Fix internal error in fix_errata on aarch64.
[external/binutils.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2017 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80   static const int BYTES_PER_INSN;
81
82   // Zero register encoding - 31.
83   static const unsigned int AARCH64_ZR;
84
85   static unsigned int
86   aarch64_bit(Insntype insn, int pos)
87   { return ((1 << pos)  & insn) >> pos; }
88
89   static unsigned int
90   aarch64_bits(Insntype insn, int pos, int l)
91   { return (insn >> pos) & ((1 << l) - 1); }
92
93   // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94   // the name defined in armv8 insn manual C3.5.9.
95   static unsigned int
96   aarch64_op31(Insntype insn)
97   { return aarch64_bits(insn, 21, 3); }
98
99   // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100   // third source register. See armv8 insn manual C3.5.9.
101   static unsigned int
102   aarch64_ra(Insntype insn)
103   { return aarch64_bits(insn, 10, 5); }
104
105   static bool
106   is_adr(const Insntype insn)
107   { return (insn & 0x9F000000) == 0x10000000; }
108
109   static bool
110   is_adrp(const Insntype insn)
111   { return (insn & 0x9F000000) == 0x90000000; }
112
113   static bool
114   is_mrs_tpidr_el0(const Insntype insn)
115   { return (insn & 0xFFFFFFE0) == 0xd53bd040; }
116
117   static unsigned int
118   aarch64_rm(const Insntype insn)
119   { return aarch64_bits(insn, 16, 5); }
120
121   static unsigned int
122   aarch64_rn(const Insntype insn)
123   { return aarch64_bits(insn, 5, 5); }
124
125   static unsigned int
126   aarch64_rd(const Insntype insn)
127   { return aarch64_bits(insn, 0, 5); }
128
129   static unsigned int
130   aarch64_rt(const Insntype insn)
131   { return aarch64_bits(insn, 0, 5); }
132
133   static unsigned int
134   aarch64_rt2(const Insntype insn)
135   { return aarch64_bits(insn, 10, 5); }
136
137   // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
138   static Insntype
139   aarch64_adr_encode_imm(Insntype adr, int imm21)
140   {
141     gold_assert(is_adr(adr));
142     gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
143     const int mask19 = (1 << 19) - 1;
144     const int mask2 = 3;
145     adr &= ~((mask19 << 5) | (mask2 << 29));
146     adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
147     return adr;
148   }
149
150   // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151   // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152   // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
153   static int64_t
154   aarch64_adrp_decode_imm(const Insntype adrp)
155   {
156     const int mask19 = (1 << 19) - 1;
157     const int mask2 = 3;
158     gold_assert(is_adrp(adrp));
159     // 21-bit imm encoded in adrp.
160     uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
161     // Retrieve msb of 21-bit-signed imm for sign extension.
162     uint64_t msbt = (imm >> 20) & 1;
163     // Real value is imm multiplied by 4k. Value now has 33-bit information.
164     int64_t value = imm << 12;
165     // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
166     // with value.
167     return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
168   }
169
170   static bool
171   aarch64_b(const Insntype insn)
172   { return (insn & 0xFC000000) == 0x14000000; }
173
174   static bool
175   aarch64_bl(const Insntype insn)
176   { return (insn & 0xFC000000) == 0x94000000; }
177
178   static bool
179   aarch64_blr(const Insntype insn)
180   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
181
182   static bool
183   aarch64_br(const Insntype insn)
184   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
185
186   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
187   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
188   static bool
189   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
190
191   static bool
192   aarch64_ldst(Insntype insn)
193   { return (insn & 0x0a000000) == 0x08000000; }
194
195   static bool
196   aarch64_ldst_ex(Insntype insn)
197   { return (insn & 0x3f000000) == 0x08000000; }
198
199   static bool
200   aarch64_ldst_pcrel(Insntype insn)
201   { return (insn & 0x3b000000) == 0x18000000; }
202
203   static bool
204   aarch64_ldst_nap(Insntype insn)
205   { return (insn & 0x3b800000) == 0x28000000; }
206
207   static bool
208   aarch64_ldstp_pi(Insntype insn)
209   { return (insn & 0x3b800000) == 0x28800000; }
210
211   static bool
212   aarch64_ldstp_o(Insntype insn)
213   { return (insn & 0x3b800000) == 0x29000000; }
214
215   static bool
216   aarch64_ldstp_pre(Insntype insn)
217   { return (insn & 0x3b800000) == 0x29800000; }
218
219   static bool
220   aarch64_ldst_ui(Insntype insn)
221   { return (insn & 0x3b200c00) == 0x38000000; }
222
223   static bool
224   aarch64_ldst_piimm(Insntype insn)
225   { return (insn & 0x3b200c00) == 0x38000400; }
226
227   static bool
228   aarch64_ldst_u(Insntype insn)
229   { return (insn & 0x3b200c00) == 0x38000800; }
230
231   static bool
232   aarch64_ldst_preimm(Insntype insn)
233   { return (insn & 0x3b200c00) == 0x38000c00; }
234
235   static bool
236   aarch64_ldst_ro(Insntype insn)
237   { return (insn & 0x3b200c00) == 0x38200800; }
238
239   static bool
240   aarch64_ldst_uimm(Insntype insn)
241   { return (insn & 0x3b000000) == 0x39000000; }
242
243   static bool
244   aarch64_ldst_simd_m(Insntype insn)
245   { return (insn & 0xbfbf0000) == 0x0c000000; }
246
247   static bool
248   aarch64_ldst_simd_m_pi(Insntype insn)
249   { return (insn & 0xbfa00000) == 0x0c800000; }
250
251   static bool
252   aarch64_ldst_simd_s(Insntype insn)
253   { return (insn & 0xbf9f0000) == 0x0d000000; }
254
255   static bool
256   aarch64_ldst_simd_s_pi(Insntype insn)
257   { return (insn & 0xbf800000) == 0x0d800000; }
258
259   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262   // instructions PAIR is TRUE, RT and RT2 are returned.
263   static bool
264   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
265                    bool *pair, bool *load)
266   {
267     uint32_t opcode;
268     unsigned int r;
269     uint32_t opc = 0;
270     uint32_t v = 0;
271     uint32_t opc_v = 0;
272
273     /* Bail out quickly if INSN doesn't fall into the load-store
274        encoding space.  */
275     if (!aarch64_ldst (insn))
276       return false;
277
278     *pair = false;
279     *load = false;
280     if (aarch64_ldst_ex (insn))
281       {
282         *rt = aarch64_rt (insn);
283         *rt2 = *rt;
284         if (aarch64_bit (insn, 21) == 1)
285           {
286             *pair = true;
287             *rt2 = aarch64_rt2 (insn);
288           }
289         *load = aarch64_ld (insn);
290         return true;
291       }
292     else if (aarch64_ldst_nap (insn)
293              || aarch64_ldstp_pi (insn)
294              || aarch64_ldstp_o (insn)
295              || aarch64_ldstp_pre (insn))
296       {
297         *pair = true;
298         *rt = aarch64_rt (insn);
299         *rt2 = aarch64_rt2 (insn);
300         *load = aarch64_ld (insn);
301         return true;
302       }
303     else if (aarch64_ldst_pcrel (insn)
304              || aarch64_ldst_ui (insn)
305              || aarch64_ldst_piimm (insn)
306              || aarch64_ldst_u (insn)
307              || aarch64_ldst_preimm (insn)
308              || aarch64_ldst_ro (insn)
309              || aarch64_ldst_uimm (insn))
310       {
311         *rt = aarch64_rt (insn);
312         *rt2 = *rt;
313         if (aarch64_ldst_pcrel (insn))
314           *load = true;
315         opc = aarch64_bits (insn, 22, 2);
316         v = aarch64_bit (insn, 26);
317         opc_v = opc | (v << 2);
318         *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
319                   || opc_v == 5 || opc_v == 7);
320         return true;
321       }
322     else if (aarch64_ldst_simd_m (insn)
323              || aarch64_ldst_simd_m_pi (insn))
324       {
325         *rt = aarch64_rt (insn);
326         *load = aarch64_bit (insn, 22);
327         opcode = (insn >> 12) & 0xf;
328         switch (opcode)
329           {
330           case 0:
331           case 2:
332             *rt2 = *rt + 3;
333             break;
334
335           case 4:
336           case 6:
337             *rt2 = *rt + 2;
338             break;
339
340           case 7:
341             *rt2 = *rt;
342             break;
343
344           case 8:
345           case 10:
346             *rt2 = *rt + 1;
347             break;
348
349           default:
350             return false;
351           }
352         return true;
353       }
354     else if (aarch64_ldst_simd_s (insn)
355              || aarch64_ldst_simd_s_pi (insn))
356       {
357         *rt = aarch64_rt (insn);
358         r = (insn >> 21) & 1;
359         *load = aarch64_bit (insn, 22);
360         opcode = (insn >> 13) & 0x7;
361         switch (opcode)
362           {
363           case 0:
364           case 2:
365           case 4:
366             *rt2 = *rt + r;
367             break;
368
369           case 1:
370           case 3:
371           case 5:
372             *rt2 = *rt + (r == 0 ? 2 : 3);
373             break;
374
375           case 6:
376             *rt2 = *rt + r;
377             break;
378
379           case 7:
380             *rt2 = *rt + (r == 0 ? 2 : 3);
381             break;
382
383           default:
384             return false;
385           }
386         return true;
387       }
388     return false;
389   }  // End of "aarch64_mem_op_p".
390
391   // Return true if INSN is mac insn.
392   static bool
393   aarch64_mac(Insntype insn)
394   { return (insn & 0xff000000) == 0x9b000000; }
395
396   // Return true if INSN is multiply-accumulate.
397   // (This is similar to implementaton in elfnn-aarch64.c.)
398   static bool
399   aarch64_mlxl(Insntype insn)
400   {
401     uint32_t op31 = aarch64_op31(insn);
402     if (aarch64_mac(insn)
403         && (op31 == 0 || op31 == 1 || op31 == 5)
404         /* Exclude MUL instructions which are encoded as a multiple-accumulate
405            with RA = XZR.  */
406         && aarch64_ra(insn) != AARCH64_ZR)
407       {
408         return true;
409       }
410     return false;
411   }
412 };  // End of "AArch64_insn_utilities".
413
414
415 // Insn length in byte.
416
417 template<bool big_endian>
418 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
419
420
421 // Zero register encoding - 31.
422
423 template<bool big_endian>
424 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
425
426
427 // Output_data_got_aarch64 class.
428
429 template<int size, bool big_endian>
430 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
431 {
432  public:
433   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
434   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
435     : Output_data_got<size, big_endian>(),
436       symbol_table_(symtab), layout_(layout)
437   { }
438
439   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
440   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441   // applied in a static link.
442   void
443   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
444   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
445
446
447   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
448   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
449   // relocation that needs to be applied in a static link.
450   void
451   add_static_reloc(unsigned int got_offset, unsigned int r_type,
452                    Sized_relobj_file<size, big_endian>* relobj,
453                    unsigned int index)
454   {
455     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
456                                                 index));
457   }
458
459
460  protected:
461   // Write out the GOT table.
462   void
463   do_write(Output_file* of) {
464     // The first entry in the GOT is the address of the .dynamic section.
465     gold_assert(this->data_size() >= size / 8);
466     Output_section* dynamic = this->layout_->dynamic_section();
467     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
468     this->replace_constant(0, dynamic_addr);
469     Output_data_got<size, big_endian>::do_write(of);
470
471     // Handling static relocs
472     if (this->static_relocs_.empty())
473       return;
474
475     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
476
477     gold_assert(parameters->doing_static_link());
478     const off_t offset = this->offset();
479     const section_size_type oview_size =
480       convert_to_section_size_type(this->data_size());
481     unsigned char* const oview = of->get_output_view(offset, oview_size);
482
483     Output_segment* tls_segment = this->layout_->tls_segment();
484     gold_assert(tls_segment != NULL);
485
486     AArch64_address aligned_tcb_address =
487       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
488                     tls_segment->maximum_alignment());
489
490     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
491       {
492         Static_reloc& reloc(this->static_relocs_[i]);
493         AArch64_address value;
494
495         if (!reloc.symbol_is_global())
496           {
497             Sized_relobj_file<size, big_endian>* object = reloc.relobj();
498             const Symbol_value<size>* psymval =
499               reloc.relobj()->local_symbol(reloc.index());
500
501             // We are doing static linking.  Issue an error and skip this
502             // relocation if the symbol is undefined or in a discarded_section.
503             bool is_ordinary;
504             unsigned int shndx = psymval->input_shndx(&is_ordinary);
505             if ((shndx == elfcpp::SHN_UNDEF)
506                 || (is_ordinary
507                     && shndx != elfcpp::SHN_UNDEF
508                     && !object->is_section_included(shndx)
509                     && !this->symbol_table_->is_section_folded(object, shndx)))
510               {
511                 gold_error(_("undefined or discarded local symbol %u from "
512                              " object %s in GOT"),
513                            reloc.index(), reloc.relobj()->name().c_str());
514                 continue;
515               }
516             value = psymval->value(object, 0);
517           }
518         else
519           {
520             const Symbol* gsym = reloc.symbol();
521             gold_assert(gsym != NULL);
522             if (gsym->is_forwarder())
523               gsym = this->symbol_table_->resolve_forwards(gsym);
524
525             // We are doing static linking.  Issue an error and skip this
526             // relocation if the symbol is undefined or in a discarded_section
527             // unless it is a weakly_undefined symbol.
528             if ((gsym->is_defined_in_discarded_section()
529                  || gsym->is_undefined())
530                 && !gsym->is_weak_undefined())
531               {
532                 gold_error(_("undefined or discarded symbol %s in GOT"),
533                            gsym->name());
534                 continue;
535               }
536
537             if (!gsym->is_weak_undefined())
538               {
539                 const Sized_symbol<size>* sym =
540                   static_cast<const Sized_symbol<size>*>(gsym);
541                 value = sym->value();
542               }
543             else
544               value = 0;
545           }
546
547         unsigned got_offset = reloc.got_offset();
548         gold_assert(got_offset < oview_size);
549
550         typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
551         Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
552         Valtype x;
553         switch (reloc.r_type())
554           {
555           case elfcpp::R_AARCH64_TLS_DTPREL64:
556             x = value;
557             break;
558           case elfcpp::R_AARCH64_TLS_TPREL64:
559             x = value + aligned_tcb_address;
560             break;
561           default:
562             gold_unreachable();
563           }
564         elfcpp::Swap<size, big_endian>::writeval(wv, x);
565       }
566
567     of->write_output_view(offset, oview_size, oview);
568   }
569
570  private:
571   // Symbol table of the output object.
572   Symbol_table* symbol_table_;
573   // A pointer to the Layout class, so that we can find the .dynamic
574   // section when we write out the GOT section.
575   Layout* layout_;
576
577   // This class represent dynamic relocations that need to be applied by
578   // gold because we are using TLS relocations in a static link.
579   class Static_reloc
580   {
581    public:
582     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
583       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
584     { this->u_.global.symbol = gsym; }
585
586     Static_reloc(unsigned int got_offset, unsigned int r_type,
587           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
588       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
589     {
590       this->u_.local.relobj = relobj;
591       this->u_.local.index = index;
592     }
593
594     // Return the GOT offset.
595     unsigned int
596     got_offset() const
597     { return this->got_offset_; }
598
599     // Relocation type.
600     unsigned int
601     r_type() const
602     { return this->r_type_; }
603
604     // Whether the symbol is global or not.
605     bool
606     symbol_is_global() const
607     { return this->symbol_is_global_; }
608
609     // For a relocation against a global symbol, the global symbol.
610     Symbol*
611     symbol() const
612     {
613       gold_assert(this->symbol_is_global_);
614       return this->u_.global.symbol;
615     }
616
617     // For a relocation against a local symbol, the defining object.
618     Sized_relobj_file<size, big_endian>*
619     relobj() const
620     {
621       gold_assert(!this->symbol_is_global_);
622       return this->u_.local.relobj;
623     }
624
625     // For a relocation against a local symbol, the local symbol index.
626     unsigned int
627     index() const
628     {
629       gold_assert(!this->symbol_is_global_);
630       return this->u_.local.index;
631     }
632
633    private:
634     // GOT offset of the entry to which this relocation is applied.
635     unsigned int got_offset_;
636     // Type of relocation.
637     unsigned int r_type_;
638     // Whether this relocation is against a global symbol.
639     bool symbol_is_global_;
640     // A global or local symbol.
641     union
642     {
643       struct
644       {
645         // For a global symbol, the symbol itself.
646         Symbol* symbol;
647       } global;
648       struct
649       {
650         // For a local symbol, the object defining the symbol.
651         Sized_relobj_file<size, big_endian>* relobj;
652         // For a local symbol, the symbol index.
653         unsigned int index;
654       } local;
655     } u_;
656   };  // End of inner class Static_reloc
657
658   std::vector<Static_reloc> static_relocs_;
659 };  // End of Output_data_got_aarch64
660
661
662 template<int size, bool big_endian>
663 class AArch64_input_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_output_section;
668
669
670 template<int size, bool big_endian>
671 class AArch64_relobj;
672
673
674 // Stub type enum constants.
675
676 enum
677 {
678   ST_NONE = 0,
679
680   // Using adrp/add pair, 4 insns (including alignment) without mem access,
681   // the fastest stub. This has a limited jump distance, which is tested by
682   // aarch64_valid_for_adrp_p.
683   ST_ADRP_BRANCH = 1,
684
685   // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686   // unlimited in jump distance.
687   ST_LONG_BRANCH_ABS = 2,
688
689   // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690   // mem access, slowest one. Only used in position independent executables.
691   ST_LONG_BRANCH_PCREL = 3,
692
693   // Stub for erratum 843419 handling.
694   ST_E_843419 = 4,
695
696   // Stub for erratum 835769 handling.
697   ST_E_835769 = 5,
698
699   // Number of total stub types.
700   ST_NUMBER = 6
701 };
702
703
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
706
707 template<bool big_endian>
708 struct Stub_template
709 {
710   const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
711   const int insn_num;
712 };
713
714
715 // Simple singleton class that creates/initializes/stores all types of stub
716 // templates.
717
718 template<bool big_endian>
719 class Stub_template_repertoire
720 {
721 public:
722   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
723
724   // Single static method to get stub template for a given stub type.
725   static const Stub_template<big_endian>*
726   get_stub_template(int type)
727   {
728     static Stub_template_repertoire<big_endian> singleton;
729     return singleton.stub_templates_[type];
730   }
731
732 private:
733   // Constructor - creates/initializes all stub templates.
734   Stub_template_repertoire();
735   ~Stub_template_repertoire()
736   { }
737
738   // Disallowing copy ctor and copy assignment operator.
739   Stub_template_repertoire(Stub_template_repertoire&);
740   Stub_template_repertoire& operator=(Stub_template_repertoire&);
741
742   // Data that stores all insn templates.
743   const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
744 };  // End of "class Stub_template_repertoire".
745
746
747 // Constructor - creates/initilizes all stub templates.
748
749 template<bool big_endian>
750 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
751 {
752   // Insn array definitions.
753   const static Insntype ST_NONE_INSNS[] = {};
754
755   const static Insntype ST_ADRP_BRANCH_INSNS[] =
756     {
757       0x90000010,       /*      adrp    ip0, X             */
758                         /*        ADR_PREL_PG_HI21(X)      */
759       0x91000210,       /*      add     ip0, ip0, :lo12:X  */
760                         /*        ADD_ABS_LO12_NC(X)       */
761       0xd61f0200,       /*      br      ip0                */
762       0x00000000,       /*      alignment padding          */
763     };
764
765   const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
766     {
767       0x58000050,       /*      ldr   ip0, 0x8             */
768       0xd61f0200,       /*      br    ip0                  */
769       0x00000000,       /*      address field              */
770       0x00000000,       /*      address fields             */
771     };
772
773   const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
774     {
775       0x58000090,       /*      ldr   ip0, 0x10            */
776       0x10000011,       /*      adr   ip1, #0              */
777       0x8b110210,       /*      add   ip0, ip0, ip1        */
778       0xd61f0200,       /*      br    ip0                  */
779       0x00000000,       /*      address field              */
780       0x00000000,       /*      address field              */
781       0x00000000,       /*      alignment padding          */
782       0x00000000,       /*      alignment padding          */
783     };
784
785   const static Insntype ST_E_843419_INSNS[] =
786     {
787       0x00000000,    /* Placeholder for erratum insn. */
788       0x14000000,    /* b <label> */
789     };
790
791   // ST_E_835769 has the same stub template as ST_E_843419
792   // but we reproduce the array here so that the sizeof
793   // expressions in install_insn_template will work.
794   const static Insntype ST_E_835769_INSNS[] =
795     {
796       0x00000000,    /* Placeholder for erratum insn. */
797       0x14000000,    /* b <label> */
798     };
799
800 #define install_insn_template(T) \
801   const static Stub_template<big_endian> template_##T = {  \
802     T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803   this->stub_templates_[T] = &template_##T
804
805   install_insn_template(ST_NONE);
806   install_insn_template(ST_ADRP_BRANCH);
807   install_insn_template(ST_LONG_BRANCH_ABS);
808   install_insn_template(ST_LONG_BRANCH_PCREL);
809   install_insn_template(ST_E_843419);
810   install_insn_template(ST_E_835769);
811
812 #undef install_insn_template
813 }
814
815
816 // Base class for stubs.
817
818 template<int size, bool big_endian>
819 class Stub_base
820 {
821 public:
822   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
823   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
824
825   static const AArch64_address invalid_address =
826     static_cast<AArch64_address>(-1);
827
828   static const section_offset_type invalid_offset =
829     static_cast<section_offset_type>(-1);
830
831   Stub_base(int type)
832     : destination_address_(invalid_address),
833       offset_(invalid_offset),
834       type_(type)
835   {}
836
837   ~Stub_base()
838   {}
839
840   // Get stub type.
841   int
842   type() const
843   { return this->type_; }
844
845   // Get stub template that provides stub insn information.
846   const Stub_template<big_endian>*
847   stub_template() const
848   {
849     return Stub_template_repertoire<big_endian>::
850       get_stub_template(this->type());
851   }
852
853   // Get destination address.
854   AArch64_address
855   destination_address() const
856   {
857     gold_assert(this->destination_address_ != this->invalid_address);
858     return this->destination_address_;
859   }
860
861   // Set destination address.
862   void
863   set_destination_address(AArch64_address address)
864   {
865     gold_assert(address != this->invalid_address);
866     this->destination_address_ = address;
867   }
868
869   // Reset the destination address.
870   void
871   reset_destination_address()
872   { this->destination_address_ = this->invalid_address; }
873
874   // Get offset of code stub. For Reloc_stub, it is the offset from the
875   // beginning of its containing stub table; for Erratum_stub, it is the offset
876   // from the end of reloc_stubs.
877   section_offset_type
878   offset() const
879   {
880     gold_assert(this->offset_ != this->invalid_offset);
881     return this->offset_;
882   }
883
884   // Set stub offset.
885   void
886   set_offset(section_offset_type offset)
887   { this->offset_ = offset; }
888
889   // Return the stub insn.
890   const Insntype*
891   insns() const
892   { return this->stub_template()->insns; }
893
894   // Return num of stub insns.
895   unsigned int
896   insn_num() const
897   { return this->stub_template()->insn_num; }
898
899   // Get size of the stub.
900   int
901   stub_size() const
902   {
903     return this->insn_num() *
904       AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
905   }
906
907   // Write stub to output file.
908   void
909   write(unsigned char* view, section_size_type view_size)
910   { this->do_write(view, view_size); }
911
912 protected:
913   // Abstract method to be implemented by sub-classes.
914   virtual void
915   do_write(unsigned char*, section_size_type) = 0;
916
917 private:
918   // The last insn of a stub is a jump to destination insn. This field records
919   // the destination address.
920   AArch64_address destination_address_;
921   // The stub offset. Note this has difference interpretations between an
922   // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923   // beginning of the containing stub_table, whereas for Erratum_stub, this is
924   // the offset from the end of reloc_stubs.
925   section_offset_type offset_;
926   // Stub type.
927   const int type_;
928 };  // End of "Stub_base".
929
930
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branch insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
937
938 template<int size, bool big_endian>
939 class Erratum_stub : public Stub_base<size, big_endian>
940 {
941 public:
942   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
943   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
944   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
945   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
946
947   static const int STUB_ADDR_ALIGN;
948
949   static const Insntype invalid_insn = static_cast<Insntype>(-1);
950
951   Erratum_stub(The_aarch64_relobj* relobj, int type,
952                unsigned shndx, unsigned int sh_offset)
953     : Stub_base<size, big_endian>(type), relobj_(relobj),
954       shndx_(shndx), sh_offset_(sh_offset),
955       erratum_insn_(invalid_insn),
956       erratum_address_(this->invalid_address)
957   {}
958
959   ~Erratum_stub() {}
960
961   // Return the object that contains the erratum.
962   The_aarch64_relobj*
963   relobj()
964   { return this->relobj_; }
965
966   // Get section index of the erratum.
967   unsigned int
968   shndx() const
969   { return this->shndx_; }
970
971   // Get section offset of the erratum.
972   unsigned int
973   sh_offset() const
974   { return this->sh_offset_; }
975
976   // Get the erratum insn. This is the insn located at erratum_insn_address.
977   Insntype
978   erratum_insn() const
979   {
980     gold_assert(this->erratum_insn_ != this->invalid_insn);
981     return this->erratum_insn_;
982   }
983
984   // Set the insn that the erratum happens to.
985   void
986   set_erratum_insn(Insntype insn)
987   { this->erratum_insn_ = insn; }
988
989   // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990   // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991   // is no longer the one we want to write out to the stub, update erratum_insn_
992   // with relocated version. Also note that in this case xn must not be "PC", so
993   // it is safe to move the erratum insn from the origin place to the stub. For
994   // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995   // relocation spot (assertion added though).
996   void
997   update_erratum_insn(Insntype insn)
998   {
999     gold_assert(this->erratum_insn_ != this->invalid_insn);
1000     switch (this->type())
1001       {
1002       case ST_E_843419:
1003         gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
1004         gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005         gold_assert(Insn_utilities::aarch64_rd(insn) ==
1006                     Insn_utilities::aarch64_rd(this->erratum_insn()));
1007         gold_assert(Insn_utilities::aarch64_rn(insn) ==
1008                     Insn_utilities::aarch64_rn(this->erratum_insn()));
1009         // Update plain ld/st insn with relocated insn.
1010         this->erratum_insn_ = insn;
1011         break;
1012       case ST_E_835769:
1013         gold_assert(insn == this->erratum_insn());
1014         break;
1015       default:
1016         gold_unreachable();
1017       }
1018   }
1019
1020
1021   // Return the address where an erratum must be done.
1022   AArch64_address
1023   erratum_address() const
1024   {
1025     gold_assert(this->erratum_address_ != this->invalid_address);
1026     return this->erratum_address_;
1027   }
1028
1029   // Set the address where an erratum must be done.
1030   void
1031   set_erratum_address(AArch64_address addr)
1032   { this->erratum_address_ = addr; }
1033
1034   // Later relaxation passes of may alter the recorded erratum and destination
1035   // address. Given an up to date output section address of shidx_ in
1036   // relobj_ we can derive the erratum_address and destination address.
1037   void
1038   update_erratum_address(AArch64_address output_section_addr)
1039   {
1040     const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1041     AArch64_address updated_addr = output_section_addr + this->sh_offset_;
1042     this->set_erratum_address(updated_addr);
1043     this->set_destination_address(updated_addr + BPI);
1044   }
1045
1046   // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1047   // sh_offset). We do not include 'type' in the calculation, because there is
1048   // at most one stub type at (obj, shndx, sh_offset).
1049   bool
1050   operator<(const Erratum_stub<size, big_endian>& k) const
1051   {
1052     if (this == &k)
1053       return false;
1054     // We group stubs by relobj.
1055     if (this->relobj_ != k.relobj_)
1056       return this->relobj_ < k.relobj_;
1057     // Then by section index.
1058     if (this->shndx_ != k.shndx_)
1059       return this->shndx_ < k.shndx_;
1060     // Lastly by section offset.
1061     return this->sh_offset_ < k.sh_offset_;
1062   }
1063
1064   void
1065   invalidate_erratum_stub()
1066   {
1067      gold_assert(this->erratum_insn_ != invalid_insn);
1068      this->erratum_insn_ = invalid_insn;
1069   }
1070
1071   bool
1072   is_invalidated_erratum_stub()
1073   { return this->erratum_insn_ == invalid_insn; }
1074
1075 protected:
1076   virtual void
1077   do_write(unsigned char*, section_size_type);
1078
1079 private:
1080   // The object that needs to be fixed.
1081   The_aarch64_relobj* relobj_;
1082   // The shndx in the object that needs to be fixed.
1083   const unsigned int shndx_;
1084   // The section offset in the obejct that needs to be fixed.
1085   const unsigned int sh_offset_;
1086   // The insn to be fixed.
1087   Insntype erratum_insn_;
1088   // The address of the above insn.
1089   AArch64_address erratum_address_;
1090 };  // End of "Erratum_stub".
1091
1092
1093 // Erratum sub class to wrap additional info needed by 843419.  In fixing this
1094 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1095 // adrp's code position (two or three insns before erratum insn itself).
1096
1097 template<int size, bool big_endian>
1098 class E843419_stub : public Erratum_stub<size, big_endian>
1099 {
1100 public:
1101   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1102
1103   E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1104                       unsigned int shndx, unsigned int sh_offset,
1105                       unsigned int adrp_sh_offset)
1106     : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1107       adrp_sh_offset_(adrp_sh_offset)
1108   {}
1109
1110   unsigned int
1111   adrp_sh_offset() const
1112   { return this->adrp_sh_offset_; }
1113
1114 private:
1115   // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1116   // can obtain it from its parent.)
1117   const unsigned int adrp_sh_offset_;
1118 };
1119
1120
1121 template<int size, bool big_endian>
1122 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1123
1124 // Comparator used in set definition.
1125 template<int size, bool big_endian>
1126 struct Erratum_stub_less
1127 {
1128   bool
1129   operator()(const Erratum_stub<size, big_endian>* s1,
1130              const Erratum_stub<size, big_endian>* s2) const
1131   { return *s1 < *s2; }
1132 };
1133
1134 // Erratum_stub implementation for writing stub to output file.
1135
1136 template<int size, bool big_endian>
1137 void
1138 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1139 {
1140   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1141   const Insntype* insns = this->insns();
1142   uint32_t num_insns = this->insn_num();
1143   Insntype* ip = reinterpret_cast<Insntype*>(view);
1144   // For current implemented erratum 843419 and 835769, the first insn in the
1145   // stub is always a copy of the problematic insn (in 843419, the mem access
1146   // insn, in 835769, the mac insn), followed by a jump-back.
1147   elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1148   for (uint32_t i = 1; i < num_insns; ++i)
1149     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1150 }
1151
1152
1153 // Reloc stub class.
1154
1155 template<int size, bool big_endian>
1156 class Reloc_stub : public Stub_base<size, big_endian>
1157 {
1158  public:
1159   typedef Reloc_stub<size, big_endian> This;
1160   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1161
1162   // Branch range. This is used to calculate the section group size, as well as
1163   // determine whether a stub is needed.
1164   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1165   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1166
1167   // Constant used to determine if an offset fits in the adrp instruction
1168   // encoding.
1169   static const int MAX_ADRP_IMM = (1 << 20) - 1;
1170   static const int MIN_ADRP_IMM = -(1 << 20);
1171
1172   static const int BYTES_PER_INSN = 4;
1173   static const int STUB_ADDR_ALIGN;
1174
1175   // Determine whether the offset fits in the jump/branch instruction.
1176   static bool
1177   aarch64_valid_branch_offset_p(int64_t offset)
1178   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1179
1180   // Determine whether the offset fits in the adrp immediate field.
1181   static bool
1182   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1183   {
1184     typedef AArch64_relocate_functions<size, big_endian> Reloc;
1185     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1186     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1187   }
1188
1189   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1190   // needed.
1191   static int
1192   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1193                       AArch64_address target);
1194
1195   Reloc_stub(int type)
1196     : Stub_base<size, big_endian>(type)
1197   { }
1198
1199   ~Reloc_stub()
1200   { }
1201
1202   // The key class used to index the stub instance in the stub table's stub map.
1203   class Key
1204   {
1205    public:
1206     Key(int type, const Symbol* symbol, const Relobj* relobj,
1207         unsigned int r_sym, int32_t addend)
1208       : type_(type), addend_(addend)
1209     {
1210       if (symbol != NULL)
1211         {
1212           this->r_sym_ = Reloc_stub::invalid_index;
1213           this->u_.symbol = symbol;
1214         }
1215       else
1216         {
1217           gold_assert(relobj != NULL && r_sym != invalid_index);
1218           this->r_sym_ = r_sym;
1219           this->u_.relobj = relobj;
1220         }
1221     }
1222
1223     ~Key()
1224     { }
1225
1226     // Return stub type.
1227     int
1228     type() const
1229     { return this->type_; }
1230
1231     // Return the local symbol index or invalid_index.
1232     unsigned int
1233     r_sym() const
1234     { return this->r_sym_; }
1235
1236     // Return the symbol if there is one.
