert(!utils::has_overflow<25>(branch_offset));
10817       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
10818       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
10819       break;
10820
10821     default:
10822       gold_unreachable();
10823     }
10824
10825   // Put the relocated value back in the object file:
10826   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
10827   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
10828 }
10829
10830 template<bool big_endian>
10831 class Target_selector_arm : public Target_selector
10832 {
10833  public:
10834   Target_selector_arm()
10835     : Target_selector(elfcpp::EM_ARM, 32, big_endian,
10836                       (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
10837   { }
10838
10839   Target*
10840   do_instantiate_target()
10841   { return new Target_arm<big_endian>(); }
10842 };
10843
10844 // Fix .ARM.exidx section coverage.
10845
10846 template<bool big_endian>
10847 void
10848 Target_arm<big_endian>::fix_exidx_coverage(
10849     Layout* layout,
10850     Arm_output_section<big_endian>* exidx_section,
10851     Symbol_table* symtab)
10852 {
10853   // We need to look at all the input sections in output in ascending
10854   // order of of output address.  We do that by building a sorted list
10855   // of output sections by addresses.  Then we looks at the output sections
10856   // in order.  The input sections in an output section are already sorted
10857   // by addresses within the output section.
10858
10859   typedef std::set<Output_section*, output_section_address_less_than>
10860       Sorted_output_section_list;
10861   Sorted_output_section_list sorted_output_sections;
10862   Layout::Section_list section_list;
10863   layout->get_allocated_sections(&section_list);
10864   for (Layout::Section_list::const_iterator p = section_list.begin();
10865        p != section_list.end();
10866        ++p)
10867     {
10868       // We only care about output sections that contain executable code.
10869       if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
10870         sorted_output_sections.insert(*p);
10871     }
10872
10873   // Go over the output sections in ascending order of output addresses.
10874   typedef typename Arm_output_section<big_endian>::Text_section_list
10875       Text_section_list;
10876   Text_section_list sorted_text_sections;
10877   for(typename Sorted_output_section_list::iterator p =
10878         sorted_output_sections.begin();
10879       p != sorted_output_sections.end();
10880       ++p)
10881     {
10882       Arm_output_section<big_endian>* arm_output_section =
10883         Arm_output_section<big_endian>::as_arm_output_section(*p);
10884       arm_output_section->append_text_sections_to_list(&sorted_text_sections);
10885     } 
10886
10887   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab);
10888 }
10889
10890 Target_selector_arm<false> target_selector_arm;
10891 Target_selector_arm<true> target_selector_armbe;
10892
10893 } // End anonymous namespace.