Fix internal error when applying TLSDESC relocations with no TLS segment.
[external/binutils.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2016 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80   static const int BYTES_PER_INSN;
81
82   // Zero register encoding - 31.
83   static const unsigned int AARCH64_ZR;
84
85   static unsigned int
86   aarch64_bit(Insntype insn, int pos)
87   { return ((1 << pos)  & insn) >> pos; }
88
89   static unsigned int
90   aarch64_bits(Insntype insn, int pos, int l)
91   { return (insn >> pos) & ((1 << l) - 1); }
92
93   // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94   // the name defined in armv8 insn manual C3.5.9.
95   static unsigned int
96   aarch64_op31(Insntype insn)
97   { return aarch64_bits(insn, 21, 3); }
98
99   // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100   // third source register. See armv8 insn manual C3.5.9.
101   static unsigned int
102   aarch64_ra(Insntype insn)
103   { return aarch64_bits(insn, 10, 5); }
104
105   static bool
106   is_adr(const Insntype insn)
107   { return (insn & 0x9F000000) == 0x10000000; }
108
109   static bool
110   is_adrp(const Insntype insn)
111   { return (insn & 0x9F000000) == 0x90000000; }
112
113   static unsigned int
114   aarch64_rm(const Insntype insn)
115   { return aarch64_bits(insn, 16, 5); }
116
117   static unsigned int
118   aarch64_rn(const Insntype insn)
119   { return aarch64_bits(insn, 5, 5); }
120
121   static unsigned int
122   aarch64_rd(const Insntype insn)
123   { return aarch64_bits(insn, 0, 5); }
124
125   static unsigned int
126   aarch64_rt(const Insntype insn)
127   { return aarch64_bits(insn, 0, 5); }
128
129   static unsigned int
130   aarch64_rt2(const Insntype insn)
131   { return aarch64_bits(insn, 10, 5); }
132
133   // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
134   static Insntype
135   aarch64_adr_encode_imm(Insntype adr, int imm21)
136   {
137     gold_assert(is_adr(adr));
138     gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
139     const int mask19 = (1 << 19) - 1;
140     const int mask2 = 3;
141     adr &= ~((mask19 << 5) | (mask2 << 29));
142     adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
143     return adr;
144   }
145
146   // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
147   // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
148   // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
149   static int64_t
150   aarch64_adrp_decode_imm(const Insntype adrp)
151   {
152     const int mask19 = (1 << 19) - 1;
153     const int mask2 = 3;
154     gold_assert(is_adrp(adrp));
155     // 21-bit imm encoded in adrp.
156     uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
157     // Retrieve msb of 21-bit-signed imm for sign extension.
158     uint64_t msbt = (imm >> 20) & 1;
159     // Real value is imm multipled by 4k. Value now has 33-bit information.
160     int64_t value = imm << 12;
161     // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
162     // with value.
163     return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
164   }
165
166   static bool
167   aarch64_b(const Insntype insn)
168   { return (insn & 0xFC000000) == 0x14000000; }
169
170   static bool
171   aarch64_bl(const Insntype insn)
172   { return (insn & 0xFC000000) == 0x94000000; }
173
174   static bool
175   aarch64_blr(const Insntype insn)
176   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
177
178   static bool
179   aarch64_br(const Insntype insn)
180   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
181
182   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
183   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
184   static bool
185   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
186
187   static bool
188   aarch64_ldst(Insntype insn)
189   { return (insn & 0x0a000000) == 0x08000000; }
190
191   static bool
192   aarch64_ldst_ex(Insntype insn)
193   { return (insn & 0x3f000000) == 0x08000000; }
194
195   static bool
196   aarch64_ldst_pcrel(Insntype insn)
197   { return (insn & 0x3b000000) == 0x18000000; }
198
199   static bool
200   aarch64_ldst_nap(Insntype insn)
201   { return (insn & 0x3b800000) == 0x28000000; }
202
203   static bool
204   aarch64_ldstp_pi(Insntype insn)
205   { return (insn & 0x3b800000) == 0x28800000; }
206
207   static bool
208   aarch64_ldstp_o(Insntype insn)
209   { return (insn & 0x3b800000) == 0x29000000; }
210
211   static bool
212   aarch64_ldstp_pre(Insntype insn)
213   { return (insn & 0x3b800000) == 0x29800000; }
214
215   static bool
216   aarch64_ldst_ui(Insntype insn)
217   { return (insn & 0x3b200c00) == 0x38000000; }
218
219   static bool
220   aarch64_ldst_piimm(Insntype insn)
221   { return (insn & 0x3b200c00) == 0x38000400; }
222
223   static bool
224   aarch64_ldst_u(Insntype insn)
225   { return (insn & 0x3b200c00) == 0x38000800; }
226
227   static bool
228   aarch64_ldst_preimm(Insntype insn)
229   { return (insn & 0x3b200c00) == 0x38000c00; }
230
231   static bool
232   aarch64_ldst_ro(Insntype insn)
233   { return (insn & 0x3b200c00) == 0x38200800; }
234
235   static bool
236   aarch64_ldst_uimm(Insntype insn)
237   { return (insn & 0x3b000000) == 0x39000000; }
238
239   static bool
240   aarch64_ldst_simd_m(Insntype insn)
241   { return (insn & 0xbfbf0000) == 0x0c000000; }
242
243   static bool
244   aarch64_ldst_simd_m_pi(Insntype insn)
245   { return (insn & 0xbfa00000) == 0x0c800000; }
246
247   static bool
248   aarch64_ldst_simd_s(Insntype insn)
249   { return (insn & 0xbf9f0000) == 0x0d000000; }
250
251   static bool
252   aarch64_ldst_simd_s_pi(Insntype insn)
253   { return (insn & 0xbf800000) == 0x0d800000; }
254
255   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
256   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
257   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
258   // instructions PAIR is TRUE, RT and RT2 are returned.
259   static bool
260   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
261                    bool *pair, bool *load)
262   {
263     uint32_t opcode;
264     unsigned int r;
265     uint32_t opc = 0;
266     uint32_t v = 0;
267     uint32_t opc_v = 0;
268
269     /* Bail out quickly if INSN doesn't fall into the the load-store
270        encoding space.  */
271     if (!aarch64_ldst (insn))
272       return false;
273
274     *pair = false;
275     *load = false;
276     if (aarch64_ldst_ex (insn))
277       {
278         *rt = aarch64_rt (insn);
279         *rt2 = *rt;
280         if (aarch64_bit (insn, 21) == 1)
281           {
282             *pair = true;
283             *rt2 = aarch64_rt2 (insn);
284           }
285         *load = aarch64_ld (insn);
286         return true;
287       }
288     else if (aarch64_ldst_nap (insn)
289              || aarch64_ldstp_pi (insn)
290              || aarch64_ldstp_o (insn)
291              || aarch64_ldstp_pre (insn))
292       {
293         *pair = true;
294         *rt = aarch64_rt (insn);
295         *rt2 = aarch64_rt2 (insn);
296         *load = aarch64_ld (insn);
297         return true;
298       }
299     else if (aarch64_ldst_pcrel (insn)
300              || aarch64_ldst_ui (insn)
301              || aarch64_ldst_piimm (insn)
302              || aarch64_ldst_u (insn)
303              || aarch64_ldst_preimm (insn)
304              || aarch64_ldst_ro (insn)
305              || aarch64_ldst_uimm (insn))
306       {
307         *rt = aarch64_rt (insn);
308         *rt2 = *rt;
309         if (aarch64_ldst_pcrel (insn))
310           *load = true;
311         opc = aarch64_bits (insn, 22, 2);
312         v = aarch64_bit (insn, 26);
313         opc_v = opc | (v << 2);
314         *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
315                   || opc_v == 5 || opc_v == 7);
316         return true;
317       }
318     else if (aarch64_ldst_simd_m (insn)
319              || aarch64_ldst_simd_m_pi (insn))
320       {
321         *rt = aarch64_rt (insn);
322         *load = aarch64_bit (insn, 22);
323         opcode = (insn >> 12) & 0xf;
324         switch (opcode)
325           {
326           case 0:
327           case 2:
328             *rt2 = *rt + 3;
329             break;
330
331           case 4:
332           case 6:
333             *rt2 = *rt + 2;
334             break;
335
336           case 7:
337             *rt2 = *rt;
338             break;
339
340           case 8:
341           case 10:
342             *rt2 = *rt + 1;
343             break;
344
345           default:
346             return false;
347           }
348         return true;
349       }
350     else if (aarch64_ldst_simd_s (insn)
351              || aarch64_ldst_simd_s_pi (insn))
352       {
353         *rt = aarch64_rt (insn);
354         r = (insn >> 21) & 1;
355         *load = aarch64_bit (insn, 22);
356         opcode = (insn >> 13) & 0x7;
357         switch (opcode)
358           {
359           case 0:
360           case 2:
361           case 4:
362             *rt2 = *rt + r;
363             break;
364
365           case 1:
366           case 3:
367           case 5:
368             *rt2 = *rt + (r == 0 ? 2 : 3);
369             break;
370
371           case 6:
372             *rt2 = *rt + r;
373             break;
374
375           case 7:
376             *rt2 = *rt + (r == 0 ? 2 : 3);
377             break;
378
379           default:
380             return false;
381           }
382         return true;
383       }
384     return false;
385   }  // End of "aarch64_mem_op_p".
386
387   // Return true if INSN is mac insn.
388   static bool
389   aarch64_mac(Insntype insn)
390   { return (insn & 0xff000000) == 0x9b000000; }
391
392   // Return true if INSN is multiply-accumulate.
393   // (This is similar to implementaton in elfnn-aarch64.c.)
394   static bool
395   aarch64_mlxl(Insntype insn)
396   {
397     uint32_t op31 = aarch64_op31(insn);
398     if (aarch64_mac(insn)
399         && (op31 == 0 || op31 == 1 || op31 == 5)
400         /* Exclude MUL instructions which are encoded as a multiple-accumulate
401            with RA = XZR.  */
402         && aarch64_ra(insn) != AARCH64_ZR)
403       {
404         return true;
405       }
406     return false;
407   }
408 };  // End of "AArch64_insn_utilities".
409
410
411 // Insn length in byte.
412
413 template<bool big_endian>
414 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
415
416
417 // Zero register encoding - 31.
418
419 template<bool big_endian>
420 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
421
422
423 // Output_data_got_aarch64 class.
424
425 template<int size, bool big_endian>
426 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
427 {
428  public:
429   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
430   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
431     : Output_data_got<size, big_endian>(),
432       symbol_table_(symtab), layout_(layout)
433   { }
434
435   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
436   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
437   // applied in a static link.
438   void
439   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
440   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
441
442
443   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
444   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
445   // relocation that needs to be applied in a static link.
446   void
447   add_static_reloc(unsigned int got_offset, unsigned int r_type,
448                    Sized_relobj_file<size, big_endian>* relobj,
449                    unsigned int index)
450   {
451     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
452                                                 index));
453   }
454
455
456  protected:
457   // Write out the GOT table.
458   void
459   do_write(Output_file* of) {
460     // The first entry in the GOT is the address of the .dynamic section.
461     gold_assert(this->data_size() >= size / 8);
462     Output_section* dynamic = this->layout_->dynamic_section();
463     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
464     this->replace_constant(0, dynamic_addr);
465     Output_data_got<size, big_endian>::do_write(of);
466
467     // Handling static relocs
468     if (this->static_relocs_.empty())
469       return;
470
471     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
472
473     gold_assert(parameters->doing_static_link());
474     const off_t offset = this->offset();
475     const section_size_type oview_size =
476       convert_to_section_size_type(this->data_size());
477     unsigned char* const oview = of->get_output_view(offset, oview_size);
478
479     Output_segment* tls_segment = this->layout_->tls_segment();
480     gold_assert(tls_segment != NULL);
481
482     AArch64_address aligned_tcb_address =
483       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
484                     tls_segment->maximum_alignment());
485
486     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
487       {
488         Static_reloc& reloc(this->static_relocs_[i]);
489         AArch64_address value;
490
491         if (!reloc.symbol_is_global())
492           {
493             Sized_relobj_file<size, big_endian>* object = reloc.relobj();
494             const Symbol_value<size>* psymval =
495               reloc.relobj()->local_symbol(reloc.index());
496
497             // We are doing static linking.  Issue an error and skip this
498             // relocation if the symbol is undefined or in a discarded_section.
499             bool is_ordinary;
500             unsigned int shndx = psymval->input_shndx(&is_ordinary);
501             if ((shndx == elfcpp::SHN_UNDEF)
502                 || (is_ordinary
503                     && shndx != elfcpp::SHN_UNDEF
504                     && !object->is_section_included(shndx)
505                     && !this->symbol_table_->is_section_folded(object, shndx)))
506               {
507                 gold_error(_("undefined or discarded local symbol %u from "
508                              " object %s in GOT"),
509                            reloc.index(), reloc.relobj()->name().c_str());
510                 continue;
511               }
512             value = psymval->value(object, 0);
513           }
514         else
515           {
516             const Symbol* gsym = reloc.symbol();
517             gold_assert(gsym != NULL);
518             if (gsym->is_forwarder())
519               gsym = this->symbol_table_->resolve_forwards(gsym);
520
521             // We are doing static linking.  Issue an error and skip this
522             // relocation if the symbol is undefined or in a discarded_section
523             // unless it is a weakly_undefined symbol.
524             if ((gsym->is_defined_in_discarded_section()
525                  || gsym->is_undefined())
526                 && !gsym->is_weak_undefined())
527               {
528                 gold_error(_("undefined or discarded symbol %s in GOT"),
529                            gsym->name());
530                 continue;
531               }
532
533             if (!gsym->is_weak_undefined())
534               {
535                 const Sized_symbol<size>* sym =
536                   static_cast<const Sized_symbol<size>*>(gsym);
537                 value = sym->value();
538               }
539             else
540               value = 0;
541           }
542
543         unsigned got_offset = reloc.got_offset();
544         gold_assert(got_offset < oview_size);
545
546         typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
547         Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
548         Valtype x;
549         switch (reloc.r_type())
550           {
551           case elfcpp::R_AARCH64_TLS_DTPREL64:
552             x = value;
553             break;
554           case elfcpp::R_AARCH64_TLS_TPREL64:
555             x = value + aligned_tcb_address;
556             break;
557           default:
558             gold_unreachable();
559           }
560         elfcpp::Swap<size, big_endian>::writeval(wv, x);
561       }
562
563     of->write_output_view(offset, oview_size, oview);
564   }
565
566  private:
567   // Symbol table of the output object.
568   Symbol_table* symbol_table_;
569   // A pointer to the Layout class, so that we can find the .dynamic
570   // section when we write out the GOT section.
571   Layout* layout_;
572
573   // This class represent dynamic relocations that need to be applied by
574   // gold because we are using TLS relocations in a static link.
575   class Static_reloc
576   {
577    public:
578     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
579       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
580     { this->u_.global.symbol = gsym; }
581
582     Static_reloc(unsigned int got_offset, unsigned int r_type,
583           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
584       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
585     {
586       this->u_.local.relobj = relobj;
587       this->u_.local.index = index;
588     }
589
590     // Return the GOT offset.
591     unsigned int
592     got_offset() const
593     { return this->got_offset_; }
594
595     // Relocation type.
596     unsigned int
597     r_type() const
598     { return this->r_type_; }
599
600     // Whether the symbol is global or not.
601     bool
602     symbol_is_global() const
603     { return this->symbol_is_global_; }
604
605     // For a relocation against a global symbol, the global symbol.
606     Symbol*
607     symbol() const
608     {
609       gold_assert(this->symbol_is_global_);
610       return this->u_.global.symbol;
611     }
612
613     // For a relocation against a local symbol, the defining object.
614     Sized_relobj_file<size, big_endian>*
615     relobj() const
616     {
617       gold_assert(!this->symbol_is_global_);
618       return this->u_.local.relobj;
619     }
620
621     // For a relocation against a local symbol, the local symbol index.
622     unsigned int
623     index() const
624     {
625       gold_assert(!this->symbol_is_global_);
626       return this->u_.local.index;
627     }
628
629    private:
630     // GOT offset of the entry to which this relocation is applied.
631     unsigned int got_offset_;
632     // Type of relocation.
633     unsigned int r_type_;
634     // Whether this relocation is against a global symbol.
635     bool symbol_is_global_;
636     // A global or local symbol.
637     union
638     {
639       struct
640       {
641         // For a global symbol, the symbol itself.
642         Symbol* symbol;
643       } global;
644       struct
645       {
646         // For a local symbol, the object defining the symbol.
647         Sized_relobj_file<size, big_endian>* relobj;
648         // For a local symbol, the symbol index.
649         unsigned int index;
650       } local;
651     } u_;
652   };  // End of inner class Static_reloc
653
654   std::vector<Static_reloc> static_relocs_;
655 };  // End of Output_data_got_aarch64
656
657
658 template<int size, bool big_endian>
659 class AArch64_input_section;
660
661
662 template<int size, bool big_endian>
663 class AArch64_output_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_relobj;
668
669
670 // Stub type enum constants.
671
672 enum
673 {
674   ST_NONE = 0,
675
676   // Using adrp/add pair, 4 insns (including alignment) without mem access,
677   // the fastest stub. This has a limited jump distance, which is tested by
678   // aarch64_valid_for_adrp_p.
679   ST_ADRP_BRANCH = 1,
680
681   // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
682   // unlimited in jump distance.
683   ST_LONG_BRANCH_ABS = 2,
684
685   // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
686   // mem access, slowest one. Only used in position independent executables.
687   ST_LONG_BRANCH_PCREL = 3,
688
689   // Stub for erratum 843419 handling.
690   ST_E_843419 = 4,
691
692   // Stub for erratum 835769 handling.
693   ST_E_835769 = 5,
694
695   // Number of total stub types.
696   ST_NUMBER = 6
697 };
698
699
700 // Struct that wraps insns for a particular stub. All stub templates are
701 // created/initialized as constants by Stub_template_repertoire.
702
703 template<bool big_endian>
704 struct Stub_template
705 {
706   const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
707   const int insn_num;
708 };
709
710
711 // Simple singleton class that creates/initializes/stores all types of stub
712 // templates.
713
714 template<bool big_endian>
715 class Stub_template_repertoire
716 {
717 public:
718   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
719
720   // Single static method to get stub template for a given stub type.
721   static const Stub_template<big_endian>*
722   get_stub_template(int type)
723   {
724     static Stub_template_repertoire<big_endian> singleton;
725     return singleton.stub_templates_[type];
726   }
727
728 private:
729   // Constructor - creates/initializes all stub templates.
730   Stub_template_repertoire();
731   ~Stub_template_repertoire()
732   { }
733
734   // Disallowing copy ctor and copy assignment operator.
735   Stub_template_repertoire(Stub_template_repertoire&);
736   Stub_template_repertoire& operator=(Stub_template_repertoire&);
737
738   // Data that stores all insn templates.
739   const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
740 };  // End of "class Stub_template_repertoire".
741
742
743 // Constructor - creates/initilizes all stub templates.
744
745 template<bool big_endian>
746 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
747 {
748   // Insn array definitions.
749   const static Insntype ST_NONE_INSNS[] = {};
750
751   const static Insntype ST_ADRP_BRANCH_INSNS[] =
752     {
753       0x90000010,       /*      adrp    ip0, X             */
754                         /*        ADR_PREL_PG_HI21(X)      */
755       0x91000210,       /*      add     ip0, ip0, :lo12:X  */
756                         /*        ADD_ABS_LO12_NC(X)       */
757       0xd61f0200,       /*      br      ip0                */
758       0x00000000,       /*      alignment padding          */
759     };
760
761   const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
762     {
763       0x58000050,       /*      ldr   ip0, 0x8             */
764       0xd61f0200,       /*      br    ip0                  */
765       0x00000000,       /*      address field              */
766       0x00000000,       /*      address fields             */
767     };
768
769   const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
770     {
771       0x58000090,       /*      ldr   ip0, 0x10            */
772       0x10000011,       /*      adr   ip1, #0              */
773       0x8b110210,       /*      add   ip0, ip0, ip1        */
774       0xd61f0200,       /*      br    ip0                  */
775       0x00000000,       /*      address field              */
776       0x00000000,       /*      address field              */
777       0x00000000,       /*      alignment padding          */
778       0x00000000,       /*      alignment padding          */
779     };
780
781   const static Insntype ST_E_843419_INSNS[] =
782     {
783       0x00000000,    /* Placeholder for erratum insn. */
784       0x14000000,    /* b <label> */
785     };
786
787   // ST_E_835769 has the same stub template as ST_E_843419.
788   const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
789
790 #define install_insn_template(T) \
791   const static Stub_template<big_endian> template_##T = {  \
792     T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
793   this->stub_templates_[T] = &template_##T
794
795   install_insn_template(ST_NONE);
796   install_insn_template(ST_ADRP_BRANCH);
797   install_insn_template(ST_LONG_BRANCH_ABS);
798   install_insn_template(ST_LONG_BRANCH_PCREL);
799   install_insn_template(ST_E_843419);
800   install_insn_template(ST_E_835769);
801
802 #undef install_insn_template
803 }
804
805
806 // Base class for stubs.
807
808 template<int size, bool big_endian>
809 class Stub_base
810 {
811 public:
812   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
813   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
814
815   static const AArch64_address invalid_address =
816     static_cast<AArch64_address>(-1);
817
818   static const section_offset_type invalid_offset =
819     static_cast<section_offset_type>(-1);
820
821   Stub_base(int type)
822     : destination_address_(invalid_address),
823       offset_(invalid_offset),
824       type_(type)
825   {}
826
827   ~Stub_base()
828   {}
829
830   // Get stub type.
831   int
832   type() const
833   { return this->type_; }
834
835   // Get stub template that provides stub insn information.
836   const Stub_template<big_endian>*
837   stub_template() const
838   {
839     return Stub_template_repertoire<big_endian>::
840       get_stub_template(this->type());
841   }
842
843   // Get destination address.
844   AArch64_address
845   destination_address() const
846   {
847     gold_assert(this->destination_address_ != this->invalid_address);
848     return this->destination_address_;
849   }
850
851   // Set destination address.
852   void
853   set_destination_address(AArch64_address address)
854   {
855     gold_assert(address != this->invalid_address);
856     this->destination_address_ = address;
857   }
858
859   // Reset the destination address.
860   void
861   reset_destination_address()
862   { this->destination_address_ = this->invalid_address; }
863
864   // Get offset of code stub. For Reloc_stub, it is the offset from the
865   // beginning of its containing stub table; for Erratum_stub, it is the offset
866   // from the end of reloc_stubs.
867   section_offset_type
868   offset() const
869   {
870     gold_assert(this->offset_ != this->invalid_offset);
871     return this->offset_;
872   }
873
874   // Set stub offset.
875   void
876   set_offset(section_offset_type offset)
877   { this->offset_ = offset; }
878
879   // Return the stub insn.
880   const Insntype*
881   insns() const
882   { return this->stub_template()->insns; }
883
884   // Return num of stub insns.
885   unsigned int
886   insn_num() const
887   { return this->stub_template()->insn_num; }
888
889   // Get size of the stub.
890   int
891   stub_size() const
892   {
893     return this->insn_num() *
894       AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
895   }
896
897   // Write stub to output file.
898   void
899   write(unsigned char* view, section_size_type view_size)
900   { this->do_write(view, view_size); }
901
902 protected:
903   // Abstract method to be implemented by sub-classes.
904   virtual void
905   do_write(unsigned char*, section_size_type) = 0;
906
907 private:
908   // The last insn of a stub is a jump to destination insn. This field records
909   // the destination address.
910   AArch64_address destination_address_;
911   // The stub offset. Note this has difference interpretations between an
912   // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
913   // beginning of the containing stub_table, whereas for Erratum_stub, this is
914   // the offset from the end of reloc_stubs.
915   section_offset_type offset_;
916   // Stub type.
917   const int type_;
918 };  // End of "Stub_base".
919
920
921 // Erratum stub class. An erratum stub differs from a reloc stub in that for
922 // each erratum occurrence, we generate an erratum stub. We never share erratum
923 // stubs, whereas for reloc stubs, different branches insns share a single reloc
924 // stub as long as the branch targets are the same. (More to the point, reloc
925 // stubs can be shared because they're used to reach a specific target, whereas
926 // erratum stubs branch back to the original control flow.)
927
928 template<int size, bool big_endian>
929 class Erratum_stub : public Stub_base<size, big_endian>
930 {
931 public:
932   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
933   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
934   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
935   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
936
937   static const int STUB_ADDR_ALIGN;
938
939   static const Insntype invalid_insn = static_cast<Insntype>(-1);
940
941   Erratum_stub(The_aarch64_relobj* relobj, int type,
942                unsigned shndx, unsigned int sh_offset)
943     : Stub_base<size, big_endian>(type), relobj_(relobj),
944       shndx_(shndx), sh_offset_(sh_offset),
945       erratum_insn_(invalid_insn),
946       erratum_address_(this->invalid_address)
947   {}
948
949   ~Erratum_stub() {}
950
951   // Return the object that contains the erratum.
952   The_aarch64_relobj*
953   relobj()
954   { return this->relobj_; }
955
956   // Get section index of the erratum.
957   unsigned int
958   shndx() const
959   { return this->shndx_; }
960
961   // Get section offset of the erratum.
962   unsigned int
963   sh_offset() const
964   { return this->sh_offset_; }
965
966   // Get the erratum insn. This is the insn located at erratum_insn_address.
967   Insntype
968   erratum_insn() const
969   {
970     gold_assert(this->erratum_insn_ != this->invalid_insn);
971     return this->erratum_insn_;
972   }
973
974   // Set the insn that the erratum happens to.
975   void
976   set_erratum_insn(Insntype insn)
977   { this->erratum_insn_ = insn; }
978
979   // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
980   // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
981   // is no longer the one we want to write out to the stub, update erratum_insn_
982   // with relocated version. Also note that in this case xn must not be "PC", so
983   // it is safe to move the erratum insn from the origin place to the stub. For
984   // 835769, the erratum insn is multiply-accumulate insn, which could not be a
985   // relocation spot (assertion added though).
986   void
987   update_erratum_insn(Insntype insn)
988   {
989     gold_assert(this->erratum_insn_ != this->invalid_insn);
990     switch (this->type())
991       {
992       case ST_E_843419:
993         gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
994         gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
995         gold_assert(Insn_utilities::aarch64_rd(insn) ==
996                     Insn_utilities::aarch64_rd(this->erratum_insn()));
997         gold_assert(Insn_utilities::aarch64_rn(insn) ==
998                     Insn_utilities::aarch64_rn(this->erratum_insn()));
999         // Update plain ld/st insn with relocated insn.
1000         this->erratum_insn_ = insn;
1001         break;
1002       case ST_E_835769:
1003         gold_assert(insn == this->erratum_insn());
1004         break;
1005       default:
1006         gold_unreachable();
1007       }
1008   }
1009
1010
1011   // Return the address where an erratum must be done.
1012   AArch64_address
1013   erratum_address() const
1014   {
1015     gold_assert(this->erratum_address_ != this->invalid_address);
1016     return this->erratum_address_;
1017   }
1018
1019   // Set the address where an erratum must be done.
1020   void
1021   set_erratum_address(AArch64_address addr)
1022   { this->erratum_address_ = addr; }
1023
1024   // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1025   // sh_offset). We do not include 'type' in the calculation, becuase there is
1026   // at most one stub type at (obj, shndx, sh_offset).
1027   bool
1028   operator<(const Erratum_stub<size, big_endian>& k) const
1029   {
1030     if (this == &k)
1031       return false;
1032     // We group stubs by relobj.
1033     if (this->relobj_ != k.relobj_)
1034       return this->relobj_ < k.relobj_;
1035     // Then by section index.
1036     if (this->shndx_ != k.shndx_)
1037       return this->shndx_ < k.shndx_;
1038     // Lastly by section offset.
1039     return this->sh_offset_ < k.sh_offset_;
1040   }
1041
1042 protected:
1043   virtual void
1044   do_write(unsigned char*, section_size_type);
1045
1046 private:
1047   // The object that needs to be fixed.
1048   The_aarch64_relobj* relobj_;
1049   // The shndx in the object that needs to be fixed.
1050   const unsigned int shndx_;
1051   // The section offset in the obejct that needs to be fixed.
1052   const unsigned int sh_offset_;
1053   // The insn to be fixed.
1054   Insntype erratum_insn_;
1055   // The address of the above insn.
1056   AArch64_address erratum_address_;
1057 };  // End of "Erratum_stub".
1058
1059
1060 // Erratum sub class to wrap additional info needed by 843419.  In fixing this
1061 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1062 // adrp's code position (two or three insns before erratum insn itself).
1063
1064 template<int size, bool big_endian>
1065 class E843419_stub : public Erratum_stub<size, big_endian>
1066 {
1067 public:
1068   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1069
1070   E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1071                       unsigned int shndx, unsigned int sh_offset,
1072                       unsigned int adrp_sh_offset)
1073     : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1074       adrp_sh_offset_(adrp_sh_offset)
1075   {}
1076
1077   unsigned int
1078   adrp_sh_offset() const
1079   { return this->adrp_sh_offset_; }
1080
1081 private:
1082   // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1083   // can can obtain it from its parent.)
1084   const unsigned int adrp_sh_offset_;
1085 };
1086
1087
1088 template<int size, bool big_endian>
1089 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1090
1091 // Comparator used in set definition.
1092 template<int size, bool big_endian>
1093 struct Erratum_stub_less
1094 {
1095   bool
1096   operator()(const Erratum_stub<size, big_endian>* s1,
1097              const Erratum_stub<size, big_endian>* s2) const
1098   { return *s1 < *s2; }
1099 };
1100
1101 // Erratum_stub implementation for writing stub to output file.
1102
1103 template<int size, bool big_endian>
1104 void
1105 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1106 {
1107   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1108   const Insntype* insns = this->insns();
1109   uint32_t num_insns = this->insn_num();
1110   Insntype* ip = reinterpret_cast<Insntype*>(view);
1111   // For current implemented erratum 843419 and 835769, the first insn in the
1112   // stub is always a copy of the problematic insn (in 843419, the mem access
1113   // insn, in 835769, the mac insn), followed by a jump-back.
1114   elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1115   for (uint32_t i = 1; i < num_insns; ++i)
1116     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1117 }
1118
1119
1120 // Reloc stub class.
1121
1122 template<int size, bool big_endian>
1123 class Reloc_stub : public Stub_base<size, big_endian>
1124 {
1125  public:
1126   typedef Reloc_stub<size, big_endian> This;
1127   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1128
1129   // Branch range. This is used to calculate the section group size, as well as
1130   // determine whether a stub is needed.
1131   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1132   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1133
1134   // Constant used to determine if an offset fits in the adrp instruction
1135   // encoding.
1136   static const int MAX_ADRP_IMM = (1 << 20) - 1;
1137   static const int MIN_ADRP_IMM = -(1 << 20);
1138
1139   static const int BYTES_PER_INSN = 4;
1140   static const int STUB_ADDR_ALIGN;
1141
1142   // Determine whether the offset fits in the jump/branch instruction.
1143   static bool
1144   aarch64_valid_branch_offset_p(int64_t offset)
1145   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1146
1147   // Determine whether the offset fits in the adrp immediate field.
1148   static bool
1149   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1150   {
1151     typedef AArch64_relocate_functions<size, big_endian> Reloc;
1152     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1153     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1154   }
1155
1156   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1157   // needed.
1158   static int
1159   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1160                       AArch64_address target);
1161
1162   Reloc_stub(int type)
1163     : Stub_base<size, big_endian>(type)
1164   { }
1165
1166   ~Reloc_stub()
1167   { }
1168
1169   // The key class used to index the stub instance in the stub table's stub map.
1170   class Key
1171   {
1172    public:
1173     Key(int type, const Symbol* symbol, const Relobj* relobj,
1174         unsigned int r_sym, int32_t addend)
1175       : type_(type), addend_(addend)
1176     {
1177       if (symbol != NULL)
1178         {
1179           this->r_sym_ = Reloc_stub::invalid_index;
1180           this->u_.symbol = symbol;
1181         }
1182       else
1183         {
1184           gold_assert(relobj != NULL && r_sym != invalid_index);
1185           this->r_sym_ = r_sym;
1186           this->u_.relobj = relobj;
1187         }
1188     }
1189
1190     ~Key()
1191     { }
1192
1193     // Return stub type.