1237     const Symbol*
1238     symbol() const
1239     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1240
1241     // Return the relobj if there is one.
1242     const Relobj*
1243     relobj() const
1244     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1245
1246     // Whether this equals to another key k.
1247     bool
1248     eq(const Key& k) const
1249     {
1250       return ((this->type_ == k.type_)
1251               && (this->r_sym_ == k.r_sym_)
1252               && ((this->r_sym_ != Reloc_stub::invalid_index)
1253                   ? (this->u_.relobj == k.u_.relobj)
1254                   : (this->u_.symbol == k.u_.symbol))
1255               && (this->addend_ == k.addend_));
1256     }
1257
1258     // Return a hash value.
1259     size_t
1260     hash_value() const
1261     {
1262       size_t name_hash_value = gold::string_hash<char>(
1263           (this->r_sym_ != Reloc_stub::invalid_index)
1264           ? this->u_.relobj->name().c_str()
1265           : this->u_.symbol->name());
1266       // We only have 4 stub types.
1267       size_t stub_type_hash_value = 0x03 & this->type_;
1268       return (name_hash_value
1269               ^ stub_type_hash_value
1270               ^ ((this->r_sym_ & 0x3fff) << 2)
1271               ^ ((this->addend_ & 0xffff) << 16));
1272     }
1273
1274     // Functors for STL associative containers.
1275     struct hash
1276     {
1277       size_t
1278       operator()(const Key& k) const
1279       { return k.hash_value(); }
1280     };
1281
1282     struct equal_to
1283     {
1284       bool
1285       operator()(const Key& k1, const Key& k2) const
1286       { return k1.eq(k2); }
1287     };
1288
1289    private:
1290     // Stub type.
1291     const int type_;
1292     // If this is a local symbol, this is the index in the defining object.
1293     // Otherwise, it is invalid_index for a global symbol.
1294     unsigned int r_sym_;
1295     // If r_sym_ is an invalid index, this points to a global symbol.
1296     // Otherwise, it points to a relobj.  We used the unsized and target
1297     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1298     // Arm_relobj, in order to avoid making the stub class a template
1299     // as most of the stub machinery is endianness-neutral.  However, it
1300     // may require a bit of casting done by users of this class.
1301     union
1302     {
1303       const Symbol* symbol;
1304       const Relobj* relobj;
1305     } u_;
1306     // Addend associated with a reloc.
1307     int32_t addend_;
1308   };  // End of inner class Reloc_stub::Key
1309
1310  protected:
1311   // This may be overridden in the child class.
1312   virtual void
1313   do_write(unsigned char*, section_size_type);
1314
1315  private:
1316   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1317 };  // End of Reloc_stub
1318
1319 template<int size, bool big_endian>
1320 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1321
1322 // Write data to output file.
1323
1324 template<int size, bool big_endian>
1325 void
1326 Reloc_stub<size, big_endian>::
1327 do_write(unsigned char* view, section_size_type)
1328 {
1329   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1330   const uint32_t* insns = this->insns();
1331   uint32_t num_insns = this->insn_num();
1332   Insntype* ip = reinterpret_cast<Insntype*>(view);
1333   for (uint32_t i = 0; i < num_insns; ++i)
1334     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1335 }
1336
1337
1338 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1339 // needed.
1340
1341 template<int size, bool big_endian>
1342 inline int
1343 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1344     unsigned int r_type, AArch64_address location, AArch64_address dest)
1345 {
1346   int64_t branch_offset = 0;
1347   switch(r_type)
1348     {
1349     case elfcpp::R_AARCH64_CALL26:
1350     case elfcpp::R_AARCH64_JUMP26:
1351       branch_offset = dest - location;
1352       break;
1353     default:
1354       gold_unreachable();
1355     }
1356
1357   if (aarch64_valid_branch_offset_p(branch_offset))
1358     return ST_NONE;
1359
1360   if (aarch64_valid_for_adrp_p(location, dest))
1361     return ST_ADRP_BRANCH;
1362
1363   // Always use PC-relative addressing in case of -shared or -pie.
1364   if (parameters->options().output_is_position_independent())
1365     return ST_LONG_BRANCH_PCREL;
1366
1367   // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1368   // But is only applicable to non-shared or non-pie.
1369   return ST_LONG_BRANCH_ABS;
1370 }
1371
1372 // A class to hold stubs for the ARM target. This contains 2 different types of
1373 // stubs - reloc stubs and erratum stubs.
1374
1375 template<int size, bool big_endian>
1376 class Stub_table : public Output_data
1377 {
1378  public:
1379   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1380   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1381   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1382   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1383   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1384   typedef typename The_reloc_stub::Key The_reloc_stub_key;
1385   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1386   typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1387   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1388   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1389   typedef Stub_table<size, big_endian> The_stub_table;
1390   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1391                         The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1392                         Reloc_stub_map;
1393   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1394   typedef Relocate_info<size, big_endian> The_relocate_info;
1395
1396   typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1397   typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1398
1399   Stub_table(The_aarch64_input_section* owner)
1400     : Output_data(), owner_(owner), reloc_stubs_size_(0),
1401       erratum_stubs_size_(0), prev_data_size_(0)
1402   { }
1403
1404   ~Stub_table()
1405   { }
1406
1407   The_aarch64_input_section*
1408   owner() const
1409   { return owner_; }
1410
1411   // Whether this stub table is empty.
1412   bool
1413   empty() const
1414   { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1415
1416   // Return the current data size.
1417   off_t
1418   current_data_size() const
1419   { return this->current_data_size_for_child(); }
1420
1421   // Add a STUB using KEY.  The caller is responsible for avoiding addition
1422   // if a STUB with the same key has already been added.
1423   void
1424   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1425
1426   // Add an erratum stub into the erratum stub set. The set is ordered by
1427   // (relobj, shndx, sh_offset).
1428   void
1429   add_erratum_stub(The_erratum_stub* stub);
1430
1431   // Find if such erratum exists for any given (obj, shndx, sh_offset).
1432   The_erratum_stub*
1433   find_erratum_stub(The_aarch64_relobj* a64relobj,
1434                     unsigned int shndx, unsigned int sh_offset);
1435
1436   // Find all the erratums for a given input section. The return value is a pair
1437   // of iterators [begin, end).
1438   std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1439   find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1440                                        unsigned int shndx);
1441
1442   // Compute the erratum stub address.
1443   AArch64_address
1444   erratum_stub_address(The_erratum_stub* stub) const
1445   {
1446     AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1447                                       The_erratum_stub::STUB_ADDR_ALIGN);
1448     r += stub->offset();
1449     return r;
1450   }
1451
1452   // Finalize stubs. No-op here, just for completeness.
1453   void
1454   finalize_stubs()
1455   { }
1456
1457   // Look up a relocation stub using KEY. Return NULL if there is none.
1458   The_reloc_stub*
1459   find_reloc_stub(The_reloc_stub_key& key)
1460   {
1461     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1462     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1463   }
1464
1465   // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
1466   void
1467   relocate_reloc_stubs(const The_relocate_info*,
1468                        The_target_aarch64*,
1469                        Output_section*,
1470                        unsigned char*,
1471                        AArch64_address,
1472                        section_size_type);
1473
1474   // Relocate an erratum stub.
1475   void
1476   relocate_erratum_stub(The_erratum_stub*, unsigned char*);
1477
1478   // Update data size at the end of a relaxation pass.  Return true if data size
1479   // is different from that of the previous relaxation pass.
1480   bool
1481   update_data_size_changed_p()
1482   {
1483     // No addralign changed here.
1484     off_t s = align_address(this->reloc_stubs_size_,
1485                             The_erratum_stub::STUB_ADDR_ALIGN)
1486               + this->erratum_stubs_size_;
1487     bool changed = (s != this->prev_data_size_);
1488     this->prev_data_size_ = s;
1489     return changed;
1490   }
1491
1492  protected:
1493   // Write out section contents.
1494   void
1495   do_write(Output_file*);
1496
1497   // Return the required alignment.
1498   uint64_t
1499   do_addralign() const
1500   {
1501     return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1502                     The_erratum_stub::STUB_ADDR_ALIGN);
1503   }
1504
1505   // Reset address and file offset.
1506   void
1507   do_reset_address_and_file_offset()
1508   { this->set_current_data_size_for_child(this->prev_data_size_); }
1509
1510   // Set final data size.
1511   void
1512   set_final_data_size()
1513   { this->set_data_size(this->current_data_size()); }
1514
1515  private:
1516   // Relocate one reloc stub.
1517   void
1518   relocate_reloc_stub(The_reloc_stub*,
1519                       const The_relocate_info*,
1520                       The_target_aarch64*,
1521                       Output_section*,
1522                       unsigned char*,
1523                       AArch64_address,
1524                       section_size_type);
1525
1526  private:
1527   // Owner of this stub table.
1528   The_aarch64_input_section* owner_;
1529   // The relocation stubs.
1530   Reloc_stub_map reloc_stubs_;
1531   // The erratum stubs.
1532   Erratum_stub_set erratum_stubs_;
1533   // Size of reloc stubs.
1534   off_t reloc_stubs_size_;
1535   // Size of erratum stubs.
1536   off_t erratum_stubs_size_;
1537   // data size of this in the previous pass.
1538   off_t prev_data_size_;
1539 };  // End of Stub_table
1540
1541
1542 // Add an erratum stub into the erratum stub set. The set is ordered by
1543 // (relobj, shndx, sh_offset).
1544
1545 template<int size, bool big_endian>
1546 void
1547 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1548 {
1549   std::pair<Erratum_stub_set_iter, bool> ret =
1550     this->erratum_stubs_.insert(stub);
1551   gold_assert(ret.second);
1552   this->erratum_stubs_size_ = align_address(
1553         this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1554   stub->set_offset(this->erratum_stubs_size_);
1555   this->erratum_stubs_size_ += stub->stub_size();
1556 }
1557
1558
1559 // Find if such erratum exists for given (obj, shndx, sh_offset).
1560
1561 template<int size, bool big_endian>
1562 Erratum_stub<size, big_endian>*
1563 Stub_table<size, big_endian>::find_erratum_stub(
1564     The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1565 {
1566   // A dummy object used as key to search in the set.
1567   The_erratum_stub key(a64relobj, ST_NONE,
1568                          shndx, sh_offset);
1569   Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1570   if (i != this->erratum_stubs_.end())
1571     {
1572         The_erratum_stub* stub(*i);
1573         gold_assert(stub->erratum_insn() != 0);
1574         return stub;
1575     }
1576   return NULL;
1577 }
1578
1579
1580 // Find all the errata for a given input section. The return value is a pair of
1581 // iterators [begin, end).
1582
1583 template<int size, bool big_endian>
1584 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1585           typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1586 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1587     The_aarch64_relobj* a64relobj, unsigned int shndx)
1588 {
1589   typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1590   Erratum_stub_set_iter start, end;
1591   The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1592   start = this->erratum_stubs_.lower_bound(&low_key);
1593   if (start == this->erratum_stubs_.end())
1594     return Result_pair(this->erratum_stubs_.end(),
1595                        this->erratum_stubs_.end());
1596   end = start;
1597   while (end != this->erratum_stubs_.end() &&
1598          (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1599     ++end;
1600   return Result_pair(start, end);
1601 }
1602
1603
1604 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1605 // if a STUB with the same key has already been added.
1606
1607 template<int size, bool big_endian>
1608 void
1609 Stub_table<size, big_endian>::add_reloc_stub(
1610     The_reloc_stub* stub, const The_reloc_stub_key& key)
1611 {
1612   gold_assert(stub->type() == key.type());
1613   this->reloc_stubs_[key] = stub;
1614
1615   // Assign stub offset early.  We can do this because we never remove
1616   // reloc stubs and they are in the beginning of the stub table.
1617   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1618                                           The_reloc_stub::STUB_ADDR_ALIGN);
1619   stub->set_offset(this->reloc_stubs_size_);
1620   this->reloc_stubs_size_ += stub->stub_size();
1621 }
1622
1623
1624 // Relocate an erratum stub.
1625
1626 template<int size, bool big_endian>
1627 void
1628 Stub_table<size, big_endian>::
1629 relocate_erratum_stub(The_erratum_stub* estub,
1630                       unsigned char* view)
1631 {
1632   // Just for convenience.
1633   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1634
1635   gold_assert(!estub->is_invalidated_erratum_stub());
1636   AArch64_address stub_address = this->erratum_stub_address(estub);
1637   // The address of "b" in the stub that is to be "relocated".
1638   AArch64_address stub_b_insn_address;
1639   // Branch offset that is to be filled in "b" insn.
1640   int b_offset = 0;
1641   switch (estub->type())
1642     {
1643     case ST_E_843419:
1644     case ST_E_835769:
1645       // The 1st insn of the erratum could be a relocation spot,
1646       // in this case we need to fix it with
1647       // "(*i)->erratum_insn()".
1648       elfcpp::Swap<32, big_endian>::writeval(
1649           view + (stub_address - this->address()),
1650           estub->erratum_insn());
1651       // For the erratum, the 2nd insn is a b-insn to be patched
1652       // (relocated).
1653       stub_b_insn_address = stub_address + 1 * BPI;
1654       b_offset = estub->destination_address() - stub_b_insn_address;
1655       AArch64_relocate_functions<size, big_endian>::construct_b(
1656           view + (stub_b_insn_address - this->address()),
1657           ((unsigned int)(b_offset)) & 0xfffffff);
1658       break;
1659     default:
1660       gold_unreachable();
1661       break;
1662     }
1663   estub->invalidate_erratum_stub();
1664 }
1665
1666
1667 // Relocate only reloc stubs in this stub table. This does not relocate erratum
1668 // stubs.
1669
1670 template<int size, bool big_endian>
1671 void
1672 Stub_table<size, big_endian>::
1673 relocate_reloc_stubs(const The_relocate_info* relinfo,
1674                      The_target_aarch64* target_aarch64,
1675                      Output_section* output_section,
1676                      unsigned char* view,
1677                      AArch64_address address,
1678                      section_size_type view_size)
1679 {
1680   // "view_size" is the total size of the stub_table.
1681   gold_assert(address == this->address() &&
1682               view_size == static_cast<section_size_type>(this->data_size()));
1683   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1684       p != this->reloc_stubs_.end(); ++p)
1685     relocate_reloc_stub(p->second, relinfo, target_aarch64, output_section,
1686                         view, address, view_size);
1687 }
1688
1689
1690 // Relocate one reloc stub. This is a helper for
1691 // Stub_table::relocate_reloc_stubs().
1692
1693 template<int size, bool big_endian>
1694 void
1695 Stub_table<size, big_endian>::
1696 relocate_reloc_stub(The_reloc_stub* stub,
1697                     const The_relocate_info* relinfo,
1698                     The_target_aarch64* target_aarch64,
1699                     Output_section* output_section,
1700                     unsigned char* view,
1701                     AArch64_address address,
1702                     section_size_type view_size)
1703 {
1704   // "offset" is the offset from the beginning of the stub_table.
1705   section_size_type offset = stub->offset();
1706   section_size_type stub_size = stub->stub_size();
1707   // "view_size" is the total size of the stub_table.
1708   gold_assert(offset + stub_size <= view_size);
1709
1710   target_aarch64->relocate_reloc_stub(stub, relinfo, output_section,
1711                                       view + offset, address + offset, view_size);
1712 }
1713
1714
1715 // Write out the stubs to file.
1716
1717 template<int size, bool big_endian>
1718 void
1719 Stub_table<size, big_endian>::do_write(Output_file* of)
1720 {
1721   off_t offset = this->offset();
1722   const section_size_type oview_size =
1723     convert_to_section_size_type(this->data_size());
1724   unsigned char* const oview = of->get_output_view(offset, oview_size);
1725
1726   // Write relocation stubs.
1727   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1728       p != this->reloc_stubs_.end(); ++p)
1729     {
1730       The_reloc_stub* stub = p->second;
1731       AArch64_address address = this->address() + stub->offset();
1732       gold_assert(address ==
1733                   align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1734       stub->write(oview + stub->offset(), stub->stub_size());
1735     }
1736
1737   // Write erratum stubs.
1738   unsigned int erratum_stub_start_offset =
1739     align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1740   for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1741        p != this->erratum_stubs_.end(); ++p)
1742     {
1743       The_erratum_stub* stub(*p);
1744       stub->write(oview + erratum_stub_start_offset + stub->offset(),
1745                   stub->stub_size());
1746     }
1747
1748   of->write_output_view(this->offset(), oview_size, oview);
1749 }
1750
1751
1752 // AArch64_relobj class.
1753
1754 template<int size, bool big_endian>
1755 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1756 {
1757  public:
1758   typedef AArch64_relobj<size, big_endian> This;
1759   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1760   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1761   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1762   typedef Stub_table<size, big_endian> The_stub_table;
1763   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1764   typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1765   typedef std::vector<The_stub_table*> Stub_table_list;
1766   static const AArch64_address invalid_address =
1767       static_cast<AArch64_address>(-1);
1768
1769   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1770                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1771     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1772       stub_tables_()
1773   { }
1774
1775   ~AArch64_relobj()
1776   { }
1777
1778   // Return the stub table of the SHNDX-th section if there is one.
1779   The_stub_table*
1780   stub_table(unsigned int shndx) const
1781   {
1782     gold_assert(shndx < this->stub_tables_.size());
1783     return this->stub_tables_[shndx];
1784   }
1785
1786   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1787   void
1788   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1789   {
1790     gold_assert(shndx < this->stub_tables_.size());
1791     this->stub_tables_[shndx] = stub_table;
1792   }
1793
1794   // Entrance to errata scanning.
1795   void
1796   scan_errata(unsigned int shndx,
1797               const elfcpp::Shdr<size, big_endian>&,
1798               Output_section*, const Symbol_table*,
1799               The_target_aarch64*);
1800
1801   // Scan all relocation sections for stub generation.
1802   void
1803   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1804                           const Layout*);
1805
1806   // Whether a section is a scannable text section.
1807   bool
1808   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1809                             const Output_section*, const Symbol_table*);
1810
1811   // Convert regular input section with index SHNDX to a relaxed section.
1812   void
1813   convert_input_section_to_relaxed_section(unsigned shndx)
1814   {
1815     // The stubs have relocations and we need to process them after writing
1816     // out the stubs.  So relocation now must follow section write.
1817     this->set_section_offset(shndx, -1ULL);
1818     this->set_relocs_must_follow_section_writes();
1819   }
1820
1821   // Structure for mapping symbol position.
1822   struct Mapping_symbol_position
1823   {
1824     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1825       shndx_(shndx), offset_(offset)
1826     {}
1827
1828     // "<" comparator used in ordered_map container.
1829     bool
1830     operator<(const Mapping_symbol_position& p) const
1831     {
1832       return (this->shndx_ < p.shndx_
1833               || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1834     }
1835
1836     // Section index.
1837     unsigned int shndx_;
1838
1839     // Section offset.
1840     AArch64_address offset_;
1841   };
1842
1843   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1844
1845  protected:
1846   // Post constructor setup.
1847   void
1848   do_setup()
1849   {
1850     // Call parent's setup method.
1851     Sized_relobj_file<size, big_endian>::do_setup();
1852
1853     // Initialize look-up tables.
1854     this->stub_tables_.resize(this->shnum());
1855   }
1856
1857   virtual void
1858   do_relocate_sections(
1859       const Symbol_table* symtab, const Layout* layout,
1860       const unsigned char* pshdrs, Output_file* of,
1861       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1862
1863   // Count local symbols and (optionally) record mapping info.
1864   virtual void
1865   do_count_local_symbols(Stringpool_template<char>*,
1866                          Stringpool_template<char>*);
1867
1868  private:
1869   // Fix all errata in the object, and for each erratum, relocate corresponding
1870   // erratum stub.
1871   void
1872   fix_errata_and_relocate_erratum_stubs(
1873       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1874
1875   // Try to fix erratum 843419 in an optimized way. Return true if patch is
1876   // applied.
1877   bool
1878   try_fix_erratum_843419_optimized(
1879       The_erratum_stub*, AArch64_address,
1880       typename Sized_relobj_file<size, big_endian>::View_size&);
1881
1882   // Whether a section needs to be scanned for relocation stubs.
1883   bool
1884   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1885                                     const Relobj::Output_sections&,
1886                                     const Symbol_table*, const unsigned char*);
1887
1888   // List of stub tables.
1889   Stub_table_list stub_tables_;
1890
1891   // Mapping symbol information sorted by (section index, section_offset).
1892   Mapping_symbol_info mapping_symbol_info_;
1893 };  // End of AArch64_relobj
1894
1895
1896 // Override to record mapping symbol information.
1897 template<int size, bool big_endian>
1898 void
1899 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1900     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1901 {
1902   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1903
1904   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1905   // processing if not fixing erratum.
1906   if (!parameters->options().fix_cortex_a53_843419()
1907       && !parameters->options().fix_cortex_a53_835769())
1908     return;
1909
1910   const unsigned int loccount = this->local_symbol_count();
1911   if (loccount == 0)
1912     return;
1913
1914   // Read the symbol table section header.
1915   const unsigned int symtab_shndx = this->symtab_shndx();
1916   elfcpp::Shdr<size, big_endian>
1917       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1918   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1919
1920   // Read the local symbols.
1921   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1922   gold_assert(loccount == symtabshdr.get_sh_info());
1923   off_t locsize = loccount * sym_size;
1924   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1925                                               locsize, true, true);
1926
1927   // For mapping symbol processing, we need to read the symbol names.
1928   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1929   if (strtab_shndx >= this->shnum())
1930     {
1931       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1932       return;
1933     }
1934
1935   elfcpp::Shdr<size, big_endian>
1936     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1937   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1938     {
1939       this->error(_("symbol table name section has wrong type: %u"),
1940                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
1941       return;
1942     }
1943
1944   const char* pnames =
1945     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1946                                                  strtabshdr.get_sh_size(),
1947                                                  false, false));
1948
1949   // Skip the first dummy symbol.
1950   psyms += sym_size;
1951   typename Sized_relobj_file<size, big_endian>::Local_values*
1952     plocal_values = this->local_values();
1953   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1954     {
1955       elfcpp::Sym<size, big_endian> sym(psyms);
1956       Symbol_value<size>& lv((*plocal_values)[i]);
1957       AArch64_address input_value = lv.input_value();
1958
1959       // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1960       // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1961       // symbols.
1962       // Mapping symbols could be one of the following 4 forms -
1963       //   a) $x
1964       //   b) $x.<any...>
1965       //   c) $d
1966       //   d) $d.<any...>
1967       const char* sym_name = pnames + sym.get_st_name();
1968       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1969           && (sym_name[2] == '\0' || sym_name[2] == '.'))
1970         {
1971           bool is_ordinary;
1972           unsigned int input_shndx =
1973             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1974           gold_assert(is_ordinary);
1975
1976           Mapping_symbol_position msp(input_shndx, input_value);
1977           // Insert mapping_symbol_info into map whose ordering is defined by
1978           // (shndx, offset_within_section).
1979           this->mapping_symbol_info_[msp] = sym_name[1];
1980         }
1981    }
1982 }
1983
1984
1985 // Fix all errata in the object and for each erratum, we relocate the
1986 // corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).
1987
1988 template<int size, bool big_endian>
1989 void
1990 AArch64_relobj<size, big_endian>::fix_errata_and_relocate_erratum_stubs(
1991     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1992 {
1993   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1994   unsigned int shnum = this->shnum();
1995   const Relobj::Output_sections& out_sections(this->output_sections());
1996   for (unsigned int i = 1; i < shnum; ++i)
1997     {
1998       The_stub_table* stub_table = this->stub_table(i);
1999       if (!stub_table)
2000         continue;
2001       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2002         ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
2003       Erratum_stub_set_iter p = ipair.first, end = ipair.second;
2004       typename Sized_relobj_file<size, big_endian>::View_size&
2005         pview((*pviews)[i]);
2006       AArch64_address view_offset = 0;
2007       if (pview.is_input_output_view)
2008         {
2009           // In this case, write_sections has not added the output offset to
2010           // the view's address, so we must do so. Currently this only happens
2011           // for a relaxed section.
2012           unsigned int index = this->adjust_shndx(i);
2013           const Output_relaxed_input_section* poris =
2014               out_sections[index]->find_relaxed_input_section(this, index);
2015           gold_assert(poris != NULL);
2016           view_offset = poris->address() - pview.address;
2017         }
2018
2019       while (p != end)
2020         {
2021           The_erratum_stub* stub = *p;
2022
2023           // Double check data before fix.
2024           gold_assert(pview.address + view_offset + stub->sh_offset()
2025                       == stub->erratum_address());
2026
2027           // Update previously recorded erratum insn with relocated
2028           // version.
2029           Insntype* ip =
2030             reinterpret_cast<Insntype*>(
2031               pview.view + view_offset + stub->sh_offset());
2032           Insntype insn_to_fix = ip[0];
2033           stub->update_erratum_insn(insn_to_fix);
2034
2035           // First try to see if erratum is 843419 and if it can be fixed
2036           // without using branch-to-stub.
2037           if (!try_fix_erratum_843419_optimized(stub, view_offset, pview))
2038             {
2039               // Replace the erratum insn with a branch-to-stub.
2040               AArch64_address stub_address =
2041                 stub_table->erratum_stub_address(stub);
2042               unsigned int b_offset = stub_address - stub->erratum_address();
2043               AArch64_relocate_functions<size, big_endian>::construct_b(
2044                 pview.view + view_offset + stub->sh_offset(),
2045                 b_offset & 0xfffffff);
2046             }
2047
2048           // Erratum fix is done (or skipped), continue to relocate erratum
2049           // stub. Note, when erratum fix is skipped (either because we
2050           // proactively change the code sequence or the code sequence is
2051           // changed by relaxation, etc), we can still safely relocate the
2052           // erratum stub, ignoring the fact the erratum could never be
2053           // executed.
2054           stub_table->relocate_erratum_stub(
2055             stub,
2056             pview.view + (stub_table->address() - pview.address));
2057
2058           // Next erratum stub.
2059           ++p;
2060         }
2061     }
2062 }
2063
2064
2065 // This is an optimization for 843419. This erratum requires the sequence begin
2066 // with 'adrp', when final value calculated by adrp fits in adr, we can just
2067 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2068 // in this case, we do not delete the erratum stub (too late to do so), it is
2069 // merely generated without ever being called.)
2070
2071 template<int size, bool big_endian>
2072 bool
2073 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
2074     The_erratum_stub* stub, AArch64_address view_offset,
2075     typename Sized_relobj_file<size, big_endian>::View_size& pview)
2076 {
2077   if (stub->type() != ST_E_843419)
2078     return false;
2079
2080   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2081   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2082   E843419_stub<size, big_endian>* e843419_stub =
2083     reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2084   AArch64_address pc =
2085     pview.address + view_offset + e843419_stub->adrp_sh_offset();
2086   unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
2087   Insntype* adrp_view =
2088     reinterpret_cast<Insntype*>(pview.view + view_offset + adrp_offset);
2089   Insntype adrp_insn = adrp_view[0];
2090
2091   // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2092   // from IE -> LE relaxation etc.  This is a side-effect of TLS relaxation that
2093   // ADRP has been turned into MRS, there is no erratum risk anymore.
2094   // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2095   if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
2096     return true;
2097
2098   // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2099   // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2100   // Like the above case, there is no erratum risk any more, we can safely
2101   // return true.
2102   if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
2103     {
2104       Insntype* prev_view =
2105         reinterpret_cast<Insntype*>(
2106           pview.view + view_offset + adrp_offset - 4);
2107       Insntype prev_insn = prev_view[0];
2108
2109       if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
2110         return true;
2111     }
2112
2113   /* If we reach here, the first instruction must be ADRP.  */
2114   gold_assert(Insn_utilities::is_adrp(adrp_insn));
2115   // Get adrp 33-bit signed imm value.
2116   int64_t adrp_imm = Insn_utilities::
2117     aarch64_adrp_decode_imm(adrp_insn);
2118   // adrp - final value transferred to target register is calculated as:
2119   //     PC[11:0] = Zeros(12)
2120   //     adrp_dest_value = PC + adrp_imm;
2121   int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2122   // adr -final value transferred to target register is calucalted as:
2123   //     PC + adr_imm
2124   // So we have:
2125   //     PC + adr_imm = adrp_dest_value
2126   //   ==>
2127   //     adr_imm = adrp_dest_value - PC
2128   int64_t adr_imm = adrp_dest_value - pc;
2129   // Check if imm fits in adr (21-bit signed).
2130   if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2131     {
2132       // Convert 'adrp' into 'adr'.
2133       Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2134       adr_insn = Insn_utilities::
2135         aarch64_adr_encode_imm(adr_insn, adr_imm);
2136       elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2137       return true;
2138     }
2139   return false;
2140 }
2141
2142
2143 // Relocate sections.
2144
2145 template<int size, bool big_endian>
2146 void
2147 AArch64_relobj<size, big_endian>::do_relocate_sections(
2148     const Symbol_table* symtab, const Layout* layout,
2149     const unsigned char* pshdrs, Output_file* of,
2150     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2151 {
2152   // Relocate the section data.
2153   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2154                                1, this->shnum() - 1);
2155
2156   // We do not generate stubs if doing a relocatable link.
2157   if (parameters->options().relocatable())
2158     return;
2159
2160   // This part only relocates erratum stubs that belong to input sections of this
2161   // object file.
2162   if (parameters->options().fix_cortex_a53_843419()
2163       || parameters->options().fix_cortex_a53_835769())
2164     this->fix_errata_and_relocate_erratum_stubs(pviews);
2165
2166   Relocate_info<size, big_endian> relinfo;
2167   relinfo.symtab = symtab;
2168   relinfo.layout = layout;
2169   relinfo.object = this;
2170
2171   // This part relocates all reloc stubs that are contained in stub_tables of
2172   // this object file.
2173   unsigned int shnum = this->shnum();
2174   The_target_aarch64* target = The_target_aarch64::current_target();
2175
2176   for (unsigned int i = 1; i < shnum; ++i)
2177     {
2178       The_aarch64_input_section* aarch64_input_section =
2179           target->find_aarch64_input_section(this, i);
2180       if (aarch64_input_section != NULL
2181           && aarch64_input_section->is_stub_table_owner()
2182           && !aarch64_input_section->stub_table()->empty())
2183         {
2184           Output_section* os = this->output_section(i);
2185           gold_assert(os != NULL);
2186
2187           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2188           relinfo.reloc_shdr = NULL;
2189           relinfo.data_shndx = i;
2190           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2191
2192           typename Sized_relobj_file<size, big_endian>::View_size&
2193               view_struct = (*pviews)[i];
2194           gold_assert(view_struct.view != NULL);
2195
2196           The_stub_table* stub_table = aarch64_input_section->stub_table();
2197           off_t offset = stub_table->address() - view_struct.address;
2198           unsigned char* view = view_struct.view + offset;
2199           AArch64_address address = stub_table->address();
2200           section_size_type view_size = stub_table->data_size();
2201           stub_table->relocate_reloc_stubs(&relinfo, target, os, view, address,
2202                                            view_size);
2203         }
2204     }
2205 }
2206
2207
2208 // Determine if an input section is scannable for stub processing.  SHDR is
2209 // the header of the section and SHNDX is the section index.  OS is the output
2210 // section for the input section and SYMTAB is the global symbol table used to
2211 // look up ICF information.
2212
2213 template<int size, bool big_endian>
2214 bool
2215 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2216     const elfcpp::Shdr<size, big_endian>& text_shdr,
2217     unsigned int text_shndx,
2218     const Output_section* os,
2219     const Symbol_table* symtab)
2220 {
2221   // Skip any empty sections, unallocated sections or sections whose
2222   // type are not SHT_PROGBITS.
2223   if (text_shdr.get_sh_size() == 0
2224       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2225       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2226     return false;
2227
2228   // Skip any discarded or ICF'ed sections.
2229   if (os == NULL || symtab->is_section_folded(this, text_shndx))
2230     return false;
2231
2232   // Skip exception frame.
2233   if (strcmp(os->name(), ".eh_frame") == 0)
2234     return false ;
2235
2236   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2237               os->find_relaxed_input_section(this, text_shndx) != NULL);
2238
2239   return true;
2240 }
2241
2242
2243 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2244 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2245
2246 template<int size, bool big_endian>
2247 bool
2248 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2249     const elfcpp::Shdr<size, big_endian>& shdr,
2250     const Relobj::Output_sections& out_sections,
2251     const Symbol_table* symtab,
2252     const unsigned char* pshdrs)
2253 {
2254   unsigned int sh_type = shdr.get_sh_type();
2255   if (sh_type != elfcpp::SHT_RELA)
2256     return false;
2257
2258   // Ignore empty section.
2259   off_t sh_size = shdr.get_sh_size();
2260   if (sh_size == 0)
2261     return false;
2262
2263   // Ignore reloc section with unexpected symbol table.  The
2264   // error will be reported in the final link.
2265   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2266     return false;
2267
2268   gold_assert(sh_type == elfcpp::SHT_RELA);
2269   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2270
2271   // Ignore reloc section with unexpected entsize or uneven size.
2272   // The error will be reported in the final link.
2273   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2274     return false;
2275
2276   // Ignore reloc section with bad info.  This error will be
2277   // reported in the final link.
2278   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2279   if (text_shndx >= this->shnum())
2280     return false;
2281
2282   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2283   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2284                                                  text_shndx * shdr_size);
2285   return this->text_section_is_scannable(text_shdr, text_shndx,
2286                                          out_sections[text_shndx], symtab);
2287 }
2288
2289
2290 // Scan section SHNDX for erratum 843419 and 835769.
2291
2292 template<int size, bool big_endian>
2293 void
2294 AArch64_relobj<size, big_endian>::scan_errata(
2295     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2296     Output_section* os, const Symbol_table* symtab,
2297     The_target_aarch64* target)
2298 {
2299   if (shdr.get_sh_size() == 0
2300       || (shdr.get_sh_flags() &
2301           (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2302       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2303     return;
2304
2305   if (!os || symtab->is_section_folded(this, shndx)) return;
2306
2307   AArch64_address output_offset = this->get_output_section_offset(shndx);
2308   AArch64_address output_address;
2309   if (output_offset != invalid_address)
2310     output_address = os->address() + output_offset;
2311   else
2312     {
2313       const Output_relaxed_input_section* poris =
2314         os->find_relaxed_input_section(this, shndx);
2315       if (!poris) return;
2316       output_address = poris->address();
2317     }
2318
2319   // Update the addresses in previously generated erratum stubs. Unlike when
2320   // we scan relocations for stubs, if section addresses have changed due to
2321   // other relaxations we are unlikely to scan the same erratum instances
2322   // again.
2323   The_stub_table* stub_table = this->stub_table(shndx);
2324   if (stub_table)
2325     {
2326       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2327           ipair(stub_table->find_erratum_stubs_for_input_section(this, shndx));
2328       for (Erratum_stub_set_iter p = ipair.first;  p != ipair.second; ++p)
2329           (*p)->update_erratum_address(output_address);
2330     }
2331
2332   section_size_type input_view_size = 0;
2333   const unsigned char* input_view =
2334     this->section_contents(shndx, &input_view_size, false);
2335
2336   Mapping_symbol_position section_start(shndx, 0);
2337   // Find the first mapping symbol record within section shndx.
2338   typename Mapping_symbol_info::const_iterator p =
2339     this->mapping_symbol_info_.lower_bound(section_start);
2340   while (p != this->mapping_symbol_info_.end() &&
2341          p->first.shndx_ == shndx)
2342     {
2343       typename Mapping_symbol_info::const_iterator prev = p;
2344       ++p;
2345       if (prev->second == 'x')
2346         {
2347           section_size_type span_start =
2348             convert_to_section_size_type(prev->first.offset_);
2349           section_size_type span_end;
2350           if (p != this->mapping_symbol_info_.end()
2351               && p->first.shndx_ == shndx)
2352             span_end = convert_to_section_size_type(p->first.offset_);
2353           else
2354             span_end = convert_to_section_size_type(shdr.get_sh_size());
2355
2356           // Here we do not share the scanning code of both errata. For 843419,
2357           // only the last few insns of each page are examined, which is fast,
2358           // whereas, for 835769, every insn pair needs to be checked.
2359
2360           if (parameters->options().fix_cortex_a53_843419())
2361             target->scan_erratum_843419_span(
2362               this, shndx, span_start, span_end,
2363               const_cast<unsigned char*>(input_view), output_address);
2364
2365           if (parameters->options().fix_cortex_a53_835769())
2366             target->scan_erratum_835769_span(
2367               this, shndx, span_start, span_end,
2368               const_cast<unsigned char*>(input_view), output_address);
2369         }
2370     }
2371 }
2372
2373
2374 // Scan relocations for stub generation.
2375
2376 template<int size, bool big_endian>
2377 void
2378 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2379     The_target_aarch64* target,
2380     const Symbol_table* symtab,
2381     const Layout* layout)
2382 {
2383   unsigned int shnum = this->shnum();
2384   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2385
2386   // Read the section headers.
2387   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2388                                                shnum * shdr_size,
2389                                                true, true);
2390
2391   // To speed up processing, we set up hash tables for fast lookup of
2392   // input offsets to output addresses.
2393   this->initialize_input_to_output_maps();
2394
2395   const Relobj::Output_sections& out_sections(this->output_sections());
2396
2397   Relocate_info<size, big_endian> relinfo;
2398   relinfo.symtab = symtab;
2399   relinfo.layout = layout;
2400   relinfo.object = this;
2401
2402   // Do relocation stubs scanning.
2403   const unsigned char* p = pshdrs + shdr_size;
2404   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2405     {
2406       const elfcpp::Shdr<size, big_endian> shdr(p);
2407       if (parameters->options().fix_cortex_a53_843419()
2408           || parameters->options().fix_cortex_a53_835769())
2409         scan_errata(i, shdr, out_sections[i], symtab, target);
2410       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2411                                                   pshdrs))
2412         {
2413           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2414           AArch64_address output_offset =
2415               this->get_output_section_offset(index);
2416           AArch64_address output_address;
2417           if (output_offset != invalid_address)
2418             {
2419               output_address = out_sections[index]->address() + output_offset;
2420             }
2421           else
2422             {
2423               // Currently this only happens for a relaxed section.
2424               const Output_relaxed_input_section* poris =
2425                   out_sections[index]->find_relaxed_input_section(this, index);
2426               gold_assert(poris != NULL);
2427               output_address = poris->address();
2428             }
2429
2430           // Get the relocations.
2431           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2432                                                         shdr.get_sh_size(),
2433                                                         true, false);
2434
2435           // Get the section contents.
2436           section_size_type input_view_size = 0;
2437           const unsigned char* input_view =
2438               this->section_contents(index, &input_view_size, false);
2439
2440           relinfo.reloc_shndx = i;
2441           relinfo.data_shndx = index;
2442           unsigned int sh_type = shdr.get_sh_type();
2443           unsigned int reloc_size;
2444           gold_assert (sh_type == elfcpp::SHT_RELA);
2445           reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2446
2447           Output_section* os = out_sections[index];
2448           target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2449                                          shdr.get_sh_size() / reloc_size,
2450                                          os,
2451                                          output_offset == invalid_address,
2452                                          input_view, output_address,
2453                                          input_view_size);
2454         }
2455     }
2456 }
2457
2458
2459 // A class to wrap an ordinary input section containing executable code.
2460
2461 template<int size, bool big_endian>
2462 class AArch64_input_section : public Output_relaxed_input_section
2463 {
2464  public:
2465   typedef Stub_table<size, big_endian> The_stub_table;
2466
2467   AArch64_input_section(Relobj* relobj, unsigned int shndx)
2468     : Output_relaxed_input_section(relobj, shndx, 1),
2469       stub_table_(NULL),
2470       original_contents_(NULL), original_size_(0),
2471       original_addralign_(1)
2472   { }
2473
2474   ~AArch64_input_section()
2475   { delete[] this->original_contents_; }
2476
2477   // Initialize.
2478   void
2479   init();
2480
2481   // Set the stub_table.
2482   void
2483   set_stub_table(The_stub_table* st)
2484   { this->stub_table_ = st; }
2485
2486   // Whether this is a stub table owner.
2487   bool
2488   is_stub_table_owner() const
2489   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2490
2491   // Return the original size of the section.
2492   uint32_t
2493   original_size() const
2494   { return this->original_size_; }
2495
2496   // Return the stub table.
2497   The_stub_table*
2498   stub_table()
2499   { return stub_table_; }
2500
2501  protected:
2502   // Write out this input section.
2503   void
2504   do_write(Output_file*);
2505
2506   // Return required alignment of this.
2507   uint64_t
2508   do_addralign() const
2509   {
2510     if (this->is_stub_table_owner())
2511       return std::max(this->stub_table_->addralign(),
2512                       static_cast<uint64_t>(this->original_addralign_));
2513     else
2514       return this->original_addralign_;
2515   }
2516
2517   // Finalize data size.
2518   void
2519   set_final_data_size();
2520
2521   // Reset address and file offset.
2522   void
2523   do_reset_address_and_file_offset();
2524
2525   // Output offset.
2526   bool
2527   do_output_offset(const Relobj* object, unsigned int shndx,
2528                    section_offset_type offset,
2529                    section_offset_type* poutput) const
2530   {
2531     if ((object == this->relobj())
2532         && (shndx == this->shndx())
2533         && (offset >= 0)
2534         && (offset <=
2535             convert_types<section_offset_type, uint32_t>(this->original_size_)))
2536       {
2537         *poutput = offset;
2538         return true;
2539       }
2540     else
2541       return false;
2542   }
2543
2544  private:
2545   // Copying is not allowed.
2546   AArch64_input_section(const AArch64_input_section&);
2547   AArch64_input_section& operator=(const AArch64_input_section&);
2548
2549   // The relocation stubs.
2550   The_stub_table* stub_table_;
2551   // Original section contents.  We have to make a copy here since the file
2552   // containing the original section may not be locked when we need to access
2553   // the contents.
2554   unsigned char* original_contents_;
2555   // Section size of the original input section.
2556   uint32_t original_size_;
2557   // Address alignment of the original input section.
2558   uint32_t original_addralign_;
2559 };  // End of AArch64_input_section
2560
2561
2562 // Finalize data size.
2563
2564 template<int size, bool big_endian>
2565 void
2566 AArch64_input_section<size, big_endian>::set_final_data_size()
2567 {
2568   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2569
2570   if (this->is_stub_table_owner())
2571     {
2572       this->stub_table_->finalize_data_size();
2573       off = align_address(off, this->stub_table_->addralign());
2574       off += this->stub_table_->data_size();
2575     }
2576   this->set_data_size(off);
2577 }
2578
2579
2580 // Reset address and file offset.
2581
2582 template<int size, bool big_endian>
2583 void
2584 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2585 {
2586   // Size of the original input section contents.
2587   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2588
2589   // If this is a stub table owner, account for the stub table size.
2590   if (this->is_stub_table_owner())
2591     {
2592       The_stub_table* stub_table = this->stub_table_;
2593
2594       // Reset the stub table's address and file offset.  The
2595       // current data size for child will be updated after that.
2596       stub_table_->reset_address_and_file_offset();
2597       off = align_address(off, stub_table_->addralign());
2598       off += stub_table->current_data_size();
2599     }
2600
2601   this->set_current_data_size(off);
2602 }
2603
2604
2605 // Initialize an Arm_input_section.
2606
2607 template<int size, bool big_endian>
2608 void
2609 AArch64_input_section<size, big_endian>::init()
2610 {
2611   Relobj* relobj = this->relobj();
2612   unsigned int shndx = this->shndx();
2613
2614   // We have to cache original size, alignment and contents to avoid locking
2615   // the original file.
2616   this->original_addralign_ =
2617       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2618
2619   // This is not efficient but we expect only a small number of relaxed
2620   // input sections for stubs.
2621   section_size_type section_size;
2622   const unsigned char* section_contents =
2623       relobj->section_contents(shndx, &section_size, false);
2624   this->original_size_ =
2625       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2626
2627   gold_assert(this->original_contents_ == NULL);
2628   this->original_contents_ = new unsigned char[section_size];
2629   memcpy(this->original_contents_, section_contents, section_size);
2630
2631   // We want to make this look like the original input section after
2632   // output sections are finalized.
2633   Output_section* os = relobj->output_section(shndx);
2634   off_t offset = relobj->output_section_offset(shndx);
2635   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2636   this->set_address(os->address() + offset);
2637   this->set_file_offset(os->offset() + offset);
2638   this->set_current_data_size(this->original_size_);
2639   this->finalize_data_size();
2640 }
2641
2642
2643 // Write data to output file.
2644
2645 template<int size, bool big_endian>
2646 void
2647 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2648 {
2649   // We have to write out the original section content.
2650   gold_assert(this->original_contents_ != NULL);
2651   of->write(this->offset(), this->original_contents_,
2652             this->original_size_);
2653
2654   // If this owns a stub table and it is not empty, write it.
2655   if (this->is_stub_table_owner() && !this->stub_table_->empty())
2656     this->stub_table_->write(of);
2657 }
2658
2659
2660 // Arm output section class.  This is defined mainly to add a number of stub
2661 // generation methods.
2662
2663 template<int size, bool big_endian>
2664 class AArch64_output_section : public Output_section
2665 {
2666  public:
2667   typedef Target_aarch64<size, big_endian> The_target_aarch64;
2668   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2669   typedef Stub_table<size, big_endian> The_stub_table;
2670   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2671
2672  public:
2673   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2674                          elfcpp::Elf_Xword flags)
2675     : Output_section(name, type, flags)
2676   { }
2677
2678   ~AArch64_output_section() {}
2679
2680   // Group input sections for stub generation.
2681   void
2682   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2683                  const Task*);
2684
2685  private:
2686   typedef Output_section::Input_section Input_section;
2687   typedef Output_section::Input_section_list Input_section_list;
2688
2689   // Create a stub group.
2690   void
2691   create_stub_group(Input_section_list::const_iterator,
2692                     Input_section_list::const_iterator,
2693                     Input_section_list::const_iterator,
2694                     The_target_aarch64*,
2695                     std::vector<Output_relaxed_input_section*>&,
2696                     const Task*);
2697 };  // End of AArch64_output_section
2698
2699
2700 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2701 // the input section that will be the owner of the stub table.
2702
2703 template<int size, bool big_endian> void
2704 AArch64_output_section<size, big_endian>::create_stub_group(
2705     Input_section_list::const_iterator first,
2706     Input_section_list::const_iterator last,
2707     Input_section_list::const_iterator owner,
2708     The_target_aarch64* target,
2709     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2710     const Task* task)
2711 {
2712   // Currently we convert ordinary input sections into relaxed sections only
2713   // at this point.
2714   The_aarch64_input_section* input_section;
2715   if (owner->is_relaxed_input_section())
2716     gold_unreachable();
2717   else
2718     {
2719       gold_assert(owner->is_input_section());
2720       // Create a new relaxed input section.  We need to lock the original
2721       // file.
2722       Task_lock_obj<Object> tl(task, owner->relobj());
2723       input_section =
2724           target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2725       new_relaxed_sections.push_back(input_section);
2726     }
2727
2728   // Create a stub table.
2729   The_stub_table* stub_table =
2730       target->new_stub_table(input_section);
2731
2732   input_section->set_stub_table(stub_table);
2733
2734   Input_section_list::const_iterator p = first;
2735   // Look for input sections or relaxed input sections in [first ... last].
2736   do
2737     {
2738       if (p->is_input_section() || p->is_relaxed_input_section())
2739         {
2740           // The stub table information for input sections live
2741           // in their objects.
2742           The_aarch64_relobj* aarch64_relobj =
2743               static_cast<The_aarch64_relobj*>(p->relobj());
2744           aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2745         }
2746     }
2747   while (p++ != last);
2748 }
2749
2750
2751 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2752 // stub groups. We grow a stub group by adding input section until the size is
2753 // just below GROUP_SIZE. The last input section will be converted into a stub
2754 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2755 // after the stub table, effectively doubling the group size.
2756 //
2757 // This is similar to the group_sections() function in elf32-arm.c but is
2758 // implemented differently.
2759
2760 template<int size, bool big_endian>
2761 void AArch64_output_section<size, big_endian>::group_sections(
2762     section_size_type group_size,
2763     bool stubs_always_after_branch,
2764     Target_aarch64<size, big_endian>* target,
2765     const Task* task)
2766 {
2767   typedef enum
2768   {
2769     NO_GROUP,
2770     FINDING_STUB_SECTION,
2771     HAS_STUB_SECTION
2772   } State;
2773
2774   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2775
2776   State state = NO_GROUP;
2777   section_size_type off = 0;
2778   section_size_type group_begin_offset = 0;
2779   section_size_type group_end_offset = 0;
2780   section_size_type stub_table_end_offset = 0;
2781   Input_section_list::const_iterator group_begin =
2782       this->input_sections().end();
2783   Input_section_list::const_iterator stub_table =
2784       this->input_sections().end();
2785   Input_section_list::const_iterator group_end = this->input_sections().end();
2786   for (Input_section_list::const_iterator p = this->input_sections().begin();
2787        p != this->input_sections().end();
2788        ++p)
2789     {
2790       section_size_type section_begin_offset =
2791         align_address(off, p->addralign());
2792       section_size_type section_end_offset =
2793         section_begin_offset + p->data_size();
2794
2795       // Check to see if we should group the previously seen sections.
2796       switch (state)
2797         {
2798         case NO_GROUP:
2799           break;
2800
2801         case FINDING_STUB_SECTION:
2802           // Adding this section makes the group larger than GROUP_SIZE.
2803           if (section_end_offset - group_begin_offset >= group_size)
2804             {
2805               if (stubs_always_after_branch)
2806                 {
2807                   gold_assert(group_end != this->input_sections().end());
2808                   this->create_stub_group(group_begin, group_end, group_end,
2809                                           target, new_relaxed_sections,
2810                                           task);
2811                   state = NO_GROUP;
2812                 }
2813               else
2814                 {
2815                   // Input sections up to stub_group_size bytes after the stub
2816                   // table can be handled by it too.
2817                   state = HAS_STUB_SECTION;
2818                   stub_table = group_end;
2819                   stub_table_end_offset = group_end_offset;
2820                 }
2821             }
2822             break;
2823
2824         case HAS_STUB_SECTION:
2825           // Adding this section makes the post stub-section group larger
2826           // than GROUP_SIZE.
2827           gold_unreachable();
2828           // NOT SUPPORTED YET. For completeness only.
2829           if (section_end_offset - stub_table_end_offset >= group_size)
2830            {
2831              gold_assert(group_end != this->input_sections().end());
2832              this->create_stub_group(group_begin, group_end, stub_table,
2833                                      target, new_relaxed_sections, task);
2834              state = NO_GROUP;
2835            }
2836            break;
2837
2838           default:
2839             gold_unreachable();
2840         }
2841
2842       // If we see an input section and currently there is no group, start
2843       // a new one.  Skip any empty sections.  We look at the data size
2844       // instead of calling p->relobj()->section_size() to avoid locking.
2845       if ((p->is_input_section() || p->is_relaxed_input_section())
2846           && (p->data_size() != 0))
2847         {
2848           if (state == NO_GROUP)
2849             {
2850               state = FINDING_STUB_SECTION;
2851               group_begin = p;
2852               group_begin_offset = section_begin_offset;
2853             }
2854
2855           // Keep track of the last input section seen.
2856           group_end = p;
2857           group_end_offset = section_end_offset;
2858         }
2859
2860       off = section_end_offset;
2861     }
2862
2863   // Create a stub group for any ungrouped sections.
2864   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2865     {
2866       gold_assert(group_end != this->input_sections().end());
2867       this->create_stub_group(group_begin, group_end,
2868                               (state == FINDING_STUB_SECTION
2869                                ? group_end
2870                                : stub_table),
2871                               target, new_relaxed_sections, task);
2872     }
2873
2874   if (!new_relaxed_sections.empty())
2875     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2876
2877   // Update the section offsets
2878   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2879     {
2880       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2881           new_relaxed_sections[i]->relobj());
2882       unsigned int shndx = new_relaxed_sections[i]->shndx();
2883       // Tell AArch64_relobj that this input section is converted.
2884       relobj->convert_input_section_to_relaxed_section(shndx);
2885     }
2886 }  // End of AArch64_output_section::group_sections
2887
2888
2889 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2890
2891
2892 // The aarch64 target class.
2893 // See the ABI at
2894 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2895 template<int size, bool big_endian>
2896 class Target_aarch64 : public Sized_target<size, big_endian>
2897 {
2898  public:
2899   typedef Target_aarch64<size, big_endian> This;
2900   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2901       Reloc_section;
2902   typedef Relocate_info<size, big_endian> The_relocate_info;
2903   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2904   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2905   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2906   typedef Erratum_stub<size, big_endian> The_erratum_stub;
2907   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2908   typedef Stub_table<size, big_endian> The_stub_table;
2909   typedef std::vector<The_stub_table*> Stub_table_list;
2910   typedef typename Stub_table_list::iterator Stub_table_iterator;
2911   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2912   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2913   typedef Unordered_map<Section_id,
2914                         AArch64_input_section<size, big_endian>*,
2915                         Section_id_hash> AArch64_input_section_map;
2916   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2917   const static int TCB_SIZE = size / 8 * 2;
2918
2919   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2920     : Sized_target<size, big_endian>(info),
2921       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2922       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2923       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2924       got_mod_index_offset_(-1U),
2925       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2926       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2927   { }
2928
2929   // Scan the relocations to determine unreferenced sections for
2930   // garbage collection.
2931   void
2932   gc_process_relocs(Symbol_table* symtab,
2933                     Layout* layout,
2934                     Sized_relobj_file<size, big_endian>* object,
2935                     unsigned int data_shndx,
2936                     unsigned int sh_type,
2937                     const unsigned char* prelocs,
2938                     size_t reloc_count,
2939                     Output_section* output_section,
2940                     bool needs_special_offset_handling,
2941                     size_t local_symbol_count,
2942                     const unsigned char* plocal_symbols);
2943
2944   // Scan the relocations to look for symbol adjustments.
2945   void
2946   scan_relocs(Symbol_table* symtab,
2947               Layout* layout,
2948               Sized_relobj_file<size, big_endian>* object,
2949               unsigned int data_shndx,
2950               unsigned int sh_type,
2951               const unsigned char* prelocs,
2952               size_t reloc_count,
2953               Output_section* output_section,
2954               bool needs_special_offset_handling,
2955               size_t local_symbol_count,
2956               const unsigned char* plocal_symbols);
2957
2958   // Finalize the sections.
2959   void
2960   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2961
2962   // Return the value to use for a dynamic which requires special
2963   // treatment.
2964   uint64_t
2965   do_dynsym_value(const Symbol*) const;
2966
2967   // Relocate a section.
2968   void
2969   relocate_section(const Relocate_info<size, big_endian>*,
2970                    unsigned int sh_type,
2971                    const unsigned char* prelocs,
2972                    size_t reloc_count,
2973                    Output_section* output_section,
2974                    bool needs_special_offset_handling,
2975                    unsigned char* view,
2976                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2977                    section_size_type view_size,
2978                    const Reloc_symbol_changes*);
2979
2980   // Scan the relocs during a relocatable link.
2981   void
2982   scan_relocatable_relocs(Symbol_table* symtab,
2983                           Layout* layout,
2984                           Sized_relobj_file<size, big_endian>* object,
2985                           unsigned int data_shndx,
2986                           unsigned int sh_type,
2987                           const unsigned char* prelocs,
2988                           size_t reloc_count,
2989                           Output_section* output_section,
2990                           bool needs_special_offset_handling,
2991                           size_t local_symbol_count,
2992                           const unsigned char* plocal_symbols,
2993                           Relocatable_relocs*);
2994
2995   // Scan the relocs for --emit-relocs.
2996   void
2997   emit_relocs_scan(Symbol_table* symtab,
2998                    Layout* layout,
2999                    Sized_relobj_file<size, big_endian>* object,
3000                    unsigned int data_shndx,
3001                    unsigned int sh_type,
3002                    const unsigned char* prelocs,
3003                    size_t reloc_count,
3004                    Output_section* output_section,
3005                    bool needs_special_offset_handling,
3006                    size_t local_symbol_count,
3007                    const unsigned char* plocal_syms,
3008                    Relocatable_relocs* rr);
3009
3010   // Relocate a section during a relocatable link.
3011   void
3012   relocate_relocs(
3013       const Relocate_info<size, big_endian>*,
3014       unsigned int sh_type,
3015       const unsigned char* prelocs,
3016       size_t reloc_count,
3017       Output_section* output_section,
3018       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
3019       unsigned char* view,
3020       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
3021       section_size_type view_size,
3022       unsigned char* reloc_view,
3023       section_size_type reloc_view_size);
3024
3025   // Return the symbol index to use for a target specific relocation.
3026   // The only target specific relocation is R_AARCH64_TLSDESC for a
3027   // local symbol, which is an absolute reloc.
3028   unsigned int
3029   do_reloc_symbol_index(void*, unsigned int r_type) const
3030   {
3031     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
3032     return 0;
3033   }
3034
3035   // Return the addend to use for a target specific relocation.
3036   uint64_t
3037   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
3038
3039   // Return the PLT section.
3040   uint64_t
3041   do_plt_address_for_global(const Symbol* gsym) const
3042   { return this->plt_section()->address_for_global(gsym); }
3043
3044   uint64_t
3045   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
3046   { return this->plt_section()->address_for_local(relobj, symndx); }
3047
3048   // This function should be defined in targets that can use relocation
3049   // types to determine (implemented in local_reloc_may_be_function_pointer
3050   // and global_reloc_may_be_function_pointer)
3051   // if a function's pointer is taken.  ICF uses this in safe mode to only
3052   // fold those functions whose pointer is defintely not taken.
3053   bool
3054   do_can_check_for_function_pointers() const
3055   { return true; }
3056
3057   // Return the number of entries in the PLT.
3058   unsigned int
3059   plt_entry_count() const;
3060
3061   //Return the offset of the first non-reserved PLT entry.
3062   unsigned int
3063   first_plt_entry_offset() const;
3064
3065   // Return the size of each PLT entry.
3066   unsigned int
3067   plt_entry_size() const;
3068
3069   // Create a stub table.
3070   The_stub_table*
3071   new_stub_table(The_aarch64_input_section*);
3072
3073   // Create an aarch64 input section.
3074   The_aarch64_input_section*
3075   new_aarch64_input_section(Relobj*, unsigned int);
3076
3077   // Find an aarch64 input section instance for a given OBJ and SHNDX.
3078   The_aarch64_input_section*
3079   find_aarch64_input_section(Relobj*, unsigned int) const;
3080
3081   // Return the thread control block size.
3082   unsigned int
3083   tcb_size() const { return This::TCB_SIZE; }
3084
3085   // Scan a section for stub generation.
3086   void
3087   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
3088                          const unsigned char*, size_t, Output_section*,
3089                          bool, const unsigned char*,
3090                          Address,
3091                          section_size_type);
3092
3093   // Scan a relocation section for stub.
3094   template<int sh_type>
3095   void
3096   scan_reloc_section_for_stubs(
3097       const The_relocate_info* relinfo,
3098       const unsigned char* prelocs,
3099       size_t reloc_count,
3100       Output_section* output_section,
3101       bool needs_special_offset_handling,
3102       const unsigned char* view,
3103       Address view_address,
3104       section_size_type);
3105
3106   // Relocate a single reloc stub.
3107   void
3108   relocate_reloc_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
3109                       Output_section*, unsigned char*, Address,
3110                       section_size_type);
3111
3112   // Get the default AArch64 target.
3113   static This*
3114   current_target()
3115   {
3116     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
3117                 && parameters->target().get_size() == size
3118                 && parameters->target().is_big_endian() == big_endian);
3119     return static_cast<This*>(parameters->sized_target<size, big_endian>());
3120   }
3121
3122
3123   // Scan erratum 843419 for a part of a section.
3124   void
3125   scan_erratum_843419_span(
3126     AArch64_relobj<size, big_endian>*,
3127     unsigned int,
3128     const section_size_type,
3129     const section_size_type,
3130     unsigned char*,
3131     Address);
3132
3133   // Scan erratum 835769 for a part of a section.
3134   void
3135   scan_erratum_835769_span(
3136     AArch64_relobj<size, big_endian>*,
3137     unsigned int,
3138     const section_size_type,
3139     const section_size_type,
3140     unsigned char*,
3141     Address);
3142
3143  protected:
3144   void
3145   do_select_as_default_target()
3146   {
3147     gold_assert(aarch64_reloc_property_table == NULL);
3148     aarch64_reloc_property_table = new AArch64_reloc_property_table();
3149   }
3150
3151   // Add a new reloc argument, returning the index in the vector.
3152   size_t
3153   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3154                    unsigned int r_sym)
3155   {
3156     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3157     return this->tlsdesc_reloc_info_.size() - 1;
3158   }
3159
3160   virtual Output_data_plt_aarch64<size, big_endian>*
3161   do_make_data_plt(Layout* layout,
3162                    Output_data_got_aarch64<size, big_endian>* got,
3163                    Output_data_space* got_plt,
3164                    Output_data_space* got_irelative)
3165   {
3166     return new Output_data_plt_aarch64_standard<size, big_endian>(
3167       layout, got, got_plt, got_irelative);
3168   }
3169
3170
3171   // do_make_elf_object to override the same function in the base class.
3172   Object*
3173   do_make_elf_object(const std::string&, Input_file*, off_t,
3174                      const elfcpp::Ehdr<size, big_endian>&);
3175
3176   Output_data_plt_aarch64<size, big_endian>*
3177   make_data_plt(Layout* layout,
3178                 Output_data_got_aarch64<size, big_endian>* got,
3179                 Output_data_space* got_plt,
3180                 Output_data_space* got_irelative)
3181   {
3182     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3183   }
3184
3185   // We only need to generate stubs, and hence perform relaxation if we are
3186   // not doing relocatable linking.
3187   virtual bool
3188   do_may_relax() const
3189   { return !parameters->options().relocatable(); }
3190
3191   // Relaxation hook.  This is where we do stub generation.
3192   virtual bool
3193   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3194
3195   void
3196   group_sections(Layout* layout,
3197                  section_size_type group_size,
3198                  bool stubs_always_after_branch,
3199                  const Task* task);
3200
3201   void
3202   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3203                       const Sized_symbol<size>*, unsigned int,
3204                       const Symbol_value<size>*,
3205                       typename elfcpp::Elf_types<size>::Elf_Swxword,
3206                       Address Elf_Addr);
3207
3208   // Make an output section.
3209   Output_section*
3210   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3211                          elfcpp::Elf_Xword flags)
3212   { return new The_aarch64_output_section(name, type, flags); }
3213
3214  private:
3215   // The class which scans relocations.
3216   class Scan
3217   {
3218   public:
3219     Scan()
3220       : issued_non_pic_error_(false)
3221     { }
3222
3223     inline void
3224     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3225           Sized_relobj_file<size, big_endian>* object,
3226           unsigned int data_shndx,
3227           Output_section* output_section,
3228           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3229           const elfcpp::Sym<size, big_endian>& lsym,
3230           bool is_discarded);
3231
3232     inline void
3233     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3234            Sized_relobj_file<size, big_endian>* object,
3235            unsigned int data_shndx,
3236            Output_section* output_section,
3237            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3238            Symbol* gsym);
3239
3240     inline bool
3241     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3242                                         Target_aarch64<size, big_endian>* ,
3243                                         Sized_relobj_file<size, big_endian>* ,
3244                                         unsigned int ,
3245                                         Output_section* ,
3246                                         const elfcpp::Rela<size, big_endian>& ,
3247                                         unsigned int r_type,
3248                                         const elfcpp::Sym<size, big_endian>&);
3249
3250     inline bool
3251     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3252                                          Target_aarch64<size, big_endian>* ,
3253                                          Sized_relobj_file<size, big_endian>* ,
3254                                          unsigned int ,
3255                                          Output_section* ,
3256                                          const elfcpp::Rela<size, big_endian>& ,
3257                                          unsigned int r_type,
3258                                          Symbol* gsym);
3259
3260   private:
3261     static void
3262     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3263                             unsigned int r_type);
3264
3265     static void
3266     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3267                              unsigned int r_type, Symbol*);
3268
3269     inline bool
3270     possible_function_pointer_reloc(unsigned int r_type);
3271
3272     void
3273     check_non_pic(Relobj*, unsigned int r_type);
3274
3275     bool
3276     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3277                               unsigned int r_type);
3278
3279     // Whether we have issued an error about a non-PIC compilation.
3280     bool issued_non_pic_error_;
3281   };
3282
3283   // The class which implements relocation.
3284   class Relocate
3285   {
3286    public:
3287     Relocate()
3288       : skip_call_tls_get_addr_(false)
3289     { }
3290
3291     ~Relocate()
3292     { }
3293
3294     // Do a relocation.  Return false if the caller should not issue
3295     // any warnings about this relocation.