1194     int
1195     type() const
1196     { return this->type_; }
1197
1198     // Return the local symbol index or invalid_index.
1199     unsigned int
1200     r_sym() const
1201     { return this->r_sym_; }
1202
1203     // Return the symbol if there is one.
1204     const Symbol*
1205     symbol() const
1206     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1207
1208     // Return the relobj if there is one.
1209     const Relobj*
1210     relobj() const
1211     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1212
1213     // Whether this equals to another key k.
1214     bool
1215     eq(const Key& k) const
1216     {
1217       return ((this->type_ == k.type_)
1218               && (this->r_sym_ == k.r_sym_)
1219               && ((this->r_sym_ != Reloc_stub::invalid_index)
1220                   ? (this->u_.relobj == k.u_.relobj)
1221                   : (this->u_.symbol == k.u_.symbol))
1222               && (this->addend_ == k.addend_));
1223     }
1224
1225     // Return a hash value.
1226     size_t
1227     hash_value() const
1228     {
1229       size_t name_hash_value = gold::string_hash<char>(
1230           (this->r_sym_ != Reloc_stub::invalid_index)
1231           ? this->u_.relobj->name().c_str()
1232           : this->u_.symbol->name());
1233       // We only have 4 stub types.
1234       size_t stub_type_hash_value = 0x03 & this->type_;
1235       return (name_hash_value
1236               ^ stub_type_hash_value
1237               ^ ((this->r_sym_ & 0x3fff) << 2)
1238               ^ ((this->addend_ & 0xffff) << 16));
1239     }
1240
1241     // Functors for STL associative containers.
1242     struct hash
1243     {
1244       size_t
1245       operator()(const Key& k) const
1246       { return k.hash_value(); }
1247     };
1248
1249     struct equal_to
1250     {
1251       bool
1252       operator()(const Key& k1, const Key& k2) const
1253       { return k1.eq(k2); }
1254     };
1255
1256    private:
1257     // Stub type.
1258     const int type_;
1259     // If this is a local symbol, this is the index in the defining object.
1260     // Otherwise, it is invalid_index for a global symbol.
1261     unsigned int r_sym_;
1262     // If r_sym_ is an invalid index, this points to a global symbol.
1263     // Otherwise, it points to a relobj.  We used the unsized and target
1264     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1265     // Arm_relobj, in order to avoid making the stub class a template
1266     // as most of the stub machinery is endianness-neutral.  However, it
1267     // may require a bit of casting done by users of this class.
1268     union
1269     {
1270       const Symbol* symbol;
1271       const Relobj* relobj;
1272     } u_;
1273     // Addend associated with a reloc.
1274     int32_t addend_;
1275   };  // End of inner class Reloc_stub::Key
1276
1277  protected:
1278   // This may be overridden in the child class.
1279   virtual void
1280   do_write(unsigned char*, section_size_type);
1281
1282  private:
1283   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1284 };  // End of Reloc_stub
1285
1286 template<int size, bool big_endian>
1287 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1288
1289 // Write data to output file.
1290
1291 template<int size, bool big_endian>
1292 void
1293 Reloc_stub<size, big_endian>::
1294 do_write(unsigned char* view, section_size_type)
1295 {
1296   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1297   const uint32_t* insns = this->insns();
1298   uint32_t num_insns = this->insn_num();
1299   Insntype* ip = reinterpret_cast<Insntype*>(view);
1300   for (uint32_t i = 0; i < num_insns; ++i)
1301     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1302 }
1303
1304
1305 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1306 // needed.
1307
1308 template<int size, bool big_endian>
1309 inline int
1310 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1311     unsigned int r_type, AArch64_address location, AArch64_address dest)
1312 {
1313   int64_t branch_offset = 0;
1314   switch(r_type)
1315     {
1316     case elfcpp::R_AARCH64_CALL26:
1317     case elfcpp::R_AARCH64_JUMP26:
1318       branch_offset = dest - location;
1319       break;
1320     default:
1321       gold_unreachable();
1322     }
1323
1324   if (aarch64_valid_branch_offset_p(branch_offset))
1325     return ST_NONE;
1326
1327   if (aarch64_valid_for_adrp_p(location, dest))
1328     return ST_ADRP_BRANCH;
1329
1330   if (parameters->options().output_is_position_independent()
1331       && parameters->options().output_is_executable())
1332     return ST_LONG_BRANCH_PCREL;
1333
1334   return ST_LONG_BRANCH_ABS;
1335 }
1336
1337 // A class to hold stubs for the ARM target.
1338
1339 template<int size, bool big_endian>
1340 class Stub_table : public Output_data
1341 {
1342  public:
1343   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1344   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1345   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1346   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1347   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1348   typedef typename The_reloc_stub::Key The_reloc_stub_key;
1349   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1350   typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1351   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1352   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1353   typedef Stub_table<size, big_endian> The_stub_table;
1354   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1355                         The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1356                         Reloc_stub_map;
1357   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1358   typedef Relocate_info<size, big_endian> The_relocate_info;
1359
1360   typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1361   typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1362
1363   Stub_table(The_aarch64_input_section* owner)
1364     : Output_data(), owner_(owner), reloc_stubs_size_(0),
1365       erratum_stubs_size_(0), prev_data_size_(0)
1366   { }
1367
1368   ~Stub_table()
1369   { }
1370
1371   The_aarch64_input_section*
1372   owner() const
1373   { return owner_; }
1374
1375   // Whether this stub table is empty.
1376   bool
1377   empty() const
1378   { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1379
1380   // Return the current data size.
1381   off_t
1382   current_data_size() const
1383   { return this->current_data_size_for_child(); }
1384
1385   // Add a STUB using KEY.  The caller is responsible for avoiding addition
1386   // if a STUB with the same key has already been added.
1387   void
1388   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1389
1390   // Add an erratum stub into the erratum stub set. The set is ordered by
1391   // (relobj, shndx, sh_offset).
1392   void
1393   add_erratum_stub(The_erratum_stub* stub);
1394
1395   // Find if such erratum exists for any given (obj, shndx, sh_offset).
1396   The_erratum_stub*
1397   find_erratum_stub(The_aarch64_relobj* a64relobj,
1398                     unsigned int shndx, unsigned int sh_offset);
1399
1400   // Find all the erratums for a given input section. The return value is a pair
1401   // of iterators [begin, end).
1402   std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1403   find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1404                                        unsigned int shndx);
1405
1406   // Compute the erratum stub address.
1407   AArch64_address
1408   erratum_stub_address(The_erratum_stub* stub) const
1409   {
1410     AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1411                                       The_erratum_stub::STUB_ADDR_ALIGN);
1412     r += stub->offset();
1413     return r;
1414   }
1415
1416   // Finalize stubs. No-op here, just for completeness.
1417   void
1418   finalize_stubs()
1419   { }
1420
1421   // Look up a relocation stub using KEY. Return NULL if there is none.
1422   The_reloc_stub*
1423   find_reloc_stub(The_reloc_stub_key& key)
1424   {
1425     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1426     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1427   }
1428
1429   // Relocate stubs in this stub table.
1430   void
1431   relocate_stubs(const The_relocate_info*,
1432                  The_target_aarch64*,
1433                  Output_section*,
1434                  unsigned char*,
1435                  AArch64_address,
1436                  section_size_type);
1437
1438   // Update data size at the end of a relaxation pass.  Return true if data size
1439   // is different from that of the previous relaxation pass.
1440   bool
1441   update_data_size_changed_p()
1442   {
1443     // No addralign changed here.
1444     off_t s = align_address(this->reloc_stubs_size_,
1445                             The_erratum_stub::STUB_ADDR_ALIGN)
1446               + this->erratum_stubs_size_;
1447     bool changed = (s != this->prev_data_size_);
1448     this->prev_data_size_ = s;
1449     return changed;
1450   }
1451
1452  protected:
1453   // Write out section contents.
1454   void
1455   do_write(Output_file*);
1456
1457   // Return the required alignment.
1458   uint64_t
1459   do_addralign() const
1460   {
1461     return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1462                     The_erratum_stub::STUB_ADDR_ALIGN);
1463   }
1464
1465   // Reset address and file offset.
1466   void
1467   do_reset_address_and_file_offset()
1468   { this->set_current_data_size_for_child(this->prev_data_size_); }
1469
1470   // Set final data size.
1471   void
1472   set_final_data_size()
1473   { this->set_data_size(this->current_data_size()); }
1474
1475  private:
1476   // Relocate one stub.
1477   void
1478   relocate_stub(The_reloc_stub*,
1479                 const The_relocate_info*,
1480                 The_target_aarch64*,
1481                 Output_section*,
1482                 unsigned char*,
1483                 AArch64_address,
1484                 section_size_type);
1485
1486  private:
1487   // Owner of this stub table.
1488   The_aarch64_input_section* owner_;
1489   // The relocation stubs.
1490   Reloc_stub_map reloc_stubs_;
1491   // The erratum stubs.
1492   Erratum_stub_set erratum_stubs_;
1493   // Size of reloc stubs.
1494   off_t reloc_stubs_size_;
1495   // Size of erratum stubs.
1496   off_t erratum_stubs_size_;
1497   // data size of this in the previous pass.
1498   off_t prev_data_size_;
1499 };  // End of Stub_table
1500
1501
1502 // Add an erratum stub into the erratum stub set. The set is ordered by
1503 // (relobj, shndx, sh_offset).
1504
1505 template<int size, bool big_endian>
1506 void
1507 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1508 {
1509   std::pair<Erratum_stub_set_iter, bool> ret =
1510     this->erratum_stubs_.insert(stub);
1511   gold_assert(ret.second);
1512   this->erratum_stubs_size_ = align_address(
1513         this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1514   stub->set_offset(this->erratum_stubs_size_);
1515   this->erratum_stubs_size_ += stub->stub_size();
1516 }
1517
1518
1519 // Find if such erratum exists for given (obj, shndx, sh_offset).
1520
1521 template<int size, bool big_endian>
1522 Erratum_stub<size, big_endian>*
1523 Stub_table<size, big_endian>::find_erratum_stub(
1524     The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1525 {
1526   // A dummy object used as key to search in the set.
1527   The_erratum_stub key(a64relobj, ST_NONE,
1528                          shndx, sh_offset);
1529   Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1530   if (i != this->erratum_stubs_.end())
1531     {
1532         The_erratum_stub* stub(*i);
1533         gold_assert(stub->erratum_insn() != 0);
1534         return stub;
1535     }
1536   return NULL;
1537 }
1538
1539
1540 // Find all the errata for a given input section. The return value is a pair of
1541 // iterators [begin, end).
1542
1543 template<int size, bool big_endian>
1544 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1545           typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1546 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1547     The_aarch64_relobj* a64relobj, unsigned int shndx)
1548 {
1549   typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1550   Erratum_stub_set_iter start, end;
1551   The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1552   start = this->erratum_stubs_.lower_bound(&low_key);
1553   if (start == this->erratum_stubs_.end())
1554     return Result_pair(this->erratum_stubs_.end(),
1555                        this->erratum_stubs_.end());
1556   end = start;
1557   while (end != this->erratum_stubs_.end() &&
1558          (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1559     ++end;
1560   return Result_pair(start, end);
1561 }
1562
1563
1564 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1565 // if a STUB with the same key has already been added.
1566
1567 template<int size, bool big_endian>
1568 void
1569 Stub_table<size, big_endian>::add_reloc_stub(
1570     The_reloc_stub* stub, const The_reloc_stub_key& key)
1571 {
1572   gold_assert(stub->type() == key.type());
1573   this->reloc_stubs_[key] = stub;
1574
1575   // Assign stub offset early.  We can do this because we never remove
1576   // reloc stubs and they are in the beginning of the stub table.
1577   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1578                                           The_reloc_stub::STUB_ADDR_ALIGN);
1579   stub->set_offset(this->reloc_stubs_size_);
1580   this->reloc_stubs_size_ += stub->stub_size();
1581 }
1582
1583
1584 // Relocate all stubs in this stub table.
1585
1586 template<int size, bool big_endian>
1587 void
1588 Stub_table<size, big_endian>::
1589 relocate_stubs(const The_relocate_info* relinfo,
1590                The_target_aarch64* target_aarch64,
1591                Output_section* output_section,
1592                unsigned char* view,
1593                AArch64_address address,
1594                section_size_type view_size)
1595 {
1596   // "view_size" is the total size of the stub_table.
1597   gold_assert(address == this->address() &&
1598               view_size == static_cast<section_size_type>(this->data_size()));
1599   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1600       p != this->reloc_stubs_.end(); ++p)
1601     relocate_stub(p->second, relinfo, target_aarch64, output_section,
1602                   view, address, view_size);
1603
1604   // Just for convenience.
1605   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1606
1607   // Now 'relocate' erratum stubs.
1608   for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1609       i != this->erratum_stubs_.end(); ++i)
1610     {
1611       AArch64_address stub_address = this->erratum_stub_address(*i);
1612       // The address of "b" in the stub that is to be "relocated".
1613       AArch64_address stub_b_insn_address;
1614       // Branch offset that is to be filled in "b" insn.
1615       int b_offset = 0;
1616       switch ((*i)->type())
1617         {
1618         case ST_E_843419:
1619         case ST_E_835769:
1620           // The 1st insn of the erratum could be a relocation spot,
1621           // in this case we need to fix it with
1622           // "(*i)->erratum_insn()".
1623           elfcpp::Swap<32, big_endian>::writeval(
1624               view + (stub_address - this->address()),
1625               (*i)->erratum_insn());
1626           // For the erratum, the 2nd insn is a b-insn to be patched
1627           // (relocated).
1628           stub_b_insn_address = stub_address + 1 * BPI;
1629           b_offset = (*i)->destination_address() - stub_b_insn_address;
1630           AArch64_relocate_functions<size, big_endian>::construct_b(
1631               view + (stub_b_insn_address - this->address()),
1632               ((unsigned int)(b_offset)) & 0xfffffff);
1633           break;
1634         default:
1635           gold_unreachable();
1636           break;
1637         }
1638     }
1639 }
1640
1641
1642 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
1643
1644 template<int size, bool big_endian>
1645 void
1646 Stub_table<size, big_endian>::
1647 relocate_stub(The_reloc_stub* stub,
1648               const The_relocate_info* relinfo,
1649               The_target_aarch64* target_aarch64,
1650               Output_section* output_section,
1651               unsigned char* view,
1652               AArch64_address address,
1653               section_size_type view_size)
1654 {
1655   // "offset" is the offset from the beginning of the stub_table.
1656   section_size_type offset = stub->offset();
1657   section_size_type stub_size = stub->stub_size();
1658   // "view_size" is the total size of the stub_table.
1659   gold_assert(offset + stub_size <= view_size);
1660
1661   target_aarch64->relocate_stub(stub, relinfo, output_section,
1662                                 view + offset, address + offset, view_size);
1663 }
1664
1665
1666 // Write out the stubs to file.
1667
1668 template<int size, bool big_endian>
1669 void
1670 Stub_table<size, big_endian>::do_write(Output_file* of)
1671 {
1672   off_t offset = this->offset();
1673   const section_size_type oview_size =
1674     convert_to_section_size_type(this->data_size());
1675   unsigned char* const oview = of->get_output_view(offset, oview_size);
1676
1677   // Write relocation stubs.
1678   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1679       p != this->reloc_stubs_.end(); ++p)
1680     {
1681       The_reloc_stub* stub = p->second;
1682       AArch64_address address = this->address() + stub->offset();
1683       gold_assert(address ==
1684                   align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1685       stub->write(oview + stub->offset(), stub->stub_size());
1686     }
1687
1688   // Write erratum stubs.
1689   unsigned int erratum_stub_start_offset =
1690     align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1691   for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1692        p != this->erratum_stubs_.end(); ++p)
1693     {
1694       The_erratum_stub* stub(*p);
1695       stub->write(oview + erratum_stub_start_offset + stub->offset(),
1696                   stub->stub_size());
1697     }
1698
1699   of->write_output_view(this->offset(), oview_size, oview);
1700 }
1701
1702
1703 // AArch64_relobj class.
1704
1705 template<int size, bool big_endian>
1706 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1707 {
1708  public:
1709   typedef AArch64_relobj<size, big_endian> This;
1710   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1711   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1712   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1713   typedef Stub_table<size, big_endian> The_stub_table;
1714   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1715   typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1716   typedef std::vector<The_stub_table*> Stub_table_list;
1717   static const AArch64_address invalid_address =
1718       static_cast<AArch64_address>(-1);
1719
1720   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1721                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1722     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1723       stub_tables_()
1724   { }
1725
1726   ~AArch64_relobj()
1727   { }
1728
1729   // Return the stub table of the SHNDX-th section if there is one.
1730   The_stub_table*
1731   stub_table(unsigned int shndx) const
1732   {
1733     gold_assert(shndx < this->stub_tables_.size());
1734     return this->stub_tables_[shndx];
1735   }
1736
1737   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1738   void
1739   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1740   {
1741     gold_assert(shndx < this->stub_tables_.size());
1742     this->stub_tables_[shndx] = stub_table;
1743   }
1744
1745   // Entrance to errata scanning.
1746   void
1747   scan_errata(unsigned int shndx,
1748               const elfcpp::Shdr<size, big_endian>&,
1749               Output_section*, const Symbol_table*,
1750               The_target_aarch64*);
1751
1752   // Scan all relocation sections for stub generation.
1753   void
1754   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1755                           const Layout*);
1756
1757   // Whether a section is a scannable text section.
1758   bool
1759   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1760                             const Output_section*, const Symbol_table*);
1761
1762   // Convert regular input section with index SHNDX to a relaxed section.
1763   void
1764   convert_input_section_to_relaxed_section(unsigned /* shndx */)
1765   {
1766     // The stubs have relocations and we need to process them after writing
1767     // out the stubs.  So relocation now must follow section write.
1768     this->set_relocs_must_follow_section_writes();
1769   }
1770
1771   // Structure for mapping symbol position.
1772   struct Mapping_symbol_position
1773   {
1774     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1775       shndx_(shndx), offset_(offset)
1776     {}
1777
1778     // "<" comparator used in ordered_map container.
1779     bool
1780     operator<(const Mapping_symbol_position& p) const
1781     {
1782       return (this->shndx_ < p.shndx_
1783               || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1784     }
1785
1786     // Section index.
1787     unsigned int shndx_;
1788
1789     // Section offset.
1790     AArch64_address offset_;
1791   };
1792
1793   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1794
1795  protected:
1796   // Post constructor setup.
1797   void
1798   do_setup()
1799   {
1800     // Call parent's setup method.
1801     Sized_relobj_file<size, big_endian>::do_setup();
1802
1803     // Initialize look-up tables.
1804     this->stub_tables_.resize(this->shnum());
1805   }
1806
1807   virtual void
1808   do_relocate_sections(
1809       const Symbol_table* symtab, const Layout* layout,
1810       const unsigned char* pshdrs, Output_file* of,
1811       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1812
1813   // Count local symbols and (optionally) record mapping info.
1814   virtual void
1815   do_count_local_symbols(Stringpool_template<char>*,
1816                          Stringpool_template<char>*);
1817
1818  private:
1819   // Fix all errata in the object.
1820   void
1821   fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1822
1823   // Try to fix erratum 843419 in an optimized way. Return true if patch is
1824   // applied.
1825   bool
1826   try_fix_erratum_843419_optimized(
1827       The_erratum_stub*,
1828       typename Sized_relobj_file<size, big_endian>::View_size&);
1829
1830   // Whether a section needs to be scanned for relocation stubs.
1831   bool
1832   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1833                                     const Relobj::Output_sections&,
1834                                     const Symbol_table*, const unsigned char*);
1835
1836   // List of stub tables.
1837   Stub_table_list stub_tables_;
1838
1839   // Mapping symbol information sorted by (section index, section_offset).
1840   Mapping_symbol_info mapping_symbol_info_;
1841 };  // End of AArch64_relobj
1842
1843
1844 // Override to record mapping symbol information.
1845 template<int size, bool big_endian>
1846 void
1847 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1848     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1849 {
1850   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1851
1852   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1853   // processing if not fixing erratum.
1854   if (!parameters->options().fix_cortex_a53_843419()
1855       && !parameters->options().fix_cortex_a53_835769())
1856     return;
1857
1858   const unsigned int loccount = this->local_symbol_count();
1859   if (loccount == 0)
1860     return;
1861
1862   // Read the symbol table section header.
1863   const unsigned int symtab_shndx = this->symtab_shndx();
1864   elfcpp::Shdr<size, big_endian>
1865       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1866   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1867
1868   // Read the local symbols.
1869   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1870   gold_assert(loccount == symtabshdr.get_sh_info());
1871   off_t locsize = loccount * sym_size;
1872   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1873                                               locsize, true, true);
1874
1875   // For mapping symbol processing, we need to read the symbol names.
1876   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1877   if (strtab_shndx >= this->shnum())
1878     {
1879       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1880       return;
1881     }
1882
1883   elfcpp::Shdr<size, big_endian>
1884     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1885   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1886     {
1887       this->error(_("symbol table name section has wrong type: %u"),
1888                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
1889       return;
1890     }
1891
1892   const char* pnames =
1893     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1894                                                  strtabshdr.get_sh_size(),
1895                                                  false, false));
1896
1897   // Skip the first dummy symbol.
1898   psyms += sym_size;
1899   typename Sized_relobj_file<size, big_endian>::Local_values*
1900     plocal_values = this->local_values();
1901   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1902     {
1903       elfcpp::Sym<size, big_endian> sym(psyms);
1904       Symbol_value<size>& lv((*plocal_values)[i]);
1905       AArch64_address input_value = lv.input_value();
1906
1907       // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1908       // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1909       // symbols.
1910       // Mapping symbols could be one of the following 4 forms -
1911       //   a) $x
1912       //   b) $x.<any...>
1913       //   c) $d
1914       //   d) $d.<any...>
1915       const char* sym_name = pnames + sym.get_st_name();
1916       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1917           && (sym_name[2] == '\0' || sym_name[2] == '.'))
1918         {
1919           bool is_ordinary;
1920           unsigned int input_shndx =
1921             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1922           gold_assert(is_ordinary);
1923
1924           Mapping_symbol_position msp(input_shndx, input_value);
1925           // Insert mapping_symbol_info into map whose ordering is defined by
1926           // (shndx, offset_within_section).
1927           this->mapping_symbol_info_[msp] = sym_name[1];
1928         }
1929    }
1930 }
1931
1932
1933 // Fix all errata in the object.
1934
1935 template<int size, bool big_endian>
1936 void
1937 AArch64_relobj<size, big_endian>::fix_errata(
1938     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1939 {
1940   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1941   unsigned int shnum = this->shnum();
1942   for (unsigned int i = 1; i < shnum; ++i)
1943     {
1944       The_stub_table* stub_table = this->stub_table(i);
1945       if (!stub_table)
1946         continue;
1947       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1948         ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1949       Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1950       while (p != end)
1951         {
1952           The_erratum_stub* stub = *p;
1953           typename Sized_relobj_file<size, big_endian>::View_size&
1954             pview((*pviews)[i]);
1955
1956           // Double check data before fix.
1957           gold_assert(pview.address + stub->sh_offset()
1958                       == stub->erratum_address());
1959
1960           // Update previously recorded erratum insn with relocated
1961           // version.
1962           Insntype* ip =
1963             reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1964           Insntype insn_to_fix = ip[0];
1965           stub->update_erratum_insn(insn_to_fix);
1966
1967           // First try to see if erratum is 843419 and if it can be fixed
1968           // without using branch-to-stub.
1969           if (!try_fix_erratum_843419_optimized(stub, pview))
1970             {
1971               // Replace the erratum insn with a branch-to-stub.
1972               AArch64_address stub_address =
1973                 stub_table->erratum_stub_address(stub);
1974               unsigned int b_offset = stub_address - stub->erratum_address();
1975               AArch64_relocate_functions<size, big_endian>::construct_b(
1976                 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1977             }
1978           ++p;
1979         }
1980     }
1981 }
1982
1983
1984 // This is an optimization for 843419. This erratum requires the sequence begin
1985 // with 'adrp', when final value calculated by adrp fits in adr, we can just
1986 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
1987 // in this case, we do not delete the erratum stub (too late to do so), it is
1988 // merely generated without ever being called.)
1989
1990 template<int size, bool big_endian>
1991 bool
1992 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
1993     The_erratum_stub* stub,
1994     typename Sized_relobj_file<size, big_endian>::View_size& pview)
1995 {
1996   if (stub->type() != ST_E_843419)
1997     return false;
1998
1999   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2000   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2001   E843419_stub<size, big_endian>* e843419_stub =
2002     reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2003   AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2004   Insntype* adrp_view = reinterpret_cast<Insntype*>(
2005     pview.view + e843419_stub->adrp_sh_offset());
2006   Insntype adrp_insn = adrp_view[0];
2007   gold_assert(Insn_utilities::is_adrp(adrp_insn));
2008   // Get adrp 33-bit signed imm value.
2009   int64_t adrp_imm = Insn_utilities::
2010     aarch64_adrp_decode_imm(adrp_insn);
2011   // adrp - final value transferred to target register is calculated as:
2012   //     PC[11:0] = Zeros(12)
2013   //     adrp_dest_value = PC + adrp_imm;
2014   int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2015   // adr -final value transferred to target register is calucalted as:
2016   //     PC + adr_imm
2017   // So we have:
2018   //     PC + adr_imm = adrp_dest_value
2019   //   ==>
2020   //     adr_imm = adrp_dest_value - PC
2021   int64_t adr_imm = adrp_dest_value - pc;
2022   // Check if imm fits in adr (21-bit signed).
2023   if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2024     {
2025       // Convert 'adrp' into 'adr'.
2026       Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2027       adr_insn = Insn_utilities::
2028         aarch64_adr_encode_imm(adr_insn, adr_imm);
2029       elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2030       return true;
2031     }
2032   return false;
2033 }
2034
2035
2036 // Relocate sections.
2037
2038 template<int size, bool big_endian>
2039 void
2040 AArch64_relobj<size, big_endian>::do_relocate_sections(
2041     const Symbol_table* symtab, const Layout* layout,
2042     const unsigned char* pshdrs, Output_file* of,
2043     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2044 {
2045   // Call parent to relocate sections.
2046   Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
2047                                                             pshdrs, of, pviews);
2048
2049   // We do not generate stubs if doing a relocatable link.
2050   if (parameters->options().relocatable())
2051     return;
2052
2053   if (parameters->options().fix_cortex_a53_843419()
2054       || parameters->options().fix_cortex_a53_835769())
2055     this->fix_errata(pviews);
2056
2057   Relocate_info<size, big_endian> relinfo;
2058   relinfo.symtab = symtab;
2059   relinfo.layout = layout;
2060   relinfo.object = this;
2061
2062   // Relocate stub tables.
2063   unsigned int shnum = this->shnum();
2064   The_target_aarch64* target = The_target_aarch64::current_target();
2065
2066   for (unsigned int i = 1; i < shnum; ++i)
2067     {
2068       The_aarch64_input_section* aarch64_input_section =
2069           target->find_aarch64_input_section(this, i);
2070       if (aarch64_input_section != NULL
2071           && aarch64_input_section->is_stub_table_owner()
2072           && !aarch64_input_section->stub_table()->empty())
2073         {
2074           Output_section* os = this->output_section(i);
2075           gold_assert(os != NULL);
2076
2077           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2078           relinfo.reloc_shdr = NULL;
2079           relinfo.data_shndx = i;
2080           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2081
2082           typename Sized_relobj_file<size, big_endian>::View_size&
2083               view_struct = (*pviews)[i];
2084           gold_assert(view_struct.view != NULL);
2085
2086           The_stub_table* stub_table = aarch64_input_section->stub_table();
2087           off_t offset = stub_table->address() - view_struct.address;
2088           unsigned char* view = view_struct.view + offset;
2089           AArch64_address address = stub_table->address();
2090           section_size_type view_size = stub_table->data_size();
2091           stub_table->relocate_stubs(&relinfo, target, os, view, address,
2092                                      view_size);
2093         }
2094     }
2095 }
2096
2097
2098 // Determine if an input section is scannable for stub processing.  SHDR is
2099 // the header of the section and SHNDX is the section index.  OS is the output
2100 // section for the input section and SYMTAB is the global symbol table used to
2101 // look up ICF information.
2102
2103 template<int size, bool big_endian>
2104 bool
2105 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2106     const elfcpp::Shdr<size, big_endian>& text_shdr,
2107     unsigned int text_shndx,
2108     const Output_section* os,
2109     const Symbol_table* symtab)
2110 {
2111   // Skip any empty sections, unallocated sections or sections whose
2112   // type are not SHT_PROGBITS.
2113   if (text_shdr.get_sh_size() == 0
2114       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2115       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2116     return false;
2117
2118   // Skip any discarded or ICF'ed sections.
2119   if (os == NULL || symtab->is_section_folded(this, text_shndx))
2120     return false;
2121
2122   // Skip exception frame.
2123   if (strcmp(os->name(), ".eh_frame") == 0)
2124     return false ;
2125
2126   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2127               os->find_relaxed_input_section(this, text_shndx) != NULL);
2128
2129   return true;
2130 }
2131
2132
2133 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2134 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2135
2136 template<int size, bool big_endian>
2137 bool
2138 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2139     const elfcpp::Shdr<size, big_endian>& shdr,
2140     const Relobj::Output_sections& out_sections,
2141     const Symbol_table* symtab,
2142     const unsigned char* pshdrs)
2143 {
2144   unsigned int sh_type = shdr.get_sh_type();
2145   if (sh_type != elfcpp::SHT_RELA)
2146     return false;
2147
2148   // Ignore empty section.
2149   off_t sh_size = shdr.get_sh_size();
2150   if (sh_size == 0)
2151     return false;
2152
2153   // Ignore reloc section with unexpected symbol table.  The
2154   // error will be reported in the final link.
2155   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2156     return false;
2157
2158   gold_assert(sh_type == elfcpp::SHT_RELA);
2159   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2160
2161   // Ignore reloc section with unexpected entsize or uneven size.
2162   // The error will be reported in the final link.
2163   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2164     return false;
2165
2166   // Ignore reloc section with bad info.  This error will be
2167   // reported in the final link.
2168   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2169   if (text_shndx >= this->shnum())
2170     return false;
2171
2172   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2173   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2174                                                  text_shndx * shdr_size);
2175   return this->text_section_is_scannable(text_shdr, text_shndx,
2176                                          out_sections[text_shndx], symtab);
2177 }
2178
2179
2180 // Scan section SHNDX for erratum 843419 and 835769.
2181
2182 template<int size, bool big_endian>
2183 void
2184 AArch64_relobj<size, big_endian>::scan_errata(
2185     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2186     Output_section* os, const Symbol_table* symtab,
2187     The_target_aarch64* target)
2188 {
2189   if (shdr.get_sh_size() == 0
2190       || (shdr.get_sh_flags() &
2191           (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2192       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2193     return;
2194
2195   if (!os || symtab->is_section_folded(this, shndx)) return;
2196
2197   AArch64_address output_offset = this->get_output_section_offset(shndx);
2198   AArch64_address output_address;
2199   if (output_offset != invalid_address)
2200     output_address = os->address() + output_offset;
2201   else
2202     {
2203       const Output_relaxed_input_section* poris =
2204         os->find_relaxed_input_section(this, shndx);
2205       if (!poris) return;
2206       output_address = poris->address();
2207     }
2208
2209   section_size_type input_view_size = 0;
2210   const unsigned char* input_view =
2211     this->section_contents(shndx, &input_view_size, false);
2212
2213   Mapping_symbol_position section_start(shndx, 0);
2214   // Find the first mapping symbol record within section shndx.