3296     inline bool
3297     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3298              Target_aarch64*, Output_section*, size_t, const unsigned char*,
3299              const Sized_symbol<size>*, const Symbol_value<size>*,
3300              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3301              section_size_type);
3302
3303   private:
3304     inline typename AArch64_relocate_functions<size, big_endian>::Status
3305     relocate_tls(const Relocate_info<size, big_endian>*,
3306                  Target_aarch64<size, big_endian>*,
3307                  size_t,
3308                  const elfcpp::Rela<size, big_endian>&,
3309                  unsigned int r_type, const Sized_symbol<size>*,
3310                  const Symbol_value<size>*,
3311                  unsigned char*,
3312                  typename elfcpp::Elf_types<size>::Elf_Addr);
3313
3314     inline typename AArch64_relocate_functions<size, big_endian>::Status
3315     tls_gd_to_le(
3316                  const Relocate_info<size, big_endian>*,
3317                  Target_aarch64<size, big_endian>*,
3318                  const elfcpp::Rela<size, big_endian>&,
3319                  unsigned int,
3320                  unsigned char*,
3321                  const Symbol_value<size>*);
3322
3323     inline typename AArch64_relocate_functions<size, big_endian>::Status
3324     tls_ld_to_le(
3325                  const Relocate_info<size, big_endian>*,
3326                  Target_aarch64<size, big_endian>*,
3327                  const elfcpp::Rela<size, big_endian>&,
3328                  unsigned int,
3329                  unsigned char*,
3330                  const Symbol_value<size>*);
3331
3332     inline typename AArch64_relocate_functions<size, big_endian>::Status
3333     tls_ie_to_le(
3334                  const Relocate_info<size, big_endian>*,
3335                  Target_aarch64<size, big_endian>*,
3336                  const elfcpp::Rela<size, big_endian>&,
3337                  unsigned int,
3338                  unsigned char*,
3339                  const Symbol_value<size>*);
3340
3341     inline typename AArch64_relocate_functions<size, big_endian>::Status
3342     tls_desc_gd_to_le(
3343                  const Relocate_info<size, big_endian>*,
3344                  Target_aarch64<size, big_endian>*,
3345                  const elfcpp::Rela<size, big_endian>&,
3346                  unsigned int,
3347                  unsigned char*,
3348                  const Symbol_value<size>*);
3349
3350     inline typename AArch64_relocate_functions<size, big_endian>::Status
3351     tls_desc_gd_to_ie(
3352                  const Relocate_info<size, big_endian>*,
3353                  Target_aarch64<size, big_endian>*,
3354                  const elfcpp::Rela<size, big_endian>&,
3355                  unsigned int,
3356                  unsigned char*,
3357                  const Symbol_value<size>*,
3358                  typename elfcpp::Elf_types<size>::Elf_Addr,
3359                  typename elfcpp::Elf_types<size>::Elf_Addr);
3360
3361     bool skip_call_tls_get_addr_;
3362
3363   };  // End of class Relocate
3364
3365   // Adjust TLS relocation type based on the options and whether this
3366   // is a local symbol.
3367   static tls::Tls_optimization
3368   optimize_tls_reloc(bool is_final, int r_type);
3369
3370   // Get the GOT section, creating it if necessary.
3371   Output_data_got_aarch64<size, big_endian>*
3372   got_section(Symbol_table*, Layout*);
3373
3374   // Get the GOT PLT section.
3375   Output_data_space*
3376   got_plt_section() const
3377   {
3378     gold_assert(this->got_plt_ != NULL);
3379     return this->got_plt_;
3380   }
3381
3382   // Get the GOT section for TLSDESC entries.
3383   Output_data_got<size, big_endian>*
3384   got_tlsdesc_section() const
3385   {
3386     gold_assert(this->got_tlsdesc_ != NULL);
3387     return this->got_tlsdesc_;
3388   }
3389
3390   // Create the PLT section.
3391   void
3392   make_plt_section(Symbol_table* symtab, Layout* layout);
3393
3394   // Create a PLT entry for a global symbol.
3395   void
3396   make_plt_entry(Symbol_table*, Layout*, Symbol*);
3397
3398   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3399   void
3400   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3401                              Sized_relobj_file<size, big_endian>* relobj,
3402                              unsigned int local_sym_index);
3403
3404   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3405   void
3406   define_tls_base_symbol(Symbol_table*, Layout*);
3407
3408   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3409   void
3410   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3411
3412   // Create a GOT entry for the TLS module index.
3413   unsigned int
3414   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3415                       Sized_relobj_file<size, big_endian>* object);
3416
3417   // Get the PLT section.
3418   Output_data_plt_aarch64<size, big_endian>*
3419   plt_section() const
3420   {
3421     gold_assert(this->plt_ != NULL);
3422     return this->plt_;
3423   }
3424
3425   // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3426   // ST_E_843419, we need an additional field for adrp offset.
3427   void create_erratum_stub(
3428     AArch64_relobj<size, big_endian>* relobj,
3429     unsigned int shndx,
3430     section_size_type erratum_insn_offset,
3431     Address erratum_address,
3432     typename Insn_utilities::Insntype erratum_insn,
3433     int erratum_type,
3434     unsigned int e843419_adrp_offset=0);
3435
3436   // Return whether this is a 3-insn erratum sequence.
3437   bool is_erratum_843419_sequence(
3438       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3439       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3440       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3441
3442   // Return whether this is a 835769 sequence.
3443   // (Similarly implemented as in elfnn-aarch64.c.)
3444   bool is_erratum_835769_sequence(
3445       typename elfcpp::Swap<32,big_endian>::Valtype,
3446       typename elfcpp::Swap<32,big_endian>::Valtype);
3447
3448   // Get the dynamic reloc section, creating it if necessary.
3449   Reloc_section*
3450   rela_dyn_section(Layout*);
3451
3452   // Get the section to use for TLSDESC relocations.
3453   Reloc_section*
3454   rela_tlsdesc_section(Layout*) const;
3455
3456   // Get the section to use for IRELATIVE relocations.
3457   Reloc_section*
3458   rela_irelative_section(Layout*);
3459
3460   // Add a potential copy relocation.
3461   void
3462   copy_reloc(Symbol_table* symtab, Layout* layout,
3463              Sized_relobj_file<size, big_endian>* object,
3464              unsigned int shndx, Output_section* output_section,
3465              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3466   {
3467     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3468     this->copy_relocs_.copy_reloc(symtab, layout,
3469                                   symtab->get_sized_symbol<size>(sym),
3470                                   object, shndx, output_section,
3471                                   r_type, reloc.get_r_offset(),
3472                                   reloc.get_r_addend(),
3473                                   this->rela_dyn_section(layout));
3474   }
3475
3476   // Information about this specific target which we pass to the
3477   // general Target structure.
3478   static const Target::Target_info aarch64_info;
3479
3480   // The types of GOT entries needed for this platform.
3481   // These values are exposed to the ABI in an incremental link.
3482   // Do not renumber existing values without changing the version
3483   // number of the .gnu_incremental_inputs section.
3484   enum Got_type
3485   {
3486     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3487     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3488     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3489     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3490   };
3491
3492   // This type is used as the argument to the target specific
3493   // relocation routines.  The only target specific reloc is
3494   // R_AARCh64_TLSDESC against a local symbol.
3495   struct Tlsdesc_info
3496   {
3497     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3498                  unsigned int a_r_sym)
3499       : object(a_object), r_sym(a_r_sym)
3500     { }
3501
3502     // The object in which the local symbol is defined.
3503     Sized_relobj_file<size, big_endian>* object;
3504     // The local symbol index in the object.
3505     unsigned int r_sym;
3506   };
3507
3508   // The GOT section.
3509   Output_data_got_aarch64<size, big_endian>* got_;
3510   // The PLT section.
3511   Output_data_plt_aarch64<size, big_endian>* plt_;
3512   // The GOT PLT section.
3513   Output_data_space* got_plt_;
3514   // The GOT section for IRELATIVE relocations.
3515   Output_data_space* got_irelative_;
3516   // The GOT section for TLSDESC relocations.
3517   Output_data_got<size, big_endian>* got_tlsdesc_;
3518   // The _GLOBAL_OFFSET_TABLE_ symbol.
3519   Symbol* global_offset_table_;
3520   // The dynamic reloc section.
3521   Reloc_section* rela_dyn_;
3522   // The section to use for IRELATIVE relocs.
3523   Reloc_section* rela_irelative_;
3524   // Relocs saved to avoid a COPY reloc.
3525   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3526   // Offset of the GOT entry for the TLS module index.
3527   unsigned int got_mod_index_offset_;
3528   // We handle R_AARCH64_TLSDESC against a local symbol as a target
3529   // specific relocation. Here we store the object and local symbol
3530   // index for the relocation.
3531   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3532   // True if the _TLS_MODULE_BASE_ symbol has been defined.
3533   bool tls_base_symbol_defined_;
3534   // List of stub_tables
3535   Stub_table_list stub_tables_;
3536   // Actual stub group size
3537   section_size_type stub_group_size_;
3538   AArch64_input_section_map aarch64_input_section_map_;
3539 };  // End of Target_aarch64
3540
3541
3542 template<>
3543 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3544 {
3545   64,                   // size
3546   false,                // is_big_endian
3547   elfcpp::EM_AARCH64,   // machine_code
3548   false,                // has_make_symbol
3549   false,                // has_resolve
3550   false,                // has_code_fill
3551   false,                // is_default_stack_executable
3552   true,                 // can_icf_inline_merge_sections
3553   '\0',                 // wrap_char
3554   "/lib/ld.so.1",       // program interpreter
3555   0x400000,             // default_text_segment_address
3556   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3557   0x1000,               // common_pagesize (overridable by -z common-page-size)
3558   false,                // isolate_execinstr
3559   0,                    // rosegment_gap
3560   elfcpp::SHN_UNDEF,    // small_common_shndx
3561   elfcpp::SHN_UNDEF,    // large_common_shndx
3562   0,                    // small_common_section_flags
3563   0,                    // large_common_section_flags
3564   NULL,                 // attributes_section
3565   NULL,                 // attributes_vendor
3566   "_start",             // entry_symbol_name
3567   32,                   // hash_entry_size
3568 };
3569
3570 template<>
3571 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3572 {
3573   32,                   // size
3574   false,                // is_big_endian
3575   elfcpp::EM_AARCH64,   // machine_code
3576   false,                // has_make_symbol
3577   false,                // has_resolve
3578   false,                // has_code_fill
3579   false,                // is_default_stack_executable
3580   false,                // can_icf_inline_merge_sections
3581   '\0',                 // wrap_char
3582   "/lib/ld.so.1",       // program interpreter
3583   0x400000,             // default_text_segment_address
3584   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3585   0x1000,               // common_pagesize (overridable by -z common-page-size)
3586   false,                // isolate_execinstr
3587   0,                    // rosegment_gap
3588   elfcpp::SHN_UNDEF,    // small_common_shndx
3589   elfcpp::SHN_UNDEF,    // large_common_shndx
3590   0,                    // small_common_section_flags
3591   0,                    // large_common_section_flags
3592   NULL,                 // attributes_section
3593   NULL,                 // attributes_vendor
3594   "_start",             // entry_symbol_name
3595   32,                   // hash_entry_size
3596 };
3597
3598 template<>
3599 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3600 {
3601   64,                   // size
3602   true,                 // is_big_endian
3603   elfcpp::EM_AARCH64,   // machine_code
3604   false,                // has_make_symbol
3605   false,                // has_resolve
3606   false,                // has_code_fill
3607   false,                // is_default_stack_executable
3608   true,                 // can_icf_inline_merge_sections
3609   '\0',                 // wrap_char
3610   "/lib/ld.so.1",       // program interpreter
3611   0x400000,             // default_text_segment_address
3612   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3613   0x1000,               // common_pagesize (overridable by -z common-page-size)
3614   false,                // isolate_execinstr
3615   0,                    // rosegment_gap
3616   elfcpp::SHN_UNDEF,    // small_common_shndx
3617   elfcpp::SHN_UNDEF,    // large_common_shndx
3618   0,                    // small_common_section_flags
3619   0,                    // large_common_section_flags
3620   NULL,                 // attributes_section
3621   NULL,                 // attributes_vendor
3622   "_start",             // entry_symbol_name
3623   32,                   // hash_entry_size
3624 };
3625
3626 template<>
3627 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3628 {
3629   32,                   // size
3630   true,                 // is_big_endian
3631   elfcpp::EM_AARCH64,   // machine_code
3632   false,                // has_make_symbol
3633   false,                // has_resolve
3634   false,                // has_code_fill
3635   false,                // is_default_stack_executable
3636   false,                // can_icf_inline_merge_sections
3637   '\0',                 // wrap_char
3638   "/lib/ld.so.1",       // program interpreter
3639   0x400000,             // default_text_segment_address
3640   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3641   0x1000,               // common_pagesize (overridable by -z common-page-size)
3642   false,                // isolate_execinstr
3643   0,                    // rosegment_gap
3644   elfcpp::SHN_UNDEF,    // small_common_shndx
3645   elfcpp::SHN_UNDEF,    // large_common_shndx
3646   0,                    // small_common_section_flags
3647   0,                    // large_common_section_flags
3648   NULL,                 // attributes_section
3649   NULL,                 // attributes_vendor
3650   "_start",             // entry_symbol_name
3651   32,                   // hash_entry_size
3652 };
3653
3654 // Get the GOT section, creating it if necessary.
3655
3656 template<int size, bool big_endian>
3657 Output_data_got_aarch64<size, big_endian>*
3658 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3659                                               Layout* layout)
3660 {
3661   if (this->got_ == NULL)
3662     {
3663       gold_assert(symtab != NULL && layout != NULL);
3664
3665       // When using -z now, we can treat .got.plt as a relro section.
3666       // Without -z now, it is modified after program startup by lazy
3667       // PLT relocations.
3668       bool is_got_plt_relro = parameters->options().now();
3669       Output_section_order got_order = (is_got_plt_relro
3670                                         ? ORDER_RELRO
3671                                         : ORDER_RELRO_LAST);
3672       Output_section_order got_plt_order = (is_got_plt_relro
3673                                             ? ORDER_RELRO
3674                                             : ORDER_NON_RELRO_FIRST);
3675
3676       // Layout of .got and .got.plt sections.
3677       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3678       // ...
3679       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3680       // .gotplt[1] reserved for ld.so (resolver)
3681       // .gotplt[2] reserved
3682
3683       // Generate .got section.
3684       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3685                                                                  layout);
3686       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3687                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3688                                       this->got_, got_order, true);
3689       // The first word of GOT is reserved for the address of .dynamic.
3690       // We put 0 here now. The value will be replaced later in
3691       // Output_data_got_aarch64::do_write.
3692       this->got_->add_constant(0);
3693
3694       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3695       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3696       // even if there is a .got.plt section.
3697       this->global_offset_table_ =
3698         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3699                                       Symbol_table::PREDEFINED,
3700                                       this->got_,
3701                                       0, 0, elfcpp::STT_OBJECT,
3702                                       elfcpp::STB_LOCAL,
3703                                       elfcpp::STV_HIDDEN, 0,
3704                                       false, false);
3705
3706       // Generate .got.plt section.
3707       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3708       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3709                                       (elfcpp::SHF_ALLOC
3710                                        | elfcpp::SHF_WRITE),
3711                                       this->got_plt_, got_plt_order,
3712                                       is_got_plt_relro);
3713
3714       // The first three entries are reserved.
3715       this->got_plt_->set_current_data_size(
3716         AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3717
3718       // If there are any IRELATIVE relocations, they get GOT entries
3719       // in .got.plt after the jump slot entries.
3720       this->got_irelative_ = new Output_data_space(size / 8,
3721                                                    "** GOT IRELATIVE PLT");
3722       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3723                                       (elfcpp::SHF_ALLOC
3724                                        | elfcpp::SHF_WRITE),
3725                                       this->got_irelative_,
3726                                       got_plt_order,
3727                                       is_got_plt_relro);
3728
3729       // If there are any TLSDESC relocations, they get GOT entries in
3730       // .got.plt after the jump slot and IRELATIVE entries.
3731       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3732       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3733                                       (elfcpp::SHF_ALLOC
3734                                        | elfcpp::SHF_WRITE),
3735                                       this->got_tlsdesc_,
3736                                       got_plt_order,
3737                                       is_got_plt_relro);
3738
3739       if (!is_got_plt_relro)
3740         {
3741           // Those bytes can go into the relro segment.
3742           layout->increase_relro(
3743             AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3744         }
3745
3746     }
3747   return this->got_;
3748 }
3749
3750 // Get the dynamic reloc section, creating it if necessary.
3751
3752 template<int size, bool big_endian>
3753 typename Target_aarch64<size, big_endian>::Reloc_section*
3754 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3755 {
3756   if (this->rela_dyn_ == NULL)
3757     {
3758       gold_assert(layout != NULL);
3759       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3760       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3761                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
3762                                       ORDER_DYNAMIC_RELOCS, false);
3763     }
3764   return this->rela_dyn_;
3765 }
3766
3767 // Get the section to use for IRELATIVE relocs, creating it if
3768 // necessary.  These go in .rela.dyn, but only after all other dynamic
3769 // relocations.  They need to follow the other dynamic relocations so
3770 // that they can refer to global variables initialized by those
3771 // relocs.
3772
3773 template<int size, bool big_endian>
3774 typename Target_aarch64<size, big_endian>::Reloc_section*
3775 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3776 {
3777   if (this->rela_irelative_ == NULL)
3778     {
3779       // Make sure we have already created the dynamic reloc section.
3780       this->rela_dyn_section(layout);
3781       this->rela_irelative_ = new Reloc_section(false);
3782       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3783                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
3784                                       ORDER_DYNAMIC_RELOCS, false);
3785       gold_assert(this->rela_dyn_->output_section()
3786                   == this->rela_irelative_->output_section());
3787     }
3788   return this->rela_irelative_;
3789 }
3790
3791
3792 // do_make_elf_object to override the same function in the base class.  We need
3793 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3794 // store backend specific information. Hence we need to have our own ELF object
3795 // creation.
3796
3797 template<int size, bool big_endian>
3798 Object*
3799 Target_aarch64<size, big_endian>::do_make_elf_object(
3800     const std::string& name,
3801     Input_file* input_file,
3802     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3803 {
3804   int et = ehdr.get_e_type();
3805   // ET_EXEC files are valid input for --just-symbols/-R,
3806   // and we treat them as relocatable objects.
3807   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3808     return Sized_target<size, big_endian>::do_make_elf_object(
3809         name, input_file, offset, ehdr);
3810   else if (et == elfcpp::ET_REL)
3811     {
3812       AArch64_relobj<size, big_endian>* obj =
3813         new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3814       obj->setup();
3815       return obj;
3816     }
3817   else if (et == elfcpp::ET_DYN)
3818     {
3819       // Keep base implementation.
3820       Sized_dynobj<size, big_endian>* obj =
3821           new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3822       obj->setup();
3823       return obj;
3824     }
3825   else
3826     {
3827       gold_error(_("%s: unsupported ELF file type %d"),
3828                  name.c_str(), et);
3829       return NULL;
3830     }
3831 }
3832
3833
3834 // Scan a relocation for stub generation.
3835
3836 template<int size, bool big_endian>
3837 void
3838 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3839     const Relocate_info<size, big_endian>* relinfo,
3840     unsigned int r_type,
3841     const Sized_symbol<size>* gsym,
3842     unsigned int r_sym,
3843     const Symbol_value<size>* psymval,
3844     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3845     Address address)
3846 {
3847   const AArch64_relobj<size, big_endian>* aarch64_relobj =
3848       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3849
3850   Symbol_value<size> symval;
3851   if (gsym != NULL)
3852     {
3853       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3854         get_reloc_property(r_type);
3855       if (gsym->use_plt_offset(arp->reference_flags()))
3856         {
3857           // This uses a PLT, change the symbol value.
3858           symval.set_output_value(this->plt_address_for_global(gsym));
3859           psymval = &symval;
3860         }
3861       else if (gsym->is_undefined())
3862         {
3863           // There is no need to generate a stub symbol if the original symbol
3864           // is undefined.
3865           gold_debug(DEBUG_TARGET,
3866                      "stub: not creating a stub for undefined symbol %s in file %s",
3867                      gsym->name(), aarch64_relobj->name().c_str());
3868           return;
3869         }
3870     }
3871
3872   // Get the symbol value.
3873   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3874
3875   // Owing to pipelining, the PC relative branches below actually skip
3876   // two instructions when the branch offset is 0.
3877   Address destination = static_cast<Address>(-1);
3878   switch (r_type)
3879     {
3880     case elfcpp::R_AARCH64_CALL26:
3881     case elfcpp::R_AARCH64_JUMP26:
3882       destination = value + addend;
3883       break;
3884     default:
3885       gold_unreachable();
3886     }
3887
3888   int stub_type = The_reloc_stub::
3889       stub_type_for_reloc(r_type, address, destination);
3890   if (stub_type == ST_NONE)
3891     return;
3892
3893   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3894   gold_assert(stub_table != NULL);
3895
3896   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3897   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3898   if (stub == NULL)
3899     {
3900       stub = new The_reloc_stub(stub_type);
3901       stub_table->add_reloc_stub(stub, key);
3902     }
3903   stub->set_destination_address(destination);
3904 }  // End of Target_aarch64::scan_reloc_for_stub
3905
3906
3907 // This function scans a relocation section for stub generation.
3908 // The template parameter Relocate must be a class type which provides
3909 // a single function, relocate(), which implements the machine
3910 // specific part of a relocation.
3911
3912 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3913 // SHT_REL or SHT_RELA.
3914
3915 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3916 // of relocs.  OUTPUT_SECTION is the output section.
3917 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3918 // mapped to output offsets.
3919
3920 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3921 // VIEW_SIZE is the size.  These refer to the input section, unless
3922 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3923 // the output section.
3924
3925 template<int size, bool big_endian>
3926 template<int sh_type>
3927 void inline
3928 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3929     const Relocate_info<size, big_endian>* relinfo,
3930     const unsigned char* prelocs,
3931     size_t reloc_count,
3932     Output_section* /*output_section*/,
3933     bool /*needs_special_offset_handling*/,
3934     const unsigned char* /*view*/,
3935     Address view_address,
3936     section_size_type)
3937 {
3938   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3939
3940   const int reloc_size =
3941       Reloc_types<sh_type,size,big_endian>::reloc_size;
3942   AArch64_relobj<size, big_endian>* object =
3943       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3944   unsigned int local_count = object->local_symbol_count();
3945
3946   gold::Default_comdat_behavior default_comdat_behavior;
3947   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3948
3949   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3950     {
3951       Reltype reloc(prelocs);
3952       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3953       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3954       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3955       if (r_type != elfcpp::R_AARCH64_CALL26
3956           && r_type != elfcpp::R_AARCH64_JUMP26)
3957         continue;
3958
3959       section_offset_type offset =
3960           convert_to_section_size_type(reloc.get_r_offset());
3961
3962       // Get the addend.
3963       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3964           reloc.get_r_addend();
3965
3966       const Sized_symbol<size>* sym;
3967       Symbol_value<size> symval;
3968       const Symbol_value<size> *psymval;
3969       bool is_defined_in_discarded_section;
3970       unsigned int shndx;
3971       if (r_sym < local_count)
3972         {
3973           sym = NULL;
3974           psymval = object->local_symbol(r_sym);
3975
3976           // If the local symbol belongs to a section we are discarding,
3977           // and that section is a debug section, try to find the
3978           // corresponding kept section and map this symbol to its
3979           // counterpart in the kept section.  The symbol must not
3980           // correspond to a section we are folding.
3981           bool is_ordinary;
3982           shndx = psymval->input_shndx(&is_ordinary);
3983           is_defined_in_discarded_section =
3984             (is_ordinary
3985              && shndx != elfcpp::SHN_UNDEF
3986              && !object->is_section_included(shndx)
3987              && !relinfo->symtab->is_section_folded(object, shndx));
3988
3989           // We need to compute the would-be final value of this local
3990           // symbol.
3991           if (!is_defined_in_discarded_section)
3992             {
3993               typedef Sized_relobj_file<size, big_endian> ObjType;
3994               if (psymval->is_section_symbol())
3995                 symval.set_is_section_symbol();
3996               typename ObjType::Compute_final_local_value_status status =
3997                 object->compute_final_local_value(r_sym, psymval, &symval,
3998                                                   relinfo->symtab);
3999               if (status == ObjType::CFLV_OK)
4000                 {
4001                   // Currently we cannot handle a branch to a target in
4002                   // a merged section.  If this is the case, issue an error
4003                   // and also free the merge symbol value.
4004                   if (!symval.has_output_value())
4005                     {
4006                       const std::string& section_name =
4007                         object->section_name(shndx);
4008                       object->error(_("cannot handle branch to local %u "
4009                                           "in a merged section %s"),
4010                                         r_sym, section_name.c_str());
4011                     }
4012                   psymval = &symval;
4013                 }
4014               else
4015                 {
4016                   // We cannot determine the final value.
4017                   continue;
4018                 }
4019             }
4020         }
4021       else
4022         {
4023           const Symbol* gsym;
4024           gsym = object->global_symbol(r_sym);
4025           gold_assert(gsym != NULL);
4026           if (gsym->is_forwarder())
4027             gsym = relinfo->symtab->resolve_forwards(gsym);
4028
4029           sym = static_cast<const Sized_symbol<size>*>(gsym);
4030           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
4031             symval.set_output_symtab_index(sym->symtab_index());
4032           else
4033             symval.set_no_output_symtab_entry();
4034
4035           // We need to compute the would-be final value of this global
4036           // symbol.
4037           const Symbol_table* symtab = relinfo->symtab;
4038           const Sized_symbol<size>* sized_symbol =
4039               symtab->get_sized_symbol<size>(gsym);
4040           Symbol_table::Compute_final_value_status status;
4041           typename elfcpp::Elf_types<size>::Elf_Addr value =
4042               symtab->compute_final_value<size>(sized_symbol, &status);
4043
4044           // Skip this if the symbol has not output section.
4045           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
4046             continue;
4047           symval.set_output_value(value);
4048
4049           if (gsym->type() == elfcpp::STT_TLS)
4050             symval.set_is_tls_symbol();
4051           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4052             symval.set_is_ifunc_symbol();
4053           psymval = &symval;
4054
4055           is_defined_in_discarded_section =
4056               (gsym->is_defined_in_discarded_section()
4057                && gsym->is_undefined());
4058           shndx = 0;
4059         }
4060
4061       Symbol_value<size> symval2;
4062       if (is_defined_in_discarded_section)
4063         {
4064           if (comdat_behavior == CB_UNDETERMINED)
4065             {
4066               std::string name = object->section_name(relinfo->data_shndx);
4067               comdat_behavior = default_comdat_behavior.get(name.c_str());
4068             }
4069           if (comdat_behavior == CB_PRETEND)
4070             {
4071               bool found;
4072               typename elfcpp::Elf_types<size>::Elf_Addr value =
4073                 object->map_to_kept_section(shndx, &found);
4074               if (found)
4075                 symval2.set_output_value(value + psymval->input_value());
4076               else
4077                 symval2.set_output_value(0);
4078             }
4079           else
4080             {
4081               if (comdat_behavior == CB_WARNING)
4082                 gold_warning_at_location(relinfo, i, offset,
4083                                          _("relocation refers to discarded "
4084                                            "section"));
4085               symval2.set_output_value(0);
4086             }
4087           symval2.set_no_output_symtab_entry();
4088           psymval = &symval2;
4089         }
4090
4091       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
4092                                 addend, view_address + offset);
4093     }  // End of iterating relocs in a section
4094 }  // End of Target_aarch64::scan_reloc_section_for_stubs
4095
4096
4097 // Scan an input section for stub generation.
4098
4099 template<int size, bool big_endian>
4100 void
4101 Target_aarch64<size, big_endian>::scan_section_for_stubs(
4102     const Relocate_info<size, big_endian>* relinfo,
4103     unsigned int sh_type,
4104     const unsigned char* prelocs,
4105     size_t reloc_count,
4106     Output_section* output_section,
4107     bool needs_special_offset_handling,
4108     const unsigned char* view,
4109     Address view_address,
4110     section_size_type view_size)
4111 {
4112   gold_assert(sh_type == elfcpp::SHT_RELA);
4113   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
4114       relinfo,
4115       prelocs,
4116       reloc_count,
4117       output_section,
4118       needs_special_offset_handling,
4119       view,
4120       view_address,
4121       view_size);
4122 }
4123
4124
4125 // Relocate a single reloc stub.
4126
4127 template<int size, bool big_endian>
4128 void Target_aarch64<size, big_endian>::
4129 relocate_reloc_stub(The_reloc_stub* stub,
4130                     const The_relocate_info*,
4131                     Output_section*,
4132                     unsigned char* view,
4133                     Address address,
4134                     section_size_type)
4135 {
4136   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4137   typedef typename The_reloc_functions::Status The_reloc_functions_status;
4138   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4139
4140   Insntype* ip = reinterpret_cast<Insntype*>(view);
4141   int insn_number = stub->insn_num();
4142   const uint32_t* insns = stub->insns();
4143   // Check the insns are really those stub insns.
4144   for (int i = 0; i < insn_number; ++i)
4145     {
4146       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4147       gold_assert(((uint32_t)insn == insns[i]));
4148     }
4149
4150   Address dest = stub->destination_address();
4151
4152   switch(stub->type())
4153     {
4154     case ST_ADRP_BRANCH:
4155       {
4156         // 1st reloc is ADR_PREL_PG_HI21
4157         The_reloc_functions_status status =
4158             The_reloc_functions::adrp(view, dest, address);
4159         // An error should never arise in the above step. If so, please
4160         // check 'aarch64_valid_for_adrp_p'.
4161         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4162
4163         // 2nd reloc is ADD_ABS_LO12_NC
4164         const AArch64_reloc_property* arp =
4165             aarch64_reloc_property_table->get_reloc_property(
4166                 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4167         gold_assert(arp != NULL);
4168         status = The_reloc_functions::template
4169             rela_general<32>(view + 4, dest, 0, arp);
4170         // An error should never arise, it is an "_NC" relocation.
4171         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4172       }
4173       break;
4174
4175     case ST_LONG_BRANCH_ABS:
4176       // 1st reloc is R_AARCH64_PREL64, at offset 8
4177       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4178       break;
4179
4180     case ST_LONG_BRANCH_PCREL:
4181       {
4182         // "PC" calculation is the 2nd insn in the stub.
4183         uint64_t offset = dest - (address + 4);
4184         // Offset is placed at offset 4 and 5.
4185         elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4186       }
4187       break;
4188
4189     default:
4190       gold_unreachable();
4191     }
4192 }
4193
4194
4195 // A class to handle the PLT data.
4196 // This is an abstract base class that handles most of the linker details
4197 // but does not know the actual contents of PLT entries.  The derived
4198 // classes below fill in those details.
4199
4200 template<int size, bool big_endian>
4201 class Output_data_plt_aarch64 : public Output_section_data
4202 {
4203  public:
4204   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4205       Reloc_section;
4206   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4207
4208   Output_data_plt_aarch64(Layout* layout,
4209                           uint64_t addralign,
4210                           Output_data_got_aarch64<size, big_endian>* got,
4211                           Output_data_space* got_plt,
4212                           Output_data_space* got_irelative)
4213     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4214       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4215       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4216   { this->init(layout); }
4217
4218   // Initialize the PLT section.
4219   void
4220   init(Layout* layout);
4221
4222   // Add an entry to the PLT.
4223   void
4224   add_entry(Symbol_table*, Layout*, Symbol* gsym);
4225
4226   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4227   unsigned int
4228   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4229                         Sized_relobj_file<size, big_endian>* relobj,
4230                         unsigned int local_sym_index);
4231
4232   // Add the relocation for a PLT entry.
4233   void
4234   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4235                  unsigned int got_offset);
4236
4237   // Add the reserved TLSDESC_PLT entry to the PLT.
4238   void
4239   reserve_tlsdesc_entry(unsigned int got_offset)
4240   { this->tlsdesc_got_offset_ = got_offset; }
4241
4242   // Return true if a TLSDESC_PLT entry has been reserved.
4243   bool
4244   has_tlsdesc_entry() const
4245   { return this->tlsdesc_got_offset_ != -1U; }
4246
4247   // Return the GOT offset for the reserved TLSDESC_PLT entry.
4248   unsigned int
4249   get_tlsdesc_got_offset() const
4250   { return this->tlsdesc_got_offset_; }
4251
4252   // Return the PLT offset of the reserved TLSDESC_PLT entry.
4253   unsigned int
4254   get_tlsdesc_plt_offset() const
4255   {
4256     return (this->first_plt_entry_offset() +
4257             (this->count_ + this->irelative_count_)
4258             * this->get_plt_entry_size());
4259   }
4260
4261   // Return the .rela.plt section data.
4262   Reloc_section*
4263   rela_plt()
4264   { return this->rel_; }
4265
4266   // Return where the TLSDESC relocations should go.
4267   Reloc_section*
4268   rela_tlsdesc(Layout*);
4269
4270   // Return where the IRELATIVE relocations should go in the PLT
4271   // relocations.
4272   Reloc_section*
4273   rela_irelative(Symbol_table*, Layout*);
4274
4275   // Return whether we created a section for IRELATIVE relocations.
4276   bool
4277   has_irelative_section() const
4278   { return this->irelative_rel_ != NULL; }
4279
4280   // Return the number of PLT entries.
4281   unsigned int
4282   entry_count() const
4283   { return this->count_ + this->irelative_count_; }
4284
4285   // Return the offset of the first non-reserved PLT entry.
4286   unsigned int
4287   first_plt_entry_offset() const
4288   { return this->do_first_plt_entry_offset(); }
4289
4290   // Return the size of a PLT entry.
4291   unsigned int
4292   get_plt_entry_size() const
4293   { return this->do_get_plt_entry_size(); }
4294
4295   // Return the reserved tlsdesc entry size.
4296   unsigned int
4297   get_plt_tlsdesc_entry_size() const
4298   { return this->do_get_plt_tlsdesc_entry_size(); }
4299
4300   // Return the PLT address to use for a global symbol.
4301   uint64_t
4302   address_for_global(const Symbol*);
4303
4304   // Return the PLT address to use for a local symbol.
4305   uint64_t
4306   address_for_local(const Relobj*, unsigned int symndx);
4307
4308  protected:
4309   // Fill in the first PLT entry.
4310   void
4311   fill_first_plt_entry(unsigned char* pov,
4312                        Address got_address,
4313                        Address plt_address)
4314   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4315
4316   // Fill in a normal PLT entry.
4317   void
4318   fill_plt_entry(unsigned char* pov,
4319                  Address got_address,
4320                  Address plt_address,
4321                  unsigned int got_offset,
4322                  unsigned int plt_offset)
4323   {
4324     this->do_fill_plt_entry(pov, got_address, plt_address,
4325                             got_offset, plt_offset);
4326   }
4327
4328   // Fill in the reserved TLSDESC PLT entry.
4329   void
4330   fill_tlsdesc_entry(unsigned char* pov,
4331                      Address gotplt_address,
4332                      Address plt_address,
4333                      Address got_base,
4334                      unsigned int tlsdesc_got_offset,
4335                      unsigned int plt_offset)
4336   {
4337     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4338                                 tlsdesc_got_offset, plt_offset);
4339   }
4340
4341   virtual unsigned int
4342   do_first_plt_entry_offset() const = 0;
4343
4344   virtual unsigned int
4345   do_get_plt_entry_size() const = 0;
4346
4347   virtual unsigned int
4348   do_get_plt_tlsdesc_entry_size() const = 0;
4349
4350   virtual void
4351   do_fill_first_plt_entry(unsigned char* pov,
4352                           Address got_addr,
4353                           Address plt_addr) = 0;
4354
4355   virtual void
4356   do_fill_plt_entry(unsigned char* pov,
4357                     Address got_address,
4358                     Address plt_address,
4359                     unsigned int got_offset,
4360                     unsigned int plt_offset) = 0;
4361
4362   virtual void
4363   do_fill_tlsdesc_entry(unsigned char* pov,
4364                         Address gotplt_address,
4365                         Address plt_address,
4366                         Address got_base,
4367                         unsigned int tlsdesc_got_offset,
4368                         unsigned int plt_offset) = 0;
4369
4370   void
4371   do_adjust_output_section(Output_section* os);
4372
4373   // Write to a map file.
4374   void
4375   do_print_to_mapfile(Mapfile* mapfile) const
4376   { mapfile->print_output_data(this, _("** PLT")); }
4377
4378  private:
4379   // Set the final size.
4380   void
4381   set_final_data_size();
4382
4383   // Write out the PLT data.
4384   void
4385   do_write(Output_file*);
4386
4387   // The reloc section.
4388   Reloc_section* rel_;
4389
4390   // The TLSDESC relocs, if necessary.  These must follow the regular
4391   // PLT relocs.
4392   Reloc_section* tlsdesc_rel_;
4393
4394   // The IRELATIVE relocs, if necessary.  These must follow the
4395   // regular PLT relocations.
4396   Reloc_section* irelative_rel_;
4397
4398   // The .got section.
4399   Output_data_got_aarch64<size, big_endian>* got_;
4400
4401   // The .got.plt section.
4402   Output_data_space* got_plt_;
4403
4404   // The part of the .got.plt section used for IRELATIVE relocs.
4405   Output_data_space* got_irelative_;
4406
4407   // The number of PLT entries.
4408   unsigned int count_;
4409
4410   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4411   // follow the regular PLT entries.
4412   unsigned int irelative_count_;
4413
4414   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4415   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4416   // indicates an offset is not allocated.
4417   unsigned int tlsdesc_got_offset_;
4418 };
4419
4420 // Initialize the PLT section.
4421
4422 template<int size, bool big_endian>
4423 void
4424 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4425 {
4426   this->rel_ = new Reloc_section(false);
4427   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4428                                   elfcpp::SHF_ALLOC, this->rel_,
4429                                   ORDER_DYNAMIC_PLT_RELOCS, false);
4430 }
4431
4432 template<int size, bool big_endian>
4433 void
4434 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4435     Output_section* os)
4436 {
4437   os->set_entsize(this->get_plt_entry_size());
4438 }
4439
4440 // Add an entry to the PLT.
4441
4442 template<int size, bool big_endian>
4443 void
4444 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4445     Layout* layout, Symbol* gsym)
4446 {
4447   gold_assert(!gsym->has_plt_offset());
4448
4449   unsigned int* pcount;
4450   unsigned int plt_reserved;
4451   Output_section_data_build* got;
4452
4453   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4454       && gsym->can_use_relative_reloc(false))
4455     {
4456       pcount = &this->irelative_count_;
4457       plt_reserved = 0;
4458       got = this->got_irelative_;
4459     }
4460   else
4461     {
4462       pcount = &this->count_;
4463       plt_reserved = this->first_plt_entry_offset();
4464       got = this->got_plt_;
4465     }
4466
4467   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4468                        + plt_reserved);
4469
4470   ++*pcount;
4471
4472   section_offset_type got_offset = got->current_data_size();
4473
4474   // Every PLT entry needs a GOT entry which points back to the PLT
4475   // entry (this will be changed by the dynamic linker, normally
4476   // lazily when the function is called).
4477   got->set_current_data_size(got_offset + size / 8);
4478
4479   // Every PLT entry needs a reloc.
4480   this->add_relocation(symtab, layout, gsym, got_offset);
4481
4482   // Note that we don't need to save the symbol. The contents of the
4483   // PLT are independent of which symbols are used. The symbols only
4484   // appear in the relocations.
4485 }
4486
4487 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4488 // the PLT offset.
4489
4490 template<int size, bool big_endian>
4491 unsigned int
4492 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4493     Symbol_table* symtab,
4494     Layout* layout,
4495     Sized_relobj_file<size, big_endian>* relobj,
4496     unsigned int local_sym_index)
4497 {
4498   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4499   ++this->irelative_count_;
4500
4501   section_offset_type got_offset = this->got_irelative_->current_data_size();
4502
4503   // Every PLT entry needs a GOT entry which points back to the PLT
4504   // entry.
4505   this->got_irelative_->set_current_data_size(got_offset + size / 8);
4506
4507   // Every PLT entry needs a reloc.
4508   Reloc_section* rela = this->rela_irelative(symtab, layout);
4509   rela->add_symbolless_local_addend(relobj, local_sym_index,
4510                                     elfcpp::R_AARCH64_IRELATIVE,
4511                                     this->got_irelative_, got_offset, 0);
4512
4513   return plt_offset;
4514 }
4515
4516 // Add the relocation for a PLT entry.
4517
4518 template<int size, bool big_endian>
4519 void
4520 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4521     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4522 {
4523   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4524       && gsym->can_use_relative_reloc(false))
4525     {
4526       Reloc_section* rela = this->rela_irelative(symtab, layout);
4527       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4528                                          this->got_irelative_, got_offset, 0);
4529     }
4530   else
4531     {
4532       gsym->set_needs_dynsym_entry();
4533       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4534                              got_offset, 0);
4535     }
4536 }
4537
4538 // Return where the TLSDESC relocations should go, creating it if
4539 // necessary.  These follow the JUMP_SLOT relocations.
4540
4541 template<int size, bool big_endian>
4542 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4543 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4544 {
4545   if (this->tlsdesc_rel_ == NULL)
4546     {
4547       this->tlsdesc_rel_ = new Reloc_section(false);
4548       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4549                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4550                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4551       gold_assert(this->tlsdesc_rel_->output_section()
4552                   == this->rel_->output_section());
4553     }
4554   return this->tlsdesc_rel_;
4555 }
4556
4557 // Return where the IRELATIVE relocations should go in the PLT.  These
4558 // follow the JUMP_SLOT and the TLSDESC relocations.
4559
4560 template<int size, bool big_endian>
4561 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4562 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4563                                                           Layout* layout)
4564 {
4565   if (this->irelative_rel_ == NULL)
4566     {
4567       // Make sure we have a place for the TLSDESC relocations, in
4568       // case we see any later on.
4569       this->rela_tlsdesc(layout);
4570       this->irelative_rel_ = new Reloc_section(false);
4571       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4572                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
4573                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4574       gold_assert(this->irelative_rel_->output_section()
4575                   == this->rel_->output_section());
4576
4577       if (parameters->doing_static_link())
4578         {
4579           // A statically linked executable will only have a .rela.plt
4580           // section to hold R_AARCH64_IRELATIVE relocs for
4581           // STT_GNU_IFUNC symbols.  The library will use these
4582           // symbols to locate the IRELATIVE relocs at program startup
4583           // time.
4584           symtab->define_in_output_data("__rela_iplt_start", NULL,
4585                                         Symbol_table::PREDEFINED,
4586                                         this->irelative_rel_, 0, 0,
4587                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4588                                         elfcpp::STV_HIDDEN, 0, false, true);
4589           symtab->define_in_output_data("__rela_iplt_end", NULL,
4590                                         Symbol_table::PREDEFINED,
4591                                         this->irelative_rel_, 0, 0,
4592                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4593                                         elfcpp::STV_HIDDEN, 0, true, true);
4594         }
4595     }
4596   return this->irelative_rel_;
4597 }
4598
4599 // Return the PLT address to use for a global symbol.
4600
4601 template<int size, bool big_endian>
4602 uint64_t
4603 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4604   const Symbol* gsym)
4605 {
4606   uint64_t offset = 0;
4607   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4608       && gsym->can_use_relative_reloc(false))
4609     offset = (this->first_plt_entry_offset() +
4610               this->count_ * this->get_plt_entry_size());
4611   return this->address() + offset + gsym->plt_offset();
4612 }
4613
4614 // Return the PLT address to use for a local symbol.  These are always
4615 // IRELATIVE relocs.
4616
4617 template<int size, bool big_endian>
4618 uint64_t
4619 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4620     const Relobj* object,
4621     unsigned int r_sym)
4622 {
4623   return (this->address()
4624           + this->first_plt_entry_offset()
4625           + this->count_ * this->get_plt_entry_size()
4626           + object->local_plt_offset(r_sym));
4627 }
4628
4629 // Set the final size.
4630
4631 template<int size, bool big_endian>
4632 void
4633 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4634 {
4635   unsigned int count = this->count_ + this->irelative_count_;
4636   unsigned int extra_size = 0;
4637   if (this->has_tlsdesc_entry())
4638     extra_size += this->get_plt_tlsdesc_entry_size();
4639   this->set_data_size(this->first_plt_entry_offset()
4640                       + count * this->get_plt_entry_size()
4641                       + extra_size);
4642 }
4643
4644 template<int size, bool big_endian>
4645 class Output_data_plt_aarch64_standard :
4646   public Output_data_plt_aarch64<size, big_endian>
4647 {
4648  public:
4649   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4650   Output_data_plt_aarch64_standard(
4651       Layout* layout,
4652       Output_data_got_aarch64<size, big_endian>* got,
4653       Output_data_space* got_plt,
4654       Output_data_space* got_irelative)
4655     : Output_data_plt_aarch64<size, big_endian>(layout,
4656                                                 size == 32 ? 4 : 8,
4657                                                 got, got_plt,
4658                                                 got_irelative)
4659   { }
4660
4661  protected:
4662   // Return the offset of the first non-reserved PLT entry.
4663   virtual unsigned int
4664   do_first_plt_entry_offset() const
4665   { return this->first_plt_entry_size; }
4666
4667   // Return the size of a PLT entry
4668   virtual unsigned int
4669   do_get_plt_entry_size() const
4670   { return this->plt_entry_size; }
4671
4672   // Return the size of a tlsdesc entry
4673   virtual unsigned int
4674   do_get_plt_tlsdesc_entry_size() const
4675   { return this->plt_tlsdesc_entry_size; }
4676
4677   virtual void
4678   do_fill_first_plt_entry(unsigned char* pov,
4679                           Address got_address,
4680                           Address plt_address);
4681
4682   virtual void
4683   do_fill_plt_entry(unsigned char* pov,
4684                     Address got_address,
4685                     Address plt_address,
4686                     unsigned int got_offset,
4687                     unsigned int plt_offset);
4688
4689   virtual void
4690   do_fill_tlsdesc_entry(unsigned char* pov,
4691                         Address gotplt_address,
4692                         Address plt_address,
4693                         Address got_base,
4694                         unsigned int tlsdesc_got_offset,
4695                         unsigned int plt_offset);
4696
4697  private:
4698   // The size of the first plt entry size.
4699   static const int first_plt_entry_size = 32;
4700   // The size of the plt entry size.
4701   static const int plt_entry_size = 16;
4702   // The size of the plt tlsdesc entry size.
4703   static const int plt_tlsdesc_entry_size = 32;
4704   // Template for the first PLT entry.
4705   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4706   // Template for subsequent PLT entries.
4707   static const uint32_t plt_entry[plt_entry_size / 4];
4708   // The reserved TLSDESC entry in the PLT for an executable.
4709   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4710 };
4711
4712 // The first entry in the PLT for an executable.
4713
4714 template<>
4715 const uint32_t
4716 Output_data_plt_aarch64_standard<32, false>::
4717     first_plt_entry[first_plt_entry_size / 4] =
4718 {
4719   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4720   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4721   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4722   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4723   0xd61f0220,   /* br x17  */
4724   0xd503201f,   /* nop */
4725   0xd503201f,   /* nop */
4726   0xd503201f,   /* nop */
4727 };
4728
4729
4730 template<>
4731 const uint32_t
4732 Output_data_plt_aarch64_standard<32, true>::
4733     first_plt_entry[first_plt_entry_size / 4] =
4734 {
4735   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4736   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4737   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4738   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4739   0xd61f0220,   /* br x17  */
4740   0xd503201f,   /* nop */
4741   0xd503201f,   /* nop */
4742   0xd503201f,   /* nop */
4743 };
4744
4745
4746 template<>
4747 const uint32_t
4748 Output_data_plt_aarch64_standard<64, false>::
4749     first_plt_entry[first_plt_entry_size / 4] =
4750 {
4751   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4752   0x90000010,   /* adrp x16, PLT_GOT+16  */
4753   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4754   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4755   0xd61f0220,   /* br x17  */
4756   0xd503201f,   /* nop */
4757   0xd503201f,   /* nop */
4758   0xd503201f,   /* nop */
4759 };
4760
4761
4762 template<>
4763 const uint32_t
4764 Output_data_plt_aarch64_standard<64, true>::
4765     first_plt_entry[first_plt_entry_size / 4] =
4766 {
4767   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4768   0x90000010,   /* adrp x16, PLT_GOT+16  */
4769   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4770   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4771   0xd61f0220,   /* br x17  */
4772   0xd503201f,   /* nop */
4773   0xd503201f,   /* nop */
4774   0xd503201f,   /* nop */
4775 };
4776
4777
4778 template<>
4779 const uint32_t
4780 Output_data_plt_aarch64_standard<32, false>::
4781     plt_entry[plt_entry_size / 4] =
4782 {
4783   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4784   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4785   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4786   0xd61f0220,   /* br x17.  */
4787 };
4788
4789
4790 template<>
4791 const uint32_t
4792 Output_data_plt_aarch64_standard<32, true>::
4793     plt_entry[plt_entry_size / 4] =
4794 {
4795   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4796   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4797   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4798   0xd61f0220,   /* br x17.  */
4799 };
4800
4801
4802 template<>
4803 const uint32_t
4804 Output_data_plt_aarch64_standard<64, false>::
4805     plt_entry[plt_entry_size / 4] =
4806 {
4807   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4808   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4809   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4810   0xd61f0220,   /* br x17.  */
4811 };
4812
4813
4814 template<>
4815 const uint32_t
4816 Output_data_plt_aarch64_standard<64, true>::
4817     plt_entry[plt_entry_size / 4] =
4818 {
4819   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4820   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4821   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4822   0xd61f0220,   /* br x17.  */
4823 };
4824
4825
4826 template<int size, bool big_endian>
4827 void
4828 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4829     unsigned char* pov,
4830     Address got_address,
4831     Address plt_address)
4832 {
4833   // PLT0 of the small PLT looks like this in ELF64 -
4834   // stp x16, x30, [sp, #-16]!          Save the reloc and lr on stack.
4835   // adrp x16, PLT_GOT + 16             Get the page base of the GOTPLT
4836   // ldr  x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4837   //                                    symbol resolver
4838   // add  x16, x16, #:lo12:PLT_GOT+16   Load the lo12 bits of the
4839   //                                    GOTPLT entry for this.
4840   // br   x17
4841   // PLT0 will be slightly different in ELF32 due to different got entry
4842   // size.
4843   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4844   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4845
4846   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4847   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4848   // FIXME: This only works for 64bit
4849   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4850       gotplt_2nd_ent, plt_address + 4);
4851
4852   // Fill in R_AARCH64_LDST8_LO12
4853   elfcpp::Swap<32, big_endian>::writeval(
4854       pov + 8,
4855       ((this->first_plt_entry[2] & 0xffc003ff)
4856        | ((gotplt_2nd_ent & 0xff8) << 7)));
4857
4858   // Fill in R_AARCH64_ADD_ABS_LO12
4859   elfcpp::Swap<32, big_endian>::writeval(
4860       pov + 12,
4861       ((this->first_plt_entry[3] & 0xffc003ff)
4862        | ((gotplt_2nd_ent & 0xfff) << 10)));
4863 }
4864
4865
4866 // Subsequent entries in the PLT for an executable.
4867 // FIXME: This only works for 64bit
4868
4869 template<int size, bool big_endian>
4870 void
4871 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4872     unsigned char* pov,
4873     Address got_address,
4874     Address plt_address,
4875     unsigned int got_offset,
4876     unsigned int plt_offset)
4877 {
4878   memcpy(pov, this->plt_entry, this->plt_entry_size);
4879
4880   Address gotplt_entry_address = got_address + got_offset;
4881   Address plt_entry_address = plt_address + plt_offset;
4882
4883   // Fill in R_AARCH64_PCREL_ADR_HI21
4884   AArch64_relocate_functions<size, big_endian>::adrp(
4885       pov,
4886       gotplt_entry_address,
4887       plt_entry_address);
4888
4889   // Fill in R_AARCH64_LDST64_ABS_LO12
4890   elfcpp::Swap<32, big_endian>::writeval(
4891       pov + 4,
4892       ((this->plt_entry[1] & 0xffc003ff)
4893        | ((gotplt_entry_address & 0xff8) << 7)));
4894
4895   // Fill in R_AARCH64_ADD_ABS_LO12
4896   elfcpp::Swap<32, big_endian>::writeval(
4897       pov + 8,
4898       ((this->plt_entry[2] & 0xffc003ff)
4899        | ((gotplt_entry_address & 0xfff) <<10)));
4900
4901 }
4902
4903
4904 template<>
4905 const uint32_t
4906 Output_data_plt_aarch64_standard<32, false>::
4907     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4908 {
4909   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4910   0x90000002,   /* adrp x2, 0 */
4911   0x90000003,   /* adrp x3, 0 */
4912   0xb9400042,   /* ldr w2, [w2, #0] */
4913   0x11000063,   /* add w3, w3, 0 */
4914   0xd61f0040,   /* br x2 */
4915   0xd503201f,   /* nop */
4916   0xd503201f,   /* nop */
4917 };
4918
4919 template<>
4920 const uint32_t
4921 Output_data_plt_aarch64_standard<32, true>::
4922     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4923 {
4924   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4925   0x90000002,   /* adrp x2, 0 */
4926   0x90000003,   /* adrp x3, 0 */
4927   0xb9400042,   /* ldr w2, [w2, #0] */
4928   0x11000063,   /* add w3, w3, 0 */
4929   0xd61f0040,   /* br x2 */
4930   0xd503201f,   /* nop */
4931   0xd503201f,   /* nop */
4932 };
4933
4934 template<>
4935 const uint32_t
4936 Output_data_plt_aarch64_standard<64, false>::
4937     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4938 {
4939   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4940   0x90000002,   /* adrp x2, 0 */
4941   0x90000003,   /* adrp x3, 0 */
4942   0xf9400042,   /* ldr x2, [x2, #0] */
4943   0x91000063,   /* add x3, x3, 0 */
4944   0xd61f0040,   /* br x2 */
4945   0xd503201f,   /* nop */
4946   0xd503201f,   /* nop */
4947 };
4948
4949 template<>
4950 const uint32_t
4951 Output_data_plt_aarch64_standard<64, true>::
4952     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4953 {
4954   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4955   0x90000002,   /* adrp x2, 0 */
4956   0x90000003,   /* adrp x3, 0 */
4957   0xf9400042,   /* ldr x2, [x2, #0] */
4958   0x91000063,   /* add x3, x3, 0 */
4959   0xd61f0040,   /* br x2 */
4960   0xd503201f,   /* nop */
4961   0xd503201f,   /* nop */
4962 };
4963
4964 template<int size, bool big_endian>
4965 void
4966 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4967     unsigned char* pov,
4968     Address gotplt_address,
4969     Address plt_address,
4970     Address got_base,
4971     unsigned int tlsdesc_got_offset,
4972     unsigned int plt_offset)
4973 {
4974   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4975
4976   // move DT_TLSDESC_GOT address into x2
4977   // move .got.plt address into x3
4978   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4979   Address plt_entry_address = plt_address + plt_offset;
4980
4981   // R_AARCH64_ADR_PREL_PG_HI21
4982   AArch64_relocate_functions<size, big_endian>::adrp(
4983       pov + 4,
4984       tlsdesc_got_entry,
4985       plt_entry_address + 4);
4986
4987   // R_AARCH64_ADR_PREL_PG_HI21
4988   AArch64_relocate_functions<size, big_endian>::adrp(
4989       pov + 8,
4990       gotplt_address,
4991       plt_entry_address + 8);
4992
4993   // R_AARCH64_LDST64_ABS_LO12
4994   elfcpp::Swap<32, big_endian>::writeval(
4995       pov + 12,
4996       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4997        | ((tlsdesc_got_entry & 0xff8) << 7)));
4998
4999   // R_AARCH64_ADD_ABS_LO12
5000   elfcpp::Swap<32, big_endian>::writeval(
5001       pov + 16,
5002       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
5003        | ((gotplt_address & 0xfff) << 10)));
5004 }
5005
5006 // Write out the PLT.  This uses the hand-coded instructions above,
5007 // and adjusts them as needed.  This is specified by the AMD64 ABI.
5008
5009 template<int size, bool big_endian>
5010 void
5011 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
5012 {
5013   const off_t offset = this->offset();
5014   const section_size_type oview_size =
5015     convert_to_section_size_type(this->data_size());
5016   unsigned char* const oview = of->get_output_view(offset, oview_size);
5017
5018   const off_t got_file_offset = this->got_plt_->offset();
5019   gold_assert(got_file_offset + this->got_plt_->data_size()
5020               == this->got_irelative_->offset());
5021
5022   const section_size_type got_size =
5023       convert_to_section_size_type(this->got_plt_->data_size()
5024                                    + this->got_irelative_->data_size());
5025   unsigned char* const got_view = of->get_output_view(got_file_offset,
5026                                                       got_size);
5027
5028   unsigned char* pov = oview;
5029
5030   // The base address of the .plt section.
5031   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
5032   // The base address of the PLT portion of the .got section.
5033   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
5034       = this->got_plt_->address();
5035
5036   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
5037   pov += this->first_plt_entry_offset();
5038
5039   // The first three entries in .got.plt are reserved.
5040   unsigned char* got_pov = got_view;
5041   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
5042   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5043
5044   unsigned int plt_offset = this->first_plt_entry_offset();
5045   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5046   const unsigned int count = this->count_ + this->irelative_count_;
5047   for (unsigned int plt_index = 0;
5048        plt_index < count;
5049        ++plt_index,
5050          pov += this->get_plt_entry_size(),
5051          got_pov += size / 8,
5052          plt_offset += this->get_plt_entry_size(),
5053          got_offset += size / 8)
5054     {
5055       // Set and adjust the PLT entry itself.
5056       this->fill_plt_entry(pov, gotplt_address, plt_address,
5057                            got_offset, plt_offset);
5058
5059       // Set the entry in the GOT, which points to plt0.
5060       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
5061     }
5062
5063   if (this->has_tlsdesc_entry())
5064     {
5065       // Set and adjust the reserved TLSDESC PLT entry.
5066       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
5067       // The base address of the .base section.
5068       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
5069           this->got_->address();
5070       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
5071                                tlsdesc_got_offset, plt_offset);
5072       pov += this->get_plt_tlsdesc_entry_size();
5073     }
5074
5075   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
5076   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
5077
5078   of->write_output_view(offset, oview_size, oview);
5079   of->write_output_view(got_file_offset, got_size, got_view);
5080 }
5081
5082 // Telling how to update the immediate field of an instruction.
5083 struct AArch64_howto
5084 {
5085   // The immediate field mask.
5086   elfcpp::Elf_Xword dst_mask;
5087
5088   // The offset to apply relocation immediate
5089   int doffset;
5090
5091   // The second part offset, if the immediate field has two parts.
5092   // -1 if the immediate field has only one part.
5093   int doffset2;
5094 };
5095
5096 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
5097 {
5098   {0, -1, -1},          // DATA
5099   {0x1fffe0, 5, -1},    // MOVW  [20:5]-imm16
5100   {0xffffe0, 5, -1},    // LD    [23:5]-imm19
5101   {0x60ffffe0, 29, 5},  // ADR   [30:29]-immlo  [23:5]-immhi
5102   {0x60ffffe0, 29, 5},  // ADRP  [30:29]-immlo  [23:5]-immhi
5103   {0x3ffc00, 10, -1},   // ADD   [21:10]-imm12
5104   {0x3ffc00, 10, -1},   // LDST  [21:10]-imm12
5105   {0x7ffe0, 5, -1},     // TBZNZ [18:5]-imm14
5106   {0xffffe0, 5, -1},    // CONDB [23:5]-imm19
5107   {0x3ffffff, 0, -1},   // B     [25:0]-imm26
5108   {0x3ffffff, 0, -1},   // CALL  [25:0]-imm26
5109 };
5110
5111 // AArch64 relocate function class
5112
5113 template<int size, bool big_endian>
5114 class AArch64_relocate_functions
5115 {
5116  public:
5117   typedef enum
5118   {
5119     STATUS_OKAY,        // No error during relocation.
5120     STATUS_OVERFLOW,    // Relocation overflow.
5121     STATUS_BAD_RELOC,   // Relocation cannot be applied.
5122   } Status;
5123
5124   typedef AArch64_relocate_functions<size, big_endian> This;
5125   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5126   typedef Relocate_info<size, big_endian> The_relocate_info;
5127   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5128   typedef Reloc_stub<size, big_endian> The_reloc_stub;
5129   typedef Stub_table<size, big_endian> The_stub_table;
5130   typedef elfcpp::Rela<size, big_endian> The_rela;
5131   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5132
5133   // Return the page address of the address.
5134   // Page(address) = address & ~0xFFF
5135
5136   static inline AArch64_valtype
5137   Page(Address address)
5138   {
5139     return (address & (~static_cast<Address>(0xFFF)));
5140   }
5141
5142  private:
5143   // Update instruction (pointed by view) with selected bits (immed).
5144   // val = (val & ~dst_mask) | (immed << doffset)
5145
5146   template<int valsize>
5147   static inline void
5148   update_view(unsigned char* view,
5149               AArch64_valtype immed,
5150               elfcpp::Elf_Xword doffset,
5151               elfcpp::Elf_Xword dst_mask)
5152   {
5153     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5154     Valtype* wv = reinterpret_cast<Valtype*>(view);
5155     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5156
5157     // Clear immediate fields.
5158     val &= ~dst_mask;
5159     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5160       static_cast<Valtype>(val | (immed << doffset)));
5161   }
5162
5163   // Update two parts of an instruction (pointed by view) with selected
5164   // bits (immed1 and immed2).
5165   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5166
5167   template<int valsize>
5168   static inline void
5169   update_view_two_parts(
5170     unsigned char* view,
5171     AArch64_valtype immed1,
5172     AArch64_valtype immed2,
5173     elfcpp::Elf_Xword doffset1,
5174     elfcpp::Elf_Xword doffset2,
5175     elfcpp::Elf_Xword dst_mask)
5176   {
5177     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5178     Valtype* wv = reinterpret_cast<Valtype*>(view);
5179     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5180     val &= ~dst_mask;
5181     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5182       static_cast<Valtype>(val | (immed1 << doffset1) |
5183                            (immed2 << doffset2)));
5184   }
5185
5186   // Update adr or adrp instruction with immed.
5187   // In adr and adrp: [30:29] immlo   [23:5] immhi
5188
5189   static inline void
5190   update_adr(unsigned char* view, AArch64_valtype immed)
5191   {
5192     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5193     This::template update_view_two_parts<32>(
5194       view,
5195       immed & 0x3,
5196       (immed & 0x1ffffc) >> 2,
5197       29,
5198       5,
5199       dst_mask);
5200   }
5201
5202   // Update movz/movn instruction with bits immed.
5203   // Set instruction to movz if is_movz is true, otherwise set instruction
5204   // to movn.
5205
5206   static inline void
5207   update_movnz(unsigned char* view,
5208                AArch64_valtype immed,
5209                bool is_movz)
5210   {
5211     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5212     Valtype* wv = reinterpret_cast<Valtype*>(view);
5213     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5214
5215     const elfcpp::Elf_Xword doffset =
5216         aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5217     const elfcpp::Elf_Xword dst_mask =
5218         aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5219
5220     // Clear immediate fields and opc code.
5221     val &= ~(dst_mask | (0x3 << 29));
5222
5223     // Set instruction to movz or movn.
5224     // movz: [30:29] is 10   movn: [30:29] is 00
5225     if (is_movz)
5226       val |= (0x2 << 29);
5227
5228     elfcpp::Swap<32, big_endian>::writeval(wv,
5229       static_cast<Valtype>(val | (immed << doffset)));
5230   }
5231
5232  public:
5233
5234   // Update selected bits in text.
5235
5236   template<int valsize>
5237   static inline typename This::Status
5238   reloc_common(unsigned char* view, Address x,
5239                 const AArch64_reloc_property* reloc_property)
5240   {
5241     // Select bits from X.
5242     Address immed = reloc_property->select_x_value(x);
5243
5244     // Update view.
5245     const AArch64_reloc_property::Reloc_inst inst =
5246       reloc_property->reloc_inst();
5247     // If it is a data relocation or instruction has 2 parts of immediate
5248     // fields, you should not call pcrela_general.
5249     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5250                 aarch64_howto[inst].doffset != -1);
5251     This::template update_view<valsize>(view, immed,
5252                                         aarch64_howto[inst].doffset,
5253                                         aarch64_howto[inst].dst_mask);
5254
5255     // Do check overflow or alignment if needed.
5256     return (reloc_property->checkup_x_value(x)
5257             ? This::STATUS_OKAY
5258             : This::STATUS_OVERFLOW);
5259   }
5260
5261   // Construct a B insn. Note, although we group it here with other relocation
5262   // operation, there is actually no 'relocation' involved here.
5263   static inline void
5264   construct_b(unsigned char* view, unsigned int branch_offset)
5265   {
5266     update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5267                               26, 0, 0xffffffff);
5268   }
5269
5270   // Do a simple rela relocation at unaligned addresses.
5271
5272   template<int valsize>
5273   static inline typename This::Status
5274   rela_ua(unsigned char* view,
5275           const Sized_relobj_file<size, big_endian>* object,
5276           const Symbol_value<size>* psymval,
5277           AArch64_valtype addend,
5278           const AArch64_reloc_property* reloc_property)
5279   {
5280     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5281       Valtype;
5282     typename elfcpp::Elf_types<size>::Elf_Addr x =
5283         psymval->value(object, addend);
5284     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5285       static_cast<Valtype>(x));
5286     return (reloc_property->checkup_x_value(x)
5287             ? This::STATUS_OKAY
5288             : This::STATUS_OVERFLOW);
5289   }
5290
5291   // Do a simple pc-relative relocation at unaligned addresses.
5292
5293   template<int valsize>
5294   static inline typename This::Status
5295   pcrela_ua(unsigned char* view,
5296             const Sized_relobj_file<size, big_endian>* object,
5297             const Symbol_value<size>* psymval,
5298             AArch64_valtype addend,
5299             Address address,
5300             const AArch64_reloc_property* reloc_property)
5301   {
5302     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5303       Valtype;
5304     Address x = psymval->value(object, addend) - address;
5305     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5306       static_cast<Valtype>(x));
5307     return (reloc_property->checkup_x_value(x)
5308             ? This::STATUS_OKAY
5309             : This::STATUS_OVERFLOW);
5310   }
5311
5312   // Do a simple rela relocation at aligned addresses.
5313
5314   template<int valsize>
5315   static inline typename This::Status
5316   rela(
5317     unsigned char* view,
5318     const Sized_relobj_file<size, big_endian>* object,
5319     const Symbol_value<size>* psymval,
5320     AArch64_valtype addend,
5321     const AArch64_reloc_property* reloc_property)
5322   {
5323     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5324     Valtype* wv = reinterpret_cast<Valtype*>(view);
5325     Address x = psymval->value(object, addend);
5326     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5327     return (reloc_property->checkup_x_value(x)
5328             ? This::STATUS_OKAY
5329             : This::STATUS_OVERFLOW);
5330   }
5331
5332   // Do relocate. Update selected bits in text.
5333   // new_val = (val & ~dst_mask) | (immed << doffset)
5334
5335   template<int valsize>
5336   static inline typename This::Status
5337   rela_general(unsigned char* view,
5338                const Sized_relobj_file<size, big_endian>* object,
5339                const Symbol_value<size>* psymval,
5340                AArch64_valtype addend,
5341                const AArch64_reloc_property* reloc_property)
5342   {
5343     // Calculate relocation.