2215   typename Mapping_symbol_info::const_iterator p =
2216     this->mapping_symbol_info_.lower_bound(section_start);
2217   while (p != this->mapping_symbol_info_.end() &&
2218          p->first.shndx_ == shndx)
2219     {
2220       typename Mapping_symbol_info::const_iterator prev = p;
2221       ++p;
2222       if (prev->second == 'x')
2223         {
2224           section_size_type span_start =
2225             convert_to_section_size_type(prev->first.offset_);
2226           section_size_type span_end;
2227           if (p != this->mapping_symbol_info_.end()
2228               && p->first.shndx_ == shndx)
2229             span_end = convert_to_section_size_type(p->first.offset_);
2230           else
2231             span_end = convert_to_section_size_type(shdr.get_sh_size());
2232
2233           // Here we do not share the scanning code of both errata. For 843419,
2234           // only the last few insns of each page are examined, which is fast,
2235           // whereas, for 835769, every insn pair needs to be checked.
2236
2237           if (parameters->options().fix_cortex_a53_843419())
2238             target->scan_erratum_843419_span(
2239               this, shndx, span_start, span_end,
2240               const_cast<unsigned char*>(input_view), output_address);
2241
2242           if (parameters->options().fix_cortex_a53_835769())
2243             target->scan_erratum_835769_span(
2244               this, shndx, span_start, span_end,
2245               const_cast<unsigned char*>(input_view), output_address);
2246         }
2247     }
2248 }
2249
2250
2251 // Scan relocations for stub generation.
2252
2253 template<int size, bool big_endian>
2254 void
2255 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2256     The_target_aarch64* target,
2257     const Symbol_table* symtab,
2258     const Layout* layout)
2259 {
2260   unsigned int shnum = this->shnum();
2261   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2262
2263   // Read the section headers.
2264   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2265                                                shnum * shdr_size,
2266                                                true, true);
2267
2268   // To speed up processing, we set up hash tables for fast lookup of
2269   // input offsets to output addresses.
2270   this->initialize_input_to_output_maps();
2271
2272   const Relobj::Output_sections& out_sections(this->output_sections());
2273
2274   Relocate_info<size, big_endian> relinfo;
2275   relinfo.symtab = symtab;
2276   relinfo.layout = layout;
2277   relinfo.object = this;
2278
2279   // Do relocation stubs scanning.
2280   const unsigned char* p = pshdrs + shdr_size;
2281   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2282     {
2283       const elfcpp::Shdr<size, big_endian> shdr(p);
2284       if (parameters->options().fix_cortex_a53_843419()
2285           || parameters->options().fix_cortex_a53_835769())
2286         scan_errata(i, shdr, out_sections[i], symtab, target);
2287       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2288                                                   pshdrs))
2289         {
2290           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2291           AArch64_address output_offset =
2292               this->get_output_section_offset(index);
2293           AArch64_address output_address;
2294           if (output_offset != invalid_address)
2295             {
2296               output_address = out_sections[index]->address() + output_offset;
2297             }
2298           else
2299             {
2300               // Currently this only happens for a relaxed section.
2301               const Output_relaxed_input_section* poris =
2302                   out_sections[index]->find_relaxed_input_section(this, index);
2303               gold_assert(poris != NULL);
2304               output_address = poris->address();
2305             }
2306
2307           // Get the relocations.
2308           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2309                                                         shdr.get_sh_size(),
2310                                                         true, false);
2311
2312           // Get the section contents.
2313           section_size_type input_view_size = 0;
2314           const unsigned char* input_view =
2315               this->section_contents(index, &input_view_size, false);
2316
2317           relinfo.reloc_shndx = i;
2318           relinfo.data_shndx = index;
2319           unsigned int sh_type = shdr.get_sh_type();
2320           unsigned int reloc_size;
2321           gold_assert (sh_type == elfcpp::SHT_RELA);
2322           reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2323
2324           Output_section* os = out_sections[index];
2325           target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2326                                          shdr.get_sh_size() / reloc_size,
2327                                          os,
2328                                          output_offset == invalid_address,
2329                                          input_view, output_address,
2330                                          input_view_size);
2331         }
2332     }
2333 }
2334
2335
2336 // A class to wrap an ordinary input section containing executable code.
2337
2338 template<int size, bool big_endian>
2339 class AArch64_input_section : public Output_relaxed_input_section
2340 {
2341  public:
2342   typedef Stub_table<size, big_endian> The_stub_table;
2343
2344   AArch64_input_section(Relobj* relobj, unsigned int shndx)
2345     : Output_relaxed_input_section(relobj, shndx, 1),
2346       stub_table_(NULL),
2347       original_contents_(NULL), original_size_(0),
2348       original_addralign_(1)
2349   { }
2350
2351   ~AArch64_input_section()
2352   { delete[] this->original_contents_; }
2353
2354   // Initialize.
2355   void
2356   init();
2357
2358   // Set the stub_table.
2359   void
2360   set_stub_table(The_stub_table* st)
2361   { this->stub_table_ = st; }
2362
2363   // Whether this is a stub table owner.
2364   bool
2365   is_stub_table_owner() const
2366   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2367
2368   // Return the original size of the section.
2369   uint32_t
2370   original_size() const
2371   { return this->original_size_; }
2372
2373   // Return the stub table.
2374   The_stub_table*
2375   stub_table()
2376   { return stub_table_; }
2377
2378  protected:
2379   // Write out this input section.
2380   void
2381   do_write(Output_file*);
2382
2383   // Return required alignment of this.
2384   uint64_t
2385   do_addralign() const
2386   {
2387     if (this->is_stub_table_owner())
2388       return std::max(this->stub_table_->addralign(),
2389                       static_cast<uint64_t>(this->original_addralign_));
2390     else
2391       return this->original_addralign_;
2392   }
2393
2394   // Finalize data size.
2395   void
2396   set_final_data_size();
2397
2398   // Reset address and file offset.
2399   void
2400   do_reset_address_and_file_offset();
2401
2402   // Output offset.
2403   bool
2404   do_output_offset(const Relobj* object, unsigned int shndx,
2405                    section_offset_type offset,
2406                    section_offset_type* poutput) const
2407   {
2408     if ((object == this->relobj())
2409         && (shndx == this->shndx())
2410         && (offset >= 0)
2411         && (offset <=
2412             convert_types<section_offset_type, uint32_t>(this->original_size_)))
2413       {
2414         *poutput = offset;
2415         return true;
2416       }
2417     else
2418       return false;
2419   }
2420
2421  private:
2422   // Copying is not allowed.
2423   AArch64_input_section(const AArch64_input_section&);
2424   AArch64_input_section& operator=(const AArch64_input_section&);
2425
2426   // The relocation stubs.
2427   The_stub_table* stub_table_;
2428   // Original section contents.  We have to make a copy here since the file
2429   // containing the original section may not be locked when we need to access
2430   // the contents.
2431   unsigned char* original_contents_;
2432   // Section size of the original input section.
2433   uint32_t original_size_;
2434   // Address alignment of the original input section.
2435   uint32_t original_addralign_;
2436 };  // End of AArch64_input_section
2437
2438
2439 // Finalize data size.
2440
2441 template<int size, bool big_endian>
2442 void
2443 AArch64_input_section<size, big_endian>::set_final_data_size()
2444 {
2445   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2446
2447   if (this->is_stub_table_owner())
2448     {
2449       this->stub_table_->finalize_data_size();
2450       off = align_address(off, this->stub_table_->addralign());
2451       off += this->stub_table_->data_size();
2452     }
2453   this->set_data_size(off);
2454 }
2455
2456
2457 // Reset address and file offset.
2458
2459 template<int size, bool big_endian>
2460 void
2461 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2462 {
2463   // Size of the original input section contents.
2464   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2465
2466   // If this is a stub table owner, account for the stub table size.
2467   if (this->is_stub_table_owner())
2468     {
2469       The_stub_table* stub_table = this->stub_table_;
2470
2471       // Reset the stub table's address and file offset.  The
2472       // current data size for child will be updated after that.
2473       stub_table_->reset_address_and_file_offset();
2474       off = align_address(off, stub_table_->addralign());
2475       off += stub_table->current_data_size();
2476     }
2477
2478   this->set_current_data_size(off);
2479 }
2480
2481
2482 // Initialize an Arm_input_section.
2483
2484 template<int size, bool big_endian>
2485 void
2486 AArch64_input_section<size, big_endian>::init()
2487 {
2488   Relobj* relobj = this->relobj();
2489   unsigned int shndx = this->shndx();
2490
2491   // We have to cache original size, alignment and contents to avoid locking
2492   // the original file.
2493   this->original_addralign_ =
2494       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2495
2496   // This is not efficient but we expect only a small number of relaxed
2497   // input sections for stubs.
2498   section_size_type section_size;
2499   const unsigned char* section_contents =
2500       relobj->section_contents(shndx, &section_size, false);
2501   this->original_size_ =
2502       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2503
2504   gold_assert(this->original_contents_ == NULL);
2505   this->original_contents_ = new unsigned char[section_size];
2506   memcpy(this->original_contents_, section_contents, section_size);
2507
2508   // We want to make this look like the original input section after
2509   // output sections are finalized.
2510   Output_section* os = relobj->output_section(shndx);
2511   off_t offset = relobj->output_section_offset(shndx);
2512   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2513   this->set_address(os->address() + offset);
2514   this->set_file_offset(os->offset() + offset);
2515   this->set_current_data_size(this->original_size_);
2516   this->finalize_data_size();
2517 }
2518
2519
2520 // Write data to output file.
2521
2522 template<int size, bool big_endian>
2523 void
2524 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2525 {
2526   // We have to write out the original section content.
2527   gold_assert(this->original_contents_ != NULL);
2528   of->write(this->offset(), this->original_contents_,
2529             this->original_size_);
2530
2531   // If this owns a stub table and it is not empty, write it.
2532   if (this->is_stub_table_owner() && !this->stub_table_->empty())
2533     this->stub_table_->write(of);
2534 }
2535
2536
2537 // Arm output section class.  This is defined mainly to add a number of stub
2538 // generation methods.
2539
2540 template<int size, bool big_endian>
2541 class AArch64_output_section : public Output_section
2542 {
2543  public:
2544   typedef Target_aarch64<size, big_endian> The_target_aarch64;
2545   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2546   typedef Stub_table<size, big_endian> The_stub_table;
2547   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2548
2549  public:
2550   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2551                          elfcpp::Elf_Xword flags)
2552     : Output_section(name, type, flags)
2553   { }
2554
2555   ~AArch64_output_section() {}
2556
2557   // Group input sections for stub generation.
2558   void
2559   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2560                  const Task*);
2561
2562  private:
2563   typedef Output_section::Input_section Input_section;
2564   typedef Output_section::Input_section_list Input_section_list;
2565
2566   // Create a stub group.
2567   void
2568   create_stub_group(Input_section_list::const_iterator,
2569                     Input_section_list::const_iterator,
2570                     Input_section_list::const_iterator,
2571                     The_target_aarch64*,
2572                     std::vector<Output_relaxed_input_section*>&,
2573                     const Task*);
2574 };  // End of AArch64_output_section
2575
2576
2577 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2578 // the input section that will be the owner of the stub table.
2579
2580 template<int size, bool big_endian> void
2581 AArch64_output_section<size, big_endian>::create_stub_group(
2582     Input_section_list::const_iterator first,
2583     Input_section_list::const_iterator last,
2584     Input_section_list::const_iterator owner,
2585     The_target_aarch64* target,
2586     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2587     const Task* task)
2588 {
2589   // Currently we convert ordinary input sections into relaxed sections only
2590   // at this point.
2591   The_aarch64_input_section* input_section;
2592   if (owner->is_relaxed_input_section())
2593     gold_unreachable();
2594   else
2595     {
2596       gold_assert(owner->is_input_section());
2597       // Create a new relaxed input section.  We need to lock the original
2598       // file.
2599       Task_lock_obj<Object> tl(task, owner->relobj());
2600       input_section =
2601           target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2602       new_relaxed_sections.push_back(input_section);
2603     }
2604
2605   // Create a stub table.
2606   The_stub_table* stub_table =
2607       target->new_stub_table(input_section);
2608
2609   input_section->set_stub_table(stub_table);
2610
2611   Input_section_list::const_iterator p = first;
2612   // Look for input sections or relaxed input sections in [first ... last].
2613   do
2614     {
2615       if (p->is_input_section() || p->is_relaxed_input_section())
2616         {
2617           // The stub table information for input sections live
2618           // in their objects.
2619           The_aarch64_relobj* aarch64_relobj =
2620               static_cast<The_aarch64_relobj*>(p->relobj());
2621           aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2622         }
2623     }
2624   while (p++ != last);
2625 }
2626
2627
2628 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2629 // stub groups. We grow a stub group by adding input section until the size is
2630 // just below GROUP_SIZE. The last input section will be converted into a stub
2631 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2632 // after the stub table, effectively doubling the group size.
2633 //
2634 // This is similar to the group_sections() function in elf32-arm.c but is
2635 // implemented differently.
2636
2637 template<int size, bool big_endian>
2638 void AArch64_output_section<size, big_endian>::group_sections(
2639     section_size_type group_size,
2640     bool stubs_always_after_branch,
2641     Target_aarch64<size, big_endian>* target,
2642     const Task* task)
2643 {
2644   typedef enum
2645   {
2646     NO_GROUP,
2647     FINDING_STUB_SECTION,
2648     HAS_STUB_SECTION
2649   } State;
2650
2651   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2652
2653   State state = NO_GROUP;
2654   section_size_type off = 0;
2655   section_size_type group_begin_offset = 0;
2656   section_size_type group_end_offset = 0;
2657   section_size_type stub_table_end_offset = 0;
2658   Input_section_list::const_iterator group_begin =
2659       this->input_sections().end();
2660   Input_section_list::const_iterator stub_table =
2661       this->input_sections().end();
2662   Input_section_list::const_iterator group_end = this->input_sections().end();
2663   for (Input_section_list::const_iterator p = this->input_sections().begin();
2664        p != this->input_sections().end();
2665        ++p)
2666     {
2667       section_size_type section_begin_offset =
2668         align_address(off, p->addralign());
2669       section_size_type section_end_offset =
2670         section_begin_offset + p->data_size();
2671
2672       // Check to see if we should group the previously seen sections.
2673       switch (state)
2674         {
2675         case NO_GROUP:
2676           break;
2677
2678         case FINDING_STUB_SECTION:
2679           // Adding this section makes the group larger than GROUP_SIZE.
2680           if (section_end_offset - group_begin_offset >= group_size)
2681             {
2682               if (stubs_always_after_branch)
2683                 {
2684                   gold_assert(group_end != this->input_sections().end());
2685                   this->create_stub_group(group_begin, group_end, group_end,
2686                                           target, new_relaxed_sections,
2687                                           task);
2688                   state = NO_GROUP;
2689                 }
2690               else
2691                 {
2692                   // Input sections up to stub_group_size bytes after the stub
2693                   // table can be handled by it too.
2694                   state = HAS_STUB_SECTION;
2695                   stub_table = group_end;
2696                   stub_table_end_offset = group_end_offset;
2697                 }
2698             }
2699             break;
2700
2701         case HAS_STUB_SECTION:
2702           // Adding this section makes the post stub-section group larger
2703           // than GROUP_SIZE.
2704           gold_unreachable();
2705           // NOT SUPPORTED YET. For completeness only.
2706           if (section_end_offset - stub_table_end_offset >= group_size)
2707            {
2708              gold_assert(group_end != this->input_sections().end());
2709              this->create_stub_group(group_begin, group_end, stub_table,
2710                                      target, new_relaxed_sections, task);
2711              state = NO_GROUP;
2712            }
2713            break;
2714
2715           default:
2716             gold_unreachable();
2717         }
2718
2719       // If we see an input section and currently there is no group, start
2720       // a new one.  Skip any empty sections.  We look at the data size
2721       // instead of calling p->relobj()->section_size() to avoid locking.
2722       if ((p->is_input_section() || p->is_relaxed_input_section())
2723           && (p->data_size() != 0))
2724         {
2725           if (state == NO_GROUP)
2726             {
2727               state = FINDING_STUB_SECTION;
2728               group_begin = p;
2729               group_begin_offset = section_begin_offset;
2730             }
2731
2732           // Keep track of the last input section seen.
2733           group_end = p;
2734           group_end_offset = section_end_offset;
2735         }
2736
2737       off = section_end_offset;
2738     }
2739
2740   // Create a stub group for any ungrouped sections.
2741   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2742     {
2743       gold_assert(group_end != this->input_sections().end());
2744       this->create_stub_group(group_begin, group_end,
2745                               (state == FINDING_STUB_SECTION
2746                                ? group_end
2747                                : stub_table),
2748                               target, new_relaxed_sections, task);
2749     }
2750
2751   if (!new_relaxed_sections.empty())
2752     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2753
2754   // Update the section offsets
2755   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2756     {
2757       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2758           new_relaxed_sections[i]->relobj());
2759       unsigned int shndx = new_relaxed_sections[i]->shndx();
2760       // Tell AArch64_relobj that this input section is converted.
2761       relobj->convert_input_section_to_relaxed_section(shndx);
2762     }
2763 }  // End of AArch64_output_section::group_sections
2764
2765
2766 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2767
2768
2769 // The aarch64 target class.
2770 // See the ABI at
2771 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2772 template<int size, bool big_endian>
2773 class Target_aarch64 : public Sized_target<size, big_endian>
2774 {
2775  public:
2776   typedef Target_aarch64<size, big_endian> This;
2777   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2778       Reloc_section;
2779   typedef Relocate_info<size, big_endian> The_relocate_info;
2780   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2781   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2782   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2783   typedef Erratum_stub<size, big_endian> The_erratum_stub;
2784   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2785   typedef Stub_table<size, big_endian> The_stub_table;
2786   typedef std::vector<The_stub_table*> Stub_table_list;
2787   typedef typename Stub_table_list::iterator Stub_table_iterator;
2788   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2789   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2790   typedef Unordered_map<Section_id,
2791                         AArch64_input_section<size, big_endian>*,
2792                         Section_id_hash> AArch64_input_section_map;
2793   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2794   const static int TCB_SIZE = size / 8 * 2;
2795
2796   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2797     : Sized_target<size, big_endian>(info),
2798       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2799       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2800       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2801       got_mod_index_offset_(-1U),
2802       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2803       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2804   { }
2805
2806   // Scan the relocations to determine unreferenced sections for
2807   // garbage collection.
2808   void
2809   gc_process_relocs(Symbol_table* symtab,
2810                     Layout* layout,
2811                     Sized_relobj_file<size, big_endian>* object,
2812                     unsigned int data_shndx,
2813                     unsigned int sh_type,
2814                     const unsigned char* prelocs,
2815                     size_t reloc_count,
2816                     Output_section* output_section,
2817                     bool needs_special_offset_handling,
2818                     size_t local_symbol_count,
2819                     const unsigned char* plocal_symbols);
2820
2821   // Scan the relocations to look for symbol adjustments.
2822   void
2823   scan_relocs(Symbol_table* symtab,
2824               Layout* layout,
2825               Sized_relobj_file<size, big_endian>* object,
2826               unsigned int data_shndx,
2827               unsigned int sh_type,
2828               const unsigned char* prelocs,
2829               size_t reloc_count,
2830               Output_section* output_section,
2831               bool needs_special_offset_handling,
2832               size_t local_symbol_count,
2833               const unsigned char* plocal_symbols);
2834
2835   // Finalize the sections.
2836   void
2837   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2838
2839   // Return the value to use for a dynamic which requires special
2840   // treatment.
2841   uint64_t
2842   do_dynsym_value(const Symbol*) const;
2843
2844   // Relocate a section.
2845   void
2846   relocate_section(const Relocate_info<size, big_endian>*,
2847                    unsigned int sh_type,
2848                    const unsigned char* prelocs,
2849                    size_t reloc_count,
2850                    Output_section* output_section,
2851                    bool needs_special_offset_handling,
2852                    unsigned char* view,
2853                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2854                    section_size_type view_size,
2855                    const Reloc_symbol_changes*);
2856
2857   // Scan the relocs during a relocatable link.
2858   void
2859   scan_relocatable_relocs(Symbol_table* symtab,
2860                           Layout* layout,
2861                           Sized_relobj_file<size, big_endian>* object,
2862                           unsigned int data_shndx,
2863                           unsigned int sh_type,
2864                           const unsigned char* prelocs,
2865                           size_t reloc_count,
2866                           Output_section* output_section,
2867                           bool needs_special_offset_handling,
2868                           size_t local_symbol_count,
2869                           const unsigned char* plocal_symbols,
2870                           Relocatable_relocs*);
2871
2872   // Scan the relocs for --emit-relocs.
2873   void
2874   emit_relocs_scan(Symbol_table* symtab,
2875                    Layout* layout,
2876                    Sized_relobj_file<size, big_endian>* object,
2877                    unsigned int data_shndx,
2878                    unsigned int sh_type,
2879                    const unsigned char* prelocs,
2880                    size_t reloc_count,
2881                    Output_section* output_section,
2882                    bool needs_special_offset_handling,
2883                    size_t local_symbol_count,
2884                    const unsigned char* plocal_syms,
2885                    Relocatable_relocs* rr);
2886
2887   // Relocate a section during a relocatable link.
2888   void
2889   relocate_relocs(
2890       const Relocate_info<size, big_endian>*,
2891       unsigned int sh_type,
2892       const unsigned char* prelocs,
2893       size_t reloc_count,
2894       Output_section* output_section,
2895       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2896       unsigned char* view,
2897       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2898       section_size_type view_size,
2899       unsigned char* reloc_view,
2900       section_size_type reloc_view_size);
2901
2902   // Return the symbol index to use for a target specific relocation.
2903   // The only target specific relocation is R_AARCH64_TLSDESC for a
2904   // local symbol, which is an absolute reloc.
2905   unsigned int
2906   do_reloc_symbol_index(void*, unsigned int r_type) const
2907   {
2908     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2909     return 0;
2910   }
2911
2912   // Return the addend to use for a target specific relocation.
2913   uint64_t
2914   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2915
2916   // Return the PLT section.
2917   uint64_t
2918   do_plt_address_for_global(const Symbol* gsym) const
2919   { return this->plt_section()->address_for_global(gsym); }
2920
2921   uint64_t
2922   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2923   { return this->plt_section()->address_for_local(relobj, symndx); }
2924
2925   // This function should be defined in targets that can use relocation
2926   // types to determine (implemented in local_reloc_may_be_function_pointer
2927   // and global_reloc_may_be_function_pointer)
2928   // if a function's pointer is taken.  ICF uses this in safe mode to only
2929   // fold those functions whose pointer is defintely not taken.
2930   bool
2931   do_can_check_for_function_pointers() const
2932   { return true; }
2933
2934   // Return the number of entries in the PLT.
2935   unsigned int
2936   plt_entry_count() const;
2937
2938   //Return the offset of the first non-reserved PLT entry.
2939   unsigned int
2940   first_plt_entry_offset() const;
2941
2942   // Return the size of each PLT entry.
2943   unsigned int
2944   plt_entry_size() const;
2945
2946   // Create a stub table.
2947   The_stub_table*
2948   new_stub_table(The_aarch64_input_section*);
2949
2950   // Create an aarch64 input section.
2951   The_aarch64_input_section*
2952   new_aarch64_input_section(Relobj*, unsigned int);
2953
2954   // Find an aarch64 input section instance for a given OBJ and SHNDX.
2955   The_aarch64_input_section*
2956   find_aarch64_input_section(Relobj*, unsigned int) const;
2957
2958   // Return the thread control block size.
2959   unsigned int
2960   tcb_size() const { return This::TCB_SIZE; }
2961
2962   // Scan a section for stub generation.
2963   void
2964   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2965                          const unsigned char*, size_t, Output_section*,
2966                          bool, const unsigned char*,
2967                          Address,
2968                          section_size_type);
2969
2970   // Scan a relocation section for stub.
2971   template<int sh_type>
2972   void
2973   scan_reloc_section_for_stubs(
2974       const The_relocate_info* relinfo,
2975       const unsigned char* prelocs,
2976       size_t reloc_count,
2977       Output_section* output_section,
2978       bool needs_special_offset_handling,
2979       const unsigned char* view,
2980       Address view_address,
2981       section_size_type);
2982
2983   // Relocate a single stub.
2984   void
2985   relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2986                 Output_section*, unsigned char*, Address,
2987                 section_size_type);
2988
2989   // Get the default AArch64 target.
2990   static This*
2991   current_target()
2992   {
2993     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2994                 && parameters->target().get_size() == size
2995                 && parameters->target().is_big_endian() == big_endian);
2996     return static_cast<This*>(parameters->sized_target<size, big_endian>());
2997   }
2998
2999
3000   // Scan erratum 843419 for a part of a section.
3001   void
3002   scan_erratum_843419_span(
3003     AArch64_relobj<size, big_endian>*,
3004     unsigned int,
3005     const section_size_type,
3006     const section_size_type,
3007     unsigned char*,
3008     Address);
3009
3010   // Scan erratum 835769 for a part of a section.
3011   void
3012   scan_erratum_835769_span(
3013     AArch64_relobj<size, big_endian>*,
3014     unsigned int,
3015     const section_size_type,
3016     const section_size_type,
3017     unsigned char*,
3018     Address);
3019
3020  protected:
3021   void
3022   do_select_as_default_target()
3023   {
3024     gold_assert(aarch64_reloc_property_table == NULL);
3025     aarch64_reloc_property_table = new AArch64_reloc_property_table();
3026   }
3027
3028   // Add a new reloc argument, returning the index in the vector.
3029   size_t
3030   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3031                    unsigned int r_sym)
3032   {
3033     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3034     return this->tlsdesc_reloc_info_.size() - 1;
3035   }
3036
3037   virtual Output_data_plt_aarch64<size, big_endian>*
3038   do_make_data_plt(Layout* layout,
3039                    Output_data_got_aarch64<size, big_endian>* got,
3040                    Output_data_space* got_plt,
3041                    Output_data_space* got_irelative)
3042   {
3043     return new Output_data_plt_aarch64_standard<size, big_endian>(
3044       layout, got, got_plt, got_irelative);
3045   }
3046
3047
3048   // do_make_elf_object to override the same function in the base class.
3049   Object*
3050   do_make_elf_object(const std::string&, Input_file*, off_t,
3051                      const elfcpp::Ehdr<size, big_endian>&);
3052
3053   Output_data_plt_aarch64<size, big_endian>*
3054   make_data_plt(Layout* layout,
3055                 Output_data_got_aarch64<size, big_endian>* got,
3056                 Output_data_space* got_plt,
3057                 Output_data_space* got_irelative)
3058   {
3059     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3060   }
3061
3062   // We only need to generate stubs, and hence perform relaxation if we are
3063   // not doing relocatable linking.
3064   virtual bool
3065   do_may_relax() const
3066   { return !parameters->options().relocatable(); }
3067
3068   // Relaxation hook.  This is where we do stub generation.
3069   virtual bool
3070   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3071
3072   void
3073   group_sections(Layout* layout,
3074                  section_size_type group_size,
3075                  bool stubs_always_after_branch,
3076                  const Task* task);
3077
3078   void
3079   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3080                       const Sized_symbol<size>*, unsigned int,
3081                       const Symbol_value<size>*,
3082                       typename elfcpp::Elf_types<size>::Elf_Swxword,
3083                       Address Elf_Addr);
3084
3085   // Make an output section.
3086   Output_section*
3087   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3088                          elfcpp::Elf_Xword flags)
3089   { return new The_aarch64_output_section(name, type, flags); }
3090
3091  private:
3092   // The class which scans relocations.
3093   class Scan
3094   {
3095   public:
3096     Scan()
3097       : issued_non_pic_error_(false)
3098     { }
3099
3100     inline void
3101     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3102           Sized_relobj_file<size, big_endian>* object,
3103           unsigned int data_shndx,
3104           Output_section* output_section,
3105           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3106           const elfcpp::Sym<size, big_endian>& lsym,
3107           bool is_discarded);
3108
3109     inline void
3110     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3111            Sized_relobj_file<size, big_endian>* object,
3112            unsigned int data_shndx,
3113            Output_section* output_section,
3114            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3115            Symbol* gsym);
3116
3117     inline bool
3118     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3119                                         Target_aarch64<size, big_endian>* ,
3120                                         Sized_relobj_file<size, big_endian>* ,
3121                                         unsigned int ,
3122                                         Output_section* ,
3123                                         const elfcpp::Rela<size, big_endian>& ,
3124                                         unsigned int r_type,
3125                                         const elfcpp::Sym<size, big_endian>&);
3126
3127     inline bool
3128     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3129                                          Target_aarch64<size, big_endian>* ,
3130                                          Sized_relobj_file<size, big_endian>* ,
3131                                          unsigned int ,
3132                                          Output_section* ,
3133                                          const elfcpp::Rela<size, big_endian>& ,
3134                                          unsigned int r_type,
3135                                          Symbol* gsym);
3136
3137   private:
3138     static void
3139     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3140                             unsigned int r_type);
3141
3142     static void
3143     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3144                              unsigned int r_type, Symbol*);
3145
3146     inline bool
3147     possible_function_pointer_reloc(unsigned int r_type);
3148
3149     void
3150     check_non_pic(Relobj*, unsigned int r_type);
3151
3152     bool
3153     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3154                               unsigned int r_type);
3155
3156     // Whether we have issued an error about a non-PIC compilation.
3157     bool issued_non_pic_error_;
3158   };
3159
3160   // The class which implements relocation.
3161   class Relocate
3162   {
3163    public:
3164     Relocate()
3165       : skip_call_tls_get_addr_(false)
3166     { }
3167
3168     ~Relocate()
3169     { }
3170
3171     // Do a relocation.  Return false if the caller should not issue
3172     // any warnings about this relocation.
3173     inline bool
3174     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3175              Target_aarch64*, Output_section*, size_t, const unsigned char*,
3176              const Sized_symbol<size>*, const Symbol_value<size>*,
3177              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3178              section_size_type);
3179
3180   private:
3181     inline typename AArch64_relocate_functions<size, big_endian>::Status
3182     relocate_tls(const Relocate_info<size, big_endian>*,
3183                  Target_aarch64<size, big_endian>*,
3184                  size_t,
3185                  const elfcpp::Rela<size, big_endian>&,
3186                  unsigned int r_type, const Sized_symbol<size>*,
3187                  const Symbol_value<size>*,
3188                  unsigned char*,
3189                  typename elfcpp::Elf_types<size>::Elf_Addr);
3190
3191     inline typename AArch64_relocate_functions<size, big_endian>::Status
3192     tls_gd_to_le(
3193                  const Relocate_info<size, big_endian>*,
3194                  Target_aarch64<size, big_endian>*,
3195                  const elfcpp::Rela<size, big_endian>&,
3196                  unsigned int,
3197                  unsigned char*,
3198                  const Symbol_value<size>*);
3199
3200     inline typename AArch64_relocate_functions<size, big_endian>::Status
3201     tls_ld_to_le(
3202                  const Relocate_info<size, big_endian>*,
3203                  Target_aarch64<size, big_endian>*,
3204                  const elfcpp::Rela<size, big_endian>&,
3205                  unsigned int,
3206                  unsigned char*,
3207                  const Symbol_value<size>*);
3208
3209     inline typename AArch64_relocate_functions<size, big_endian>::Status
3210     tls_ie_to_le(
3211                  const Relocate_info<size, big_endian>*,
3212                  Target_aarch64<size, big_endian>*,
3213                  const elfcpp::Rela<size, big_endian>&,
3214                  unsigned int,
3215                  unsigned char*,
3216                  const Symbol_value<size>*);
3217
3218     inline typename AArch64_relocate_functions<size, big_endian>::Status
3219     tls_desc_gd_to_le(
3220                  const Relocate_info<size, big_endian>*,
3221                  Target_aarch64<size, big_endian>*,
3222                  const elfcpp::Rela<size, big_endian>&,
3223                  unsigned int,
3224                  unsigned char*,
3225                  const Symbol_value<size>*);
3226
3227     inline typename AArch64_relocate_functions<size, big_endian>::Status
3228     tls_desc_gd_to_ie(
3229                  const Relocate_info<size, big_endian>*,
3230                  Target_aarch64<size, big_endian>*,
3231                  const elfcpp::Rela<size, big_endian>&,
3232                  unsigned int,
3233                  unsigned char*,
3234                  const Symbol_value<size>*,
3235                  typename elfcpp::Elf_types<size>::Elf_Addr,
3236                  typename elfcpp::Elf_types<size>::Elf_Addr);
3237
3238     bool skip_call_tls_get_addr_;
3239
3240   };  // End of class Relocate
3241
3242   // Adjust TLS relocation type based on the options and whether this
3243   // is a local symbol.