5344     Address x = psymval->value(object, addend);
5345     return This::template reloc_common<valsize>(view, x, reloc_property);
5346   }
5347
5348   // Do relocate. Update selected bits in text.
5349   // new val = (val & ~dst_mask) | (immed << doffset)
5350
5351   template<int valsize>
5352   static inline typename This::Status
5353   rela_general(
5354     unsigned char* view,
5355     AArch64_valtype s,
5356     AArch64_valtype addend,
5357     const AArch64_reloc_property* reloc_property)
5358   {
5359     // Calculate relocation.
5360     Address x = s + addend;
5361     return This::template reloc_common<valsize>(view, x, reloc_property);
5362   }
5363
5364   // Do address relative relocate. Update selected bits in text.
5365   // new val = (val & ~dst_mask) | (immed << doffset)
5366
5367   template<int valsize>
5368   static inline typename This::Status
5369   pcrela_general(
5370     unsigned char* view,
5371     const Sized_relobj_file<size, big_endian>* object,
5372     const Symbol_value<size>* psymval,
5373     AArch64_valtype addend,
5374     Address address,
5375     const AArch64_reloc_property* reloc_property)
5376   {
5377     // Calculate relocation.
5378     Address x = psymval->value(object, addend) - address;
5379     return This::template reloc_common<valsize>(view, x, reloc_property);
5380   }
5381
5382
5383   // Calculate (S + A) - address, update adr instruction.
5384
5385   static inline typename This::Status
5386   adr(unsigned char* view,
5387       const Sized_relobj_file<size, big_endian>* object,
5388       const Symbol_value<size>* psymval,
5389       Address addend,
5390       Address address,
5391       const AArch64_reloc_property* /* reloc_property */)
5392   {
5393     AArch64_valtype x = psymval->value(object, addend) - address;
5394     // Pick bits [20:0] of X.
5395     AArch64_valtype immed = x & 0x1fffff;
5396     update_adr(view, immed);
5397     // Check -2^20 <= X < 2^20
5398     return (size == 64 && Bits<21>::has_overflow((x))
5399             ? This::STATUS_OVERFLOW
5400             : This::STATUS_OKAY);
5401   }
5402
5403   // Calculate PG(S+A) - PG(address), update adrp instruction.
5404   // R_AARCH64_ADR_PREL_PG_HI21
5405
5406   static inline typename This::Status
5407   adrp(
5408     unsigned char* view,
5409     Address sa,
5410     Address address)
5411   {
5412     AArch64_valtype x = This::Page(sa) - This::Page(address);
5413     // Pick [32:12] of X.
5414     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5415     update_adr(view, immed);
5416     // Check -2^32 <= X < 2^32
5417     return (size == 64 && Bits<33>::has_overflow((x))
5418             ? This::STATUS_OVERFLOW
5419             : This::STATUS_OKAY);
5420   }
5421
5422   // Calculate PG(S+A) - PG(address), update adrp instruction.
5423   // R_AARCH64_ADR_PREL_PG_HI21
5424
5425   static inline typename This::Status
5426   adrp(unsigned char* view,
5427        const Sized_relobj_file<size, big_endian>* object,
5428        const Symbol_value<size>* psymval,
5429        Address addend,
5430        Address address,
5431        const AArch64_reloc_property* reloc_property)
5432   {
5433     Address sa = psymval->value(object, addend);
5434     AArch64_valtype x = This::Page(sa) - This::Page(address);
5435     // Pick [32:12] of X.
5436     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5437     update_adr(view, immed);
5438     return (reloc_property->checkup_x_value(x)
5439             ? This::STATUS_OKAY
5440             : This::STATUS_OVERFLOW);
5441   }
5442
5443   // Update mov[n/z] instruction. Check overflow if needed.
5444   // If X >=0, set the instruction to movz and its immediate value to the
5445   // selected bits S.
5446   // If X < 0, set the instruction to movn and its immediate value to
5447   // NOT (selected bits of).
5448
5449   static inline typename This::Status
5450   movnz(unsigned char* view,
5451         AArch64_valtype x,
5452         const AArch64_reloc_property* reloc_property)
5453   {
5454     // Select bits from X.
5455     Address immed;
5456     bool is_movz;
5457     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5458     if (static_cast<SignedW>(x) >= 0)
5459       {
5460         immed = reloc_property->select_x_value(x);
5461         is_movz = true;
5462       }
5463     else
5464       {
5465         immed = reloc_property->select_x_value(~x);;
5466         is_movz = false;
5467       }
5468
5469     // Update movnz instruction.
5470     update_movnz(view, immed, is_movz);
5471
5472     // Do check overflow or alignment if needed.
5473     return (reloc_property->checkup_x_value(x)
5474             ? This::STATUS_OKAY
5475             : This::STATUS_OVERFLOW);
5476   }
5477
5478   static inline bool
5479   maybe_apply_stub(unsigned int,
5480                    const The_relocate_info*,
5481                    const The_rela&,
5482                    unsigned char*,
5483                    Address,
5484                    const Sized_symbol<size>*,
5485                    const Symbol_value<size>*,
5486                    const Sized_relobj_file<size, big_endian>*,
5487                    section_size_type);
5488
5489 };  // End of AArch64_relocate_functions
5490
5491
5492 // For a certain relocation type (usually jump/branch), test to see if the
5493 // destination needs a stub to fulfil. If so, re-route the destination of the
5494 // original instruction to the stub, note, at this time, the stub has already
5495 // been generated.
5496
5497 template<int size, bool big_endian>
5498 bool
5499 AArch64_relocate_functions<size, big_endian>::
5500 maybe_apply_stub(unsigned int r_type,
5501                  const The_relocate_info* relinfo,
5502                  const The_rela& rela,
5503                  unsigned char* view,
5504                  Address address,
5505                  const Sized_symbol<size>* gsym,
5506                  const Symbol_value<size>* psymval,
5507                  const Sized_relobj_file<size, big_endian>* object,
5508                  section_size_type current_group_size)
5509 {
5510   if (parameters->options().relocatable())
5511     return false;
5512
5513   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5514   Address branch_target = psymval->value(object, 0) + addend;
5515   int stub_type =
5516     The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5517   if (stub_type == ST_NONE)
5518     return false;
5519
5520   const The_aarch64_relobj* aarch64_relobj =
5521       static_cast<const The_aarch64_relobj*>(object);
5522   const AArch64_reloc_property* arp =
5523     aarch64_reloc_property_table->get_reloc_property(r_type);
5524   gold_assert(arp != NULL);
5525
5526   // We don't create stubs for undefined symbols, but do for weak.
5527   if (gsym
5528       && !gsym->use_plt_offset(arp->reference_flags())
5529       && gsym->is_undefined())
5530     {
5531       gold_debug(DEBUG_TARGET,
5532                  "stub: looking for a stub for undefined symbol %s in file %s",
5533                  gsym->name(), aarch64_relobj->name().c_str());
5534       return false;
5535     }
5536
5537   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5538   gold_assert(stub_table != NULL);
5539
5540   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5541   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5542   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5543   gold_assert(stub != NULL);
5544
5545   Address new_branch_target = stub_table->address() + stub->offset();
5546   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5547       new_branch_target - address;
5548   typename This::Status status = This::template
5549       rela_general<32>(view, branch_offset, 0, arp);
5550   if (status != This::STATUS_OKAY)
5551     gold_error(_("Stub is too far away, try a smaller value "
5552                  "for '--stub-group-size'. The current value is 0x%lx."),
5553                static_cast<unsigned long>(current_group_size));
5554   return true;
5555 }
5556
5557
5558 // Group input sections for stub generation.
5559 //
5560 // We group input sections in an output section so that the total size,
5561 // including any padding space due to alignment is smaller than GROUP_SIZE
5562 // unless the only input section in group is bigger than GROUP_SIZE already.
5563 // Then an ARM stub table is created to follow the last input section
5564 // in group.  For each group an ARM stub table is created an is placed
5565 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5566 // extend the group after the stub table.
5567
5568 template<int size, bool big_endian>
5569 void
5570 Target_aarch64<size, big_endian>::group_sections(
5571     Layout* layout,
5572     section_size_type group_size,
5573     bool stubs_always_after_branch,
5574     const Task* task)
5575 {
5576   // Group input sections and insert stub table
5577   Layout::Section_list section_list;
5578   layout->get_executable_sections(&section_list);
5579   for (Layout::Section_list::const_iterator p = section_list.begin();
5580        p != section_list.end();
5581        ++p)
5582     {
5583       AArch64_output_section<size, big_endian>* output_section =
5584           static_cast<AArch64_output_section<size, big_endian>*>(*p);
5585       output_section->group_sections(group_size, stubs_always_after_branch,
5586                                      this, task);
5587     }
5588 }
5589
5590
5591 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5592 // section of RELOBJ.
5593
5594 template<int size, bool big_endian>
5595 AArch64_input_section<size, big_endian>*
5596 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5597     Relobj* relobj, unsigned int shndx) const
5598 {
5599   Section_id sid(relobj, shndx);
5600   typename AArch64_input_section_map::const_iterator p =
5601     this->aarch64_input_section_map_.find(sid);
5602   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5603 }
5604
5605
5606 // Make a new AArch64_input_section object.
5607
5608 template<int size, bool big_endian>
5609 AArch64_input_section<size, big_endian>*
5610 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5611     Relobj* relobj, unsigned int shndx)
5612 {
5613   Section_id sid(relobj, shndx);
5614
5615   AArch64_input_section<size, big_endian>* input_section =
5616       new AArch64_input_section<size, big_endian>(relobj, shndx);
5617   input_section->init();
5618
5619   // Register new AArch64_input_section in map for look-up.
5620   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5621       this->aarch64_input_section_map_.insert(
5622           std::make_pair(sid, input_section));
5623
5624   // Make sure that it we have not created another AArch64_input_section
5625   // for this input section already.
5626   gold_assert(ins.second);
5627
5628   return input_section;
5629 }
5630
5631
5632 // Relaxation hook.  This is where we do stub generation.
5633
5634 template<int size, bool big_endian>
5635 bool
5636 Target_aarch64<size, big_endian>::do_relax(
5637     int pass,
5638     const Input_objects* input_objects,
5639     Symbol_table* symtab,
5640     Layout* layout ,
5641     const Task* task)
5642 {
5643   gold_assert(!parameters->options().relocatable());
5644   if (pass == 1)
5645     {
5646       // We don't handle negative stub_group_size right now.
5647       this->stub_group_size_ = abs(parameters->options().stub_group_size());
5648       if (this->stub_group_size_ == 1)
5649         {
5650           // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5651           // will fail to link.  The user will have to relink with an explicit
5652           // group size option.
5653           this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5654                                    4096 * 4;
5655         }
5656       group_sections(layout, this->stub_group_size_, true, task);
5657     }
5658   else
5659     {
5660       // If this is not the first pass, addresses and file offsets have
5661       // been reset at this point, set them here.
5662       for (Stub_table_iterator sp = this->stub_tables_.begin();
5663            sp != this->stub_tables_.end(); ++sp)
5664         {
5665           The_stub_table* stt = *sp;
5666           The_aarch64_input_section* owner = stt->owner();
5667           off_t off = align_address(owner->original_size(),
5668                                     stt->addralign());
5669           stt->set_address_and_file_offset(owner->address() + off,
5670                                            owner->offset() + off);
5671         }
5672     }
5673
5674   // Scan relocs for relocation stubs
5675   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5676        op != input_objects->relobj_end();
5677        ++op)
5678     {
5679       The_aarch64_relobj* aarch64_relobj =
5680           static_cast<The_aarch64_relobj*>(*op);
5681       // Lock the object so we can read from it.  This is only called
5682       // single-threaded from Layout::finalize, so it is OK to lock.
5683       Task_lock_obj<Object> tl(task, aarch64_relobj);
5684       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5685     }
5686
5687   bool any_stub_table_changed = false;
5688   for (Stub_table_iterator siter = this->stub_tables_.begin();
5689        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5690     {
5691       The_stub_table* stub_table = *siter;
5692       if (stub_table->update_data_size_changed_p())
5693         {
5694           The_aarch64_input_section* owner = stub_table->owner();
5695           uint64_t address = owner->address();
5696           off_t offset = owner->offset();
5697           owner->reset_address_and_file_offset();
5698           owner->set_address_and_file_offset(address, offset);
5699
5700           any_stub_table_changed = true;
5701         }
5702     }
5703
5704   // Do not continue relaxation.
5705   bool continue_relaxation = any_stub_table_changed;
5706   if (!continue_relaxation)
5707     for (Stub_table_iterator sp = this->stub_tables_.begin();
5708          (sp != this->stub_tables_.end());
5709          ++sp)
5710       (*sp)->finalize_stubs();
5711
5712   return continue_relaxation;
5713 }
5714
5715
5716 // Make a new Stub_table.
5717
5718 template<int size, bool big_endian>
5719 Stub_table<size, big_endian>*
5720 Target_aarch64<size, big_endian>::new_stub_table(
5721     AArch64_input_section<size, big_endian>* owner)
5722 {
5723   Stub_table<size, big_endian>* stub_table =
5724       new Stub_table<size, big_endian>(owner);
5725   stub_table->set_address(align_address(
5726       owner->address() + owner->data_size(), 8));
5727   stub_table->set_file_offset(owner->offset() + owner->data_size());
5728   stub_table->finalize_data_size();
5729
5730   this->stub_tables_.push_back(stub_table);
5731
5732   return stub_table;
5733 }
5734
5735
5736 template<int size, bool big_endian>
5737 uint64_t
5738 Target_aarch64<size, big_endian>::do_reloc_addend(
5739     void* arg, unsigned int r_type, uint64_t) const
5740 {
5741   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5742   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5743   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5744   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5745   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5746   gold_assert(psymval->is_tls_symbol());
5747   // The value of a TLS symbol is the offset in the TLS segment.
5748   return psymval->value(ti.object, 0);
5749 }
5750
5751 // Return the number of entries in the PLT.
5752
5753 template<int size, bool big_endian>
5754 unsigned int
5755 Target_aarch64<size, big_endian>::plt_entry_count() const
5756 {
5757   if (this->plt_ == NULL)
5758     return 0;
5759   return this->plt_->entry_count();
5760 }
5761
5762 // Return the offset of the first non-reserved PLT entry.
5763
5764 template<int size, bool big_endian>
5765 unsigned int
5766 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5767 {
5768   return this->plt_->first_plt_entry_offset();
5769 }
5770
5771 // Return the size of each PLT entry.
5772
5773 template<int size, bool big_endian>
5774 unsigned int
5775 Target_aarch64<size, big_endian>::plt_entry_size() const
5776 {
5777   return this->plt_->get_plt_entry_size();
5778 }
5779
5780 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5781
5782 template<int size, bool big_endian>
5783 void
5784 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5785     Symbol_table* symtab, Layout* layout)
5786 {
5787   if (this->tls_base_symbol_defined_)
5788     return;
5789
5790   Output_segment* tls_segment = layout->tls_segment();
5791   if (tls_segment != NULL)
5792     {
5793       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5794       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5795                                        Symbol_table::PREDEFINED,
5796                                        tls_segment, 0, 0,
5797                                        elfcpp::STT_TLS,
5798                                        elfcpp::STB_LOCAL,
5799                                        elfcpp::STV_HIDDEN, 0,
5800                                        Symbol::SEGMENT_START,
5801                                        true);
5802     }
5803   this->tls_base_symbol_defined_ = true;
5804 }
5805
5806 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5807
5808 template<int size, bool big_endian>
5809 void
5810 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5811     Symbol_table* symtab, Layout* layout)
5812 {
5813   if (this->plt_ == NULL)
5814     this->make_plt_section(symtab, layout);
5815
5816   if (!this->plt_->has_tlsdesc_entry())
5817     {
5818       // Allocate the TLSDESC_GOT entry.
5819       Output_data_got_aarch64<size, big_endian>* got =
5820           this->got_section(symtab, layout);
5821       unsigned int got_offset = got->add_constant(0);
5822
5823       // Allocate the TLSDESC_PLT entry.
5824       this->plt_->reserve_tlsdesc_entry(got_offset);
5825     }
5826 }
5827
5828 // Create a GOT entry for the TLS module index.
5829
5830 template<int size, bool big_endian>
5831 unsigned int
5832 Target_aarch64<size, big_endian>::got_mod_index_entry(
5833     Symbol_table* symtab, Layout* layout,
5834     Sized_relobj_file<size, big_endian>* object)
5835 {
5836   if (this->got_mod_index_offset_ == -1U)
5837     {
5838       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5839       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5840       Output_data_got_aarch64<size, big_endian>* got =
5841           this->got_section(symtab, layout);
5842       unsigned int got_offset = got->add_constant(0);
5843       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5844                           got_offset, 0);
5845       got->add_constant(0);
5846       this->got_mod_index_offset_ = got_offset;
5847     }
5848   return this->got_mod_index_offset_;
5849 }
5850
5851 // Optimize the TLS relocation type based on what we know about the
5852 // symbol.  IS_FINAL is true if the final address of this symbol is
5853 // known at link time.
5854
5855 template<int size, bool big_endian>
5856 tls::Tls_optimization
5857 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5858                                                      int r_type)
5859 {
5860   // If we are generating a shared library, then we can't do anything
5861   // in the linker
5862   if (parameters->options().shared())
5863     return tls::TLSOPT_NONE;
5864
5865   switch (r_type)
5866     {
5867     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5868     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5869     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5870     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5871     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5872     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5873     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5874     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5875     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5876     case elfcpp::R_AARCH64_TLSDESC_LDR:
5877     case elfcpp::R_AARCH64_TLSDESC_ADD:
5878     case elfcpp::R_AARCH64_TLSDESC_CALL:
5879       // These are General-Dynamic which permits fully general TLS
5880       // access.  Since we know that we are generating an executable,
5881       // we can convert this to Initial-Exec.  If we also know that
5882       // this is a local symbol, we can further switch to Local-Exec.
5883       if (is_final)
5884         return tls::TLSOPT_TO_LE;
5885       return tls::TLSOPT_TO_IE;
5886
5887     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5888     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5889     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5890     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5891     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5892     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5893       // These are Local-Dynamic, which refer to local symbols in the
5894       // dynamic TLS block. Since we know that we generating an
5895       // executable, we can switch to Local-Exec.
5896       return tls::TLSOPT_TO_LE;
5897
5898     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5899     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5900     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5901     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5902     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5903       // These are Initial-Exec relocs which get the thread offset
5904       // from the GOT. If we know that we are linking against the
5905       // local symbol, we can switch to Local-Exec, which links the
5906       // thread offset into the instruction.
5907       if (is_final)
5908         return tls::TLSOPT_TO_LE;
5909       return tls::TLSOPT_NONE;
5910
5911     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5912     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5913     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5914     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5915     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5916     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5917     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5918     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5919       // When we already have Local-Exec, there is nothing further we
5920       // can do.
5921       return tls::TLSOPT_NONE;
5922
5923     default:
5924       gold_unreachable();
5925     }
5926 }
5927
5928 // Returns true if this relocation type could be that of a function pointer.
5929
5930 template<int size, bool big_endian>
5931 inline bool
5932 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5933   unsigned int r_type)
5934 {
5935   switch (r_type)
5936     {
5937     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5938     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5939     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5940     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5941     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5942       {
5943         return true;
5944       }
5945     }
5946   return false;
5947 }
5948
5949 // For safe ICF, scan a relocation for a local symbol to check if it
5950 // corresponds to a function pointer being taken.  In that case mark
5951 // the function whose pointer was taken as not foldable.
5952
5953 template<int size, bool big_endian>
5954 inline bool
5955 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5956   Symbol_table* ,
5957   Layout* ,
5958   Target_aarch64<size, big_endian>* ,
5959   Sized_relobj_file<size, big_endian>* ,
5960   unsigned int ,
5961   Output_section* ,
5962   const elfcpp::Rela<size, big_endian>& ,
5963   unsigned int r_type,
5964   const elfcpp::Sym<size, big_endian>&)
5965 {
5966   // When building a shared library, do not fold any local symbols.
5967   return (parameters->options().shared()
5968           || possible_function_pointer_reloc(r_type));
5969 }
5970
5971 // For safe ICF, scan a relocation for a global symbol to check if it
5972 // corresponds to a function pointer being taken.  In that case mark
5973 // the function whose pointer was taken as not foldable.
5974
5975 template<int size, bool big_endian>
5976 inline bool
5977 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5978   Symbol_table* ,
5979   Layout* ,
5980   Target_aarch64<size, big_endian>* ,
5981   Sized_relobj_file<size, big_endian>* ,
5982   unsigned int ,
5983   Output_section* ,
5984   const elfcpp::Rela<size, big_endian>& ,
5985   unsigned int r_type,
5986   Symbol* gsym)
5987 {
5988   // When building a shared library, do not fold symbols whose visibility
5989   // is hidden, internal or protected.
5990   return ((parameters->options().shared()
5991            && (gsym->visibility() == elfcpp::STV_INTERNAL
5992                || gsym->visibility() == elfcpp::STV_PROTECTED
5993                || gsym->visibility() == elfcpp::STV_HIDDEN))
5994           || possible_function_pointer_reloc(r_type));
5995 }
5996
5997 // Report an unsupported relocation against a local symbol.
5998
5999 template<int size, bool big_endian>
6000 void
6001 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
6002      Sized_relobj_file<size, big_endian>* object,
6003      unsigned int r_type)
6004 {
6005   gold_error(_("%s: unsupported reloc %u against local symbol"),
6006              object->name().c_str(), r_type);
6007 }
6008
6009 // We are about to emit a dynamic relocation of type R_TYPE.  If the
6010 // dynamic linker does not support it, issue an error.
6011
6012 template<int size, bool big_endian>
6013 void
6014 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
6015                                                       unsigned int r_type)
6016 {
6017   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
6018
6019   switch (r_type)
6020     {
6021     // These are the relocation types supported by glibc for AARCH64.
6022     case elfcpp::R_AARCH64_NONE:
6023     case elfcpp::R_AARCH64_COPY:
6024     case elfcpp::R_AARCH64_GLOB_DAT:
6025     case elfcpp::R_AARCH64_JUMP_SLOT:
6026     case elfcpp::R_AARCH64_RELATIVE:
6027     case elfcpp::R_AARCH64_TLS_DTPREL64:
6028     case elfcpp::R_AARCH64_TLS_DTPMOD64:
6029     case elfcpp::R_AARCH64_TLS_TPREL64:
6030     case elfcpp::R_AARCH64_TLSDESC:
6031     case elfcpp::R_AARCH64_IRELATIVE:
6032     case elfcpp::R_AARCH64_ABS32:
6033     case elfcpp::R_AARCH64_ABS64:
6034       return;
6035
6036     default:
6037       break;
6038     }
6039
6040   // This prevents us from issuing more than one error per reloc
6041   // section. But we can still wind up issuing more than one
6042   // error per object file.
6043   if (this->issued_non_pic_error_)
6044     return;
6045   gold_assert(parameters->options().output_is_position_independent());
6046   object->error(_("requires unsupported dynamic reloc; "
6047                   "recompile with -fPIC"));
6048   this->issued_non_pic_error_ = true;
6049   return;
6050 }
6051
6052 // Return whether we need to make a PLT entry for a relocation of the
6053 // given type against a STT_GNU_IFUNC symbol.
6054
6055 template<int size, bool big_endian>
6056 bool
6057 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6058     Sized_relobj_file<size, big_endian>* object,
6059     unsigned int r_type)
6060 {
6061   const AArch64_reloc_property* arp =
6062       aarch64_reloc_property_table->get_reloc_property(r_type);
6063   gold_assert(arp != NULL);
6064
6065   int flags = arp->reference_flags();
6066   if (flags & Symbol::TLS_REF)
6067     {
6068       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
6069                  object->name().c_str(), arp->name().c_str());
6070       return false;
6071     }
6072   return flags != 0;
6073 }
6074
6075 // Scan a relocation for a local symbol.
6076
6077 template<int size, bool big_endian>
6078 inline void
6079 Target_aarch64<size, big_endian>::Scan::local(
6080     Symbol_table* symtab,
6081     Layout* layout,
6082     Target_aarch64<size, big_endian>* target,
6083     Sized_relobj_file<size, big_endian>* object,
6084     unsigned int data_shndx,
6085     Output_section* output_section,
6086     const elfcpp::Rela<size, big_endian>& rela,
6087     unsigned int r_type,
6088     const elfcpp::Sym<size, big_endian>& lsym,
6089     bool is_discarded)
6090 {
6091   if (is_discarded)
6092     return;
6093
6094   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6095       Reloc_section;
6096   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6097
6098   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6099   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6100   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
6101     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6102
6103   switch (r_type)
6104     {
6105     case elfcpp::R_AARCH64_NONE:
6106       break;
6107
6108     case elfcpp::R_AARCH64_ABS32:
6109     case elfcpp::R_AARCH64_ABS16:
6110       if (parameters->options().output_is_position_independent())
6111         {
6112           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6113                      object->name().c_str(), r_type);
6114         }
6115       break;
6116
6117     case elfcpp::R_AARCH64_ABS64:
6118       // If building a shared library or pie, we need to mark this as a dynmic
6119       // reloction, so that the dynamic loader can relocate it.
6120       if (parameters->options().output_is_position_independent())
6121         {
6122           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6123           rela_dyn->add_local_relative(object, r_sym,
6124                                        elfcpp::R_AARCH64_RELATIVE,
6125                                        output_section,
6126                                        data_shndx,
6127                                        rela.get_r_offset(),
6128                                        rela.get_r_addend(),
6129                                        is_ifunc);
6130         }
6131       break;
6132
6133     case elfcpp::R_AARCH64_PREL64:
6134     case elfcpp::R_AARCH64_PREL32:
6135     case elfcpp::R_AARCH64_PREL16:
6136       break;
6137
6138     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6139     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6140     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6141       // The above relocations are used to access GOT entries.
6142       {
6143         Output_data_got_aarch64<size, big_endian>* got =
6144             target->got_section(symtab, layout);
6145         bool is_new = false;
6146         // This symbol requires a GOT entry.
6147         if (is_ifunc)
6148           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6149         else
6150           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6151         if (is_new && parameters->options().output_is_position_independent())
6152           target->rela_dyn_section(layout)->
6153             add_local_relative(object,
6154                                r_sym,
6155                                elfcpp::R_AARCH64_RELATIVE,
6156                                got,
6157                                object->local_got_offset(r_sym,
6158                                                         GOT_TYPE_STANDARD),
6159                                0,
6160                                false);
6161       }
6162       break;
6163
6164     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6165     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6166     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6167     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6168     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6169     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6170     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6171     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6172     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6173     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6174       if (parameters->options().output_is_position_independent())
6175         {
6176           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6177                      object->name().c_str(), r_type);
6178         }
6179       break;
6180
6181     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6182     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6183     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6184     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6185     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6186     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6187     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6188     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6189     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6190     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6191        break;
6192
6193     // Control flow, pc-relative. We don't need to do anything for a relative
6194     // addressing relocation against a local symbol if it does not reference
6195     // the GOT.
6196     case elfcpp::R_AARCH64_TSTBR14:
6197     case elfcpp::R_AARCH64_CONDBR19:
6198     case elfcpp::R_AARCH64_JUMP26:
6199     case elfcpp::R_AARCH64_CALL26:
6200       break;
6201
6202     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6203     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6204       {
6205         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6206           optimize_tls_reloc(!parameters->options().shared(), r_type);
6207         if (tlsopt == tls::TLSOPT_TO_LE)
6208           break;
6209
6210         layout->set_has_static_tls();
6211         // Create a GOT entry for the tp-relative offset.
6212         if (!parameters->doing_static_link())
6213           {
6214             Output_data_got_aarch64<size, big_endian>* got =
6215                 target->got_section(symtab, layout);
6216             got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6217                                     target->rela_dyn_section(layout),
6218                                     elfcpp::R_AARCH64_TLS_TPREL64);
6219           }
6220         else if (!object->local_has_got_offset(r_sym,
6221                                                GOT_TYPE_TLS_OFFSET))
6222           {
6223             Output_data_got_aarch64<size, big_endian>* got =
6224                 target->got_section(symtab, layout);
6225             got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6226             unsigned int got_offset =
6227                 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6228             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6229             gold_assert(addend == 0);
6230             got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6231                                   object, r_sym);
6232           }
6233       }
6234       break;
6235
6236     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6237     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6238       {
6239         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6240             optimize_tls_reloc(!parameters->options().shared(), r_type);
6241         if (tlsopt == tls::TLSOPT_TO_LE)
6242           {
6243             layout->set_has_static_tls();
6244             break;
6245           }
6246         gold_assert(tlsopt == tls::TLSOPT_NONE);
6247
6248         Output_data_got_aarch64<size, big_endian>* got =
6249             target->got_section(symtab, layout);
6250         got->add_local_pair_with_rel(object,r_sym, data_shndx,
6251                                      GOT_TYPE_TLS_PAIR,
6252                                      target->rela_dyn_section(layout),
6253                                      elfcpp::R_AARCH64_TLS_DTPMOD64);
6254       }
6255       break;
6256
6257     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6258     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6259     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6260     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6261     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6262     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6263     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6264     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6265       {
6266         layout->set_has_static_tls();
6267         bool output_is_shared = parameters->options().shared();
6268         if (output_is_shared)
6269           gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6270                      object->name().c_str(), r_type);
6271       }
6272       break;
6273
6274     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6275     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6276       {
6277         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6278             optimize_tls_reloc(!parameters->options().shared(), r_type);
6279         if (tlsopt == tls::TLSOPT_NONE)
6280           {
6281             // Create a GOT entry for the module index.
6282             target->got_mod_index_entry(symtab, layout, object);
6283           }
6284         else if (tlsopt != tls::TLSOPT_TO_LE)
6285           unsupported_reloc_local(object, r_type);
6286       }
6287       break;
6288
6289     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6290     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6291     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6292     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6293       break;
6294
6295     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6296     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6297     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6298       {
6299         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6300             optimize_tls_reloc(!parameters->options().shared(), r_type);
6301         target->define_tls_base_symbol(symtab, layout);
6302         if (tlsopt == tls::TLSOPT_NONE)
6303           {
6304             // Create reserved PLT and GOT entries for the resolver.
6305             target->reserve_tlsdesc_entries(symtab, layout);
6306
6307             // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6308             // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6309             // entry needs to be in an area in .got.plt, not .got. Call
6310             // got_section to make sure the section has been created.
6311             target->got_section(symtab, layout);
6312             Output_data_got<size, big_endian>* got =
6313                 target->got_tlsdesc_section();
6314             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6315             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6316               {
6317                 unsigned int got_offset = got->add_constant(0);
6318                 got->add_constant(0);
6319                 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6320                                              got_offset);
6321                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6322                 // We store the arguments we need in a vector, and use
6323                 // the index into the vector as the parameter to pass
6324                 // to the target specific routines.
6325                 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6326                 void* arg = reinterpret_cast<void*>(intarg);
6327                 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6328                                         got, got_offset, 0);
6329               }
6330           }
6331         else if (tlsopt != tls::TLSOPT_TO_LE)
6332           unsupported_reloc_local(object, r_type);
6333       }
6334       break;
6335
6336     case elfcpp::R_AARCH64_TLSDESC_CALL:
6337       break;
6338
6339     default:
6340       unsupported_reloc_local(object, r_type);
6341     }
6342 }
6343
6344
6345 // Report an unsupported relocation against a global symbol.
6346
6347 template<int size, bool big_endian>
6348 void
6349 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6350     Sized_relobj_file<size, big_endian>* object,
6351     unsigned int r_type,
6352     Symbol* gsym)
6353 {
6354   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6355              object->name().c_str(), r_type, gsym->demangled_name().c_str());
6356 }
6357
6358 template<int size, bool big_endian>
6359 inline void
6360 Target_aarch64<size, big_endian>::Scan::global(
6361     Symbol_table* symtab,
6362     Layout* layout,
6363     Target_aarch64<size, big_endian>* target,
6364     Sized_relobj_file<size, big_endian> * object,
6365     unsigned int data_shndx,
6366     Output_section* output_section,
6367     const elfcpp::Rela<size, big_endian>& rela,
6368     unsigned int r_type,
6369     Symbol* gsym)
6370 {
6371   // A STT_GNU_IFUNC symbol may require a PLT entry.
6372   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6373       && this->reloc_needs_plt_for_ifunc(object, r_type))
6374     target->make_plt_entry(symtab, layout, gsym);
6375
6376   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6377     Reloc_section;
6378   const AArch64_reloc_property* arp =
6379       aarch64_reloc_property_table->get_reloc_property(r_type);
6380   gold_assert(arp != NULL);
6381
6382   switch (r_type)
6383     {
6384     case elfcpp::R_AARCH64_NONE:
6385       break;
6386
6387     case elfcpp::R_AARCH64_ABS16:
6388     case elfcpp::R_AARCH64_ABS32:
6389     case elfcpp::R_AARCH64_ABS64:
6390       {
6391         // Make a PLT entry if necessary.
6392         if (gsym->needs_plt_entry())
6393           {
6394             target->make_plt_entry(symtab, layout, gsym);
6395             // Since this is not a PC-relative relocation, we may be
6396             // taking the address of a function. In that case we need to
6397             // set the entry in the dynamic symbol table to the address of
6398             // the PLT entry.
6399             if (gsym->is_from_dynobj() && !parameters->options().shared())
6400               gsym->set_needs_dynsym_value();
6401           }
6402         // Make a dynamic relocation if necessary.
6403         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6404           {
6405             if (!parameters->options().output_is_position_independent()
6406                 && gsym->may_need_copy_reloc())
6407               {
6408                 target->copy_reloc(symtab, layout, object,
6409                                    data_shndx, output_section, gsym, rela);
6410               }
6411             else if (r_type == elfcpp::R_AARCH64_ABS64
6412                      && gsym->type() == elfcpp::STT_GNU_IFUNC
6413                      && gsym->can_use_relative_reloc(false)
6414                      && !gsym->is_from_dynobj()
6415                      && !gsym->is_undefined()
6416                      && !gsym->is_preemptible())
6417               {
6418                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6419                 // symbol. This makes a function address in a PIE executable
6420                 // match the address in a shared library that it links against.
6421                 Reloc_section* rela_dyn =
6422                     target->rela_irelative_section(layout);
6423                 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6424                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6425                                                        output_section, object,
6426                                                        data_shndx,
6427                                                        rela.get_r_offset(),
6428                                                        rela.get_r_addend());
6429               }
6430             else if (r_type == elfcpp::R_AARCH64_ABS64
6431                      && gsym->can_use_relative_reloc(false))
6432               {
6433                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6434                 rela_dyn->add_global_relative(gsym,
6435                                               elfcpp::R_AARCH64_RELATIVE,
6436                                               output_section,
6437                                               object,
6438                                               data_shndx,
6439                                               rela.get_r_offset(),
6440                                               rela.get_r_addend(),
6441                                               false);
6442               }
6443             else
6444               {
6445                 check_non_pic(object, r_type);
6446                 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6447                     rela_dyn = target->rela_dyn_section(layout);
6448                 rela_dyn->add_global(
6449                   gsym, r_type, output_section, object,
6450                   data_shndx, rela.get_r_offset(),rela.get_r_addend());
6451               }
6452           }
6453       }
6454       break;
6455
6456     case elfcpp::R_AARCH64_PREL16:
6457     case elfcpp::R_AARCH64_PREL32:
6458     case elfcpp::R_AARCH64_PREL64:
6459       // This is used to fill the GOT absolute address.
6460       if (gsym->needs_plt_entry())
6461         {
6462           target->make_plt_entry(symtab, layout, gsym);
6463         }
6464       break;
6465
6466     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6467     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6468     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6469     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6470     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6471     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6472     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6473     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6474     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6475     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6476       if (parameters->options().output_is_position_independent())
6477         {
6478           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6479                      object->name().c_str(), r_type);
6480         }
6481       break;
6482
6483     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6484     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6485     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6486     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6487     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6488     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6489     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6490     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6491     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6492     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6493       {
6494         if (gsym->needs_plt_entry())
6495           target->make_plt_entry(symtab, layout, gsym);
6496         // Make a dynamic relocation if necessary.
6497         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6498           {
6499             if (parameters->options().output_is_executable()
6500                 && gsym->may_need_copy_reloc())
6501               {
6502                 target->copy_reloc(symtab, layout, object,
6503                                    data_shndx, output_section, gsym, rela);
6504               }
6505           }
6506         break;
6507       }
6508
6509     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6510     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6511     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6512       {
6513         // The above relocations are used to access GOT entries.
6514         // Note a GOT entry is an *address* to a symbol.
6515         // The symbol requires a GOT entry
6516         Output_data_got_aarch64<size, big_endian>* got =
6517           target->got_section(symtab, layout);
6518         if (gsym->final_value_is_known())
6519           {
6520             // For a STT_GNU_IFUNC symbol we want the PLT address.
6521             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6522               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6523             else
6524               got->add_global(gsym, GOT_TYPE_STANDARD);
6525           }
6526         else
6527           {
6528             // If this symbol is not fully resolved, we need to add a dynamic
6529             // relocation for it.
6530             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6531
6532             // Use a GLOB_DAT rather than a RELATIVE reloc if:
6533             //
6534             // 1) The symbol may be defined in some other module.
6535             // 2) We are building a shared library and this is a protected
6536             // symbol; using GLOB_DAT means that the dynamic linker can use
6537             // the address of the PLT in the main executable when appropriate
6538             // so that function address comparisons work.
6539             // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6540             // again so that function address comparisons work.
6541             if (gsym->is_from_dynobj()
6542                 || gsym->is_undefined()
6543                 || gsym->is_preemptible()
6544                 || (gsym->visibility() == elfcpp::STV_PROTECTED
6545                     && parameters->options().shared())
6546                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6547                     && parameters->options().output_is_position_independent()))
6548               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6549                                        rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6550             else
6551               {
6552                 // For a STT_GNU_IFUNC symbol we want to write the PLT
6553                 // offset into the GOT, so that function pointer
6554                 // comparisons work correctly.
6555                 bool is_new;
6556                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6557                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6558                 else
6559                   {
6560                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6561                     // Tell the dynamic linker to use the PLT address
6562                     // when resolving relocations.
6563                     if (gsym->is_from_dynobj()
6564                         && !parameters->options().shared())
6565                       gsym->set_needs_dynsym_value();
6566                   }
6567                 if (is_new)
6568                   {
6569                     rela_dyn->add_global_relative(
6570                         gsym, elfcpp::R_AARCH64_RELATIVE,
6571                         got,
6572                         gsym->got_offset(GOT_TYPE_STANDARD),
6573                         0,
6574                         false);
6575                   }
6576               }
6577           }
6578         break;
6579       }
6580
6581     case elfcpp::R_AARCH64_TSTBR14:
6582     case elfcpp::R_AARCH64_CONDBR19:
6583     case elfcpp::R_AARCH64_JUMP26:
6584     case elfcpp::R_AARCH64_CALL26:
6585       {
6586         if (gsym->final_value_is_known())
6587           break;
6588
6589         if (gsym->is_defined() &&
6590             !gsym->is_from_dynobj() &&
6591             !gsym->is_preemptible())
6592           break;
6593
6594         // Make plt entry for function call.
6595         target->make_plt_entry(symtab, layout, gsym);
6596         break;
6597       }
6598
6599     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6600     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6601       {
6602         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6603             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6604         if (tlsopt == tls::TLSOPT_TO_LE)
6605           {
6606             layout->set_has_static_tls();
6607             break;
6608           }
6609         gold_assert(tlsopt == tls::TLSOPT_NONE);
6610
6611         // General dynamic.
6612         Output_data_got_aarch64<size, big_endian>* got =
6613             target->got_section(symtab, layout);
6614         // Create 2 consecutive entries for module index and offset.
6615         got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6616                                       target->rela_dyn_section(layout),
6617                                       elfcpp::R_AARCH64_TLS_DTPMOD64,
6618                                       elfcpp::R_AARCH64_TLS_DTPREL64);
6619       }
6620       break;
6621
6622     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6623     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6624       {
6625         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6626             optimize_tls_reloc(!parameters->options().shared(), r_type);
6627         if (tlsopt == tls::TLSOPT_NONE)
6628           {
6629             // Create a GOT entry for the module index.
6630             target->got_mod_index_entry(symtab, layout, object);
6631           }
6632         else if (tlsopt != tls::TLSOPT_TO_LE)
6633           unsupported_reloc_local(object, r_type);
6634       }
6635       break;
6636
6637     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6638     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6639     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6640     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6641       break;
6642
6643     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6644     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6645       {
6646         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6647           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6648         if (tlsopt == tls::TLSOPT_TO_LE)
6649           break;
6650
6651         layout->set_has_static_tls();
6652         // Create a GOT entry for the tp-relative offset.
6653         Output_data_got_aarch64<size, big_endian>* got
6654           = target->got_section(symtab, layout);
6655         if (!parameters->doing_static_link())
6656           {
6657             got->add_global_with_rel(
6658               gsym, GOT_TYPE_TLS_OFFSET,
6659               target->rela_dyn_section(layout),
6660               elfcpp::R_AARCH64_TLS_TPREL64);
6661           }
6662         if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6663           {
6664             got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6665             unsigned int got_offset =
6666               gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6667             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6668             gold_assert(addend == 0);
6669             got->add_static_reloc(got_offset,
6670                                   elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6671           }
6672       }
6673       break;
6674
6675     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6676     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6677     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6678     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6679     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6680     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6681     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6682     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:  // Local executable
6683       layout->set_has_static_tls();
6684       if (parameters->options().shared())
6685         gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6686                    object->name().c_str(), r_type);
6687       break;
6688
6689     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6690     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6691     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6692       {
6693         target->define_tls_base_symbol(symtab, layout);
6694         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6695             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6696         if (tlsopt == tls::TLSOPT_NONE)
6697           {
6698             // Create reserved PLT and GOT entries for the resolver.
6699             target->reserve_tlsdesc_entries(symtab, layout);
6700
6701             // Create a double GOT entry with an R_AARCH64_TLSDESC
6702             // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6703             // entry needs to be in an area in .got.plt, not .got. Call
6704             // got_section to make sure the section has been created.
6705             target->got_section(symtab, layout);
6706             Output_data_got<size, big_endian>* got =
6707                 target->got_tlsdesc_section();
6708             Reloc_section* rt = target->rela_tlsdesc_section(layout);
6709             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6710                                           elfcpp::R_AARCH64_TLSDESC, 0);
6711           }
6712         else if (tlsopt == tls::TLSOPT_TO_IE)
6713           {
6714             // Create a GOT entry for the tp-relative offset.
6715             Output_data_got<size, big_endian>* got
6716                 = target->got_section(symtab, layout);
6717             got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6718                                      target->rela_dyn_section(layout),
6719                                      elfcpp::R_AARCH64_TLS_TPREL64);
6720           }
6721         else if (tlsopt != tls::TLSOPT_TO_LE)
6722           unsupported_reloc_global(object, r_type, gsym);
6723       }
6724       break;
6725
6726     case elfcpp::R_AARCH64_TLSDESC_CALL:
6727       break;
6728
6729     default:
6730       gold_error(_("%s: unsupported reloc type in global scan"),
6731                  aarch64_reloc_property_table->
6732                  reloc_name_in_error_message(r_type).c_str());
6733     }
6734   return;
6735 }  // End of Scan::global
6736
6737
6738 // Create the PLT section.
6739 template<int size, bool big_endian>
6740 void
6741 Target_aarch64<size, big_endian>::make_plt_section(
6742   Symbol_table* symtab, Layout* layout)
6743 {
6744   if (this->plt_ == NULL)
6745     {
6746       // Create the GOT section first.
6747       this->got_section(symtab, layout);
6748
6749       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6750                                        this->got_irelative_);
6751
6752       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6753                                       (elfcpp::SHF_ALLOC
6754                                        | elfcpp::SHF_EXECINSTR),
6755                                       this->plt_, ORDER_PLT, false);
6756
6757       // Make the sh_info field of .rela.plt point to .plt.
6758       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6759       rela_plt_os->set_info_section(this->plt_->output_section());
6760     }
6761 }
6762
6763 // Return the section for TLSDESC relocations.
6764
6765 template<int size, bool big_endian>
6766 typename Target_aarch64<size, big_endian>::Reloc_section*
6767 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6768 {
6769   return this->plt_section()->rela_tlsdesc(layout);
6770 }
6771
6772 // Create a PLT entry for a global symbol.
6773
6774 template<int size, bool big_endian>
6775 void
6776 Target_aarch64<size, big_endian>::make_plt_entry(
6777     Symbol_table* symtab,
6778     Layout* layout,
6779     Symbol* gsym)
6780 {
6781   if (gsym->has_plt_offset())
6782     return;
6783
6784   if (this->plt_ == NULL)
6785     this->make_plt_section(symtab, layout);
6786
6787   this->plt_->add_entry(symtab, layout, gsym);
6788 }
6789
6790 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6791
6792 template<int size, bool big_endian>
6793 void
6794 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6795     Symbol_table* symtab, Layout* layout,
6796     Sized_relobj_file<size, big_endian>* relobj,
6797     unsigned int local_sym_index)
6798 {
6799   if (relobj->local_has_plt_offset(local_sym_index))
6800     return;
6801   if (this->plt_ == NULL)
6802     this->make_plt_section(symtab, layout);
6803   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6804                                                               relobj,
6805                                                               local_sym_index);
6806   relobj->set_local_plt_offset(local_sym_index, plt_offset);
6807 }
6808
6809 template<int size, bool big_endian>
6810 void
6811 Target_aarch64<size, big_endian>::gc_process_relocs(
6812     Symbol_table* symtab,
6813     Layout* layout,
6814     Sized_relobj_file<size, big_endian>* object,
6815     unsigned int data_shndx,
6816     unsigned int sh_type,
6817     const unsigned char* prelocs,
6818     size_t reloc_count,
6819     Output_section* output_section,
6820     bool needs_special_offset_handling,
6821     size_t local_symbol_count,
6822     const unsigned char* plocal_symbols)
6823 {
6824   typedef Target_aarch64<size, big_endian> Aarch64;
6825   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6826       Classify_reloc;
6827
6828   if (sh_type == elfcpp::SHT_REL)
6829     {
6830       return;
6831     }
6832
6833   gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6834     symtab,
6835     layout,
6836     this,
6837     object,
6838     data_shndx,
6839     prelocs,
6840     reloc_count,
6841     output_section,
6842     needs_special_offset_handling,
6843     local_symbol_count,
6844     plocal_symbols);
6845 }
6846
6847 // Scan relocations for a section.
6848
6849 template<int size, bool big_endian>
6850 void
6851 Target_aarch64<size, big_endian>::scan_relocs(
6852     Symbol_table* symtab,
6853     Layout* layout,
6854     Sized_relobj_file<size, big_endian>* object,
6855     unsigned int data_shndx,
6856     unsigned int sh_type,
6857     const unsigned char* prelocs,
6858     size_t reloc_count,
6859     Output_section* output_section,
6860     bool needs_special_offset_handling,
6861     size_t local_symbol_count,
6862     const unsigned char* plocal_symbols)
6863 {
6864   typedef Target_aarch64<size, big_endian> Aarch64;
6865   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6866       Classify_reloc;
6867
6868   if (sh_type == elfcpp::SHT_REL)
6869     {
6870       gold_error(_("%s: unsupported REL reloc section"),
6871                  object->name().c_str());
6872       return;
6873     }
6874
6875   gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6876     symtab,
6877     layout,
6878     this,
6879     object,
6880     data_shndx,
6881     prelocs,
6882     reloc_count,
6883     output_section,
6884     needs_special_offset_handling,
6885     local_symbol_count,
6886     plocal_symbols);
6887 }
6888
6889 // Return the value to use for a dynamic which requires special
6890 // treatment.  This is how we support equality comparisons of function
6891 // pointers across shared library boundaries, as described in the
6892 // processor specific ABI supplement.
6893
6894 template<int size, bool big_endian>
6895 uint64_t
6896 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6897 {
6898   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6899   return this->plt_address_for_global(gsym);
6900 }
6901
6902
6903 // Finalize the sections.
6904
6905 template<int size, bool big_endian>
6906 void
6907 Target_aarch64<size, big_endian>::do_finalize_sections(
6908     Layout* layout,
6909     const Input_objects*,
6910     Symbol_table* symtab)
6911 {
6912   const Reloc_section* rel_plt = (this->plt_ == NULL
6913                                   ? NULL
6914                                   : this->plt_->rela_plt());
6915   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6916                                   this->rela_dyn_, true, false);
6917
6918   // Emit any relocs we saved in an attempt to avoid generating COPY
6919   // relocs.
6920   if (this->copy_relocs_.any_saved_relocs())
6921     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6922
6923   // Fill in some more dynamic tags.
6924   Output_data_dynamic* const odyn = layout->dynamic_data();
6925   if (odyn != NULL)
6926     {
6927       if (this->plt_ != NULL
6928           && this->plt_->output_section() != NULL
6929           && this->plt_ ->has_tlsdesc_entry())
6930         {
6931           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6932           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6933           this->got_->finalize_data_size();
6934           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6935                                         this->plt_, plt_offset);
6936           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6937                                         this->got_, got_offset);
6938         }
6939     }
6940
6941   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6942   // the .got.plt section.
6943   Symbol* sym = this->global_offset_table_;
6944   if (sym != NULL)
6945     {
6946       uint64_t data_size = this->got_plt_->current_data_size();
6947       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6948
6949       // If the .got section is more than 0x8000 bytes, we add
6950       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6951       // bit relocations have a greater chance of working.
6952       if (data_size >= 0x8000)
6953         symtab->get_sized_symbol<size>(sym)->set_value(
6954           symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6955     }
6956
6957   if (parameters->doing_static_link()
6958       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6959     {
6960       // If linking statically, make sure that the __rela_iplt symbols
6961       // were defined if necessary, even if we didn't create a PLT.
6962       static const Define_symbol_in_segment syms[] =
6963         {
6964           {
6965             "__rela_iplt_start",        // name
6966             elfcpp::PT_LOAD,            // segment_type
6967             elfcpp::PF_W,               // segment_flags_set
6968             elfcpp::PF(0),              // segment_flags_clear
6969             0,                          // value
6970             0,                          // size
6971             elfcpp::STT_NOTYPE,         // type
6972             elfcpp::STB_GLOBAL,         // binding
6973             elfcpp::STV_HIDDEN,         // visibility
6974             0,                          // nonvis
6975             Symbol::SEGMENT_START,      // offset_from_base
6976             true                        // only_if_ref
6977           },
6978           {
6979             "__rela_iplt_end",          // name
6980             elfcpp::PT_LOAD,            // segment_type
6981             elfcpp::PF_W,               // segment_flags_set
6982             elfcpp::PF(0),              // segment_flags_clear
6983             0,                          // value
6984             0,                          // size
6985             elfcpp::STT_NOTYPE,         // type
6986             elfcpp::STB_GLOBAL,         // binding
6987             elfcpp::STV_HIDDEN,         // visibility
6988             0,                          // nonvis
6989             Symbol::SEGMENT_START,      // offset_from_base
6990             true                        // only_if_ref
6991           }
6992         };
6993
6994       symtab->define_symbols(layout, 2, syms,
6995                              layout->script_options()->saw_sections_clause());
6996     }
6997
6998   return;
6999 }
7000
7001 // Perform a relocation.
7002
7003 template<int size, bool big_endian>
7004 inline bool
7005 Target_aarch64<size, big_endian>::Relocate::relocate(
7006     const Relocate_info<size, big_endian>* relinfo,
7007     unsigned int,
7008     Target_aarch64<size, big_endian>* target,
7009     Output_section* ,
7010     size_t relnum,
7011     const unsigned char* preloc,
7012     const Sized_symbol<size>* gsym,
7013     const Symbol_value<size>* psymval,
7014     unsigned char* view,
7015     typename elfcpp::Elf_types<size>::Elf_Addr address,
7016     section_size_type /* view_size */)
7017 {
7018   if (view == NULL)
7019     return true;
7020
7021   typedef AArch64_relocate_functions<size, big_endian> Reloc;
7022
7023   const elfcpp::Rela<size, big_endian> rela(preloc);
7024   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7025   const AArch64_reloc_property* reloc_property =
7026       aarch64_reloc_property_table->get_reloc_property(r_type);
7027
7028   if (reloc_property == NULL)
7029     {
7030       std::string reloc_name =
7031           aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
7032       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7033                              _("cannot relocate %s in object file"),
7034                              reloc_name.c_str());
7035       return true;
7036     }
7037
7038   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
7039
7040   // Pick the value to use for symbols defined in the PLT.
7041   Symbol_value<size> symval;
7042   if (gsym != NULL
7043       && gsym->use_plt_offset(reloc_property->reference_flags()))
7044     {
7045       symval.set_output_value(target->plt_address_for_global(gsym));
7046       psymval = &symval;
7047     }
7048   else if (gsym == NULL && psymval->is_ifunc_symbol())
7049     {
7050       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7051       if (object->local_has_plt_offset(r_sym))
7052         {
7053           symval.set_output_value(target->plt_address_for_local(object, r_sym));
7054           psymval = &symval;
7055         }
7056     }
7057
7058   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7059
7060   // Get the GOT offset if needed.
7061   // For aarch64, the GOT pointer points to the start of the GOT section.
7062   bool have_got_offset = false;
7063   int got_offset = 0;
7064   int got_base = (target->got_ != NULL
7065                   ? (target->got_->current_data_size() >= 0x8000
7066                      ? 0x8000 : 0)
7067                   : 0);
7068   switch (r_type)
7069     {
7070     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
7071     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
7072     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
7073     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
7074     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
7075     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
7076     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
7077     case elfcpp::R_AARCH64_GOTREL64:
7078     case elfcpp::R_AARCH64_GOTREL32:
7079     case elfcpp::R_AARCH64_GOT_LD_PREL19:
7080     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
7081     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7082     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7083     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7084       if (gsym != NULL)
7085         {
7086           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7087           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
7088         }
7089       else
7090         {
7091           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7092           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7093           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
7094                         - got_base);
7095         }
7096       have_got_offset = true;
7097       break;
7098
7099     default:
7100       break;
7101     }
7102
7103   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
7104   typename elfcpp::Elf_types<size>::Elf_Addr value;
7105   switch (r_type)
7106     {
7107     case elfcpp::R_AARCH64_NONE:
7108       break;
7109
7110     case elfcpp::R_AARCH64_ABS64:
7111       if (!parameters->options().apply_dynamic_relocs()
7112           && parameters->options().output_is_position_independent()
7113           && gsym != NULL
7114           && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
7115           && !gsym->can_use_relative_reloc(false))
7116         // We have generated an absolute dynamic relocation, so do not
7117         // apply the relocation statically. (Works around bugs in older
7118         // Android dynamic linkers.)
7119         break;
7120       reloc_status = Reloc::template rela_ua<64>(
7121         view, object, psymval, addend, reloc_property);
7122       break;
7123
7124     case elfcpp::R_AARCH64_ABS32:
7125       if (!parameters->options().apply_dynamic_relocs()
7126           && parameters->options().output_is_position_independent()
7127           && gsym != NULL
7128           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7129         // We have generated an absolute dynamic relocation, so do not
7130         // apply the relocation statically. (Works around bugs in older
7131         // Android dynamic linkers.)
7132         break;
7133       reloc_status = Reloc::template rela_ua<32>(
7134         view, object, psymval, addend, reloc_property);
7135       break;
7136
7137     case elfcpp::R_AARCH64_ABS16:
7138       if (!parameters->options().apply_dynamic_relocs()
7139           && parameters->options().output_is_position_independent()
7140           && gsym != NULL
7141           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7142         // We have generated an absolute dynamic relocation, so do not
7143         // apply the relocation statically. (Works around bugs in older
7144         // Android dynamic linkers.)
7145         break;
7146       reloc_status = Reloc::template rela_ua<16>(
7147         view, object, psymval, addend, reloc_property);
7148       break;
7149
7150     case elfcpp::R_AARCH64_PREL64:
7151       reloc_status = Reloc::template pcrela_ua<64>(
7152         view, object, psymval, addend, address, reloc_property);
7153       break;
7154
7155     case elfcpp::R_AARCH64_PREL32:
7156       reloc_status = Reloc::template pcrela_ua<32>(
7157         view, object, psymval, addend, address, reloc_property);
7158       break;
7159
7160     case elfcpp::R_AARCH64_PREL16:
7161       reloc_status = Reloc::template pcrela_ua<16>(
7162         view, object, psymval, addend, address, reloc_property);
7163       break;
7164
7165     case elfcpp::R_AARCH64_MOVW_UABS_G0:
7166     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7167     case elfcpp::R_AARCH64_MOVW_UABS_G1:
7168     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7169     case elfcpp::R_AARCH64_MOVW_UABS_G2:
7170     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7171     case elfcpp::R_AARCH64_MOVW_UABS_G3:
7172       reloc_status = Reloc::template rela_general<32>(
7173         view, object, psymval, addend, reloc_property);
7174       break;
7175     case elfcpp::R_AARCH64_MOVW_SABS_G0:
7176     case elfcpp::R_AARCH64_MOVW_SABS_G1:
7177     case elfcpp::R_AARCH64_MOVW_SABS_G2:
7178       reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7179                                   reloc_property);
7180       break;
7181
7182     case elfcpp::R_AARCH64_LD_PREL_LO19:
7183       reloc_status = Reloc::template pcrela_general<32>(
7184           view, object, psymval, addend, address, reloc_property);
7185       break;
7186
7187     case elfcpp::R_AARCH64_ADR_PREL_LO21:
7188       reloc_status = Reloc::adr(view, object, psymval, addend,
7189                                 address, reloc_property);
7190       break;
7191
7192     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7193     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7194       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7195                                  reloc_property);
7196       break;
7197
7198     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7199     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7200     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7201     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7202     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7203     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7204       reloc_status = Reloc::template rela_general<32>(
7205         view, object, psymval, addend, reloc_property);
7206       break;
7207
7208     case elfcpp::R_AARCH64_CALL26:
7209       if (this->skip_call_tls_get_addr_)
7210         {
7211           // Double check that the TLSGD insn has been optimized away.
7212           typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7213           Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7214               reinterpret_cast<Insntype*>(view));
7215           gold_assert((insn & 0xff000000) == 0x91000000);
7216
7217           reloc_status = Reloc::STATUS_OKAY;
7218           this->skip_call_tls_get_addr_ = false;
7219           // Return false to stop further processing this reloc.
7220           return false;
7221         }
7222       // Fall through.
7223     case elfcpp::R_AARCH64_JUMP26:
7224       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7225                                   gsym, psymval, object,
7226                                   target->stub_group_size_))
7227         break;
7228       // Fall through.
7229     case elfcpp::R_AARCH64_TSTBR14:
7230     case elfcpp::R_AARCH64_CONDBR19:
7231       reloc_status = Reloc::template pcrela_general<32>(
7232         view, object, psymval, addend, address, reloc_property);
7233       break;
7234
7235     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7236       gold_assert(have_got_offset);
7237       value = target->got_->address() + got_base + got_offset;
7238       reloc_status = Reloc::adrp(view, value + addend, address);
7239       break;
7240
7241     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7242       gold_assert(have_got_offset);
7243       value = target->got_->address() + got_base + got_offset;
7244       reloc_status = Reloc::template rela_general<32>(
7245         view, value, addend, reloc_property);
7246       break;
7247
7248     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7249       {
7250         gold_assert(have_got_offset);
7251         value = target->got_->address() + got_base + got_offset + addend -
7252           Reloc::Page(target->got_->address() + got_base);
7253         if ((value & 7) != 0)
7254           reloc_status = Reloc::STATUS_OVERFLOW;
7255         else
7256           reloc_status = Reloc::template reloc_common<32>(
7257             view, value, reloc_property);
7258         break;
7259       }
7260
7261     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7262     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7263     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7264     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7265     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7266     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7267     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7268     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7269     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7270     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7271     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7272     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7273     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7274     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7275     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7276     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7277     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7278     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7279     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7280     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7281     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7282     case elfcpp::R_AARCH64_TLSDESC_CALL:
7283       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7284                                   gsym, psymval, view, address);
7285       break;
7286
7287     // These are dynamic relocations, which are unexpected when linking.
7288     case elfcpp::R_AARCH64_COPY:
7289     case elfcpp::R_AARCH64_GLOB_DAT:
7290     case elfcpp::R_AARCH64_JUMP_SLOT:
7291     case elfcpp::R_AARCH64_RELATIVE:
7292     case elfcpp::R_AARCH64_IRELATIVE:
7293     case elfcpp::R_AARCH64_TLS_DTPREL64:
7294     case elfcpp::R_AARCH64_TLS_DTPMOD64:
7295     case elfcpp::R_AARCH64_TLS_TPREL64:
7296     case elfcpp::R_AARCH64_TLSDESC:
7297       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7298                              _("unexpected reloc %u in object file"),
7299                              r_type);
7300       break;
7301
7302     default:
7303       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7304                              _("unsupported reloc %s"),
7305                              reloc_property->name().c_str());
7306       break;
7307     }
7308
7309   // Report any errors.
7310   switch (reloc_status)
7311     {
7312     case Reloc::STATUS_OKAY:
7313       break;
7314     case Reloc::STATUS_OVERFLOW:
7315       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7316                              _("relocation overflow in %s"),
7317                              reloc_property->name().c_str());
7318       break;
7319     case Reloc::STATUS_BAD_RELOC:
7320       gold_error_at_location(
7321           relinfo,
7322           relnum,
7323           rela.get_r_offset(),
7324           _("unexpected opcode while processing relocation %s"),
7325           reloc_property->name().c_str());
7326       break;
7327     default:
7328       gold_unreachable();
7329     }
7330
7331   return true;
7332 }
7333
7334
7335 template<int size, bool big_endian>
7336 inline
7337 typename AArch64_relocate_functions<size, big_endian>::Status
7338 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7339     const Relocate_info<size, big_endian>* relinfo,
7340     Target_aarch64<size, big_endian>* target,
7341     size_t relnum,
7342     const elfcpp::Rela<size, big_endian>& rela,
7343     unsigned int r_type, const Sized_symbol<size>* gsym,
7344     const Symbol_value<size>* psymval,
7345     unsigned char* view,
7346     typename elfcpp::Elf_types<size>::Elf_Addr address)
7347 {
7348   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7349   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7350
7351   Output_segment* tls_segment = relinfo->layout->tls_segment();
7352   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7353   const AArch64_reloc_property* reloc_property =
7354       aarch64_reloc_property_table->get_reloc_property(r_type);
7355   gold_assert(reloc_property != NULL);
7356
7357   const bool is_final = (gsym == NULL
7358                          ? !parameters->options().shared()
7359                          : gsym->final_value_is_known());
7360   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7361       optimize_tls_reloc(is_final, r_type);
7362
7363   Sized_relobj_file<size, big_endian>* object = relinfo->object;
7364   int tls_got_offset_type;
7365   switch (r_type)
7366     {
7367     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7368     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7369       {
7370         if (tlsopt == tls::TLSOPT_TO_LE)
7371           {
7372             if (tls_segment == NULL)
7373               {
7374                 gold_assert(parameters->errors()->error_count() > 0
7375                             || issue_undefined_symbol_error(gsym));
7376                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7377               }
7378             return tls_gd_to_le(relinfo, target, rela, r_type, view,
7379                                 psymval);
7380           }
7381         else if (tlsopt == tls::TLSOPT_NONE)
7382           {
7383             tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7384             // Firstly get the address for the got entry.
7385             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7386             if (gsym != NULL)
7387               {
7388                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7389                 got_entry_address = target->got_->address() +
7390                                     gsym->got_offset(tls_got_offset_type);
7391               }
7392             else
7393               {
7394                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7395                 gold_assert(
7396                   object->local_has_got_offset(r_sym, tls_got_offset_type));
7397                 got_entry_address = target->got_->address() +
7398                   object->local_got_offset(r_sym, tls_got_offset_type);
7399               }
7400
7401             // Relocate the address into adrp/ld, adrp/add pair.
7402             switch (r_type)
7403               {
7404               case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7405                 return aarch64_reloc_funcs::adrp(
7406                   view, got_entry_address + addend, address);
7407
7408                 break;
7409
7410               case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7411                 return aarch64_reloc_funcs::template rela_general<32>(
7412                   view, got_entry_address, addend, reloc_property);
7413                 break;
7414
7415               default:
7416                 gold_unreachable();
7417               }
7418           }
7419         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7420                                _("unsupported gd_to_ie relaxation on %u"),
7421                                r_type);
7422       }
7423       break;
7424
7425     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7426     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7427       {
7428         if (tlsopt == tls::TLSOPT_TO_LE)
7429           {
7430             if (tls_segment == NULL)
7431               {
7432                 gold_assert(parameters->errors()->error_count() > 0
7433                             || issue_undefined_symbol_error(gsym));
7434                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7435               }
7436             return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7437                                       psymval);
7438           }
7439
7440         gold_assert(tlsopt == tls::TLSOPT_NONE);
7441         // Relocate the field with the offset of the GOT entry for
7442         // the module index.
7443         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7444         got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7445                              target->got_->address());
7446
7447         switch (r_type)
7448           {
7449           case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7450             return aarch64_reloc_funcs::adrp(
7451               view, got_entry_address + addend, address);
7452             break;
7453
7454           case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7455             return aarch64_reloc_funcs::template rela_general<32>(
7456               view, got_entry_address, addend, reloc_property);
7457             break;
7458
7459           default:
7460             gold_unreachable();
7461           }
7462       }
7463       break;
7464
7465     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7466     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7467     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7468     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7469       {
7470         AArch64_address value = psymval->value(object, 0);
7471         if (tlsopt == tls::TLSOPT_TO_LE)
7472           {
7473             if (tls_segment == NULL)
7474               {
7475                 gold_assert(parameters->errors()->error_count() > 0
7476                             || issue_undefined_symbol_error(gsym));
7477                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7478               }
7479           }
7480         switch (r_type)
7481           {
7482           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7483             return aarch64_reloc_funcs::movnz(view, value + addend,
7484                                               reloc_property);
7485             break;
7486
7487           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7488           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7489           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7490             return aarch64_reloc_funcs::template rela_general<32>(
7491                 view, value, addend, reloc_property);
7492             break;
7493
7494           default:
7495             gold_unreachable();
7496           }
7497         // We should never reach here.