3244   static tls::Tls_optimization
3245   optimize_tls_reloc(bool is_final, int r_type);
3246
3247   // Get the GOT section, creating it if necessary.
3248   Output_data_got_aarch64<size, big_endian>*
3249   got_section(Symbol_table*, Layout*);
3250
3251   // Get the GOT PLT section.
3252   Output_data_space*
3253   got_plt_section() const
3254   {
3255     gold_assert(this->got_plt_ != NULL);
3256     return this->got_plt_;
3257   }
3258
3259   // Get the GOT section for TLSDESC entries.
3260   Output_data_got<size, big_endian>*
3261   got_tlsdesc_section() const
3262   {
3263     gold_assert(this->got_tlsdesc_ != NULL);
3264     return this->got_tlsdesc_;
3265   }
3266
3267   // Create the PLT section.
3268   void
3269   make_plt_section(Symbol_table* symtab, Layout* layout);
3270
3271   // Create a PLT entry for a global symbol.
3272   void
3273   make_plt_entry(Symbol_table*, Layout*, Symbol*);
3274
3275   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3276   void
3277   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3278                              Sized_relobj_file<size, big_endian>* relobj,
3279                              unsigned int local_sym_index);
3280
3281   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3282   void
3283   define_tls_base_symbol(Symbol_table*, Layout*);
3284
3285   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3286   void
3287   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3288
3289   // Create a GOT entry for the TLS module index.
3290   unsigned int
3291   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3292                       Sized_relobj_file<size, big_endian>* object);
3293
3294   // Get the PLT section.
3295   Output_data_plt_aarch64<size, big_endian>*
3296   plt_section() const
3297   {
3298     gold_assert(this->plt_ != NULL);
3299     return this->plt_;
3300   }
3301
3302   // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3303   // ST_E_843419, we need an additional field for adrp offset.
3304   void create_erratum_stub(
3305     AArch64_relobj<size, big_endian>* relobj,
3306     unsigned int shndx,
3307     section_size_type erratum_insn_offset,
3308     Address erratum_address,
3309     typename Insn_utilities::Insntype erratum_insn,
3310     int erratum_type,
3311     unsigned int e843419_adrp_offset=0);
3312
3313   // Return whether this is a 3-insn erratum sequence.
3314   bool is_erratum_843419_sequence(
3315       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3316       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3317       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3318
3319   // Return whether this is a 835769 sequence.
3320   // (Similarly implemented as in elfnn-aarch64.c.)
3321   bool is_erratum_835769_sequence(
3322       typename elfcpp::Swap<32,big_endian>::Valtype,
3323       typename elfcpp::Swap<32,big_endian>::Valtype);
3324
3325   // Get the dynamic reloc section, creating it if necessary.
3326   Reloc_section*
3327   rela_dyn_section(Layout*);
3328
3329   // Get the section to use for TLSDESC relocations.
3330   Reloc_section*
3331   rela_tlsdesc_section(Layout*) const;
3332
3333   // Get the section to use for IRELATIVE relocations.
3334   Reloc_section*
3335   rela_irelative_section(Layout*);
3336
3337   // Add a potential copy relocation.
3338   void
3339   copy_reloc(Symbol_table* symtab, Layout* layout,
3340              Sized_relobj_file<size, big_endian>* object,
3341              unsigned int shndx, Output_section* output_section,
3342              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3343   {
3344     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3345     this->copy_relocs_.copy_reloc(symtab, layout,
3346                                   symtab->get_sized_symbol<size>(sym),
3347                                   object, shndx, output_section,
3348                                   r_type, reloc.get_r_offset(),
3349                                   reloc.get_r_addend(),
3350                                   this->rela_dyn_section(layout));
3351   }
3352
3353   // Information about this specific target which we pass to the
3354   // general Target structure.
3355   static const Target::Target_info aarch64_info;
3356
3357   // The types of GOT entries needed for this platform.
3358   // These values are exposed to the ABI in an incremental link.
3359   // Do not renumber existing values without changing the version
3360   // number of the .gnu_incremental_inputs section.
3361   enum Got_type
3362   {
3363     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3364     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3365     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3366     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3367   };
3368
3369   // This type is used as the argument to the target specific
3370   // relocation routines.  The only target specific reloc is
3371   // R_AARCh64_TLSDESC against a local symbol.
3372   struct Tlsdesc_info
3373   {
3374     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3375                  unsigned int a_r_sym)
3376       : object(a_object), r_sym(a_r_sym)
3377     { }
3378
3379     // The object in which the local symbol is defined.
3380     Sized_relobj_file<size, big_endian>* object;
3381     // The local symbol index in the object.
3382     unsigned int r_sym;
3383   };
3384
3385   // The GOT section.
3386   Output_data_got_aarch64<size, big_endian>* got_;
3387   // The PLT section.
3388   Output_data_plt_aarch64<size, big_endian>* plt_;
3389   // The GOT PLT section.
3390   Output_data_space* got_plt_;
3391   // The GOT section for IRELATIVE relocations.
3392   Output_data_space* got_irelative_;
3393   // The GOT section for TLSDESC relocations.
3394   Output_data_got<size, big_endian>* got_tlsdesc_;
3395   // The _GLOBAL_OFFSET_TABLE_ symbol.
3396   Symbol* global_offset_table_;
3397   // The dynamic reloc section.
3398   Reloc_section* rela_dyn_;
3399   // The section to use for IRELATIVE relocs.
3400   Reloc_section* rela_irelative_;
3401   // Relocs saved to avoid a COPY reloc.
3402   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3403   // Offset of the GOT entry for the TLS module index.
3404   unsigned int got_mod_index_offset_;
3405   // We handle R_AARCH64_TLSDESC against a local symbol as a target
3406   // specific relocation. Here we store the object and local symbol
3407   // index for the relocation.
3408   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3409   // True if the _TLS_MODULE_BASE_ symbol has been defined.
3410   bool tls_base_symbol_defined_;
3411   // List of stub_tables
3412   Stub_table_list stub_tables_;
3413   // Actual stub group size
3414   section_size_type stub_group_size_;
3415   AArch64_input_section_map aarch64_input_section_map_;
3416 };  // End of Target_aarch64
3417
3418
3419 template<>
3420 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3421 {
3422   64,                   // size
3423   false,                // is_big_endian
3424   elfcpp::EM_AARCH64,   // machine_code
3425   false,                // has_make_symbol
3426   false,                // has_resolve
3427   false,                // has_code_fill
3428   true,                 // is_default_stack_executable
3429   true,                 // can_icf_inline_merge_sections
3430   '\0',                 // wrap_char
3431   "/lib/ld.so.1",       // program interpreter
3432   0x400000,             // default_text_segment_address
3433   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3434   0x1000,               // common_pagesize (overridable by -z common-page-size)
3435   false,                // isolate_execinstr
3436   0,                    // rosegment_gap
3437   elfcpp::SHN_UNDEF,    // small_common_shndx
3438   elfcpp::SHN_UNDEF,    // large_common_shndx
3439   0,                    // small_common_section_flags
3440   0,                    // large_common_section_flags
3441   NULL,                 // attributes_section
3442   NULL,                 // attributes_vendor
3443   "_start",             // entry_symbol_name
3444   32,                   // hash_entry_size
3445 };
3446
3447 template<>
3448 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3449 {
3450   32,                   // size
3451   false,                // is_big_endian
3452   elfcpp::EM_AARCH64,   // machine_code
3453   false,                // has_make_symbol
3454   false,                // has_resolve
3455   false,                // has_code_fill
3456   true,                 // is_default_stack_executable
3457   false,                // can_icf_inline_merge_sections
3458   '\0',                 // wrap_char
3459   "/lib/ld.so.1",       // program interpreter
3460   0x400000,             // default_text_segment_address
3461   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3462   0x1000,               // common_pagesize (overridable by -z common-page-size)
3463   false,                // isolate_execinstr
3464   0,                    // rosegment_gap
3465   elfcpp::SHN_UNDEF,    // small_common_shndx
3466   elfcpp::SHN_UNDEF,    // large_common_shndx
3467   0,                    // small_common_section_flags
3468   0,                    // large_common_section_flags
3469   NULL,                 // attributes_section
3470   NULL,                 // attributes_vendor
3471   "_start",             // entry_symbol_name
3472   32,                   // hash_entry_size
3473 };
3474
3475 template<>
3476 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3477 {
3478   64,                   // size
3479   true,                 // is_big_endian
3480   elfcpp::EM_AARCH64,   // machine_code
3481   false,                // has_make_symbol
3482   false,                // has_resolve
3483   false,                // has_code_fill
3484   true,                 // is_default_stack_executable
3485   true,                 // can_icf_inline_merge_sections
3486   '\0',                 // wrap_char
3487   "/lib/ld.so.1",       // program interpreter
3488   0x400000,             // default_text_segment_address
3489   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3490   0x1000,               // common_pagesize (overridable by -z common-page-size)
3491   false,                // isolate_execinstr
3492   0,                    // rosegment_gap
3493   elfcpp::SHN_UNDEF,    // small_common_shndx
3494   elfcpp::SHN_UNDEF,    // large_common_shndx
3495   0,                    // small_common_section_flags
3496   0,                    // large_common_section_flags
3497   NULL,                 // attributes_section
3498   NULL,                 // attributes_vendor
3499   "_start",             // entry_symbol_name
3500   32,                   // hash_entry_size
3501 };
3502
3503 template<>
3504 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3505 {
3506   32,                   // size
3507   true,                 // is_big_endian
3508   elfcpp::EM_AARCH64,   // machine_code
3509   false,                // has_make_symbol
3510   false,                // has_resolve
3511   false,                // has_code_fill
3512   true,                 // is_default_stack_executable
3513   false,                // can_icf_inline_merge_sections
3514   '\0',                 // wrap_char
3515   "/lib/ld.so.1",       // program interpreter
3516   0x400000,             // default_text_segment_address
3517   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3518   0x1000,               // common_pagesize (overridable by -z common-page-size)
3519   false,                // isolate_execinstr
3520   0,                    // rosegment_gap
3521   elfcpp::SHN_UNDEF,    // small_common_shndx
3522   elfcpp::SHN_UNDEF,    // large_common_shndx
3523   0,                    // small_common_section_flags
3524   0,                    // large_common_section_flags
3525   NULL,                 // attributes_section
3526   NULL,                 // attributes_vendor
3527   "_start",             // entry_symbol_name
3528   32,                   // hash_entry_size
3529 };
3530
3531 // Get the GOT section, creating it if necessary.
3532
3533 template<int size, bool big_endian>
3534 Output_data_got_aarch64<size, big_endian>*
3535 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3536                                               Layout* layout)
3537 {
3538   if (this->got_ == NULL)
3539     {
3540       gold_assert(symtab != NULL && layout != NULL);
3541
3542       // When using -z now, we can treat .got.plt as a relro section.
3543       // Without -z now, it is modified after program startup by lazy
3544       // PLT relocations.
3545       bool is_got_plt_relro = parameters->options().now();
3546       Output_section_order got_order = (is_got_plt_relro
3547                                         ? ORDER_RELRO
3548                                         : ORDER_RELRO_LAST);
3549       Output_section_order got_plt_order = (is_got_plt_relro
3550                                             ? ORDER_RELRO
3551                                             : ORDER_NON_RELRO_FIRST);
3552
3553       // Layout of .got and .got.plt sections.
3554       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3555       // ...
3556       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3557       // .gotplt[1] reserved for ld.so (resolver)
3558       // .gotplt[2] reserved
3559
3560       // Generate .got section.
3561       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3562                                                                  layout);
3563       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3564                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3565                                       this->got_, got_order, true);
3566       // The first word of GOT is reserved for the address of .dynamic.
3567       // We put 0 here now. The value will be replaced later in
3568       // Output_data_got_aarch64::do_write.
3569       this->got_->add_constant(0);
3570
3571       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3572       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3573       // even if there is a .got.plt section.
3574       this->global_offset_table_ =
3575         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3576                                       Symbol_table::PREDEFINED,
3577                                       this->got_,
3578                                       0, 0, elfcpp::STT_OBJECT,
3579                                       elfcpp::STB_LOCAL,
3580                                       elfcpp::STV_HIDDEN, 0,
3581                                       false, false);
3582
3583       // Generate .got.plt section.
3584       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3585       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3586                                       (elfcpp::SHF_ALLOC
3587                                        | elfcpp::SHF_WRITE),
3588                                       this->got_plt_, got_plt_order,
3589                                       is_got_plt_relro);
3590
3591       // The first three entries are reserved.
3592       this->got_plt_->set_current_data_size(
3593         AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3594
3595       // If there are any IRELATIVE relocations, they get GOT entries
3596       // in .got.plt after the jump slot entries.
3597       this->got_irelative_ = new Output_data_space(size / 8,
3598                                                    "** GOT IRELATIVE PLT");
3599       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3600                                       (elfcpp::SHF_ALLOC
3601                                        | elfcpp::SHF_WRITE),
3602                                       this->got_irelative_,
3603                                       got_plt_order,
3604                                       is_got_plt_relro);
3605
3606       // If there are any TLSDESC relocations, they get GOT entries in
3607       // .got.plt after the jump slot and IRELATIVE entries.
3608       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3609       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3610                                       (elfcpp::SHF_ALLOC
3611                                        | elfcpp::SHF_WRITE),
3612                                       this->got_tlsdesc_,
3613                                       got_plt_order,
3614                                       is_got_plt_relro);
3615
3616       if (!is_got_plt_relro)
3617         {
3618           // Those bytes can go into the relro segment.
3619           layout->increase_relro(
3620             AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3621         }
3622
3623     }
3624   return this->got_;
3625 }
3626
3627 // Get the dynamic reloc section, creating it if necessary.
3628
3629 template<int size, bool big_endian>
3630 typename Target_aarch64<size, big_endian>::Reloc_section*
3631 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3632 {
3633   if (this->rela_dyn_ == NULL)
3634     {
3635       gold_assert(layout != NULL);
3636       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3637       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3638                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
3639                                       ORDER_DYNAMIC_RELOCS, false);
3640     }
3641   return this->rela_dyn_;
3642 }
3643
3644 // Get the section to use for IRELATIVE relocs, creating it if
3645 // necessary.  These go in .rela.dyn, but only after all other dynamic
3646 // relocations.  They need to follow the other dynamic relocations so
3647 // that they can refer to global variables initialized by those
3648 // relocs.
3649
3650 template<int size, bool big_endian>
3651 typename Target_aarch64<size, big_endian>::Reloc_section*
3652 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3653 {
3654   if (this->rela_irelative_ == NULL)
3655     {
3656       // Make sure we have already created the dynamic reloc section.
3657       this->rela_dyn_section(layout);
3658       this->rela_irelative_ = new Reloc_section(false);
3659       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3660                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
3661                                       ORDER_DYNAMIC_RELOCS, false);
3662       gold_assert(this->rela_dyn_->output_section()
3663                   == this->rela_irelative_->output_section());
3664     }
3665   return this->rela_irelative_;
3666 }
3667
3668
3669 // do_make_elf_object to override the same function in the base class.  We need
3670 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3671 // store backend specific information. Hence we need to have our own ELF object
3672 // creation.
3673
3674 template<int size, bool big_endian>
3675 Object*
3676 Target_aarch64<size, big_endian>::do_make_elf_object(
3677     const std::string& name,
3678     Input_file* input_file,
3679     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3680 {
3681   int et = ehdr.get_e_type();
3682   // ET_EXEC files are valid input for --just-symbols/-R,
3683   // and we treat them as relocatable objects.
3684   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3685     return Sized_target<size, big_endian>::do_make_elf_object(
3686         name, input_file, offset, ehdr);
3687   else if (et == elfcpp::ET_REL)
3688     {
3689       AArch64_relobj<size, big_endian>* obj =
3690         new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3691       obj->setup();
3692       return obj;
3693     }
3694   else if (et == elfcpp::ET_DYN)
3695     {
3696       // Keep base implementation.
3697       Sized_dynobj<size, big_endian>* obj =
3698           new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3699       obj->setup();
3700       return obj;
3701     }
3702   else
3703     {
3704       gold_error(_("%s: unsupported ELF file type %d"),
3705                  name.c_str(), et);
3706       return NULL;
3707     }
3708 }
3709
3710
3711 // Scan a relocation for stub generation.
3712
3713 template<int size, bool big_endian>
3714 void
3715 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3716     const Relocate_info<size, big_endian>* relinfo,
3717     unsigned int r_type,
3718     const Sized_symbol<size>* gsym,
3719     unsigned int r_sym,
3720     const Symbol_value<size>* psymval,
3721     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3722     Address address)
3723 {
3724   const AArch64_relobj<size, big_endian>* aarch64_relobj =
3725       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3726
3727   Symbol_value<size> symval;
3728   if (gsym != NULL)
3729     {
3730       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3731         get_reloc_property(r_type);
3732       if (gsym->use_plt_offset(arp->reference_flags()))
3733         {
3734           // This uses a PLT, change the symbol value.
3735           symval.set_output_value(this->plt_section()->address()
3736                                   + gsym->plt_offset());
3737           psymval = &symval;
3738         }
3739       else if (gsym->is_undefined())
3740         // There is no need to generate a stub symbol is undefined.
3741         return;
3742     }
3743
3744   // Get the symbol value.
3745   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3746
3747   // Owing to pipelining, the PC relative branches below actually skip
3748   // two instructions when the branch offset is 0.
3749   Address destination = static_cast<Address>(-1);
3750   switch (r_type)
3751     {
3752     case elfcpp::R_AARCH64_CALL26:
3753     case elfcpp::R_AARCH64_JUMP26:
3754       destination = value + addend;
3755       break;
3756     default:
3757       gold_unreachable();
3758     }
3759
3760   int stub_type = The_reloc_stub::
3761       stub_type_for_reloc(r_type, address, destination);
3762   if (stub_type == ST_NONE)
3763     return;
3764
3765   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3766   gold_assert(stub_table != NULL);
3767
3768   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3769   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3770   if (stub == NULL)
3771     {
3772       stub = new The_reloc_stub(stub_type);
3773       stub_table->add_reloc_stub(stub, key);
3774     }
3775   stub->set_destination_address(destination);
3776 }  // End of Target_aarch64::scan_reloc_for_stub
3777
3778
3779 // This function scans a relocation section for stub generation.
3780 // The template parameter Relocate must be a class type which provides
3781 // a single function, relocate(), which implements the machine
3782 // specific part of a relocation.
3783
3784 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3785 // SHT_REL or SHT_RELA.
3786
3787 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3788 // of relocs.  OUTPUT_SECTION is the output section.
3789 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3790 // mapped to output offsets.
3791
3792 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3793 // VIEW_SIZE is the size.  These refer to the input section, unless
3794 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3795 // the output section.
3796
3797 template<int size, bool big_endian>
3798 template<int sh_type>
3799 void inline
3800 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3801     const Relocate_info<size, big_endian>* relinfo,
3802     const unsigned char* prelocs,
3803     size_t reloc_count,
3804     Output_section* /*output_section*/,
3805     bool /*needs_special_offset_handling*/,
3806     const unsigned char* /*view*/,
3807     Address view_address,
3808     section_size_type)
3809 {
3810   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3811
3812   const int reloc_size =
3813       Reloc_types<sh_type,size,big_endian>::reloc_size;
3814   AArch64_relobj<size, big_endian>* object =
3815       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3816   unsigned int local_count = object->local_symbol_count();
3817
3818   gold::Default_comdat_behavior default_comdat_behavior;
3819   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3820
3821   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3822     {
3823       Reltype reloc(prelocs);
3824       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3825       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3826       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3827       if (r_type != elfcpp::R_AARCH64_CALL26
3828           && r_type != elfcpp::R_AARCH64_JUMP26)
3829         continue;
3830
3831       section_offset_type offset =
3832           convert_to_section_size_type(reloc.get_r_offset());
3833
3834       // Get the addend.
3835       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3836           reloc.get_r_addend();
3837
3838       const Sized_symbol<size>* sym;
3839       Symbol_value<size> symval;
3840       const Symbol_value<size> *psymval;
3841       bool is_defined_in_discarded_section;
3842       unsigned int shndx;
3843       if (r_sym < local_count)
3844         {
3845           sym = NULL;
3846           psymval = object->local_symbol(r_sym);
3847
3848           // If the local symbol belongs to a section we are discarding,
3849           // and that section is a debug section, try to find the
3850           // corresponding kept section and map this symbol to its
3851           // counterpart in the kept section.  The symbol must not
3852           // correspond to a section we are folding.
3853           bool is_ordinary;
3854           shndx = psymval->input_shndx(&is_ordinary);
3855           is_defined_in_discarded_section =
3856             (is_ordinary
3857              && shndx != elfcpp::SHN_UNDEF
3858              && !object->is_section_included(shndx)
3859              && !relinfo->symtab->is_section_folded(object, shndx));
3860
3861           // We need to compute the would-be final value of this local
3862           // symbol.
3863           if (!is_defined_in_discarded_section)
3864             {
3865               typedef Sized_relobj_file<size, big_endian> ObjType;
3866               typename ObjType::Compute_final_local_value_status status =
3867                 object->compute_final_local_value(r_sym, psymval, &symval,
3868                                                   relinfo->symtab);
3869               if (status == ObjType::CFLV_OK)
3870                 {
3871                   // Currently we cannot handle a branch to a target in
3872                   // a merged section.  If this is the case, issue an error
3873                   // and also free the merge symbol value.
3874                   if (!symval.has_output_value())
3875                     {
3876                       const std::string& section_name =
3877                         object->section_name(shndx);
3878                       object->error(_("cannot handle branch to local %u "
3879                                           "in a merged section %s"),
3880                                         r_sym, section_name.c_str());
3881                     }
3882                   psymval = &symval;
3883                 }
3884               else
3885                 {
3886                   // We cannot determine the final value.
3887                   continue;
3888                 }
3889             }
3890         }
3891       else
3892         {
3893           const Symbol* gsym;
3894           gsym = object->global_symbol(r_sym);
3895           gold_assert(gsym != NULL);
3896           if (gsym->is_forwarder())
3897             gsym = relinfo->symtab->resolve_forwards(gsym);
3898
3899           sym = static_cast<const Sized_symbol<size>*>(gsym);
3900           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3901             symval.set_output_symtab_index(sym->symtab_index());
3902           else
3903             symval.set_no_output_symtab_entry();
3904
3905           // We need to compute the would-be final value of this global
3906           // symbol.
3907           const Symbol_table* symtab = relinfo->symtab;
3908           const Sized_symbol<size>* sized_symbol =
3909               symtab->get_sized_symbol<size>(gsym);
3910           Symbol_table::Compute_final_value_status status;
3911           typename elfcpp::Elf_types<size>::Elf_Addr value =
3912               symtab->compute_final_value<size>(sized_symbol, &status);
3913
3914           // Skip this if the symbol has not output section.
3915           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3916             continue;
3917           symval.set_output_value(value);
3918
3919           if (gsym->type() == elfcpp::STT_TLS)
3920             symval.set_is_tls_symbol();
3921           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3922             symval.set_is_ifunc_symbol();
3923           psymval = &symval;
3924
3925           is_defined_in_discarded_section =
3926               (gsym->is_defined_in_discarded_section()
3927                && gsym->is_undefined());
3928           shndx = 0;
3929         }
3930
3931       Symbol_value<size> symval2;
3932       if (is_defined_in_discarded_section)
3933         {
3934           if (comdat_behavior == CB_UNDETERMINED)
3935             {
3936               std::string name = object->section_name(relinfo->data_shndx);
3937               comdat_behavior = default_comdat_behavior.get(name.c_str());
3938             }
3939           if (comdat_behavior == CB_PRETEND)
3940             {
3941               bool found;
3942               typename elfcpp::Elf_types<size>::Elf_Addr value =
3943                 object->map_to_kept_section(shndx, &found);
3944               if (found)
3945                 symval2.set_output_value(value + psymval->input_value());
3946               else
3947                 symval2.set_output_value(0);
3948             }
3949           else
3950             {
3951               if (comdat_behavior == CB_WARNING)
3952                 gold_warning_at_location(relinfo, i, offset,
3953                                          _("relocation refers to discarded "
3954                                            "section"));
3955               symval2.set_output_value(0);
3956             }
3957           symval2.set_no_output_symtab_entry();
3958           psymval = &symval2;
3959         }
3960
3961       // If symbol is a section symbol, we don't know the actual type of
3962       // destination.  Give up.
3963       if (psymval->is_section_symbol())
3964         continue;
3965
3966       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3967                                 addend, view_address + offset);
3968     }  // End of iterating relocs in a section
3969 }  // End of Target_aarch64::scan_reloc_section_for_stubs
3970
3971
3972 // Scan an input section for stub generation.
3973
3974 template<int size, bool big_endian>
3975 void
3976 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3977     const Relocate_info<size, big_endian>* relinfo,
3978     unsigned int sh_type,
3979     const unsigned char* prelocs,
3980     size_t reloc_count,
3981     Output_section* output_section,
3982     bool needs_special_offset_handling,
3983     const unsigned char* view,
3984     Address view_address,
3985     section_size_type view_size)
3986 {
3987   gold_assert(sh_type == elfcpp::SHT_RELA);
3988   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3989       relinfo,
3990       prelocs,
3991       reloc_count,
3992       output_section,
3993       needs_special_offset_handling,
3994       view,
3995       view_address,
3996       view_size);
3997 }
3998
3999
4000 // Relocate a single stub.
4001
4002 template<int size, bool big_endian>
4003 void Target_aarch64<size, big_endian>::
4004 relocate_stub(The_reloc_stub* stub,
4005               const The_relocate_info*,
4006               Output_section*,
4007               unsigned char* view,
4008               Address address,
4009               section_size_type)
4010 {
4011   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4012   typedef typename The_reloc_functions::Status The_reloc_functions_status;
4013   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4014
4015   Insntype* ip = reinterpret_cast<Insntype*>(view);
4016   int insn_number = stub->insn_num();
4017   const uint32_t* insns = stub->insns();
4018   // Check the insns are really those stub insns.
4019   for (int i = 0; i < insn_number; ++i)
4020     {
4021       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4022       gold_assert(((uint32_t)insn == insns[i]));
4023     }
4024
4025   Address dest = stub->destination_address();
4026
4027   switch(stub->type())
4028     {
4029     case ST_ADRP_BRANCH:
4030       {
4031         // 1st reloc is ADR_PREL_PG_HI21
4032         The_reloc_functions_status status =
4033             The_reloc_functions::adrp(view, dest, address);
4034         // An error should never arise in the above step. If so, please
4035         // check 'aarch64_valid_for_adrp_p'.
4036         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4037
4038         // 2nd reloc is ADD_ABS_LO12_NC
4039         const AArch64_reloc_property* arp =
4040             aarch64_reloc_property_table->get_reloc_property(
4041                 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4042         gold_assert(arp != NULL);
4043         status = The_reloc_functions::template
4044             rela_general<32>(view + 4, dest, 0, arp);
4045         // An error should never arise, it is an "_NC" relocation.
4046         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4047       }
4048       break;
4049
4050     case ST_LONG_BRANCH_ABS:
4051       // 1st reloc is R_AARCH64_PREL64, at offset 8
4052       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4053       break;
4054
4055     case ST_LONG_BRANCH_PCREL:
4056       {
4057         // "PC" calculation is the 2nd insn in the stub.
4058         uint64_t offset = dest - (address + 4);
4059         // Offset is placed at offset 4 and 5.
4060         elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4061       }
4062       break;
4063
4064     default:
4065       gold_unreachable();
4066     }
4067 }
4068
4069
4070 // A class to handle the PLT data.
4071 // This is an abstract base class that handles most of the linker details
4072 // but does not know the actual contents of PLT entries.  The derived
4073 // classes below fill in those details.
4074
4075 template<int size, bool big_endian>
4076 class Output_data_plt_aarch64 : public Output_section_data
4077 {
4078  public:
4079   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4080       Reloc_section;
4081   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4082
4083   Output_data_plt_aarch64(Layout* layout,
4084                           uint64_t addralign,
4085                           Output_data_got_aarch64<size, big_endian>* got,
4086                           Output_data_space* got_plt,
4087                           Output_data_space* got_irelative)
4088     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4089       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4090       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4091   { this->init(layout); }
4092
4093   // Initialize the PLT section.
4094   void
4095   init(Layout* layout);
4096
4097   // Add an entry to the PLT.
4098   void
4099   add_entry(Symbol_table*, Layout*, Symbol* gsym);
4100
4101   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4102   unsigned int
4103   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4104                         Sized_relobj_file<size, big_endian>* relobj,
4105                         unsigned int local_sym_index);
4106
4107   // Add the relocation for a PLT entry.
4108   void
4109   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4110                  unsigned int got_offset);
4111
4112   // Add the reserved TLSDESC_PLT entry to the PLT.
4113   void
4114   reserve_tlsdesc_entry(unsigned int got_offset)
4115   { this->tlsdesc_got_offset_ = got_offset; }
4116
4117   // Return true if a TLSDESC_PLT entry has been reserved.
4118   bool
4119   has_tlsdesc_entry() const
4120   { return this->tlsdesc_got_offset_ != -1U; }
4121
4122   // Return the GOT offset for the reserved TLSDESC_PLT entry.
4123   unsigned int
4124   get_tlsdesc_got_offset() const
4125   { return this->tlsdesc_got_offset_; }
4126
4127   // Return the PLT offset of the reserved TLSDESC_PLT entry.
4128   unsigned int
4129   get_tlsdesc_plt_offset() const
4130   {
4131     return (this->first_plt_entry_offset() +
4132             (this->count_ + this->irelative_count_)
4133             * this->get_plt_entry_size());
4134   }
4135
4136   // Return the .rela.plt section data.
4137   Reloc_section*
4138   rela_plt()
4139   { return this->rel_; }
4140
4141   // Return where the TLSDESC relocations should go.
4142   Reloc_section*
4143   rela_tlsdesc(Layout*);
4144
4145   // Return where the IRELATIVE relocations should go in the PLT
4146   // relocations.
4147   Reloc_section*
4148   rela_irelative(Symbol_table*, Layout*);
4149
4150   // Return whether we created a section for IRELATIVE relocations.
4151   bool
4152   has_irelative_section() const
4153   { return this->irelative_rel_ != NULL; }
4154
4155   // Return the number of PLT entries.
4156   unsigned int
4157   entry_count() const
4158   { return this->count_ + this->irelative_count_; }
4159
4160   // Return the offset of the first non-reserved PLT entry.
4161   unsigned int
4162   first_plt_entry_offset() const
4163   { return this->do_first_plt_entry_offset(); }
4164
4165   // Return the size of a PLT entry.
4166   unsigned int
4167   get_plt_entry_size() const
4168   { return this->do_get_plt_entry_size(); }
4169
4170   // Return the reserved tlsdesc entry size.
4171   unsigned int
4172   get_plt_tlsdesc_entry_size() const
4173   { return this->do_get_plt_tlsdesc_entry_size(); }
4174
4175   // Return the PLT address to use for a global symbol.
4176   uint64_t
4177   address_for_global(const Symbol*);
4178
4179   // Return the PLT address to use for a local symbol.
4180   uint64_t
4181   address_for_local(const Relobj*, unsigned int symndx);
4182
4183  protected:
4184   // Fill in the first PLT entry.
4185   void
4186   fill_first_plt_entry(unsigned char* pov,
4187                        Address got_address,
4188                        Address plt_address)
4189   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4190
4191   // Fill in a normal PLT entry.
4192   void
4193   fill_plt_entry(unsigned char* pov,
4194                  Address got_address,
4195                  Address plt_address,
4196                  unsigned int got_offset,
4197                  unsigned int plt_offset)
4198   {
4199     this->do_fill_plt_entry(pov, got_address, plt_address,
4200                             got_offset, plt_offset);
4201   }
4202
4203   // Fill in the reserved TLSDESC PLT entry.
4204   void
4205   fill_tlsdesc_entry(unsigned char* pov,
4206                      Address gotplt_address,
4207                      Address plt_address,
4208                      Address got_base,
4209                      unsigned int tlsdesc_got_offset,
4210                      unsigned int plt_offset)
4211   {
4212     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4213                                 tlsdesc_got_offset, plt_offset);
4214   }
4215
4216   virtual unsigned int
4217   do_first_plt_entry_offset() const = 0;
4218
4219   virtual unsigned int
4220   do_get_plt_entry_size() const = 0;
4221
4222   virtual unsigned int
4223   do_get_plt_tlsdesc_entry_size() const = 0;
4224
4225   virtual void
4226   do_fill_first_plt_entry(unsigned char* pov,
4227                           Address got_addr,
4228                           Address plt_addr) = 0;
4229
4230   virtual void
4231   do_fill_plt_entry(unsigned char* pov,
4232                     Address got_address,
4233                     Address plt_address,
4234                     unsigned int got_offset,
4235                     unsigned int plt_offset) = 0;
4236
4237   virtual void
4238   do_fill_tlsdesc_entry(unsigned char* pov,
4239                         Address gotplt_address,
4240                         Address plt_address,
4241                         Address got_base,
4242                         unsigned int tlsdesc_got_offset,
4243                         unsigned int plt_offset) = 0;
4244
4245   void
4246   do_adjust_output_section(Output_section* os);
4247
4248   // Write to a map file.
4249   void
4250   do_print_to_mapfile(Mapfile* mapfile) const
4251   { mapfile->print_output_data(this, _("** PLT")); }
4252
4253  private:
4254   // Set the final size.
4255   void
4256   set_final_data_size();
4257
4258   // Write out the PLT data.
4259   void
4260   do_write(Output_file*);
4261
4262   // The reloc section.
4263   Reloc_section* rel_;
4264
4265   // The TLSDESC relocs, if necessary.  These must follow the regular
4266   // PLT relocs.
4267   Reloc_section* tlsdesc_rel_;
4268
4269   // The IRELATIVE relocs, if necessary.  These must follow the
4270   // regular PLT relocations.
4271   Reloc_section* irelative_rel_;
4272
4273   // The .got section.
4274   Output_data_got_aarch64<size, big_endian>* got_;
4275
4276   // The .got.plt section.
4277   Output_data_space* got_plt_;
4278
4279   // The part of the .got.plt section used for IRELATIVE relocs.
4280   Output_data_space* got_irelative_;
4281
4282   // The number of PLT entries.
4283   unsigned int count_;
4284
4285   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4286   // follow the regular PLT entries.
4287   unsigned int irelative_count_;
4288
4289   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4290   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4291   // indicates an offset is not allocated.
4292   unsigned int tlsdesc_got_offset_;
4293 };
4294
4295 // Initialize the PLT section.
4296
4297 template<int size, bool big_endian>
4298 void
4299 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4300 {
4301   this->rel_ = new Reloc_section(false);
4302   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4303                                   elfcpp::SHF_ALLOC, this->rel_,
4304                                   ORDER_DYNAMIC_PLT_RELOCS, false);
4305 }
4306
4307 template<int size, bool big_endian>
4308 void
4309 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4310     Output_section* os)
4311 {
4312   os->set_entsize(this->get_plt_entry_size());
4313 }
4314
4315 // Add an entry to the PLT.
4316
4317 template<int size, bool big_endian>
4318 void
4319 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4320     Layout* layout, Symbol* gsym)
4321 {
4322   gold_assert(!gsym->has_plt_offset());
4323
4324   unsigned int* pcount;
4325   unsigned int plt_reserved;
4326   Output_section_data_build* got;
4327
4328   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4329       && gsym->can_use_relative_reloc(false))
4330     {
4331       pcount = &this->irelative_count_;
4332       plt_reserved = 0;
4333       got = this->got_irelative_;
4334     }
4335   else
4336     {
4337       pcount = &this->count_;
4338       plt_reserved = this->first_plt_entry_offset();
4339       got = this->got_plt_;
4340     }
4341
4342   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4343                        + plt_reserved);
4344
4345   ++*pcount;
4346
4347   section_offset_type got_offset = got->current_data_size();
4348
4349   // Every PLT entry needs a GOT entry which points back to the PLT
4350   // entry (this will be changed by the dynamic linker, normally
4351   // lazily when the function is called).
4352   got->set_current_data_size(got_offset + size / 8);
4353
4354   // Every PLT entry needs a reloc.
4355   this->add_relocation(symtab, layout, gsym, got_offset);
4356
4357   // Note that we don't need to save the symbol. The contents of the
4358   // PLT are independent of which symbols are used. The symbols only
4359   // appear in the relocations.
4360 }
4361
4362 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4363 // the PLT offset.
4364
4365 template<int size, bool big_endian>
4366 unsigned int
4367 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4368     Symbol_table* symtab,
4369     Layout* layout,
4370     Sized_relobj_file<size, big_endian>* relobj,
4371     unsigned int local_sym_index)
4372 {
4373   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4374   ++this->irelative_count_;
4375
4376   section_offset_type got_offset = this->got_irelative_->current_data_size();
4377
4378   // Every PLT entry needs a GOT entry which points back to the PLT
4379   // entry.
4380   this->got_irelative_->set_current_data_size(got_offset + size / 8);
4381
4382   // Every PLT entry needs a reloc.
4383   Reloc_section* rela = this->rela_irelative(symtab, layout);
4384   rela->add_symbolless_local_addend(relobj, local_sym_index,
4385                                     elfcpp::R_AARCH64_IRELATIVE,
4386                                     this->got_irelative_, got_offset, 0);
4387
4388   return plt_offset;
4389 }
4390
4391 // Add the relocation for a PLT entry.
4392
4393 template<int size, bool big_endian>
4394 void
4395 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4396     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4397 {
4398   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4399       && gsym->can_use_relative_reloc(false))
4400     {
4401       Reloc_section* rela = this->rela_irelative(symtab, layout);
4402       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4403                                          this->got_irelative_, got_offset, 0);
4404     }
4405   else
4406     {
4407       gsym->set_needs_dynsym_entry();
4408       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4409                              got_offset, 0);
4410     }
4411 }
4412
4413 // Return where the TLSDESC relocations should go, creating it if
4414 // necessary.  These follow the JUMP_SLOT relocations.
4415
4416 template<int size, bool big_endian>
4417 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4418 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4419 {
4420   if (this->tlsdesc_rel_ == NULL)
4421     {
4422       this->tlsdesc_rel_ = new Reloc_section(false);
4423       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4424                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4425                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4426       gold_assert(this->tlsdesc_rel_->output_section()
4427                   == this->rel_->output_section());
4428     }
4429   return this->tlsdesc_rel_;
4430 }
4431
4432 // Return where the IRELATIVE relocations should go in the PLT.  These
4433 // follow the JUMP_SLOT and the TLSDESC relocations.
4434
4435 template<int size, bool big_endian>
4436 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4437 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4438                                                           Layout* layout)
4439 {
4440   if (this->irelative_rel_ == NULL)
4441     {
4442       // Make sure we have a place for the TLSDESC relocations, in
4443       // case we see any later on.
4444       this->rela_tlsdesc(layout);
4445       this->irelative_rel_ = new Reloc_section(false);
4446       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4447                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
4448                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4449       gold_assert(this->irelative_rel_->output_section()
4450                   == this->rel_->output_section());
4451
4452       if (parameters->doing_static_link())
4453         {
4454           // A statically linked executable will only have a .rela.plt
4455           // section to hold R_AARCH64_IRELATIVE relocs for
4456           // STT_GNU_IFUNC symbols.  The library will use these
4457           // symbols to locate the IRELATIVE relocs at program startup
4458           // time.
4459           symtab->define_in_output_data("__rela_iplt_start", NULL,
4460                                         Symbol_table::PREDEFINED,
4461                                         this->irelative_rel_, 0, 0,
4462                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4463                                         elfcpp::STV_HIDDEN, 0, false, true);
4464           symtab->define_in_output_data("__rela_iplt_end", NULL,
4465                                         Symbol_table::PREDEFINED,
4466                                         this->irelative_rel_, 0, 0,
4467                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4468                                         elfcpp::STV_HIDDEN, 0, true, true);
4469         }
4470     }
4471   return this->irelative_rel_;
4472 }
4473
4474 // Return the PLT address to use for a global symbol.
4475
4476 template<int size, bool big_endian>
4477 uint64_t
4478 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4479   const Symbol* gsym)
4480 {
4481   uint64_t offset = 0;
4482   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4483       && gsym->can_use_relative_reloc(false))
4484     offset = (this->first_plt_entry_offset() +
4485               this->count_ * this->get_plt_entry_size());
4486   return this->address() + offset + gsym->plt_offset();
4487 }
4488
4489 // Return the PLT address to use for a local symbol.  These are always
4490 // IRELATIVE relocs.
4491
4492 template<int size, bool big_endian>
4493 uint64_t
4494 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4495     const Relobj* object,
4496     unsigned int r_sym)
4497 {
4498   return (this->address()
4499           + this->first_plt_entry_offset()
4500           + this->count_ * this->get_plt_entry_size()
4501           + object->local_plt_offset(r_sym));
4502 }
4503
4504 // Set the final size.
4505
4506 template<int size, bool big_endian>
4507 void
4508 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4509 {
4510   unsigned int count = this->count_ + this->irelative_count_;
4511   unsigned int extra_size = 0;
4512   if (this->has_tlsdesc_entry())
4513     extra_size += this->get_plt_tlsdesc_entry_size();
4514   this->set_data_size(this->first_plt_entry_offset()
4515                       + count * this->get_plt_entry_size()
4516                       + extra_size);
4517 }
4518
4519 template<int size, bool big_endian>
4520 class Output_data_plt_aarch64_standard :
4521   public Output_data_plt_aarch64<size, big_endian>
4522 {
4523  public:
4524   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4525   Output_data_plt_aarch64_standard(
4526       Layout* layout,
4527       Output_data_got_aarch64<size, big_endian>* got,
4528       Output_data_space* got_plt,
4529       Output_data_space* got_irelative)
4530     : Output_data_plt_aarch64<size, big_endian>(layout,
4531                                                 size == 32 ? 4 : 8,
4532                                                 got, got_plt,
4533                                                 got_irelative)
4534   { }
4535
4536  protected:
4537   // Return the offset of the first non-reserved PLT entry.
4538   virtual unsigned int
4539   do_first_plt_entry_offset() const
4540   { return this->first_plt_entry_size; }
4541
4542   // Return the size of a PLT entry
4543   virtual unsigned int
4544   do_get_plt_entry_size() const
4545   { return this->plt_entry_size; }
4546
4547   // Return the size of a tlsdesc entry
4548   virtual unsigned int
4549   do_get_plt_tlsdesc_entry_size() const
4550   { return this->plt_tlsdesc_entry_size; }
4551
4552   virtual void
4553   do_fill_first_plt_entry(unsigned char* pov,
4554                           Address got_address,
4555                           Address plt_address);
4556
4557   virtual void
4558   do_fill_plt_entry(unsigned char* pov,
4559                     Address got_address,
4560                     Address plt_address,
4561                     unsigned int got_offset,
4562                     unsigned int plt_offset);
4563
4564   virtual void
4565   do_fill_tlsdesc_entry(unsigned char* pov,
4566                         Address gotplt_address,
4567                         Address plt_address,
4568                         Address got_base,
4569                         unsigned int tlsdesc_got_offset,
4570                         unsigned int plt_offset);
4571
4572  private:
4573   // The size of the first plt entry size.
4574   static const int first_plt_entry_size = 32;
4575   // The size of the plt entry size.
4576   static const int plt_entry_size = 16;
4577   // The size of the plt tlsdesc entry size.
4578   static const int plt_tlsdesc_entry_size = 32;
4579   // Template for the first PLT entry.
4580   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4581   // Template for subsequent PLT entries.
4582   static const uint32_t plt_entry[plt_entry_size / 4];
4583   // The reserved TLSDESC entry in the PLT for an executable.
4584   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4585 };
4586
4587 // The first entry in the PLT for an executable.
4588
4589 template<>
4590 const uint32_t
4591 Output_data_plt_aarch64_standard<32, false>::
4592     first_plt_entry[first_plt_entry_size / 4] =
4593 {
4594   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4595   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4596   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4597   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4598   0xd61f0220,   /* br x17  */
4599   0xd503201f,   /* nop */
4600   0xd503201f,   /* nop */
4601   0xd503201f,   /* nop */
4602 };
4603
4604
4605 template<>
4606 const uint32_t
4607 Output_data_plt_aarch64_standard<32, true>::
4608     first_plt_entry[first_plt_entry_size / 4] =
4609 {
4610   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4611   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4612   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4613   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4614   0xd61f0220,   /* br x17  */
4615   0xd503201f,   /* nop */
4616   0xd503201f,   /* nop */
4617   0xd503201f,   /* nop */
4618 };
4619
4620
4621 template<>
4622 const uint32_t
4623 Output_data_plt_aarch64_standard<64, false>::
4624     first_plt_entry[first_plt_entry_size / 4] =
4625 {
4626   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4627   0x90000010,   /* adrp x16, PLT_GOT+16  */
4628   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4629   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4630   0xd61f0220,   /* br x17  */
4631   0xd503201f,   /* nop */
4632   0xd503201f,   /* nop */
4633   0xd503201f,   /* nop */
4634 };
4635
4636
4637 template<>
4638 const uint32_t
4639 Output_data_plt_aarch64_standard<64, true>::
4640     first_plt_entry[first_plt_entry_size / 4] =
4641 {
4642   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4643   0x90000010,   /* adrp x16, PLT_GOT+16  */
4644   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4645   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4646   0xd61f0220,   /* br x17  */
4647   0xd503201f,   /* nop */
4648   0xd503201f,   /* nop */
4649   0xd503201f,   /* nop */
4650 };
4651
4652
4653 template<>
4654 const uint32_t
4655 Output_data_plt_aarch64_standard<32, false>::
4656     plt_entry[plt_entry_size / 4] =
4657 {
4658   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4659   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4660   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4661   0xd61f0220,   /* br x17.  */
4662 };
4663
4664
4665 template<>
4666 const uint32_t
4667 Output_data_plt_aarch64_standard<32, true>::
4668     plt_entry[plt_entry_size / 4] =
4669 {
4670   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4671   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4672   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4673   0xd61f0220,   /* br x17.  */
4674 };
4675
4676
4677 template<>
4678 const uint32_t
4679 Output_data_plt_aarch64_standard<64, false>::
4680     plt_entry[plt_entry_size / 4] =
4681 {
4682   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4683   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4684   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4685   0xd61f0220,   /* br x17.  */
4686 };
4687
4688
4689 template<>
4690 const uint32_t
4691 Output_data_plt_aarch64_standard<64, true>::
4692     plt_entry[plt_entry_size / 4] =
4693 {
4694   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4695   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4696   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4697   0xd61f0220,   /* br x17.  */
4698 };
4699
4700
4701 template<int size, bool big_endian>
4702 void
4703 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4704     unsigned char* pov,
4705     Address got_address,
4706     Address plt_address)
4707 {
4708   // PLT0 of the small PLT looks like this in ELF64 -
4709   // stp x16, x30, [sp, #-16]!          Save the reloc and lr on stack.
4710   // adrp x16, PLT_GOT + 16             Get the page base of the GOTPLT
4711   // ldr  x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4712   //                                    symbol resolver
4713   // add  x16, x16, #:lo12:PLT_GOT+16   Load the lo12 bits of the
4714   //                                    GOTPLT entry for this.
4715   // br   x17
4716   // PLT0 will be slightly different in ELF32 due to different got entry
4717   // size.
4718   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4719   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4720
4721   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4722   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4723   // FIXME: This only works for 64bit
4724   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4725       gotplt_2nd_ent, plt_address + 4);
4726
4727   // Fill in R_AARCH64_LDST8_LO12
4728   elfcpp::Swap<32, big_endian>::writeval(
4729       pov + 8,
4730       ((this->first_plt_entry[2] & 0xffc003ff)
4731        | ((gotplt_2nd_ent & 0xff8) << 7)));
4732
4733   // Fill in R_AARCH64_ADD_ABS_LO12
4734   elfcpp::Swap<32, big_endian>::writeval(
4735       pov + 12,
4736       ((this->first_plt_entry[3] & 0xffc003ff)
4737        | ((gotplt_2nd_ent & 0xfff) << 10)));
4738 }
4739
4740
4741 // Subsequent entries in the PLT for an executable.
4742 // FIXME: This only works for 64bit
4743
4744 template<int size, bool big_endian>
4745 void
4746 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4747     unsigned char* pov,
4748     Address got_address,
4749     Address plt_address,
4750     unsigned int got_offset,
4751     unsigned int plt_offset)
4752 {
4753   memcpy(pov, this->plt_entry, this->plt_entry_size);
4754
4755   Address gotplt_entry_address = got_address + got_offset;
4756   Address plt_entry_address = plt_address + plt_offset;
4757
4758   // Fill in R_AARCH64_PCREL_ADR_HI21
4759   AArch64_relocate_functions<size, big_endian>::adrp(
4760       pov,
4761       gotplt_entry_address,
4762       plt_entry_address);
4763
4764   // Fill in R_AARCH64_LDST64_ABS_LO12
4765   elfcpp::Swap<32, big_endian>::writeval(
4766       pov + 4,
4767       ((this->plt_entry[1] & 0xffc003ff)
4768        | ((gotplt_entry_address & 0xff8) << 7)));
4769
4770   // Fill in R_AARCH64_ADD_ABS_LO12
4771   elfcpp::Swap<32, big_endian>::writeval(
4772       pov + 8,
4773       ((this->plt_entry[2] & 0xffc003ff)
4774        | ((gotplt_entry_address & 0xfff) <<10)));
4775
4776 }
4777
4778
4779 template<>
4780 const uint32_t
4781 Output_data_plt_aarch64_standard<32, false>::
4782     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4783 {
4784   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4785   0x90000002,   /* adrp x2, 0 */
4786   0x90000003,   /* adrp x3, 0 */
4787   0xb9400042,   /* ldr w2, [w2, #0] */
4788   0x11000063,   /* add w3, w3, 0 */
4789   0xd61f0040,   /* br x2 */
4790   0xd503201f,   /* nop */
4791   0xd503201f,   /* nop */
4792 };
4793
4794 template<>
4795 const uint32_t
4796 Output_data_plt_aarch64_standard<32, true>::
4797     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4798 {
4799   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4800   0x90000002,   /* adrp x2, 0 */
4801   0x90000003,   /* adrp x3, 0 */
4802   0xb9400042,   /* ldr w2, [w2, #0] */
4803   0x11000063,   /* add w3, w3, 0 */
4804   0xd61f0040,   /* br x2 */
4805   0xd503201f,   /* nop */
4806   0xd503201f,   /* nop */
4807 };
4808
4809 template<>
4810 const uint32_t
4811 Output_data_plt_aarch64_standard<64, false>::
4812     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4813 {
4814   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4815   0x90000002,   /* adrp x2, 0 */
4816   0x90000003,   /* adrp x3, 0 */
4817   0xf9400042,   /* ldr x2, [x2, #0] */
4818   0x91000063,   /* add x3, x3, 0 */
4819   0xd61f0040,   /* br x2 */
4820   0xd503201f,   /* nop */
4821   0xd503201f,   /* nop */
4822 };
4823
4824 template<>
4825 const uint32_t
4826 Output_data_plt_aarch64_standard<64, true>::
4827     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4828 {
4829   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4830   0x90000002,   /* adrp x2, 0 */
4831   0x90000003,   /* adrp x3, 0 */
4832   0xf9400042,   /* ldr x2, [x2, #0] */
4833   0x91000063,   /* add x3, x3, 0 */
4834   0xd61f0040,   /* br x2 */
4835   0xd503201f,   /* nop */
4836   0xd503201f,   /* nop */
4837 };
4838
4839 template<int size, bool big_endian>
4840 void
4841 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4842     unsigned char* pov,
4843     Address gotplt_address,
4844     Address plt_address,
4845     Address got_base,
4846     unsigned int tlsdesc_got_offset,
4847     unsigned int plt_offset)
4848 {
4849   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4850
4851   // move DT_TLSDESC_GOT address into x2
4852   // move .got.plt address into x3
4853   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4854   Address plt_entry_address = plt_address + plt_offset;
4855
4856   // R_AARCH64_ADR_PREL_PG_HI21
4857   AArch64_relocate_functions<size, big_endian>::adrp(
4858       pov + 4,
4859       tlsdesc_got_entry,
4860       plt_entry_address + 4);
4861
4862   // R_AARCH64_ADR_PREL_PG_HI21
4863   AArch64_relocate_functions<size, big_endian>::adrp(
4864       pov + 8,
4865       gotplt_address,
4866       plt_entry_address + 8);
4867
4868   // R_AARCH64_LDST64_ABS_LO12
4869   elfcpp::Swap<32, big_endian>::writeval(
4870       pov + 12,
4871       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4872        | ((tlsdesc_got_entry & 0xff8) << 7)));
4873
4874   // R_AARCH64_ADD_ABS_LO12
4875   elfcpp::Swap<32, big_endian>::writeval(
4876       pov + 16,
4877       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4878        | ((gotplt_address & 0xfff) << 10)));
4879 }
4880
4881 // Write out the PLT.  This uses the hand-coded instructions above,
4882 // and adjusts them as needed.  This is specified by the AMD64 ABI.
4883
4884 template<int size, bool big_endian>
4885 void
4886 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4887 {
4888   const off_t offset = this->offset();
4889   const section_size_type oview_size =
4890     convert_to_section_size_type(this->data_size());
4891   unsigned char* const oview = of->get_output_view(offset, oview_size);
4892
4893   const off_t got_file_offset = this->got_plt_->offset();
4894   gold_assert(got_file_offset + this->got_plt_->data_size()
4895               == this->got_irelative_->offset());
4896
4897   const section_size_type got_size =
4898       convert_to_section_size_type(this->got_plt_->data_size()
4899                                    + this->got_irelative_->data_size());
4900   unsigned char* const got_view = of->get_output_view(got_file_offset,
4901                                                       got_size);
4902
4903   unsigned char* pov = oview;
4904
4905   // The base address of the .plt section.
4906   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4907   // The base address of the PLT portion of the .got section.
4908   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4909       = this->got_plt_->address();
4910
4911   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4912   pov += this->first_plt_entry_offset();
4913
4914   // The first three entries in .got.plt are reserved.
4915   unsigned char* got_pov = got_view;
4916   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4917   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4918
4919   unsigned int plt_offset = this->first_plt_entry_offset();
4920   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4921   const unsigned int count = this->count_ + this->irelative_count_;
4922   for (unsigned int plt_index = 0;
4923        plt_index < count;
4924        ++plt_index,
4925          pov += this->get_plt_entry_size(),
4926          got_pov += size / 8,
4927          plt_offset += this->get_plt_entry_size(),
4928          got_offset += size / 8)
4929     {
4930       // Set and adjust the PLT entry itself.
4931       this->fill_plt_entry(pov, gotplt_address, plt_address,
4932                            got_offset, plt_offset);
4933
4934       // Set the entry in the GOT, which points to plt0.
4935       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4936     }
4937
4938   if (this->has_tlsdesc_entry())
4939     {
4940       // Set and adjust the reserved TLSDESC PLT entry.
4941       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4942       // The base address of the .base section.
4943       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4944           this->got_->address();
4945       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4946                                tlsdesc_got_offset, plt_offset);
4947       pov += this->get_plt_tlsdesc_entry_size();
4948     }
4949
4950   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4951   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4952
4953   of->write_output_view(offset, oview_size, oview);
4954   of->write_output_view(got_file_offset, got_size, got_view);
4955 }
4956
4957 // Telling how to update the immediate field of an instruction.
4958 struct AArch64_howto
4959 {
4960   // The immediate field mask.
4961   elfcpp::Elf_Xword dst_mask;
4962
4963   // The offset to apply relocation immediate
4964   int doffset;
4965
4966   // The second part offset, if the immediate field has two parts.
4967   // -1 if the immediate field has only one part.
4968   int doffset2;
4969 };
4970
4971 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4972 {
4973   {0, -1, -1},          // DATA
4974   {0x1fffe0, 5, -1},    // MOVW  [20:5]-imm16
4975   {0xffffe0, 5, -1},    // LD    [23:5]-imm19
4976   {0x60ffffe0, 29, 5},  // ADR   [30:29]-immlo  [23:5]-immhi
4977   {0x60ffffe0, 29, 5},  // ADRP  [30:29]-immlo  [23:5]-immhi
4978   {0x3ffc00, 10, -1},   // ADD   [21:10]-imm12
4979   {0x3ffc00, 10, -1},   // LDST  [21:10]-imm12
4980   {0x7ffe0, 5, -1},     // TBZNZ [18:5]-imm14
4981   {0xffffe0, 5, -1},    // CONDB [23:5]-imm19
4982   {0x3ffffff, 0, -1},   // B     [25:0]-imm26
4983   {0x3ffffff, 0, -1},   // CALL  [25:0]-imm26
4984 };
4985
4986 // AArch64 relocate function class
4987
4988 template<int size, bool big_endian>
4989 class AArch64_relocate_functions
4990 {
4991  public:
4992   typedef enum
4993   {
4994     STATUS_OKAY,        // No error during relocation.
4995     STATUS_OVERFLOW,    // Relocation overflow.
4996     STATUS_BAD_RELOC,   // Relocation cannot be applied.
4997   } Status;
4998
4999   typedef AArch64_relocate_functions<size, big_endian> This;
5000   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5001   typedef Relocate_info<size, big_endian> The_relocate_info;
5002   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5003   typedef Reloc_stub<size, big_endian> The_reloc_stub;
5004   typedef Stub_table<size, big_endian> The_stub_table;
5005   typedef elfcpp::Rela<size, big_endian> The_rela;
5006   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5007
5008   // Return the page address of the address.
5009   // Page(address) = address & ~0xFFF
5010
5011   static inline AArch64_valtype
5012   Page(Address address)
5013   {
5014     return (address & (~static_cast<Address>(0xFFF)));
5015   }
5016
5017  private:
5018   // Update instruction (pointed by view) with selected bits (immed).
5019   // val = (val & ~dst_mask) | (immed << doffset)
5020
5021   template<int valsize>
5022   static inline void
5023   update_view(unsigned char* view,
5024               AArch64_valtype immed,
5025               elfcpp::Elf_Xword doffset,
5026               elfcpp::Elf_Xword dst_mask)
5027   {
5028     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5029     Valtype* wv = reinterpret_cast<Valtype*>(view);
5030     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5031
5032     // Clear immediate fields.
5033     val &= ~dst_mask;
5034     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5035       static_cast<Valtype>(val | (immed << doffset)));
5036   }
5037
5038   // Update two parts of an instruction (pointed by view) with selected
5039   // bits (immed1 and immed2).
5040   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5041
5042   template<int valsize>
5043   static inline void
5044   update_view_two_parts(
5045     unsigned char* view,
5046     AArch64_valtype immed1,
5047     AArch64_valtype immed2,
5048     elfcpp::Elf_Xword doffset1,
5049     elfcpp::Elf_Xword doffset2,
5050     elfcpp::Elf_Xword dst_mask)
5051   {
5052     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5053     Valtype* wv = reinterpret_cast<Valtype*>(view);
5054     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5055     val &= ~dst_mask;
5056     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5057       static_cast<Valtype>(val | (immed1 << doffset1) |
5058                            (immed2 << doffset2)));
5059   }
5060
5061   // Update adr or adrp instruction with immed.
5062   // In adr and adrp: [30:29] immlo   [23:5] immhi
5063
5064   static inline void
5065   update_adr(unsigned char* view, AArch64_valtype immed)
5066   {
5067     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5068     This::template update_view_two_parts<32>(
5069       view,
5070       immed & 0x3,
5071       (immed & 0x1ffffc) >> 2,
5072       29,
5073       5,
5074       dst_mask);
5075   }
5076
5077   // Update movz/movn instruction with bits immed.
5078   // Set instruction to movz if is_movz is true, otherwise set instruction
5079   // to movn.
5080
5081   static inline void
5082   update_movnz(unsigned char* view,
5083                AArch64_valtype immed,
5084                bool is_movz)
5085   {
5086     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5087     Valtype* wv = reinterpret_cast<Valtype*>(view);
5088     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5089
5090     const elfcpp::Elf_Xword doffset =
5091         aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5092     const elfcpp::Elf_Xword dst_mask =
5093         aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5094
5095     // Clear immediate fields and opc code.
5096     val &= ~(dst_mask | (0x3 << 29));
5097
5098     // Set instruction to movz or movn.
5099     // movz: [30:29] is 10   movn: [30:29] is 00
5100     if (is_movz)
5101       val |= (0x2 << 29);
5102
5103     elfcpp::Swap<32, big_endian>::writeval(wv,
5104       static_cast<Valtype>(val | (immed << doffset)));
5105   }
5106
5107   // Update selected bits in text.
5108
5109   template<int valsize>
5110   static inline typename This::Status
5111   reloc_common(unsigned char* view, Address x,
5112                 const AArch64_reloc_property* reloc_property)
5113   {
5114     // Select bits from X.
5115     Address immed = reloc_property->select_x_value(x);
5116
5117     // Update view.
5118     const AArch64_reloc_property::Reloc_inst inst =
5119       reloc_property->reloc_inst();
5120     // If it is a data relocation or instruction has 2 parts of immediate
5121     // fields, you should not call pcrela_general.
5122     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5123                 aarch64_howto[inst].doffset != -1);
5124     This::template update_view<valsize>(view, immed,
5125                                         aarch64_howto[inst].doffset,
5126                                         aarch64_howto[inst].dst_mask);
5127
5128     // Do check overflow or alignment if needed.
5129     return (reloc_property->checkup_x_value(x)
5130             ? This::STATUS_OKAY
5131             : This::STATUS_OVERFLOW);
5132   }
5133
5134  public:
5135
5136   // Construct a B insn. Note, although we group it here with other relocation
5137   // operation, there is actually no 'relocation' involved here.
5138   static inline void
5139   construct_b(unsigned char* view, unsigned int branch_offset)
5140   {
5141     update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5142                               26, 0, 0xffffffff);
5143   }
5144
5145   // Do a simple rela relocation at unaligned addresses.
5146
5147   template<int valsize>
5148   static inline typename This::Status
5149   rela_ua(unsigned char* view,
5150           const Sized_relobj_file<size, big_endian>* object,
5151           const Symbol_value<size>* psymval,
5152           AArch64_valtype addend,
5153           const AArch64_reloc_property* reloc_property)
5154   {
5155     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5156       Valtype;
5157     typename elfcpp::Elf_types<size>::Elf_Addr x =
5158         psymval->value(object, addend);
5159     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5160       static_cast<Valtype>(x));
5161     return (reloc_property->checkup_x_value(x)
5162             ? This::STATUS_OKAY
5163             : This::STATUS_OVERFLOW);
5164   }
5165
5166   // Do a simple pc-relative relocation at unaligned addresses.
5167
5168   template<int valsize>
5169   static inline typename This::Status
5170   pcrela_ua(unsigned char* view,
5171             const Sized_relobj_file<size, big_endian>* object,
5172             const Symbol_value<size>* psymval,
5173             AArch64_valtype addend,
5174             Address address,
5175             const AArch64_reloc_property* reloc_property)
5176   {
5177     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5178       Valtype;
5179     Address x = psymval->value(object, addend) - address;
5180     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5181       static_cast<Valtype>(x));
5182     return (reloc_property->checkup_x_value(x)
5183             ? This::STATUS_OKAY
5184             : This::STATUS_OVERFLOW);
5185   }
5186
5187   // Do a simple rela relocation at aligned addresses.
5188
5189   template<int valsize>
5190   static inline typename This::Status
5191   rela(
5192     unsigned char* view,
5193     const Sized_relobj_file<size, big_endian>* object,
5194     const Symbol_value<size>* psymval,
5195     AArch64_valtype addend,
5196     const AArch64_reloc_property* reloc_property)
5197   {
5198     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5199     Valtype* wv = reinterpret_cast<Valtype*>(view);
5200     Address x = psymval->value(object, addend);
5201     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5202     return (reloc_property->checkup_x_value(x)
5203             ? This::STATUS_OKAY
5204             : This::STATUS_OVERFLOW);
5205   }
5206
5207   // Do relocate. Update selected bits in text.