7498       }
7499       break;
7500
7501     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7502     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7503       {
7504         if (tlsopt == tls::TLSOPT_TO_LE)
7505           {
7506             if (tls_segment == NULL)
7507               {
7508                 gold_assert(parameters->errors()->error_count() > 0
7509                             || issue_undefined_symbol_error(gsym));
7510                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7511               }
7512             return tls_ie_to_le(relinfo, target, rela, r_type, view,
7513                                 psymval);
7514           }
7515         tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7516
7517         // Firstly get the address for the got entry.
7518         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7519         if (gsym != NULL)
7520           {
7521             gold_assert(gsym->has_got_offset(tls_got_offset_type));
7522             got_entry_address = target->got_->address() +
7523                                 gsym->got_offset(tls_got_offset_type);
7524           }
7525         else
7526           {
7527             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7528             gold_assert(
7529                 object->local_has_got_offset(r_sym, tls_got_offset_type));
7530             got_entry_address = target->got_->address() +
7531                 object->local_got_offset(r_sym, tls_got_offset_type);
7532           }
7533         // Relocate the address into adrp/ld, adrp/add pair.
7534         switch (r_type)
7535           {
7536           case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7537             return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7538                                              address);
7539             break;
7540           case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7541             return aarch64_reloc_funcs::template rela_general<32>(
7542               view, got_entry_address, addend, reloc_property);
7543           default:
7544             gold_unreachable();
7545           }
7546       }
7547       // We shall never reach here.
7548       break;
7549
7550     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7551     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7552     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7553     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7554     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7555     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7556     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7557     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7558       {
7559         gold_assert(tls_segment != NULL);
7560         AArch64_address value = psymval->value(object, 0);
7561
7562         if (!parameters->options().shared())
7563           {
7564             AArch64_address aligned_tcb_size =
7565                 align_address(target->tcb_size(),
7566                               tls_segment->maximum_alignment());
7567             value += aligned_tcb_size;
7568             switch (r_type)
7569               {
7570               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7571               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7572               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7573                 return aarch64_reloc_funcs::movnz(view, value + addend,
7574                                                   reloc_property);
7575               default:
7576                 return aarch64_reloc_funcs::template
7577                   rela_general<32>(view,
7578                                    value,
7579                                    addend,
7580                                    reloc_property);
7581               }
7582           }
7583         else
7584           gold_error(_("%s: unsupported reloc %u "
7585                        "in non-static TLSLE mode."),
7586                      object->name().c_str(), r_type);
7587       }
7588       break;
7589
7590     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7591     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7592     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7593     case elfcpp::R_AARCH64_TLSDESC_CALL:
7594       {
7595         if (tlsopt == tls::TLSOPT_TO_LE)
7596           {
7597             if (tls_segment == NULL)
7598               {
7599                 gold_assert(parameters->errors()->error_count() > 0
7600                             || issue_undefined_symbol_error(gsym));
7601                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7602               }
7603             return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7604                                      view, psymval);
7605           }
7606         else
7607           {
7608             tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7609                                    ? GOT_TYPE_TLS_OFFSET
7610                                    : GOT_TYPE_TLS_DESC);
7611             int got_tlsdesc_offset = 0;
7612             if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7613                 && tlsopt == tls::TLSOPT_NONE)
7614               {
7615                 // We created GOT entries in the .got.tlsdesc portion of the
7616                 // .got.plt section, but the offset stored in the symbol is the
7617                 // offset within .got.tlsdesc.
7618                 got_tlsdesc_offset = (target->got_tlsdesc_->address()
7619                                       - target->got_->address());
7620               }
7621             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7622             if (gsym != NULL)
7623               {
7624                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7625                 got_entry_address = target->got_->address()
7626                                     + got_tlsdesc_offset
7627                                     + gsym->got_offset(tls_got_offset_type);
7628               }
7629             else
7630               {
7631                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7632                 gold_assert(
7633                     object->local_has_got_offset(r_sym, tls_got_offset_type));
7634                 got_entry_address = target->got_->address() +
7635                   got_tlsdesc_offset +
7636                   object->local_got_offset(r_sym, tls_got_offset_type);
7637               }
7638             if (tlsopt == tls::TLSOPT_TO_IE)
7639               {
7640                 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7641                                          view, psymval, got_entry_address,
7642                                          address);
7643               }
7644
7645             // Now do tlsdesc relocation.
7646             switch (r_type)
7647               {
7648               case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7649                 return aarch64_reloc_funcs::adrp(view,
7650                                                  got_entry_address + addend,
7651                                                  address);
7652                 break;
7653               case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7654               case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7655                 return aarch64_reloc_funcs::template rela_general<32>(
7656                   view, got_entry_address, addend, reloc_property);
7657                 break;
7658               case elfcpp::R_AARCH64_TLSDESC_CALL:
7659                 return aarch64_reloc_funcs::STATUS_OKAY;
7660                 break;
7661               default:
7662                 gold_unreachable();
7663               }
7664           }
7665         }
7666       break;
7667
7668     default:
7669       gold_error(_("%s: unsupported TLS reloc %u."),
7670                  object->name().c_str(), r_type);
7671     }
7672   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7673 }  // End of relocate_tls.
7674
7675
7676 template<int size, bool big_endian>
7677 inline
7678 typename AArch64_relocate_functions<size, big_endian>::Status
7679 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7680              const Relocate_info<size, big_endian>* relinfo,
7681              Target_aarch64<size, big_endian>* target,
7682              const elfcpp::Rela<size, big_endian>& rela,
7683              unsigned int r_type,
7684              unsigned char* view,
7685              const Symbol_value<size>* psymval)
7686 {
7687   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7688   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7689   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7690
7691   Insntype* ip = reinterpret_cast<Insntype*>(view);
7692   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7693   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7694   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7695
7696   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7697     {
7698       // This is the 2nd relocs, optimization should already have been
7699       // done.
7700       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7701       return aarch64_reloc_funcs::STATUS_OKAY;
7702     }
7703
7704   // The original sequence is -
7705   //   90000000        adrp    x0, 0 <main>
7706   //   91000000        add     x0, x0, #0x0
7707   //   94000000        bl      0 <__tls_get_addr>
7708   // optimized to sequence -
7709   //   d53bd040        mrs     x0, tpidr_el0
7710   //   91400000        add     x0, x0, #0x0, lsl #12
7711   //   91000000        add     x0, x0, #0x0
7712
7713   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7714   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7715   // have to change "bl tls_get_addr", which does not have a corresponding tls
7716   // relocation type. So before proceeding, we need to make sure compiler
7717   // does not change the sequence.
7718   if(!(insn1 == 0x90000000      // adrp x0,0
7719        && insn2 == 0x91000000   // add x0, x0, #0x0
7720        && insn3 == 0x94000000)) // bl 0
7721     {
7722       // Ideally we should give up gd_to_le relaxation and do gd access.
7723       // However the gd_to_le relaxation decision has been made early
7724       // in the scan stage, where we did not allocate any GOT entry for
7725       // this symbol. Therefore we have to exit and report error now.
7726       gold_error(_("unexpected reloc insn sequence while relaxing "
7727                    "tls gd to le for reloc %u."), r_type);
7728       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7729     }
7730
7731   // Write new insns.
7732   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7733   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7734   insn3 = 0x91000000;  // add x0, x0, #0x0
7735   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7736   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7737   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7738
7739   // Calculate tprel value.
7740   Output_segment* tls_segment = relinfo->layout->tls_segment();
7741   gold_assert(tls_segment != NULL);
7742   AArch64_address value = psymval->value(relinfo->object, 0);
7743   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7744   AArch64_address aligned_tcb_size =
7745       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7746   AArch64_address x = value + aligned_tcb_size;
7747
7748   // After new insns are written, apply TLSLE relocs.
7749   const AArch64_reloc_property* rp1 =
7750       aarch64_reloc_property_table->get_reloc_property(
7751           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7752   const AArch64_reloc_property* rp2 =
7753       aarch64_reloc_property_table->get_reloc_property(
7754           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7755   gold_assert(rp1 != NULL && rp2 != NULL);
7756
7757   typename aarch64_reloc_funcs::Status s1 =
7758       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7759                                                      x,
7760                                                      addend,
7761                                                      rp1);
7762   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7763     return s1;
7764
7765   typename aarch64_reloc_funcs::Status s2 =
7766       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7767                                                      x,
7768                                                      addend,
7769                                                      rp2);
7770
7771   this->skip_call_tls_get_addr_ = true;
7772   return s2;
7773 }  // End of tls_gd_to_le
7774
7775
7776 template<int size, bool big_endian>
7777 inline
7778 typename AArch64_relocate_functions<size, big_endian>::Status
7779 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7780              const Relocate_info<size, big_endian>* relinfo,
7781              Target_aarch64<size, big_endian>* target,
7782              const elfcpp::Rela<size, big_endian>& rela,
7783              unsigned int r_type,
7784              unsigned char* view,
7785              const Symbol_value<size>* psymval)
7786 {
7787   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7788   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7789   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7790
7791   Insntype* ip = reinterpret_cast<Insntype*>(view);
7792   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7793   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7794   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7795
7796   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7797     {
7798       // This is the 2nd relocs, optimization should already have been
7799       // done.
7800       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7801       return aarch64_reloc_funcs::STATUS_OKAY;
7802     }
7803
7804   // The original sequence is -
7805   //   90000000        adrp    x0, 0 <main>
7806   //   91000000        add     x0, x0, #0x0
7807   //   94000000        bl      0 <__tls_get_addr>
7808   // optimized to sequence -
7809   //   d53bd040        mrs     x0, tpidr_el0
7810   //   91400000        add     x0, x0, #0x0, lsl #12
7811   //   91000000        add     x0, x0, #0x0
7812
7813   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7814   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7815   // have to change "bl tls_get_addr", which does not have a corresponding tls
7816   // relocation type. So before proceeding, we need to make sure compiler
7817   // does not change the sequence.
7818   if(!(insn1 == 0x90000000      // adrp x0,0
7819        && insn2 == 0x91000000   // add x0, x0, #0x0
7820        && insn3 == 0x94000000)) // bl 0
7821     {
7822       // Ideally we should give up gd_to_le relaxation and do gd access.
7823       // However the gd_to_le relaxation decision has been made early
7824       // in the scan stage, where we did not allocate a GOT entry for
7825       // this symbol. Therefore we have to exit and report an error now.
7826       gold_error(_("unexpected reloc insn sequence while relaxing "
7827                    "tls gd to le for reloc %u."), r_type);
7828       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7829     }
7830
7831   // Write new insns.
7832   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7833   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7834   insn3 = 0x91000000;  // add x0, x0, #0x0
7835   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7836   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7837   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7838
7839   // Calculate tprel value.
7840   Output_segment* tls_segment = relinfo->layout->tls_segment();
7841   gold_assert(tls_segment != NULL);
7842   AArch64_address value = psymval->value(relinfo->object, 0);
7843   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7844   AArch64_address aligned_tcb_size =
7845       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7846   AArch64_address x = value + aligned_tcb_size;
7847
7848   // After new insns are written, apply TLSLE relocs.
7849   const AArch64_reloc_property* rp1 =
7850       aarch64_reloc_property_table->get_reloc_property(
7851           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7852   const AArch64_reloc_property* rp2 =
7853       aarch64_reloc_property_table->get_reloc_property(
7854           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7855   gold_assert(rp1 != NULL && rp2 != NULL);
7856
7857   typename aarch64_reloc_funcs::Status s1 =
7858       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7859                                                      x,
7860                                                      addend,
7861                                                      rp1);
7862   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7863     return s1;
7864
7865   typename aarch64_reloc_funcs::Status s2 =
7866       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7867                                                      x,
7868                                                      addend,
7869                                                      rp2);
7870
7871   this->skip_call_tls_get_addr_ = true;
7872   return s2;
7873
7874 }  // End of tls_ld_to_le
7875
7876 template<int size, bool big_endian>
7877 inline
7878 typename AArch64_relocate_functions<size, big_endian>::Status
7879 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7880              const Relocate_info<size, big_endian>* relinfo,
7881              Target_aarch64<size, big_endian>* target,
7882              const elfcpp::Rela<size, big_endian>& rela,
7883              unsigned int r_type,
7884              unsigned char* view,
7885              const Symbol_value<size>* psymval)
7886 {
7887   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7888   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7889   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7890
7891   AArch64_address value = psymval->value(relinfo->object, 0);
7892   Output_segment* tls_segment = relinfo->layout->tls_segment();
7893   AArch64_address aligned_tcb_address =
7894       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7895   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7896   AArch64_address x = value + addend + aligned_tcb_address;
7897   // "x" is the offset to tp, we can only do this if x is within
7898   // range [0, 2^32-1]
7899   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7900     {
7901       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7902                  r_type);
7903       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7904     }
7905
7906   Insntype* ip = reinterpret_cast<Insntype*>(view);
7907   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7908   unsigned int regno;
7909   Insntype newinsn;
7910   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7911     {
7912       // Generate movz.
7913       regno = (insn & 0x1f);
7914       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7915     }
7916   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7917     {
7918       // Generate movk.
7919       regno = (insn & 0x1f);
7920       gold_assert(regno == ((insn >> 5) & 0x1f));
7921       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7922     }
7923   else
7924     gold_unreachable();
7925
7926   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7927   return aarch64_reloc_funcs::STATUS_OKAY;
7928 }  // End of tls_ie_to_le
7929
7930
7931 template<int size, bool big_endian>
7932 inline
7933 typename AArch64_relocate_functions<size, big_endian>::Status
7934 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7935              const Relocate_info<size, big_endian>* relinfo,
7936              Target_aarch64<size, big_endian>* target,
7937              const elfcpp::Rela<size, big_endian>& rela,
7938              unsigned int r_type,
7939              unsigned char* view,
7940              const Symbol_value<size>* psymval)
7941 {
7942   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7943   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7944   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7945
7946   // TLSDESC-GD sequence is like:
7947   //   adrp  x0, :tlsdesc:v1
7948   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7949   //   add   x0, x0, :tlsdesc_lo12:v1
7950   //   .tlsdesccall    v1
7951   //   blr   x1
7952   // After desc_gd_to_le optimization, the sequence will be like:
7953   //   movz  x0, #0x0, lsl #16
7954   //   movk  x0, #0x10
7955   //   nop
7956   //   nop
7957
7958   // Calculate tprel value.
7959   Output_segment* tls_segment = relinfo->layout->tls_segment();
7960   gold_assert(tls_segment != NULL);
7961   Insntype* ip = reinterpret_cast<Insntype*>(view);
7962   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7963   AArch64_address value = psymval->value(relinfo->object, addend);
7964   AArch64_address aligned_tcb_size =
7965       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7966   AArch64_address x = value + aligned_tcb_size;
7967   // x is the offset to tp, we can only do this if x is within range
7968   // [0, 2^32-1]. If x is out of range, fail and exit.
7969   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7970     {
7971       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7972                    "We Can't do gd_to_le relaxation.\n"), r_type);
7973       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7974     }
7975   Insntype newinsn;
7976   switch (r_type)
7977     {
7978     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7979     case elfcpp::R_AARCH64_TLSDESC_CALL:
7980       // Change to nop
7981       newinsn = 0xd503201f;
7982       break;
7983
7984     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7985       // Change to movz.
7986       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7987       break;
7988
7989     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7990       // Change to movk.
7991       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7992       break;
7993
7994     default:
7995       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7996                  r_type);
7997       gold_unreachable();
7998     }
7999   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8000   return aarch64_reloc_funcs::STATUS_OKAY;
8001 }  // End of tls_desc_gd_to_le
8002
8003
8004 template<int size, bool big_endian>
8005 inline
8006 typename AArch64_relocate_functions<size, big_endian>::Status
8007 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
8008              const Relocate_info<size, big_endian>* /* relinfo */,
8009              Target_aarch64<size, big_endian>* /* target */,
8010              const elfcpp::Rela<size, big_endian>& rela,
8011              unsigned int r_type,
8012              unsigned char* view,
8013              const Symbol_value<size>* /* psymval */,
8014              typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
8015              typename elfcpp::Elf_types<size>::Elf_Addr address)
8016 {
8017   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
8018   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
8019
8020   // TLSDESC-GD sequence is like:
8021   //   adrp  x0, :tlsdesc:v1
8022   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
8023   //   add   x0, x0, :tlsdesc_lo12:v1
8024   //   .tlsdesccall    v1
8025   //   blr   x1
8026   // After desc_gd_to_ie optimization, the sequence will be like:
8027   //   adrp  x0, :tlsie:v1
8028   //   ldr   x0, [x0, :tlsie_lo12:v1]
8029   //   nop
8030   //   nop
8031
8032   Insntype* ip = reinterpret_cast<Insntype*>(view);
8033   const elfcpp::Elf_Xword addend = rela.get_r_addend();
8034   Insntype newinsn;
8035   switch (r_type)
8036     {
8037     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8038     case elfcpp::R_AARCH64_TLSDESC_CALL:
8039       // Change to nop
8040       newinsn = 0xd503201f;
8041       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8042       break;
8043
8044     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8045       {
8046         return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
8047                                          address);
8048       }
8049       break;
8050
8051     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8052       {
8053        // Set ldr target register to be x0.
8054        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
8055        insn &= 0xffffffe0;
8056        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
8057        // Do relocation.
8058         const AArch64_reloc_property* reloc_property =
8059             aarch64_reloc_property_table->get_reloc_property(
8060               elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8061         return aarch64_reloc_funcs::template rela_general<32>(
8062                  view, got_entry_address, addend, reloc_property);
8063       }
8064       break;
8065
8066     default:
8067       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
8068                  r_type);
8069       gold_unreachable();
8070     }
8071   return aarch64_reloc_funcs::STATUS_OKAY;
8072 }  // End of tls_desc_gd_to_ie
8073
8074 // Relocate section data.
8075
8076 template<int size, bool big_endian>
8077 void
8078 Target_aarch64<size, big_endian>::relocate_section(
8079     const Relocate_info<size, big_endian>* relinfo,
8080     unsigned int sh_type,
8081     const unsigned char* prelocs,
8082     size_t reloc_count,
8083     Output_section* output_section,
8084     bool needs_special_offset_handling,
8085     unsigned char* view,
8086     typename elfcpp::Elf_types<size>::Elf_Addr address,
8087     section_size_type view_size,
8088     const Reloc_symbol_changes* reloc_symbol_changes)
8089 {
8090   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
8091   typedef Target_aarch64<size, big_endian> Aarch64;
8092   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
8093   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8094       Classify_reloc;
8095
8096   gold_assert(sh_type == elfcpp::SHT_RELA);
8097
8098   // See if we are relocating a relaxed input section.  If so, the view
8099   // covers the whole output section and we need to adjust accordingly.
8100   if (needs_special_offset_handling)
8101     {
8102       const Output_relaxed_input_section* poris =
8103         output_section->find_relaxed_input_section(relinfo->object,
8104                                                    relinfo->data_shndx);
8105       if (poris != NULL)
8106         {
8107           Address section_address = poris->address();
8108           section_size_type section_size = poris->data_size();
8109
8110           gold_assert((section_address >= address)
8111                       && ((section_address + section_size)
8112                           <= (address + view_size)));
8113
8114           off_t offset = section_address - address;
8115           view += offset;
8116           address += offset;
8117           view_size = section_size;
8118         }
8119     }
8120
8121   gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
8122                          gold::Default_comdat_behavior, Classify_reloc>(
8123     relinfo,
8124     this,
8125     prelocs,
8126     reloc_count,
8127     output_section,
8128     needs_special_offset_handling,
8129     view,
8130     address,
8131     view_size,
8132     reloc_symbol_changes);
8133 }
8134
8135 // Scan the relocs during a relocatable link.
8136
8137 template<int size, bool big_endian>
8138 void
8139 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8140     Symbol_table* symtab,
8141     Layout* layout,
8142     Sized_relobj_file<size, big_endian>* object,
8143     unsigned int data_shndx,
8144     unsigned int sh_type,
8145     const unsigned char* prelocs,
8146     size_t reloc_count,
8147     Output_section* output_section,
8148     bool needs_special_offset_handling,
8149     size_t local_symbol_count,
8150     const unsigned char* plocal_symbols,
8151     Relocatable_relocs* rr)
8152 {
8153   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8154       Classify_reloc;
8155   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
8156       Scan_relocatable_relocs;
8157
8158   gold_assert(sh_type == elfcpp::SHT_RELA);
8159
8160   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8161     symtab,
8162     layout,
8163     object,
8164     data_shndx,
8165     prelocs,
8166     reloc_count,
8167     output_section,
8168     needs_special_offset_handling,
8169     local_symbol_count,
8170     plocal_symbols,
8171     rr);
8172 }
8173
8174 // Scan the relocs for --emit-relocs.
8175
8176 template<int size, bool big_endian>
8177 void
8178 Target_aarch64<size, big_endian>::emit_relocs_scan(
8179     Symbol_table* symtab,
8180     Layout* layout,
8181     Sized_relobj_file<size, big_endian>* object,
8182     unsigned int data_shndx,
8183     unsigned int sh_type,
8184     const unsigned char* prelocs,
8185     size_t reloc_count,
8186     Output_section* output_section,
8187     bool needs_special_offset_handling,
8188     size_t local_symbol_count,
8189     const unsigned char* plocal_syms,
8190     Relocatable_relocs* rr)
8191 {
8192   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8193       Classify_reloc;
8194   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8195       Emit_relocs_strategy;
8196
8197   gold_assert(sh_type == elfcpp::SHT_RELA);
8198
8199   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8200     symtab,
8201     layout,
8202     object,
8203     data_shndx,
8204     prelocs,
8205     reloc_count,
8206     output_section,
8207     needs_special_offset_handling,
8208     local_symbol_count,
8209     plocal_syms,
8210     rr);
8211 }
8212
8213 // Relocate a section during a relocatable link.
8214
8215 template<int size, bool big_endian>
8216 void
8217 Target_aarch64<size, big_endian>::relocate_relocs(
8218     const Relocate_info<size, big_endian>* relinfo,
8219     unsigned int sh_type,
8220     const unsigned char* prelocs,
8221     size_t reloc_count,
8222     Output_section* output_section,
8223     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8224     unsigned char* view,
8225     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8226     section_size_type view_size,
8227     unsigned char* reloc_view,
8228     section_size_type reloc_view_size)
8229 {
8230   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8231       Classify_reloc;
8232
8233   gold_assert(sh_type == elfcpp::SHT_RELA);
8234
8235   gold::relocate_relocs<size, big_endian, Classify_reloc>(
8236     relinfo,
8237     prelocs,
8238     reloc_count,
8239     output_section,
8240     offset_in_output_section,
8241     view,
8242     view_address,
8243     view_size,
8244     reloc_view,
8245     reloc_view_size);
8246 }
8247
8248
8249 // Return whether this is a 3-insn erratum sequence.
8250
8251 template<int size, bool big_endian>
8252 bool
8253 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8254     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8255     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8256     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8257 {
8258   unsigned rt1, rt2;
8259   bool load, pair;
8260
8261   // The 2nd insn is a single register load or store; or register pair
8262   // store.
8263   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8264       && (!pair || (pair && !load)))
8265     {
8266       // The 3rd insn is a load or store instruction from the "Load/store
8267       // register (unsigned immediate)" encoding class, using Rn as the
8268       // base address register.
8269       if (Insn_utilities::aarch64_ldst_uimm(insn3)
8270           && (Insn_utilities::aarch64_rn(insn3)
8271               == Insn_utilities::aarch64_rd(insn1)))
8272         return true;
8273     }
8274   return false;
8275 }
8276
8277
8278 // Return whether this is a 835769 sequence.
8279 // (Similarly implemented as in elfnn-aarch64.c.)
8280
8281 template<int size, bool big_endian>
8282 bool
8283 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8284     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8285     typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8286 {
8287   uint32_t rt;
8288   uint32_t rt2 = 0;
8289   uint32_t rn;
8290   uint32_t rm;
8291   uint32_t ra;
8292   bool pair;
8293   bool load;
8294
8295   if (Insn_utilities::aarch64_mlxl(insn2)
8296       && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8297     {
8298       /* Any SIMD memory op is independent of the subsequent MLA
8299          by definition of the erratum.  */
8300       if (Insn_utilities::aarch64_bit(insn1, 26))
8301         return true;
8302
8303       /* If not SIMD, check for integer memory ops and MLA relationship.  */
8304       rn = Insn_utilities::aarch64_rn(insn2);
8305       ra = Insn_utilities::aarch64_ra(insn2);
8306       rm = Insn_utilities::aarch64_rm(insn2);
8307
8308       /* If this is a load and there's a true(RAW) dependency, we are safe
8309          and this is not an erratum sequence.  */
8310       if (load &&
8311           (rt == rn || rt == rm || rt == ra
8312            || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8313         return false;
8314
8315       /* We conservatively put out stubs for all other cases (including
8316          writebacks).  */
8317       return true;
8318     }
8319
8320   return false;
8321 }
8322
8323
8324 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8325
8326 template<int size, bool big_endian>
8327 void
8328 Target_aarch64<size, big_endian>::create_erratum_stub(
8329     AArch64_relobj<size, big_endian>* relobj,
8330     unsigned int shndx,
8331     section_size_type erratum_insn_offset,
8332     Address erratum_address,
8333     typename Insn_utilities::Insntype erratum_insn,
8334     int erratum_type,
8335     unsigned int e843419_adrp_offset)
8336 {
8337   gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8338   The_stub_table* stub_table = relobj->stub_table(shndx);
8339   gold_assert(stub_table != NULL);
8340   if (stub_table->find_erratum_stub(relobj,
8341                                     shndx,
8342                                     erratum_insn_offset) == NULL)
8343     {
8344       const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8345       The_erratum_stub* stub;
8346       if (erratum_type == ST_E_835769)
8347         stub = new The_erratum_stub(relobj, erratum_type, shndx,
8348                                     erratum_insn_offset);
8349       else if (erratum_type == ST_E_843419)
8350         stub = new E843419_stub<size, big_endian>(
8351             relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8352       else
8353         gold_unreachable();
8354       stub->set_erratum_insn(erratum_insn);
8355       stub->set_erratum_address(erratum_address);
8356       // For erratum ST_E_843419 and ST_E_835769, the destination address is
8357       // always the next insn after erratum insn.
8358       stub->set_destination_address(erratum_address + BPI);
8359       stub_table->add_erratum_stub(stub);
8360     }
8361 }
8362
8363
8364 // Scan erratum for section SHNDX range [output_address + span_start,
8365 // output_address + span_end). Note here we do not share the code with
8366 // scan_erratum_843419_span function, because for 843419 we optimize by only
8367 // scanning the last few insns of a page, whereas for 835769, we need to scan
8368 // every insn.
8369
8370 template<int size, bool big_endian>
8371 void
8372 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8373     AArch64_relobj<size, big_endian>*  relobj,
8374     unsigned int shndx,
8375     const section_size_type span_start,
8376     const section_size_type span_end,
8377     unsigned char* input_view,
8378     Address output_address)
8379 {
8380   typedef typename Insn_utilities::Insntype Insntype;
8381
8382   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8383
8384   // Adjust output_address and view to the start of span.
8385   output_address += span_start;
8386   input_view += span_start;
8387
8388   section_size_type span_length = span_end - span_start;
8389   section_size_type offset = 0;
8390   for (offset = 0; offset + BPI < span_length; offset += BPI)
8391     {
8392       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8393       Insntype insn1 = ip[0];
8394       Insntype insn2 = ip[1];
8395       if (is_erratum_835769_sequence(insn1, insn2))
8396         {
8397           Insntype erratum_insn = insn2;
8398           // "span_start + offset" is the offset for insn1. So for insn2, it is
8399           // "span_start + offset + BPI".
8400           section_size_type erratum_insn_offset = span_start + offset + BPI;
8401           Address erratum_address = output_address + offset + BPI;
8402           gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8403                          "section %d, offset 0x%08x."),
8404                        relobj->name().c_str(), shndx,
8405                        (unsigned int)(span_start + offset));
8406
8407           this->create_erratum_stub(relobj, shndx,
8408                                     erratum_insn_offset, erratum_address,
8409                                     erratum_insn, ST_E_835769);
8410           offset += BPI;  // Skip mac insn.
8411         }
8412     }
8413 }  // End of "Target_aarch64::scan_erratum_835769_span".
8414
8415
8416 // Scan erratum for section SHNDX range
8417 // [output_address + span_start, output_address + span_end).
8418
8419 template<int size, bool big_endian>
8420 void
8421 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8422     AArch64_relobj<size, big_endian>*  relobj,
8423     unsigned int shndx,
8424     const section_size_type span_start,
8425     const section_size_type span_end,
8426     unsigned char* input_view,
8427     Address output_address)
8428 {
8429   typedef typename Insn_utilities::Insntype Insntype;
8430
8431   // Adjust output_address and view to the start of span.
8432   output_address += span_start;
8433   input_view += span_start;
8434
8435   if ((output_address & 0x03) != 0)
8436     return;
8437
8438   section_size_type offset = 0;
8439   section_size_type span_length = span_end - span_start;
8440   // The first instruction must be ending at 0xFF8 or 0xFFC.
8441   unsigned int page_offset = output_address & 0xFFF;
8442   // Make sure starting position, that is "output_address+offset",
8443   // starts at page position 0xff8 or 0xffc.
8444   if (page_offset < 0xff8)
8445     offset = 0xff8 - page_offset;
8446   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8447     {
8448       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8449       Insntype insn1 = ip[0];
8450       if (Insn_utilities::is_adrp(insn1))
8451         {
8452           Insntype insn2 = ip[1];
8453           Insntype insn3 = ip[2];
8454           Insntype erratum_insn;
8455           unsigned insn_offset;
8456           bool do_report = false;
8457           if (is_erratum_843419_sequence(insn1, insn2, insn3))
8458             {
8459               do_report = true;
8460               erratum_insn = insn3;
8461               insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8462             }
8463           else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8464             {
8465               // Optionally we can have an insn between ins2 and ins3
8466               Insntype insn_opt = ip[2];
8467               // And insn_opt must not be a branch.
8468               if (!Insn_utilities::aarch64_b(insn_opt)
8469                   && !Insn_utilities::aarch64_bl(insn_opt)
8470                   && !Insn_utilities::aarch64_blr(insn_opt)
8471                   && !Insn_utilities::aarch64_br(insn_opt))
8472                 {
8473                   // And insn_opt must not write to dest reg in insn1. However
8474                   // we do a conservative scan, which means we may fix/report
8475                   // more than necessary, but it doesn't hurt.
8476
8477                   Insntype insn4 = ip[3];
8478                   if (is_erratum_843419_sequence(insn1, insn2, insn4))
8479                     {
8480                       do_report = true;
8481                       erratum_insn = insn4;
8482                       insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8483                     }
8484                 }
8485             }
8486           if (do_report)
8487             {
8488               unsigned int erratum_insn_offset =
8489                 span_start + offset + insn_offset;
8490               Address erratum_address =
8491                 output_address + offset + insn_offset;
8492               create_erratum_stub(relobj, shndx,
8493                                   erratum_insn_offset, erratum_address,
8494                                   erratum_insn, ST_E_843419,
8495                                   span_start + offset);
8496             }
8497         }
8498
8499       // Advance to next candidate instruction. We only consider instruction
8500       // sequences starting at a page offset of 0xff8 or 0xffc.
8501       page_offset = (output_address + offset) & 0xfff;
8502       if (page_offset == 0xff8)
8503         offset += 4;
8504       else  // (page_offset == 0xffc), we move to next page's 0xff8.
8505         offset += 0xffc;
8506     }
8507 }  // End of "Target_aarch64::scan_erratum_843419_span".
8508
8509
8510 // The selector for aarch64 object files.
8511
8512 template<int size, bool big_endian>
8513 class Target_selector_aarch64 : public Target_selector
8514 {
8515  public:
8516   Target_selector_aarch64();
8517
8518   virtual Target*
8519   do_instantiate_target()
8520   { return new Target_aarch64<size, big_endian>(); }
8521 };
8522
8523 template<>
8524 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8525   : Target_selector(elfcpp::EM_AARCH64, 32, true,
8526                     "elf32-bigaarch64", "aarch64_elf32_be_vec")
8527 { }
8528
8529 template<>
8530 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8531   : Target_selector(elfcpp::EM_AARCH64, 32, false,
8532                     "elf32-littleaarch64", "aarch64_elf32_le_vec")
8533 { }
8534
8535 template<>
8536 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8537   : Target_selector(elfcpp::EM_AARCH64, 64, true,
8538                     "elf64-bigaarch64", "aarch64_elf64_be_vec")
8539 { }
8540
8541 template<>
8542 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8543   : Target_selector(elfcpp::EM_AARCH64, 64, false,
8544                     "elf64-littleaarch64", "aarch64_elf64_le_vec")
8545 { }
8546
8547 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8548 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8549 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8550 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8551
8552 } // End anonymous namespace.