5208   // new_val = (val & ~dst_mask) | (immed << doffset)
5209
5210   template<int valsize>
5211   static inline typename This::Status
5212   rela_general(unsigned char* view,
5213                const Sized_relobj_file<size, big_endian>* object,
5214                const Symbol_value<size>* psymval,
5215                AArch64_valtype addend,
5216                const AArch64_reloc_property* reloc_property)
5217   {
5218     // Calculate relocation.
5219     Address x = psymval->value(object, addend);
5220     return This::template reloc_common<valsize>(view, x, reloc_property);
5221   }
5222
5223   // Do relocate. Update selected bits in text.
5224   // new val = (val & ~dst_mask) | (immed << doffset)
5225
5226   template<int valsize>
5227   static inline typename This::Status
5228   rela_general(
5229     unsigned char* view,
5230     AArch64_valtype s,
5231     AArch64_valtype addend,
5232     const AArch64_reloc_property* reloc_property)
5233   {
5234     // Calculate relocation.
5235     Address x = s + addend;
5236     return This::template reloc_common<valsize>(view, x, reloc_property);
5237   }
5238
5239   // Do address relative relocate. Update selected bits in text.
5240   // new val = (val & ~dst_mask) | (immed << doffset)
5241
5242   template<int valsize>
5243   static inline typename This::Status
5244   pcrela_general(
5245     unsigned char* view,
5246     const Sized_relobj_file<size, big_endian>* object,
5247     const Symbol_value<size>* psymval,
5248     AArch64_valtype addend,
5249     Address address,
5250     const AArch64_reloc_property* reloc_property)
5251   {
5252     // Calculate relocation.
5253     Address x = psymval->value(object, addend) - address;
5254     return This::template reloc_common<valsize>(view, x, reloc_property);
5255   }
5256
5257
5258   // Calculate (S + A) - address, update adr instruction.
5259
5260   static inline typename This::Status
5261   adr(unsigned char* view,
5262       const Sized_relobj_file<size, big_endian>* object,
5263       const Symbol_value<size>* psymval,
5264       Address addend,
5265       Address address,
5266       const AArch64_reloc_property* /* reloc_property */)
5267   {
5268     AArch64_valtype x = psymval->value(object, addend) - address;
5269     // Pick bits [20:0] of X.
5270     AArch64_valtype immed = x & 0x1fffff;
5271     update_adr(view, immed);
5272     // Check -2^20 <= X < 2^20
5273     return (size == 64 && Bits<21>::has_overflow((x))
5274             ? This::STATUS_OVERFLOW
5275             : This::STATUS_OKAY);
5276   }
5277
5278   // Calculate PG(S+A) - PG(address), update adrp instruction.
5279   // R_AARCH64_ADR_PREL_PG_HI21
5280
5281   static inline typename This::Status
5282   adrp(
5283     unsigned char* view,
5284     Address sa,
5285     Address address)
5286   {
5287     AArch64_valtype x = This::Page(sa) - This::Page(address);
5288     // Pick [32:12] of X.
5289     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5290     update_adr(view, immed);
5291     // Check -2^32 <= X < 2^32
5292     return (size == 64 && Bits<33>::has_overflow((x))
5293             ? This::STATUS_OVERFLOW
5294             : This::STATUS_OKAY);
5295   }
5296
5297   // Calculate PG(S+A) - PG(address), update adrp instruction.
5298   // R_AARCH64_ADR_PREL_PG_HI21
5299
5300   static inline typename This::Status
5301   adrp(unsigned char* view,
5302        const Sized_relobj_file<size, big_endian>* object,
5303        const Symbol_value<size>* psymval,
5304        Address addend,
5305        Address address,
5306        const AArch64_reloc_property* reloc_property)
5307   {
5308     Address sa = psymval->value(object, addend);
5309     AArch64_valtype x = This::Page(sa) - This::Page(address);
5310     // Pick [32:12] of X.
5311     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5312     update_adr(view, immed);
5313     return (reloc_property->checkup_x_value(x)
5314             ? This::STATUS_OKAY
5315             : This::STATUS_OVERFLOW);
5316   }
5317
5318   // Update mov[n/z] instruction. Check overflow if needed.
5319   // If X >=0, set the instruction to movz and its immediate value to the
5320   // selected bits S.
5321   // If X < 0, set the instruction to movn and its immediate value to
5322   // NOT (selected bits of).
5323
5324   static inline typename This::Status
5325   movnz(unsigned char* view,
5326         AArch64_valtype x,
5327         const AArch64_reloc_property* reloc_property)
5328   {
5329     // Select bits from X.
5330     Address immed;
5331     bool is_movz;
5332     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5333     if (static_cast<SignedW>(x) >= 0)
5334       {
5335         immed = reloc_property->select_x_value(x);
5336         is_movz = true;
5337       }
5338     else
5339       {
5340         immed = reloc_property->select_x_value(~x);;
5341         is_movz = false;
5342       }
5343
5344     // Update movnz instruction.
5345     update_movnz(view, immed, is_movz);
5346
5347     // Do check overflow or alignment if needed.
5348     return (reloc_property->checkup_x_value(x)
5349             ? This::STATUS_OKAY
5350             : This::STATUS_OVERFLOW);
5351   }
5352
5353   static inline bool
5354   maybe_apply_stub(unsigned int,
5355                    const The_relocate_info*,
5356                    const The_rela&,
5357                    unsigned char*,
5358                    Address,
5359                    const Sized_symbol<size>*,
5360                    const Symbol_value<size>*,
5361                    const Sized_relobj_file<size, big_endian>*,
5362                    section_size_type);
5363
5364 };  // End of AArch64_relocate_functions
5365
5366
5367 // For a certain relocation type (usually jump/branch), test to see if the
5368 // destination needs a stub to fulfil. If so, re-route the destination of the
5369 // original instruction to the stub, note, at this time, the stub has already
5370 // been generated.
5371
5372 template<int size, bool big_endian>
5373 bool
5374 AArch64_relocate_functions<size, big_endian>::
5375 maybe_apply_stub(unsigned int r_type,
5376                  const The_relocate_info* relinfo,
5377                  const The_rela& rela,
5378                  unsigned char* view,
5379                  Address address,
5380                  const Sized_symbol<size>* gsym,
5381                  const Symbol_value<size>* psymval,
5382                  const Sized_relobj_file<size, big_endian>* object,
5383                  section_size_type current_group_size)
5384 {
5385   if (parameters->options().relocatable())
5386     return false;
5387
5388   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5389   Address branch_target = psymval->value(object, 0) + addend;
5390   int stub_type =
5391     The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5392   if (stub_type == ST_NONE)
5393     return false;
5394
5395   const The_aarch64_relobj* aarch64_relobj =
5396       static_cast<const The_aarch64_relobj*>(object);
5397   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5398   gold_assert(stub_table != NULL);
5399
5400   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5401   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5402   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5403   gold_assert(stub != NULL);
5404
5405   Address new_branch_target = stub_table->address() + stub->offset();
5406   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5407       new_branch_target - address;
5408   const AArch64_reloc_property* arp =
5409       aarch64_reloc_property_table->get_reloc_property(r_type);
5410   gold_assert(arp != NULL);
5411   typename This::Status status = This::template
5412       rela_general<32>(view, branch_offset, 0, arp);
5413   if (status != This::STATUS_OKAY)
5414     gold_error(_("Stub is too far away, try a smaller value "
5415                  "for '--stub-group-size'. The current value is 0x%lx."),
5416                static_cast<unsigned long>(current_group_size));
5417   return true;
5418 }
5419
5420
5421 // Group input sections for stub generation.
5422 //
5423 // We group input sections in an output section so that the total size,
5424 // including any padding space due to alignment is smaller than GROUP_SIZE
5425 // unless the only input section in group is bigger than GROUP_SIZE already.
5426 // Then an ARM stub table is created to follow the last input section
5427 // in group.  For each group an ARM stub table is created an is placed
5428 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5429 // extend the group after the stub table.
5430
5431 template<int size, bool big_endian>
5432 void
5433 Target_aarch64<size, big_endian>::group_sections(
5434     Layout* layout,
5435     section_size_type group_size,
5436     bool stubs_always_after_branch,
5437     const Task* task)
5438 {
5439   // Group input sections and insert stub table
5440   Layout::Section_list section_list;
5441   layout->get_executable_sections(&section_list);
5442   for (Layout::Section_list::const_iterator p = section_list.begin();
5443        p != section_list.end();
5444        ++p)
5445     {
5446       AArch64_output_section<size, big_endian>* output_section =
5447           static_cast<AArch64_output_section<size, big_endian>*>(*p);
5448       output_section->group_sections(group_size, stubs_always_after_branch,
5449                                      this, task);
5450     }
5451 }
5452
5453
5454 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5455 // section of RELOBJ.
5456
5457 template<int size, bool big_endian>
5458 AArch64_input_section<size, big_endian>*
5459 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5460     Relobj* relobj, unsigned int shndx) const
5461 {
5462   Section_id sid(relobj, shndx);
5463   typename AArch64_input_section_map::const_iterator p =
5464     this->aarch64_input_section_map_.find(sid);
5465   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5466 }
5467
5468
5469 // Make a new AArch64_input_section object.
5470
5471 template<int size, bool big_endian>
5472 AArch64_input_section<size, big_endian>*
5473 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5474     Relobj* relobj, unsigned int shndx)
5475 {
5476   Section_id sid(relobj, shndx);
5477
5478   AArch64_input_section<size, big_endian>* input_section =
5479       new AArch64_input_section<size, big_endian>(relobj, shndx);
5480   input_section->init();
5481
5482   // Register new AArch64_input_section in map for look-up.
5483   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5484       this->aarch64_input_section_map_.insert(
5485           std::make_pair(sid, input_section));
5486
5487   // Make sure that it we have not created another AArch64_input_section
5488   // for this input section already.
5489   gold_assert(ins.second);
5490
5491   return input_section;
5492 }
5493
5494
5495 // Relaxation hook.  This is where we do stub generation.
5496
5497 template<int size, bool big_endian>
5498 bool
5499 Target_aarch64<size, big_endian>::do_relax(
5500     int pass,
5501     const Input_objects* input_objects,
5502     Symbol_table* symtab,
5503     Layout* layout ,
5504     const Task* task)
5505 {
5506   gold_assert(!parameters->options().relocatable());
5507   if (pass == 1)
5508     {
5509       // We don't handle negative stub_group_size right now.
5510       this->stub_group_size_ = abs(parameters->options().stub_group_size());
5511       if (this->stub_group_size_ == 1)
5512         {
5513           // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5514           // will fail to link.  The user will have to relink with an explicit
5515           // group size option.
5516           this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5517                                    4096 * 4;
5518         }
5519       group_sections(layout, this->stub_group_size_, true, task);
5520     }
5521   else
5522     {
5523       // If this is not the first pass, addresses and file offsets have
5524       // been reset at this point, set them here.
5525       for (Stub_table_iterator sp = this->stub_tables_.begin();
5526            sp != this->stub_tables_.end(); ++sp)
5527         {
5528           The_stub_table* stt = *sp;
5529           The_aarch64_input_section* owner = stt->owner();
5530           off_t off = align_address(owner->original_size(),
5531                                     stt->addralign());
5532           stt->set_address_and_file_offset(owner->address() + off,
5533                                            owner->offset() + off);
5534         }
5535     }
5536
5537   // Scan relocs for relocation stubs
5538   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5539        op != input_objects->relobj_end();
5540        ++op)
5541     {
5542       The_aarch64_relobj* aarch64_relobj =
5543           static_cast<The_aarch64_relobj*>(*op);
5544       // Lock the object so we can read from it.  This is only called
5545       // single-threaded from Layout::finalize, so it is OK to lock.
5546       Task_lock_obj<Object> tl(task, aarch64_relobj);
5547       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5548     }
5549
5550   bool any_stub_table_changed = false;
5551   for (Stub_table_iterator siter = this->stub_tables_.begin();
5552        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5553     {
5554       The_stub_table* stub_table = *siter;
5555       if (stub_table->update_data_size_changed_p())
5556         {
5557           The_aarch64_input_section* owner = stub_table->owner();
5558           uint64_t address = owner->address();
5559           off_t offset = owner->offset();
5560           owner->reset_address_and_file_offset();
5561           owner->set_address_and_file_offset(address, offset);
5562
5563           any_stub_table_changed = true;
5564         }
5565     }
5566
5567   // Do not continue relaxation.
5568   bool continue_relaxation = any_stub_table_changed;
5569   if (!continue_relaxation)
5570     for (Stub_table_iterator sp = this->stub_tables_.begin();
5571          (sp != this->stub_tables_.end());
5572          ++sp)
5573       (*sp)->finalize_stubs();
5574
5575   return continue_relaxation;
5576 }
5577
5578
5579 // Make a new Stub_table.
5580
5581 template<int size, bool big_endian>
5582 Stub_table<size, big_endian>*
5583 Target_aarch64<size, big_endian>::new_stub_table(
5584     AArch64_input_section<size, big_endian>* owner)
5585 {
5586   Stub_table<size, big_endian>* stub_table =
5587       new Stub_table<size, big_endian>(owner);
5588   stub_table->set_address(align_address(
5589       owner->address() + owner->data_size(), 8));
5590   stub_table->set_file_offset(owner->offset() + owner->data_size());
5591   stub_table->finalize_data_size();
5592
5593   this->stub_tables_.push_back(stub_table);
5594
5595   return stub_table;
5596 }
5597
5598
5599 template<int size, bool big_endian>
5600 uint64_t
5601 Target_aarch64<size, big_endian>::do_reloc_addend(
5602     void* arg, unsigned int r_type, uint64_t) const
5603 {
5604   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5605   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5606   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5607   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5608   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5609   gold_assert(psymval->is_tls_symbol());
5610   // The value of a TLS symbol is the offset in the TLS segment.
5611   return psymval->value(ti.object, 0);
5612 }
5613
5614 // Return the number of entries in the PLT.
5615
5616 template<int size, bool big_endian>
5617 unsigned int
5618 Target_aarch64<size, big_endian>::plt_entry_count() const
5619 {
5620   if (this->plt_ == NULL)
5621     return 0;
5622   return this->plt_->entry_count();
5623 }
5624
5625 // Return the offset of the first non-reserved PLT entry.
5626
5627 template<int size, bool big_endian>
5628 unsigned int
5629 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5630 {
5631   return this->plt_->first_plt_entry_offset();
5632 }
5633
5634 // Return the size of each PLT entry.
5635
5636 template<int size, bool big_endian>
5637 unsigned int
5638 Target_aarch64<size, big_endian>::plt_entry_size() const
5639 {
5640   return this->plt_->get_plt_entry_size();
5641 }
5642
5643 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5644
5645 template<int size, bool big_endian>
5646 void
5647 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5648     Symbol_table* symtab, Layout* layout)
5649 {
5650   if (this->tls_base_symbol_defined_)
5651     return;
5652
5653   Output_segment* tls_segment = layout->tls_segment();
5654   if (tls_segment != NULL)
5655     {
5656       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5657       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5658                                        Symbol_table::PREDEFINED,
5659                                        tls_segment, 0, 0,
5660                                        elfcpp::STT_TLS,
5661                                        elfcpp::STB_LOCAL,
5662                                        elfcpp::STV_HIDDEN, 0,
5663                                        Symbol::SEGMENT_START,
5664                                        true);
5665     }
5666   this->tls_base_symbol_defined_ = true;
5667 }
5668
5669 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5670
5671 template<int size, bool big_endian>
5672 void
5673 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5674     Symbol_table* symtab, Layout* layout)
5675 {
5676   if (this->plt_ == NULL)
5677     this->make_plt_section(symtab, layout);
5678
5679   if (!this->plt_->has_tlsdesc_entry())
5680     {
5681       // Allocate the TLSDESC_GOT entry.
5682       Output_data_got_aarch64<size, big_endian>* got =
5683           this->got_section(symtab, layout);
5684       unsigned int got_offset = got->add_constant(0);
5685
5686       // Allocate the TLSDESC_PLT entry.
5687       this->plt_->reserve_tlsdesc_entry(got_offset);
5688     }
5689 }
5690
5691 // Create a GOT entry for the TLS module index.
5692
5693 template<int size, bool big_endian>
5694 unsigned int
5695 Target_aarch64<size, big_endian>::got_mod_index_entry(
5696     Symbol_table* symtab, Layout* layout,
5697     Sized_relobj_file<size, big_endian>* object)
5698 {
5699   if (this->got_mod_index_offset_ == -1U)
5700     {
5701       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5702       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5703       Output_data_got_aarch64<size, big_endian>* got =
5704           this->got_section(symtab, layout);
5705       unsigned int got_offset = got->add_constant(0);
5706       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5707                           got_offset, 0);
5708       got->add_constant(0);
5709       this->got_mod_index_offset_ = got_offset;
5710     }
5711   return this->got_mod_index_offset_;
5712 }
5713
5714 // Optimize the TLS relocation type based on what we know about the
5715 // symbol.  IS_FINAL is true if the final address of this symbol is
5716 // known at link time.
5717
5718 template<int size, bool big_endian>
5719 tls::Tls_optimization
5720 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5721                                                      int r_type)
5722 {
5723   // If we are generating a shared library, then we can't do anything
5724   // in the linker
5725   if (parameters->options().shared())
5726     return tls::TLSOPT_NONE;
5727
5728   switch (r_type)
5729     {
5730     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5731     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5732     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5733     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5734     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5735     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5736     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5737     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5738     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5739     case elfcpp::R_AARCH64_TLSDESC_LDR:
5740     case elfcpp::R_AARCH64_TLSDESC_ADD:
5741     case elfcpp::R_AARCH64_TLSDESC_CALL:
5742       // These are General-Dynamic which permits fully general TLS
5743       // access.  Since we know that we are generating an executable,
5744       // we can convert this to Initial-Exec.  If we also know that
5745       // this is a local symbol, we can further switch to Local-Exec.
5746       if (is_final)
5747         return tls::TLSOPT_TO_LE;
5748       return tls::TLSOPT_TO_IE;
5749
5750     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5751     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5752     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5753     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5754     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5755     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5756       // These are Local-Dynamic, which refer to local symbols in the
5757       // dynamic TLS block. Since we know that we generating an
5758       // executable, we can switch to Local-Exec.
5759       return tls::TLSOPT_TO_LE;
5760
5761     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5762     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5763     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5764     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5765     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5766       // These are Initial-Exec relocs which get the thread offset
5767       // from the GOT. If we know that we are linking against the
5768       // local symbol, we can switch to Local-Exec, which links the
5769       // thread offset into the instruction.
5770       if (is_final)
5771         return tls::TLSOPT_TO_LE;
5772       return tls::TLSOPT_NONE;
5773
5774     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5775     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5776     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5777     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5778     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5779     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5780     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5781     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5782       // When we already have Local-Exec, there is nothing further we
5783       // can do.
5784       return tls::TLSOPT_NONE;
5785
5786     default:
5787       gold_unreachable();
5788     }
5789 }
5790
5791 // Returns true if this relocation type could be that of a function pointer.
5792
5793 template<int size, bool big_endian>
5794 inline bool
5795 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5796   unsigned int r_type)
5797 {
5798   switch (r_type)
5799     {
5800     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5801     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5802     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5803     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5804     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5805       {
5806         return true;
5807       }
5808     }
5809   return false;
5810 }
5811
5812 // For safe ICF, scan a relocation for a local symbol to check if it
5813 // corresponds to a function pointer being taken.  In that case mark
5814 // the function whose pointer was taken as not foldable.
5815
5816 template<int size, bool big_endian>
5817 inline bool
5818 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5819   Symbol_table* ,
5820   Layout* ,
5821   Target_aarch64<size, big_endian>* ,
5822   Sized_relobj_file<size, big_endian>* ,
5823   unsigned int ,
5824   Output_section* ,
5825   const elfcpp::Rela<size, big_endian>& ,
5826   unsigned int r_type,
5827   const elfcpp::Sym<size, big_endian>&)
5828 {
5829   // When building a shared library, do not fold any local symbols.
5830   return (parameters->options().shared()
5831           || possible_function_pointer_reloc(r_type));
5832 }
5833
5834 // For safe ICF, scan a relocation for a global symbol to check if it
5835 // corresponds to a function pointer being taken.  In that case mark
5836 // the function whose pointer was taken as not foldable.
5837
5838 template<int size, bool big_endian>
5839 inline bool
5840 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5841   Symbol_table* ,
5842   Layout* ,
5843   Target_aarch64<size, big_endian>* ,
5844   Sized_relobj_file<size, big_endian>* ,
5845   unsigned int ,
5846   Output_section* ,
5847   const elfcpp::Rela<size, big_endian>& ,
5848   unsigned int r_type,
5849   Symbol* gsym)
5850 {
5851   // When building a shared library, do not fold symbols whose visibility
5852   // is hidden, internal or protected.
5853   return ((parameters->options().shared()
5854            && (gsym->visibility() == elfcpp::STV_INTERNAL
5855                || gsym->visibility() == elfcpp::STV_PROTECTED
5856                || gsym->visibility() == elfcpp::STV_HIDDEN))
5857           || possible_function_pointer_reloc(r_type));
5858 }
5859
5860 // Report an unsupported relocation against a local symbol.
5861
5862 template<int size, bool big_endian>
5863 void
5864 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5865      Sized_relobj_file<size, big_endian>* object,
5866      unsigned int r_type)
5867 {
5868   gold_error(_("%s: unsupported reloc %u against local symbol"),
5869              object->name().c_str(), r_type);
5870 }
5871
5872 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5873 // dynamic linker does not support it, issue an error.
5874
5875 template<int size, bool big_endian>
5876 void
5877 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5878                                                       unsigned int r_type)
5879 {
5880   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5881
5882   switch (r_type)
5883     {
5884     // These are the relocation types supported by glibc for AARCH64.
5885     case elfcpp::R_AARCH64_NONE:
5886     case elfcpp::R_AARCH64_COPY:
5887     case elfcpp::R_AARCH64_GLOB_DAT:
5888     case elfcpp::R_AARCH64_JUMP_SLOT:
5889     case elfcpp::R_AARCH64_RELATIVE:
5890     case elfcpp::R_AARCH64_TLS_DTPREL64:
5891     case elfcpp::R_AARCH64_TLS_DTPMOD64:
5892     case elfcpp::R_AARCH64_TLS_TPREL64:
5893     case elfcpp::R_AARCH64_TLSDESC:
5894     case elfcpp::R_AARCH64_IRELATIVE:
5895     case elfcpp::R_AARCH64_ABS32:
5896     case elfcpp::R_AARCH64_ABS64:
5897       return;
5898
5899     default:
5900       break;
5901     }
5902
5903   // This prevents us from issuing more than one error per reloc
5904   // section. But we can still wind up issuing more than one
5905   // error per object file.
5906   if (this->issued_non_pic_error_)
5907     return;
5908   gold_assert(parameters->options().output_is_position_independent());
5909   object->error(_("requires unsupported dynamic reloc; "
5910                   "recompile with -fPIC"));
5911   this->issued_non_pic_error_ = true;
5912   return;
5913 }
5914
5915 // Return whether we need to make a PLT entry for a relocation of the
5916 // given type against a STT_GNU_IFUNC symbol.
5917
5918 template<int size, bool big_endian>
5919 bool
5920 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5921     Sized_relobj_file<size, big_endian>* object,
5922     unsigned int r_type)
5923 {
5924   const AArch64_reloc_property* arp =
5925       aarch64_reloc_property_table->get_reloc_property(r_type);
5926   gold_assert(arp != NULL);
5927
5928   int flags = arp->reference_flags();
5929   if (flags & Symbol::TLS_REF)
5930     {
5931       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5932                  object->name().c_str(), arp->name().c_str());
5933       return false;
5934     }
5935   return flags != 0;
5936 }
5937
5938 // Scan a relocation for a local symbol.
5939
5940 template<int size, bool big_endian>
5941 inline void
5942 Target_aarch64<size, big_endian>::Scan::local(
5943     Symbol_table* symtab,
5944     Layout* layout,
5945     Target_aarch64<size, big_endian>* target,
5946     Sized_relobj_file<size, big_endian>* object,
5947     unsigned int data_shndx,
5948     Output_section* output_section,
5949     const elfcpp::Rela<size, big_endian>& rela,
5950     unsigned int r_type,
5951     const elfcpp::Sym<size, big_endian>& lsym,
5952     bool is_discarded)
5953 {
5954   if (is_discarded)
5955     return;
5956
5957   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5958       Reloc_section;
5959   Output_data_got_aarch64<size, big_endian>* got =
5960       target->got_section(symtab, layout);
5961   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5962
5963   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5964   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5965   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5966     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5967
5968   switch (r_type)
5969     {
5970     case elfcpp::R_AARCH64_ABS32:
5971     case elfcpp::R_AARCH64_ABS16:
5972       if (parameters->options().output_is_position_independent())
5973         {
5974           gold_error(_("%s: unsupported reloc %u in pos independent link."),
5975                      object->name().c_str(), r_type);
5976         }
5977       break;
5978
5979     case elfcpp::R_AARCH64_ABS64:
5980       // If building a shared library or pie, we need to mark this as a dynmic
5981       // reloction, so that the dynamic loader can relocate it.
5982       if (parameters->options().output_is_position_independent())
5983         {
5984           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5985           rela_dyn->add_local_relative(object, r_sym,
5986                                        elfcpp::R_AARCH64_RELATIVE,
5987                                        output_section,
5988                                        data_shndx,
5989                                        rela.get_r_offset(),
5990                                        rela.get_r_addend(),
5991                                        is_ifunc);
5992         }
5993       break;
5994
5995     case elfcpp::R_AARCH64_PREL64:
5996     case elfcpp::R_AARCH64_PREL32:
5997     case elfcpp::R_AARCH64_PREL16:
5998       break;
5999
6000     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6001     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6002       // This pair of relocations is used to access a specific GOT entry.
6003       {
6004         bool is_new = false;
6005         // This symbol requires a GOT entry.
6006         if (is_ifunc)
6007           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6008         else
6009           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6010         if (is_new && parameters->options().output_is_position_independent())
6011           target->rela_dyn_section(layout)->
6012             add_local_relative(object,
6013                                r_sym,
6014                                elfcpp::R_AARCH64_RELATIVE,
6015                                got,
6016                                object->local_got_offset(r_sym,
6017                                                         GOT_TYPE_STANDARD),
6018                                0,
6019                                false);
6020       }
6021       break;
6022
6023     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6024     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6025     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6026     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6027     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6028     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6029     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6030     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6031     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6032     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6033        break;
6034
6035     // Control flow, pc-relative. We don't need to do anything for a relative
6036     // addressing relocation against a local symbol if it does not reference
6037     // the GOT.
6038     case elfcpp::R_AARCH64_TSTBR14:
6039     case elfcpp::R_AARCH64_CONDBR19:
6040     case elfcpp::R_AARCH64_JUMP26:
6041     case elfcpp::R_AARCH64_CALL26:
6042       break;
6043
6044     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6045     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6046       {
6047         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6048           optimize_tls_reloc(!parameters->options().shared(), r_type);
6049         if (tlsopt == tls::TLSOPT_TO_LE)
6050           break;
6051
6052         layout->set_has_static_tls();
6053         // Create a GOT entry for the tp-relative offset.
6054         if (!parameters->doing_static_link())
6055           {
6056             got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6057                                     target->rela_dyn_section(layout),
6058                                     elfcpp::R_AARCH64_TLS_TPREL64);
6059           }
6060         else if (!object->local_has_got_offset(r_sym,
6061                                                GOT_TYPE_TLS_OFFSET))
6062           {
6063             got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6064             unsigned int got_offset =
6065                 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6066             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6067             gold_assert(addend == 0);
6068             got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6069                                   object, r_sym);
6070           }
6071       }
6072       break;
6073
6074     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6075     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6076       {
6077         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6078             optimize_tls_reloc(!parameters->options().shared(), r_type);
6079         if (tlsopt == tls::TLSOPT_TO_LE)
6080           {
6081             layout->set_has_static_tls();
6082             break;
6083           }
6084         gold_assert(tlsopt == tls::TLSOPT_NONE);
6085
6086         got->add_local_pair_with_rel(object,r_sym, data_shndx,
6087                                      GOT_TYPE_TLS_PAIR,
6088                                      target->rela_dyn_section(layout),
6089                                      elfcpp::R_AARCH64_TLS_DTPMOD64);
6090       }
6091       break;
6092
6093     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6094     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6095     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6096     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6097     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6098     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6099     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6100     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6101       {
6102         layout->set_has_static_tls();
6103         bool output_is_shared = parameters->options().shared();
6104         if (output_is_shared)
6105           gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6106                      object->name().c_str(), r_type);
6107       }
6108       break;
6109
6110     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6111     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6112       {
6113         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6114             optimize_tls_reloc(!parameters->options().shared(), r_type);
6115         if (tlsopt == tls::TLSOPT_NONE)
6116           {
6117             // Create a GOT entry for the module index.
6118             target->got_mod_index_entry(symtab, layout, object);
6119           }
6120         else if (tlsopt != tls::TLSOPT_TO_LE)
6121           unsupported_reloc_local(object, r_type);
6122       }
6123       break;
6124
6125     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6126     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6127     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6128     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6129       break;
6130
6131     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6132     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6133     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6134       {
6135         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6136             optimize_tls_reloc(!parameters->options().shared(), r_type);
6137         target->define_tls_base_symbol(symtab, layout);
6138         if (tlsopt == tls::TLSOPT_NONE)
6139           {
6140             // Create reserved PLT and GOT entries for the resolver.
6141             target->reserve_tlsdesc_entries(symtab, layout);
6142
6143             // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6144             // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6145             // entry needs to be in an area in .got.plt, not .got. Call
6146             // got_section to make sure the section has been created.
6147             target->got_section(symtab, layout);
6148             Output_data_got<size, big_endian>* got =
6149                 target->got_tlsdesc_section();
6150             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6151             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6152               {
6153                 unsigned int got_offset = got->add_constant(0);
6154                 got->add_constant(0);
6155                 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6156                                              got_offset);
6157                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6158                 // We store the arguments we need in a vector, and use
6159                 // the index into the vector as the parameter to pass
6160                 // to the target specific routines.
6161                 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6162                 void* arg = reinterpret_cast<void*>(intarg);
6163                 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6164                                         got, got_offset, 0);
6165               }
6166           }
6167         else if (tlsopt != tls::TLSOPT_TO_LE)
6168           unsupported_reloc_local(object, r_type);
6169       }
6170       break;
6171
6172     case elfcpp::R_AARCH64_TLSDESC_CALL:
6173       break;
6174
6175     default:
6176       unsupported_reloc_local(object, r_type);
6177     }
6178 }
6179
6180
6181 // Report an unsupported relocation against a global symbol.
6182
6183 template<int size, bool big_endian>
6184 void
6185 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6186     Sized_relobj_file<size, big_endian>* object,
6187     unsigned int r_type,
6188     Symbol* gsym)
6189 {
6190   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6191              object->name().c_str(), r_type, gsym->demangled_name().c_str());
6192 }
6193
6194 template<int size, bool big_endian>
6195 inline void
6196 Target_aarch64<size, big_endian>::Scan::global(
6197     Symbol_table* symtab,
6198     Layout* layout,
6199     Target_aarch64<size, big_endian>* target,
6200     Sized_relobj_file<size, big_endian> * object,
6201     unsigned int data_shndx,
6202     Output_section* output_section,
6203     const elfcpp::Rela<size, big_endian>& rela,
6204     unsigned int r_type,
6205     Symbol* gsym)
6206 {
6207   // A STT_GNU_IFUNC symbol may require a PLT entry.
6208   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6209       && this->reloc_needs_plt_for_ifunc(object, r_type))
6210     target->make_plt_entry(symtab, layout, gsym);
6211
6212   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6213     Reloc_section;
6214   const AArch64_reloc_property* arp =
6215       aarch64_reloc_property_table->get_reloc_property(r_type);
6216   gold_assert(arp != NULL);
6217
6218   switch (r_type)
6219     {
6220     case elfcpp::R_AARCH64_ABS16:
6221     case elfcpp::R_AARCH64_ABS32:
6222     case elfcpp::R_AARCH64_ABS64:
6223       {
6224         // Make a PLT entry if necessary.
6225         if (gsym->needs_plt_entry())
6226           {
6227             target->make_plt_entry(symtab, layout, gsym);
6228             // Since this is not a PC-relative relocation, we may be
6229             // taking the address of a function. In that case we need to
6230             // set the entry in the dynamic symbol table to the address of
6231             // the PLT entry.
6232             if (gsym->is_from_dynobj() && !parameters->options().shared())
6233               gsym->set_needs_dynsym_value();
6234           }
6235         // Make a dynamic relocation if necessary.
6236         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6237           {
6238             if (!parameters->options().output_is_position_independent()
6239                 && gsym->may_need_copy_reloc())
6240               {
6241                 target->copy_reloc(symtab, layout, object,
6242                                    data_shndx, output_section, gsym, rela);
6243               }
6244             else if (r_type == elfcpp::R_AARCH64_ABS64
6245                      && gsym->type() == elfcpp::STT_GNU_IFUNC
6246                      && gsym->can_use_relative_reloc(false)
6247                      && !gsym->is_from_dynobj()
6248                      && !gsym->is_undefined()
6249                      && !gsym->is_preemptible())
6250               {
6251                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6252                 // symbol. This makes a function address in a PIE executable
6253                 // match the address in a shared library that it links against.
6254                 Reloc_section* rela_dyn =
6255                     target->rela_irelative_section(layout);
6256                 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6257                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6258                                                        output_section, object,
6259                                                        data_shndx,
6260                                                        rela.get_r_offset(),
6261                                                        rela.get_r_addend());
6262               }
6263             else if (r_type == elfcpp::R_AARCH64_ABS64
6264                      && gsym->can_use_relative_reloc(false))
6265               {
6266                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6267                 rela_dyn->add_global_relative(gsym,
6268                                               elfcpp::R_AARCH64_RELATIVE,
6269                                               output_section,
6270                                               object,
6271                                               data_shndx,
6272                                               rela.get_r_offset(),
6273                                               rela.get_r_addend(),
6274                                               false);
6275               }
6276             else
6277               {
6278                 check_non_pic(object, r_type);
6279                 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6280                     rela_dyn = target->rela_dyn_section(layout);
6281                 rela_dyn->add_global(
6282                   gsym, r_type, output_section, object,
6283                   data_shndx, rela.get_r_offset(),rela.get_r_addend());
6284               }
6285           }
6286       }
6287       break;
6288
6289     case elfcpp::R_AARCH64_PREL16:
6290     case elfcpp::R_AARCH64_PREL32:
6291     case elfcpp::R_AARCH64_PREL64:
6292       // This is used to fill the GOT absolute address.
6293       if (gsym->needs_plt_entry())
6294         {
6295           target->make_plt_entry(symtab, layout, gsym);
6296         }
6297       break;
6298
6299     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6300     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6301     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6302     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6303     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6304     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6305     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6306     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6307     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6308     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6309       {
6310         if (gsym->needs_plt_entry())
6311           target->make_plt_entry(symtab, layout, gsym);
6312         // Make a dynamic relocation if necessary.
6313         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6314           {
6315             if (parameters->options().output_is_executable()
6316                 && gsym->may_need_copy_reloc())
6317               {
6318                 target->copy_reloc(symtab, layout, object,
6319                                    data_shndx, output_section, gsym, rela);
6320               }
6321           }
6322         break;
6323       }
6324
6325     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6326     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6327       {
6328         // This pair of relocations is used to access a specific GOT entry.
6329         // Note a GOT entry is an *address* to a symbol.
6330         // The symbol requires a GOT entry
6331         Output_data_got_aarch64<size, big_endian>* got =
6332           target->got_section(symtab, layout);
6333         if (gsym->final_value_is_known())
6334           {
6335             // For a STT_GNU_IFUNC symbol we want the PLT address.
6336             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6337               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6338             else
6339               got->add_global(gsym, GOT_TYPE_STANDARD);
6340           }
6341         else
6342           {
6343             // If this symbol is not fully resolved, we need to add a dynamic
6344             // relocation for it.
6345             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6346
6347             // Use a GLOB_DAT rather than a RELATIVE reloc if:
6348             //
6349             // 1) The symbol may be defined in some other module.
6350             // 2) We are building a shared library and this is a protected
6351             // symbol; using GLOB_DAT means that the dynamic linker can use
6352             // the address of the PLT in the main executable when appropriate
6353             // so that function address comparisons work.
6354             // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6355             // again so that function address comparisons work.
6356             if (gsym->is_from_dynobj()
6357                 || gsym->is_undefined()
6358                 || gsym->is_preemptible()
6359                 || (gsym->visibility() == elfcpp::STV_PROTECTED
6360                     && parameters->options().shared())
6361                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6362                     && parameters->options().output_is_position_independent()))
6363               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6364                                        rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6365             else
6366               {
6367                 // For a STT_GNU_IFUNC symbol we want to write the PLT
6368                 // offset into the GOT, so that function pointer
6369                 // comparisons work correctly.
6370                 bool is_new;
6371                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6372                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6373                 else
6374                   {
6375                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6376                     // Tell the dynamic linker to use the PLT address
6377                     // when resolving relocations.
6378                     if (gsym->is_from_dynobj()
6379                         && !parameters->options().shared())
6380                       gsym->set_needs_dynsym_value();
6381                   }
6382                 if (is_new)
6383                   {
6384                     rela_dyn->add_global_relative(
6385                         gsym, elfcpp::R_AARCH64_RELATIVE,
6386                         got,
6387                         gsym->got_offset(GOT_TYPE_STANDARD),
6388                         0,
6389                         false);
6390                   }
6391               }
6392           }
6393         break;
6394       }
6395
6396     case elfcpp::R_AARCH64_TSTBR14:
6397     case elfcpp::R_AARCH64_CONDBR19:
6398     case elfcpp::R_AARCH64_JUMP26:
6399     case elfcpp::R_AARCH64_CALL26:
6400       {
6401         if (gsym->final_value_is_known())
6402           break;
6403
6404         if (gsym->is_defined() &&
6405             !gsym->is_from_dynobj() &&
6406             !gsym->is_preemptible())
6407           break;
6408
6409         // Make plt entry for function call.
6410         target->make_plt_entry(symtab, layout, gsym);
6411         break;
6412       }
6413
6414     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6415     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6416       {
6417         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6418             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6419         if (tlsopt == tls::TLSOPT_TO_LE)
6420           {
6421             layout->set_has_static_tls();
6422             break;
6423           }
6424         gold_assert(tlsopt == tls::TLSOPT_NONE);
6425
6426         // General dynamic.
6427         Output_data_got_aarch64<size, big_endian>* got =
6428             target->got_section(symtab, layout);
6429         // Create 2 consecutive entries for module index and offset.
6430         got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6431                                       target->rela_dyn_section(layout),
6432                                       elfcpp::R_AARCH64_TLS_DTPMOD64,
6433                                       elfcpp::R_AARCH64_TLS_DTPREL64);
6434       }
6435       break;
6436
6437     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6438     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6439       {
6440         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6441             optimize_tls_reloc(!parameters->options().shared(), r_type);
6442         if (tlsopt == tls::TLSOPT_NONE)
6443           {
6444             // Create a GOT entry for the module index.
6445             target->got_mod_index_entry(symtab, layout, object);
6446           }
6447         else if (tlsopt != tls::TLSOPT_TO_LE)
6448           unsupported_reloc_local(object, r_type);
6449       }
6450       break;
6451
6452     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6453     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6454     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6455     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6456       break;
6457
6458     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6459     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6460       {
6461         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6462           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6463         if (tlsopt == tls::TLSOPT_TO_LE)
6464           break;
6465
6466         layout->set_has_static_tls();
6467         // Create a GOT entry for the tp-relative offset.
6468         Output_data_got_aarch64<size, big_endian>* got
6469           = target->got_section(symtab, layout);
6470         if (!parameters->doing_static_link())
6471           {
6472             got->add_global_with_rel(
6473               gsym, GOT_TYPE_TLS_OFFSET,
6474               target->rela_dyn_section(layout),
6475               elfcpp::R_AARCH64_TLS_TPREL64);
6476           }
6477         if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6478           {
6479             got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6480             unsigned int got_offset =
6481               gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6482             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6483             gold_assert(addend == 0);
6484             got->add_static_reloc(got_offset,
6485                                   elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6486           }
6487       }
6488       break;
6489
6490     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6491     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6492     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6493     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6494     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6495     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6496     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6497     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:  // Local executable
6498       layout->set_has_static_tls();
6499       if (parameters->options().shared())
6500         gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6501                    object->name().c_str(), r_type);
6502       break;
6503
6504     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6505     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6506     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6507       {
6508         target->define_tls_base_symbol(symtab, layout);
6509         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6510             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6511         if (tlsopt == tls::TLSOPT_NONE)
6512           {
6513             // Create reserved PLT and GOT entries for the resolver.
6514             target->reserve_tlsdesc_entries(symtab, layout);
6515
6516             // Create a double GOT entry with an R_AARCH64_TLSDESC
6517             // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6518             // entry needs to be in an area in .got.plt, not .got. Call
6519             // got_section to make sure the section has been created.
6520             target->got_section(symtab, layout);
6521             Output_data_got<size, big_endian>* got =
6522                 target->got_tlsdesc_section();
6523             Reloc_section* rt = target->rela_tlsdesc_section(layout);
6524             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6525                                           elfcpp::R_AARCH64_TLSDESC, 0);
6526           }
6527         else if (tlsopt == tls::TLSOPT_TO_IE)
6528           {
6529             // Create a GOT entry for the tp-relative offset.
6530             Output_data_got<size, big_endian>* got
6531                 = target->got_section(symtab, layout);
6532             got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6533                                      target->rela_dyn_section(layout),
6534                                      elfcpp::R_AARCH64_TLS_TPREL64);
6535           }
6536         else if (tlsopt != tls::TLSOPT_TO_LE)
6537           unsupported_reloc_global(object, r_type, gsym);
6538       }
6539       break;
6540
6541     case elfcpp::R_AARCH64_TLSDESC_CALL:
6542       break;
6543
6544     default:
6545       gold_error(_("%s: unsupported reloc type in global scan"),
6546                  aarch64_reloc_property_table->
6547                  reloc_name_in_error_message(r_type).c_str());
6548     }
6549   return;
6550 }  // End of Scan::global
6551
6552
6553 // Create the PLT section.
6554 template<int size, bool big_endian>
6555 void
6556 Target_aarch64<size, big_endian>::make_plt_section(
6557   Symbol_table* symtab, Layout* layout)
6558 {
6559   if (this->plt_ == NULL)
6560     {
6561       // Create the GOT section first.
6562       this->got_section(symtab, layout);
6563
6564       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6565                                        this->got_irelative_);
6566
6567       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6568                                       (elfcpp::SHF_ALLOC
6569                                        | elfcpp::SHF_EXECINSTR),
6570                                       this->plt_, ORDER_PLT, false);
6571
6572       // Make the sh_info field of .rela.plt point to .plt.
6573       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6574       rela_plt_os->set_info_section(this->plt_->output_section());
6575     }
6576 }
6577
6578 // Return the section for TLSDESC relocations.
6579
6580 template<int size, bool big_endian>
6581 typename Target_aarch64<size, big_endian>::Reloc_section*
6582 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6583 {
6584   return this->plt_section()->rela_tlsdesc(layout);
6585 }
6586
6587 // Create a PLT entry for a global symbol.
6588
6589 template<int size, bool big_endian>
6590 void
6591 Target_aarch64<size, big_endian>::make_plt_entry(
6592     Symbol_table* symtab,
6593     Layout* layout,
6594     Symbol* gsym)
6595 {
6596   if (gsym->has_plt_offset())
6597     return;
6598
6599   if (this->plt_ == NULL)
6600     this->make_plt_section(symtab, layout);
6601
6602   this->plt_->add_entry(symtab, layout, gsym);
6603 }
6604
6605 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6606
6607 template<int size, bool big_endian>
6608 void
6609 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6610     Symbol_table* symtab, Layout* layout,
6611     Sized_relobj_file<size, big_endian>* relobj,
6612     unsigned int local_sym_index)
6613 {
6614   if (relobj->local_has_plt_offset(local_sym_index))
6615     return;
6616   if (this->plt_ == NULL)
6617     this->make_plt_section(symtab, layout);
6618   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6619                                                               relobj,
6620                                                               local_sym_index);
6621   relobj->set_local_plt_offset(local_sym_index, plt_offset);
6622 }
6623
6624 template<int size, bool big_endian>
6625 void
6626 Target_aarch64<size, big_endian>::gc_process_relocs(
6627     Symbol_table* symtab,
6628     Layout* layout,
6629     Sized_relobj_file<size, big_endian>* object,
6630     unsigned int data_shndx,
6631     unsigned int sh_type,
6632     const unsigned char* prelocs,
6633     size_t reloc_count,
6634     Output_section* output_section,
6635     bool needs_special_offset_handling,
6636     size_t local_symbol_count,
6637     const unsigned char* plocal_symbols)
6638 {
6639   typedef Target_aarch64<size, big_endian> Aarch64;
6640   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6641       Classify_reloc;
6642
6643   if (sh_type == elfcpp::SHT_REL)
6644     {
6645       return;
6646     }
6647
6648   gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6649     symtab,
6650     layout,
6651     this,
6652     object,
6653     data_shndx,
6654     prelocs,
6655     reloc_count,
6656     output_section,
6657     needs_special_offset_handling,
6658     local_symbol_count,
6659     plocal_symbols);
6660 }
6661
6662 // Scan relocations for a section.
6663
6664 template<int size, bool big_endian>
6665 void
6666 Target_aarch64<size, big_endian>::scan_relocs(
6667     Symbol_table* symtab,
6668     Layout* layout,
6669     Sized_relobj_file<size, big_endian>* object,
6670     unsigned int data_shndx,
6671     unsigned int sh_type,
6672     const unsigned char* prelocs,
6673     size_t reloc_count,
6674     Output_section* output_section,
6675     bool needs_special_offset_handling,
6676     size_t local_symbol_count,
6677     const unsigned char* plocal_symbols)
6678 {
6679   typedef Target_aarch64<size, big_endian> Aarch64;
6680   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6681       Classify_reloc;
6682
6683   if (sh_type == elfcpp::SHT_REL)
6684     {
6685       gold_error(_("%s: unsupported REL reloc section"),
6686                  object->name().c_str());
6687       return;
6688     }
6689
6690   gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6691     symtab,
6692     layout,
6693     this,
6694     object,
6695     data_shndx,
6696     prelocs,
6697     reloc_count,
6698     output_section,
6699     needs_special_offset_handling,
6700     local_symbol_count,
6701     plocal_symbols);
6702 }
6703
6704 // Return the value to use for a dynamic which requires special
6705 // treatment.  This is how we support equality comparisons of function
6706 // pointers across shared library boundaries, as described in the
6707 // processor specific ABI supplement.
6708
6709 template<int size, bool big_endian>
6710 uint64_t
6711 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6712 {
6713   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6714   return this->plt_address_for_global(gsym);
6715 }
6716
6717
6718 // Finalize the sections.
6719
6720 template<int size, bool big_endian>
6721 void
6722 Target_aarch64<size, big_endian>::do_finalize_sections(
6723     Layout* layout,
6724     const Input_objects*,
6725     Symbol_table* symtab)
6726 {
6727   const Reloc_section* rel_plt = (this->plt_ == NULL
6728                                   ? NULL
6729                                   : this->plt_->rela_plt());
6730   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6731                                   this->rela_dyn_, true, false);
6732
6733   // Emit any relocs we saved in an attempt to avoid generating COPY
6734   // relocs.
6735   if (this->copy_relocs_.any_saved_relocs())
6736     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6737
6738   // Fill in some more dynamic tags.
6739   Output_data_dynamic* const odyn = layout->dynamic_data();
6740   if (odyn != NULL)
6741     {
6742       if (this->plt_ != NULL
6743           && this->plt_->output_section() != NULL
6744           && this->plt_ ->has_tlsdesc_entry())
6745         {
6746           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6747           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6748           this->got_->finalize_data_size();
6749           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6750                                         this->plt_, plt_offset);
6751           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6752                                         this->got_, got_offset);
6753         }
6754     }
6755
6756   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6757   // the .got.plt section.
6758   Symbol* sym = this->global_offset_table_;
6759   if (sym != NULL)
6760     {
6761       uint64_t data_size = this->got_plt_->current_data_size();
6762       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6763
6764       // If the .got section is more than 0x8000 bytes, we add
6765       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6766       // bit relocations have a greater chance of working.
6767       if (data_size >= 0x8000)
6768         symtab->get_sized_symbol<size>(sym)->set_value(
6769           symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6770     }
6771
6772   if (parameters->doing_static_link()
6773       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6774     {
6775       // If linking statically, make sure that the __rela_iplt symbols
6776       // were defined if necessary, even if we didn't create a PLT.
6777       static const Define_symbol_in_segment syms[] =
6778         {
6779           {
6780             "__rela_iplt_start",        // name
6781             elfcpp::PT_LOAD,            // segment_type
6782             elfcpp::PF_W,               // segment_flags_set
6783             elfcpp::PF(0),              // segment_flags_clear
6784             0,                          // value
6785             0,                          // size
6786             elfcpp::STT_NOTYPE,         // type
6787             elfcpp::STB_GLOBAL,         // binding
6788             elfcpp::STV_HIDDEN,         // visibility
6789             0,                          // nonvis
6790             Symbol::SEGMENT_START,      // offset_from_base
6791             true                        // only_if_ref
6792           },
6793           {
6794             "__rela_iplt_end",          // name
6795             elfcpp::PT_LOAD,            // segment_type
6796             elfcpp::PF_W,               // segment_flags_set
6797             elfcpp::PF(0),              // segment_flags_clear
6798             0,                          // value
6799             0,                          // size
6800             elfcpp::STT_NOTYPE,         // type
6801             elfcpp::STB_GLOBAL,         // binding
6802             elfcpp::STV_HIDDEN,         // visibility
6803             0,                          // nonvis
6804             Symbol::SEGMENT_START,      // offset_from_base
6805             true                        // only_if_ref
6806           }
6807         };
6808
6809       symtab->define_symbols(layout, 2, syms,
6810                              layout->script_options()->saw_sections_clause());
6811     }
6812
6813   return;
6814 }
6815
6816 // Perform a relocation.
6817
6818 template<int size, bool big_endian>
6819 inline bool
6820 Target_aarch64<size, big_endian>::Relocate::relocate(
6821     const Relocate_info<size, big_endian>* relinfo,
6822     unsigned int,
6823     Target_aarch64<size, big_endian>* target,
6824     Output_section* ,
6825     size_t relnum,
6826     const unsigned char* preloc,
6827     const Sized_symbol<size>* gsym,
6828     const Symbol_value<size>* psymval,
6829     unsigned char* view,
6830     typename elfcpp::Elf_types<size>::Elf_Addr address,
6831     section_size_type /* view_size */)
6832 {
6833   if (view == NULL)
6834     return true;
6835
6836   typedef AArch64_relocate_functions<size, big_endian> Reloc;
6837
6838   const elfcpp::Rela<size, big_endian> rela(preloc);
6839   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
6840   const AArch64_reloc_property* reloc_property =
6841       aarch64_reloc_property_table->get_reloc_property(r_type);
6842
6843   if (reloc_property == NULL)
6844     {
6845       std::string reloc_name =
6846           aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6847       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6848                              _("cannot relocate %s in object file"),
6849                              reloc_name.c_str());
6850       return true;
6851     }
6852
6853   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6854
6855   // Pick the value to use for symbols defined in the PLT.
6856   Symbol_value<size> symval;
6857   if (gsym != NULL
6858       && gsym->use_plt_offset(reloc_property->reference_flags()))
6859     {
6860       symval.set_output_value(target->plt_address_for_global(gsym));
6861       psymval = &symval;
6862     }
6863   else if (gsym == NULL && psymval->is_ifunc_symbol())
6864     {
6865       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6866       if (object->local_has_plt_offset(r_sym))
6867         {
6868           symval.set_output_value(target->plt_address_for_local(object, r_sym));
6869           psymval = &symval;
6870         }
6871     }
6872
6873   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6874
6875   // Get the GOT offset if needed.
6876   // For aarch64, the GOT pointer points to the start of the GOT section.
6877   bool have_got_offset = false;
6878   int got_offset = 0;
6879   int got_base = (target->got_ != NULL
6880                   ? (target->got_->current_data_size() >= 0x8000
6881                      ? 0x8000 : 0)
6882                   : 0);
6883   switch (r_type)
6884     {
6885     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6886     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6887     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6888     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6889     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6890     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6891     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6892     case elfcpp::R_AARCH64_GOTREL64:
6893     case elfcpp::R_AARCH64_GOTREL32:
6894     case elfcpp::R_AARCH64_GOT_LD_PREL19:
6895     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6896     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6897     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6898     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6899       if (gsym != NULL)
6900         {
6901           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6902           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6903         }
6904       else
6905         {
6906           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6907           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6908           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6909                         - got_base);
6910         }
6911       have_got_offset = true;
6912       break;
6913
6914     default:
6915       break;
6916     }
6917
6918   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6919   typename elfcpp::Elf_types<size>::Elf_Addr value;
6920   switch (r_type)
6921     {
6922     case elfcpp::R_AARCH64_NONE:
6923       break;
6924
6925     case elfcpp::R_AARCH64_ABS64:
6926       if (!parameters->options().apply_dynamic_relocs()
6927           && parameters->options().output_is_position_independent()
6928           && gsym != NULL
6929           && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
6930           && !gsym->can_use_relative_reloc(false))
6931         // We have generated an absolute dynamic relocation, so do not
6932         // apply the relocation statically. (Works around bugs in older
6933         // Android dynamic linkers.)
6934         break;
6935       reloc_status = Reloc::template rela_ua<64>(
6936         view, object, psymval, addend, reloc_property);
6937       break;
6938
6939     case elfcpp::R_AARCH64_ABS32:
6940       if (!parameters->options().apply_dynamic_relocs()
6941           && parameters->options().output_is_position_independent()
6942           && gsym != NULL
6943           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6944         // We have generated an absolute dynamic relocation, so do not
6945         // apply the relocation statically. (Works around bugs in older
6946         // Android dynamic linkers.)
6947         break;
6948       reloc_status = Reloc::template rela_ua<32>(
6949         view, object, psymval, addend, reloc_property);
6950       break;
6951
6952     case elfcpp::R_AARCH64_ABS16:
6953       if (!parameters->options().apply_dynamic_relocs()
6954           && parameters->options().output_is_position_independent()
6955           && gsym != NULL
6956           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6957         // We have generated an absolute dynamic relocation, so do not
6958         // apply the relocation statically. (Works around bugs in older
6959         // Android dynamic linkers.)
6960         break;
6961       reloc_status = Reloc::template rela_ua<16>(
6962         view, object, psymval, addend, reloc_property);
6963       break;
6964
6965     case elfcpp::R_AARCH64_PREL64:
6966       reloc_status = Reloc::template pcrela_ua<64>(
6967         view, object, psymval, addend, address, reloc_property);
6968       break;
6969
6970     case elfcpp::R_AARCH64_PREL32:
6971       reloc_status = Reloc::template pcrela_ua<32>(
6972         view, object, psymval, addend, address, reloc_property);
6973       break;
6974
6975     case elfcpp::R_AARCH64_PREL16:
6976       reloc_status = Reloc::template pcrela_ua<16>(
6977         view, object, psymval, addend, address, reloc_property);
6978       break;
6979
6980     case elfcpp::R_AARCH64_LD_PREL_LO19:
6981       reloc_status = Reloc::template pcrela_general<32>(
6982           view, object, psymval, addend, address, reloc_property);
6983       break;
6984
6985     case elfcpp::R_AARCH64_ADR_PREL_LO21:
6986       reloc_status = Reloc::adr(view, object, psymval, addend,
6987                                 address, reloc_property);
6988       break;
6989
6990     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6991     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6992       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6993                                  reloc_property);
6994       break;
6995
6996     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6997     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6998     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6999     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7000     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7001     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7002       reloc_status = Reloc::template rela_general<32>(
7003         view, object, psymval, addend, reloc_property);
7004       break;
7005
7006     case elfcpp::R_AARCH64_CALL26:
7007       if (this->skip_call_tls_get_addr_)
7008         {
7009           // Double check that the TLSGD insn has been optimized away.
7010           typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7011           Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7012               reinterpret_cast<Insntype*>(view));
7013           gold_assert((insn & 0xff000000) == 0x91000000);
7014
7015           reloc_status = Reloc::STATUS_OKAY;
7016           this->skip_call_tls_get_addr_ = false;
7017           // Return false to stop further processing this reloc.
7018           return false;
7019         }
7020       // Fallthrough
7021     case elfcpp::R_AARCH64_JUMP26:
7022       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7023                                   gsym, psymval, object,
7024                                   target->stub_group_size_))
7025         break;
7026       // Fallthrough
7027     case elfcpp::R_AARCH64_TSTBR14:
7028     case elfcpp::R_AARCH64_CONDBR19:
7029       reloc_status = Reloc::template pcrela_general<32>(
7030         view, object, psymval, addend, address, reloc_property);
7031       break;
7032
7033     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7034       gold_assert(have_got_offset);
7035       value = target->got_->address() + got_base + got_offset;
7036       reloc_status = Reloc::adrp(view, value + addend, address);
7037       break;
7038
7039     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7040       gold_assert(have_got_offset);
7041       value = target->got_->address() + got_base + got_offset;
7042       reloc_status = Reloc::template rela_general<32>(
7043         view, value, addend, reloc_property);
7044       break;
7045
7046     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7047     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7048     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7049     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7050     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7051     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7052     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7053     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7054     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7055     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7056     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7057     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7058     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7059     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7060     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7061     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7062     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7063     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7064     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7065     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7066     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7067     case elfcpp::R_AARCH64_TLSDESC_CALL:
7068       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7069                                   gsym, psymval, view, address);
7070       break;
7071
7072     // These are dynamic relocations, which are unexpected when linking.
7073     case elfcpp::R_AARCH64_COPY:
7074     case elfcpp::R_AARCH64_GLOB_DAT:
7075     case elfcpp::R_AARCH64_JUMP_SLOT:
7076     case elfcpp::R_AARCH64_RELATIVE:
7077     case elfcpp::R_AARCH64_IRELATIVE:
7078     case elfcpp::R_AARCH64_TLS_DTPREL64:
7079     case elfcpp::R_AARCH64_TLS_DTPMOD64:
7080     case elfcpp::R_AARCH64_TLS_TPREL64:
7081     case elfcpp::R_AARCH64_TLSDESC:
7082       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7083                              _("unexpected reloc %u in object file"),
7084                              r_type);
7085       break;
7086
7087     default:
7088       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7089                              _("unsupported reloc %s"),
7090                              reloc_property->name().c_str());
7091       break;
7092     }
7093
7094   // Report any errors.
7095   switch (reloc_status)
7096     {
7097     case Reloc::STATUS_OKAY:
7098       break;
7099     case Reloc::STATUS_OVERFLOW:
7100       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7101                              _("relocation overflow in %s"),
7102                              reloc_property->name().c_str());
7103       break;
7104     case Reloc::STATUS_BAD_RELOC:
7105       gold_error_at_location(
7106           relinfo,
7107           relnum,
7108           rela.get_r_offset(),
7109           _("unexpected opcode while processing relocation %s"),
7110           reloc_property->name().c_str());
7111       break;
7112     default:
7113       gold_unreachable();
7114     }
7115
7116   return true;
7117 }
7118
7119
7120 template<int size, bool big_endian>
7121 inline
7122 typename AArch64_relocate_functions<size, big_endian>::Status
7123 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7124     const Relocate_info<size, big_endian>* relinfo,
7125     Target_aarch64<size, big_endian>* target,
7126     size_t relnum,
7127     const elfcpp::Rela<size, big_endian>& rela,
7128     unsigned int r_type, const Sized_symbol<size>* gsym,
7129     const Symbol_value<size>* psymval,
7130     unsigned char* view,
7131     typename elfcpp::Elf_types<size>::Elf_Addr address)
7132 {
7133   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7134   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7135
7136   Output_segment* tls_segment = relinfo->layout->tls_segment();
7137   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7138   const AArch64_reloc_property* reloc_property =
7139       aarch64_reloc_property_table->get_reloc_property(r_type);
7140   gold_assert(reloc_property != NULL);
7141
7142   const bool is_final = (gsym == NULL
7143                          ? !parameters->options().shared()
7144                          : gsym->final_value_is_known());
7145   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7146       optimize_tls_reloc(is_final, r_type);
7147
7148   Sized_relobj_file<size, big_endian>* object = relinfo->object;
7149   int tls_got_offset_type;
7150   switch (r_type)
7151     {
7152     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7153     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7154       {
7155         if (tlsopt == tls::TLSOPT_TO_LE)
7156           {
7157             if (tls_segment == NULL)
7158               {
7159                 gold_assert(parameters->errors()->error_count() > 0
7160                             || issue_undefined_symbol_error(gsym));
7161                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7162               }
7163             return tls_gd_to_le(relinfo, target, rela, r_type, view,
7164                                 psymval);
7165           }
7166         else if (tlsopt == tls::TLSOPT_NONE)
7167           {
7168             tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7169             // Firstly get the address for the got entry.
7170             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7171             if (gsym != NULL)
7172               {
7173                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7174                 got_entry_address = target->got_->address() +
7175                                     gsym->got_offset(tls_got_offset_type);
7176               }
7177             else
7178               {
7179                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7180                 gold_assert(
7181                   object->local_has_got_offset(r_sym, tls_got_offset_type));
7182                 got_entry_address = target->got_->address() +
7183                   object->local_got_offset(r_sym, tls_got_offset_type);
7184               }
7185
7186             // Relocate the address into adrp/ld, adrp/add pair.
7187             switch (r_type)
7188               {
7189               case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7190                 return aarch64_reloc_funcs::adrp(
7191                   view, got_entry_address + addend, address);
7192
7193                 break;
7194
7195               case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7196                 return aarch64_reloc_funcs::template rela_general<32>(
7197                   view, got_entry_address, addend, reloc_property);
7198                 break;
7199
7200               default:
7201                 gold_unreachable();
7202               }
7203           }
7204         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7205                                _("unsupported gd_to_ie relaxation on %u"),
7206                                r_type);
7207       }
7208       break;
7209
7210     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7211     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7212       {
7213         if (tlsopt == tls::TLSOPT_TO_LE)
7214           {
7215             if (tls_segment == NULL)
7216               {
7217                 gold_assert(parameters->errors()->error_count() > 0
7218                             || issue_undefined_symbol_error(gsym));
7219                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7220               }
7221             return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7222                                       psymval);
7223           }
7224
7225         gold_assert(tlsopt == tls::TLSOPT_NONE);
7226         // Relocate the field with the offset of the GOT entry for
7227         // the module index.
7228         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7229         got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7230                              target->got_->address());
7231
7232         switch (r_type)
7233           {
7234           case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7235             return aarch64_reloc_funcs::adrp(
7236               view, got_entry_address + addend, address);
7237             break;
7238
7239           case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7240             return aarch64_reloc_funcs::template rela_general<32>(
7241               view, got_entry_address, addend, reloc_property);
7242             break;
7243
7244           default:
7245             gold_unreachable();
7246           }
7247       }
7248       break;
7249
7250     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7251     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7252     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7253     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7254       {
7255         AArch64_address value = psymval->value(object, 0);
7256         if (tlsopt == tls::TLSOPT_TO_LE)
7257           {
7258             if (tls_segment == NULL)
7259               {
7260                 gold_assert(parameters->errors()->error_count() > 0
7261                             || issue_undefined_symbol_error(gsym));
7262                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7263               }
7264           }
7265         switch (r_type)
7266           {
7267           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7268             return aarch64_reloc_funcs::movnz(view, value + addend,
7269                                               reloc_property);
7270             break;
7271
7272           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7273           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7274           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7275             return aarch64_reloc_funcs::template rela_general<32>(
7276                 view, value, addend, reloc_property);
7277             break;
7278
7279           default:
7280             gold_unreachable();
7281           }
7282         // We should never reach here.
7283       }
7284       break;
7285
7286     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7287     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7288       {
7289         if (tlsopt == tls::TLSOPT_TO_LE)
7290           {
7291             if (tls_segment == NULL)
7292               {
7293                 gold_assert(parameters->errors()->error_count() > 0
7294                             || issue_undefined_symbol_error(gsym));
7295                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7296               }
7297             return tls_ie_to_le(relinfo, target, rela, r_type, view,
7298                                 psymval);
7299           }
7300         tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7301
7302         // Firstly get the address for the got entry.
7303         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7304         if (gsym != NULL)
7305           {
7306             gold_assert(gsym->has_got_offset(tls_got_offset_type));
7307             got_entry_address = target->got_->address() +
7308                                 gsym->got_offset(tls_got_offset_type);
7309           }
7310         else
7311           {
7312             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7313             gold_assert(
7314                 object->local_has_got_offset(r_sym, tls_got_offset_type));
7315             got_entry_address = target->got_->address() +
7316                 object->local_got_offset(r_sym, tls_got_offset_type);
7317           }
7318         // Relocate the address into adrp/ld, adrp/add pair.
7319         switch (r_type)
7320           {
7321           case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7322             return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7323                                              address);
7324             break;
7325           case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7326             return aarch64_reloc_funcs::template rela_general<32>(
7327               view, got_entry_address, addend, reloc_property);
7328           default:
7329             gold_unreachable();
7330           }
7331       }
7332       // We shall never reach here.
7333       break;
7334
7335     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7336     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7337     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7338     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7339     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7340     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7341     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7342     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7343       {
7344         gold_assert(tls_segment != NULL);
7345         AArch64_address value = psymval->value(object, 0);
7346
7347         if (!parameters->options().shared())
7348           {
7349             AArch64_address aligned_tcb_size =
7350                 align_address(target->tcb_size(),
7351                               tls_segment->maximum_alignment());
7352             value += aligned_tcb_size;
7353             switch (r_type)
7354               {
7355               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7356               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7357               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7358                 return aarch64_reloc_funcs::movnz(view, value + addend,
7359                                                   reloc_property);
7360               default:
7361                 return aarch64_reloc_funcs::template
7362                   rela_general<32>(view,
7363                                    value,
7364                                    addend,
7365                                    reloc_property);
7366               }
7367           }
7368         else
7369           gold_error(_("%s: unsupported reloc %u "
7370                        "in non-static TLSLE mode."),
7371                      object->name().c_str(), r_type);
7372       }
7373       break;
7374
7375     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7376     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7377     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7378     case elfcpp::R_AARCH64_TLSDESC_CALL:
7379       {
7380         if (tlsopt == tls::TLSOPT_TO_LE)
7381           {
7382             if (tls_segment == NULL)
7383               {
7384                 gold_assert(parameters->errors()->error_count() > 0
7385                             || issue_undefined_symbol_error(gsym));
7386                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7387               }
7388             return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7389                                      view, psymval);
7390           }
7391         else
7392           {
7393             tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7394                                    ? GOT_TYPE_TLS_OFFSET
7395                                    : GOT_TYPE_TLS_DESC);
7396             unsigned int got_tlsdesc_offset = 0;
7397             if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7398                 && tlsopt == tls::TLSOPT_NONE)
7399               {
7400                 // We created GOT entries in the .got.tlsdesc portion of the
7401                 // .got.plt section, but the offset stored in the symbol is the
7402                 // offset within .got.tlsdesc.
7403                 got_tlsdesc_offset = (target->got_->data_size()
7404                                       + target->got_plt_section()->data_size());
7405               }
7406             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7407             if (gsym != NULL)
7408               {
7409                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7410                 got_entry_address = target->got_->address()
7411                                     + got_tlsdesc_offset
7412                                     + gsym->got_offset(tls_got_offset_type);
7413               }
7414             else
7415               {
7416                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7417                 gold_assert(
7418                     object->local_has_got_offset(r_sym, tls_got_offset_type));
7419                 got_entry_address = target->got_->address() +
7420                   got_tlsdesc_offset +
7421                   object->local_got_offset(r_sym, tls_got_offset_type);
7422               }
7423             if (tlsopt == tls::TLSOPT_TO_IE)
7424               {
7425                 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7426                                          view, psymval, got_entry_address,
7427                                          address);
7428               }
7429
7430             // Now do tlsdesc relocation.
7431             switch (r_type)
7432               {
7433               case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7434                 return aarch64_reloc_funcs::adrp(view,
7435                                                  got_entry_address + addend,
7436                                                  address);
7437                 break;
7438               case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7439               case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7440                 return aarch64_reloc_funcs::template rela_general<32>(
7441                   view, got_entry_address, addend, reloc_property);
7442                 break;
7443               case elfcpp::R_AARCH64_TLSDESC_CALL:
7444                 return aarch64_reloc_funcs::STATUS_OKAY;
7445                 break;
7446               default:
7447                 gold_unreachable();
7448               }
7449           }
7450         }
7451       break;
7452
7453     default:
7454       gold_error(_("%s: unsupported TLS reloc %u."),
7455                  object->name().c_str(), r_type);
7456     }
7457   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7458 }  // End of relocate_tls.
7459
7460
7461 template<int size, bool big_endian>
7462 inline
7463 typename AArch64_relocate_functions<size, big_endian>::Status
7464 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7465              const Relocate_info<size, big_endian>* relinfo,
7466              Target_aarch64<size, big_endian>* target,
7467              const elfcpp::Rela<size, big_endian>& rela,
7468              unsigned int r_type,
7469              unsigned char* view,
7470              const Symbol_value<size>* psymval)
7471 {
7472   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7473   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7474   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7475
7476   Insntype* ip = reinterpret_cast<Insntype*>(view);
7477   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7478   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7479   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7480
7481   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7482     {
7483       // This is the 2nd relocs, optimization should already have been
7484       // done.
7485       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7486       return aarch64_reloc_funcs::STATUS_OKAY;
7487     }
7488
7489   // The original sequence is -
7490   //   90000000        adrp    x0, 0 <main>
7491   //   91000000        add     x0, x0, #0x0
7492   //   94000000        bl      0 <__tls_get_addr>
7493   // optimized to sequence -
7494   //   d53bd040        mrs     x0, tpidr_el0
7495   //   91400000        add     x0, x0, #0x0, lsl #12
7496   //   91000000        add     x0, x0, #0x0
7497
7498   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7499   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7500   // have to change "bl tls_get_addr", which does not have a corresponding tls
7501   // relocation type. So before proceeding, we need to make sure compiler
7502   // does not change the sequence.
7503   if(!(insn1 == 0x90000000      // adrp x0,0
7504        && insn2 == 0x91000000   // add x0, x0, #0x0
7505        && insn3 == 0x94000000)) // bl 0
7506     {
7507       // Ideally we should give up gd_to_le relaxation and do gd access.
7508       // However the gd_to_le relaxation decision has been made early
7509       // in the scan stage, where we did not allocate any GOT entry for
7510       // this symbol. Therefore we have to exit and report error now.
7511       gold_error(_("unexpected reloc insn sequence while relaxing "
7512                    "tls gd to le for reloc %u."), r_type);
7513       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7514     }
7515
7516   // Write new insns.
7517   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7518   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7519   insn3 = 0x91000000;  // add x0, x0, #0x0
7520   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7521   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7522   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7523
7524   // Calculate tprel value.
7525   Output_segment* tls_segment = relinfo->layout->tls_segment();
7526   gold_assert(tls_segment != NULL);
7527   AArch64_address value = psymval->value(relinfo->object, 0);
7528   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7529   AArch64_address aligned_tcb_size =
7530       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7531   AArch64_address x = value + aligned_tcb_size;
7532
7533   // After new insns are written, apply TLSLE relocs.
7534   const AArch64_reloc_property* rp1 =
7535       aarch64_reloc_property_table->get_reloc_property(
7536           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7537   const AArch64_reloc_property* rp2 =
7538       aarch64_reloc_property_table->get_reloc_property(
7539           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7540   gold_assert(rp1 != NULL && rp2 != NULL);
7541
7542   typename aarch64_reloc_funcs::Status s1 =
7543       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7544                                                      x,
7545                                                      addend,
7546                                                      rp1);
7547   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7548     return s1;
7549
7550   typename aarch64_reloc_funcs::Status s2 =
7551       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7552                                                      x,
7553                                                      addend,
7554                                                      rp2);
7555
7556   this->skip_call_tls_get_addr_ = true;
7557   return s2;
7558 }  // End of tls_gd_to_le
7559
7560
7561 template<int size, bool big_endian>
7562 inline
7563 typename AArch64_relocate_functions<size, big_endian>::Status
7564 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7565              const Relocate_info<size, big_endian>* relinfo,
7566              Target_aarch64<size, big_endian>* target,
7567              const elfcpp::Rela<size, big_endian>& rela,
7568              unsigned int r_type,
7569              unsigned char* view,
7570              const Symbol_value<size>* psymval)
7571 {
7572   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7573   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7574   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7575
7576   Insntype* ip = reinterpret_cast<Insntype*>(view);
7577   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7578   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7579   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7580
7581   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7582     {
7583       // This is the 2nd relocs, optimization should already have been
7584       // done.
7585       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7586       return aarch64_reloc_funcs::STATUS_OKAY;
7587     }
7588
7589   // The original sequence is -
7590   //   90000000        adrp    x0, 0 <main>
7591   //   91000000        add     x0, x0, #0x0
7592   //   94000000        bl      0 <__tls_get_addr>
7593   // optimized to sequence -
7594   //   d53bd040        mrs     x0, tpidr_el0
7595   //   91400000        add     x0, x0, #0x0, lsl #12
7596   //   91000000        add     x0, x0, #0x0
7597
7598   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7599   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7600   // have to change "bl tls_get_addr", which does not have a corresponding tls
7601   // relocation type. So before proceeding, we need to make sure compiler
7602   // does not change the sequence.
7603   if(!(insn1 == 0x90000000      // adrp x0,0
7604        && insn2 == 0x91000000   // add x0, x0, #0x0
7605        && insn3 == 0x94000000)) // bl 0
7606     {
7607       // Ideally we should give up gd_to_le relaxation and do gd access.
7608       // However the gd_to_le relaxation decision has been made early
7609       // in the scan stage, where we did not allocate any GOT entry for
7610       // this symbol. Therefore we have to exit and report error now.
7611       gold_error(_("unexpected reloc insn sequence while relaxing "
7612                    "tls gd to le for reloc %u."), r_type);
7613       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7614     }
7615
7616   // Write new insns.
7617   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7618   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7619   insn3 = 0x91000000;  // add x0, x0, #0x0
7620   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7621   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7622   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7623
7624   // Calculate tprel value.
7625   Output_segment* tls_segment = relinfo->layout->tls_segment();
7626   gold_assert(tls_segment != NULL);
7627   AArch64_address value = psymval->value(relinfo->object, 0);
7628   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7629   AArch64_address aligned_tcb_size =
7630       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7631   AArch64_address x = value + aligned_tcb_size;
7632
7633   // After new insns are written, apply TLSLE relocs.
7634   const AArch64_reloc_property* rp1 =
7635       aarch64_reloc_property_table->get_reloc_property(
7636           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7637   const AArch64_reloc_property* rp2 =
7638       aarch64_reloc_property_table->get_reloc_property(
7639           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7640   gold_assert(rp1 != NULL && rp2 != NULL);
7641
7642   typename aarch64_reloc_funcs::Status s1 =
7643       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7644                                                      x,
7645                                                      addend,
7646                                                      rp1);
7647   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7648     return s1;
7649
7650   typename aarch64_reloc_funcs::Status s2 =
7651       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7652                                                      x,
7653                                                      addend,
7654                                                      rp2);
7655
7656   this->skip_call_tls_get_addr_ = true;
7657   return s2;
7658
7659 }  // End of tls_ld_to_le
7660
7661 template<int size, bool big_endian>
7662 inline
7663 typename AArch64_relocate_functions<size, big_endian>::Status
7664 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7665              const Relocate_info<size, big_endian>* relinfo,
7666              Target_aarch64<size, big_endian>* target,
7667              const elfcpp::Rela<size, big_endian>& rela,
7668              unsigned int r_type,
7669              unsigned char* view,
7670              const Symbol_value<size>* psymval)
7671 {
7672   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7673   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7674   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7675
7676   AArch64_address value = psymval->value(relinfo->object, 0);
7677   Output_segment* tls_segment = relinfo->layout->tls_segment();
7678   AArch64_address aligned_tcb_address =
7679       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7680   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7681   AArch64_address x = value + addend + aligned_tcb_address;
7682   // "x" is the offset to tp, we can only do this if x is within
7683   // range [0, 2^32-1]
7684   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7685     {
7686       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7687                  r_type);
7688       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7689     }
7690
7691   Insntype* ip = reinterpret_cast<Insntype*>(view);
7692   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7693   unsigned int regno;
7694   Insntype newinsn;
7695   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7696     {
7697       // Generate movz.
7698       regno = (insn & 0x1f);
7699       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7700     }
7701   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7702     {
7703       // Generate movk.
7704       regno = (insn & 0x1f);
7705       gold_assert(regno == ((insn >> 5) & 0x1f));
7706       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7707     }
7708   else
7709     gold_unreachable();
7710
7711   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7712   return aarch64_reloc_funcs::STATUS_OKAY;
7713 }  // End of tls_ie_to_le
7714
7715
7716 template<int size, bool big_endian>
7717 inline
7718 typename AArch64_relocate_functions<size, big_endian>::Status
7719 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7720              const Relocate_info<size, big_endian>* relinfo,
7721              Target_aarch64<size, big_endian>* target,
7722              const elfcpp::Rela<size, big_endian>& rela,
7723              unsigned int r_type,
7724              unsigned char* view,
7725              const Symbol_value<size>* psymval)
7726 {
7727   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7728   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7729   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7730
7731   // TLSDESC-GD sequence is like:
7732   //   adrp  x0, :tlsdesc:v1
7733   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7734   //   add   x0, x0, :tlsdesc_lo12:v1
7735   //   .tlsdesccall    v1
7736   //   blr   x1
7737   // After desc_gd_to_le optimization, the sequence will be like:
7738   //   movz  x0, #0x0, lsl #16
7739   //   movk  x0, #0x10
7740   //   nop
7741   //   nop
7742
7743   // Calculate tprel value.
7744   Output_segment* tls_segment = relinfo->layout->tls_segment();
7745   gold_assert(tls_segment != NULL);
7746   Insntype* ip = reinterpret_cast<Insntype*>(view);
7747   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7748   AArch64_address value = psymval->value(relinfo->object, addend);
7749   AArch64_address aligned_tcb_size =
7750       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7751   AArch64_address x = value + aligned_tcb_size;
7752   // x is the offset to tp, we can only do this if x is within range
7753   // [0, 2^32-1]. If x is out of range, fail and exit.
7754   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7755     {
7756       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7757                    "We Can't do gd_to_le relaxation.\n"), r_type);
7758       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7759     }
7760   Insntype newinsn;
7761   switch (r_type)
7762     {
7763     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7764     case elfcpp::R_AARCH64_TLSDESC_CALL:
7765       // Change to nop
7766       newinsn = 0xd503201f;
7767       break;
7768
7769     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7770       // Change to movz.
7771       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7772       break;
7773
7774     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7775       // Change to movk.
7776       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7777       break;
7778
7779     default:
7780       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7781                  r_type);
7782       gold_unreachable();
7783     }
7784   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7785   return aarch64_reloc_funcs::STATUS_OKAY;
7786 }  // End of tls_desc_gd_to_le
7787
7788
7789 template<int size, bool big_endian>
7790 inline
7791 typename AArch64_relocate_functions<size, big_endian>::Status
7792 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7793              const Relocate_info<size, big_endian>* /* relinfo */,
7794              Target_aarch64<size, big_endian>* /* target */,
7795              const elfcpp::Rela<size, big_endian>& rela,
7796              unsigned int r_type,
7797              unsigned char* view,
7798              const Symbol_value<size>* /* psymval */,
7799              typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7800              typename elfcpp::Elf_types<size>::Elf_Addr address)
7801 {
7802   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7803   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7804
7805   // TLSDESC-GD sequence is like:
7806   //   adrp  x0, :tlsdesc:v1
7807   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7808   //   add   x0, x0, :tlsdesc_lo12:v1
7809   //   .tlsdesccall    v1
7810   //   blr   x1
7811   // After desc_gd_to_ie optimization, the sequence will be like:
7812   //   adrp  x0, :tlsie:v1
7813   //   ldr   x0, [x0, :tlsie_lo12:v1]
7814   //   nop
7815   //   nop
7816
7817   Insntype* ip = reinterpret_cast<Insntype*>(view);
7818   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7819   Insntype newinsn;
7820   switch (r_type)
7821     {
7822     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7823     case elfcpp::R_AARCH64_TLSDESC_CALL:
7824       // Change to nop
7825       newinsn = 0xd503201f;
7826       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7827       break;
7828
7829     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7830       {
7831         return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7832                                          address);
7833       }
7834       break;
7835
7836     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7837       {
7838        // Set ldr target register to be x0.
7839        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7840        insn &= 0xffffffe0;
7841        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7842        // Do relocation.
7843         const AArch64_reloc_property* reloc_property =
7844             aarch64_reloc_property_table->get_reloc_property(
7845               elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7846         return aarch64_reloc_funcs::template rela_general<32>(
7847                  view, got_entry_address, addend, reloc_property);
7848       }
7849       break;
7850
7851     default:
7852       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7853                  r_type);
7854       gold_unreachable();
7855     }
7856   return aarch64_reloc_funcs::STATUS_OKAY;
7857 }  // End of tls_desc_gd_to_ie
7858
7859 // Relocate section data.
7860
7861 template<int size, bool big_endian>
7862 void
7863 Target_aarch64<size, big_endian>::relocate_section(
7864     const Relocate_info<size, big_endian>* relinfo,
7865     unsigned int sh_type,
7866     const unsigned char* prelocs,
7867     size_t reloc_count,
7868     Output_section* output_section,
7869     bool needs_special_offset_handling,
7870     unsigned char* view,
7871     typename elfcpp::Elf_types<size>::Elf_Addr address,
7872     section_size_type view_size,
7873     const Reloc_symbol_changes* reloc_symbol_changes)
7874 {
7875   typedef Target_aarch64<size, big_endian> Aarch64;
7876   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7877   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7878       Classify_reloc;
7879
7880   gold_assert(sh_type == elfcpp::SHT_RELA);
7881
7882   gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
7883                          gold::Default_comdat_behavior, Classify_reloc>(
7884     relinfo,
7885     this,
7886     prelocs,
7887     reloc_count,
7888     output_section,
7889     needs_special_offset_handling,
7890     view,
7891     address,
7892     view_size,
7893     reloc_symbol_changes);
7894 }
7895
7896 // Scan the relocs during a relocatable link.
7897
7898 template<int size, bool big_endian>
7899 void
7900 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7901     Symbol_table* symtab,
7902     Layout* layout,
7903     Sized_relobj_file<size, big_endian>* object,
7904     unsigned int data_shndx,
7905     unsigned int sh_type,
7906     const unsigned char* prelocs,
7907     size_t reloc_count,
7908     Output_section* output_section,
7909     bool needs_special_offset_handling,
7910     size_t local_symbol_count,
7911     const unsigned char* plocal_symbols,
7912     Relocatable_relocs* rr)
7913 {
7914   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7915       Classify_reloc;
7916   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
7917       Scan_relocatable_relocs;
7918
7919   gold_assert(sh_type == elfcpp::SHT_RELA);
7920
7921   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
7922     symtab,
7923     layout,
7924     object,
7925     data_shndx,
7926     prelocs,
7927     reloc_count,
7928     output_section,
7929     needs_special_offset_handling,
7930     local_symbol_count,
7931     plocal_symbols,
7932     rr);
7933 }
7934
7935 // Scan the relocs for --emit-relocs.
7936
7937 template<int size, bool big_endian>
7938 void
7939 Target_aarch64<size, big_endian>::emit_relocs_scan(
7940     Symbol_table* symtab,
7941     Layout* layout,
7942     Sized_relobj_file<size, big_endian>* object,
7943     unsigned int data_shndx,
7944     unsigned int sh_type,
7945     const unsigned char* prelocs,
7946     size_t reloc_count,
7947     Output_section* output_section,
7948     bool needs_special_offset_handling,
7949     size_t local_symbol_count,
7950     const unsigned char* plocal_syms,
7951     Relocatable_relocs* rr)
7952 {
7953   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7954       Classify_reloc;
7955   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
7956       Emit_relocs_strategy;
7957
7958   gold_assert(sh_type == elfcpp::SHT_RELA);
7959
7960   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
7961     symtab,
7962     layout,
7963     object,
7964     data_shndx,
7965     prelocs,
7966     reloc_count,
7967     output_section,
7968     needs_special_offset_handling,
7969     local_symbol_count,
7970     plocal_syms,
7971     rr);
7972 }
7973
7974 // Relocate a section during a relocatable link.
7975
7976 template<int size, bool big_endian>
7977 void
7978 Target_aarch64<size, big_endian>::relocate_relocs(
7979     const Relocate_info<size, big_endian>* relinfo,
7980     unsigned int sh_type,
7981     const unsigned char* prelocs,
7982     size_t reloc_count,
7983     Output_section* output_section,
7984     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7985     unsigned char* view,
7986     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7987     section_size_type view_size,
7988     unsigned char* reloc_view,
7989     section_size_type reloc_view_size)
7990 {
7991   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7992       Classify_reloc;
7993
7994   gold_assert(sh_type == elfcpp::SHT_RELA);
7995
7996   gold::relocate_relocs<size, big_endian, Classify_reloc>(
7997     relinfo,
7998     prelocs,
7999     reloc_count,
8000     output_section,
8001     offset_in_output_section,
8002     view,
8003     view_address,
8004     view_size,
8005     reloc_view,
8006     reloc_view_size);
8007 }
8008
8009
8010 // Return whether this is a 3-insn erratum sequence.
8011
8012 template<int size, bool big_endian>
8013 bool
8014 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8015     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8016     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8017     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8018 {
8019   unsigned rt1, rt2;
8020   bool load, pair;
8021
8022   // The 2nd insn is a single register load or store; or register pair
8023   // store.
8024   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8025       && (!pair || (pair && !load)))
8026     {
8027       // The 3rd insn is a load or store instruction from the "Load/store
8028       // register (unsigned immediate)" encoding class, using Rn as the
8029       // base address register.
8030       if (Insn_utilities::aarch64_ldst_uimm(insn3)
8031           && (Insn_utilities::aarch64_rn(insn3)
8032               == Insn_utilities::aarch64_rd(insn1)))
8033         return true;
8034     }
8035   return false;
8036 }
8037
8038
8039 // Return whether this is a 835769 sequence.
8040 // (Similarly implemented as in elfnn-aarch64.c.)
8041
8042 template<int size, bool big_endian>
8043 bool
8044 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8045     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8046     typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8047 {
8048   uint32_t rt;
8049   uint32_t rt2;
8050   uint32_t rn;
8051   uint32_t rm;
8052   uint32_t ra;
8053   bool pair;
8054   bool load;
8055
8056   if (Insn_utilities::aarch64_mlxl(insn2)
8057       && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8058     {
8059       /* Any SIMD memory op is independent of the subsequent MLA
8060          by definition of the erratum.  */
8061       if (Insn_utilities::aarch64_bit(insn1, 26))
8062         return true;
8063
8064       /* If not SIMD, check for integer memory ops and MLA relationship.  */
8065       rn = Insn_utilities::aarch64_rn(insn2);
8066       ra = Insn_utilities::aarch64_ra(insn2);
8067       rm = Insn_utilities::aarch64_rm(insn2);
8068
8069       /* If this is a load and there's a true(RAW) dependency, we are safe
8070          and this is not an erratum sequence.  */
8071       if (load &&
8072           (rt == rn || rt == rm || rt == ra
8073            || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8074         return false;
8075
8076       /* We conservatively put out stubs for all other cases (including
8077          writebacks).  */
8078       return true;
8079     }
8080
8081   return false;
8082 }
8083
8084
8085 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8086
8087 template<int size, bool big_endian>
8088 void
8089 Target_aarch64<size, big_endian>::create_erratum_stub(
8090     AArch64_relobj<size, big_endian>* relobj,
8091     unsigned int shndx,
8092     section_size_type erratum_insn_offset,
8093     Address erratum_address,
8094     typename Insn_utilities::Insntype erratum_insn,
8095     int erratum_type,
8096     unsigned int e843419_adrp_offset)
8097 {
8098   gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8099   The_stub_table* stub_table = relobj->stub_table(shndx);
8100   gold_assert(stub_table != NULL);
8101   if (stub_table->find_erratum_stub(relobj,
8102                                     shndx,
8103                                     erratum_insn_offset) == NULL)
8104     {
8105       const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8106       The_erratum_stub* stub;
8107       if (erratum_type == ST_E_835769)
8108         stub = new The_erratum_stub(relobj, erratum_type, shndx,
8109                                     erratum_insn_offset);
8110       else if (erratum_type == ST_E_843419)
8111         stub = new E843419_stub<size, big_endian>(
8112             relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8113       else
8114         gold_unreachable();
8115       stub->set_erratum_insn(erratum_insn);
8116       stub->set_erratum_address(erratum_address);
8117       // For erratum ST_E_843419 and ST_E_835769, the destination address is
8118       // always the next insn after erratum insn.
8119       stub->set_destination_address(erratum_address + BPI);
8120       stub_table->add_erratum_stub(stub);
8121     }
8122 }
8123
8124
8125 // Scan erratum for section SHNDX range [output_address + span_start,
8126 // output_address + span_end). Note here we do not share the code with
8127 // scan_erratum_843419_span function, because for 843419 we optimize by only
8128 // scanning the last few insns of a page, whereas for 835769, we need to scan
8129 // every insn.
8130
8131 template<int size, bool big_endian>
8132 void
8133 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8134     AArch64_relobj<size, big_endian>*  relobj,
8135     unsigned int shndx,
8136     const section_size_type span_start,
8137     const section_size_type span_end,
8138     unsigned char* input_view,
8139     Address output_address)
8140 {
8141   typedef typename Insn_utilities::Insntype Insntype;
8142
8143   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8144
8145   // Adjust output_address and view to the start of span.
8146   output_address += span_start;
8147   input_view += span_start;
8148
8149   section_size_type span_length = span_end - span_start;
8150   section_size_type offset = 0;
8151   for (offset = 0; offset + BPI < span_length; offset += BPI)
8152     {
8153       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8154       Insntype insn1 = ip[0];
8155       Insntype insn2 = ip[1];
8156       if (is_erratum_835769_sequence(insn1, insn2))
8157         {
8158           Insntype erratum_insn = insn2;
8159           // "span_start + offset" is the offset for insn1. So for insn2, it is
8160           // "span_start + offset + BPI".
8161           section_size_type erratum_insn_offset = span_start + offset + BPI;
8162           Address erratum_address = output_address + offset + BPI;
8163           gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8164                          "section %d, offset 0x%08x."),
8165                        relobj->name().c_str(), shndx,
8166                        (unsigned int)(span_start + offset));
8167
8168           this->create_erratum_stub(relobj, shndx,
8169                                     erratum_insn_offset, erratum_address,
8170                                     erratum_insn, ST_E_835769);
8171           offset += BPI;  // Skip mac insn.
8172         }
8173     }
8174 }  // End of "Target_aarch64::scan_erratum_835769_span".
8175
8176
8177 // Scan erratum for section SHNDX range
8178 // [output_address + span_start, output_address + span_end).
8179
8180 template<int size, bool big_endian>
8181 void
8182 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8183     AArch64_relobj<size, big_endian>*  relobj,
8184     unsigned int shndx,
8185     const section_size_type span_start,
8186     const section_size_type span_end,
8187     unsigned char* input_view,
8188     Address output_address)
8189 {
8190   typedef typename Insn_utilities::Insntype Insntype;
8191
8192   // Adjust output_address and view to the start of span.
8193   output_address += span_start;
8194   input_view += span_start;
8195
8196   if ((output_address & 0x03) != 0)
8197     return;
8198
8199   section_size_type offset = 0;
8200   section_size_type span_length = span_end - span_start;
8201   // The first instruction must be ending at 0xFF8 or 0xFFC.
8202   unsigned int page_offset = output_address & 0xFFF;
8203   // Make sure starting position, that is "output_address+offset",
8204   // starts at page position 0xff8 or 0xffc.
8205   if (page_offset < 0xff8)
8206     offset = 0xff8 - page_offset;
8207   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8208     {
8209       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8210       Insntype insn1 = ip[0];
8211       if (Insn_utilities::is_adrp(insn1))
8212         {
8213           Insntype insn2 = ip[1];
8214           Insntype insn3 = ip[2];
8215           Insntype erratum_insn;
8216           unsigned insn_offset;
8217           bool do_report = false;
8218           if (is_erratum_843419_sequence(insn1, insn2, insn3))
8219             {
8220               do_report = true;
8221               erratum_insn = insn3;
8222               insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8223             }
8224           else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8225             {
8226               // Optionally we can have an insn between ins2 and ins3
8227               Insntype insn_opt = ip[2];
8228               // And insn_opt must not be a branch.
8229               if (!Insn_utilities::aarch64_b(insn_opt)
8230                   && !Insn_utilities::aarch64_bl(insn_opt)
8231                   && !Insn_utilities::aarch64_blr(insn_opt)
8232                   && !Insn_utilities::aarch64_br(insn_opt))
8233                 {
8234                   // And insn_opt must not write to dest reg in insn1. However
8235                   // we do a conservative scan, which means we may fix/report
8236                   // more than necessary, but it doesn't hurt.
8237
8238                   Insntype insn4 = ip[3];
8239                   if (is_erratum_843419_sequence(insn1, insn2, insn4))
8240                     {
8241                       do_report = true;
8242                       erratum_insn = insn4;
8243                       insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8244                     }
8245                 }
8246             }
8247           if (do_report)
8248             {
8249               gold_info(_("Erratum 843419 found and fixed at \"%s\", "
8250                              "section %d, offset 0x%08x."),
8251                            relobj->name().c_str(), shndx,
8252                            (unsigned int)(span_start + offset));
8253               unsigned int erratum_insn_offset =
8254                 span_start + offset + insn_offset;
8255               Address erratum_address =
8256                 output_address + offset + insn_offset;
8257               create_erratum_stub(relobj, shndx,
8258                                   erratum_insn_offset, erratum_address,
8259                                   erratum_insn, ST_E_843419,
8260                                   span_start + offset);
8261             }
8262         }
8263
8264       // Advance to next candidate instruction. We only consider instruction
8265       // sequences starting at a page offset of 0xff8 or 0xffc.
8266       page_offset = (output_address + offset) & 0xfff;
8267       if (page_offset == 0xff8)
8268         offset += 4;
8269       else  // (page_offset == 0xffc), we move to next page's 0xff8.
8270         offset += 0xffc;
8271     }
8272 }  // End of "Target_aarch64::scan_erratum_843419_span".
8273
8274
8275 // The selector for aarch64 object files.
8276
8277 template<int size, bool big_endian>
8278 class Target_selector_aarch64 : public Target_selector
8279 {
8280  public:
8281   Target_selector_aarch64();
8282
8283   virtual Target*
8284   do_instantiate_target()
8285   { return new Target_aarch64<size, big_endian>(); }
8286 };
8287
8288 template<>
8289 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8290   : Target_selector(elfcpp::EM_AARCH64, 32, true,
8291                     "elf32-bigaarch64", "aarch64_elf32_be_vec")
8292 { }
8293
8294 template<>
8295 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8296   : Target_selector(elfcpp::EM_AARCH64, 32, false,
8297                     "elf32-littleaarch64", "aarch64_elf32_le_vec")
8298 { }
8299
8300 template<>
8301 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8302   : Target_selector(elfcpp::EM_AARCH64, 64, true,
8303                     "elf64-bigaarch64", "aarch64_elf64_be_vec")
8304 { }
8305
8306 template<>
8307 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8308   : Target_selector(elfcpp::EM_AARCH64, 64, false,
8309                     "elf64-littleaarch64", "aarch64_elf64_le_vec")
8310 { }
8311
8312 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8313 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8314 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8315 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8316
8317 } // End anonymous namespace.